Science.gov

Sample records for play real-time strategy

  1. Explaining How to Play Real-Time Strategy Games

    NASA Astrophysics Data System (ADS)

    Metoyer, Ronald; Stumpf, Simone; Neumann, Christoph; Dodge, Jonathan; Cao, Jill; Schnabel, Aaron

    Real-time strategy games share many aspects with real situations in domains such as battle planning, air traffic control, and emergency response team management which makes them appealing test-beds for Artificial Intelligence (AI) and machine learning. End user annotations could help to provide supplemental information for learning algorithms, especially when training data is sparse. This paper presents a formative study to uncover how experienced users explain game play in real-time strategy games. We report the results of our analysis of explanations and discuss their characteristics that could support the design of systems for use by experienced real-time strategy game users in specifying or annotating strategy-oriented behavior.

  2. Role-Playing and Real-Time Strategy Games Associated with Greater Probability of Internet Gaming Disorder.

    PubMed

    Eichenbaum, Adam; Kattner, Florian; Bradford, Daniel; Gentile, Douglas A; Green, C Shawn

    2015-08-01

    Research indicates that a small subset of those who routinely play video games show signs of pathological habits, with side effects ranging from mild (e.g., being late) to quite severe (e.g., losing a job). However, it is still not clear whether individual types, or genres, of games are most strongly associated with Internet gaming disorder (IGD). A sample of 4,744 University of Wisconsin-Madison undergraduates (Mage=18.9 years; SD=1.9 years; 60.5% female) completed questionnaires on general video game playing habits and on symptoms of IGD. Consistent with previous reports: 5.9-10.8% (depending on classification criteria) of individuals who played video games show signs of pathological play. Furthermore, real-time strategy and role-playing video games were more strongly associated with pathological play, compared with action and other games (e.g., phone games). The current investigation adds support to the idea that not all video games are equal. Instead, certain genres of video games, specifically real-time strategy and role-playing/fantasy games, are disproportionately associated with IGD symptoms.

  3. Role-Playing and Real-Time Strategy Games Associated with Greater Probability of Internet Gaming Disorder.

    PubMed

    Eichenbaum, Adam; Kattner, Florian; Bradford, Daniel; Gentile, Douglas A; Green, C Shawn

    2015-08-01

    Research indicates that a small subset of those who routinely play video games show signs of pathological habits, with side effects ranging from mild (e.g., being late) to quite severe (e.g., losing a job). However, it is still not clear whether individual types, or genres, of games are most strongly associated with Internet gaming disorder (IGD). A sample of 4,744 University of Wisconsin-Madison undergraduates (Mage=18.9 years; SD=1.9 years; 60.5% female) completed questionnaires on general video game playing habits and on symptoms of IGD. Consistent with previous reports: 5.9-10.8% (depending on classification criteria) of individuals who played video games show signs of pathological play. Furthermore, real-time strategy and role-playing video games were more strongly associated with pathological play, compared with action and other games (e.g., phone games). The current investigation adds support to the idea that not all video games are equal. Instead, certain genres of video games, specifically real-time strategy and role-playing/fantasy games, are disproportionately associated with IGD symptoms. PMID:26252934

  4. Online gaming for learning optimal team strategies in real time

    NASA Astrophysics Data System (ADS)

    Hudas, Gregory; Lewis, F. L.; Vamvoudakis, K. G.

    2010-04-01

    This paper first presents an overall view for dynamical decision-making in teams, both cooperative and competitive. Strategies for team decision problems, including optimal control, zero-sum 2-player games (H-infinity control) and so on are normally solved for off-line by solving associated matrix equations such as the Riccati equation. However, using that approach, players cannot change their objectives online in real time without calling for a completely new off-line solution for the new strategies. Therefore, in this paper we give a method for learning optimal team strategies online in real time as team dynamical play unfolds. In the linear quadratic regulator case, for instance, the method learns the Riccati equation solution online without ever solving the Riccati equation. This allows for truly dynamical team decisions where objective functions can change in real time and the system dynamics can be time-varying.

  5. Real Time Energy Management Control Strategies for Hybrid Powertrains

    NASA Astrophysics Data System (ADS)

    Zaher, Mohamed Hegazi Mohamed

    In order to improve fuel efficiency and reduce emissions of mobile vehicles, various hybrid power-train concepts have been developed over the years. This thesis focuses on embedded control of hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real time energy management strategy for continuous operations. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, or the motion is driven by gravitational force, or load driven. There are three main concepts for regernerative energy storing devices in hybrid vehicles: electric, hydraulic, and flywheel. The real time control challenge is to balance the system power demand from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle, while making optimal use of the energy saving opportunities in a given operational, often repetitive cycle. In the worst case scenario, only engine is used and hybrid system completely disabled. A rule based control is developed and tuned for different work cycles and linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the machine and its position via GPS, and maps them to the gains.

  6. Real-time GPS Strategies for Rapid Response Applications

    NASA Astrophysics Data System (ADS)

    Johanson, I. A.; Dreger, D. S.

    2012-12-01

    High-rate, low-latency GPS data can make valuable contribution to both Earthquake Early Warning (EEW) and Rapid Response (RR) applications. While GPS will make is largest contribution to EEW in high magnitude earthquakes, it can provide valuable information to RR products for many more events, from moderate to high magnitude. In particular, static offsets from GPS provide information on the fault plane orientation and total slip in a finite slip inversion, which is used to produce Shakemap. Shakemap is a product that shows the estimated intensity of shaking around the epicentral area and is used by first responders to evaluate where damage is likely to have occurred. In this project, we investigate strategies for using GPS data for moderate earthquakes in California to produce estimates of static offsets and estimate a slip plane within minutes following an event. The 2007 M5.6 Alum Rock and 2004 M6.0 Parkfield earthquakes are used as test cases and the data is processed using Track and TrackRT. Multiple methods for measuring the static offsets from the displacement waveforms are tested, including differencing the pre- and post- earthquake median positions and a method involving pre- and post- earthquake line fitting. We also look into the effects of different types of starting geometry on the speed and accuracy of the non-linear fault plane determination process. We find that rapid post-processing with Track allows more robust static offset determination from these smaller earthquakes than real-time processing (as it exists today). Rapid post-processing can be finished and displacement waveforms made available within a couple minutes, well within the time threshold for other rapid products and providing essentially no delay to the final products. Nonetheless, this strategy still requires real-time transmission of data from the field to the lab so that it is available on demand following an event.

  7. Research of Real-time Data Warehouse Storage Strategy Based on Multi-level Caches

    NASA Astrophysics Data System (ADS)

    YiChuan, Shao; Yao, Xingjia

    Real-time data warehouse extend the application of traditional data warehouse. It can not only support tactical queries for enterprise but also provide much variable tactical decision support effectively. For these reasons, it is very meaningful to research on the structure of real-time data warehouses. This paper introduced the background of real-time data warehouse and proposed the strategy of real-time data warehouse which is based on double mirror replication mechanism. The strategy is composed of double steps. First we used double mirror replication mechanism to enable continuous loading data in the real-time data warehouse with minimum impact in query execution time. Second we proposed incorporating multi-level caches into the data warehouse structure which is based on real-time partition and gave the process of design and implementation with details. We differentiated between queries with various data freshness requirements, and used multi-level caches to satisfy these different requirements.

  8. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim; Gilbert, Bob; Lake, Larry W.; Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett; Thomas, Sunil G.; Rightley, Michael J.; Rodriguez, Adolfo; Klie, Hector; Banchs, Rafael; Nunez, Emilio J.; Jablonowski, Chris

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  9. THE CHOICE OF REAL-TIME CONTROL STRATEGY FOR COMBINED SEWER OVERFLOW CONTROL

    EPA Science Inventory

    This paper focuses on the strategies used to operate a collection system in real-time control (RTC) in order to optimize use of system capacity and to reduce the cost of long-term combined sewer overflow (CSO) control. Three RTC strategies were developed and analyzed based on the...

  10. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.

    PubMed

    Kim, Yong-Hwan; Kang, Dong-Wha; Kim, Dongho; Kim, Hye-Jin; Sasaki, Yuka; Watanabe, Takeo

    2015-07-22

    Visual perceptual learning (VPL) is defined as long-term improvement in performance on a visual-perception task after visual experiences or training. Early studies have found that VPL is highly specific for the trained feature and location, suggesting that VPL is associated with changes in the early visual cortex. However, the generality of visual skills enhancement attributable to action video-game experience suggests that VPL can result from improvement in higher cognitive skills. If so, experience in real-time strategy (RTS) video-game play, which may heavily involve cognitive skills, may also facilitate VPL. To test this hypothesis, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and elucidated underlying structural and functional neural mechanisms. Healthy young human subjects underwent six training sessions on a texture discrimination task. Diffusion-tensor and functional magnetic resonance imaging were performed before and after training. VGPs performed better than NVGPs in the early phase of training. White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) were greater in VGPs than NVGPs and were significantly correlated with RTS video-game experience. In both VGPs and NVGPs, there was task-related neuronal activity in the right IFG, ACC, and striatum, which was strengthened after training. These results indicate that RTS video-game experience, associated with changes in higher-order cognitive functions and connectivity between visual and cognitive areas, facilitates VPL in early phases of training. The results support the hypothesis that VPL can occur without involvement of only visual areas. Significance statement: Although early studies found that visual perceptual learning (VPL) is associated with involvement of the visual cortex, generality of visual skills enhancement by action video-game experience

  11. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.

    PubMed

    Kim, Yong-Hwan; Kang, Dong-Wha; Kim, Dongho; Kim, Hye-Jin; Sasaki, Yuka; Watanabe, Takeo

    2015-07-22

    Visual perceptual learning (VPL) is defined as long-term improvement in performance on a visual-perception task after visual experiences or training. Early studies have found that VPL is highly specific for the trained feature and location, suggesting that VPL is associated with changes in the early visual cortex. However, the generality of visual skills enhancement attributable to action video-game experience suggests that VPL can result from improvement in higher cognitive skills. If so, experience in real-time strategy (RTS) video-game play, which may heavily involve cognitive skills, may also facilitate VPL. To test this hypothesis, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and elucidated underlying structural and functional neural mechanisms. Healthy young human subjects underwent six training sessions on a texture discrimination task. Diffusion-tensor and functional magnetic resonance imaging were performed before and after training. VGPs performed better than NVGPs in the early phase of training. White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) were greater in VGPs than NVGPs and were significantly correlated with RTS video-game experience. In both VGPs and NVGPs, there was task-related neuronal activity in the right IFG, ACC, and striatum, which was strengthened after training. These results indicate that RTS video-game experience, associated with changes in higher-order cognitive functions and connectivity between visual and cognitive areas, facilitates VPL in early phases of training. The results support the hypothesis that VPL can occur without involvement of only visual areas. Significance statement: Although early studies found that visual perceptual learning (VPL) is associated with involvement of the visual cortex, generality of visual skills enhancement by action video-game experience

  12. A parallel strategy for implementing real-time expert systems using CLIPS

    NASA Technical Reports Server (NTRS)

    Ilyes, Laszlo A.; Villaseca, F. Eugenio; Delaat, John

    1994-01-01

    As evidenced by current literature, there appears to be a continued interest in the study of real-time expert systems. It is generally recognized that speed of execution is only one consideration when designing an effective real-time expert system. Some other features one must consider are the expert system's ability to perform temporal reasoning, handle interrupts, prioritize data, contend with data uncertainty, and perform context focusing as dictated by the incoming data to the expert system. This paper presents a strategy for implementing a real time expert system on the iPSC/860 hypercube parallel computer using CLIPS. The strategy takes into consideration not only the execution time of the software, but also those features which define a true real-time expert system. The methodology is then demonstrated using a practical implementation of an expert system which performs diagnostics on the Space Shuttle Main Engine (SSME). This particular implementation uses an eight node hypercube to process ten sensor measurements in order to simultaneously diagnose five different failure modes within the SSME. The main program is written in ANSI C and embeds CLIPS to better facilitate and debug the rule based expert system.

  13. A real-time scheduling strategy in on-demand broadcasting

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoqin; Yang, Li

    2013-03-01

    In response to a maximum of queries to meet the requests and the requirement for time limit, a real-time and multi-item scheduling is proposed. The scheduling strategy is divided into two levels, the first compute all queries' priorities, which is derived from the number of requests for a data item and deadline miss rate; the second level to determine the data items' order of the selected request. The experimental results shows that the proposed strategy gains better performance over the existing SIN algorithms on reducing the miss rate of deadline limit and the efficiency of scheduling.

  14. Can Training in a Real-Time Strategy Videogame Attenuate Cognitive Decline in Older Adults?

    PubMed Central

    Basak, Chandramallika; Boot, Walter R.; Voss, Michelle W.; Kramer, Arthur F.

    2014-01-01

    Declines in various cognitive abilities, particularly executive control functions, are observed in older adults. An important goal of cognitive training is to slow or reverse these age-related declines. However, opinion is divided in the literature regarding whether cognitive training can engender transfer to a variety of cognitive skills in older adults. Yet, recent research indicates that videogame training of young adults may engender broad transfer to skills of visual attention. In the current study, we used a real-time strategy videogame to attempt to train executive functions in older adults, such as working memory, task switching, short-term memory, inhibition, and reasoning. Older adults were either trained in a real-time strategy videogame for 23.5 hours (RON, n=20) or not (CONTROLS, n=20). A battery of cognitive tasks, including tasks of executive control and visuo-spatial skills, were assessed before, during, and after video game training. The trainees improved significantly in the measures of game performance. They also improved significantly more than the controls in a subset of the cognitive tasks, such as task switching, working memory, visual short term memory, and mental rotation. Trends in improvement were also observed, for the video game trainees, in inhibition and reasoning. Individual differences in changes in game performance were correlated with improvements in task-switching. The study has implications for the enhancement of executive control processes of older adults. PMID:19140648

  15. A new real-time guidance strategy for aerodynamic ascent flight

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takayuki; Kawaguchi, Jun'ichiro

    2007-12-01

    Reusable launch vehicles are conceived to constitute the future space transportation system. If these vehicles use air-breathing propulsion and lift taking-off horizontally, the optimal steering for these vehicles exhibits completely different behavior from that in conventional rockets flight. In this paper, the new guidance strategy is proposed. This method derives from the optimality condition as for steering and an analysis concludes that the steering function takes the form comprised of Linear and Logarithmic terms, which include only four parameters. The parameter optimization of this method shows the acquired terminal horizontal velocity is almost same with that obtained by the direct numerical optimization. This supports the parameterized Liner Logarithmic steering law. And here is shown that there exists a simple linear relation between the terminal states and the parameters to be corrected. The relation easily makes the parameters determined to satisfy the terminal boundary conditions in real-time. The paper presents the guidance results for the practical application cases. The results show the guidance is well performed and satisfies the terminal boundary conditions specified. The strategy built and presented here does guarantee the robust solution in real-time excluding any optimization process, and it is found quite practical.

  16. Action recognition based on a selective sampling strategy for real-time video surveillance

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Hong; Yuan, Ding

    2015-12-01

    Action recognition is a very challenging task in the field of real-time video surveillance. The traditional models on action recognition are constructed of Spatial-temporal features and Bag-of-Feature representations. Based on this model, current research work tends to introduce dense sampling to achieve better performance. However, such approaches are computationally intractable when dealing with large video dataset. Hence, there are some recent works focused on feature reduction to speed up the algorithm without reducing accuracy. In this paper, we proposed a novel selective feature sampling strategy on action recognition. Firstly, the optical flow field is estimated throughout the input video. And then the sparse FAST (Features from Accelerated Segment Test) points are selected within the motion regions detected by using the optical flows on the temporally down-sampled image sequences. The selective features, sparse FAST points, are the seeds to generate the 3D patches. Consequently, the simplified LPM (Local Part Model) which greatly speeds up the model is formed via 3D patches. Moreover, MBHs (Motion Boundary Histograms) calculated by optical flows are also adopted in the framework to further improve the efficiency. Experimental results on UCF50 dataset and our artificial dataset show that our method could reach more real-time effect and achieve a higher accuracy compared with the other competitive methods published recently.

  17. Prostate Intrafraction Translation Margins for Real-Time Monitoring and Correction Strategies

    PubMed Central

    Litzenberg, Dale W.; Balter, James M.; Hadley, Scott W.; Hamstra, Daniel A.; Willoughby, Twyla R.; Kupelian, Patrick A.; Djemil, Toufik; Mahadevan, Arul; Jani, Shirish; Weinstein, Geoffrey; Solberg, Timothy; Enke, Charles; Levine, Lisa; Sandler, Howard M.

    2012-01-01

    The purpose of this work is to determine appropriate radiation therapy beam margins to account for intrafraction prostate translations for use with real-time electromagnetic position monitoring and correction strategies. Motion was measured continuously in 35 patients over 1157 fractions at 5 institutions. This data was studied using van Herk's formula of (αΣ + γσ') for situations ranging from no electromagnetic guidance to automated real-time corrections. Without electromagnetic guidance, margins of over 10 mm are necessary to ensure 95% dosimetric coverage while automated electromagnetic guidance allows the margins necessary for intrafraction translations to be reduced to submillimeter levels. Factors such as prostate deformation and rotation, which are not included in this analysis, will become the dominant concerns as margins are reduced. Continuous electromagnetic monitoring and automated correction have the potential to reduce prostate margins to 2-3 mm, while ensuring that a higher percentage of patients (99% versus 90%) receive a greater percentage (99% versus 95%) of the prescription dose. PMID:22111005

  18. A real-time noise filtering strategy for photon counting 3D imaging lidar.

    PubMed

    Zhang, Zijing; Zhao, Yuan; Zhang, Yong; Wu, Long; Su, Jianzhong

    2013-04-22

    For a direct-detection 3D imaging lidar, the use of Geiger mode avalanche photodiode (Gm-APD) could greatly enhance the detection sensitivity of the lidar system since each range measurement requires a single detected photon. Furthermore, Gm-APD offers significant advantages in reducing the size, mass, power and complexity of the system. However the inevitable noise, including the background noise, the dark count noise and so on, remains a significant challenge to obtain a clear 3D image of the target of interest. This paper presents a smart strategy, which can filter out false alarms in the stage of acquisition of raw time of flight (TOF) data and obtain a clear 3D image in real time. As a result, a clear 3D image is taken from the experimental system despite the background noise of the sunny day.

  19. Real-time strategy game training: emergence of a cognitive flexibility trait.

    PubMed

    Glass, Brian D; Maddox, W Todd; Love, Bradley C

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function. PMID:23950921

  20. Real-Time Strategy Game Training: Emergence of a Cognitive Flexibility Trait

    PubMed Central

    Glass, Brian D.; Maddox, W. Todd; Love, Bradley C.

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function. PMID:23950921

  1. A real-time noise filtering strategy for photon counting 3D imaging lidar.

    PubMed

    Zhang, Zijing; Zhao, Yuan; Zhang, Yong; Wu, Long; Su, Jianzhong

    2013-04-22

    For a direct-detection 3D imaging lidar, the use of Geiger mode avalanche photodiode (Gm-APD) could greatly enhance the detection sensitivity of the lidar system since each range measurement requires a single detected photon. Furthermore, Gm-APD offers significant advantages in reducing the size, mass, power and complexity of the system. However the inevitable noise, including the background noise, the dark count noise and so on, remains a significant challenge to obtain a clear 3D image of the target of interest. This paper presents a smart strategy, which can filter out false alarms in the stage of acquisition of raw time of flight (TOF) data and obtain a clear 3D image in real time. As a result, a clear 3D image is taken from the experimental system despite the background noise of the sunny day. PMID:23609635

  2. Real-time nutrient monitoring in rivers: adaptive sampling strategies, technological challenges and future directions

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Bradley, Chris

    2016-04-01

    Excessive nutrient concentrations in river waters threaten aquatic ecosystem functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive spatiotemporal patterns in nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of continuous in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. However, such instruments can be costly to run and difficult to maintain (e.g. due to high power consumption and memory requirements), leading to trade-offs between temporal and spatial monitoring resolutions. Here, we highlight how adaptive monitoring strategies, comprising a mixture of temporal sample frequencies controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid environmental changes. In addition, we discuss the advantages and disadvantages of current nutrient monitoring techniques, and suggest new research directions based on emerging technologies and highlight how these might improve: 1) monitoring strategies, and 2) understanding of linkages between catchment processes and river nutrient fluxes.

  3. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  4. Implementation of reactive and predictive real-time control strategies to optimize dry stormwater detention ponds

    NASA Astrophysics Data System (ADS)

    Gaborit, Étienne; Anctil, François; Vanrolleghem, Peter A.; Pelletier, Geneviève

    2013-04-01

    Dry detention ponds have been widely implemented in U.S.A (National Research Council, 1993) and Canada (Shammaa et al. 2002) to mitigate the impacts of urban runoff on receiving water bodies. The aim of such structures is to allow a temporary retention of the water during rainfall events, decreasing runoff velocities and volumes (by infiltration in the pond) as well as providing some water quality improvement from sedimentation. The management of dry detention ponds currently relies on static control through a fixed pre-designed limitation of their maximum outflow (Middleton and Barrett 2008), for example via a proper choice of their outlet pipe diameter. Because these ponds are designed for large storms, typically 1- or 2-hour duration rainfall events with return periods comprised between 5 and 100 years, one of their main drawbacks is that they generally offer almost no retention for smaller rainfall events (Middleton and Barrett 2008), which are by definition much more common. Real-Time Control (RTC) has a high potential for optimizing retention time (Marsalek 2005) because it allows adopting operating strategies that are flexible and hence more suitable to the prevailing fluctuating conditions than static control. For dry ponds, this would basically imply adapting the outlet opening percentage to maximize water retention time, while being able to open it completely for severe storms. This study developed several enhanced RTC scenarios of a dry detention pond located at the outlet of a small urban catchment near Québec City, Canada, following the previous work of Muschalla et al. (2009). The catchment's runoff quantity and TSS concentration were simulated by a SWMM5 model with an improved wash-off formulation. The control procedures rely on rainfall detection and measures of the pond's water height for the reactive schemes, and on rainfall forecasts in addition to these variables for the predictive schemes. The automatic reactive control schemes implemented

  5. A cognitive approach to game usability and design: mental model development in novice real-time strategy gamers.

    PubMed

    Graham, John; Zheng, Liya; Gonzalez, Cleotilde

    2006-06-01

    We developed a technique to observe and characterize a novice real-time-strategy (RTS) player's mental model as it shifts with experience. We then tested this technique using an off-the-shelf RTS game, EA Games Generals. Norman defined mental models as, "an internal representation of a target system that provides predictive and explanatory power to the operator." In the case of RTS games, the operator is the player and the target system is expressed by the relationships within the game. We studied five novice participants in laboratory-controlled conditions playing a RTS game. They played Command and Conquer Generals for 2 h per day over the course of 5 days. A mental model analysis was generated using player dissimilarity-ratings of the game's artificial intelligence (AI) agents analyzed using multidimensional scaling (MDS) statistical methods. We hypothesized that novices would begin with an impoverished model based on the visible physical characteristics of the game system. As they gained experience and insight, their mental models would shift and accommodate the functional characteristics of the AI agents. We found that all five of the novice participants began with the predicted physical-based mental model. However, while their models did qualitatively shift with experience, they did not necessarily change to the predicted functional-based model. This research presents an opportunity for the design of games that are guided by shifts in a player's mental model as opposed to the typical progression through successive performance levels.

  6. A High Performance Load Balance Strategy for Real-Time Multicore Systems

    PubMed Central

    Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing

    2014-01-01

    Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper. PMID:24955382

  7. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    NASA Astrophysics Data System (ADS)

    Govoni, A.; Margheriti, L.; Moretti, M.; Lauciani, V.; Sensale, G.; Bucci, A.; Criscuoli, F.

    2015-12-01

    Universal Mobile Telecommunications System (UMTS) and its evolutions are nowadays the most affordable and widespread data communication infrastructure available almost world wide. Moreover the always growing cellular phone market is pushing the development of new devices with higher performances and lower power consumption. All these characteristics make UMTS really useful for the implementation of an "easy to deploy" temporary real-time seismic station. Despite these remarkable features, there are many drawbacks that must be properly taken in account to effectively transmit the seismic data: Internet security, signal and service availability, power consumption. - Internet security: exposing seismological data services and seismic stations to the Internet is dangerous, attack prone and can lead to downtimes in the services, so we setup a dedicated Virtual Private Network (VPN) service to protect all the connected devices. - Signal and service availability: while for temporary experiment a carefull planning and an accurate site selection can minimize the problem, this is not always the case with rapid response networks. Moreover, as with any other leased line, the availability of the UMTS service during a seismic crisis is basically unpredictable. Nowadays in Italy during a major national emergency a Committee of the Italian Civil Defense ensures unified management and coordination of emergency activities. Inside it the telecom companies are committed to give support to the crisis management improving the standards in their communication networks. - Power consumption: it is at least of the order of that of the seismic station and, being related to data flow and signal quality is largely unpredictable. While the most secure option consists in adding a second independent solar power supply to the seismic station, this is not always a very convenient solution since it doubles the cost and doubles the equipment on site. We found that an acceptable trade-off is to add an

  8. Feedback strategy on real-time multiple target tracking in cognitive vision system

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Jia, Zhen; Li, Zhipeng; Liu, Fuqiang; Zhao, Jianwei; Peng, Pei-Yuan

    2011-10-01

    Under pedestrian and vehicle mixed traffic conditions, the potential accident rate is high due to a complex traffic environment. In order to solve this problem, we present a real-time cognitive vision system. In the scene-capture level, foreground objects are extracted based on the combination of spatial and temporal information. Then, a coarse-to-fine algorithm is employed in tracking. After filtering-based normal tracking, problems of the target blob missing, merging, and splitting are resolved by the adaptive tracking modification method in fine tracking. For greater robustness, the key idea of our approach is adaptively adjusting the classification sensibility of each pixel by employing tracking results as feedback cues for target detection in the next frame. On the basis of the target trajectories, behavior models are evaluated according to a decision logic table in the behavior-evaluation level. The decision logic table is set based on rules of real scenes. The resulting system interprets different kinds of traffic behavior and warns in advance. Experiments show robust and accurate results of abnormality detection and forewarning under different conditions. All the experimental results run at real-time frame rates (>=25 fps) on standard hardware. Therefore, the system is suitable for actual Intelligent Traffic System applications.

  9. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    NASA Astrophysics Data System (ADS)

    Govoni, Aladino; Margheriti, Lucia; Moretti, Milena; Lauciani, Valentino; Sensale, Gianpaolo; Bucci, Augusto; Criscuoli, Fabio

    2015-04-01

    The benefits of portable real-time seismic networks are several and well known. During the management of a temporary experiment from the real-time data it is possible to detect and fix rapidly problems with power supply, time synchronization, disk failures and, most important, seismic signal quality degradation due to unexpected noise sources or sensor alignment/tampering. This usually minimizes field maintenance trips and maximizes both the quantity and the quality of the acquired data. When the area of the temporary experiment is not well monitored by the local permanent network, the real-time data from the temporary experiment can be fed to the permanent network monitoring system improving greatly both the real-time hypocentral locations and the final revised bulletin. All these benefits apply also in case of seismic crises when rapid deployment stations can significantly contribute to the aftershock analysis. Nowadays data transmission using meshed radio networks or satellite systems is not a big technological problem for a permanent seismic network where each site is optimized for the device power consumption and is usually installed by properly specialized technicians that can configure transmission devices and align antennas. This is not usually practical for temporary networks and especially for rapid response networks where the installation time is the main concern. These difficulties are substantially lowered using the now widespread UMTS technology for data transmission. A small (but sometimes power hungry) properly configured device with an omnidirectional antenna must be added to the station assembly. All setups are usually configured before deployment and this allows for an easy installation also by untrained personnel. We describe here the implementation of a UMTS based portable seismic network for both temporary experiments and rapid response applications developed at INGV. The first field experimentation of this approach dates back to the 2009 L

  10. Using Near Real-Time Mission Data for Education and Public Outreach: Strategies from the Life in the Atacama E/PO Effort

    NASA Technical Reports Server (NTRS)

    Myers, E.; Coppin, P.; Wagner, M.; Fischer, K.; Lu, L.; McCloskey, R.; Seneker, D.; Cabrol, N.; Wettergreen, D.; Waggoner, A.

    2005-01-01

    The EventScope educational telepresence project has been involved with education and public outreach for a number of NASA-sponsored missions including the Mars Exploration Rovers, the Odyssey Mission, and the Life in the Atacama project. However, during the second year of operations in the Atacama, a modified version of the EventScope public interface was used as the remote science operations interface. In addition, the EventScope lab hosted remote science operations. This intimate connection with the mission operations allowed the EventScope team to bring the experience of the mission to the public in near real-time. Playing to this strength, the lab developed strategies for releasing E/PO content as close to real-time as possible.

  11. Real-time dynamics and control strategies for space operations of flexible structures

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, K. F.; Alexander, S.

    1993-01-01

    This project (NAG9-574) was meant to be a three-year research project. However, due to NASA's reorganizations during 1992, the project was funded only for one year. Accordingly, every effort was made to make the present final report as if the project was meant to be for one-year duration. Originally, during the first year we were planning to accomplish the following: we were to start with a three dimensional flexible manipulator beam with articulated joints and with a linear control-based controller applied at the joints; using this simple example, we were to design the software systems requirements for real-time processing, introduce the streamlining of various computational algorithms, perform the necessary reorganization of the partitioned simulation procedures, and assess the potential speed-up realization of the solution process by parallel computations. The three reports included as part of the final report address: the streamlining of various computational algorithms; the necessary reorganization of the partitioned simulation procedures, in particular the observer models; and an initial attempt of reconfiguring the flexible space structures.

  12. A molecular beacon strategy for real-time monitoring of triplex DNA formation kinetics.

    PubMed

    Antony, Thomas; Subramaniam, Vinod

    2002-06-01

    We used a molecular beacon (MB) containing a 15-mer triplex-forming oligonucleotide (TFO) to probe in real-time the kinetics of triplex DNA formation in the left side of the TCl tract (502-516) of the c-src proto-oncogene in vitro. The metal ions Na+, K+, and Mg2+ stabilized triplex DNA at this site. The pseudo-first-order rate constant (kpsi) and the second-order association rate constant (k1) for the binding of the MB to the target duplex in 10 mM sodium phosphate buffer, pH 7.3, increased from 3.2 +/- 0.9 to 15 +/- 2.8 x 10(-3) s(-1) and 6.4 +/- 1.8 to 30 +/- 5.6 x 102 M(-1) s(-1), respectively, on increasing the MgCl2 concentration from 1 to 2.5 mM. Similar values were obtained for the triplex DNA stabilized by NaCl (100-250 mM). Surprisingly, the values were around 2 times higher in the presence of KCl. The AG of triplex formation in the presence of 1 mM MgCl2, 150 mM NaCl, and 150 mM KCl were -7.8 +/- 0.3, -8.2 +/- 0.3 and -8.7 +/- 0.7 kcal/mol respectively, despite significant differences in the values of deltaH and deltaS, suggesting enthalpy-entropy compensation in the stabilization of the triplex DNA by these metal ions. These results show the utility of MBs ih probing triplex DNA formation and in evaluating kinetic and thermodynamic parameters important for the design and development of TFOs as triplex DNA-based therapeutic agents.

  13. Real-time inverse high-dose-rate brachytherapy planning with catheter optimization by compressed sensing-inspired optimization strategies

    NASA Astrophysics Data System (ADS)

    Guthier, C. V.; Aschenbrenner, K. P.; Müller, R.; Polster, L.; Cormack, R. A.; Hesser, J. W.

    2016-08-01

    This paper demonstrates that optimization strategies derived from the field of compressed sensing (CS) improve computational performance in inverse treatment planning (ITP) for high-dose-rate (HDR) brachytherapy. Following an approach applied to low-dose-rate brachytherapy, we developed a reformulation of the ITP problem with the same mathematical structure as standard CS problems. Two greedy methods, derived from hard thresholding and subspace pursuit are presented and their performance is compared to state-of-the-art ITP solvers. Applied to clinical prostate brachytherapy plans speed-up by a factor of 56-350 compared to state-of-the-art methods. Based on a Wilcoxon signed rank-test the novel method statistically significantly decreases the final objective function value (p  <  0.01). The optimization times were below one second and thus planing can be considered as real-time capable. The novel CS inspired strategy enables real-time ITP for HDR brachytherapy including catheter optimization. The generated plans are either clinically equivalent or show a better performance with respect to dosimetric measures.

  14. Real-time inverse high-dose-rate brachytherapy planning with catheter optimization by compressed sensing-inspired optimization strategies

    NASA Astrophysics Data System (ADS)

    Guthier, C. V.; Aschenbrenner, K. P.; Müller, R.; Polster, L.; Cormack, R. A.; Hesser, J. W.

    2016-08-01

    This paper demonstrates that optimization strategies derived from the field of compressed sensing (CS) improve computational performance in inverse treatment planning (ITP) for high-dose-rate (HDR) brachytherapy. Following an approach applied to low-dose-rate brachytherapy, we developed a reformulation of the ITP problem with the same mathematical structure as standard CS problems. Two greedy methods, derived from hard thresholding and subspace pursuit are presented and their performance is compared to state-of-the-art ITP solvers. Applied to clinical prostate brachytherapy plans speed-up by a factor of 56–350 compared to state-of-the-art methods. Based on a Wilcoxon signed rank-test the novel method statistically significantly decreases the final objective function value (p  <  0.01). The optimization times were below one second and thus planing can be considered as real-time capable. The novel CS inspired strategy enables real-time ITP for HDR brachytherapy including catheter optimization. The generated plans are either clinically equivalent or show a better performance with respect to dosimetric measures.

  15. Real-time inverse high-dose-rate brachytherapy planning with catheter optimization by compressed sensing-inspired optimization strategies.

    PubMed

    Guthier, C V; Aschenbrenner, K P; Müller, R; Polster, L; Cormack, R A; Hesser, J W

    2016-08-21

    This paper demonstrates that optimization strategies derived from the field of compressed sensing (CS) improve computational performance in inverse treatment planning (ITP) for high-dose-rate (HDR) brachytherapy. Following an approach applied to low-dose-rate brachytherapy, we developed a reformulation of the ITP problem with the same mathematical structure as standard CS problems. Two greedy methods, derived from hard thresholding and subspace pursuit are presented and their performance is compared to state-of-the-art ITP solvers. Applied to clinical prostate brachytherapy plans speed-up by a factor of 56-350 compared to state-of-the-art methods. Based on a Wilcoxon signed rank-test the novel method statistically significantly decreases the final objective function value (p  <  0.01). The optimization times were below one second and thus planing can be considered as real-time capable. The novel CS inspired strategy enables real-time ITP for HDR brachytherapy including catheter optimization. The generated plans are either clinically equivalent or show a better performance with respect to dosimetric measures. PMID:27435044

  16. Synthetic-Focusing Strategies for Real-Time Annular-Array Imaging

    PubMed Central

    Ketterling, Jeffrey A.; Filoux, Erwan

    2012-01-01

    Annular arrays provide a means to achieve enhanced image quality with a limited number of elements. Synthetic-focusing (SF) strategies that rely on beamforming data from individual transmit-to-receive (TR) element pairs provide a means to improve image quality without specialized TR delay electronics. Here, SF strategies are examined in the context of high-frequency ultrasound (>15 MHz) annular arrays composed of five elements, operating at 18 and 38 MHz. Acoustic field simulations are compared with experimental data acquired from wire and anechoic-sphere phantoms, and the values of lateral beamwidth, SNR, contrast-to-noise ratio (CNR), and depth of field (DOF) are compared as a function of depth. In each case, data were acquired for all TR combinations (25 in total) and processed with SF using all 25 TR pairs and SF with the outer receive channels removed one by one. The results show that removing the outer receive channels led to an overall degradation of lateral resolution, an overall decrease in SNR, and did not reduce the DOF, although the DOF profile decreased in amplitude. The CNR was >1 and remained fairly constant as a function of depth, with a slight decrease in CNR for the case with just the central element receiving. The relative changes between the calculated and measured quantities were nearly identical for the 18- and 38-MHz arrays. B-mode images of the anechoic phantom and an in vivo mouse embryo using full SF with 25 TR pairs or reduced TR-pair approaches showed minimal qualitative difference. PMID:22899130

  17. A First Person Shooter/Real Time Strategy Hybrid: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Stoup, James R.; Bruce, Olen; Jones, Bobby

    2012-01-01

    Today's military training bears little resemblance to the methods of previous generations. The Cold War is over and the enemy has changed. Doctrine that was once useful is now woefully out of date. No longer are we confronting a predictable nation but instead a diverse collection of independent fighters spread out over several countries. The enemy has changed, his tactics have changed amI cin.:urnsLance dictates that we must change as well. The wars in Iraq and Afghanistan have tested virtually all aspects of the military's support infrastructure. After fighting continuously for over a decade, many weaknesses have been revealed by the steady grind of war. Chief among them is the inability of the military to rapidly and adequately train its soldiers in the latest doctrines. In response to the enemy developing new strategies on a near monthly basis, the Joint Training Counter-IED Operations Integration Center (JTCOIC) was first created. Designed to supplement the current training system, it would attempt to address the current training shortfalls. As a result, new methods were devised to streamline training.

  18. A Quantitative Real-Time PCR-Based Strategy for Molecular Evaluation of Nicotine Conversion in Burley Tobacco.

    PubMed

    Sun, Bo; Xue, Sheng-Ling; Zhang, Fen; Luo, Zhao-Peng; Wu, Ming-Zhu; Chen, Qing; Tang, Hao-Ru; Lin, Fu-Cheng; Yang, Jun

    2015-11-17

    Nornicotine production in Nicotiana tabacum is undesirable because it is the precursor of the carcinogen N'-nitrosonornicotine. In some individual burley tobacco plants, a large proportion of the nicotine can be converted to nornicotine, and this process of nicotine conversion is mediated primarily by enzymatic N-demethylation of nicotine which is controlled mainly by CYP82E4. Here we report a novel strategy based on quantitative real-time polymerase chain reaction (qPCR) method, which analyzed the ratio of nicotine conversion through examining the transcript level of CYP82E4 in burley leaves and do not need ethylene induction before detected. The assay was linear in a range from 1 × 10¹ to 1 × 10⁵ copies/mL of serially diluted standards, and also showed high specificity and reproducibility (93%-99%). To assess its applicability, 55 plants of burley cultivar Ky8959 at leaf maturing stage were analyzed, and the results were in accordance with those from gas chromatograph-mass spectrometry (GC-MS) method. Moreover, a linear correlation existed between conversion level and CYP82E4 transcript abundance. Taken together, the quantitative real-time PCR assay is standardized, rapid and reproducible for estimation of nicotine conversion level in vivo, which is expected to shed new light on monitoring of burley tobacco converter.

  19. Real-time radiography

    SciTech Connect

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  20. Human Exploration using Real-Time Robotic Operations (HERRO): A space exploration strategy for the 21st century

    NASA Astrophysics Data System (ADS)

    Schmidt, George R.; Landis, Geoffrey A.; Oleson, Steven R.

    2012-11-01

    This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around Mars and other exploration targets of interest, and conducting astronaut exploration of the surfaces using telerobots and remotely-controlled systems. By eliminating the significant communications delay or "latency" with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments. This in effect gives them a "virtual presence" on planetary surfaces, and thus expands the scientific return at these destinations. HERRO mitigates several of the major issues that have hindered the progress of human spaceflight beyond Low Earth Orbit (LEO) by: (1) broadening the range of destinations for near-term human missions; (2) reducing cost and risk through less complexity and fewer man-rated elements; (3) offering benefits of human-equivalent in-situ cognition, decision-making and field-work on planetary bodies; (4) providing a simpler approach to returning samples from Mars and planetary surfaces; and (5) facilitating opportunities for international collaboration through contribution of diverse robotic systems. HERRO provides a firm justification for human spaceflight—one that expands the near-term capabilities of scientific exploration while providing the space transportation infrastructure needed for eventual human landings in the future.

  1. Adaptive marker-free registration using a multiple point strategy for real-time and robust endoscope electromagnetic navigation.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-02-01

    Registration of pre-clinical images to physical space is indispensable for computer-assisted endoscopic interventions in operating rooms. Electromagnetically navigated endoscopic interventions are increasingly performed at current diagnoses and treatments. Such interventions use an electromagnetic tracker with a miniature sensor that is usually attached at an endoscope distal tip to real time track endoscope movements in a pre-clinical image space. Spatial alignment between the electromagnetic tracker (or sensor) and pre-clinical images must be performed to navigate the endoscope to target regions. This paper proposes an adaptive marker-free registration method that uses a multiple point selection strategy. This method seeks to address an assumption that the endoscope is operated along the centerline of an intraluminal organ which is easily violated during interventions. We introduce an adaptive strategy that generates multiple points in terms of sensor measurements and endoscope tip center calibration. From these generated points, we adaptively choose the optimal point, which is the closest to its assigned the centerline of the hollow organ, to perform registration. The experimental results demonstrate that our proposed adaptive strategy significantly reduced the target registration error from 5.32 to 2.59 mm in static phantoms validation, as well as from at least 7.58 mm to 4.71 mm in dynamic phantom validation compared to current available methods.

  2. Prior data assisted compressed sensing: A novel MR imaging strategy for real time tracking of lung tumors

    SciTech Connect

    Yip, Eugene; Yun, Jihyun; Heikal, Amr A.; Wachowicz, Keith; Rathee, Satyapal; Gabos, Zsolt; Fallone, B. G.

    2014-08-15

    Purpose: Hybrid radiotherapy-MRI devices promise real time tracking of moving tumors to focus the radiation portals to the tumor during irradiation. This approach will benefit from the increased temporal resolution of MRI's data acquisition and reconstruction. In this work, the authors propose a novel spatial-temporal compressed sensing (CS) imaging strategy for the real time MRI–-prior data assisted compressed sensing (PDACS), which aims to improve the image quality of the conventional CS without significantly increasing reconstruction times. Methods: Conventional 2D CS requires a random sampling of partial k-space data, as well as an iterative reconstruction that simultaneously enforces the image's sparsity in a transform domain as well as maintains the fidelity to the acquired k-space. PDACS method requires the additional acquisition of the prior data, and for reconstruction, it additionally enforces fidelity to the prior k-space domain similar to viewsharing. In this work, the authors evaluated the proposed PDACS method by comparing its results to those obtained from the 2D CS and viewsharing methods when performed individually. All three methods are used to reconstruct images from lung cancer patients whose tumors move and who are likely to benefit from lung tumor tracking. The patients are scanned, using a 3T MRI, under free breathing using the fully sampled k-space with 2D dynamic bSSFP sequence in a sagittal plane containing lung tumor. These images form a reference set for the evaluation of the partial k-space methods. To create partial k-space, the fully sampled k-space is retrospectively undersampled to obtain a range of acquisition acceleration factors, and reconstructed with 2D-CS, PDACS, and viewshare methods. For evaluation, metrics assessing global image artifacts as well as tumor contour shape fidelity are determined from the reconstructed images. These analyses are performed both for the original 3T images and those at a simulated 0.5T

  3. Feasibility of a gait retraining strategy for reducing knee joint loading: increased trunk lean guided by real-time biofeedback.

    PubMed

    Hunt, Michael A; Simic, Milena; Hinman, Rana S; Bennell, Kim L; Wrigley, Tim V

    2011-03-15

    The purpose of this feasibility study was to examine changes in frontal plane knee and hip walking biomechanics following a gait retraining strategy focused on increasing lateral trunk lean and to quantify reports of difficulty and joint discomfort when performing such a gait modification. After undergoing a baseline analysis of normal walking, 9 young, healthy participants were trained to modify their gait to exhibit small (4°), medium (8°), and large (12°) amounts of lateral trunk lean. Training was guided by the use of real-time biofeedback of the actual trunk lean angle. Peak frontal plane external knee and hip joint moments were compared across conditions. Participants were asked to report the degree of difficulty and the presence of any joint discomfort for each amount of trunk lean modification. Small (4°), medium (8°), and large (12°) amounts of lateral trunk lean reduced the peak external knee adduction moment (KAM) by 7%, 21%, and 25%, respectively, though the peak KAM was only significantly less in the medium and large conditions (p<0.001). Increased trunk lean also significantly reduced the peak external hip adduction moments (p<0.001). All participants reported at least some difficulty performing the exaggerated trunk lean pattern and three participants reported ipsilateral knee, hip, and/or lower spine discomfort. Results from this study indicate that a gait pattern with increased lateral trunk lean can effectively reduce frontal plane joint moments. Though these findings have implications for pathological populations, learning this gait pattern was associated with some difficulty and joint discomfort.

  4. Biological nitrogen removal with a real-time control strategy using moving slope changes of pH(mV)- and ORP-time profiles.

    PubMed

    Won, S G; Ra, C S

    2011-01-01

    A new real-time control strategy using moving slope changes of oxidation-reduction potential (ORP)- and pH(mV)-time profiles was designed. Its effectiveness was evaluated by operating a farm-scale sequencing batch reactor (SBR) process using the strategy. The working volume of the SBR was 18 m(3), and the volumetric loading rate of influent was 1 m(3) cycle(-1). The SBR process comprised six phases: feeding → anoxic → anaerobic → aerobic → settle → discharge. The anoxic and aerobic phases were controlled by the developed real-time control strategy. The nitrogen break point (NBP) in the pH(mV)-time profile and the nitrate knee point (NKP) in the ORP-time profile were designated as real-time control points for the aerobic and anoxic phases, respectively. Through successful real-time control, the duration of the aerobic and anoxic phases could be optimized and this resulted in very high N removal and a flexible hydraulic retention time. Despite the large variation in the loading rate (0.5-1.8 kg NH(4)-N m(-3) cycle(-1)) due to influent strength fluctuation, complete removal of NH(4)-N (100%) was always achieved. The removal efficiencies of soluble nitrogen (NH(4)-N plus NO(x)-N), soluble total organic carbon, and soluble chemical oxygen demand were 98%, 90%, and 82%, respectively. Monitoring the ORP and pH(mV) revealed that pH(mV) is a more reliable control parameter than ORP for the real-time control of the oxic phase. In some cases, a false NBP momentarily appeared in the ORP-time profile but was not observed in the pH(mV)-time profile. In contrast, ORP was more the reliable control parameter for NKP detection in the anoxic phase, since the appearance of NKP in the pH(mV)-time profile was sometimes vague.

  5. Real-time detection of gene expression in cancer cells using molecular beacon imaging: new strategies for cancer research.

    PubMed

    Peng, Xiang-Hong; Cao, Ze-Hong; Xia, Jin-Tang; Carlson, Grant W; Lewis, Melinda M; Wood, William C; Yang, Lily

    2005-03-01

    Development of novel approaches for quantitative analysis of gene expression in intact tumor cells should provide new means for cancer detection and for studying the response of cancer cells to biological and therapeutic reagents. We developed procedures for detecting the levels of expression of multiple genes in fixed as well as viable cells using molecular beacon imaging technology. We found that simultaneous delivery of molecular beacons targeting survivin and cyclin D1 mRNAs produced strong fluorescence in breast cancer but not in normal breast cells. Importantly, fluorescence intensity correlated well with the level of gene expression in the cells detected by real-time reverse transcription-PCR or Western blot analysis. We further show that molecular beacons can detect changes of survivin gene expression in viable cancer cells following epidermal growth factor stimulation, docetaxel treatment, and overexpression of p53 gene. Thus, molecular beacon imaging is a simple and specific method for detecting gene expression in cancer cells. It has great potential for cancer detection and drug development.

  6. Use of real-time and continuous water quality monitoring in Iowa streams to inform conservation strategy in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Jones, C. S.; Kim, S. W.; Davis, C. A.

    2015-12-01

    Agricultural watersheds in the Midwestern U.S. are major contributors of nutrients to the Mississippi River Basin and the Gulf of Mexico. Many states within the Upper Mississippi River Basin, including Iowa, are developing nutrient reduction strategies to reduce non-point and point source loads of nitrogen and phosphorous in an effort to reverse degradation of streams and lakes. Quantifying nutrient loads in Iowa and assessing loads transported within Iowa rivers are important components of Iowa's strategy. Nutrient loads estimated with data collected using traditional methods of grab sampling are expensive and have met with limited usefulness to the agricultural community when assessing the effectiveness of implemented conservation practices. New sensor technology is allowing for real-time measurement of nutrient loads in many Iowa rivers. IIHR Hydroscience and Engineering has deployed 22 nitrate-nitrogen sensors in several Iowa rivers to provide accurate measure of nutrient loads. Combined with 17 sensors operated by the USGS, the sensor network captures nutrient transport and loading patterns in rivers across the state. A new Iowa Water Quality Information System (IWQIS) is being developed to display and share the continuous, real-time data. The data reported here will compare and contrast load calculations obtained using continuous monitors with those from a more traditional grab samples. We also will demonstrate how continuous nitrate monitoring informs watershed hydrology and the assessment of conservation practices designed to reduce nutrient loss from farmed fields. Finally, we will establish that the costs of real time continuous monitoring are modest when compared to grab sampling strategies and the costs of implementing conservation on productive lands in the Western Corn Belt of Iowa.

  7. Real-time sonography

    SciTech Connect

    Fleischey, A.C.; James, A.E. Jr.

    1984-01-01

    This textbook acquaints the reader with normal and pathologic anatomy as depicted on dynamic or real-time scanning. Chapters are organized by specialty, such as abdominal, urologic, or pediatric. The text is illustrated with still-frame images and line drawings. The drawings show important areas of interest and provide graphic notation as to where and in what orientation the scan was obtained.

  8. Development of a low-cost wireless controller for flexible sampling strategies based on real-time flow monitoring

    NASA Astrophysics Data System (ADS)

    Queloz, Pierre; Besuchet, Jonathan; Rao, P. Suresh C.; Rinaldo, Andrea

    2013-04-01

    Even if models are able to predict more and more accurately pollutant discharge in streams, surface water sampling remains a very common practice to monitor substance concentrations and loads in streams and to calibrate models. However, as this method is temporally and spatially punctual, monitoring a whole catchment requires multiple sampling sites with time-distributed samples. Instruments are expensive, and sample collection, on-site interventions and maintenance are costly and time-consuming, in particular if the experimental site is remote. Another issue is the estimation of the discharge loads of a pollutant, especially for non-chemostatic compounds; their hydrograph-related chemical dynamics may be miss-evaluated when a rapid storm occurs using a time-paced sampling strategy with large sampling intervals. Many manufacturers provide discharge gauges (pressure probes or ultra-sonic sensors) or other instruments (rain gauge, chemical probes, etc.) that can be coupled with automatic water samplers in order to program an event-paced sampling. However, automatic samplers usually provide limited programming options that may not meet the needs of the experimenter of a specific catchment. The concept presented here proposes to use a simple microcontroller board in order to determine the timing of the samples by sending electrical pulses to a conventional automatic sampler with input capability. The flow level is measured by a low-cost ultrasonic sensor and sent to the microcontroller, which will process the signal according to user and site-custom parameters. For example, a simple power-law recession model can be apply to approximate the duration of the recession period given the maximal discharge rate measured for a storm. The sample intervals can thereafter be set in order to distribute all the bottles available over the total recession duration. The microcontroller sends a pulse (grab sample query) to the sampler at every sample time calculated by the program. A

  9. Cost-effectiveness of diagnostic strategies using quantitative real-time PCR and bacterial culture to identify contagious mastitis cases in large dairy herds.

    PubMed

    Murai, Kiyokazu; Lehenbauer, Terry W; Champagne, John D; Glenn, Kathy; Aly, Sharif S

    2014-03-01

    Diagnostic strategies to detect contagious mastitis caused by Mycoplasma bovis, Staphylococcus aureus, and Streptococcus agalactiae in dairy herds during an outbreak have been minimally studied with regard to cost and diagnostic sensitivity. The objective of this cross-sectional study was to compare the cost-effectiveness of diagnostic strategies for identification of infected cows in two California dairy herds during contagious mastitis outbreaks. M. bovis was investigated in a subset of a herd (n=1210 cows) with an estimated prevalence of 2.8% (95% CI=1.9, 3.7), whereas Staph. aureus and Strep. agalactiae were studied in a second herd (n=351 cows) with an estimated prevalence of 3.4% (95% CI=1.5, 5.3) and 16.8% (95% CI=12.9, 20.7), respectively. Diagnostic strategies involved a combination of testing stages that utilized bacterial culture, quantitative real-time PCR (qPCR), or both. Strategies were applied to individual or pooled samples of 5, 10, 50 or 100 samples. Culture was considered the gold standard for sensitivity estimation of each strategy. The reference strategy was the strategy with the lowest cost per culture-positive cow which for both M. bovis and Strep. agalactiae consisted of 2 stages, culture of samples in pools of 5 followed by culture of individual samples in positive pools with a sensitivity of 73.5% (95% CI: 55.6, 87.1) and 96.6% (95% CI: 27.7, 84.8), respectively. The reference strategy for Staph. aureus consisted of 3 stages, culture of individual samples in pools of 100 (stage 1), culture constituents of those positive from stage 1 in pools of 5 (stage 2), culture constituents of those positive from stage 2 individually (stage 3) which resulted in a sensitivity of 58.3% (95% CI: 88.3, 99.6). The most cost-effective alternative to the reference strategy was whole herd milk culture for all 3 pathogens. QPCR testing was a component of the second most cost-effective alternative for M. bovis and the third most cost-effective alternatives for

  10. Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Evrard, A.; Boulle, N.; Lutfalla, G. S.

    Over the past few years there has been a considerable development of DNA amplification by polymerase chain reaction (PCR), and real-time PCR has now superseded conventional PCR techniques in many areas, e.g., the quantification of nucleic acids and genotyping. This new approach is based on the detection and quantification of a fluorescent signal proportional to the amount of amplicons generated by PCR. Real-time detection is achieved by coupling a thermocycler with a fluorimeter. This chapter discusses the general principles of quantitative real-time PCR, the different steps involved in implementing the technique, and some examples of applications in medicine. The polymerase chain reaction (PCR) provides a way of obtaining a large number of copies of a double-stranded DNA fragment of known sequence. This DNA amplification technique, developed in 1985 by K. Mullis (Cetus Corporation), saw a spectacular development over the space of a few years, revolutionising the methods used up to then in molecular biology. Indeed, PCR has many applications, such as the detection of small amounts of DNA, cloning, and quantitative analysis (assaying), each of which will be discussed further below.

  11. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  12. Real time SAR processing

    NASA Technical Reports Server (NTRS)

    Premkumar, A. B.; Purviance, J. E.

    1990-01-01

    A simplified model for the SAR imaging problem is presented. The model is based on the geometry of the SAR system. Using this model an expression for the entire phase history of the received SAR signal is formulated. From the phase history, it is shown that the range and the azimuth coordinates for a point target image can be obtained by processing the phase information during the intrapulse and interpulse periods respectively. An architecture for a VLSI implementation for the SAR signal processor is presented which generates images in real time. The architecture uses a small number of chips, a new correlation processor, and an efficient azimuth correlation process.

  13. Real-Time Revolution?

    PubMed

    Berlin, Joey

    2016-03-01

    Austin Regional Clinic (ARC) physicians and officials know patient feedback is important, but getting patients to provide it can be a challenge. A pilot program of a new, real-time feedback system provided ARC patients a high-tech convenience previous attempts lacked and produced participation numbers dwarfing those past efforts. ARC's initial results with the system, in which patients answer five to seven questions on a computer tablet and can leave free-text comments, were so successful the clinic is already planning to expand it to all of its locations by the end of June.

  14. Real time high frequency monitoring of water quality in river streams using a UV-visible spectrometer: interest, limits and consequences for monitoring strategies

    NASA Astrophysics Data System (ADS)

    Faucheux, Mikaël; Fovet, Ophélie; Gruau, Gérard; Jaffrézic, Anne; Petitjean, Patrice; Gascuel-Odoux, Chantal; Ruiz, Laurent

    2013-04-01

    Stream water chemistry is highly variable in space and time, therefore high frequency water quality measurement methods are likely to lead to conceptual advances in the hydrological sciences. Sub-daily data on water quality improve the characterization of pollutant sources and pathways during flood events as well as during long-term periods [1]. However, real time, high frequency monitoring devices needs to be properly calibrated and validated in real streams. This study analyses data from in situ monitoring of a stream water quality. During two hydrological years (2010-11, 2011-12), a submersible UV-visible spectrometer (Scan Spectrolyser) was used for surface water quality measurement at the outlet of a headwater catchment located at Kervidy-Naizin, Western France (AgrHys long-term hydrological observatory, http://www.inra.fr/ore_agrhys/). The spectrometer is reagentless and equipped with an auto-cleaning system. It allows real time, in situ and high frequency (20 min) measurements and uses a multiwavelengt spectral (200-750 nm) for simultaneous measurement of nitrate, dissolved organic carbon (DOC) and total suspended solids (TSS). A global calibration based on a PLS (Partial Least Squares) regression is provided by the manufacturer as default configuration of the UV-visible spectrometer. We carried out a local calibration of the spectrometer based on nitrates and DOC concentrations analysed in the laboratory from daily manual sampling and sub-daily automatic sampling of flood events. TSS results are compared with 15 min turbidity records from a continuous turdidimeter (Ponsel). The results show a good correlation between laboratory data and spectrometer data both during basis flows periods and flood events. However, the local calibration gives better results than the global one. Nutrient fluxes estimates based on high and different low frequency time series (daily to monthly) are compared to discuss the implication for environmental monitoring strategies. Such

  15. Real time automated inspection

    DOEpatents

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  16. Real time automated inspection

    DOEpatents

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  17. Construction strategy for an internal amplification control for real-time diagnostic assays using nucleic Acid sequence-based amplification: development and clinical application.

    PubMed

    Rodríguez-Lázaro, David; D'Agostino, Martin; Pla, Maria; Cook, Nigel

    2004-12-01

    An important analytical control in molecular amplification-based methods is an internal amplification control (IAC), which should be included in each reaction mixture. An IAC is a nontarget nucleic acid sequence which is coamplified simultaneously with the target sequence. With negative results for the target nucleic acid, the absence of an IAC signal indicates that amplification has failed. A general strategy for the construction of an IAC for inclusion in molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assays is presented. Construction proceeds in two phases. In the first phase, a double-stranded DNA molecule that contains nontarget sequences flanked by target sequences complementary to the NASBA primers is produced. At the 5' end of this DNA molecule is a T7 RNA polymerase binding sequence. In the second phase of construction, RNA transcripts are produced from the DNA by T7 RNA polymerase. This RNA is the IAC; it is amplified by the target NASBA primers and is detected by a molecular beacon probe complementary to the internal nontarget sequences. As a practical example, an IAC for use in an assay for the detection of Mycobacterium avium subsp. paratuberculosis is described, its incorporation and optimization within the assay are detailed, and its application to spiked and natural clinical samples is shown to illustrate the correct interpretation of the diagnostic results.

  18. Direct analysis in real time - high resolution mass spectrometry (DART-HRMS): a high throughput strategy for identification and quantification of anabolic steroid esters.

    PubMed

    Doué, Mickael; Dervilly-Pinel, Gaud; Pouponneau, Karinne; Monteau, Fabrice; Le Bizec, Bruno

    2015-07-01

    High throughput screening is essential for doping, forensic, and food safety laboratories. While hyphenated chromatography-mass spectrometry (MS) remains the approach of choice, recent ambient MS techniques, such as direct analysis in real time (DART), offer more rapid and more versatile strategies and thus gain in popularity. In this study, the potential of DART hyphenated with Orbitrap-MS for fast identification and quantification of 21 anabolic steroid esters has been evaluated. Direct analysis in high resolution scan mode allowed steroid esters screening by accurate mass measurement (Resolution = 60 000 and mass error < 3 ppm). Steroid esters identification was further supported by collision-induced dissociation (CID) experiments through the generation of two additional ions. Moreover, the use of labelled internal standards allowed quantitative data to be recovered based on isotopic dilution approach. Linearity (R(2)  > 0.99), dynamic range (from 1 to 1000 ng mL(-1) ), bias (<10%), sensitivity (1 ng mL(-1) ), repeatability and reproducibility (RSD < 20%) were evaluated as similar to those obtained with hyphenated chromatography-mass spectrometry techniques. This innovative high throughput approach was successfully applied for the characterization of oily commercial preparations, and thus fits the needs of the competent authorities in the fight against forbidden or counterfeited substances.

  19. Real-time medical applications and telecommunications.

    PubMed

    Stravs, M

    1999-01-01

    Telecommunications play an important role in telemedicine. Many forms of telecommunication services based on different telecommunication technologies are developed for various needs. The paper deals with complex real-time applications which demand high telecommunication requirements. At the beginning, medical applications are categorised and real-time applications qualified as multimedia applications. Requirements for multimedia elements are listed separately. Later on, short introduction of related telecommunication protocols is given. Real-time medical applications can show their ability in case of guaranteed quality of services delivered by telecommunication network as it is explained in the end.

  20. Real time polarimetric dehazing.

    PubMed

    Mudge, Jason; Virgen, Miguel

    2013-03-20

    Remote sensing is a rich topic due to its utility in gathering detailed accurate information from locations that are not economically feasible traveling destinations or are physically inaccessible. However, poor visibility over long path lengths is problematic for a variety of reasons. Haze induced by light scatter is one cause for poor visibility and is the focus of this article. Image haze comes about as a result of light scattering off particles and into the imaging path causing a haziness to appear on the image. Image processing using polarimetric information of light scatter can be used to mitigate image haze. An imaging polarimeter which provides the Stokes values in real time combined with a "dehazing" algorithm can automate image haze removal for instant applications. Example uses are to improve visual display providing on-the-spot detection or imbedding in an active control loop to improve viewing and tracking while on a moving platform. In addition, removing haze in this manner allows the trade space for a system operational waveband to be opened up to bands which are object matched and not necessarily restricted by scatter effects. PMID:23518739

  1. Research of real-time communication software

    NASA Astrophysics Data System (ADS)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  2. Strategies for Family Facilitation of Play Dates

    ERIC Educational Resources Information Center

    Chambers, Cynthia R.; Horn, Eva M.

    2010-01-01

    Play dates can serve several functions for young children, including children with social difficulties, such as developmental delays, behavioral disorders, autism spectrum disorders, and shyness. Play dates provide children with additional opportunities to be around peers and to practice skills associated with peer play interactions. Play dates…

  3. Real-Time Benchmark Suite

    1992-01-17

    This software provides a portable benchmark suite for real time kernels. It tests the performance of many of the system calls, as well as the interrupt response time and task response time to interrupts. These numbers provide a baseline for comparing various real-time kernels and hardware platforms.

  4. Direct monitoring of the role played by a stabilizer in a solid sample of polymer using direct analysis in real time mass spectrometry: the case of Irgafos 168 in polyethylene.

    PubMed

    Fouyer, Kevin; Lavastre, Olivier; Rondeau, David

    2012-10-16

    Direct analysis in real time (DART) ionization method is used with a time-of-flight (TOF) mass spectrometer to perform the analysis of industrial polyethylene pellets free of additives or containing Irgafos 168 as stabilizing agent without any sampling step. The developed analytical method uses the [M + H](+) ion of the bis(2-ethylhexyl) phthalate (DEHP) for performing the exact mass measurements of the stabilizer and polymer ions using the mass drift compensation procedure available on the AccuTOF mass spectrometer. DEHP is in fact a plastic contaminant always presents on the mass spectra of the analyzed samples. The mass spectra allow one to characterize either the ions of the polyethylene and that of the Irgafos. The analysis of thermally treated samples show that the polymer does not undergo any degradation when the Irgafos is present in the bulk of the material, and the role played by the Irgafos 168 is that of an oxygen trapping agent. Under UV exposure, the DART-TOF MS analyses performed on the exposed polyethylene pellets shows that the Irgafos 168 behavior toward the UV radiations is different since this one reacts by cleavages of its P-O bonds to prevent the degradation of the polymer. These interpretations are supported by all the elemental formula determination of the detected ions.

  5. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  6. Really computing nonperturbative real time correlation functions

    NASA Astrophysics Data System (ADS)

    Bödeker, Dietrich; McLerran, Larry; Smilga, Andrei

    1995-10-01

    It has been argued by Grigoriev and Rubakov that one can simulate real time processes involving baryon number nonconservation at high temperature using real time evolution of classical equations, and summing over initial conditions with a classical thermal weight. It is known that such a naive algorithm is plagued by ultraviolet divergences. In quantum theory the divergences are regularized, but the corresponding graphs involve the contributions from the hard momentum region and also the new scale ~gT comes into play. We propose a modified algorithm which involves solving the classical equations of motion for the effective hard thermal loop Hamiltonian with an ultraviolet cutoff μ>>gT and integrating over initial conditions with a proper thermal weight. Such an algorithm should provide a determination of the infrared behavior of the real time correlation function T determining the baryon violation rate. Hopefully, the results obtained in this modified algorithm will be cutoff independent.

  7. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2007-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  8. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2006-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  9. Real-time vision systems

    SciTech Connect

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  10. Real Time Grid Reliability Management 2005

    SciTech Connect

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  11. Real-Time Characterization of Diminutive Colorectal Polyp Histology Using Narrow-Band Imaging: Implications for the Resect and Discard Strategy

    PubMed Central

    Patel, Swati G.; Schoenfeld, Philip; Kim, Hyungjin Myra; Ward, Emily K.; Bansal, Ajay; Kim, Yeonil; Hosford, Lindsay; Myers, Aimee; Foster, Stephanie; Craft, Jenna; Shopinski, Samuel; Wilson, Robert H.; Ahnen, Dennis J.; Rastogi, Amit; Wani, Sachin

    2016-01-01

    BACKGROUND & AIMS Narrow-band imaging (NBI) allows real-time histologic classification of colorectal polyps. We investigated whether endoscopists without prior training in NBI can achieve the following thresholds recommended by the American Society for Gastrointestinal Endoscopy: for diminutive colorectal polyps characterized with high confidence, a ≥90% negative predictive value for adenomas in the rectosigmoid and a ≥90% agreement in surveillance intervals. METHODS Twenty-six endoscopists from 2 tertiary care centers underwent standardized training in NBI interpretation. Endoscopists made real-time predictions of diminutive colorectal polyp histology and surveillance interval predictions based on NBI. Their performance was evaluated by comparing predicted with actual findings from histologic analysis. Multilevel logistic regression was used to assess predictors of performance. Cumulative summation analysis was used to characterize learning curves. RESULTS The endoscopists performed 1451 colonoscopies and made 3012 diminutive polyp predictions (74.3% high confidence) using NBI. They made 898 immediate post-procedure surveillance interval predictions. An additional 505 surveillance intervals were determined with histology input. The overall negative predictive value for high-confidence characterizations in the rectosigmoid was 94.7% (95% confidence interval: 92.6%–96.8%) and the surveillance interval agreement was 91.2% (95% confidence interval: 89.7%–92.7%). Overall, 97.0% of surveillance interval predictions would have brought patients back on time or early. High-confidence characterization was the strongest predictor of accuracy (odds ratio = 3.42; 95% confidence interval: 2.72–4.29; P < .001). Performance improved over time, however, according to cumulative summation analysis, only 7 participants (26.9%) identified adenomas with sufficient sensitivity such that further auditing is not required. CONCLUSIONS With standardized training

  12. Real-Time Moire Holography

    NASA Astrophysics Data System (ADS)

    Soares, O. D. D.; Lage, A. I. V. S.

    1986-08-01

    Interferometric techniques including hologrametry, both classical and electronic, present high sensitivity making difficult its practical use in real-time. The introduction of the differencial concept as moire evaluation techniques permits to use with advantage an arbitrary reference pattern within the correlation range. The carrier spatial spectrum can be directly the interferogram fringe pattern instead of the original interference pattern of wavelength dimensional scale. A moire techniques is in itself an optical processing method reducing evaluation time which is advantageous when real-time response is desired from hybrid metrological systems. The moire evaluation is performed via a dynamical digital memory that executes arithmetic operations on two frames temporally in sequence, at TV rate. These characteristics of the moire evaluation techniques can be implemented on a real-time holographic (or speckle based) hybrid system with great practical advantage for dynamical studies.

  13. Real Time Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  14. Broadly targeted triplex real-time PCR detection of influenza A, B and C viruses based on the nucleoprotein gene and a novel "MegaBeacon" probe strategy.

    PubMed

    Muradrasoli, Shaman; Mohamed, Nahla; Belák, Sándor; Czifra, György; Herrmann, Björn; Berencsi, George; Blomberg, Jonas

    2010-02-01

    A PCR assay that covers animal and human influenza A, B and C viruses, i.e., most of Orthomyxoviridae, is needed. Influenza types are distinguished based on differences in the nucleoprotein (NP) present in the virus. Conserved NP regions were therefore used to design a TaqMan-based triplex reverse transcription real-time PCR method. Variability of influenza A within the probe target region mandated the development of a novel molecular beacon, the "Mega" molecular beacon (MegaBeacon; MegB), for the detection of influenza A with this method. MegaBeacon is a mismatch-tolerant molecular beacon that is also a TaqMan probe. The triplex method (3QPCR-MegB) was evaluated with influenza A isolates covering 18 HxNx combinations, two influenza B isolates, and five Japanese influenza C isolates, as well as influenza A, B and C synthetic DNA targets. One to ten viral RNA and cDNA genome equivalents were detected per PCR reaction for influenza A, B and C. Seventy-one human nasopharyngeal aspirates from respiratory infections yielded 30 influenza A, 11 influenza B and 0 influenza C with 3QPCR-MegB, where immunofluorescence (IF) found 28 influenza A and 10 influenza B. 3QPCR-MegB was more mismatch-tolerant than a variant PCR with an influenza A TaqMan probe (3QPCR) and is a sensitive and rational method to detect influenza viruses of animal and human origin. MegaBeacon probes hold promise for variable target nucleic acids.

  15. Real time psychrometric data collection

    SciTech Connect

    McDaniel, K.H.

    1996-12-31

    Eight Mine Weather Stations (MWS) installed at the Waste Isolation Pilot Plant (WIPP) to monitor the underground ventilation system are helping to simulate real-time ventilation scenarios. Seasonal weather extremes can result in variations of Natural Ventilation Pressure (NVP) which can significantly effect the ventilation system. The eight MWS(s) (which previously collected and stored temperature, barometric pressure and relative humidity data for subsequent NVP calculations) were upgraded to provide continuous real-time data to the site wide Central monitoring System. This data can now be utilized by the ventilation engineer to create realtime ventilation simulations and trends which assist in the prediction and mitigation of NVP and psychrometric related events.

  16. Real-time tritium imaging

    SciTech Connect

    Malinowski, M.E.

    1981-09-15

    A real-time image of a tritium-containing titanium film has been made by detecting the secondary electrons produced by tritium ..beta.. decay with a simple two-element electrostatic lens and microchannel plate image intensifier. The obtained image indicates that a resolution of better than 100 ..mu..m is currently obtainable and suggests that image magnification to enhance resolution should be possible.

  17. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  18. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  19. Real-time exploitation system

    NASA Astrophysics Data System (ADS)

    Riedel, Richard D.

    1998-11-01

    The proliferation and technology advances of digital sensors for reconnaissance imaging require a commensurate increase in the productivity of ground-based exploitation system to process the increased volume of remotely-sensed data. Systems to support this level of production, themselves, must have significantly reduced development and life-cycle costs from previously installed systems. For cost, growth, and integration advantages, reconnaissance exploitation systems should be designed to maximize Commercial-Off-The-Shelf (COTS) hardware and software. As an example, the Real-Time Exploitation System is a state-of-the-art system for photo interpretation and exploitation of real-time digital reconnaissance imagery. Using COTS hardware, the system is able to receive imagery at rates greater than 80 Mpixels/sec; perform detailed interpretation, exploitation and report generation, and; disseminate reports to intelligence users over secure networks. New technologies have been applied in workflow management, database management, and user interfaces to provide the image analyst with superior analysis tools and access to other intelligence data sources. Photogrammetric functions are also provided for monoscopic and stereoscopic imagery. These functions provide greater geographic accuracy than is achievable in most reconnaissance exploitation systems. The Real-Time Exploitation System significantly reduces timelines for the analysis and report generation process, and significantly increases the quality and accuracy of reports.

  20. Young Children's Discourse Strategies during Block Play: A Bakhtinian Approach

    ERIC Educational Resources Information Center

    Cohen, Lynn; Uhry, Joanna

    2007-01-01

    This study describes the application of Bakhtin's theories of dialogism to nineteen 5-year-old preschool children's communication strategies and the ways children appropriate meaning in block play. The observed frequency of communication strategies used in three different naturally emerging social relationships--1) individuals, 2) dyads, and 3)…

  1. Real-time flutter analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  2. Real-time streamflow conditions

    USGS Publications Warehouse

    Graczyk, David J.; Gebert, Warren A.

    1996-01-01

    Would you like to know streamflow conditions before you go fishing in Wisconsin or in more distant locations? Real-time streamflow data throughout Wisconsin and the United States are available on the Internet from the U.S. Geological Survey. You can see if the stream you are interested in fishing is high due to recent rain or low because of an extended dry spell. Flow conditions at more than 100 stream-gaging stations located throughout Wisconsin can be viewed by accessing the Wisconsin District Home Page at: http://wwwdwimdn.er.usgs.gov

  3. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  4. Real-time analysis keratometer

    NASA Technical Reports Server (NTRS)

    Adachi, Iwao P. (Inventor); Adachi, Yoshifumi (Inventor); Frazer, Robert E. (Inventor)

    1987-01-01

    A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis.

  5. Real time analysis under EDS

    NASA Astrophysics Data System (ADS)

    Schneberk, D.

    1985-07-01

    The analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL) is described. Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis.

  6. Real-time face tracking

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Wilder, Joseph

    1998-10-01

    A real-time face tracker is presented in this paper. The system has achieved 15 frames/second tracking using a Pentium 200 PC with a Datacube MaxPCI image processing board and a Panasonic RGB color camera. It tracks human faces in the camera's field of view while people move freely. A stochastic model to characterize the skin color distribution of human skin is used to segment the face and other skin areas from the background. Median filtering is then used to clean up the background noise. Geometric constraints are applied to the segmented image to extract the face from the background. To reduce computation and achieve real-time tracking, 1D projections (horizontal and vertical) of the image are analyzed instead of the 2D image. Run-length- encoding and frequency domain analysis algorithms are used to separate faces from other skin-like blobs. The system is robust to illumination intensity variations and different skin colors. It can be applied to many human-computer interaction applications such as sound locating, lip- reading, gaze tracking and face recognition.

  7. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  8. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  9. Real-time flood forecasting

    USGS Publications Warehouse

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  10. Group Play Interventions for Children: Strategies for Teaching Prosocial Skills

    ERIC Educational Resources Information Center

    Reddy, Linda A.

    2011-01-01

    Group play interventions are used to meet a broad range of developmental needs in children from various backgrounds. This book is for mental health practitioners working with children aged 5 through 12 to help them learn important social skills and self-control strategies such as making friends, asking for and offering help, controlling hands and…

  11. Methods & Strategies: Teaching in Real Time

    ERIC Educational Resources Information Center

    Miranda, Rommel J.; Hermann, Ronald S.

    2015-01-01

    Any assessment activity can help student learning if it provides information that both teachers and students can use as feedback in assessing themselves. However, such assessment only becomes "formative" assessment when teachers actually use the feedback to adapt their teaching to meet the learning needs of students. This column provides…

  12. Real-time scene generator

    NASA Astrophysics Data System (ADS)

    Lord, Eric; Shand, David J.; Cantle, Allan J.

    1996-05-01

    This paper describes the techniques which have been developed for an infra-red (IR) target, countermeasure and background image generation system working in real time for HWIL and Trial Proving applications. Operation is in the 3 to 5 and 8 to 14 micron bands. The system may be used to drive a scene projector (otherwise known as a thermal picture synthesizer) or for direct injection into equipment under test. The provision of realistic IR target and countermeasure trajectories and signatures, within representative backgrounds, enables the full performance envelope of a missile system to be evaluated. It also enables an operational weapon system to be proven in a trials environment without compromising safety. The most significant technique developed has been that of line by line synthesis. This minimizes the processing delays to the equivalent of 1.5 frames from input of target and sightline positions to the completion of an output image scan. Using this technique a scene generator has been produced for full closed loop HWIL performance analysis for the development of an air to air missile system. Performance of the synthesis system is as follows: 256 * 256 pixels per frame; 350 target polygons per frame; 100 Hz frame rate; and Gouraud shading, simple reflections, variable geometry targets and atmospheric scaling. A system using a similar technique has also bee used for direct insertion into the video path of a ground to air weapon system in live firing trials. This has provided realistic targets without degrading the closed loop performance. Delay of the modified video signal has been kept to less than 5 lines. The technique has been developed using a combination of 4 high speed Intel i860 RISC processors in parallel with the 4000 series XILINX field programmable gate arrays (FPGA). Start and end conditions for each line of target pixels are prepared and ordered in the I860. The merging with background pixels and output shading and scaling is then carried out in

  13. Real time cardiac radionuclide imaging

    SciTech Connect

    Jarkewicz, G.G.

    1986-04-29

    A data acquisition system is described for use in radionuclide cardiac imaging of a patient having been administered a myocardium specific radionuclide, comprising: (a) means for monitoring the electrical activity of the heart; (b) first temporary storage means for accumulating respective pages of data corresponding to nuclear events during each cardiac cycle; (c) means, responsive to the means for monitoring, for determining the time duration of each successive cardiac cycle; (d) means for comparing each determined duration of a cardiac cycle with a preselected time duration range; (e) second temporary storage means; and (f) means for conditionally transferring pages of data from the first temporary storage means to the second temporary storage means if the measured duration associated with each page has predetermined correspondence with the preselected duration range, whereby pages of data having the predetermined correspondence may be collated into a quasi-real time study, while pages of data having different correspondence with the preselected time duration range are discarded from the study.

  14. Mobile real time radiography system

    SciTech Connect

    Vigil, J.; Taggart, D.; Betts, S.

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  15. Students Collecting Real time Data

    NASA Astrophysics Data System (ADS)

    Miller, P.

    2006-05-01

    Students Collecting Real-Time Data The Hawaiian Islands Humpback Whale National Marine Sanctuary has created opportunities for middle and high school students to become Student Researchers and to be involved in real-time marine data collection. It is important that we expose students to different fields of science and encourage them to enter scientific fields of study. The Humpback Whale Sanctuary has an education visitor center in Kihei, Maui. Located right on the beach, the site has become a living classroom facility. There is a traditional Hawaiian fishpond fronting the property. The fishpond wall is being restored, using traditional methods. The site has the incredible opportunity of incorporating Hawaiian cultural practices with scientific studies. The Sanctuary offers opportunities for students to get involved in monitoring and data collection studies. Invasive Seaweed Study: Students are collecting data on invasive seaweed for the University of Hawaii. They pull a large net through the shallow waters. Seaweed is sorted, identified and weighed. The invasive seaweeds are removed. The data is recorded and sent to UH. Remote controlled monitoring boats: The sanctuary has 6 boogie board sized remote controlled boats used to monitor reefs. Boats have a camera with lights on the underside. The boats have water quality monitoring devices and GPS units. The video from the underwater camera is transmitted via a wireless transmission. Students are able to monitor the fish, limu and invertebrate populations on the reef and collect water quality data via television monitors or computers. The boat can also pull a small plankton tow net. Data is being compiled into data bases. Artificial Reef Modules: The Sanctuary has a scientific permit from the state to build and deploy artificial reef modules. High school students are designing and building modules. These are deployed out in the Fishpond fronting the Sanctuary site and students are monitoring them on a weekly basis

  16. Real-Time Data Display

    NASA Technical Reports Server (NTRS)

    Pedings, Marc

    2007-01-01

    RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.

  17. Cerebral Autoregulation Real-Time Monitoring

    PubMed Central

    Tsalach, Adi; Ratner, Eliahu; Lokshin, Stas; Silman, Zmira; Breskin, Ilan; Budin, Nahum; Kamar, Moshe

    2016-01-01

    Cerebral autoregulation is a mechanism which maintains constant cerebral blood flow (CBF) despite changes in mean arterial pressure (MAP). Assessing whether this mechanism is intact or impaired and determining its boundaries is important in many clinical settings, where primary or secondary injuries to the brain may occur. Herein we describe the development of a new ultrasound tagged near infra red light monitor which tracks CBF trends, in parallel, it continuously measures blood pressure and correlates them to produce a real time autoregulation index. Its performance is validated in both in-vitro experiment and a pre-clinical case study. Results suggest that using such a tool, autoregulation boundaries as well as its impairment or functioning can be identified and assessed. It may therefore assist in individualized MAP management to ensure adequate organ perfusion and reduce the risk of postoperative complications, and might play an important role in patient care. PMID:27571474

  18. GAMMON: An Approach to the Concept of Strategy in Game-Playing Programs.

    ERIC Educational Resources Information Center

    Bushey, William Edward

    In order to investigate the use of strategies in a game-playing computer program, "Gammon," a computer program that plays Backgammon, was developed. It focuses on the play of a given strategy, as well as the process of strategy selection, and examines the concept of strategy as an integrating and driving force in the play of a game. A "strategy"…

  19. Research in Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  20. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, R.

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. This thesis presents a method for planning a run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies.

  1. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, Richard

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. The agent needs to be able to fall back on an ability to construct plans at run time under time constraints. This thesis presents a method for planning at run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies. The method has been implemented, and experiments have been run to validate the overall approach and the theoretical model.

  2. Optimizing near real time accountability for reprocessing.

    SciTech Connect

    Cipiti, Benjamin B.

    2010-06-01

    Near Real Time Accountability (NRTA) of actinides at high precision in reprocessing plants has been a long sought-after goal in the safeguards community. Achieving this goal is hampered by the difficulty of making precision measurements in the reprocessing environment, equipment cost, and impact to plant operations. Thus the design of future reprocessing plants requires an optimization of different approaches. The Separations and Safeguards Performance Model, developed at Sandia National Laboratories, was used to evaluate a number of NRTA strategies in a UREX+ reprocessing plant. Strategies examined include the incorporation of additional actinide measurements of internal plant vessels, more use of process monitoring data, and the option of periodic draining of inventory to key tanks. Preliminary results show that the addition of measurement technologies can increase the overall measurement uncertainty due to additional error propagation, so care must be taken when designing an advanced system. Initial results also show that relying on a combination of different NRTA techniques will likely be the best option. The model provides a platform for integrating all the data. The modeling results for the different NRTA options under various material loss conditions will be presented.

  3. Play.

    ERIC Educational Resources Information Center

    Rogers, Fred; Sharapan, Hedda

    1993-01-01

    Contends that, in childhood, work and play seem to come together. Says that for young children their play is their work, and the more adults encourage children to play, the more they emphasize important lifelong resource. Examines some uses of children's play, making and building, artwork, dramatic play, monsters and superheroes, gun play, and…

  4. Real time programming environment for Windows

    SciTech Connect

    LaBelle, D.R.

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  5. Satellite clock corrections estimation to accomplish real time ppp: experiments for brazilian real time network

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo; Monico, João; Aquino, Marcio; Melo, Weyller

    2014-05-01

    that the phase ambiguities are eliminated when applying differences between consecutive epochs. However, when using undifferenced code and phase, the ambiguities may be estimated together with receiver clock errors, satellite clock corrections and troposphere parameters. In both strategies it is also possible to correct the troposphere delay from a Numerical Weather Forecast Model instead of estimating it. The prediction of the satellite clock correction can be performed using a straight line or a second degree polynomial using the time series of the estimated satellites clocks. To estimate satellite clock correction and to accomplish real time PPP two pieces of software have been developed, respectively, "RT_PPP" and "RT_SAT_CLOCK". The system (RT_PPP) is able to process GNSS code and phase data using precise ephemeris and precise satellites clocks corrections together with several corrections required for PPP. In the software RT_SAT_CLOCK we apply a Kalman filter algorithm to estimate satellite clock correction in the network PPP mode. In this case, all PPP corrections must be applied for each station. The experiments were generated in real time and post-processed mode (simulating real time) considering data from the Brazilian continuous GPS network and also from the IGS network in a global satellite clock solution. We have used IGU ephemeris for satellite position and estimated the satellite clock corrections, performing the updates as soon as new ephemeris files were available. Experiments were accomplished in order to assess the accuracy of the estimated clocks when using the Brazilian Numerical Weather Forecast Model (BNWFM) from CPTEC/INPE and also using the ZTD from European Centre for Medium-Range Weather Forecasts (ECMWF) together with Vienna Mapping Function VMF or estimating troposphere with clocks and ambiguities in the Kalman Filter. The daily precision of the estimated satellite clock corrections reached the order of 0.15 nanoseconds. The clocks were

  6. Integration of Real-Time Data Into Building Automation Systems

    SciTech Connect

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  7. Real-time PCR in Food Science: Introduction.

    PubMed

    Rodriguez-Lazaro, David; Hernandez, Marta

    2013-01-01

    Food safety and quality control programmes are increasingly applied throughout the production food chain in order to guarantee added value products as well as to minimize the risk of infection for the consumer. The development of real-time PCR has represented one of the most significant advances in food diagnostics as it provides rapid, reliable and quantitative results. These aspects become increasingly important for the agricultural and food industry. Different strategies for real-time PCR diagnostics have been developed including unspecific detection independent of the target sequence using fluorescent dyes such as SYBR Green, or by sequence-specific fluorescent oligonucleotide probes such as TaqMan probes or molecular beacons.

  8. The ALMA Real Time Control System

    NASA Astrophysics Data System (ADS)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  9. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.

  10. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-06

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.

  11. Real-time monitoring of landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Baum, Rex L.; Kean, Jason W.; Schulz, William H.; Highland, Lynn M.

    2012-01-01

    Landslides cause fatalities and property damage throughout the Nation. To reduce the impact from hazardous landslides, the U.S. Geological Survey develops and uses real-time and near-real-time landslide monitoring systems. Monitoring can detect when hillslopes are primed for sliding and can provide early indications of rapid, catastrophic movement. Continuous information from up-to-the-minute or real-time monitoring provides prompt notification of landslide activity, advances our understanding of landslide behavior, and enables more effective engineering and planning efforts.

  12. Intelligent data management for real-time spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  13. Lightweight distributed computing for intraoperative real-time image guidance

    NASA Astrophysics Data System (ADS)

    Suwelack, Stefan; Katic, Darko; Wagner, Simon; Spengler, Patrick; Bodenstedt, Sebastian; Röhl, Sebastian; Dillmann, Rüdiger; Speidel, Stefanie

    2012-02-01

    In order to provide real-time intraoperative guidance, computer assisted surgery (CAS) systems often rely on computationally expensive algorithms. The real-time constraint is especially challenging if several components such as intraoperative image processing, soft tissue registration or context aware visualization are combined in a single system. In this paper, we present a lightweight approach to distribute the workload over several workstations based on the OpenIGTLink protocol. We use XML-based message passing for remote procedure calls and native types for transferring data such as images, meshes or point coordinates. Two different, but typical scenarios are considered in order to evaluate the performance of the new system. First, we analyze a real-time soft tissue registration algorithm based on a finite element (FE) model. Here, we use the proposed approach to distribute the computational workload between a primary workstation that handles sensor data processing and visualization and a dedicated workstation that runs the real-time FE algorithm. We show that the additional overhead that is introduced by the technique is small compared to the total execution time. Furthermore, the approach is used to speed up a context aware augmented reality based navigation system for dental implant surgery. In this scenario, the additional delay for running the computationally expensive reasoning server on a separate workstation is less than a millisecond. The results show that the presented approach is a promising strategy to speed up real-time CAS systems.

  14. Real-time smart fluorescence sensor platform

    NASA Astrophysics Data System (ADS)

    Dickens, Jason E.; Vaughn, Mike S.; Taylor, Mervin; Ponstingl, Mike

    2011-06-01

    A novel compact LED array based light induced fluorescence (LIF) sensor has been developed for real-time in-line monitoring of intrinsic fluorophores in the solid and liquid state. The sensor is essential for on-the-spot, routine, and cost effective real-time analysis. The sensor is designed to provide real-time emission response along with various smart sensing parameters to ensure real-time measurement quality that is required for regulated GMP process monitoring applications. This work describes a LIF sensor tailored for solid-phase fluorometry. Fundamental figures of merit, excitation overexposure and smart sensing features required for modern process monitoring and control are discussed within the context of pharmaceutical solid-phase manufacturing and similar applications.

  15. The LAA real-time benchmarks

    SciTech Connect

    Block, R.K.; Krischer, W.; Lone, S.

    1989-04-01

    In the context of the LAA detector development program a subgroup Real Time Data Processing has tackled the problem of intelligent triggering. The main goal of this group is to show how fast digital devices, implemented as custom-made or commercial processors, can execute some basic algorithms, and how they can be embedded in the data flow between detector readout components and fully programmable commercial processors, which are expected to be the final data processing filter in real time.

  16. Real-time scheduling using minimum search

    NASA Technical Reports Server (NTRS)

    Tadepalli, Prasad; Joshi, Varad

    1992-01-01

    In this paper we consider a simple model of real-time scheduling. We present a real-time scheduling system called RTS which is based on Korf's Minimin algorithm. Experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it sppears that reasonably good schedules can be produced with a relatively shallow search.

  17. Processing PCM Data in Real Time

    NASA Technical Reports Server (NTRS)

    Wissink, T. L.

    1982-01-01

    Novel hardware configuration makes it possible for Space Shuttle launch processing system to monitor pulse-code-modulated data in real time. Using two microprogramable "option planes," incoming PCM data are monitored for changes at rate of one frame of data (80 16-bit words) every 10 milliseconds. Real-time PCM processor utilizes CPU in mini-computer and CPU's in two option planes.

  18. Interferometer real time control development for SIM

    NASA Astrophysics Data System (ADS)

    Bell, Charles E.

    2003-02-01

    Real Time Control (RTC) for the Space Interferometry Mission will build on the real time core interferometer control technology under development at JPL since the mid 1990s, with heritage from the ground based MKII and Palomar Testbed Interferometer projects developed in the late '80s and early '90s. The core software and electronics technology for SIM interferometer real time control is successfully operating on several SIM technology demonstration testbeds, including the Real-time Interferometer Control System Testbed, System Testbed-3, and the Microarcsecond Metrology testbed. This paper provides an overview of the architecture, design, integration, and test of the SIM flight interferometer real time control to meet challenging flight system requirements for the high processor throughput, low-latency interconnect, and precise synchronization to support microarcsecond-level astrometric measurements for greater than five years at 1 AU in Earth-trailing orbit. The electronics and software architecture of the interferometer real time control core and its adaptation to a flight design concept are described. Control loops for pointing and pathlength control within each of four flight interferometers and for coordination of control and data across interferometers are illustrated. The nature of onboard data processing to fit average downlink rates while retaining post-processed astrometric measurement precision and accuracy is also addressed. Interferometer flight software will be developed using a software simulation environment incorporating models of the metrology and starlight sensors and actuators to close the real time control loops. RTC flight software and instrument flight electronics will in turn be integrated utilizing the same simulation architecture for metrology and starlight component models to close real time control loops and verify RTC functionality and performance prior to delivery to flight interferometer system integration at Lockheed Martin

  19. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  20. Real-Time Tropospheric Delay Estimation using IGS Products

    NASA Astrophysics Data System (ADS)

    Stürze, Andrea; Liu, Sha; Söhne, Wolfgang

    2014-05-01

    The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it

  1. An Algorithm for Network Real Time Kinematic Processing

    NASA Astrophysics Data System (ADS)

    Malekzadeh, A.; Asgari, J.; Amiri-Simkooei, A. R.

    2015-12-01

    NRTK1 is an efficient method to achieve precise real time positioning from GNSS measurements. In this paper we attempt to improve NRTK algorithm by introducing a new strategy. In this strategy a precise relocation of master station observations is performed using Sagnac effect. After processing the double differences, the tropospheric and ionospheric errors of each baseline can be estimated separately. The next step is interpolation of these errors for the atmospheric errors mitigation of desired baseline. Linear and kriging interpolation methods are implemented in this study. In the new strategy the RINEX2 data of the master station is re-located and is converted to the desired virtual observations. Then the interpolated corrections are applied to the virtual observations. The results are compared by the classical method of VRS generation. 1 Network Real Time Kinematic 2 Receiver Independent Exchange Format

  2. REAL TIME SYSTEM OPERATIONS 2006-2007

    SciTech Connect

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  3. New real time needle segmentation technique using grayscale Hough transformation

    NASA Astrophysics Data System (ADS)

    Qiu, Wu; Zhou, Hua; Ding, Mingyue; Zhang, Songgeng

    2007-12-01

    Real-time needle segmentation and tracking is very important in image-guided surgery, biopsy, and therapy. In this paper, we described an automated technique to provide real-time needle segmentation from a sequence of 2-D ultrasound images for the use of guidance of a needle to the target in soft tissues. The Hough transform is used to find straight lines or analytic curves in binary image. Hough transform is applied usually to binary images. Hence one needs to convert, initially, the gray level image to a binary one (through thresholding, edge detection, or thinning) in order to apply the HT. While in the process of binarization, some information about line segments in the image may be lost when an inappropriate threshold is used. Gray-Scale Hough Transform can detect the line without binarization. Unfortunately, its high computational cost often prevents it from being applied in real-time applications without the help of specially designed hardware. In this paper, we proposed a needle segmentation technique based on a real-time gray-scale Hough transform. It is composed of an improved Gray Hough Transformation and a coarse-fine search strategy. Furthermore, the RTGHT (Real-Time Gray-Scale Hough Transform) technique is evaluated by patient breast biopsy images. Experiments with patient breast biopsy ultrasound (US) image sequences showed that our approach can segment the biopsy needle in real time (i.e., less than 60 ms) with the angular rms error of about 1° and the position rms error of about 0.5 mm an affordable PC computer without the help of specially designed hardware.

  4. Simultaneous real-time monitoring of multiple cortical systems

    NASA Astrophysics Data System (ADS)

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-10-01

    Objective. Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results. Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. Significance. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  5. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  6. Visualization of Real-Time Data

    NASA Technical Reports Server (NTRS)

    Stansifer, Ryan; Engrand, Peter

    1996-01-01

    In this project we explored various approaches to presenting real-time data from the numerous systems monitored on the space shuttle to computer users. We examined the approach that several projects at the Kennedy Space Center (KSC) used to accomplish this. We undertook to build a prototype system to demonstrate that the Internet and the Java programming language could be used to present the real-time data conveniently. Several Java programs were developed that presented real-time data in different forms including one form that emulated the display screens of the PC GOAL system which is familiar to many at KSC. Also, we developed several communications programs to supply the data continuously. Furthermore, a framework was created using the World Wide Web (WWW) to organize the collection and presentation of the real-time data. We believe our demonstration project shows the great flexibility of the approach. We had no particular use of the data in mind, instead we wanted the most general and the least complex framework possible. People who wish to view data need only know how to use a WWW browser and the address (the URL). People wanting to build WWW documents containing real-time data need only know the values of a few parameters, they do not need to program in Java or any other language. These are stunning advantages over more monolithic systems.

  7. Real-time enhanced vision system

    NASA Astrophysics Data System (ADS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-05-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  8. Real-time Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-Ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-01-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  9. Play for Play's Sake: Cooperative Games As a Strategy for Integration. Revised Edition.

    ERIC Educational Resources Information Center

    McGill, Judith

    This manual makes a case for cooperative (as opposed to competitive) play among disabled and nondisabled children. Part 1, which concerns the philosophy involved, discusses the rationale for cooperative games, the importance of play, cooperative games as an alternative, components of cooperative games, structure of cooperative games, and…

  10. Block Play: It's Not Just for Boys Anymore--Strategies for Encouraging Girls' Block Play

    ERIC Educational Resources Information Center

    Tokarz, Barb

    2008-01-01

    While block play is essential for both boys' and girls' social, cognitive, language, and motor development, girls do not engage in block play as frequently as boys. This situation can be attributed to the socialization process--children learn societal expectations for behavior and materials for both boys and girls--lack of experience for girls…

  11. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  12. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  13. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  14. Durham adaptive optics real-time controller.

    PubMed

    Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy

    2010-11-10

    The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems.

  15. Real-time DNA microarray analysis

    PubMed Central

    Hassibi, Arjang; Vikalo, Haris; Riechmann, José Luis; Hassibi, Babak

    2009-01-01

    We present a quantification method for affinity-based DNA microarrays which is based on the real-time measurements of hybridization kinetics. This method, i.e. real-time DNA microarrays, enhances the detection dynamic range of conventional systems by being impervious to probe saturation in the capturing spots, washing artifacts, microarray spot-to-spot variations, and other signal amplitude-affecting non-idealities. We demonstrate in both theory and practice that the time-constant of target capturing in microarrays, similar to all affinity-based biosensors, is inversely proportional to the concentration of the target analyte, which we subsequently use as the fundamental parameter to estimate the concentration of the analytes. Furthermore, to empirically validate the capabilities of this method in practical applications, we present a FRET-based assay which enables the real-time detection in gene expression DNA microarrays. PMID:19723688

  16. Real-time DNA microarray analysis.

    PubMed

    Hassibi, Arjang; Vikalo, Haris; Riechmann, José Luis; Hassibi, Babak

    2009-11-01

    We present a quantification method for affinity-based DNA microarrays which is based on the real-time measurements of hybridization kinetics. This method, i.e. real-time DNA microarrays, enhances the detection dynamic range of conventional systems by being impervious to probe saturation in the capturing spots, washing artifacts, microarray spot-to-spot variations, and other signal amplitude-affecting non-idealities. We demonstrate in both theory and practice that the time-constant of target capturing in microarrays, similar to all affinity-based biosensors, is inversely proportional to the concentration of the target analyte, which we subsequently use as the fundamental parameter to estimate the concentration of the analytes. Furthermore, to empirically validate the capabilities of this method in practical applications, we present a FRET-based assay which enables the real-time detection in gene expression DNA microarrays. PMID:19723688

  17. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  18. The real-time Neutron Monitor database

    NASA Astrophysics Data System (ADS)

    Klein, K.-L.; Steigies, C.; Nmdb Team

    2009-04-01

    In January 2007 the Real time database for high-resolution neutron monitor measurements (NMDB) project, which is supported by the 7th framework program of the European Commission, commenced. One year after the project start we have several neutron monitor stations that are sending their data in real-time to a publicly available prototype database in a common format. We have developed applications that make use of the real-time cosmic ray measurements for example for space weather applications and dose calculations at airplane altitudes. We are also in the process of establishing a public outreach site and a training site with material for university students and researchers and engineers who want to get familiar with cosmic rays and neutron monitor measurements. An overview of the project status as well as instructions on how to use the available data will be given. Possible future developments will be briefly discussed.

  19. Real-time inspection by submarine images

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Zingaretti, Primo; Conte, Giuseppe

    1996-10-01

    A real-time application of computer vision concerning tracking and inspection of a submarine pipeline is described. The objective is to develop automatic procedures for supporting human operators in the real-time analysis of images acquired by means of cameras mounted on underwater remotely operated vehicles (ROV) Implementation of such procedures gives rise to a human-machine system for underwater pipeline inspection that can automatically detect and signal the presence of the pipe, of its structural or accessory elements, and of dangerous or alien objects in its neighborhood. The possibility of modifying the image acquisition rate in the simulations performed on video- recorded images is used to prove that the system performs all necessary processing with an acceptable robustness working in real-time up to a speed of about 2.5 kn, widely greater than that the actual ROVs and the security features allow.

  20. Quantitative Real-Time PCR: Recent Advances.

    PubMed

    Singh, Charanjeet; Roy-Chowdhuri, Sinchita

    2016-01-01

    Quantitative real-time polymerase chain reaction is a technique for simultaneous amplification and product quantification of a target DNA as the process takes place in real time in a "closed-tube" system. Although this technique can provide an absolute quantification of the initial template copy number, quantification relative to a control sample or second sequence is typically adequate. The quantification process employs melting curve analysis and/or fluorescent detection systems and can provide amplification and genotyping in a relatively short time. Here we describe the properties and uses of various fluorescent detection systems used for quantification. PMID:26843055

  1. Imaging of living cells in real time

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.; Nikandrov, Serguei L.

    1996-12-01

    Parameters of intrinsic cell motility is one of the cell activity characteristics which can be measured in real-time. For evaluation of certain organelles velocity we propose to use high sensitivity of computer-aided phase microscope airyscan to local phase changes connected with refractive index. This method is based on periodical scanning of cell profile in direction perpendicular to organelles movement. Analysis of the obtained 2-dimensional time-coordinate matrix allows us to define organelle velocity in quasi-real time and areas of cell activity. The experiments with onion cells confirm the method applicability for cell activity investigation.

  2. Software Package For Real-Time Graphics

    NASA Technical Reports Server (NTRS)

    Malone, Jacqueline C.; Moore, Archie L.

    1991-01-01

    Software package for master graphics interactive console (MAGIC) at Western Aeronautical Test Range (WATR) of NASA Ames Research Center provides general-purpose graphical display system for real-time and post-real-time analysis of data. Written in C language and intended for use on workstation of interactive raster imaging system (IRIS) equipped with level-V Unix operating system. Enables flight researchers to create their own displays on basis of individual requirements. Applicable to monitoring of complicated processes in chemical industry.

  3. Real-Time, Interactive Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  4. Real-Time Occupancy Change Analyzer

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector tomore » the detected change, it provides the actual x,y position of the change.« less

  5. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  6. Automated real-time software development

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  7. Real-time evaporimeter/hygrometer

    NASA Astrophysics Data System (ADS)

    Knopp, Jerome; Smiglewski, Leonard T.

    1998-07-01

    Laboratory measurements of microscopic level changes in a water tank were shown to have good correlation with the evaporation rate predicted using Dalton's Law. Submicron level changes in the tank were measured in real-time using an interferometer interfaced to a PC. The methodology developed offers a way to build an instrument that can be used as a standard for an evaporimeter or a hygrometer. The real-time measurement capability provides a tool for determining refined dynamic correlations of evaporation with fast changes in meteorological variables such as wind and solar radiation.

  8. Quantitative Real-Time PCR: Recent Advances.

    PubMed

    Singh, Charanjeet; Roy-Chowdhuri, Sinchita

    2016-01-01

    Quantitative real-time polymerase chain reaction is a technique for simultaneous amplification and product quantification of a target DNA as the process takes place in real time in a "closed-tube" system. Although this technique can provide an absolute quantification of the initial template copy number, quantification relative to a control sample or second sequence is typically adequate. The quantification process employs melting curve analysis and/or fluorescent detection systems and can provide amplification and genotyping in a relatively short time. Here we describe the properties and uses of various fluorescent detection systems used for quantification.

  9. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  10. Real-time technology for enhancing long-range imagery

    NASA Astrophysics Data System (ADS)

    Paolini, Aaron; Kelmelis, Eric; Kozacik, Stephen; Bonnett, James; Fox, Paul

    2015-05-01

    Many ISR applications require constant monitoring of targets from long distance. When capturing over long distances, imagery is often degraded by atmospheric turbulence. This adds a time-variant blurring effect to captured data, and can result in a significant loss of information. To recover it, image processing techniques have been developed to enhance sequences of short exposure images or videos in order to remove frame-specific scintillation and warping. While some of these techniques have been shown to be quite effective, the associated computational complexity and required processing power limits the application of these techniques to post-event analysis. To meet the needs of real-time ISR applications, video enhancement must be done in real-time in order to provide actionable intelligence as the scene unfolds. In this paper, we will provide an overview of an algorithm capable of providing the enhancement desired and focus on its real-time implementation. We will discuss the role that GPUs play in enabling real-time performance. This technology can be used to add performance to ISR applications by improving the quality of long-range imagery as it is collected and effectively extending sensor range.

  11. Real-time hostile attribution measurement and aggression in children.

    PubMed

    Yaros, Anna; Lochman, John E; Rosenbaum, Jill; Jimenez-Camargo, Luis Alberto

    2014-01-01

    Hostile attributions are an important predictor of aggression in children, but few studies have measured hostile attributions as they occur in real-time. The current study uses an interactive video racing game to measure hostile attributions while children played against a presumed peer. A sample of 75 children, ages 10-13, used nonverbal and verbal procedures to respond to ambiguous provocation by their opponent. Hostile attributions were significantly positively related to parent-rated reactive aggression, when controlling for proactive aggression. Hostile attributions using a nonverbal response procedure were negatively related to proactive aggression, when controlling for reactive aggression. Results suggest hostile attributions in real-time occur quickly and simultaneously with social interaction, which differs from the deliberative, controlled appraisals measured with vignette-based instruments. The relation between real-time hostile attributions and reactive aggression could be accounted for by the impulsive response style that is characteristic of reactive aggression, whereas children exhibiting proactive aggression may be more deliberate and intentional in their responding, resulting in a negative relation with real-time hostile attributions. These findings can be used both to identify children at risk for aggression and to enhance preventive interventions.

  12. Year 4 Term 1: Plays. National Literacy Strategy.

    ERIC Educational Resources Information Center

    Department for Education and Skills, London (England).

    In this unit of work, the children will continue to learn about the features of playscripts, through reading and analyzing a play and writing a play based on a narrative. In the course of learning how to interpret and write stage directions, the children will apply their knowledge of adverbs. In the discrete work on vocabulary and spelling, the…

  13. [Real time PCR methodology for quantification of nucleic acids].

    PubMed

    Tse, C; Capeau, J

    2003-01-01

    The polymerase chain reaction (PCR) has become an essential tool for molecular biologists and its introduction into nucleic acids detection systems has revolutionized the quantitative analysis of DNA and RNA. The technique has rapidly evolved over the last few years and the growing interest in quantitative applications of the PCR has favoured the development of real-time quantitative PCR. In this paper, we review, after presentation of the theorical aspects of PCR, the basic principles of real-time PCR with the introduction of the concept of threshold cycle. More precisely, we describe the novel assay formats that greatly simplify the protocols used for the detection of specific nucleic acids. We focus on the actual four technologies that enable sequence detection in a closed tube and that are SYBR Green I, TaqMan probes, Hybridization probes and Molecular Beacon probes. We then discuss the different quantification strategies in real time PCR and compare the competiting instruments on the market. The most important real-time PCR applications in clinical biology are also described.

  14. Accelerating Real-Time String Searching with Multicore Processors

    SciTech Connect

    Villa, Oreste; Scarpazza, Daniele P.; Petrini, Fabrizio

    2008-04-01

    String searching is at the core of tools used to search, filter, and protect data, but this has become increasingly difficult to do in real time as communication speed grows. The authors present an optimization strategy for a popular algorithm that fully exploits the IBM Cell Broadband Engine architecture to perform exact string matching against large dictionaries and also offer various solutions to alleviate memory congestion.

  15. Play

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    Designing a game with a serious purpose involves considering the worlds of Reality and Meaning yet it is undeniably impossible to create a game without a third world, one that is specifically concerned with what makes a game a game: the play elements. This third world, the world of people like designers and artists, and disciplines as computer science and game design, I call the world of Play and this level is devoted to it. The level starts off with some of the misperceptions people have of play. Unlike some may think, we play all the time, even when we grow old—this was also very noticeable in designing the game Levee Patroller as the team exhibited very playful behavior at many occasions. From there, I go into the aspects that characterize this world. The first concerns the goal of the game. This relates to the objectives people have to achieve within the game. This is constituted by the second aspect: the gameplay. Taking actions and facing challenges is subsequently constituted by a gameworld, which concerns the third aspect. And all of it is not possible without the fourth and final aspect, the type of technology that creates and facilitates the game. The four aspects together make up a “game concept” and from this world such a concept can be judged on the basis of three closely interrelated criteria: engagement, immersion, and fun.

  16. Real-Time Blackboards For Sensor Fusions

    NASA Astrophysics Data System (ADS)

    Johnson, Donald H.; Shaw, Scott W.; Reynolds, Steven; Himayat, Nageen

    1989-09-01

    Multi-sensor fusion, at the most basic level, can be cast into a concise, elegant model. Reality demands, however, that this model be modified and augmented. These modifications often result in software systems that are confusing in function and difficult to debug. This problem can be ameliorated by adopting an object-oriented, data-flow programming style. For real-time applications, this approach simplifies data communications and storage management. The concept of object-oriented, data-flow programming is conveniently embodied in the black-board style of software architecture. Blackboard systems allow diverse programs access to a central data base. When the blackboard is described as an object, it can be distributed over multiple processors for real-time applications. Choosing the appropriate parallel architecture is the subject of ongoing research. A prototype blackboard has been constructed to fuse optical image regions and Doppler radar events. The system maintains tracks of simulated targets in real time. The results of this simulation have been used to direct further research on real-time blackboard systems.

  17. Real-time cleaning performance feedback

    SciTech Connect

    Meltzer, M.

    1994-12-01

    Monitoring contamination levels on parts during cleaning operations will provide feedback that can be useful in reducing waste generation and air emissions caused by over- or under-cleaning. Such real-time process controls can help eliminate pollution in a wide variety of industries, including aerospace, electronics, and metal finishing.

  18. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  19. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  20. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  1. Real Time Estimation Of Object Spectrocolorimettic Features

    NASA Astrophysics Data System (ADS)

    Petrov, Peter V.; Lukarsky, Christo D.; Christov, Victor V.; Grancharov, Parashkev A.; Arshinkova, Iren I.

    1989-03-01

    The results obtained in the development of a laboratory prototype of intelligent spectrometric system with real time digital signal processing are shown in this paper. The system is acombination of visible range spectrophotometer and focussing holographic grid with photodiode linear structure, i.e.the sensor, real time digital signal processing controller and display processor for gray level visualization, together with PC/XT controlLing computer. The twodimesional adaptive differential pulse code modulator with simultaneous correction of sensor dark current introduced into the real time controller allows the registration of measurments with resolution of 10 bit/el and real time data compression 2.5 times. During computation of colorimetric estimations or wideband photo-metric compression the possibilities for express analysis increase together with the enhancement of the signal-to-noise ratio. The system control and the visualization of spectral and colorimetric features in the data flux is made with personal computer together with display processor with resolution 512x512x8 and interactive software. It may be used for ground-based and onboard complexes.

  2. Feedback as Real-Time Constructions

    ERIC Educational Resources Information Center

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  3. Real-time PCR detection chemistry.

    PubMed

    Navarro, E; Serrano-Heras, G; Castaño, M J; Solera, J

    2015-01-15

    Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review.

  4. Integrating Real-time Earthquakes into Natural Hazard Courses

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Benz, H. M.; Whitlock, J. S.; Bittenbinder, A. N.; Bogaert, B. B.

    2001-12-01

    Natural hazard courses are playing an increasingly important role in college and university earth science curricula. Students' intrinsic curiosity about the subject and the potential to make the course relevant to the interests of both science and non-science students make natural hazards courses popular additions to a department's offerings. However, one vital aspect of "real-life" natural hazard management that has not translated well into the classroom is the real-time nature of both events and response. The lack of a way to entrain students into the event/response mode has made implementing such real-time activities into classroom activities problematic. Although a variety of web sites provide near real-time postings of natural hazards, students essentially learn of the event after the fact. This is particularly true for earthquakes and other events with few precursors. As a result, the "time factor" and personal responsibility associated with natural hazard response is lost to the students. We have integrated the real-time aspects of earthquake response into two natural hazard courses at Penn State (a 'general education' course for non-science majors, and an upper-level course for science majors) by implementing a modification of the USGS Earthworm system. The Earthworm Database Management System (E-DBMS) catalogs current global seismic activity. It provides earthquake professionals with real-time email/cell phone alerts of global seismic activity and access to the data for review/revision purposes. We have modified this system so that real-time response can be used to address specific scientific, policy, and social questions in our classes. As a prototype of using the E-DBMS in courses, we have established an Earthworm server at Penn State. This server receives national and global seismic network data and, in turn, transmits the tailored alerts to "on-duty" students (e-mail, pager/cell phone notification). These students are responsible to react to the alarm

  5. ALMA Correlator Real-Time Data Processor

    NASA Astrophysics Data System (ADS)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  6. Real-Time Seismology in Portugal

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Marreiros, C.; Carvalho, S.; Vales, D.; Lima, V.; Carrilho, F.

    2012-12-01

    Portugal is located next to the plate boundary between Eurasia (Iberia) and Africa (Nubia). The country has been repeatedly affected by some of the largest earthquakes, both onshore and offshore, in the historical European record, including the largest historical European earthquake, the great Lisbon earthquake of 1755 (~M8.5). The Portuguese territory has suffered directly the consequences of strong ground shaking (collapse of buildings, etc) and also some of the most destructive consequences of earthquakes (e.g. tsunamis, fires, etc). However, the rate of tectonic deformation in the Portuguese territory is low (the Eurasian-African plates converge at a rate of ~ 5 mm/yr), which results in long recurrence intervals between earthquakes. This low to moderate rate of seismic activity has two major negative effects: 1) it is difficult to study the regional seismo-tectonics with traditional passive methods; 2) the population is little aware of earthquake risk and unprepared to react in case of disaster. In this scenario, real-time seismology is key to monitoring earthquake crisis in real-time, providing early warnings about potentially destructive events, and assisting in the channeling of recovery efforts in case of disaster. In this paper we will present the real-time algorithms implemented at Instituto de Meteorologia (IM), the institution responsible for seismic monitoring in Portugal. In particular, we will focus on the following aspects: 1) Data collection and real-time transmission to the headquarters. Broadband seismological stations are owned and operated by five different institutions. The last years have witnessed an effort for integration, and presently most data arrives at IM lab in real-time. 2) Earthquake location and local magnitude determination. Data is automatically analyzed in order to obtain a first earthquake hypocenter and ML. While this process is mostly automatic, it still requires the revision by an operator, who is available 24h. 3

  7. Comparative Study of a Real-Time PCR Assay Targeting senX3-regX3 versus Other Molecular Strategies Commonly Used in the Diagnosis of Tuberculosis

    PubMed Central

    Sanjuan-Jimenez, Rocio; Toro-Peinado, Inmaculada; Bermudez, Pilar; Colmenero, Juan D.; Morata, Pilar

    2015-01-01

    Background Nucleic acid amplification tests are increasingly used for the rapid diagnosis of tuberculosis. We undertook a comparative study of the efficiency and diagnostic yield of a real-time PCR senX3-regX3 based assay versus the classical IS6110 target and the new commercial methods. Methods This single-blind prospective comparative study included 145 consecutive samples: 76 from patients with culture-confirmed tuberculosis (86.8% pulmonary and 13.2% extrapulmonary tuberculosis: 48.7% smear-positive and 51.3% smear-negative) and 69 control samples (24 from patients diagnosed with non-tuberculous mycobacteria infections and 45 from patients with suspected tuberculosis which was eventually ruled out). All samples were tested by two CE-marked assays (Xpert®MTB/RIF and AnyplexTM plus MTB/NTM) and two in-house assays targeting senX3-regX3 and the IS6110 gene. Results The detection limit ranged from 1.00E+01 fg for Anyplex, senX3-regX3 and IS6110 to 1.00E+04 fg for Xpert. All three Xpert, senX3-regX3 and IS6110 assays detected all 37 smear-positive cases. Conversely, Anyplex was positive in 34 (91.9%) smear-positive cases. In patients with smear-negative tuberculosis, differences were observed between the assays; Xpert detected 22 (56.41%) of the 39 smear-negative samples, Anyplex 24 (61.53%), senX3-regX3 28 (71.79%) and IS6110 35 (89.74%). Xpert and senX3-regX3 were negative in all control samples; however, the false positive rate was 8.7% and 13% for Anyplex and IS6110, respectively. The overall sensitivity was 77.6%, 85.7%, 77.3% and 94.7% and the specificity was 100%, 100%, 90.8% and 87.0% for the Xpert, senX3-regX3, Anyplex and IS6110 assays, respectively. Conclusion Real-time PCR assays targeting IS6110 lack the desired specificity. The Xpert MTB/RIF and in-house senX3-regX3 assays are both sensitive and specific for the detection of MTBC in both pulmonary and extrapulmonary samples. Therefore, the real time PCR senX3-regX3 based assay could be a useful and

  8. Near-Real-Time Earth Observation Data Supporting Wildfire Management

    NASA Astrophysics Data System (ADS)

    Ambrosia, V. G.; Zajkowski, T.; Quayle, B.

    2013-12-01

    During disaster events, the most critical element needed by responding personnel and management teams is situational intelligence / awareness. During rapidly-evolving events such as wildfires, the need for timely information is critical to save lives, property and resources. The wildfire management agencies in the US rely heavily on remote sensing information both from airborne platforms as well as from orbital assets. The ability to readily have information from those systems, not just data, is critical to effective control and damage mitigation. NASA has been collaborating with the USFS to mature and operationalize various asset-information capabilities to effect improved knowledge of fire-prone areas, monitor wildfire events in real-time, assess effectiveness of fire management strategies, and provide rapid, post-fire assessment for recovery operations. Specific examples of near-real-time remote sensing asset utility include daily MODIS data employed to assess fire potential / wildfire hazard areas, and national-scale hot-spot detection, airborne thermal sensor collected during wildfire events to effect management strategies, EO-1 ALI 'pointable' satellite sensor data to assess fire-retardant application effectiveness, and Landsat 8 and other sensor data to derive burn severity indices for post-fire remediation work. These cases of where near-real-time data is used operationally during the previous few fire seasons will be presented.

  9. Practical Aspects of Real-Time Continuous Glucose Monitors

    PubMed Central

    Ives, Brett; Sikes, Kristin; Urban, Andrea; Stephenson, Kerry; Tamborlane, William V.

    2010-01-01

    Real-time continuous glucose monitoring (RT-CGM) provides new dimension to diabetes management. However, there are many challenges to using RT-CGM successfully. This article aims to present how RT-CGM is integrated into diabetes clinical practice at the Yale Children’s Diabetes Program (YCDP). The authors provide factors to consider when choosing one of the commercially available RT-CGM systems and a discussion of key strategies for successful use of RT-CGM for families. Careful training and troubleshooting strategies will ensure the most positive experience possible for a family using RT-CGM. PMID:19933872

  10. A Real-Time Advisory System For Airborne Early Warning

    NASA Astrophysics Data System (ADS)

    Kirk, D. B.; Cromwell, M. E.; Donnell, M. L.; Barrett, C. L.

    1987-05-01

    Decision speed and quality can be greatly enhanced by the use of decision augmentation software to assist operators in information analysis and tactical problem solving, dynamic resource allocation, and in determining strategies which optimize overall system performance. One example of such software is the real-time advisory system (RTAS) being constructed to assist in tactical decision-making for airborne early warning (AEW) aircraft, particularly the carrier-based Navy E-2C. Using a vector logic approach, the current AEW RTAS is a real-time backward chaining expert system which provides advice for both threat interception and refueling in the complex Outer Air Battle Scenario. This paper describes the current system, discusses a number of design issues for such a system, and describes ongoing modifications to the current AEW RTAS using SAIC's frame-based knowledge repre-sentation language (KRL).

  11. Real-time imaging of quantum entanglement.

    PubMed

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  12. Real Time Radiation Exposure And Health Risks

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  13. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark; Gosnell, Tom B.; Ham, Cheryl; Perkins, Dwight; Wong, James

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  14. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  15. Real time radiography of Titan 4 booster

    NASA Astrophysics Data System (ADS)

    Lachapell, M.; Turner, D.; Dolan, K.; Perkins, D.; Costerus, B.

    1993-04-01

    Lawrence Livermore National Laboratory successfully completed a real-time radiography of the Titan 4 booster motor in February 1993. The success of this project depended on the quick response to Air Force criteria and securing a multi-disciplinary team addressing the numerous technical challenges. The team's challenges included the following: large area imager design and fabrication problems; vibrating mitigation obstacles; sound mitigation dilemmas; high levels of fail safe confidence; and operating a fragile, transportable x-ray linear accelerator. The data was viewed in real-time and stored utilizing standard video hardware. The data from the test is presently being analyzed. The multi-disciplinary team was presented with many serious technical challenges that needed to be addressed expeditiously. The purpose of this paper is to examine some of the technical issues and how they were executed.

  16. Real time animation of space plasma phenomena

    NASA Technical Reports Server (NTRS)

    Jordan, K. F.; Greenstadt, E. W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images.

  17. Real-Time Gauge/Gravity Duality

    SciTech Connect

    Skenderis, Kostas; Rees, Balt C. van

    2008-08-22

    We present a general prescription for the holographic computation of real-time n-point functions in nontrivial states. In quantum field theory such real-time computations involve a choice of a time contour in the complex time plane. The holographic prescription amounts to 'filling in' this contour with bulk solutions: real segments of the contour are filled in with Lorentzian solutions while imaginary segments are filled in with Riemannian solutions and appropriate matching conditions are imposed at the corners of the contour. We illustrate the general discussion by computing the 2-point function of a scalar operator using this prescription and by showing that this leads to an unambiguous answer with the correct i{epsilon} insertions.

  18. Visualizations for Real-time Pricing Demonstration

    SciTech Connect

    Marinovici, Maria C.; Hammerstrom, Janelle L.; Widergren, Steven E.; Dayley, Greg K.

    2014-10-13

    In this paper, the visualization tools created for monitoring the operations of a real-time pricing demonstration system that runs at a distribution feeder level are presented. The information these tools provide gives insights into demand behavior from automated price responsive devices, distribution feeder characteristics, impact of weather on system’s development, and other significant dynamics. Given the large number of devices that bid into a feeder-level real-time electricity market, new techniques are explored to summarize the present state of the system and contrast that with previous trends as well as future projections. To better understand the system behavior and correctly inform decision-making procedures, effective visualization of the data is imperative.

  19. AMON: Transition to real-time operations

    NASA Astrophysics Data System (ADS)

    Cowen, D. F.; Keivani, A.; Tešić, G.

    2016-04-01

    The Astrophysical Multimessenger Observatory Network (AMON) will link the world's leading high-energy neutrino, cosmic-ray, gamma-ray and gravitational wave observatories by performing real-time coincidence searches for multimessenger sources from observatories' subthreshold data streams. The resulting coincidences will be distributed to interested parties in the form of electronic alerts for real-time follow-up observation. We will present the science case, design elements, current and projected partner observatories, status of the AMON project, and an initial AMON-enabled analysis. The prototype of the AMON server has been online since August 2014 and processing archival data. Currently, we are deploying new high-uptime servers and will be ready to start issuing alerts as early as winter 2015/16.

  20. System Equivalent for Real Time Digital Simulator

    NASA Astrophysics Data System (ADS)

    Lin, Xi

    2011-07-01

    The purpose of this research is to develop a method of making system equivalents for the Real Time Digital Simulator (RTDS), which should enhance its capability of simulating large power systems. The proposed equivalent combines a Frequency Dependent Network Equivalent (FDNE) for the high frequency electromagnetic transients and a Transient Stability Analysis (TSA) type simulation block for the electromechanical transients. The frequency dependent characteristic for FDNE is obtained by curve-fitting frequency domain admittance characteristics using the Vector Fitting method. An approach for approximating the frequency dependent characteristic of large power networks from readily available typical power-flow data is also introduced. A new scheme of incorporating TSA solution in RTDS is proposed. This report shows how the TSA algorithm can be adapted to a real time platform. The validity of this method is confirmed with examples, including the study of a multi in-feed HVDC system based network.

  1. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    NASA Astrophysics Data System (ADS)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  2. CRTF Real-Time Aperture Flux system

    SciTech Connect

    Davis, D.B.

    1980-01-01

    The Real-Time Aperture Flux system (TRAF) is a test measurement system designed to determine the input power/unit area (flux density) during solar experiments conducted at the Central Receiver Test Facility, Sandia National Laboratories, Albuquerque, New Mexico. The RTAF is capable of using both thermal sensors and photon sensors to determine the flux densities in the RTAF measuring plane. These data are manipulated in various ways to derive input power and flux density distribution to solar experiments.

  3. Thermal imaging with real time picture presentation.

    PubMed

    Borg, S B

    1968-09-01

    The accomplishment of thermal imaging with real-time picture presentation represents a significant advance in nondestructive testing. Described here is the AGA Thermovision, capable of producing such imaging. Operating principles, basic features, and recording techniques are reviewed, and a survey is made of the range of applications. Examples include electrical power distribution elements, a turbine blade, and a missile model in a wind tunnel.

  4. Real-Time Clinical Monitoring of Biomolecules

    NASA Astrophysics Data System (ADS)

    Rogers, Michelle L.; Boutelle, Martyn G.

    2013-06-01

    Continuous monitoring of clinical biomarkers offers the exciting possibility of new therapies that use biomarker levels to guide treatment in real time. This review explores recent progress toward this goal. We initially consider measurements in body fluids by a range of analytical methods. We then discuss direct tissue measurements performed by implanted sensors; sampling techniques, including microdialysis and ultrafiltration; and noninvasive methods. A future directions section considers analytical methods at the cusp of clinical use.

  5. Real-Time X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Bulthuis, Ronald V.

    1988-01-01

    X-ray imaging instrument adapted to continuous scanning. Modern version of fluoroscope enables rapid x-ray inspection of parts. Developed for detection of buckling in insulated ducts. Uses radiation from radioactive gadolinium or thallium source. Instrument weighs only 6 1/2 lb. Quickly scanned by hand along duct surface, providing real-time image. Based on Lixiscope, developed at Goddard Space Flight Center.

  6. Real-time interactive treatment planning.

    PubMed

    Otto, Karl

    2014-09-01

    The goal of this work is to develop an interactive treatment planning platform that permits real-time manipulation of dose distributions including DVHs and other dose metrics. The hypothesis underlying the approach proposed here is that the process of evaluating potential dose distribution options and deciding on the best clinical trade-offs may be separated from the derivation of the actual delivery parameters used for the patient's treatment. For this purpose a novel algorithm for deriving an Achievable Dose Estimate (ADE) was developed. The ADE algorithm is computationally efficient so as to update dose distributions in effectively real-time while accurately incorporating the limits of what can be achieved in practice. The resulting system is a software environment for interactive real-time manipulation of dose that permits the clinician to rapidly develop a fully customized 3D dose distribution. Graphical navigation of dose distributions is achieved by a sophisticated method of identifying contributing fluence elements, modifying those elements and re-computing the entire dose distribution. 3D dose distributions are calculated in ~2-20 ms. Including graphics processing overhead, clinicians may visually interact with the dose distribution (e.g. 'drag' a DVH) and display updates of the dose distribution at a rate of more than 20 times per second. Preliminary testing on various sites shows that interactive planning may be completed in ~1-5 min, depending on the complexity of the case (number of targets and OARs). Final DVHs are derived through a separate plan optimization step using a conventional VMAT planning system and were shown to be achievable within 2% and 4% in high and low dose regions respectively. With real-time interactive planning trade-offs between Target(s) and OARs may be evaluated efficiently providing a better understanding of the dosimetric options available to each patient in static or adaptive RT.

  7. Software Analyzes Complex Systems in Real Time

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.

  8. Real-time monitoring system for microfluidics

    NASA Astrophysics Data System (ADS)

    Sapuppo, F.; Cantelli, G.; Fortuna, L.; Arena, P.; Bucolo, M.

    2007-05-01

    A new non-invasive real-time system for the monitoring and control of microfluidodynamic phenomena is proposed. The general purpose design of such system is suitable for in vitro and in vivo experimental setup and therefore for microfluidic application in the biomedical field such as lab-on-chip and for research studies in the field of microcirculation. The system consists of an ad hoc optical setup for image magnification providing images suitable for image acquisition and processing. The optic system was designed and developed using discrete opto-mechanic components mounted on a breadboard in order to provide an optic path accessible at any point where the information needs to be acquired. The optic sensing, acquisition, and processing were performed using an integrated vision system based on the Cellular Nonlinear Networks (CNNs) analogic technology called Focal Plane Processor (FPP, Eye-RIS, Anafocus) and inserted in the optic path. Ad hoc algorithms were implemented for the real-time analysis and extraction of fluido-dynamic parameters in micro-channels. They were tested on images recorded during in vivo microcirculation experiments on hamsters and then they were applied on images optically acquired and processed in real-time during in vitro experiments on a continuous microfluidic device (serpentine mixer, ThinXXS) with a two-phase fluid.

  9. Turning movement estimation in real time

    SciTech Connect

    Martin, P.T.

    1997-08-01

    Fast processors offer exciting opportunities for real-time traffic monitoring. Conventional transportation planning models that assume stable and predictable travel patterns do not lend themselves to on-line traffic forecasting. This paper describes how a new traffic flow inference model has the potential to determine comprehensive flow information in real time. Its philosophical basis is borrowed from the field of operational research, where it has been used for optimizing water and electricity flows. This paper shows how road traffic turning movement flows can be estimated from link detected flows at small recurrent intervals, in real time. The paper details the formulation of the problem, outlines the structure of the data set that provides the detector data for the model input and observed turning flows for the model evaluation. The theoretical principles that define the model are described briefly. Turning movement flow estimates, at 5-min intervals, from two independent surveys are presented and analyzed. The results show an overall mean coefficient of determination (r{sup 2}) of 79--82% between observed and modeled turning movement flows.

  10. Steering a mobile robot in real time

    NASA Astrophysics Data System (ADS)

    Chuah, Mei C.; Fennema, Claude L., Jr.

    1994-10-01

    Using computer vision for mobile robot navigation has been of interest since the 1960s. This interest is evident in even the earliest robot projects: at SRI International (`Shakey') and at the Stanford University (`Stanford Cart'). These pioneering projects provided a foundation for late work but fell far short of providing real time solutions. Since the mid 1980s, the ARPA sponsored ALV and UGV projects have established a need for real time navigation. To achieve the necessary speed, some researchers have focused on building faster hardware; others have turned to the use of new computational architectures, such as neural nets. The work described in this paper uses another approach that has become known as `perceptual servoing.' Previously reported results show that perceptual servoing is both fast and accurate when used to steer vehicles equipped with precise odometers. When the instrumentation on the vehicle does not give precise measurements of distance traveled, as could be the case for a vehicle traveling on ice or mud, new techniques are required to accommodate the reduced ability to make accurate predictions about motion and control. This paper presents a method that computes estimates of distance traveled using landmarks and path information. The new method continues to perform in real time using modest computational facilities, and results demonstrate the effects of the new implementation on steering accuracy.

  11. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  12. The VLBA correlator: Real-time in the distributed era

    NASA Technical Reports Server (NTRS)

    Wells, D. C.

    1992-01-01

    The correlator is the signal processing engine of the Very Long Baseline Array (VLBA). Radio signals are recorded on special wideband (128 Mb/s) digital recorders at the 10 telescopes, with sampling times controlled by hydrogen maser clocks. The magnetic tapes are shipped to the Array Operations Center in Socorro, New Mexico, where they are played back simultaneously into the correlator. Real-time software and firmware controls the playback drives to achieve synchronization, compute models of the wavefront delay, control the numerous modules of the correlator, and record FITS files of the fringe visibilities at the back-end of the correlator. In addition to the more than 3000 custom VLSI chips which handle the massive data flow of the signal processing, the correlator contains a total of more than 100 programmable computers, 8-, 16- and 32-bit CPUs. Code is downloaded into front-end CPU's dependent on operating mode. Low-level code is assembly language, high-level code is C running under a RT OS. We use VxWorks on Motorola MVME147 CPU's. Code development is on a complex of SPARC workstations connected to the RT CPU's by Ethernet. The overall management of the correlation process is dependent on a database management system. We use Ingres running on a Sparcstation-2. We transfer logging information from the database of the VLBA Monitor and Control System to our database using Ingres/NET. Job scripts are computed and are transferred to the real-time computers using NFS, and correlation job execution logs and status flow back by the route. Operator status and control displays use windows on workstations, interfaced to the real-time processes by network protocols. The extensive network protocol support provided by VxWorks is invaluable. The VLBA Correlator's dependence on network protocols is an example of the radical transformation of the real-time world over the past five years. Real-time is becoming more like conventional computing. Paradoxically, 'conventional

  13. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  14. Simultaneous Real-Time Monitoring of Multiple Cortical Systems

    PubMed Central

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-01-01

    Objective Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor, or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach We study these questions using electrocorticographic (ECoG) signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (6 for offline parameter optimization, 6 for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelope. These decoders were trained separately and executed simultaneously in real time. Significance This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  15. The Formation of Social Conventions in Real-Time Environments

    PubMed Central

    Hawkins, Robert X. D.; Goldstone, Robert L.

    2016-01-01

    Why are some behaviors governed by strong social conventions while others are not? We experimentally investigate two factors contributing to the formation of conventions in a game of impure coordination: the continuity of interaction within each round of play (simultaneous vs. real-time) and the stakes of the interaction (high vs. low differences between payoffs). To maximize efficiency and fairness in this game, players must coordinate on one of two equally advantageous equilibria. In agreement with other studies manipulating continuity of interaction, we find that players who were allowed to interact continuously within rounds achieved outcomes with greater efficiency and fairness than players who were forced to make simultaneous decisions. However, the stability of equilibria in the real-time condition varied systematically and dramatically with stakes: players converged on more stable patterns of behavior when stakes are high. To account for this result, we present a novel analysis of the dynamics of continuous interaction and signaling within rounds. We discuss this previously unconsidered interaction between within-trial and across-trial dynamics as a form of social canalization. When stakes are low in a real-time environment, players can satisfactorily coordinate ‘on the fly’, but when stakes are high there is increased pressure to establish and adhere to shared expectations that persist across rounds. PMID:27002729

  16. Widespread use of real-time PCR for rickettsial diagnosis.

    PubMed

    Renvoisé, Aurélie; Rolain, Jean-Marc; Socolovschi, Cristina; Raoult, Didier

    2012-02-01

    We report 2 years of experience with rickettsial molecular diagnosis using real-time PCR at the French National Reference Center. All Rickettsia genomes available were compared to discover specific sequences to design new sets of primers and probes. The specificity was verified in silico and against a panel of 30 rickettsial species. Sensitivity was determined using 10-fold serial dilutions. Finally, primers and probes that were both specific and sensitive were routinely used for the diagnosis of rickettsial infections from clinical specimens. We retained sets of primers and probes to detect spotted fever group Rickettsia, typhus group Rickettsia,Rickettsia conorii,Rickettsia slovaca,Rickettsia africae and Rickettsia australis; 643 clinical samples were screened for the presence of Rickettsia DNA. Overall, 45 positive samples were detected, including 15 Rickettsia africae, nine R. conorii, five Rickettsia sibirica mongolitimonae, four R. slovaca, two R. australis, four Rickettsia massiliae, one Rickettsia honei, one Rickettsia typhi and eight Rickettsia sp. Positive samples were detected mainly from cutaneous biopsies and swabs (31/45). Widespread use of real-time PCR is inexpensive and reduces delay in the diagnosis of rickettsial infections. These real-time PCR assays could be implemented easily in laboratories that have molecular facilities and may be added to existing molecular tools as a point-of-care strategy.

  17. Exploring Earthquakes in Real-Time

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  18. Prototype COBRA near-real-time processor

    NASA Astrophysics Data System (ADS)

    Earp, Samuel L.; Marshall, J. W.; Anthony, E. R.

    1996-05-01

    The U.S. Marine Corps COBRA countermine surveillance program has developed, as a risk- reduction alternative, a near real-time processor for the output of the COBRA multispectral camera. This processor has been tested using approximately 13.5 hours of video data from the COBRA DT-0 developmental test, representing approximately 243,000 frames of multispectral data. The results have been very encouraging--the system is robust and the minefield detection performance has met the goals of the COBRA program. The MITRE COBRA prototype processor is built from commercial-off-the-shelf VME bus technology. Video capture is provided by a Transtech TDM 435 capture/display VME card. Control is performed on a GMSV64 Super Sparc card that resides in two VME slots. The compute engine consists of two Pentek 4270 Quad TMS320C40 digital signal processing boards. There are two additional 6U VME boards to provide fast SCSI IO. The system is capable of capturing, digitizing and processing the COBRA data stream at between one-eighth and one-half real-time, depending on processing options. The nominal compute power of the system is 2.2 GOPS, 450 MFLOPS. The system is easily upgradeable due to the open architecture--one proposed upgrade will be to increase the number of available TMS320C40 processors to sixteen, providing real-time performance without compromising the current investment in software and hardware. The software for the system is primarily written in C, with hand-optimized assembler code for portions of the compute kernel. The algorithm that is implemented is based on the MITRE minefield detection algorithm detailed at AeroSense '95. The system development required a registration algorithm--this was the only algorithm development that was performed, the rest of the algorithms coming from previous MITRE effort on the COBRA program. Lessons learned from the development and upgrade/test plans will be presented.

  19. Real-time structured light depth extraction

    NASA Astrophysics Data System (ADS)

    Keller, Kurtis; Ackerman, Jeremy D.

    2000-03-01

    Gathering depth data using structured light has been a procedure for many different environments and uses. Many of these system are utilized instead of laser line scanning because of their quickness. However, to utilize depth extraction for some applications, in our case laparoscopic surgery, the depth extraction must be in real time. We have developed an apparatus that speeds up the raw image display and grabbing in structured light depth extraction from 30 frames per second to 60 and 180 frames per second. This results in an updated depth and texture map of about 15 times per second versus about 3. This increased update rate allows for real time depth extraction for use in augmented medical/surgical applications. Our miniature, fist-sized projector utilizes an internal ferro-reflective LCD display that is illuminated with cold light from a flex light pipe. The miniature projector, attachable to a laparoscope, displays inverted pairs of structured light into the body where these images are then viewed by a high-speed camera set slightly off axis from the projector that grabs images synchronously. The images from the camera are ported to a graphics-processing card where six frames are worked on simultaneously to extract depth and create mapped textures from these images. This information is then sent to the host computer with 3D coordinate information of the projector/camera and the associated textures. The surgeon is then able to view body images in real time from different locations without physically moving the laparoscope imager/projector, thereby, reducing the trauma of moving laparoscopes in the patient.

  20. Real-time failure control (SAFD)

    NASA Technical Reports Server (NTRS)

    Panossian, Hagop V.; Kemp, Victoria R.; Eckerling, Sherry J.

    1990-01-01

    The Real Time Failure Control program involves development of a failure detection algorithm, referred as System for Failure and Anomaly Detection (SAFD), for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and it entails monitoring SSME measurement signals based on predetermined and computed mean values and standard deviations. Twenty four engine measurements are included in the algorithm and provisions are made to add more parameters if needed. Six major sections of research are presented: (1) SAFD algorithm development; (2) SAFD simulations; (3) Digital Transient Model failure simulation; (4) closed-loop simulation; (5) SAFD current limitations; and (6) enhancements planned for.

  1. Open Source Real Time Operating Systems Overview

    SciTech Connect

    Straumann, Till

    2001-12-11

    Modern control systems applications are often built on top of a real time operating system (RTOS) which provides the necessary hardware abstraction as well as scheduling, networking and other services. Several open source RTOS solutions are publicly available, which is very attractive, both from an economic (no licensing fees) as well as from a technical (control over the source code) point of view. This contribution gives an overview of the RTLinux and RTEMS systems (architecture, development environment, API etc.). Both systems feature most popular CPUs, several APIs (including Posix), networking, portability and optional commercial support. Some performance figures are presented, focusing on interrupt latency and context switching delay.

  2. Systems Analyze Water Quality in Real Time

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  3. Real-time teleteaching in medical physics.

    PubMed

    Woo, M; Ng, Kh

    2008-01-01

    Medical physics is a relatively small professional community, usually with a scarcity of expertise that could greatly benefit students entering the field. However, the reach of the profession can span great geographical distances, making the training of students a difficult task. In addition to the requirement of training new students, the evolving field of medical physics, with its many emerging advanced techniques and technologies, could benefit greatly from ongoing continuing education as well as consultation with experts.Many continuing education courses and workshops are constantly being offered, including many web-based study courses and virtual libraries. However, one mode of education and communication that has not been widely used is the real-time interactive process. Video-based conferencing systems do exist, but these usually require a substantial amount of effort and cost to set up.The authors have been working on promoting the ever-expanding capability of the Internet to facilitate the education of medical physics to students entering the field. A pilot project has been carried out for six years and reported previously. The project is a collaboration between the Department of Medical Physics at the Toronto Odette Cancer Centre in Canada and the Department of Biomedical Imaging at the University of Malaya in Malaysia. Since 2001, medical physics graduate students at the University of Malaya have been taught by lecturers from Toronto every year, using the Internet as the main tool of communication.The pilot study explored the different methods that can be used to provide real-time interactive remote education, and delivered traditional classroom lectures as well as hands-on workshops.Another similar project was started in 2007 to offer real-time teaching to a class of medical physics students at Wuhan University in Hubei, China. There are new challenges as well as new opportunities associated with this project. By building an inventory of tools and

  4. General purpose computers in real time

    SciTech Connect

    Biel, J.R.

    1989-09-18

    I see three main trends in the use of general purpose computers in real time. The first is more processing power. The second is the use of higher speed interconnects between computers (allowing more data to be delivered to the processors). The third is the use of larger programs running in the computers. Although there is still work that needs to be done, I believe that all indications are that the online need for general purpose computers should be available for the SCC and LHC machines. 2 figs.

  5. Real-Time Reed-Solomon Decoder

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.; Cameron, Kelly B.; Owsley, Patrick A.

    1994-01-01

    Generic Reed-Solomon decoder fast enough to correct errors in real time in practical applications designed to be implemented in fewer and smaller very-large-scale integrated, VLSI, circuit chips. Configured to operate in pipelined manner. One outstanding aspect of decoder design is that Euclid multiplier and divider modules contain Galoisfield multipliers configured as combinational-logic cells. Operates at speeds greater than older multipliers. Cellular configuration highly regular and requires little interconnection area, making it ideal for implementation in extraordinarily dense VLSI circuitry. Flight electronics single chip version of this technology implemented and available.

  6. Object detection in real-time

    NASA Astrophysics Data System (ADS)

    Solder, Ulrich; Graefe, Volker

    1991-03-01

    An algorithm working on monocular gray-scale image sequences for object detection combined with a road tracker is presented. This algorithm appropriate for the real-time demands of an autonomous car driving with speeds over 40 km/h may be used for triggering obstacle avoidance maneuvers such as coming to a safe stop automatically in front of an obstacle or following another car. Moving and static objects have been detected in real-world experiments on various types of roads even under unfavorable weather conditions. . Morgenthaler and

  7. [Development of real-time CT fluoroscopy].

    PubMed

    Katada, K; Anno, H; Takeshita, G; Ogura, Y; Koga, S; Ida, Y; Nonomura, K; Kanno, T; Ohashi, A; Sata, S

    1994-10-25

    A new CT system that permits real-time monitoring of CT images was developed. Phantom and volunteer studies revealed that the images were displayed at a rate of six per second with a delay time of 0.83 second with clinically sufficient resolution (256 x 256) using the newly developed fast image processor and partial-reconstruction algorithm. The clinical trial of stereotactic aspiration of intracerebral hematoma was successful. The initial trial with CT fluoroscopy revealed potential usefulness of the system in biopsy and other CT-guided interventions. PMID:9261196

  8. Near real time data processing system

    NASA Astrophysics Data System (ADS)

    Mousessian, Ardvas; Vuu, Christina

    2008-08-01

    Raytheon recently developed and implemented a Near Real Time (NRT) data processing subsystem for Earth Observing System (EOS) Microwave Limb Sounder (MLS3) instrument on NASA Aura spacecraft. The NRT can be viewed as a customized Science Information Processing System (SIPS) where the measurements and information provided by the instrument are expeditiously processed, packaged, and delivered. The purpose of the MLS NRT is to process Level 0 data up through Level 2, and distribute standard data products to the customer within 3-5 hours of the first set of data arrival.

  9. Real time analysis of voiced sounds

    NASA Technical Reports Server (NTRS)

    Hong, J. P. (Inventor)

    1976-01-01

    A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.

  10. Real-Time Optical Monitoring of GRBs

    NASA Astrophysics Data System (ADS)

    Hudec, René; Křížek, Miroslav

    2006-05-01

    Even the fastest alert robotic follow-up telescope is unable to cover the times just after (within first 10 seconds) and before GRB triggers. This time domain is accessible by optical monitors only. We report on analyses of GRB positions on images taken by optical photographic monitors (now operated remotely) within the European meteor network EN. This system is able to provide real-time and pre-burst optical data for GRBs with limiting magnitudes up to 12 in the best cases. The image database is searchable by special software for coincidences with GRBs and the particular images are then scanned and evaluated by computer.

  11. Forensic Disaster Analysis in Near-real Time

    NASA Astrophysics Data System (ADS)

    Kunz, Michael; Zschau, Jochen; Wenzel, Friedemann; Khazai, Bijan; Kunz-Plapp, Tina; Trieselmann, Werner

    2014-05-01

    The impacts of extreme hydro-meteorological and geophysical events are controlled by various factors including severity of the event (intensity, duration, spatial extent), amplification with other phenomena (multihazard or cascading effects), interdependencies of technical systems and infrastructure, preparedness and resilience of the society. The Center for Disaster Management and Risk Reduction Technology (CEDIM) has adopted the comprehensive understanding of disasters and develops methodologies of near real-time FDA as a complementing component of the FORIN program of IRDR. The new research strategy 'Near Real-Time Forensic Disaster Analysis (FDA)' aims at scrutinizing disasters closely with a multi-disciplinary approach in order to assess the various aspects of disasters and to identify mechanisms most relevant for an extreme event to become a disaster (e.g., causal loss analysis). Recent technology developments - which have opened unprecedented opportunities for real-time hazard, vulnerability and loss assessment - are used for analyzing disasters and their impacts in combination with databases of historical events. The former covers modern empirical and analytical methods available in engineering and remote sensing for rapid impact assessments, rapid information extraction from crowd sourcing as well as rapid assessments of socio-economic impacts and economic losses. The event-driven science-based assessments of CEDIM are compiled based on interdisciplinary expertise and include the critical evaluation, assessment, validation, and quantification of an event. An important component of CEDIM's FDA is the near real-time approach which is expected to significantly speed up our understanding of natural disasters and be used to provide timely, relevant and valuable information to various user groups within their respective contexts. Currently, CEDIM has developed models and methodologies to assess different types of hazard. These approaches were applied to several

  12. Role-Playing in Science Education: An Effective Strategy for Developing Multiple Perspectives

    ERIC Educational Resources Information Center

    Howes, Elaine V.; Cruz, Barbara C.

    2009-01-01

    Role-playing can be an engaging and creative strategy to use in the college classroom. Using official accounts, personal narratives, and diaries to recreate a particular time period, event, or personality, the instructional strategy alternately referred to as role-playing, dramatic improvisation, or first-person characterization can be an…

  13. Merged Real Time GNSS Solutions for the READI System

    NASA Astrophysics Data System (ADS)

    Santillan, V. M.; Geng, J.

    2014-12-01

    Real-time measurements from increasingly dense Global Navigational Satellite Systems (GNSS) networks located throughout the western US offer a substantial, albeit largely untapped, contribution towards the mitigation of seismic and other natural hazards. Analyzed continuously in real-time, currently over 600 instruments blanket the San Andreas and Cascadia fault systems of the North American plate boundary and can provide on-the-fly characterization of transient ground displacements highly complementary to traditional seismic strong-motion monitoring. However, the utility of GNSS systems depends on their resolution, and merged solutions of two or more independent estimation strategies have been shown to offer lower scatter and higher resolution. Towards this end, independent real time GNSS solutions produced by Scripps Inst. of Oceanography and Central Washington University (PANGA) are now being formally combined in pursuit of NASA's Real-Time Earthquake Analysis for Disaster Mitigation (READI) positioning goals. CWU produces precise point positioning (PPP) solutions while SIO produces ambiguity resolved PPP solutions (PPP-AR). The PPP-AR solutions have a ~5 mm RMS scatter in the horizontal and ~10mm in the vertical, however PPP-AR solutions can take tens of minutes to re-converge in case of data gaps. The PPP solutions produced by CWU use pre-cleaned data in which biases are estimated as non-integer ambiguities prior to formal positioning with GIPSY 6.2 using a real time stream editor developed at CWU. These solutions show ~20mm RMS scatter in the horizontal and ~50mm RMS scatter in the vertical but re-converge within 2 min. or less following cycle-slips or data outages. We have implemented the formal combination of the CWU and SCRIPPS ENU displacements using the independent solutions as input measurements to a simple 3-element state Kalman filter plus white noise. We are now merging solutions from 90 stations, including 30 in Cascadia, 39 in the Bay Area, and 21

  14. Towards real-time stereovision systems for planetary missions

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen Maxwell

    1993-01-01

    Stereovision algorithms applicable to planetary mobile vehicles are considered. Stereovision systems have an important role to play in planetary exploration from digital elevation modeling of planetary surfaces to navigation of semiautonomous vehicles and control of robotic manipulators. Real time stereovision systems require very high processing power which can only be met by a heterogeneous multiprocessor processing architecture. The current and future processing technologies are examined together with the constraints on space-based electronic systems. The integrated multiprocessor system being developed for digital signal and image processing applications is described.

  15. Real-time virtual room acoustic simulation

    NASA Astrophysics Data System (ADS)

    Carneal, James P.; Johnson, Jan; Johnson, Troge; Johnson, Marty

    2003-10-01

    A realistic virtual room acoustic simulation has been implemented on a PC-based computer in near real-time. Room acoustics are calculated by the image source method using realistic absorption coefficients for a variety of realistic surfaces and programmed in MATLAB. The resulting impulse response filters are then applied in near real-time using fast convolution DSP techniques using data being read from a CD-ROM. The system was implemented in a virtual acoustic room facility. Optimizations have been performed to retain the realistic virtual room effect while minimizing computations through limited psycho-acoustic testing. In general, realistic anechoic to reverberant virtual rooms have been re-created with six 8192 coefficient filters. To provide realistic simulations, special care must be taken to accurately reproduce the low frequency acoustics. Since the virtual room acoustic facility was not totally anechoic (as are most anechoic chambers), inverse filters were applied to compensate for over-amplified acoustics at frequencies below 350 Hz.

  16. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  17. Residential Real-time Price Response Simulation

    SciTech Connect

    Widergren, Steven E.; Subbarao, Krishnappa; Chassin, David P.; Fuller, Jason C.; Pratt, Robert G.

    2011-10-10

    The electric industry is gaining experience with innovative price responsive demand pilots and limited roll-outs to customers. One of these pilots is investigating real-time pricing signals to engage end-use systems and local distributed generation and storage in a distributed optimization process. Attractive aspects about the approach include strong scalability characteristics, simplified interfaces between automation devices, and the adaptability to integrate a wide variety of devices and systems. Experience in this nascent field is revealing a rich array of for engineering decisions and the application of complexity theory. To test the decisions, computer simulations are used to reveal insights about design, demand elasticity, and the limits of response (including consumer fatigue). Agent-based approaches lend themselves well in the simulation to modeling the participation and interaction of each piece of equipment on a distribution feeder. This paper discusses rate design and simulation experiences at the distribution feeder level where consumers and their HVAC systems and water heaters on a feeder receive real-time pricing signals.

  18. Real-time adaptive video image enhancement

    NASA Astrophysics Data System (ADS)

    Garside, John R.; Harrison, Chris G.

    1999-07-01

    As part of a continuing collaboration between the University of Manchester and British Aerospace, a signal processing array has been constructed to demonstrate that it is feasible to compensate a video signal for the degradation caused by atmospheric haze in real-time. Previously reported work has shown good agreement between a simple physical model of light scattering by atmospheric haze and the observed loss of contrast. This model predicts a characteristic relationship between contrast loss in the image and the range from the camera to the scene. For an airborne camera, the slant-range to a point on the ground may be estimated from the airplane's pose, as reported by the inertial navigation system, and the contrast may be obtained from the camera's output. Fusing data from these two streams provides a means of estimating model parameters such as the visibility and the overall illumination of the scene. This knowledge allows the same model to be applied in reverse, thus restoring the contrast lost to atmospheric haze. An efficient approximation of range is vital for a real-time implementation of the method. Preliminary results show that an adaptive approach to fitting the model's parameters, exploiting the temporal correlation between video frames, leads to a robust implementation with a significantly accelerated throughput.

  19. Real-Time Flight Envelope Monitoring System

    NASA Technical Reports Server (NTRS)

    Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.

    2012-01-01

    The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.

  20. Real Time Simulation of Power Grid Disruptions

    SciTech Connect

    Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  1. Neutron monitor database in real time

    NASA Astrophysics Data System (ADS)

    Kozlov, Valery; Kudela, Karel; Starodubtsev, Sergei; Turpanov, Alexey; Usoskin, Ilya; Yanke, Victor

    2003-09-01

    A first distributed Real Time Cosmic Ray Database using measurements of several neutron monitors is presented. The aim of the project is to develop a unified database with data from different neutron monitors collected together, in unified format and to provide a user with several commonly used data access methods. The database contains original cosmic ray as well as all housekeeping and technical data necessary for scientific data analysis. Currently the database includes Lomnicky Stit, Moscow, Oulu, Tixie Bay, Yakutsk stations and it is opened for other neutron monitors. The main database server is located in IKFIA SB RAS (Yakutsk) but there will be several mirrors of the database. The datbase and all its mirrors are updated on the nearly real-time (1 hour) basis. The data access software includes WWW-interface, Perl scipts and C library, which may be linked to a user program. Most of frequently used functions are implemented to make it operable to users without SQL language knowledge. A draft of the data representation standard is suggested, based on common practice of neutron monitor community. The database engine is freely distributed open-sourced PostgreSQL server coupled with a set of replication tools developed at Bioengineering division of the IRCCS E. Medea, Italy.

  2. Near-real-time Jason-1 Images

    NASA Astrophysics Data System (ADS)

    Rigor, E. M.; Bingham, A.; Case, K.

    2002-12-01

    The Jason-1 satellite mission provides sea surface height measurements in near-real-time (NRT). These operational data can be used for a variety of scientific and commercial applications, including marine meteorology, ship routing, and climate prediction. The Physical Oceanography Distributed Active Archive Center (PO.DAAC), NASA's primary data center for archiving and distributing oceanographic data, is supporting the JASON-1 mission by capturing NRT data from Jason Ground System (JGS) and distributing the data to operational users. In addition, PO.DAAC will be processing the data to create value-added NRT browse images, which will be made available, along with their associated binary data, through the Near-Real-Time Image Distribution Server (NEREIDS). Two NRT data products will be processed by JGS and captured by PO.DAAC: Operational Sensor Data Records (OSDRs) and Interim Geophysical Data Records (IGDRs). OSDRs have a latency of three hours from data collection and an orbit accuracy of 30 cm; IGDRs are available seventy-two hours after collection and have an accuracy of 2.5 cm. After capturing these data, PO.DAAC will automatically create significant wave height, wind speed, and water vapor content browse images from the OSDR data. Additional parameters will be provided from the IGDR data product, such as the sea surface height anomaly, among others. In this poster, we describe the functionality of NEREIDS and demonstrate the usefulness of operational altimetric data for scientific applications.

  3. Real-time design with peer tasks

    NASA Technical Reports Server (NTRS)

    Goforth, Andre; Howes, Norman R.; Wood, Jonathan D.; Barnes, Michael J.

    1995-01-01

    We introduce a real-time design methodology for large scale, distributed, parallel architecture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with timing requirements (deadlines) found in user's specification. A work item consists of a collection of tasks of equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer whereas our method schedules work items to meet user's specification deadlines (sometimes called end-to-end deadlines). Our method supports these scheduling properties. Work item scheduling is based on domain specific importance instead of task level urgency and still meets as many user specification deadlines as can be met by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the throughput, measured in work items per second. Third, throughput is not degraded during overload and instead of resorting to task shedding during overload, the designer can specify which work items to shed. We prove these properties in a mathematical model.

  4. 3D MR imaging in real time

    NASA Astrophysics Data System (ADS)

    Guttman, Michael A.; McVeigh, Elliot R.

    2001-05-01

    A system has been developed to produce live 3D volume renderings from an MR scanner. Whereas real-time 2D MR imaging has been demonstrated by several groups, 3D volumes are currently rendered off-line to gain greater understanding of anatomical structures. For example, surgical planning is sometimes performed by viewing 2D images or 3D renderings from previously acquired image data. A disadvantage of this approach is misregistration which could occur if the anatomy changes due to normal muscle contractions or surgical manipulation. The ability to produce volume renderings in real-time and present them in the magnet room could eliminate this problem, and enable or benefit other types of interventional procedures. The system uses the data stream generated by a fast 2D multi- slice pulse sequence to update a volume rendering immediately after a new slice is available. We demonstrate some basic types of user interaction with the rendering during imaging at a rate of up to 20 frames per second.

  5. Real-Time Traffic Information for Emergency Evacuation Operations: Phase A Final Report

    SciTech Connect

    Franzese, Oscar; Zhang, Li; Mahmoud, Anas M.; Lascurain, Mary Beth; Wen, Yi

    2010-05-01

    There are many instances in which it is possible to plan ahead for an emergency evacuation (e.g., an explosion at a chemical processing facility). For those cases, if an accident (or an attack) were to happen, then the best evacuation plan for the prevailing network and weather conditions would be deployed. In other cases (e.g., the derailment of a train transporting hazardous materials), there may not be any previously developed plan to be implemented and decisions must be made ad-hoc on how to proceed with an emergency evacuation. In both situations, the availability of real-time traffic information plays a critical role in the management of the evacuation operations. To improve public safety during a vehicular emergency evacuation it is necessary to detect losses of road capacity (due to incidents, for example) as early as possible. Once these bottlenecks are identified, re-routing strategies must be determined in real-time and deployed in the field to help dissipate the congestion and increase the efficiency of the evacuation. Due to cost constraints, only large urban areas have traffic sensor deployments that permit access to some sort of real-time traffic information; any evacuation taking place in any other areas of the country would have to proceed without real-time traffic information. The latter was the focus of this SERRI/DHS (Southeast Region Research Initiative/Department of Homeland Security) sponsored project. That is, the main objective on the project was to improve the operations during a vehicular emergency evacuation anywhere by using newly developed real-time traffic-information-gathering technologies to assess traffic conditions and therefore to potentially detect incidents on the main evacuation routes. Phase A of the project consisted in the development and testing of a prototype system composed of sensors that are engineered in such a way that they can be rapidly deployed in the field where and when they are needed. Each one of these sensors

  6. Real-Time and Near Real-Time Data for Space Weather Applications and Services

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.

    2015-12-01

    Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.

  7. Real-time, face recognition technology

    SciTech Connect

    Brady, S.

    1995-11-01

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory recently developed the real-time, face recognition technology KEN. KEN uses novel imaging devices such as silicon retinas developed at Caltech or off-the-shelf CCD cameras to acquire images of a face and to compare them to a database of known faces in a robust fashion. The KEN-Online project makes that recognition technology accessible through the World Wide Web (WWW), an internet service that has recently seen explosive growth. A WWW client can submit face images, add them to the database of known faces and submit other pictures that the system tries to recognize. KEN-Online serves to evaluate the recognition technology and grow a large face database. KEN-Online includes the use of public domain tools such as mSQL for its name-database and perl scripts to assist the uploading of images.

  8. Wi-Fi real time location systems

    NASA Astrophysics Data System (ADS)

    Doll, Benjamin A.

    This thesis objective was to determine the viability of utilizing an untrained Wi-Fi. real time location system as a GPS alternative for indoor environments. Background. research showed that GPS is rarely able to penetrate buildings to provide reliable. location data. The benefit of having location information in a facility and how they might. be used for disaster or emergency relief personnel and their resources motivated this. research. A building was selected with a well-deployed Wi-Fi infrastructure and its. untrained location feature was used to determine the distance between the specified. test points and the system identified location. It was found that the average distance. from the test point throughout the facility was 14.3 feet 80% of the time. This fell within. the defined viable range and supported that an untrained Wi-Fi RTLS system could be a. viable solution for GPS's lack of availability indoors.

  9. Real time software tools and methodologies

    NASA Technical Reports Server (NTRS)

    Christofferson, M. J.

    1981-01-01

    Real time systems are characterized by high speed processing and throughput as well as asynchronous event processing requirements. These requirements give rise to particular implementations of parallel or pipeline multitasking structures, of intertask or interprocess communications mechanisms, and finally of message (buffer) routing or switching mechanisms. These mechanisms or structures, along with the data structue, describe the essential character of the system. These common structural elements and mechanisms are identified, their implementation in the form of routines, tasks or macros - in other words, tools are formalized. The tools developed support or make available the following: reentrant task creation, generalized message routing techniques, generalized task structures/task families, standardized intertask communications mechanisms, and pipeline and parallel processing architectures in a multitasking environment. Tools development raise some interesting prospects in the areas of software instrumentation and software portability. These issues are discussed following the description of the tools themselves.

  10. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Cao, Ying (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  11. Real time speech formant analyzer and display

    DOEpatents

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  12. Real time speech formant analyzer and display

    DOEpatents

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  13. In-line real time air monitor

    DOEpatents

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  14. In-line real time air monitor

    DOEpatents

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  15. Filming protein fibrillogenesis in real time

    NASA Astrophysics Data System (ADS)

    Bella, Angelo; Shaw, Michael; Ray, Santanu; Ryadnov, Maxim G.

    2014-12-01

    Protein fibrillogenesis is a universal tool of nano-to-micro scale construction supporting different forms of biological function. Its exploitable potential in nanoscience and technology is substantial, but the direct observation of homogeneous fibre growth able to underpin a kinetic-based rationale for building customized nanostructures in situ is lacking. Here we introduce a kinetic model of de novo protein fibrillogenesis which we imaged at the nanoscale and in real time, filmed. The model helped to reveal that, in contrast to heterogeneous amyloid assemblies, homogeneous protein recruitment is principally characterized by uniform rates of cooperative growth at both ends of growing fibers, bi-directional growth, with lateral growth arrested at a post-seeding stage. The model provides a foundation for in situ engineering of sequence-prescribed fibrous architectures.

  16. PCs stir reliability, real-time concerns

    SciTech Connect

    Strothman, J.

    1994-11-01

    While pre-Christmas price wars regularly boost personal computer sales this time of year, price cuts alone won`t cause process control systems designers to open their wallets and buy PCs. User studies and user feedback to process control equipment suppliers show several other issues continue to rank higher than price including: (1) Hardware and software reliability; (2) easy-to-use user interfaces; (3) ability to do multitasking; (4) need for real-time updates. These and several other non-price issues - including open versus proprietary systems, slower scan rates from PCs compared to programmable controllers, and assurances that the PC will work in an industrial environment - scored high in a study authored earlier this year by Jesse Yoder, owner of Idea Network, Clinton, NJ. The report, titled {open_quotes}The World Market for Process Control Equipment,{close_quotes} was written for FIND/SVP, a New York City market research firm.

  17. A Flexible Real-Time Architecture

    SciTech Connect

    WICKSTROM,GREGORY L.

    2000-08-17

    Assuring hard real-time characteristics of I/O associated with embedded software is often a difficult task. Input-Output related statements are often intermixed with the computational code, resulting in I/O timing that is dependent on the execution path and computational load. One way to mitigate this problem is through the use of interrupts. However, the non-determinism that is introduced by interrupt driven I/O may be so difficult to analyze that it is prohibited in some high consequence systems. This paper describes a balanced hardware/software solution to obtain consistent interrupt-free I/O timing, and results in software that is much more amenable to analysis.

  18. Terrestrial Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  19. Real-time slicing of data space

    SciTech Connect

    Crawfis, R.A.

    1996-07-01

    Real-time rendering of iso-contour surfaces is problematic for large complex data sets. In this paper, an algorithm is presented that allows very rapid representation of an interval set surrounding a iso-contour surface. The algorithm draws upon three main ideas. A fast indexing scheme is used to select only those data points near the contour surface. Hardware assisted splatting is then employed on these data points to produce a volume rendering of the interval set. Finally, by shifting a small window through the indexing scheme or data space, animated volumes are produced showing the changing contour values. In addition to allowing fast selection and rendering of the data, the indexing scheme allows a much compressed representation of the data by eliminating ``noise`` data points.

  20. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect

    BROCK CT

    2011-01-13

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  1. Real-time snapshot hyperspectral imaging endoscope.

    PubMed

    Kester, Robert T; Bedard, Noah; Gao, Liang; Tkaczyk, Tomasz S

    2011-05-01

    Hyperspectral imaging has tremendous potential to detect important molecular biomarkers of early cancer based on their unique spectral signatures. Several drawbacks have limited its use for in vivo screening applications: most notably the poor temporal and spatial resolution, high expense, and low optical throughput of existing hyperspectral imagers. We present the development of a new real-time hyperspectral endoscope (called the image mapping spectroscopy endoscope) based on an image mapping technique capable of addressing these challenges. The parallel high throughput nature of this technique enables the device to operate at frame rates of 5.2 frames per second while collecting a (x, y, λ) datacube of 350 × 350 × 48. We have successfully imaged tissue in vivo, resolving a vasculature pattern of the lower lip while simultaneously detecting oxy-hemoglobin. PMID:21639573

  2. Identifying financial crises in real time

    NASA Astrophysics Data System (ADS)

    da Fonseca, Eder Lucio; Ferreira, Fernando F.; Muruganandam, Paulsamy; Cerdeira, Hilda A.

    2013-03-01

    Following the thermodynamic formulation of a multifractal measure that was shown to enable the detection of large fluctuations at an early stage, here we propose a new index which permits us to distinguish events like financial crises in real time. We calculate the partition function from which we can obtain thermodynamic quantities analogous to the free energy and specific heat. The index is defined as the normalized energy variation and it can be used to study the behavior of stochastic time series, such as financial market daily data. Famous financial market crashes-Black Thursday (1929), Black Monday (1987) and the subprime crisis (2008)-are identified with clear and robust results. The method is also applied to the market fluctuations of 2011. From these results it appears as if the apparent crisis of 2011 is of a different nature to the other three. We also show that the analysis has forecasting capabilities.

  3. Real Time Correction of Aircraft Flight Fonfiguration

    NASA Technical Reports Server (NTRS)

    Schipper, John F. (Inventor)

    2009-01-01

    Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.

  4. Real-time forecasts of dengue epidemics

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Shaman, J. L.

    2015-12-01

    Dengue is a mosquito-borne viral disease prevalent in the tropics and subtropics, with an estimated 2.5 billion people at risk of transmission. In many areas with endemic dengue, disease transmission is seasonal but prone to high inter-annual variability with occasional severe epidemics. Predicting and preparing for periods of higher than average transmission is a significant public health challenge. Here we present a model of dengue transmission and a framework for optimizing model simulations with real-time observational data of dengue cases and environmental variables in order to generate ensemble-based forecasts of the timing and severity of disease outbreaks. The model-inference system is validated using synthetic data and dengue outbreak records. Retrospective forecasts are generated for a number of locations and the accuracy of these forecasts is quantified.

  5. Intraoperative, real-time, functional MRI.

    PubMed

    Gering, D T; Weber, D M

    1998-01-01

    Functional MRI (fMRI) methods have been demonstrated to noninvasively identify motor-sensory, visual, and other areas of eloquent cortex for guiding surgical intervention. Typically, fMRI data are acquired preoperatively during a conventional surgical planning MRI examination. Unlike direct cortical stimulation at the time of surgery, however, preoperative fMRI methods do not account for the potential movement of tissues (relative to the time of functional imaging) that may occur in the surgical suite as a direct result of the intervention. Recently, an MRI device has been demonstrated for use in the surgical suite that has the potential to reduce the extent of cortical exposure required for the intervention. However, the invasive requirements of cortical mapping may supersede the invasive requirements of the surgical intervention itself. Consequently, we demonstrate here a modification to the intraoperative MRI device that facilitates a noninvasive, real-time, functional MR examination in the surgical suite.

  6. Near Real-Time Solar Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Yang, G.; Denker, C.; Wang, H.

    2001-05-01

    We use a Linux Beowulf cluster to build a system for near real-time solar image reconstruction with the goal to obtain diffraction limited solar images at a cadence of one minute. This gives us immediate access to high-level data products and enables direct visualization of dynamic processes on the Sun. Space weather warnings and flare forecasting will benefit from this project. The image processing algorithms are based on the speckle masking method combined with frame selection. The parallel programs use explicit message passing via Parallel Virtual Machine (PVM). The preliminary results are very promising. Now, we can construct a 256 by 256 pixel image out of 50 short-exposure images within one minute on a Beowulf cluster with four 500~MHz CPUs. In addition, we want to explore the possibility of applying parallel computing on Beowulf clusters to other complex data reduction and analysis problems that we encounter, e.g., in multi-dimensional spectro-polarimetry.

  7. Near real-time stereo vision system

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  8. Near real-time stereo vision system

    NASA Astrophysics Data System (ADS)

    Matthies, Larry H.; Anderson, Charles H.

    1991-12-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  9. Real time visualization of quantum walk

    SciTech Connect

    Miyazaki, Akihide; Hamada, Shinji; Sekino, Hideo

    2014-02-20

    Time evolution of quantum particles like electrons is described by time-dependent Schrödinger equation (TDSE). The TDSE is regarded as the diffusion equation of electrons with imaginary diffusion coefficients. And the TDSE is solved by quantum walk (QW) which is regarded as a quantum version of a classical random walk. The diffusion equation is solved in discretized space/time as in the case of classical random walk with additional unitary transformation of internal degree of freedom typical for quantum particles. We call the QW for solution of the TDSE a Schrödinger walk (SW). For observation of one quantum particle evolution under a given potential in atto-second scale, we attempt a successive computation and visualization of the SW. Using Pure Data programming, we observe the correct behavior of a probability distribution under the given potential in real time for observers of atto-second scale.

  10. Real-time value-driven diagnosis

    NASA Technical Reports Server (NTRS)

    Dambrosio, Bruce

    1995-01-01

    Diagnosis is often thought of as an isolated task in theoretical reasoning (reasoning with the goal of updating our beliefs about the world). We present a decision-theoretic interpretation of diagnosis as a task in practical reasoning (reasoning with the goal of acting in the world), and sketch components of our approach to this task. These components include an abstract problem description, a decision-theoretic model of the basic task, a set of inference methods suitable for evaluating the decision representation in real-time, and a control architecture to provide the needed continuing coordination between the agent and its environment. A principal contribution of this work is the representation and inference methods we have developed, which extend previously available probabilistic inference methods and narrow, somewhat, the gap between probabilistic and logical models of diagnosis.

  11. Real-time visualization of joint cavitation.

    PubMed

    Kawchuk, Gregory N; Fryer, Jerome; Jaremko, Jacob L; Zeng, Hongbo; Rowe, Lindsay; Thompson, Richard

    2015-01-01

    Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking.

  12. Real-Time Visualization of Joint Cavitation

    PubMed Central

    Rowe, Lindsay

    2015-01-01

    Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking. PMID:25875374

  13. A real-time pulsed photon dosimeter

    NASA Astrophysics Data System (ADS)

    Brown, David; Olsher, Richard H.; Eisen, Yosef; Rodriguez, Joseph F.

    1996-02-01

    Radiation sources producing short pulses of photon radiation are now widespread. Such sources include electron and proton linear accelerators, betatrons, synchrotrons, and field-emission impulse generators. It is often desirable to measure leakage and skyshine radiation from such sources in real time, on a single-pulse basis as low as 8.7 nGy (1 μR) per pulse. This paper describes the design and performance of a prototype, real-time, pulsed photon dosimeter (PPD) capable of single-pulse dose measurements over the range from 3.5 nGy to 3.5 μGy (0.4 to 400 μR). The PPD may also be operated in a multiple-pulse mode that integrates the dose from a train of radiation pulses over a 3-s period. A pulse repetition rate of up to 300 Hz is accommodated. The design is eminently suitable for packaging as a lightweight, portable, survey meter. The PPD uses a CdWO 4 scintillator optically coupled to a photodiode to generate a charge at the diode output. A pulse amplifier converts the charge to a voltage pulse. A digitizer circuit generates a burst of logic pulses whose number is proportional to the peak value of the voltage pulse. The digitizer output is recorded by a pulse counter and suitably displayed. A prototype PPD was built for testing and evaluation purposes. The performance of the PPD was evaluated with a variety of pulsed photon sources. The dynamic range, energy response, and response to multiple pulses were characterized. The experimental data confirm the viability of the PPD for pulsed photon dosimetry.

  14. Towards real time speckle controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Bliedtner, Katharina; Seifert, Eric; Stockmann, Leoni; Effe, Lisa; Brinkmann, Ralf

    2016-03-01

    Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.

  15. A real-time groundwater management model using data assimilation

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chen; Putti, Mario; Kendall, Donald R.; Yeh, William W.-G.

    2011-06-01

    This study develops a groundwater management model for real-time operation of an aquifer system. A groundwater flow model is allied with a nudging data assimilation algorithm that reduces the forecast error, minimizes the risk of system failure, and improves management strategies. The nudging algorithm treats the unknown private pumping as an additional sink term in the groundwater flow equation and provides a consistently physical interpretation for the identification of pumping rates. The system response due to pumping and injection is represented by a response matrix that is generated by the influence coefficient method. The response matrix (with a much smaller dimension) is used as a reduced model and is embedded directly in the management model as a part of the constraint set. Additionally, the influence coefficient method is utilized to include the nudging effect in the reduced model. The management model optimizes the monthly operation for 12 months into the future and determines the optimal strategy using the information provided by nudging. The management model is updated at the beginning of each month when new head observations and pumping data become available. We also discuss the utility, accuracy, and efficiency of the proposed management model for real-time operation.

  16. A tool for modeling concurrent real-time computation

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.

    1990-01-01

    Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.

  17. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    PubMed

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays.

  18. Real-Time System for Water Modeling and Management

    NASA Astrophysics Data System (ADS)

    Lee, J.; Zhao, T.; David, C. H.; Minsker, B.

    2012-12-01

    Working closely with the Texas Commission on Environmental Quality (TCEQ) and the University of Texas at Austin (UT-Austin), we are developing a real-time system for water modeling and management using advanced cyberinfrastructure, data integration and geospatial visualization, and numerical modeling. The state of Texas suffered a severe drought in 2011 that cost the state $7.62 billion in agricultural losses (crops and livestock). Devastating situations such as this could potentially be avoided with better water modeling and management strategies that incorporate state of the art simulation and digital data integration. The goal of the project is to prototype a near-real-time decision support system for river modeling and management in Texas that can serve as a national and international model to promote more sustainable and resilient water systems. The system uses National Weather Service current and predicted precipitation data as input to the Noah-MP Land Surface model, which forecasts runoff, soil moisture, evapotranspiration, and water table levels given land surface features. These results are then used by a river model called RAPID, along with an error model currently under development at UT-Austin, to forecast stream flows in the rivers. Model forecasts are visualized as a Web application for TCEQ decision makers, who issue water diversion (withdrawal) permits and any needed drought restrictions; permit holders; and reservoir operation managers. Users will be able to adjust model parameters to predict the impacts of alternative curtailment scenarios or weather forecasts. A real-time optimization system under development will help TCEQ to identify optimal curtailment strategies to minimize impacts on permit holders and protect health and safety. To develop the system we have implemented RAPID as a remotely-executed modeling service using the Cyberintegrator workflow system with input data downloaded from the North American Land Data Assimilation System. The

  19. The multispectral advanced volumetric real-time imaging compositor for real-time distributed scene generation

    NASA Astrophysics Data System (ADS)

    Morris, Joseph W.; Ballard, Gary H.; Bunfield, Dennis H.; Peddycoart, Thomas E.; Trimble, Darian E.

    2011-06-01

    AMRDEC has developed the Multi-spectral Advanced Volumetric Real-time Imaging Compositor (MAVRIC) prototype for distributed real-time hardware-in-the-loop (HWIL) scene generation. MAVRIC is a dynamic object-based energy conserved scene compositor that can seamlessly convolve distributed scene elements into temporally aligned physicsbased scenes for enhancing existing AMRDEC scene generation codes. The volumetric compositing process accepts input independent of depth order. This real-time compositor framework is built around AMRDEC's ContinuumCore API which provides the common messaging interface leveraging the Neutral Messaging Language (NML) for local, shared memory, reflective memory, network, and remote direct memory access (RDMA) communications and the Joint Signature Image Generator (JSIG) that provides energy conserved scene component interface at each render node. This structure allows for a highly scalable real-time environment capable of rendering individual objects at high fidelity while being considerate of real-time hardware-in-the-loop concerns, such as latency. As such, this system can be scaled to handle highly complex detailed scenes such as urban environments. This architecture provides the basis for common scene generation as it provides disparate scene elements to be calculated by various phenomenology codes and integrated seamlessly into a unified composited environment. This advanced capability is the gateway to higher fidelity scene generation such as ray-tracing. The high speed interconnects using PCI Express and InfiniBand were examined to support distributed scene generation whereby the scene graph, associated phenomenology, and the scene elements can be dynamically distributed across multiple high performance computing assets to maximize system performance.

  20. Clinical experience with real-time ultrasound

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Wolfman, Neil T.; Covitz, Wesley

    1995-05-01

    After testing the extended multimedia interface (EMMI) product which is an asynchronous transmission mode (ATM) user to network interface (UNI) of AT&T at the Society for Computer Applications in Radiology conference in Winston-Salem, the Department of Radiology together with AT&T are implementing a tele-ultrasound system to combine real- time ultrasound with the static imaging features of more traditional digital ultrasound systems. Our current ultrasound system archives digital images to an optical disk system. Static images are sent using our digital radiology systems. This could be transferring images from one digital imaging and communications (DICOM)-compliant machine to another, or the current image transfer methodologies. The prototype of a live ultrasound system using the EMMI demonstrated the feasibility of doing live ultrasound. We now are developing the scenarios using a mix of the two methodologies. Utilizing EMMI technology, radiologists at the BGSM review at a workstation both static images and real-time scanning done by a technologist on patients at a remote site in order to render on-line primary diagnosis. Our goal is to test the feasibility of operating an ultrasound laboratory at a remote site utilizing a trained technologist without the necessity of having a full-time radiologist at that site. Initial plans are for a radiologist to review an initial set of static images on a patient taken by the technologist. If further scanning is required, the EMMI is used to transmit real-time imaging and audio using the audio input of a standard microphone system and the National Television Standards Committee (NTSC) output of the ultrasound equipment from the remote site to the radiologist in the department review station. The EMMI digitally encodes this data and places it in an ATM format. This ATM data stream goes to the GCNS2000 and then to the other EMMI where the ATM data stream is decoded into the live studies and voice communication which are then

  1. Young Children's Arithmetic Strategies in Social Context: How Parents Contribute to Children's Strategy Development while Playing Games

    ERIC Educational Resources Information Center

    Bjorklund, David F.; Hubertz, Martha J.; Reubens, Andrea C.

    2004-01-01

    We examined the relationship between parents' behaviour and children's use of simple arithmetic strategies while playing a board game in contrast to solving arithmetic problems. In a microgenetic study spanning 3 weeks, 5-year-old children who were just beginning kindergarten played a modified game of "Chutes and Ladders" with one of their…

  2. Real Time Earthquake Information System in Japan

    NASA Astrophysics Data System (ADS)

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  3. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    NASA Technical Reports Server (NTRS)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  4. Label-free detection of real-time DNA amplification using a nanofluidic diffraction grating

    NASA Astrophysics Data System (ADS)

    Yasui, Takao; Ogawa, Kensuke; Kaji, Noritada; Nilsson, Mats; Ajiri, Taiga; Tokeshi, Manabu; Horiike, Yasuhiro; Baba, Yoshinobu

    2016-08-01

    Quantitative DNA amplification using fluorescence labeling has played an important role in the recent, rapid progress of basic medical and molecular biological research. Here we report a label-free detection of real-time DNA amplification using a nanofluidic diffraction grating. Our detection system observed intensity changes during DNA amplification of diffracted light derived from the passage of a laser beam through nanochannels embedded in a microchannel. Numerical simulations revealed that the diffracted light intensity change in the nanofluidic diffraction grating was attributed to the change of refractive index. We showed the first case reported to date for label-free detection of real-time DNA amplification, such as specific DNA sequences from tubercle bacilli (TB) and human papillomavirus (HPV). Since our developed system allows quantification of the initial concentration of amplified DNA molecules ranging from 1 fM to 1 pM, we expect that it will offer a new strategy for developing fundamental techniques of medical applications.

  5. Label-free detection of real-time DNA amplification using a nanofluidic diffraction grating

    PubMed Central

    Yasui, Takao; Ogawa, Kensuke; Kaji, Noritada; Nilsson, Mats; Ajiri, Taiga; Tokeshi, Manabu; Horiike, Yasuhiro; Baba, Yoshinobu

    2016-01-01

    Quantitative DNA amplification using fluorescence labeling has played an important role in the recent, rapid progress of basic medical and molecular biological research. Here we report a label-free detection of real-time DNA amplification using a nanofluidic diffraction grating. Our detection system observed intensity changes during DNA amplification of diffracted light derived from the passage of a laser beam through nanochannels embedded in a microchannel. Numerical simulations revealed that the diffracted light intensity change in the nanofluidic diffraction grating was attributed to the change of refractive index. We showed the first case reported to date for label-free detection of real-time DNA amplification, such as specific DNA sequences from tubercle bacilli (TB) and human papillomavirus (HPV). Since our developed system allows quantification of the initial concentration of amplified DNA molecules ranging from 1 fM to 1 pM, we expect that it will offer a new strategy for developing fundamental techniques of medical applications. PMID:27531471

  6. Label-free detection of real-time DNA amplification using a nanofluidic diffraction grating.

    PubMed

    Yasui, Takao; Ogawa, Kensuke; Kaji, Noritada; Nilsson, Mats; Ajiri, Taiga; Tokeshi, Manabu; Horiike, Yasuhiro; Baba, Yoshinobu

    2016-01-01

    Quantitative DNA amplification using fluorescence labeling has played an important role in the recent, rapid progress of basic medical and molecular biological research. Here we report a label-free detection of real-time DNA amplification using a nanofluidic diffraction grating. Our detection system observed intensity changes during DNA amplification of diffracted light derived from the passage of a laser beam through nanochannels embedded in a microchannel. Numerical simulations revealed that the diffracted light intensity change in the nanofluidic diffraction grating was attributed to the change of refractive index. We showed the first case reported to date for label-free detection of real-time DNA amplification, such as specific DNA sequences from tubercle bacilli (TB) and human papillomavirus (HPV). Since our developed system allows quantification of the initial concentration of amplified DNA molecules ranging from 1 fM to 1 pM, we expect that it will offer a new strategy for developing fundamental techniques of medical applications. PMID:27531471

  7. Cosmic Atlas: A Real-Time Universe Simulation

    NASA Astrophysics Data System (ADS)

    Yu, K. C.; Jenkins, N. E.

    2004-05-01

    Cosmic Atlas is a software program produced at the Denver Museum of Nature & Science to generate real-time digital content for the Museum's Gates Planetarium. Created by in-house staff, Cosmic Atlas is designed to be scientifically accurate, flexible, easily updated to stay current with new discoveries, and portable to multiple platforms. It is currently developed using desktop computers running a Linux OS, and is also installed on a multi-graphics pipe SGI visualization computer running the IRIX OS in the Gates Planetarium. The software can be used in real-time presentations via traditional ``star talks'' and classes, but can also be used to devise flightpaths, perform timeline-based editing, play back flightpaths in real-time, and save out image renders for creating video files to be shown on additional playback systems. The first version of the program is meant to replicate the functionality of a traditional optical-mechanical star ball, and hence creates a replica of the night time sky, with constellations, deep sky objects, and didactic information and grids. The Solar System is a realistic, three-dimensional, navigable simulation, updated with the latest moon and minor planet discoveries, and with motions over time determined by a customized orrery. Additional modules can show traditional astronomical imagery, including an application for loading in FITS files to create three-color composites. A three-dimensional model of the Milky Way is in development, populated with HIPPARCOS stars for the local galactic neighborhood, and with molecular clouds constructed from large-scale CO survey data; more distant regions are filled with statistically generated stellar and interstellar medium distributions.

  8. Real-time obstacle avoidance using harmonic potential functions

    NASA Technical Reports Server (NTRS)

    Kim, Jin-Oh; Khosla, Pradeep K.

    1992-01-01

    This paper presents a new formulation of the artificial potential approach to the obstacle avoidance problem for a mobile robot or a manipulator in a known environment. Previous formulations of artificial potentials for obstacle avoidance have exhibited local minima in a cluttered environment. To build an artificial potential field, harmonic functions that completely eliminate local minima even for a cluttered environment are used. The panel method is employed to represent arbitrarily shaped obstacles and to derive the potential over the whole space. Based on this potential function, an elegant control strategy is proposed for the real-time control of a robot. The harmonic potential, the panel method, and the control strategy are tested with a bar-shaped mobile robot and a three-degree-of-freedom planar redundant manipulator.

  9. New insights into the application of the Coulomb model in real-time

    NASA Astrophysics Data System (ADS)

    Catalli, Flaminia; Chan, Chung-Han

    2012-02-01

    The Coulomb model for stress change estimation is considered one of the most powerful physics-based forecasting tools, even though its calculations are affected by uncertainties due to the large number of a priori assumptions needed. The aim of this paper is to suggest a straightforward and reliable strategy to apply the Coulomb model for real-time forecasting. This is done by avoiding all dispensable assumptions, thus reducing the corresponding uncertainties. We demonstrate that the depth at which calculations are made is a parameter of utmost importance and apply the Coulomb model to three sequences in different tectonic regimes: Umbria-Marche (normal), Landers (strike-slip), and Chi-Chi (thrust). In each case the results confirm that when applying the Coulomb model: (i) the depth of calculation plays a fundamental role; (ii) depth uncertainties are not negligible; (iii) the best forecast at a given location is obtained by selecting the maximum stress change over the whole seismogenic depth range.

  10. Multireservoir real-time operations for flood control using balanced water level index method.

    PubMed

    Wei, Chih-Chiang; Hsu, Nien-Sheng

    2008-09-01

    This paper presents a real-time simulation-optimization operation procedure for determining the reservoir releases at each time step during a flood. The proposed procedure involves two models, i.e., a hydrological forecasting model and a reservoir operation model. In the reservoir operation model, this paper compares two flood-control operation strategies for a multipurpose multireservoir system. While Strategy 1 is the real-time joint reservoir operations without using the balanced water level index (BWLI) method, Strategy 2 involves real-time joint reservoir operations using the BWLI method. The two strategies presented are formulated as mixed-integer linear programming (MILP) problems. The idea of using the BWLI method is derived from the HEC-5 program developed by the US Army Corps of Engineers. The proposed procedure has been applied to the Tanshui River Basin system in Taiwan using the 6h ahead forecast data of six typhoons. A comparison of the results obtained from the two strategies reveals that Strategy 2 performs much better than Strategy 1 in determining the reservoir real-time releases throughout the system during flood emergencies in order to minimize flooding, while maintaining all reservoirs in the system in balance if possible. Consequently, the proposed model using the BWLI method demonstrates its effectiveness in estimating real-time releases.

  11. Multireservoir real-time operations for flood control using balanced water level index method.

    PubMed

    Wei, Chih-Chiang; Hsu, Nien-Sheng

    2008-09-01

    This paper presents a real-time simulation-optimization operation procedure for determining the reservoir releases at each time step during a flood. The proposed procedure involves two models, i.e., a hydrological forecasting model and a reservoir operation model. In the reservoir operation model, this paper compares two flood-control operation strategies for a multipurpose multireservoir system. While Strategy 1 is the real-time joint reservoir operations without using the balanced water level index (BWLI) method, Strategy 2 involves real-time joint reservoir operations using the BWLI method. The two strategies presented are formulated as mixed-integer linear programming (MILP) problems. The idea of using the BWLI method is derived from the HEC-5 program developed by the US Army Corps of Engineers. The proposed procedure has been applied to the Tanshui River Basin system in Taiwan using the 6h ahead forecast data of six typhoons. A comparison of the results obtained from the two strategies reveals that Strategy 2 performs much better than Strategy 1 in determining the reservoir real-time releases throughout the system during flood emergencies in order to minimize flooding, while maintaining all reservoirs in the system in balance if possible. Consequently, the proposed model using the BWLI method demonstrates its effectiveness in estimating real-time releases. PMID:17923249

  12. Real Time Data Management for Estimating Probabilities of Incidents and Near Misses

    NASA Astrophysics Data System (ADS)

    Stanitsas, P. D.; Stephanedes, Y. J.

    2011-08-01

    Advances in real-time data collection, data storage and computational systems have led to development of algorithms for transport administrators and engineers that improve traffic safety and reduce cost of road operations. Despite these advances, problems in effectively integrating real-time data acquisition, processing, modelling and road-use strategies at complex intersections and motorways remain. These are related to increasing system performance in identification, analysis, detection and prediction of traffic state in real time. This research develops dynamic models to estimate the probability of road incidents, such as crashes and conflicts, and incident-prone conditions based on real-time data. The models support integration of anticipatory information and fee-based road use strategies in traveller information and management. Development includes macroscopic/microscopic probabilistic models, neural networks, and vector autoregressions tested via machine vision at EU and US sites.

  13. Real-time reconfigurable subthreshold CMOS perceptron.

    PubMed

    Aunet, S; Oelmann, B; Norseng, P A; Berg, Y

    2008-04-01

    In this paper, a new, real-time reconfigurable perceptron circuit element is presented. A six-transistor version used as a threshold gate, having a fan-in of three, producing adequate outputs for threshold of T =1, 2 and 3 is demonstrated by chip measurements. Subthreshold operation for supply voltages in the range of 100-350 mV is shown. The circuit performs competitively with a standard static complimentary metal-oxide-semiconductor (CMOS) implementation when maximum speed and energy delay product are taken into account, when used in a ring oscillator. Functionality per transistor is, to our knowledge, the highest reported for a variety of comparable circuits not based on floating gate techniques. Statistical simulations predict probabilities for making working circuits under mismatch and process variations. The simulations, in 120-nm CMOS, also support discussions regarding lower limits to supply voltage and redundancy. A brief discussion on how the circuit may be exploited as a basic building block for future defect tolerant mixed signal circuits, as well as neural networks, exploiting redundancy, is included.

  14. Real-Time Principal-Component Analysis

    NASA Technical Reports Server (NTRS)

    Duong, Vu; Duong, Tuan

    2005-01-01

    A recently written computer program implements dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN), which was described in Method of Real-Time Principal-Component Analysis (NPO-40034) NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 59. To recapitulate: DOGEDYN is a method of sequential principal-component analysis (PCA) suitable for such applications as data compression and extraction of features from sets of data. In DOGEDYN, input data are represented as a sequence of vectors acquired at sampling times. The learning algorithm in DOGEDYN involves sequential extraction of principal vectors by means of a gradient descent in which only the dominant element is used at each iteration. Each iteration includes updating of elements of a weight matrix by amounts proportional to a dynamic initial learning rate chosen to increase the rate of convergence by compensating for the energy lost through the previous extraction of principal components. In comparison with a prior method of gradient-descent-based sequential PCA, DOGEDYN involves less computation and offers a greater rate of learning convergence. The sequential DOGEDYN computations require less memory than would parallel computations for the same purpose. The DOGEDYN software can be executed on a personal computer.

  15. Real-Time 3D Visualization

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  16. Correction of deformed images in real time

    NASA Astrophysics Data System (ADS)

    Van der Jeught, Sam; Buytaert, Jan A. N.; Dirckx, Joris J. J.

    2011-09-01

    Optical lens systems generally contain non-linear distortion artifacts that impose important limitations on the direct interpretation of the images. Image processing can be used to correct for these artifacts, but due to the calculation-intensive nature of the required distortion correction process, this is usually performed offline. This is not an option in image-based applications that operate interactively, however, where the real-time display of distortion corrected images can be vital. To this end, we propose a new technique to correct for arbitrary geometric lens distortion that uses the parallel processing power of a commercial graphics processing unit (GPU). By offloading the distortion correction process to the GPU, we can relieve the central processing unit (CPU) of doing this computationally very demanding task. We successfully implemented the full distortion correction algorithm on the GPU, thereby achieving a display rate of over 30 frames/sec for fully processed images of size 1024 × 768 pixels without the need for any additional digital image processing hardware.

  17. Real time radiation measurements in space

    NASA Astrophysics Data System (ADS)

    Thomson, I.; Mackay, G.

    Radiation composed of energetic electrons, protons, photons, and galactic cosmic rays will be experienced by all space missions and may have effects on radiation sensitive electronic components and biological specimens. Radiation issues of interest to microgravity and biological experiments are discussed and the design of a new direct reading electronic radiation monitoring system is described. The proposed system consists of a radiation sensitive metal oxide semiconductor field effect transistor (MOSFET) specially designed to respond to ionizing radiation. On exposure to radiation, a permanent charge is stored in the MOSFET's insulating oxide, altering the device's electrical characteristics in a manner directly proportional to the dose exposed. A simple circuit reads the MOSFET's cumulative dose, making it possible to obtain real-time measurements and store the data or transfer the data to an earth station. Tests have shown that the MOSFET dosimeter shows a linear response up to at least 30,000 centiGray at a resolution of 0.1 centiGray. The MOSFET dosimetry system will be installed on the European Space Agency's ARTEP satellite scheduled for launch in November 1991.

  18. Extrasolar Giant Impacts in Real Time

    NASA Astrophysics Data System (ADS)

    Rieke, George; Meng, Huan; Su, Kate

    2013-10-01

    Spitzer observations in the previous cycles have revealed 3.6 and 4.5 um variability and periodicity in extreme debris disks on timescales of weeks or even shorter. Such disks typically have warm temperatures and strong crystalline silicate emission, indicative of very fine dust particles in the terrestrial planet zone and below the blowout sizes of the stars. Many of the disks are around solar-like stars in the age range of 30 - 100+ Myr, the expected time for the final buildup of terrestrial planets through massive collisions. These young extrasolar systems are probably going through this phase with series of violent collisions, or possible analogs of the Moon-forming impact, providing rare opportunities to investigate terrestrial planet formation and collision in real time, and put our own Solar System in context. Here we propose to continue the monitoring of three such systems with daily sampling cadence. The observations will provide insight into the physical and dynamical processes of the planet-forming disks.

  19. High sensitivity real-time NVR monitor

    NASA Technical Reports Server (NTRS)

    Bowers, William D. (Inventor); Chuan, Raymond L. (Inventor)

    1997-01-01

    A real time non-volatile residue (NVR) monitor, which utilizes surface acoustic wave (SAW) resonators to detect molecular contamination in a given environment. The SAW resonators operate at a resonant frequency of approximately 200 MHz-2,000 MHz which enables the NVR monitor to detect molecular contamination on the order of 10.sup.-11 g-cm.sup.-2 to 10.sup.-13 g-cm.sup.2. The NVR monitor utilizes active temperature control of (SAW) resonators to achieve a stable resonant frequency. The temperature control system of the NVR monitor is able to directly heat and cool the SAW resonators utilizing a thermoelectric element to maintain the resonators at a present temperature independent of the environmental conditions. In order to enable the direct heating and cooling of the SAW resonators, the SAW resonators are operatively mounted to a heat sink. In one embodiment, the heat sink is located in between the SAW resonators and an electronic circuit board which contains at least a portion of the SAW control electronics. The electrical leads of the SAW resonators are connected through the heat sink to the circuit board via an electronic path which prevents inaccurate frequency measurement.

  20. Real-time scheduling of software tasks

    SciTech Connect

    Hoff, L.T.

    1995-12-01

    When designing real-time systems, it is often desirable to schedule execution of software tasks based on the occurrence of events. The events may be clock ticks, interrupts from a hardware device, or software signals from other software tasks. If the nature of the events, is well understood, this scheduling is normally a static part of the system design. If the nature of the events is not completely understood, or is expected to change over time, it may be necessary to provide a mechanism for adjusting the scheduling of the software tasks. RHIC front-end computers (FECs) provide such a mechanism. The goals in designing this mechanism were to be as independent as possible of the underlying operating system, to allow for future expansion of the mechanism to handle new types of events, and to allow easy configuration. Some considerations which steered the design were programming paradigm (object oriented vs. procedural), programming language, and whether events are merely interesting moments in time, or whether they intrinsically have data associated with them. The design also needed to address performance and robustness tradeoffs involving shared task contexts, task priorities, and use of interrupt service routine (ISR) contexts vs. task contexts. This paper will explore these considerations and tradeoffs.

  1. Real-time video watermarking technique

    NASA Astrophysics Data System (ADS)

    Lee, Han H.; Chae, Jong J.; Choi, Jong U.

    2002-04-01

    Most previous video watermarking algorithms cannot be supported by real-time processing. Our algorithm proposed the specific embedding method in the spatial domain directly rather than the frequency domain. Also the algorithm supports the robustness from the video attacking skills. In the paper, for example, watermark is inserted immediately into the output frame of Digital Video (DV) camcorder. We select the Y component from the DV signal, and then the watermark information is inserted in all of the Y frames. The watermarked video frames put in the video MPEG encoder. We consider embedding information to the high quality video streams, such as a DVD, HDTV. Our experimental results show the high quality of the video even if compressed. Therefore, the robustness from compression is tested by MPEG-2 of 6Mbits/sec of 720x480 frame size and the invisibility is proved by measurement of PSNR. The results also show the robustness from several video editing methods, such as a cut-and-splice and cut-insert-splice, and video conversions, letterboxing, pan & span, and wide screen of media.

  2. Real-time optoacoustic monitoring of stroke

    NASA Astrophysics Data System (ADS)

    Kneipp, Moritz; Turner, Jake; Hambauer, Sebastian; Krieg, Sandro M.; Lehmberg, Jens; Lindauer, Ute; Razansky, Daniel

    2014-03-01

    Characterizing disease progression and identifying possible therapeutic interventions in stroke is greatly aided by the use of longitudinal function imaging studies. In this study, we investigate the applicability of real-time multispectral optoacoustic tomography (MSOT) as a tool for non-invasive monitoring of the progression of stroke in the whole brain. The middle cerebral artery occlusion (MCAO) method was used to induce stroke. Mice were imaged under isoflurane anesthesia preoperatively and at several time points during and after the 60-minute occlusion. The animals were sacrificed after 24 hours and their excised brains frozen at -80°C for sectioning. The cryosection were stained using H&E staining to identify the ischemic lesion. Major vessels are readily identifiable in the whole mouse head in the in vivo optoacoustic scans. During ischemia, a reduction in cerebral blood volume is detectable in the cortex. Post ischemia, spectral unmixing of the optoacoustic signals shows an asymmetry of the deoxygenated hemoglobin in the hemisphere affected by MCAO. This hypoxic area was mainly located around the boundary of the ischemic lesion and was therefore identified as the ischemic penumbra. Non-invasive functional MSOT imaging is able to visualize the hypoxic penumbra in brains affected by stroke. Stopping the spread of the infarct area and revitalizing the penumbra is central in stroke research, this new imaging technique may therefore prove to be a valuable tool in the monitoring and developing new treatments.

  3. Recommendations for Real-Time Speech MRI

    PubMed Central

    Lingala, Sajan Goud; Sutton, Brad P.; Miquel, Marc E.; Nayak, Krishna S.

    2016-01-01

    Real-time magnetic resonance imaging (RT-MRI) is being increasingly used for speech and vocal production research studies. Several imaging protocols have emerged based on advances in RT-MRI acquisition, reconstruction, and audio-processing methods. This review summarizes the state-of-the-art, discusses technical considerations, and provides specific guidance for new groups entering this field. We provide recommendations for performing RT-MRI of the upper airway. This is a consensus statement stemming from the ISMRM-endorsed Speech MRI summit held in Los Angeles, February 2014. A major unmet need identified at the summit was the need for consensus on protocols that can be easily adapted by researchers equipped with conventional MRI systems. To this end, we provide a discussion of tradeoffs in RT-MRI in terms of acquisition requirements, a priori assumptions, artifacts, computational load, and performance for different speech tasks. We provide four recommended protocols and identify appropriate acquisition and reconstruction tools. We list pointers to open-source software that facilitate implementation. We conclude by discussing current open challenges in the methodological aspects of RT-MRI of speech. PMID:26174802

  4. Real-time information management environment (RIME)

    NASA Astrophysics Data System (ADS)

    DeCleene, Brian T.; Griffin, Sean; Matchett, Garry; Niejadlik, Richard

    2000-08-01

    Whereas data mining and exploitation improve the quality and quantity of information available to the user, there remains a mission requirement to assist the end-user in managing the access to this information and ensuring that the appropriate information is delivered to the right user in time to make decisions and take action. This paper discusses TASC's federated architecture to next- generation information management, contrasts the approach against emerging technologies, and quantifies the performance gains. This architecture and implementation, known as Real-time Information Management Environment (RIME), is based on two key concepts: information utility and content-based channelization. The introduction of utility allows users to express the importance and delivery requirements of their information needs in the context of their mission. Rather than competing for resources on a first-come/first-served basis, the infrastructure employs these utility functions to dynamically react to unanticipated loading by optimizing the delivered information utility. Furthermore, commander's resource policies shape these functions to ensure that resources are allocated according to military doctrine. Using information about the desired content, channelization identifies opportunities to aggregate users onto shared channels reducing redundant transmissions. Hence, channelization increases the information throughput of the system and balances sender/receiver processing load.

  5. Real time visual servoing using controlled illumination

    NASA Astrophysics Data System (ADS)

    Urban, J. P.; Motyl, G.; Gallice, J.

    1994-02-01

    A real-time visual servoing approach is applied to robotics tasks consisting of the positioning of the end effector with respect to a priori known polyhedral objects. The vision apparatus is consituted by a compact CCD camera rigidly coupled with two laser stripes mounted on the wrist of a robot manipulator. The objective is to servo the robot and effector at a constant position and orientation with respect to a known object in three- dimensional space in the field of view of the sensory system. The approach is expressed in terms of sensor-based control applied to visual servoing. In the case of camera-light stripe coupling, the elementary visual signals used for visual servoing are the points of discontinuity in the light stripes. The feasibility of the approach is demonstrated in a factory automation task consisting of the positioning of the end-effector tool over a vehicle battery. Both simulation and experimentation results are presented, proving the robustness and stability of the algorithm.

  6. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2016-07-12

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  7. Ames Lab 101: Real-Time 3D Imaging

    SciTech Connect

    Zhang, Song

    2010-01-01

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  8. Dynamics of traffic flow with real-time traffic information

    NASA Astrophysics Data System (ADS)

    Yokoya, Yasushi

    2004-01-01

    We studied dynamics of traffic flow with real-time information provided. Provision of the real-time traffic information based on advancements in telecommunication technology is expected to facilitate the efficient utilization of available road capacity. This system has a potentiality of not only engineering for road usage but also the science of complexity series. In the system, the information plays a role of feedback connecting microscopic and macroscopic phenomena beyond the hierarchical structure of statistical physics. In this paper, we tried to clarify how the information works in a network of traffic flow from the perspective of statistical physics. The dynamical feature of the traffic flow is abstracted by a contrastive study between the nonequilibrium statistical physics and a computer simulation based on cellular automaton. We found that the information disrupts the local equilibrium of traffic flow by a characteristic dissipation process due to interaction between the information and individual vehicles. The dissipative structure was observed in the time evolution of traffic flow driven far from equilibrium as a consequence of the breakdown of the local-equilibrium hypothesis.

  9. Real-time dosimetry in radiotherapy using tailored optical fibers

    NASA Astrophysics Data System (ADS)

    Rahman, A. K. M. Mizanur; Zubair, H. T.; Begum, Mahfuza; Abdul-Rashid, H. A.; Yusoff, Z.; Omar, Nasr Y. M.; Ung, N. M.; Mat-Sharif, K. A.; Bradley, D. A.

    2016-05-01

    Real-time dosimetry plays an important role for accurate patient-dose measurement during radiotherapy. A tiny piece of laboratory fabricated Ge-doped optical fiber has been investigated as a radioluminescence (RL) sensor for real-time dosimetry over the dose range from 1 Gy to 8 Gy under 6 MV photon beam by LINAC. Fiber-coupled software-based RL prototype system was used to assess essential dosimetric characteristics including dose response linearity, dose rate dependency, sensitivity, repeatability and output dependence on field sizes. The consistency level of RL photon counts versus dose rate was also compared with that of standard Al2O3:C chips. Sensitivity of Ge-doped fiber were found to be sufficiently sensitive for practical use and also provided linear dose responses for various dose rates from 100 cGy/min to 600 cGy/min using both 6 MV photon and 6 MeV electron beams. SEM-EDX analysis was performed to identify Ge-dopant concentration level within the optical fiber RL material. Accumulated doses were also estimated using simple integral technique and the error was found to be around less than 1% under dissimilar dose rates or repeat measurements. The evaluation of the Ge-doped optical fiber based RL dosimeter system indicates its potential in medical dosimetry.

  10. Real-time support for high performance aircraft operation

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1989-01-01

    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown.

  11. Intelligent Real-Time Reservoir Operation for Flood Control

    NASA Astrophysics Data System (ADS)

    Chang, L.; Hsu, H.

    2008-12-01

    Real-time flood control of a multi-purpose reservoir should consider decreasing the flood peak stage downstream and storing floodwaters for future usage during typhoon seasons. It is a continuous and instant decision-making process based on relevant operating rules, policy and water laws, in addition the immediate rainfall and the hydrology information; however, it is difficult to learn the intelligent experience from the elder operators. The main purpose of this study is to establish the automatic reservoir flood control model to achieve the goal of a reservoir operation during flood periods. In this study, we propose an intelligent reservoir operating methodology for real-time flood control. First, the genetic algorithm is used to search the optimal solutions, which can be considered as extracting the knowledge of reservoir operation strategies. Then, the adaptive network-based fuzzy inference system (ANFIS), which uses a hybrid learning procedure for extracting knowledge in the form of fuzzy if-then rules, is used to learn the input-output patterns and then to estimate the optimal flood operation. The Shihmen reservoir in Northern Taiwan was used as a case study, where its 26 typhoon events are investigated by the proposed method. The results demonstrate that the proposed control model can perform much better than the original reservoir operator in 26 flood events and effectively achieve decreasing peak flood stage downstream and storing floodwaters for future usage.

  12. Real-time lucky imaging in FastCam project

    NASA Astrophysics Data System (ADS)

    Rodríguez Ramos, L. F.; Piqueras Meseguer, J. J.; Martin Hernando, Y.; Oscoz, A.; Rebolo, R.

    2008-07-01

    Lucky imaging techniques implemented by the FastCam group (see http://www.iac.es/proyecto/fastcam/) at the Instituto de Astrofisica de Canarias have demonstrated its ability to obtain spectacular diffraction limited images in telescopes ranging from 1 to 4.2 m in visible wavelengths (mainly in the I band), at the expense of using only a small percentage of the available images. This work presents the development of a real-time processor, FPGA-based, capable of performing all the required processing involved in the lucky imaging technique: Bias and flat-field correction, quality evaluation of images, quality threshold for image selection, image recentering and accumulation, and finally sending through Gigabit Ethernet both raw and processed images to a PC computer. Furthermore, a real time display is generated directly from FPGA showing both types of images, plus a histogram of the computed quality values and the threshold used. All processes can co-exist physically located in separated places inside the FPGA, using its natural parallel approach, and can easily handle the 512x512 pixels at 30 fps found at the sensor camera output (an Andor Ixon+ DU-897ECSO EMCCD). Flexibility and parallel processing features of the reconfigurable logic have been used to implement a novel imaging strategy for segmented-mirror telescopes, allowing separate evaluation of every segment and posterior accumulation to achieve the resolution limit of a single segment with the integration capability of the full primary mirror.

  13. Real-time adherence monitoring for HIV antiretroviral therapy.

    PubMed

    Haberer, Jessica E; Kahane, Josh; Kigozi, Isaac; Emenyonu, Nneka; Hunt, Peter; Martin, Jeffrey; Bangsberg, David R

    2010-12-01

    Current adherence assessments typically detect missed doses long after they occur. Real-time, wireless monitoring strategies for antiretroviral therapy may provide novel opportunities to proactively prevent virologic rebound and treatment failure. Wisepill, a wireless pill container that transmits a cellular signal when opened, was pilot tested in ten Ugandan individuals for 6 months. Adherence levels measured by Wisepill, unannounced pill counts, and self-report were compared with each other, prior standard electronic monitoring, and HIV RNA. Wisepill data was initially limited by battery life and signal transmission interruptions. Following device improvements, continuous data was achieved with median (interquartile range) adherence levels of 93% (87-97%) by Wisepill, 100% (99-100%) by unannounced pill count, 100% (100-100%) by self-report, and 92% (79-98%) by prior standard electronic monitoring. Four individuals developed transient, low-level viremia. After overcoming technical challenges, real-time adherence monitoring is feasible for resource-limited settings and may detect suboptimal adherence prior to viral rebound.

  14. Apparatus Characterizes Transient Voltages in Real Time

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    is received, a volatile memory is filled with data for a total time of 200 ms. After the data are transferred to nonvolatile memory, the recorder rearms itself within 400 ms to enable recording of subsequent transients. Unfortunately, the recorded data must be retrieved through a serial communication link. Depending on the amount of data recorded, the memory can be filled before retrieval is completed. Although large amounts of data are recorded and retrieved, only a small part of the information (the selected parameters) is usually required. The present transient-voltage recorder provides the required information, without incurring the overhead associated with the recording, storage, and retrieval of complete transient-waveform data. In operation, this apparatus processes transient voltage waveforms in real time to extract and record the selected parameters. An analog-to-digital converter that operates at a speed of as much as 100 mega-samples per second is used to sample a transient waveform. A real-time comparator and peak detector are implemented by use of fast field-programmable gate arrays.

  15. Public Science with Real-Time Experiments

    NASA Astrophysics Data System (ADS)

    Lenardic, A.

    2013-12-01

    One of the best ways for professional scientists to engage in public outreach is to get outside of the university and/or lab walls and go out into the public. That is, go to public spaces to do some science experiments with the public - this includes students of all ages that constitute that public. Technological advance in portable measurement gear now allow one to do real, or near real, time experiments in outdoor, public spaces. We have been running a meta-experiment of this sort, aimed at the public display of science, for about a year now in Houston TX at the Lee and Joe Jamail Skatepark. The project goes under the title of Sk8Lab Houston and has introduced students of all ages to the power of scientific experimentation. We bring a portable science pack with us to the park. The pack has a range of wireless measurement gear that allow experiments to be done on the spot. Some of the experiments are designed by us but many are designed on by whoever suggests them to us that day. Over time the Sk8Lab scientists have built up a level of "trust" with the people who frequent the park (no one feels like we are gonna grade them at the park and they know that the learning is not on some regimented clock). This has broken down some learning walls and allowed for a more informal mode of exploration and a more genuine mode of experimentation (as compared to what often happens in class labs when students feel like they are just being forced to reproduce some known result). We will describe some of the test case experiments we have run and also discuss some of the trials, tribulations, and happy successes (many unplanned) along the way.

  16. Real-Time Feature Tracking Using Homography

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel S.; Cheng, Yang; Ansar, Adnan I.; Trotz, David C.; Padgett, Curtis W.

    2010-01-01

    This software finds feature point correspondences in sequences of images. It is designed for feature matching in aerial imagery. Feature matching is a fundamental step in a number of important image processing operations: calibrating the cameras in a camera array, stabilizing images in aerial movies, geo-registration of images, and generating high-fidelity surface maps from aerial movies. The method uses a Shi-Tomasi corner detector and normalized cross-correlation. This process is likely to result in the production of some mismatches. The feature set is cleaned up using the assumption that there is a large planar patch visible in both images. At high altitude, this assumption is often reasonable. A mathematical transformation, called an homography, is developed that allows us to predict the position in image 2 of any point on the plane in image 1. Any feature pair that is inconsistent with the homography is thrown out. The output of the process is a set of feature pairs, and the homography. The algorithms in this innovation are well known, but the new implementation improves the process in several ways. It runs in real-time at 2 Hz on 64-megapixel imagery. The new Shi-Tomasi corner detector tries to produce the requested number of features by automatically adjusting the minimum distance between found features. The homography-finding code now uses an implementation of the RANSAC algorithm that adjusts the number of iterations automatically to achieve a pre-set probability of missing a set of inliers. The new interface allows the caller to pass in a set of predetermined points in one of the images. This allows the ability to track the same set of points through multiple frames.

  17. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  18. Real time monitoring of electroless nickel plating

    NASA Astrophysics Data System (ADS)

    Rains, Aaron E.; Kline, Ronald A.

    2013-01-01

    This work deals with the design and manufacturing of the heat and chemical resistant transducer case required for on-line immersion testing, experimental design, data acquisition and signal processing. Results are presented for several depositions with an accuracy of two ten-thousandths of an inch in coating thickness obtained. Monitoring the deposition rate of Electroless Nickel (EN) plating in-situ will provide measurement of the accurate dimensions of the component being plated, in real time. EN is used as for corrosion and wear protection for automotive an - Electroless Nickel (EN) plating is commonly used for corrosion and wear protection for automotive and aerospace components. It plates evenly and symmetrically, theoretically allowing the part to be plated to its final dimension. Currently the standard approach to monitoring the thickness of the deposited nickel is to remove the component from the plating bath and physically measure the part. This can lead to plating problems such as pitting, non-adhesion of the deposit and contamination of the plating solution. The goal of this research effort is to demonstrate that plating thickness can be rapidly and accurately measured using ultrasonic testing. Here a special housing is designed to allow immersion of the ultrasonic transducers directly into the plating bath. An FFT based signal processing algorithm was developed to resolve closely spaced echoes for precise thickness determination. The technique in this research effort was found to be capable of measuring plating thicknesses to within 0.0002 inches. It is expected that this approach will lead to cost savings in many EN plating operations.

  19. A real-time prediction of UTC

    NASA Technical Reports Server (NTRS)

    Thomas, Claudine; Allan, David W.

    1994-01-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  20. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  1. Practical Real-Time Imaging Stereo Matcher

    NASA Astrophysics Data System (ADS)

    Nishihara, H. K.

    1984-10-01

    A binocular-stereo-matching algorithm for making rapid visual range measurements in noisy images is described. This technique is developed for application to problems in robotics where noise tolerance, reliability, and speed are predominant issues. A high speed pipelined convolver for preprocessing images and an unstructured light technique for improving signal quality are introduced to help enhance performance to meet the demands of this task domain. These optimizations, however, are not sufficient. A closer examination of the problems encountered suggests that broader interpretations of both the objective of binocular stereo and of the zero-crossing theory of Marr and Poggio [Proc. R. Soc. Lond. B 204, 301 (1979)] are required. In this paper, we restrict ourselves to the problem of making a single primitive surface measurement for example, to determine whether or not a specified volume of space is occupied, to measure the range to a surface at an indicated image location, or to determine the elevation gradient at that position. In this framework we make a subtle but important shift from the explicit use of zero-crossing contours (in bandpass-filtered images) as the elements matched between left and right images, to the use of the signs between zero crossings. With this change, we obtain a simpler algorithm with a reduced sensitivity to noise and a more predictable behavior. The practical real-time imaging stereo matcher (PRISM) system incorporates this algorithm with the unstructured light technique and a high speed digital convolver. It has been used successfully by others as a sensor in a path-planning system and a bin-picking system.

  2. Instrumentation development for real time brainwave monitoring.

    SciTech Connect

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could capture, analyze, and communicate

  3. Real Time Wide Area Radiation Surveillance System

    NASA Astrophysics Data System (ADS)

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a

  4. Real-time Forensic Disaster Analysis

    NASA Astrophysics Data System (ADS)

    Wenzel, F.; Daniell, J.; Khazai, B.; Mühr, B.; Kunz-Plapp, T.; Markus, M.; Vervaeck, A.

    2012-04-01

    The Center for Disaster Management and Risk Reduction Technology (CEDIM, www.cedim.de) - an interdisciplinary research center founded by the German Research Centre for Geoscience (GFZ) and Karlsruhe Institute of Technology (KIT) - has embarked on a new style of disaster research known as Forensic Disaster Analysis. The notion has been coined by the Integrated Research on Disaster Risk initiative (IRDR, www.irdrinternational.org) launched by ICSU in 2010. It has been defined as an approach to studying natural disasters that aims at uncovering the root causes of disasters through in-depth investigations that go beyond the reconnaissance reports and case studies typically conducted after disasters. In adopting this comprehensive understanding of disasters CEDIM adds a real-time component to the assessment and evaluation process. By comprehensive we mean that most if not all relevant aspects of disasters are considered and jointly analysed. This includes the impact (human, economy, and infrastructure), comparisons with recent historic events, social vulnerability, reconstruction and long-term impacts on livelihood issues. The forensic disaster analysis research mode is thus best characterized as "event-based research" through systematic investigation of critical issues arising after a disaster across various inter-related areas. The forensic approach requires (a) availability of global data bases regarding previous earthquake losses, socio-economic parameters, building stock information, etc.; (b) leveraging platforms such as the EERI clearing house, relief-web, and the many sources of local and international sources where information is organized; and (c) rapid access to critical information (e.g., crowd sourcing techniques) to improve our understanding of the complex dynamics of disasters. The main scientific questions being addressed are: What are critical factors that control loss of life, of infrastructure, and for economy? What are the critical interactions

  5. Suppressing qubit dephasing using real-time Hamiltonian estimation

    PubMed Central

    Harvey, S. P.; Nichol, J. M.; Bartlett, S. D.; Doherty, A. C.; Umansky, V.; Yacoby, A.

    2014-01-01

    Unwanted interaction between a quantum system and its fluctuating environment leads to decoherence and is the primary obstacle to establishing a scalable quantum information processing architecture. Strategies such as environmental and materials engineering, quantum error correction and dynamical decoupling can mitigate decoherence, but generally increase experimental complexity. Here we improve coherence in a qubit using real-time Hamiltonian parameter estimation. Using a rapidly converging Bayesian approach, we precisely measure the splitting in a singlet-triplet spin qubit faster than the surrounding nuclear bath fluctuates. We continuously adjust qubit control parameters based on this information, thereby improving the inhomogenously broadened coherence time from tens of nanoseconds to >2 μs. Because the technique demonstrated here is compatible with arbitrary qubit operations, it is a natural complement to quantum error correction and can be used to improve the performance of a wide variety of qubits in both meteorological and quantum information processing applications. PMID:25295674

  6. Real-time image processing architecture for robot vision

    NASA Astrophysics Data System (ADS)

    Persa, Stelian; Jonker, Pieter P.

    2000-10-01

    This paper presents a study of the impact of MMX technology and PIII Streaming SIMD (Single Instruction stream, Multiple Data stream). Extensions in image processing and machine vision application, which, because of their hard real time constrains, is an undoubtedly challenging task. A comparison with traditional scalar code and with other parallel SIMD architecture (IMPA-VISION board) is discussed with emphasis of the particular programming strategies for speed optimization. More precisely we discuss the low level and intermediate level image processing algorithms, which are best suited for parallel SIMD implementation. High-level image processing algorithms are more suitable for parallel implementation on MIMD architectures. While the IMAP-VISION system performs better because of the large number of processing elements, the MMX processor and PIII (with Streaming SIMD Extensions) remains a good candidate for low-level image processing.

  7. A Real-Time Groundwater Management Model Using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Putti, M.; Kendall, D.; Yeh, W. W.

    2009-12-01

    This study develops a groundwater management model for real time operation of an aquifer system. A groundwater flow model is allied with a nudging data assimilation algorithm that reduces the forecast error, minimizes the risk of system failure, and improves management strategies. The nudging algorithm treats the unknown private pumping as an additional sink term in the groundwater flow equations and provides a consistently physical interpretation for pumping rates identification. The response of the groundwater simulation model due to pumping/injection is represented by a response matrix which is generated by the influence coefficient method. The response matrix with a much smaller dimension (referred to as the reduced simulation model) is directly embedded in the management model as a part of the constraint set. Additionally, the influence coefficient method is utilized to include the nudging effect as additional terms in the reduced simulation model. The management model optimizes monthly operational policy for 12 months into the future with given initial condition and system constraints. We apply the developed management model to the Aquifer Storage and Recovery (ASR) project of the Las Posas Groundwater Basin in southern California. We consider both the injection and pumping scenarios. In the case studies, six unknown pumping rates from private wells are estimated using measured heads from four observation wells. The management model determines the optimal operational strategies using the information provided by nudging and is updated at the beginning of each month when new head observations become available. We also discuss the utility, accuracy, and efficiency of the proposed management model for real time operation.

  8. Design and optimization of molecular beacon real-time polymerase chain reaction assays.

    PubMed

    Vet, Jacqueline A M; Marras, Salvatore A E

    2005-01-01

    During the last few years, several innovative technologies have become available for performing sensitive and accurate genetic analyses. These techniques use fluorescent detection strategies in combination with nucleic acid amplification protocols. Most commonly used is the real-time polymerase chain reaction (PCR). To achieve the maximum potential of a real-time PCR assay, several parameters must be evaluated and optimized independently. This chapter describes the different steps necessary for establishing a molecular beacon real-time PCR assay: (1) target design, (2) primer design, (3) optimization of the amplification reaction conditions using SYBR Green, (4) molecular beacon design, and (5) molecular beacon synthesis and characterization. The last section provides an example of a multiplex quantitative real-time PCR.

  9. Real time simulation using position sensing

    NASA Technical Reports Server (NTRS)

    Studor, George F. (Inventor); Womack, Robert W. (Inventor); Hilferty, Michael F. (Inventor); Isbell, William B. (Inventor); Taylor, Jason A. (Inventor); Bacon, Bruce R. (Inventor)

    2000-01-01

    An interactive exercise system including exercise equipment having a resistance system, a speed sensor, a controller that varies the resistance setting of the exercise equipment, and a playback device for playing pre-recorded video and audio. The controller, operating in conjunction with speed information from the speed sensor and terrain information from media table files, dynamically varies the resistance setting of the exercise equipment in order to simulate varying degrees of difficulty while the playback device concurrently plays back the video and audio to create the simulation that the user is exercising in a natural setting such as a real-world exercise course.

  10. Real time UAV autonomy through offline calculations

    NASA Astrophysics Data System (ADS)

    Jung, Sunghun

    . Once one or several targets are detected, UAVs near the target are manipulated to approach to the target. If the number of detected targets is more than one, UAVs are evenly grouped to track targets. After a specific period of time, UAVs hand off and continue their original tasks. Thirdly, Emergency algorithm is generated to avoid losses of UAVs when UAVs have system failures. If one UAV is out of fuel or control during the mission, the Emergency algorithm brings the malfunctioning UAV to the point of departure and let the rest UAVs to continue an aerial reconnaissance. An UAV which finishes its task the earliest will continue to search a region which the failed UAV is supposed to search. In addition, Emergency algorithm prevents UAVs colliding into each other by using emergency altitude. Overall, the framework developed here facilitates the solution of several mission planning problems. The robustness built into our discretization of space and time permits feedback corrections on real-time to vehicle trajectories. The library of off-line solutions proposed and developed here minimizes computational overhead during operations.

  11. Real Time Flux Control in PM Motors

    SciTech Connect

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of

  12. Real-Time Wireless Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non

  13. A modular real-time vision system for humanoid robots

    NASA Astrophysics Data System (ADS)

    Trifan, Alina L.; Neves, António J. R.; Lau, Nuno; Cunha, Bernardo

    2012-01-01

    Robotic vision is nowadays one of the most challenging branches of robotics. In the case of a humanoid robot, a robust vision system has to provide an accurate representation of the surrounding world and to cope with all the constraints imposed by the hardware architecture and the locomotion of the robot. Usually humanoid robots have low computational capabilities that limit the complexity of the developed algorithms. Moreover, their vision system should perform in real time, therefore a compromise between complexity and processing times has to be found. This paper presents a reliable implementation of a modular vision system for a humanoid robot to be used in color-coded environments. From image acquisition, to camera calibration and object detection, the system that we propose integrates all the functionalities needed for a humanoid robot to accurately perform given tasks in color-coded environments. The main contributions of this paper are the implementation details that allow the use of the vision system in real-time, even with low processing capabilities, the innovative self-calibration algorithm for the most important parameters of the camera and its modularity that allows its use with different robotic platforms. Experimental results have been obtained with a NAO robot produced by Aldebaran, which is currently the robotic platform used in the RoboCup Standard Platform League, as well as with a humanoid build using the Bioloid Expert Kit from Robotis. As practical examples, our vision system can be efficiently used in real time for the detection of the objects of interest for a soccer playing robot (ball, field lines and goals) as well as for navigating through a maze with the help of color-coded clues. In the worst case scenario, all the objects of interest in a soccer game, using a NAO robot, with a single core 500Mhz processor, are detected in less than 30ms. Our vision system also includes an algorithm for self-calibration of the camera parameters as well

  14. Easy and hard testbeds for real-time search algorithms

    SciTech Connect

    Koenig, S.; Simmons, R.G.

    1996-12-31

    Although researchers have studied which factors influence the behavior of traditional search algorithms, currently not much is known about how domain properties influence the performance of real-time search algorithms. In this paper we demonstrate, both theoretically and experimentally, that Eulerian state spaces (a super set of undirected state spaces) are very easy for some existing real-time search algorithms to solve: even real-time search algorithms that can be intractable, in general, are efficient for Eulerian state spaces. Because traditional real-time search testbeds (such as the eight puzzle and gridworlds) are Eulerian, they cannot be used to distinguish between efficient and inefficient real-time search algorithms. It follows that one has to use non-Eulerian domains to demonstrate the general superiority of a given algorithm. To this end, we present two classes of hard-to-search state spaces and demonstrate the performance of various real-time search algorithms on them.

  15. Mechatronic objects for real-time control software development

    NASA Astrophysics Data System (ADS)

    Muir, Patrick F.; Horner, Jeremy W.

    1998-12-01

    The design of real-time control software for a mechatronic system must be effectively integrated with the system hardware in order to achieve useful qualitative benefits beyond basic functionality. The sought-after benefits include: rapid development, flexibility, maintainability, extensively, and reusability. In this work we focus upon the interface between the device drivers and the control software with the aim to properly design this interface to best realize the aforementioned benefits. The results of this fundamental research include the development of an easily manageable set of four C++ object classes following an object-oriented approach to software design. These Universal Mechatronic Objects (UMOs) are applicable to a wide spectrum of actuators including dc motors, stepper motors, and solenoids; and sensors including pressure sensors, microswitches, and encoders. UMOs encapsulate the interface between the electrical subsystem and the control subsystem, providing the control software developer with a powerful abstraction that facilitates the development of hardware-independent control code and providing the electrical subsystem developer with an effective abstraction that facilitates the development of application-independent device drivers. Objects which are intuitively related to hardware components of the mechatronic system can be declared using the UMOs early in the system development process to facilitate the rapid concurrent development of both the electrical and the control subsystems. Our UMOs were developed as part of a project to implement a real-time control system for a z-theta robotic manipulator. The z- theta manipulator is one component of the Minifactory project in the Microdynamic Systems Laboratory at Carnegie Mellon University. The goals of this agile assembly project include the reduction of factory setup and changeover times, plug-and-play type modularity, and the reuse of its components. The application of UMOs to the manipulator

  16. Improvements in atrial fibrillation detection for real-time monitoring.

    PubMed

    Babaeizadeh, Saeed; Gregg, Richard E; Helfenbein, Eric D; Lindauer, James M; Zhou, Sophia H

    2009-01-01

    Electrocardiographic (ECG) monitoring plays an important role in the management of patients with atrial fibrillation (AF). Automated real-time AF detection algorithm is an integral part of ECG monitoring during AF therapy. Before and after antiarrhythmic drug therapy and surgical procedures require ECG monitoring to ensure the success of AF therapy. This article reports our experience in developing a real-time AF monitoring algorithm and techniques to eliminate false-positive AF alarms. We start by designing an algorithm based on R-R intervals. This algorithm uses a Markov modeling approach to calculate an R-R Markov score. This score reflects the relative likelihood of observing a sequence of R-R intervals in AF episodes versus making the same observation outside AF episodes. Enhancement of the AF algorithm is achieved by adding atrial activity analysis. P-R interval variability and a P wave morphology similarity measure are used in addition to R-R Markov score in classification. A hysteresis counter is applied to eliminate short AF segments to reduce false AF alarms for better suitability in a monitoring environment. A large ambulatory Holter database (n = 633) was used for algorithm development and the publicly available MIT-BIH AF database (n = 23) was used for algorithm validation. This validation database allowed us to compare our algorithm performance with previously published algorithms. Although R-R irregularity is the main characteristic and strongest discriminator of AF rhythm, by adding atrial activity analysis and techniques to eliminate very short AF episodes, we have achieved 92% sensitivity and 97% positive predictive value in detecting AF episodes, and 93% sensitivity and 98% positive predictive value in quantifying AF segment duration. PMID:19608194

  17. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1993-01-01

    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.

  18. Real-time and postprocessing holographic effects in dichromated pullulan.

    PubMed

    Savić, Svetlana; Pantelić, Dejan; Jakovijević, Dragica

    2002-08-01

    Experimental results concerning both real-time and postprocessing (after-development) behavior of a novel photosensitive material, dichromate-sensitized pullulan (DCP), are investigated. The exposure mechanism and possibilities for controlling holographic grating properties are discussed. We have shown that it is possible to maximize the diffraction efficiency of interference gratings after development by controlling diffraction efficiency in real time. Stronger real-time effects of DCP compared with those of dichromated gelatin are achieved. PMID:12153075

  19. Methods for real-time speech processing on Unix

    SciTech Connect

    Romberger, A.

    1982-01-01

    The author discusses computer programming done at the University of California, Berkeley, in support of research work in the area of speech analysis and synthesis. The purpose of this programming is to set up a system for doing real-time speech sampling using the Unix operating system. Two alternative approaches to real time work on Unix are discussed. The first approach is to do the real-time input/output on a secondary (satellite) machine that is not running Unix. The second approach is to do the real-time input/output on the main machine with the aid of special hardware.

  20. Novel Techniques of Real-time Blood Flow and Functional Mapping: Technical Note

    PubMed Central

    KAMADA, Kyousuke; OGAWA, Hiroshi; SAITO, Masato; TAMURA, Yukie; ANEI, Ryogo; KAPELLER, Christoph; HAYASHI, Hideaki; PRUECKL, Robert; GUGER, Christoph

    2014-01-01

    There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies. PMID:25263624

  1. Strategies Students Adopted when Learning to Play an Improvised Blues in an E-Learning Environment

    ERIC Educational Resources Information Center

    Seddon, Frederick; Biasutti, Michele

    2010-01-01

    In this investigative study, the authors sought to reveal the learning strategies adopted by participants as they learned to play a 12-bar improvised blues with both hands together on a musical keyboard in an e-learning environment. There were 3 participants, 2 female and 1 male. Participants' average age was 21 years. They worked individually in…

  2. Game Playing Strategy as an Indicator of Racial Prejudice among South African Students.

    ERIC Educational Resources Information Center

    Tyson, G. A.; And Others

    1988-01-01

    Presents a study which examined the racial discrimination of South African students using a playing strategy in the prisoners dilemma game as an unobtrusive measure. Concludes that both Black and White students cooperated to a greater extent with a Black co-player, revealing a paternalistic approach on the part of some Whites and apparent reverse…

  3. Learning Pre-Played Solos: Self-Regulated Learning Strategies in Jazz/Improvised Music

    ERIC Educational Resources Information Center

    Nielsen, Siw G.

    2015-01-01

    This article reports on the self-regulated learning strategies of two advanced students in jazz/improvised music education when learning pre-played solos over well-known jazz tunes. The students were enrolled in a well-established performance degree programme in a music conservatoire, and videotaped their own individual practice sessions. In…

  4. Exploding Nitromethane in Silico, in Real Time.

    PubMed

    Fileti, Eudes Eterno; Chaban, Vitaly V; Prezhdo, Oleg V

    2014-10-01

    Nitromethane (NM) is widely applied in chemical technology as a solvent for extraction, cleaning, and chemical synthesis. NM was considered safe for a long time, until a railroad tanker car exploded in 1958. We investigate the detonation kinetics and explosion reaction mechanisms in a variety of systems consisting of NM, molecular oxygen, and water vapor. Reactive molecular dynamics allows us to simulate reactions in time-domain, as they occur in real life. High polarity of the NM molecule is shown to play a key role, driving the first exothermic step of the reaction. Rapid temperature and pressure growth stimulate the subsequent reaction steps. Oxygen is important for faster oxidation, whereas its optimal concentration is in agreement with the proposed reaction mechanism. Addition of water (50 mol %) inhibits detonation; however, water does not prevent detonation entirely. The reported results provide important insights for improving applications of NM and preserving the safety of industrial processes. PMID:26278455

  5. Ecohydraulic-driven real-time control of stormwater basins

    NASA Astrophysics Data System (ADS)

    Muschalla, Dirk; Vallet, Bertrand; Anctil, François; Lessard, Paul; Pelletier, Geneviève; Vanrolleghem, Peter A.

    2014-04-01

    Control of stormwater basins can be a competitive measure to improve the ecohydraulics of urban rivers by increasing the removal efficiency of particles and agglomerated contaminants like heavy metals and by decreasing hydraulic peak flows. In this paper, we present a simulation study that evaluates the potential of ecohydraulic-driven real-time control of stormwater basins to improve water quality and decrease hydraulic stress in the receiving water body. Nine different static and dynamic control scenarios were analysed based on a detailed hydraulic and quality model of an existing small urban catchment equipped with a stormwater basin at its outlet. Under dynamic control, an outlet valve was manipulated to increase retention time. The removal efficiency for suspended solids could be significantly increased by all control strategies and the hydraulic peaks were reduced by at least 50%. At the same time, overflow of the basin is avoided to prevent flooding. The developed dynamic control strategies proved to be advantageous as they provide significantly higher removal efficiency for suspended solids and a possible flexible adaptation to future demands. The findings of this study have been confirmed by field experiments.

  6. Black Hole Formation in Real Time

    NASA Astrophysics Data System (ADS)

    Nissanke, Samaya

    2015-08-01

    Gravity plays a fundamental role in the formation, evolution and fate of stars. However, it remains unclear how massive stars, almost always in pairs, end their lives as extreme gravity objects (neutron stars and black holes) and what their eventual fate is. The physics driving these events in strong-field gravity are complex, rich but still remain elusive. Theoretical work in general relativity has long predicted that the formation of black holes through neutron star mergers emit vast amounts of gravitational radiation, through gravitational waves (GWs), and conventional electromagnetic (EM) radiation. Observing GWs and EM radiation from these elusive short-lived mergers remains one of the holy grails of modern astronomy and is only now possible with a suite of new time-domain telescopes and experiments. I will first review the most recent advances in this blossoming field of EM+GW astronomy, which combines three active disciplines: time-domain astronomy, computational astrophysics and general relativity. I will discuss the promises of this new convergence by illustrating the wealth of astrophysical information that a combined EM+GW measurement would immediately bring. I will then outline the main challenges that lie ahead for this new field in pinpointing the sky location of neutron star mergers using GW detectors and optical and radio wide-field synoptic surveys.

  7. Real-time zenith tropospheric delays in support of numerical weather prediction applications

    NASA Astrophysics Data System (ADS)

    Dousa, Jan; Vaclavovic, Pavel

    2014-05-01

    The Geodetic Observatory Pecný (GOP) routinely estimates near real-time zenith total delays (ZTD) from GPS permanent stations for assimilation in numerical weather prediction (NWP) models more than 12 years. Besides European regional, global and GPS and GLONASS solutions, we have recently developed real-time estimates aimed at supporting NWP nowcasting or severe weather event monitoring. While all previous solutions are based on data batch processing in a network mode, the real-time solution exploits real-time global orbits and clocks from the International GNSS Service (IGS) and Precise Point Positioning (PPP) processing strategy. New application G-Nut/Tefnut has been developed and real-time ZTDs have been continuously processed in the nine-month demonstration campaign (February-October, 2013) for selected 36 European and global stations. Resulting ZTDs can be characterized by mean standard deviations of 6-10 mm, but still remaining large biases up to 20 mm due to missing precise models in the software. These results fulfilled threshold requirements for the operational NWP nowcasting (i.e. 30 mm in ZTD). Since remaining ZTD biases can be effectively eliminated using the bias-reduction procedure prior to the assimilation, results are approaching the target requirements in terms of relative accuracy (i.e. 6 mm in ZTD). Real-time strategy and software are under the development and we foresee further improvements in reducing biases and in optimizing the accuracy within required timeliness. The real-time products from the International GNSS Service were found accurate and stable for supporting PPP-based tropospheric estimates for the NWP nowcasting.

  8. Toward Real Time Uavs' Image Mosaicking

    NASA Astrophysics Data System (ADS)

    Mehrdad, S.; Satari, M.; Safdary, M.; Moallem, P.

    2016-06-01

    Anyone knows that sudden catastrophes can instantly do great damage. Fast and accurate acquisition of catastrophe information is an essential task for minimize life and property damage. Compared with other ways of catastrophe data acquisition, UAV based platforms can optimize time, cost and accuracy of the data acquisition, as a result UAVs' data has become the first choice in such condition. In this paper, a novel and fast strategy is proposed for registering and mosaicking of UAVs' image data. Firstly, imprecise image positions are used to find adjoining frames. Then matching process is done by a novel matching method. With keeping Sift in mind, this fast matching method is introduced, which uses images exposure time geometry, SIFT point detector and rBRIEF descriptor vector in order to match points efficiency, and by efficiency we mean not only time efficiency but also elimination of mismatch points. This method uses each image sequence imprecise attitude in order to use Epipolar geometry to both restricting search space of matching and eliminating mismatch points. In consideration of reaching to images imprecise attitude and positions we calibrated the UAV's sensors. After matching process, RANSAC is used to eliminate mismatched tie points. In order to obtain final mosaic, image histograms are equalized and a weighted average method is used to image composition in overlapping areas. The total RMSE over all matching points is 1.72 m.

  9. 76 FR 42536 - Real-Time System Management Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... System Management Information Program on November 8, 2010, at 75 FR 68418. The final rule document also... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... available and share traffic and travel conditions information via real-time information programs as...

  10. REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY

    EPA Science Inventory

    Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...

  11. "Real-Time" Case Studies in Organizational Communication

    ERIC Educational Resources Information Center

    Long, Shawn D.

    2005-01-01

    This article presents an activity that integrates theory and application by examining the multiple communication events affecting a single organization in "real time" over the course of an academic term. The "real-time" case study (RTCS) avails students of the opportunity to examine organizational communication events as they are occurring in…

  12. Real-time hyperspectral imaging for food safety applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral imaging systems with selected bands can commonly be used for real-time applications of food processing. Recent research has demonstrated several image processing methods including binning, noise removal filter, and appropriate morphological analysis in real-time mode can remove most fa...

  13. Quantification of total and specific gram-negative histamine-producing bacteria species in fish using an MPN real-time PCR method.

    PubMed

    Bjornsdottir-Butler, Kristin; Jones, Jessica L; Benner, Ronald A; Burkhardt, William

    2011-10-01

    Quantification of histamine-producing bacteria (HPB) is necessary in order to elucidate the role that HPB play in scombrotoxin (histamine) fish poisoning. We report here the evaluation of a real-time PCR method for the quantification of total and specific Gram-negative HPB species in fish using a most probable number (MPN) format. The species-specific real-time PCR assay was 100% inclusive for independently detecting Morganella morganii, Enterobacter aerogenes, Raoultella planticola/ornithinolytica and Photobacterium damselae and did not cross react with other histamine- or non- histamine-producing bacteria. The efficiency of the reactions in the absence and presence of Spanish mackerel enrichment containing 1 × 10(6) CFU/ml of background microflora were 93-104 and 92-99%, respectively. The MPN-real-time PCR assay accurately quantified total and specific HPB in spiked mahi-mahi (Coryphaena hippurus) and Spanish mackerel (Scomberomorus maculates) samples. These methods were used to quantify total and specific HPB in naturally contaminated, decomposing mahi-mahi, Spanish mackerel and tuna (Thunnus albacares) samples. The results of this study indicate that MPN-real-time PCR assays can be used to accurately enumerate total and specific HPB in fish samples. These assays can be applied to assess the effectiveness of mitigation strategies and understand the relationship between HPB and histamine production in decomposing fish. PMID:21839377

  14. Real-Time MENTAT programming language and architecture

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  15. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  16. Hardware for a real-time multiprocessor simulator

    NASA Technical Reports Server (NTRS)

    Blech, R. A.; Arpasi, D. J.

    1984-01-01

    The hardware for a real time multiprocessor simulator (RTMPS) developed at the NASA Lewis Research Center is described. The RTMPS is a multiple microprocessor system used to investigate the application of parallel processing concepts to real time simulation. It is designed to provide flexible data exchange paths between processors by using off the shelf microcomputer boards and minimal customized interfacing. A dedicated operator interface allows easy setup of the simulator and quick interpreting of simulation data. Simulations for the RTMPS are coded in a NASA designed real time multiprocessor language (RTMPL). This language is high level and geared to the multiprocessor environment. A real time multiprocessor operating system (RTMPOS) has also been developed that provides a user friendly operator interface. The RTMPS and supporting software are currently operational and are being evaluated at Lewis. The results of this evaluation will be used to specify the design of an optimized parallel processing system for real time simulation of dynamic systems.

  17. Recent advances to obtain real - Time displacements for engineering applications

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  18. EVALUATION OF REAL-TIME INNOVATIVE BIOLOGICAL AND CHEMICAL MONITORING SYSTEMS TO PROTECT SOURCE WATERS

    EPA Science Inventory

    Evaluation of Real-Time Innovative Biological and Chemical Monitoring Systems
    To Protect Source Waters

    Drinking water supplies have in recent years come under increasing pressure from regulatory concerns regarding TMDL designations and restoration strategies as well ...

  19. Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing

    SciTech Connect

    Pang, Xiufeng; Hong, Tianzhen; Piette, Mary Ann

    2013-06-03

    This paper describes work in progress toward an urban-scale system aiming to reduce energy use in neighboring buildings by providing three components: a database for accessing past and present weather data from high quality weather stations; a network for communicating energy-saving strategies between building owners; and a set of modeling tools for real-time building energy simulation.

  20. Real-time scheduling of embedded applications on multi-core platforms

    NASA Astrophysics Data System (ADS)

    Fan, Ming

    For the past several decades, we have experienced the tremendous growth, in both scale and scope, of real-time embedded systems, thanks largely to the advances in IC technology. However, the traditional approach to get performance boost by increasing CPU frequency has been a way of past. Researchers from both industry and academia are turning their focus to multi-core architectures for continuous improvement of computing performance. In our research, we seek to develop efficient scheduling algorithms and analysis methods in the design of real-time embedded systems on multi-core platforms. Real-time systems are the ones with the response time as critical as the logical correctness of computational results. In addition, a variety of stringent constraints such as power/energy consumption, peak temperature and reliability are also imposed to these systems. Therefore, real-time scheduling plays a critical role in design of such computing systems at the system level. We started our research by addressing timing constraints for real-time applications on multi-core platforms, and developed both partitioned and semi-partitioned scheduling algorithms to schedule fixed priority, periodic, and hard real-time tasks on multi-core platforms. Then we extended our research by taking temperature constraints into consideration. We developed a closed-form solution to capture temperature dynamics for a given periodic voltage schedule on multi-core platforms, and also developed three methods to check the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research by incorporating the power/energy constraint with thermal awareness into our research problem. We investigated the energy estimation problem on multi-core platforms, and developed a computation efficient method to calculate the energy consumption for a given voltage schedule on a multi-core platform. In this dissertation, we present our research in details and demonstrate the

  1. Real-time Fluorescence Image-Guided Oncologic Surgery

    PubMed Central

    Mondal, Suman B.; Gao, Shengkui; Zhu, Nan; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel

    2014-01-01

    Medical imaging plays a critical role in cancer diagnosis and planning. Many of these patients rely on surgical intervention for curative outcomes. This requires a careful identification of the primary and microscopic tumors, and the complete removal of cancer. Although there have been efforts to adapt traditional imaging modalities for intraoperative image guidance, they suffer from several constraints such as large hardware footprint, high operation cost, and disruption of the surgical workflow. Because of the ease of image acquisition, relatively low cost devices and intuitive operation, optical imaging methods have received tremendous interests for use in real-time image-guided surgery. To improve imaging depth under low interference by tissue autofluorescence, many of these applications utilize light in the near-infra red (NIR) wavelengths, which is invisible to human eyes. With the availability of a wide selection of tumor-avid contrast agents, advancements in imaging sensors, electronic and optical designs, surgeons are able to combine different attributes of NIR optical imaging techniques to improve treatment outcomes. The emergence of diverse commercial and experimental image guidance systems, which are in various stages of clinical translation, attests to the potential high impact of intraoperative optical imaging methods to improve speed of oncologic surgery with high accuracy and minimal margin positivity. PMID:25287689

  2. Reviewing real-time performance of nuclear reactor safety systems

    SciTech Connect

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  3. Organizing the Extremely Large LSST Database forReal-Time Astronomical Processing

    SciTech Connect

    Becla, Jacek; Lim, Kian-Tat; Monkewitz, Serge; Nieto-Santisteban, Maria; Thakar, Ani; /Johns Hopkins U.

    2007-11-07

    The Large Synoptic Survey Telescope (LSST) will catalog billions of astronomical objects and trillions of sources, all of which will be stored and managed by a database management system. One of the main challenges is real-time alert generation. To generate alerts, up to 100K new difference detections have to be cross-correlated with the huge historical catalogs, and then further processed to prune false alerts. This paper explains the challenges, the implementation of the LSST Association Pipeline and the database organization strategies we are planning to use to meet the real-time requirements, including data partitioning, parallelization, and pre-loading.

  4. Development and application of a real-time recovery boiler expert system

    SciTech Connect

    Smith, D.B.; Damon, R.A. ); Edwards, L.L. )

    1991-11-01

    The recovery boiler, although often a bottleneck, is an integral part of any kraft mill. Maximizing production while maintaining safe operation are primary concerns. Statistical process control (SPC) and simulation are powerful tools for addressing these problems. SPC is useful for maintaining stable operation, whereas off-line simulation has proven useful to evaluate various operating strategies. Real-time integration of these methods has also been proposed. This paper describes integration of a millwide information system, an expert system shell, SPC, and real-time process simulation into a prototype advisory system for recovery boiler operation.

  5. End-User Applications of Real-Time Earthquake Information in Europe

    NASA Astrophysics Data System (ADS)

    Cua, G. B.; Gasparini, P.; Giardini, D.; Zschau, J.; Filangieri, A. R.; Reakt Wp7 Team

    2011-12-01

    The primary objective of European FP7 project REAKT (Strategies and Tools for Real-Time Earthquake Risk Reduction) is to improve the efficiency of real-time earthquake risk mitigation methods and their capability of protecting structures, infrastructures, and populations. REAKT aims to address the issues of real-time earthquake hazard and response from end-to-end, with efforts directed along the full spectrum of methodology development in earthquake forecasting, earthquake early warning, and real-time vulnerability systems, through optimal decision-making, and engagement and cooperation of scientists and end users for the establishment of best practices for use of real-time information. Twelve strategic test cases/end users throughout Europe have been selected. This diverse group of applications/end users includes civil protection authorities, railway systems, hospitals, schools, industrial complexes, nuclear plants, lifeline systems, national seismic networks, and critical structures. The scale of target applications covers a wide range, from two school complexes in Naples, to individual critical structures, such as the Rion Antirion bridge in Patras, and the Fatih Sultan Mehmet bridge in Istanbul, to large complexes, such as the SINES industrial complex in Portugal and the Thessaloniki port area, to distributed lifeline and transportation networks and nuclear plants. Some end-users are interested in in-depth feasibility studies for use of real-time information and development of rapid response plans, while others intend to install real-time instrumentation and develop customized automated control systems. From the onset, REAKT scientists and end-users will work together on concept development and initial implementation efforts using the data products and decision-making methodologies developed with the goal of improving end-user risk mitigation. The aim of this scientific/end-user partnership is to ensure that scientific efforts are applicable to operational

  6. Cybersecurity through Real-Time Distributed Control Systems

    SciTech Connect

    Kisner, Roger A; Manges, Wayne W; MacIntyre, Lawrence Paul; Nutaro, James J; Munro Jr, John K; Ewing, Paul D; Howlader, Mostofa; Kuruganti, Phani Teja; Wallace, Richard M; Olama, Mohammed M

    2010-04-01

    Critical infrastructure sites and facilities are becoming increasingly dependent on interconnected physical and cyber-based real-time distributed control systems (RTDCSs). A mounting cybersecurity threat results from the nature of these ubiquitous and sometimes unrestrained communications interconnections. Much work is under way in numerous organizations to characterize the cyber threat, determine means to minimize risk, and develop mitigation strategies to address potential consequences. While it seems natural that a simple application of cyber-protection methods derived from corporate business information technology (IT) domain would lead to an acceptable solution, the reality is that the characteristics of RTDCSs make many of those methods inadequate and unsatisfactory or even harmful. A solution lies in developing a defense-in-depth approach that ranges from protection at communications interconnect levels ultimately to the control system s functional characteristics that are designed to maintain control in the face of malicious intrusion. This paper summarizes the nature of RTDCSs from a cybersecurity perspec tive and discusses issues, vulnerabilities, candidate mitigation approaches, and metrics.

  7. A new computational structure for real-time dynamics

    SciTech Connect

    Izaguirre, A. ); Hashimoto, Minoru )

    1992-08-01

    The authors present an efficient structure for the computation of robot dynamics in real time. The fundamental characteristic of this structure is the division of the computation into a high-priority synchronous task and low-priority background tasks, possibly sharing the resources of a conventional computing unit based on commercial microprocessors. The background tasks compute the inertial and gravitational coefficients as well as the forces due to the velocities of the joints. In each control sample period, the high-priority synchronous task computes the product of the inertial coefficients by the accelerations of the joints and performs the summation of the torques due to the velocities and gravitational forces. Kircanski et al. (1986) have shown that the bandwidth of the variation of joint angles and of their velocities is an order of magnitude less than the variation of joint accelerations. This result agrees with the experiments the authors have carried out using a PUMA 260 robot. Two main strategies contribute to reduce the computational burden associated with the evaluation of the dynamic equations. The first involves the use of efficient algorithms for the evaluation of the equations. The second is aimed at reducing the number of dynamic parameters by identifying beforehand the linear dependencies among these parameters, as well as carrying out a significance analysis of the parameters' contribution to the final joint torques. The actual code used to evaluate this dynamic model is entirely computer generated from experimental data, requiring no other manual intervention than performing a campaign of measurements.

  8. A real-time auditory feedback system for retraining gait.

    PubMed

    Maulucci, Ruth A; Eckhouse, Richard H

    2011-01-01

    Stroke is the third leading cause of death in the United States and the principal cause of major long-term disability, incurring substantial distress as well as medical cost. Abnormal and inefficient gait patterns are widespread in survivors of stroke, yet gait is a major determinant of independent living. It is not surprising, therefore, that improvement of walking function is the most commonly stated priority of the survivors. Although many such individuals achieve the goal of walking, the caliber of their walking performance often limits endurance and quality of life. The ultimate goal of the research presented here is to use real-time auditory feedback to retrain gait in patients with chronic stroke. The strategy is to convert the motion of the foot into an auditory signal, and then use this auditory signal as feedback to inform the subject of the existence as well as the magnitude of error during walking. The initial stage of the project is described in this paper. The design and implementation of the new feedback method for lower limb training is explained. The question of whether the patient is physically capable of handling such training is explored. PMID:22255509

  9. Assessment of the postural control strategies used to play two Wii Fit™ videogames.

    PubMed

    Michalski, A; Glazebrook, C M; Martin, A J; Wong, W W N; Kim, A J W; Moody, K D; Salbach, N M; Steinnagel, B; Andrysek, J; Torres-Moreno, R; Zabjek, K F

    2012-07-01

    The Nintendo Wii Fit™ may provide an affordable alternative to traditional biofeedback or virtual reality systems for retraining or improving motor function in populations with impaired balance. The purpose of this study was to evaluate postural control strategies healthy individuals use to play Wii Fit™ videogames. Sixteen young adults played 10 trials of Ski Slalom and Soccer Heading respectively. Centre of pressure (COP) excursion and three-dimensional movement data were acquired to determine variability in medial-lateral COP sway and shoulder-pelvic movement. While there was no difference in medial-lateral COP variability between games during trial 1, there was a significant difference after 10 trials. COP sway increased (59-75 mm) for Soccer Heading while it decreased (67-33 mm) for Ski Slalom from trial 1 to trial 10. During Ski Slalom participants demonstrated decreased shoulder and pelvic movement combined with increased pelvic-shoulder coupling. Conversely, participants demonstrated greater initial shoulder tilt when playing Soccer Heading, with no reduction in pelvic rotation and tilt. Participants decreased pelvic and trunk movements when skiing, suggesting a greater contribution of lower extremity control while they primarily used a trunk strategy to play Soccer Heading.

  10. Method for Real-Time Model Based Structural Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Smith, Timothy A. (Inventor); Urnes, James M., Sr. (Inventor); Reichenbach, Eric Y. (Inventor)

    2015-01-01

    A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.

  11. Expert systems for real-time monitoring and fault diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  12. Information display and interaction in real-time environments

    NASA Technical Reports Server (NTRS)

    Bocast, A. K.

    1983-01-01

    The available information bandwidth as a funcion of system's complexity and time constraints in a real time control environment were examined. Modern interactive graphics techniques provide very high bandwidth data displays. In real time control environments, effective information interaction rates are a function not only of machine data technologies but of human information processing capabilities and the four dimensional resolution of available interaction techniques. The available information bandwidth as a function of system's complexity and time constraints in a real time control environment were examined.

  13. Real Time Target Tracking in a Phantom Using Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Corner, G.; Huang, Z.

    In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.

  14. Real-time SAR processing for search and rescue

    NASA Astrophysics Data System (ADS)

    Mansfield, Arthur W.; Rogers, George W.; Rais, Houra

    1998-09-01

    The most important parameter in Search and Rescue is the time it takes to locate the downed aircraft and rescue the survivors. The resulting requirement for wide-area coverage, fine resolution, and day-night all-weather operation dictates the use of a SAR sensor. The time urgency dictates a real-time or near real-time SAR processor. This paper presents alternative real-time architectures and gives the results of feasibility studies of the enabling technologies, including new work by the authors in the area of SAR data compression.

  15. Real-time Avatar Animation from a Single Image

    PubMed Central

    Saragih, Jason M.; Lucey, Simon; Cohn, Jeffrey F.

    2014-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user’s facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters. PMID:24598812

  16. Real-time Models at the Community Coordinated Modeling Center and their Capabilities

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2006-01-01

    Real-time models at the Community Coordinated Modeling Center and their capabilities The Community Coordinated Modeling Center serves both scientific research and space weather operations communities through access to and evaluation of modern space environment models. Critical to both objectives is an unbiased assessment of model capabilities, which includes scientific validity, performance verification, and model robustness. While all of these assessments are relevant to operational customers, the latter plays a particularly important role. For this reason, as well as for testing model validity, CCMC established a set of fully automated real-time execution systems, which are based on models provided by the research community. This presentation will provide a summary of these activities, and a report on experiences and model validity. Finally, this presentation will invite feedback from CCMC customers regarding future directions of real time modeling at CCMC.

  17. Real-time volcano monitoring using GNSS single-frequency receivers

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Woo; Yun, Sung-Hyo; Kim, Do Hyeong; Lee, Dukkee; Lee, Young J.; Schutz, Bob E.

    2015-12-01

    We present a real-time volcano monitoring strategy that uses the Global Navigation Satellite System (GNSS), and we examine the performance of the strategy by processing simulated and real data and comparing the results with published solutions. The cost of implementing the strategy is reduced greatly by using single-frequency GNSS receivers except for one dual-frequency receiver that serves as a base receiver. Positions of the single-frequency receivers are computed relative to the base receiver on an epoch-by-epoch basis using the high-rate double-difference (DD) GNSS technique, while the position of the base station is fixed to the values obtained with a deferred-time precise point positioning technique and updated on a regular basis. Since the performance of the single-frequency high-rate DD technique depends on the conditions of the ionosphere over the monitoring area, the ionospheric total electron content is monitored using the dual-frequency data from the base receiver. The surface deformation obtained with the high-rate DD technique is eventually processed by a real-time inversion filter based on the Mogi point source model. The performance of the real-time volcano monitoring strategy is assessed through a set of tests and case studies, in which the data recorded during the 2007 eruption of Kilauea and the 2005 eruption of Augustine are processed in a simulated real-time mode. The case studies show that the displacement time series obtained with the strategy seem to agree with those obtained with deferred-time, dual-frequency approaches at the level of 10-15 mm. Differences in the estimated volume change of the Mogi source between the real-time inversion filter and previously reported works were in the range of 11 to 13% of the maximum volume changes of the cases examined.

  18. Interactive real-time media streaming with reliable communication

    NASA Astrophysics Data System (ADS)

    Pan, Xunyu; Free, Kevin M.

    2014-02-01

    Streaming media is a recent technique for delivering multimedia information from a source provider to an end- user over the Internet. The major advantage of this technique is that the media player can start playing a multimedia file even before the entire file is transmitted. Most streaming media applications are currently implemented based on the client-server architecture, where a server system hosts the media file and a client system connects to this server system to download the file. Although the client-server architecture is successful in many situations, it may not be ideal to rely on such a system to provide the streaming service as users may be required to register an account using personal information in order to use the service. This is troublesome if a user wishes to watch a movie simultaneously while interacting with a friend in another part of the world over the Internet. In this paper, we describe a new real-time media streaming application implemented on a peer-to-peer (P2P) architecture in order to overcome these challenges within a mobile environment. When using the peer-to-peer architecture, streaming media is shared directly between end-users, called peers, with minimal or no reliance on a dedicated server. Based on the proposed software pɛvμa (pronounced [revma]), named for the Greek word meaning stream, we can host a media file on any computer and directly stream it to a connected partner. To accomplish this, pɛvμa utilizes the Microsoft .NET Framework and Windows Presentation Framework, which are widely available on various types of windows-compatible personal computers and mobile devices. With specially designed multi-threaded algorithms, the application can stream HD video at speeds upwards of 20 Mbps using the User Datagram Protocol (UDP). Streaming and playback are handled using synchronized threads that communicate with one another once a connection is established. Alteration of playback, such as pausing playback or tracking to a

  19. Near Real Time Processing Chain for Suomi NPP Satellite Data

    NASA Astrophysics Data System (ADS)

    Monsorno, Roberto; Cuozzo, Giovanni; Costa, Armin; Mateescu, Gabriel; Ventura, Bartolomeo; Zebisch, Marc

    2014-05-01

    Wisconsin. CSPP subdivides the input file in granules, making possible the use of parallel computing, and produces SDR (Science Data Record) and some EDR (Environmental Data Record) products. The integration with the EDRs not yet available with CSPP is realized with the use of SPAs (Science Processing Algorithm) stand-alone version by DRL. The important result of this system consists in the possibility of processing data acquired by the EURAC antenna with open source software and delivering the SDRs, EDRs and higher level products developed internally by EURAC in near real time using a Data Exchange Server. By means of the parallelized CSPP, SDR data are currently available after about 7 minutes since the production of RDR, while we are currently implementing a strategy to get the best possible processing time for the EDRs products that are in principle not parallelizable. 1. http://directreadout.sci.gsfc.nasa.gov/ 2. http://cimss.ssec.wisc.edu/cspp/

  20. Continuous flow real-time PCR device using multi-channel fluorescence excitation and detection.

    PubMed

    Hatch, Andrew C; Ray, Tathagata; Lintecum, Kelly; Youngbull, Cody

    2014-02-01

    High throughput automation is greatly enhanced using techniques that employ conveyor belt strategies with un-interrupted streams of flow. We have developed a 'conveyor belt' analog for high throughput real-time quantitative Polymerase Chain Reaction (qPCR) using droplet emulsion technology. We developed a low power, portable device that employs LED and fiber optic fluorescence excitation in conjunction with a continuous flow thermal cycler to achieve multi-channel fluorescence detection for real-time fluorescence measurements. Continuously streaming fluid plugs or droplets pass through tubing wrapped around a two-temperature zone thermal block with each wrap of tubing fluorescently coupled to a 64-channel multi-anode PMT. This work demonstrates real-time qPCR of 0.1-10 μL droplets or fluid plugs over a range of 7 orders of magnitude concentration from 1 × 10(1) to 1 × 10(7). The real-time qPCR analysis allows dynamic range quantification as high as 1 × 10(7) copies per 10 μL reaction, with PCR efficiencies within the range of 90-110% based on serial dilution assays and a limit of detection of 10 copies per rxn. The combined functionality of continuous flow, low power thermal cycling, high throughput sample processing, and real-time qPCR improves the rates at which biological or environmental samples can be continuously sampled and analyzed. PMID:24297040

  1. A Web service-based architecture for real-time hydrologic sensor networks

    NASA Astrophysics Data System (ADS)

    Wong, B. P.; Zhao, Y.; Kerkez, B.

    2014-12-01

    Recent advances in web services and cloud computing provide new means by which to process and respond to real-time data. This is particularly true of platforms built for the Internet of Things (IoT). These enterprise-scale platforms have been designed to exploit the IP-connectivity of sensors and actuators, providing a robust means by which to route real-time data feeds and respond to events of interest. While powerful and scalable, these platforms have yet to be adopted by the hydrologic community, where the value of real-time data impacts both scientists and decision makers. We discuss the use of one such IoT platform for the purpose of large-scale hydrologic measurements, showing how rapid deployment and ease-of-use allows scientists to focus on their experiment rather than software development. The platform is hardware agnostic, requiring only IP-connectivity of field devices to capture, store, process, and visualize data in real-time. We demonstrate the benefits of real-time data through a real-world use case by showing how our architecture enables the remote control of sensor nodes, thereby permitting the nodes to adaptively change sampling strategies to capture major hydrologic events of interest.

  2. Portable inference engine: An extended CLIPS for real-time production systems

    NASA Technical Reports Server (NTRS)

    Le, Thach; Homeier, Peter

    1988-01-01

    The present C-Language Integrated Production System (CLIPS) architecture has not been optimized to deal with the constraints of real-time production systems. Matching in CLIPS is based on the Rete Net algorithm, whose assumption of working memory stability might fail to be satisfied in a system subject to real-time dataflow. Further, the CLIPS forward-chaining control mechanism with a predefined conflict resultion strategy may not effectively focus the system's attention on situation-dependent current priorties, or appropriately address different kinds of knowledge which might appear in a given application. Portable Inference Engine (PIE) is a production system architecture based on CLIPS which attempts to create a more general tool while addressing the problems of real-time expert systems. Features of the PIE design include a modular knowledge base, a modified Rete Net algorithm, a bi-directional control strategy, and multiple user-defined conflict resolution strategies. Problems associated with real-time applications are analyzed and an explanation is given for how the PIE architecture addresses these problems.

  3. Cluster Computing for Embedded/Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Katz, D.; Kepner, J.

    1999-01-01

    Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.

  4. Decision graphs: a tool for developing real-time software

    SciTech Connect

    Kozubal, A.J.

    1981-01-01

    The use of decision graphs in the preparation of, in particular, real-time software is briefly described. The usefulness of decision graphs in software design, testing, and maintenance is pointed out. 2 figures. (RWR)

  5. Distributed real-time model-based diagnosis

    NASA Technical Reports Server (NTRS)

    Barrett, A. C.; Chung, S. H.

    2003-01-01

    This paper presents an approach to onboard anomaly diagnosis that combines the simplicity and real-time guarantee of a rule-based diagnosis system with the specification ease and coverage guarantees of a model-based diagnosis system.

  6. Application of real time PCR for diagnosis of Swine Dysentery.

    PubMed

    Akase, Satoru; Uchitani, Yumi; Sohmura, Yoshiko; Tatsuta, Keikichi; Sadamasu, Kenji; Adachi, Yoshikazu

    2009-03-01

    Evaluation of a genetic diagnostic technique using real time PCR of Swine Dysentery (SD) was performed using nox primers. Culture, ordinary PCR and real time PCR were compared in this experiment. Sixty-seven specimens from pigs with clinical signs of SD brought to a slaughterhouse in Shibaura, Tokyo, were used. B. hyodysenteriae was isolated from 49 of the pigs, was detected by ordinary PCR in 49 of the pigs and was detected by real time PCR in 54 of the pigs. Furthermore, we were able to determine the numbers of B. hyodysenteriae cells in all positive specimens by real time PCR. The rapid diagnostic technique established in this experiment was useful for detection of B. hyodysenteriae because it was more effective than ordinary PCR and culture.

  7. Faster and cleaner real-time pure shift NMR experiments

    NASA Astrophysics Data System (ADS)

    Mauhart, Johannes; Glanzer, Simon; Sakhaii, Peyman; Bermel, Wolfgang; Zangger, Klaus

    2015-10-01

    Real-time pure shift experiments provide highly resolved proton NMR spectra which do not require any special processing. Although being more sensitive than their pseudo 2D counterparts, their signal intensities per unit time are still far below regular NMR spectra. In addition, scalar coupling evolution during the individual data chunks produces decoupling sidebands. Here we show that faster and cleaner real-time pure shift spectra can be obtained through the implementation of two parameter alterations. Variation of the FID chunk lengths between individual transients significantly suppresses decoupling sidebands for any kind of real-time pure shift spectra and thus allows for example the analysis of minor components in compound mixtures. Shifting the excitation frequency between individual scans of real-time slice-selective pure shift spectra increases their sensitivity obtainable in unit time by allowing faster repetitions of acquisitions.

  8. Hard-real-time resource management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  9. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  10. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1999-01-01

    A method for real-time estimation of parameters in a linear dynamic state space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight for indirect adaptive or reconfigurable control. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle HARV) were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than 1 cycle of the dominant dynamic mode natural frequencies, using control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements, and could be implemented aboard an aircraft in real time.

  11. Real-time two-dimensional temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2009-01-01

    We present a system for real-time 2D imaging of temperature change in tissue media using pulse-echo ultrasound. The frontend of the system is a SonixRP ultrasound scanner with a research interface giving us the capability of controlling the beam sequence and accessing radio frequency (RF) data in real-time. The beamformed RF data is streamlined to the backend of the system, where the data is processed using a two-dimensional temperature estimation algorithm running in the graphics processing unit (GPU). The estimated temperature is displayed in real-time providing feedback that can be used for real-time control of the heating source. Currently we have verified our system with elastography tissue mimicking phantom and in vitro porcine heart tissue, excellent repeatability and sensitivity were demonstrated.

  12. Real-time interactive speech technology at Threshold Technology, Incorporated

    NASA Technical Reports Server (NTRS)

    Herscher, Marvin B.

    1977-01-01

    Basic real-time isolated-word recognition techniques are reviewed. Industrial applications of voice technology are described in chronological order of their development. Future research efforts are also discussed.

  13. Real-time logo detection and tracking in video

    NASA Astrophysics Data System (ADS)

    George, M.; Kehtarnavaz, N.; Rahman, M.; Carlsohn, M.

    2010-05-01

    This paper presents a real-time implementation of a logo detection and tracking algorithm in video. The motivation of this work stems from applications on smart phones that require the detection of logos in real-time. For example, one application involves detecting company logos so that customers can easily get special offers in real-time. This algorithm uses a hybrid approach by initially running the Scale Invariant Feature Transform (SIFT) algorithm on the first frame in order to obtain the logo location and then by using an online calibration of color within the SIFT detected area in order to detect and track the logo in subsequent frames in a time efficient manner. The results obtained indicate that this hybrid approach allows robust logo detection and tracking to be achieved in real-time.

  14. Estimating correlation for a real-time measure of connectivity.

    PubMed

    Arunkumar, Akhil; Panday, Ashish; Joshi, Bharat; Ravindran, Arun; Zaveri, Hitten P

    2012-01-01

    There has recently been considerable interest in connectivity analysis of fMRI and scalp and intracranial EEG time-series. The computational requirements of the pair-wise correlation (PWC), the core time-series measure used to estimate connectivity, presents a challenge to the real-time estimation of the PWC between all pairs of multiple time-series. We describe a parallel algorithm for computing PWC in real-time for streaming data from multiple channels. The algorithm was implemented on the Intel Xeon™ and IBM Cell Broadband Engine™ platforms. We evaluated time to estimate correlation for signals recorded with different acquisition parameters as a comparison to real-time constraints. We demonstrate that the execution time of these efficient implementations meet real-time constraints in most instances.

  15. The Effects of Real-Time Interactive Multimedia Teleradiology System

    PubMed Central

    Al-Safadi, Lilac

    2016-01-01

    This study describes the design of a real-time interactive multimedia teleradiology system and assesses how the system is used by referring physicians in point-of-care situations and supports or hinders aspects of physician-radiologist interaction. We developed a real-time multimedia teleradiology management system that automates the transfer of images and radiologists' reports and surveyed physicians to triangulate the findings and to verify the realism and results of the experiment. The web-based survey was delivered to 150 physicians from a range of specialties. The survey was completed by 72% of physicians. Data showed a correlation between rich interactivity, satisfaction, and effectiveness. The results of our experiments suggest that real-time multimedia teleradiology systems are valued by referring physicians and may have the potential for enhancing their practice and improving patient care and highlight the critical role of multimedia technologies to provide real-time multimode interactivity in current medical care. PMID:27294118

  16. Real-time video codec using reversible wavelets

    NASA Astrophysics Data System (ADS)

    Huang, Gen Dow; Chiang, David J.; Huang, Yi-En; Cheng, Allen

    2003-04-01

    This paper describes the hardware implementation of a real-time video codec using reversible Wavelets. The TechSoft (TS) real-time video system employs the Wavelet differencing for the inter-frame compression based on the independent Embedded Block Coding with Optimized Truncation (EBCOT) of the embedded bit stream. This high performance scalable image compression using EBCOT has been selected as part of the ISO new image compression standard, JPEG2000. The TS real-time video system can process up to 30 frames per second (fps) of the DVD format. In addition, audio signals are also processed by the same design for the cost reduction. Reversible Wavelets are used not only for the cost reduction, but also for the lossless applications. Design and implementation issues of the TS real-time video system are discussed.

  17. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkauser, Mary Jo W. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1991-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  18. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary J. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1990-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  19. Challenges of AVHRR Vegetation Data for Real Time Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly

    2008-01-01

    Remote sensing data has long been used to monitor global ecosystems for floods and droughts and AVHRR data, as one of the first product, has many users interested in receiving the data within hours of acquisition. With the introduction of a new series of sensors in 2000 (the AVHRR/3 series), the quality of the NDVI datasets available for real time environmental monitoring has declined. This paper provides evidence of problems of cloud contamination, calibration and noise in the real time data which are not present in the historical AVHRR NDVIg dataset. These differences introduce significant uncertainty in the use of the real time data, degrading their utility for detecting climate variations in near real time.

  20. Vector processing enhancements for real-time image analysis.

    SciTech Connect

    Shoaf, S.; APS Engineering Support Division

    2008-01-01

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  1. High speed, real-time, camera bandwidth converter

    DOEpatents

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  2. Real-time transesophageal echocardiography facilitates antegrade balloon aortic valvuloplasty

    PubMed Central

    Ito, Kazato; Yano, Kentaro; Tanaka, Chiharu; Nakashoji, Tomohiro; Tonomura, Daisuke; Takehara, Kosuke; Kino, Naoto; Yoshida, Masataka; Kurotobi, Toshiya; Tsuchida, Takao; Fukumoto, Hitoshi

    2016-01-01

    We report two cases of severe aortic stenosis (AS) where antegrade balloon aortic valvuloplasty (BAV) was performed under real-time transesophageal echocardiography (TEE) guidance. Real-time TEE can provide useful information for evaluating the aortic valve response to valvuloplasty during the procedure. It was led with the intentional wire-bias technique in order to compress the severely calcified leaflet, and consequently allowed the balloon to reach the largest possible size and achieve full expansion of the aortic annulus. PMID:27054107

  3. Real time simulator with Ti floating point digital signal processor

    SciTech Connect

    Razazian, K.; Bobis, J.P.; Dieckman, S.L.; Raptis, A.C.

    1994-08-01

    This paper describes the design and operation of a Real Time Simulator using Texas Instruments TMS320C30 digital signal processor. This system operates with two banks of memory which provide the input data to digital signal processor chip. This feature enables the TMS320C30 to be utilized in variety of applications for which external connections to acquire input data is not needed. In addition, some practical applications of this Real Time Simulator are discussed.

  4. Hybrid interconnection structures for real-time parallel processing

    NASA Technical Reports Server (NTRS)

    Kim, K. H.; Samson, John R., Jr.

    1989-01-01

    The use of hybrid interconnection structures that combine link connections and bus connections for real-time parallel processing is discussed. Idealistic parallel computation models for two real-time computing applications are described with attention given to a tightly coupled network model for object tracking and a network model for image processing. Consideration is given to the following different interconnection structures: the crossbar, the hypercube, the circular linked array, and the bus array.

  5. Can Real-Time Data Also Be Climate Quality?

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  6. Real-time flight test data distribution and display

    NASA Technical Reports Server (NTRS)

    Nesel, Michael C.; Hammons, Kevin R.

    1988-01-01

    Enhancements to the real-time processing and display systems of the NASA Western Aeronautical Test Range are described. Display processing has been moved out of the telemetry and radar acquisition processing systems super-minicomputers into user/client interactive graphic workstations. Real-time data is provided to the workstations by way of Ethernet. Future enhancement plans include use of fiber optic cable to replace the Ethernet.

  7. Real-Time Optical Correlator Based On GaAs

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi; Cheng, Li-Jen

    1992-01-01

    Apparatus performs correlation between input image and reference image in real time by means of degenerate four-wave mixing in photorefractive crystal, which serves as real-time holographic medium. Gallium arsenide chosen to be photorefractive material in this application because at frame rate and level of illumination used in experiments, offers adequate diffraction efficiency. Frame rates as high as 1,000 s to negative 1st power achievable.

  8. Head movement compensation in real-time magnetoencephalographic recordings.

    PubMed

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.

  9. Playing against the fittest: A simple strategy that promotes the emergence of cooperation

    NASA Astrophysics Data System (ADS)

    Brede, M.

    2011-05-01

    Understanding the emergence and sustainability of cooperation is a fundamental problem in evolutionary biology and is frequently studied in the framework of evolutionary game theory. A very powerful mechanism to promote cooperation is network reciprocity, where the interaction patterns and opportunities for strategy spread of agents are constrained to limited sets of permanent interactions partners. Cooperation survives because it is possible for close-knit communities of cooperation to be shielded from invasion by defectors. Here we show that parameter ranges in which cooperation can survive are strongly expanded if game play on networks is skewed towards more frequent interactions with more successful neighbours. In particular, if agents exclusively select neighbors for game play that are more successful than themselves, cooperation can even dominate in situations in which it would die out if interaction neighbours were chosen without a bias or with a preference for less successful opponents. We demonstrate that the "selecting fitter neighbours" strategy is evolutionarily stable. Moreover, it will emerge as the dominant strategy out of an initially random population of agents.

  10. Real-time dynamic simulation of the Cassini spacecraft using DARTS. Part 2: Parallel/vectorized real-time implementation

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Roberts, J. A.; Jain, A.; Man, G. K.

    1993-01-01

    Part 1 of this paper presented the requirements for the real-time simulation of Cassini spacecraft along with some discussion of the DARTS algorithm. Here, in Part 2 we discuss the development and implementation of parallel/vectorized DARTS algorithm and architecture for real-time simulation. Development of the fast algorithms and architecture for real-time hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it represents a hard real-time problem, in the sense that the correctness of the simulation depends on both the numerical accuracy and the exact timing of the computation. For a given model fidelity, the computation should be computed within a predefined time period. Further reduction in computation time allows increasing the fidelity of the model (i.e., inclusion of more flexible modes) and the integration routine.

  11. Evaluation of Open-Source Hard Real Time Software Packages

    NASA Technical Reports Server (NTRS)

    Mattei, Nicholas S.

    2004-01-01

    Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of

  12. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction

    PubMed Central

    Bavli, Danny; Prill, Sebastian; Ezra, Elishai; Levy, Gahl; Cohen, Merav; Vinken, Mathieu; Vanfleteren, Jan; Jaeger, Magnus; Nahmias, Yaakov

    2016-01-01

    Microfluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. Here, we present a liver-on-chip device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress. We quantify the dynamics of cellular adaptation to mitochondrial damage and the resulting redistribution of ATP production during rotenone-induced mitochondrial dysfunction and troglitazone (Rezulin)-induced mitochondrial stress. We show troglitazone shifts metabolic fluxes at concentrations previously regarded as safe, suggesting a mechanism for its observed idiosyncratic effect. Our microfluidic platform reveals the dynamics and strategies of cellular adaptation to mitochondrial damage, a unique advantage of organ-on-chip technology. PMID:27044092

  13. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction.

    PubMed

    Bavli, Danny; Prill, Sebastian; Ezra, Elishai; Levy, Gahl; Cohen, Merav; Vinken, Mathieu; Vanfleteren, Jan; Jaeger, Magnus; Nahmias, Yaakov

    2016-04-19

    Microfluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. Here, we present a liver-on-chip device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress. We quantify the dynamics of cellular adaptation to mitochondrial damage and the resulting redistribution of ATP production during rotenone-induced mitochondrial dysfunction and troglitazone (Rezulin)-induced mitochondrial stress. We show troglitazone shifts metabolic fluxes at concentrations previously regarded as safe, suggesting a mechanism for its observed idiosyncratic effect. Our microfluidic platform reveals the dynamics and strategies of cellular adaptation to mitochondrial damage, a unique advantage of organ-on-chip technology. PMID:27044092

  14. Real-time NASBA detection of SARS-associated coronavirus and comparison with real-time reverse transcription-PCR.

    PubMed

    Keightley, Maria Cristina; Sillekens, Peter; Schippers, Wim; Rinaldo, Charles; George, Kirsten St

    2005-12-01

    Severe acute respiratory syndrome (SARS) exhibits a high mortality rate and the potential for rapid epidemic spread. Additionally, it has a poorly defined clinical presentation, and no known treatment or prevention methods. Collectively, these factors underscore the need for early diagnosis. Molecular tests have been developed to detect SARS coronavirus (SARS-CoV) RNA using real time reverse transcription polymerase chain reaction (RT-PCR) with varying levels of sensitivity. However, RNA amplification methods have been demonstrated to be more sensitive for the detection of some RNA viruses. We therefore developed a real-time nucleic acid sequence-based amplification (NASBA) test for SARS-CoV. A number of primer/beacon sets were designed to target different regions of the SARS-CoV genome, and were tested for sensitivity and specificity. The performance of the assays was compared with RT-PCR assays. A multi-target real-time NASBA application was developed for detection of SARS-CoV polymerase (Pol) and nucleocapsid (N) genes. The N targets were found to be consistently more sensitive than the Pol targets, and the real-time NASBA assay demonstrates equivalent sensitivity when compared to testing by real-time RT-PCR. A multi-target real-time NASBA assay has been successfully developed for the sensitive detection of SARS-CoV.

  15. Real-time airborne hyperspectral imaging of land mines

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Steve; McFee, John E.; Anger, Cliff; Young, Jane

    2007-04-01

    DRDC Suffeld and Itres Research have jointly investigated the use of visible and infrared hyperspectral imaging (HSI) for surface and buried land mine detection since 1989. These studies have demonstrated reliable passive HSI detection of surface-laid mines, based on their reflectance spectra, from airborne and ground-based platforms. Commercial HSI instruments collect and store image data at aircraft speeds, but the data are analysed off- line. This is useful for humanitarian demining, but unacceptable for military countermine operations. We have developed a hardware and software system with algorithms that can process the raw hyperspectral data in real time to detect mines. The custom algorithms perform radiometric correction of the raw data, then classify pixels of the corrected data, referencing a spectral signature library. The classification results are stored and displayed in real time, that is, within a few frame times of the data acquisition. Such real-time mine detection was demonstrated for the first time from a slowly moving land vehicle in March 2000. This paper describes an improved system which can achieve real-time detection of mines from an airborne platform, with its commensurately higher data rates. The system is presently compatible with the Itres family of visible/near infrared, short wave infrared and thermal infrared pushbroom hyperspectral imagers and its broadband thermal infrared pushbroom imager. Experiments to detect mines from an airborne platform in real time were conducted at DRDC Suffield in November 2006. Surface-laid land mines were detected in real time from a slowly moving helicopter with generally good detection rates and low false alarm rates. To the authors' knowledge, this is the first time that land mines have been detected from an airborne platform in real time using hyperspectral imaging.

  16. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  17. Habitual action video game playing is associated with caudate nucleus-dependent navigational strategies

    PubMed Central

    West, Greg L.; Drisdelle, Brandi Lee; Konishi, Kyoko; Jackson, Jonathan; Jolicoeur, Pierre; Bohbot, Veronique D.

    2015-01-01

    The habitual playing of video games is associated with increased grey matter and activity in the striatum. Studies in humans and rodents have shown an inverse relationship between grey matter in the striatum and hippocampus. We investigated whether action video game playing is also associated with increased use of response learning strategies during navigation, known to be dependent on the caudate nucleus of the striatum, when presented in a dual solution task. We tested 26 action video game players (actionVGPs) and 33 non-action video game players (nonVGPs) on the 4-on-8 virtual maze and a visual attention event-related potential (ERP) task, which elicits a robust N-2-posterior-controlateral (N2pc) component. We found that actionVGPs had a significantly higher likelihood of using a response learning strategy (80.76%) compared to nonVGPs (42.42%). Consistent with previous evidence, actionVGPs and nonVGPs differed in the way they deployed visual attention to central and peripheral targets as observed in the elicited N2pc component during an ERP visual attention task. Increased use of the response strategy in actionVGPs is consistent with previously observed increases in striatal volume in video game players (VGPs). Using response strategies is associated with decreased grey matter in the hippocampus. Previous studies have shown that decreased volume in the hippocampus precedes the onset of many neurological and psychiatric disorders. If actionVGPs have lower grey matter in the hippocampus, as response learners normally do, then these individuals could be at increased risk of developing neurological and psychiatric disorders during their lifetime. PMID:25994669

  18. Habitual action video game playing is associated with caudate nucleus-dependent navigational strategies.

    PubMed

    West, Greg L; Drisdelle, Brandi Lee; Konishi, Kyoko; Jackson, Jonathan; Jolicoeur, Pierre; Bohbot, Veronique D

    2015-06-01

    The habitual playing of video games is associated with increased grey matter and activity in the striatum. Studies in humans and rodents have shown an inverse relationship between grey matter in the striatum and hippocampus. We investigated whether action video game playing is also associated with increased use of response learning strategies during navigation, known to be dependent on the caudate nucleus of the striatum, when presented in a dual solution task. We tested 26 action video game players (actionVGPs) and 33 non-action video game players (nonVGPs) on the 4-on-8 virtual maze and a visual attention event-related potential (ERP) task, which elicits a robust N-2-posterior-controlateral (N2pc) component. We found that actionVGPs had a significantly higher likelihood of using a response learning strategy (80.76%) compared to nonVGPs (42.42%). Consistent with previous evidence, actionVGPs and nonVGPs differed in the way they deployed visual attention to central and peripheral targets as observed in the elicited N2pc component during an ERP visual attention task. Increased use of the response strategy in actionVGPs is consistent with previously observed increases in striatal volume in video game players (VGPs). Using response strategies is associated with decreased grey matter in the hippocampus. Previous studies have shown that decreased volume in the hippocampus precedes the onset of many neurological and psychiatric disorders. If actionVGPs have lower grey matter in the hippocampus, as response learners normally do, then these individuals could be at increased risk of developing neurological and psychiatric disorders during their lifetime. PMID:25994669

  19. Habitual action video game playing is associated with caudate nucleus-dependent navigational strategies.

    PubMed

    West, Greg L; Drisdelle, Brandi Lee; Konishi, Kyoko; Jackson, Jonathan; Jolicoeur, Pierre; Bohbot, Veronique D

    2015-06-01

    The habitual playing of video games is associated with increased grey matter and activity in the striatum. Studies in humans and rodents have shown an inverse relationship between grey matter in the striatum and hippocampus. We investigated whether action video game playing is also associated with increased use of response learning strategies during navigation, known to be dependent on the caudate nucleus of the striatum, when presented in a dual solution task. We tested 26 action video game players (actionVGPs) and 33 non-action video game players (nonVGPs) on the 4-on-8 virtual maze and a visual attention event-related potential (ERP) task, which elicits a robust N-2-posterior-controlateral (N2pc) component. We found that actionVGPs had a significantly higher likelihood of using a response learning strategy (80.76%) compared to nonVGPs (42.42%). Consistent with previous evidence, actionVGPs and nonVGPs differed in the way they deployed visual attention to central and peripheral targets as observed in the elicited N2pc component during an ERP visual attention task. Increased use of the response strategy in actionVGPs is consistent with previously observed increases in striatal volume in video game players (VGPs). Using response strategies is associated with decreased grey matter in the hippocampus. Previous studies have shown that decreased volume in the hippocampus precedes the onset of many neurological and psychiatric disorders. If actionVGPs have lower grey matter in the hippocampus, as response learners normally do, then these individuals could be at increased risk of developing neurological and psychiatric disorders during their lifetime.

  20. Real Time Pricing and the Real Live Firm

    SciTech Connect

    Moezzi, Mithra; Goldman, Charles; Sezgen, Osman; Bharvirkar, Ranjit; Hopper, Nicole

    2004-05-26

    Energy economists have long argued the benefits of real time pricing (RTP) of electricity. Their basis for modeling customers response to short-term fluctuations in electricity prices are based on theories of rational firm behavior, where management strives to minimize operating costs and optimize profit, and labor, capital and energy are potential substitutes in the firm's production function. How well do private firms and public sector institutions operating conditions, knowledge structures, decision-making practices, and external relationships comport with these assumptions and how might this impact price response? We discuss these issues on the basis of interviews with 29 large (over 2 MW) industrial, commercial, and institutional customers in the Niagara Mohawk Power Corporation service territory that have faced day-ahead electricity market prices since 1998. We look at stories interviewees told about why and how they respond to RTP, why some customers report that they can't, and why even if they can, they don't. Some firms respond as theorized, and we describe their load curtailment strategies. About half of our interviewees reported that they were unable to either shift or forego electricity consumption even when prices are high ($0.50/kWh). Reasons customers gave for why they weren't price-responsive include implicit value placed on reliability, pricing structures, lack of flexibility in adjusting production inputs, just-in-time practices, perceived barriers to onsite generation, and insufficient time. We draw these observations into a framework that could help refine economic theory of dynamic pricing by providing real-world descriptions of how firms behave and why.

  1. The improved broadband Real-Time Seismic Network in Romania

    NASA Astrophysics Data System (ADS)

    Neagoe, C.; Ionescu, C.

    2009-04-01

    Starting with 2002 the National Institute for Earth Physics (NIEP) has developed its real-time digital seismic network. This network consists of 96 seismic stations of which 48 broad band and short period stations and two seismic arrays are transmitted in real-time. The real time seismic stations are equipped with Quanterra Q330 and K2 digitizers, broadband seismometers (STS2, CMG40T, CMG 3ESP, CMG3T) and strong motions sensors Kinemetrics episensors (+/- 2g). SeedLink and AntelopeTM (installed on MARMOT) program packages are used for real-time (RT) data acquisition and exchange. The communication from digital seismic stations to the National Data Center in Bucharest is assured by 5 providers (GPRS, VPN, satellite communication, radio lease line and internet), which will assure the back-up communications lines. The processing centre runs BRTT's AntelopeTM 4.10 data acquisition and processing software on 2 workstations for real-time processing and post processing. The Antelope Real-Time System is also providing automatic event detection, arrival picking, event location and magnitude calculation. It provides graphical display and reporting within near-real-time after a local or regional event occurred. Also at the data center was implemented a system to collect macroseismic information using the internet on which macro seismic intensity maps are generated. In the near future at the data center will be install Seiscomp 3 data acquisition processing software on a workstation. The software will run in parallel with Antelope software as a back-up. The present network will be expanded in the near future. In the first half of 2009 NIEP will install 8 additional broad band stations in Romanian territory, which also will be transmitted to the data center in real time. The Romanian Seismic Network is permanently exchanging real -time waveform data with IRIS, ORFEUS and different European countries through internet. In Romania, magnitude and location of an earthquake are now

  2. Real-time simulation of thermal shadows with EMIT

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul

    2016-05-01

    Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.

  3. Real-time multispectral imaging application for poultry safety inspection

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Snead, Matthew P.

    2006-02-01

    The ARS imaging research group in Athens, Georgia has developed a real-time multispectral imaging system for fecal and ingesta contaminant detection on broiler carcasses for poultry industry. The industrial scale system includes a common aperture camera with three visible wavelength optical trim filters. This paper demonstrates calibration of common aperture multispectral imaging hardware and real-time image processing software. The software design, especially the Unified Modeling Language (UML) design approach was used to develop real-time image processing software for on-line application. The UML models including class, object, activity, sequence, and collaboration diagram were presented. Both hardware and software for a real-time fecal and ingesta contaminant detection were tested at the pilot-scale poultry processing line. The test results of industrial sacle real-time system showed that the multispectral imaging technique performed well for detecting fecal contaminants with a commercial processing speed (currently 140 birds per minute). The accuracy for the detection of fecal and ingesta contaminates was approximately 96%.

  4. Real-Time Data Use for Operational Space Weather Products

    NASA Astrophysics Data System (ADS)

    Quigley, S.; Nobis, T. E.

    2010-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Division of the Space and Missile Systems Center (AFSPC SYAG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command’s (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products were developed to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems in real/near-real time. This real-time attribute is the primary factor in allowing for actual operational product output, but it’s also responsible for a variety of detrimental effects that need to be considered, researched, mitigated, or otherwise eliminated in future/upgrade product applications. This presentation will provide brief overviews of the SEEFS products, along with information and recommendations concerned with their near/real-time data acquisition and use, to include: input data requirements, inputs/outputs ownership, observation cadence, transmission/receipt links and cadence, data latency, quality control, error propagation and associated confidence level applications, and ensemble model run potentials. Validation issues related to real-time data will also be addressed, along with recommendations for new real-time data archiving that should prove operationally beneficial.

  5. Real-time operating systems at higher control

    SciTech Connect

    Jensen, E.D.

    1995-01-01

    Although virtually all development of real-time operating systems focuses on the lowest of the three traditional control levels, sheet economics demands higher level real-time OSs. Meeting this demand requires a major change in the mindset of the people who have been focusing on the lowest level of control. {open_quotes}These people are trying to deal with an elephant`s tail, but they don`t realize that there is an elephant attached to it.{close_quotes} For more than three decades, the historical real-time mindset, concepts and techniques have been driven by a particular pair of contexts. First is the application context, which can be characterized as {open_quotes}small, simple, centralized, static subsystems for low-level, sampled data, monitoring and first-order control.{close_quotes} Second is the hardware context, characterized by a scarcity of hardware resources due to size, weight, power and cost considerations. Both of these contexts are changing dramatically in ways that {open_quotes}have a significant impact on the concepts and techniques of real-time computing.{close_quotes} Hardware now offers much higher performance and the real-time domain is expanding upward in the application control hierarchy.

  6. A Practical Approach to Implementing Real-Time Semantics

    NASA Technical Reports Server (NTRS)

    Luettgen, Gerald; Bhat, Girish; Cleaveland, Rance

    1999-01-01

    This paper investigates implementations of process algebras which are suitable for modeling concurrent real-time systems. It suggests an approach for efficiently implementing real-time semantics using dynamic priorities. For this purpose a proces algebra with dynamic priority is defined, whose semantics corresponds one-to-one to traditional real-time semantics. The advantage of the dynamic-priority approach is that it drastically reduces the state-space sizes of the systems in question while preserving all properties of their functional and real-time behavior. The utility of the technique is demonstrated by a case study which deals with the formal modeling and verification of the SCSI-2 bus-protocol. The case study is carried out in the Concurrency Workbench of North Carolina, an automated verification tool in which the process algebra with dynamic priority is implemented. It turns out that the state space of the bus-protocol model is about an order of magnitude smaller than the one resulting from real-time semantics. The accuracy of the model is proved by applying model checking for verifying several mandatory properties of the bus protocol.

  7. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Schmidt, James L.; Kao, Simon M.; Read, Jackson Y.; Weitzenkamp, Scott M.; Laffey, Thomas J.

    1988-01-01

    A multitasking architecture for performing real-time monitoring and analysis using knowledge-based problem solving techniques is described. To handle asynchronous inputs and perform in real time, the system consists of three or more distributed processes which run concurrently and communicate via a message passing scheme. The Data Management Process acquires, compresses, and routes the incoming sensor data to other processes. The Inference Process consists of a high performance inference engine that performs a real-time analysis on the state and health of the physical system. The I/O Process receives sensor data from the Data Management Process and status messages and recommendations from the Inference Process, updates its graphical displays in real time, and acts as the interface to the console operator. The distributed architecture has been interfaced to an actual spacecraft (NASA's Hubble Space Telescope) and is able to process the incoming telemetry in real-time (i.e., several hundred data changes per second). The system is being used in two locations for different purposes: (1) in Sunnyville, California at the Space Telescope Test Control Center it is used in the preflight testing of the vehicle; and (2) in Greenbelt, Maryland at NASA/Goddard it is being used on an experimental basis in flight operations for health and safety monitoring.

  8. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  9. Utilizing real-time and near real-time data in the iNtegrated Space Weather Analysis System

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Mullinix, R. E.; Rastaetter, L.; Pulkkinen, A.; Zheng, Y.; Berrios, D.; Hesse, M.; Kuznetsova, M. M.; Taktakishvili, A.; Chulaki, A.; Shim, J.; Bakshi, S. S.; Patel, K. D.; Jain, P.

    2010-12-01

    Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Desk at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 250 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities and also discuss some of the challenges and lessons-learned in dealing with diverse real-time and near-real time space

  10. Intimin gene (eae) subtype-based real-time PCR strategy for specific detection of Shiga toxin-producing Escherichia coli serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 in cattle feces.

    PubMed

    Bibbal, Delphine; Loukiadis, Estelle; Kérourédan, Monique; Peytavin de Garam, Carine; Ferré, Franck; Cartier, Philippe; Gay, Emilie; Oswald, Eric; Auvray, Frédéric; Brugère, Hubert

    2014-02-01

    Shiga toxin-producing Escherichia coli (STEC) strains belonging to serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 are known to be associated with particular subtypes of the intimin gene (eae), namely, γ1, β1, ε, θ, and γ1, respectively. This study aimed at evaluating the usefulness of their detection for the specific detection of these five main pathogenic STEC serotypes in cattle feces. Using real-time PCR assays, 58.7% of 150 fecal samples were found positive for at least one of the four targeted eae subtypes. The simultaneous presence of stx, eae, and one of the five O group markers was found in 58.0% of the samples, and the five targeted stx plus eae plus O genetic combinations were detected 143 times. However, taking into consideration the association between eae subtypes and O group markers, the resulting stx plus eae subtype plus O combinations were detected only 46 times. The 46 isolation assays performed allowed recovery of 22 E. coli strains belonging to one of the five targeted STEC serogroups. In contrast, only 2 of 39 isolation assays performed on samples that were positive for stx, eae and an O group marker, but that were negative for the corresponding eae subtype, were successful. Characterization of the 24 E. coli isolates showed that 6 were STEC, including 1 O157:H7, 3 O26:H11, and 2 O145:H28. The remaining 18 strains corresponded to atypical enteropathogenic E. coli (aEPEC). Finally, the more discriminating eae subtype-based PCR strategy described here may be helpful for the specific screening of the five major STEC in cattle feces.

  11. Is Your Class a Natural Disaster? It can be... The Real Time Earthquake Education (RTEE) System

    NASA Astrophysics Data System (ADS)

    Whitlock, J. S.; Furlong, K.

    2003-12-01

    In cooperation with the U.S. Geological Survey (USGS) and its National Earthquake Information Center (NEIC) in Golden, Colorado, we have implemented an autonomous version of the NEIC's real-time earthquake database management and earthquake alert system (Earthworm). This is the same system used professionally by the USGS in its earthquake response operations. Utilizing this system, Penn State University students participating in natural hazard classes receive real-time alerts of worldwide earthquake events on cell phones distributed to the class. The students are then responsible for reacting to actual earthquake events, in real-time, with the same data (or lack thereof) as earthquake professionals. The project was first implemented in Spring 2002, and although it had an initial high intrigue and "coolness" factor, the interest of the students waned with time. Through student feedback, we observed that scientific data presented on its own without an educational context does not foster student learning. In order to maximize the impact of real-time data and the accompanying e-media, the students need to become personally involved. Therefore, in collaboration with the Incorporated Research Institutes of Seismology (IRIS), we have begun to develop an online infrastructure that will help teachers and faculty effectively use real-time earthquake information. The Real-Time Earthquake Education (RTEE) website promotes student learning by integrating inquiry-based education modules with real-time earthquake data. The first module guides the students through an exploration of real-time and historic earthquake datasets to model the most important criteria for determining the potential impact of an earthquake. Having provided the students with content knowledge in the first module, the second module presents a more authentic, open-ended educational experience by setting up an earthquake role-play situation. Through the Earthworm system, we have the ability to "set off

  12. Study on Sensor Design Technique for Real-Time Robotic Welding Tracking System

    NASA Astrophysics Data System (ADS)

    Liu, C. J.; Li, Y. B.; Zhu, J. G.; Ye, S. H.

    2006-10-01

    Based on visual measurement techniques, the real-time robotic welding tracking system achieves real-time adjustment for robotic welding according to the position and shape changes of a workpiece. In system design, the sensor design technique is so important that its performance directly affects the precision and stability of the tracking system. Through initiative visual measurement technology, a camera unit for real-time sampling is built with multiple-strip structured light and a high-performance CMOS image sensor including 1.3 million pixels; to realize real-time data process and transmission, an image process unit is built with FPGA and DSP. Experiments show that the precision of this sensor reaches 0.3mm, and band rate comes up to 10Mbps, which effectively improves robot welding quality.With the development of advanced manufacturing technology, it becomes an inexorable trend to realize the automatic, flexible and intelligent welding product manufacture. With the advantage of interchangeability and reliability, robotic welding can boost productivity, improve work condition, stabilize and guarantee weld quality, and realize welding automation of the short run products [1]. At present, robotic welding has already become the application trend of automatic welding technology. Traditional welding robots are play-back ones, which cannot adapt environment and weld distortion. Especially in the more and more extensive arc-welding course, the deficiency and limitation of play-back welding technology becomes more prominent because of changeable welding condition. It becomes one of the key technology influencing the development of modern robotic welding technology to eliminate or decrease uncertain influence on quality of welding such as changing welding condition etc [2]. Based on visual measuring principle, this text adopts active visual measuring technology, cooperated with high-speed image process and transmission technology to structure a tracking sensor, to realize

  13. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  14. Real-time Experiment Interface for Biological Control Applications

    PubMed Central

    Lin, Risa J.; Bettencourt, Jonathan; White, John A.; Christini, David J.; Butera, Robert J.

    2013-01-01

    The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org). PMID:21096883

  15. Real-time simulation of large-scale floods

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  16. Rainfall-based real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Bertoni, Juan Carlos; Tucci, Carlos Eduardo; Clarke, Robin Thomas

    1992-02-01

    The use of conceptual rainfall-runoff models in real-time flood forecasting still presents problems, some of which relate to the updating of the mathematical model and to uncertainties associated with future rainfall. Both topics are approached in this study, in which a conceptual rainfall-runoff model (IPH-II) for real-time flood forecasting and a simplified stochastic model to determine the value of including quantitative rainfall forecasts were used. The methods were tested using data from a small watershed (the River Ray at Grendon Underwood, UK), for which 17 years of records were available. The results show that a simple method used to forecast rain falling during the next few hours, may help to improve real-time discharge estimates.

  17. Real time capable infrared thermography for ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  18. Real time capable infrared thermography for ASDEX Upgrade.

    PubMed

    Sieglin, B; Faitsch, M; Herrmann, A; Brucker, B; Eich, T; Kammerloher, L; Martinov, S

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  19. A real-time VLC to UART protocol conversion system

    NASA Astrophysics Data System (ADS)

    Deng, Jian-zhi; Yao, Meng; Cheng, Xiao-hui; Deng, Zhuo-hong

    2016-07-01

    A real-time visible light communication (VLC) to universal asynchronous receiver/transmitter (UART) conversion system is made up of a transmitter with a light emitting diode (LED) and a receiver with a photodiode (PD), by which a VLC system is connected to traditional communication modes, and the data are transferred by wireless visible light. UART packets are converted to light packets by the modulation of a 10 kHz on-off-keying (OOK) light signal, and the data losses in the transportation are avoided by the protection of a data buffer mechanism. The experimental results reveal that the real-time VLC to UART conversion system can provide a real-time VLC transmission way for two UART devices in not less than 10 m at a baud rate not less than 19 200 Bd with stable ambient lighting at the same time.

  20. Real-time measurement of mental workload: A feasibility study

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur; Humphrey, Darryl; Sirevaag, Erik; Mecklinger, Axel

    1990-01-01

    The primary goal of the study was to explore the utility of event-related brain potentials (ERP) as real-time measures of workload. To this end, subjects performed two different tasks both separately and together. One task required that subjects monitor a bank of constantly changing gauges and detect critical deviations. Difficulty was varied by changing the predictability of the gauges. The second task was mental arithmetic. Difficulty was varied by requiring subjects to perform operations on either two or three columns of numbers. Two conditions that could easily be distinguished on the basis of performance measures were selected for the real-time evaluation of ERPs. A bootstrapping approach was adopted in which one thousand samples of n trials (n = 1, 3, 5 ...65) were classified using several measures of P300 and Slow Wave amplitude. Classification accuracies of 85 percent were achieved with 25 trials. Results are discussed in terms of potential enhancements for real-time recording.

  1. Building flexible real-time systems using the Flex language

    NASA Technical Reports Server (NTRS)

    Kenny, Kevin B.; Lin, Kwei-Jay

    1991-01-01

    The design and implementation of a real-time programming language called Flex, which is a derivative of C++, are presented. It is shown how different types of timing requirements might be expressed and enforced in Flex, how they might be fulfilled in a flexible way using different program models, and how the programming environment can help in making binding and scheduling decisions. The timing constraint primitives in Flex are easy to use yet powerful enough to define both independent and relative timing constraints. Program models like imprecise computation and performance polymorphism can carry out flexible real-time programs. In addition, programmers can use a performance measurement tool that produces statistically correct timing models to predict the expected execution time of a program and to help make binding decisions. A real-time programming environment is also presented.

  2. Designing a fuzzy scheduler for hard real-time systems

    NASA Technical Reports Server (NTRS)

    Yen, John; Lee, Jonathan; Pfluger, Nathan; Natarajan, Swami

    1992-01-01

    In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion. If timing constraints are not met, there might be severe consequences. Task scheduling is the most important problem in designing a hard real-time system, because the scheduling algorithm ensures that tasks meet their deadlines. However, the inherent nature of uncertainty in dynamic hard real-time systems increases the problems inherent in scheduling. In an effort to alleviate these problems, we have developed a fuzzy scheduler to facilitate searching for a feasible schedule. A set of fuzzy rules are proposed to guide the search. The situation we are trying to address is the performance of the system when no feasible solution can be found, and therefore, certain tasks will not be executed. We wish to limit the number of important tasks that are not scheduled.

  3. A framework for building real-time expert systems

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel

    1991-01-01

    The Space Station Freedom is an example of complex systems that require both traditional and artificial intelligence (AI) real-time methodologies. It was mandated that Ada should be used for all new software development projects. The station also requires distributed processing. Catastrophic failures on the station can cause the transmission system to malfunction for a long period of time, during which ground-based expert systems cannot provide any assistance to the crisis situation on the station. This is even more critical for other NASA projects that would have longer transmission delays (e.g., the lunar base, Mars missions, etc.). To address these issues, a distributed agent architecture (DAA) is proposed that can support a variety of paradigms based on both traditional real-time computing and AI. The proposed testbed for DAA is an autonomous power expert (APEX) which is a real-time monitoring and diagnosis expert system for the electrical power distribution system of the space station.

  4. Integrated real-time fracture-diagnostics instrumentation system

    SciTech Connect

    Engi, D

    1983-01-01

    The use of an integrated, real-time fracture-diagnostics instrumentation system for the control of the fracturing treatment during massive hydraulic fracturing is proposed. The proposed system consists of four subsystems: an internal-fracture-pressure measurement system, a fluid-flow measurement system, a borehole seismic system, and a surface-electric-potential measurement system. This use of borehole seismic and surface-electric-potential measurements, which are essentially away-from-the-wellbore measurements, in conjunction with the use of the more commonly used types of measurements, i.e., at-the-wellbore pressure and fluid-flow measurements, is a distinctive feature of the composite real-time diagnostics system. Currently, the real-time capabilities of the individual subsystems are being developed, and the problems associated with their integration into a complete, computer-linked instrumentation system are being addressed. 2 figures.

  5. Software engineering aspects of real-time programming concepts

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1986-08-01

    Real-time programming is a discipline of great importance not only in process control, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other. The second part deals with structuring and modularization of technical processes to build reliable and maintainable real time systems. Software-quality and software engineering aspects are considered throughout the paper.

  6. Towards real-time medical diagnostics using hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Randeberg, Lise L.

    2015-07-01

    Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.

  7. FRET-based real-time DNA microarrays.

    PubMed

    Hassibi, Arjang; Vikalo, Haris; Riechmann, José Luis; Hassibi, Babak

    2012-01-01

    We present a quantification method for affinity-based DNA microarrays which is based on the real-time measurements of hybridization kinetics. This method, i.e., real-time DNA microarrays, enhances the detection dynamic range of conventional systems by being impervious to probe saturation, washing artifacts, microarray spot-to-spot variations, and other intensity-affecting impediments. We demonstrate in both theory and practice that the time-constant of target capturing is inversely proportional to the concentration of the target analyte, which we take advantage of as the fundamental parameter to estimate the concentration of the analytes. Furthermore, to experimentally validate the capabilities of this method in practical applications, we present a FRET-based assay which enables the real-time detection in gene expression DNA microarrays. PMID:22130990

  8. Coordinated scheduling for dynamic real-time systems

    NASA Technical Reports Server (NTRS)

    Natarajan, Swaminathan; Zhao, Wei

    1994-01-01

    In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.

  9. Real-Time Parameter Estimation Using Output Error

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2014-01-01

    Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.

  10. Advances in MWD technology improve real time data

    SciTech Connect

    Brugess, T.; Voisin, B. )

    1992-02-17

    This paper reports that improvements in measurement while drilling (MWD) technology have increased drilling efficiency by allowing the driller to steer the bit with real-time formation evaluation measurements and to optimize bottom hole assembly (BHA) performance during drilling. Significant advances in MWD will come in a viable market that values real-time downhole measurements not only as a replacement for conventional measurements, but also as a means to optimize drilling and increase recoverable reserves. MWD technology will center on improving the real-time capabilities of geosteering, moving sensors closer to the bit, and reducing the length of the entire BHA. The key to success is careful planning, cross training for MWD engineers and directional drillers, and a well-prepared team that includes the operator's representative, well site geologist, driller, and reservoir engineer.

  11. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  12. Continuous real-time water information: an important Kansas resource

    USGS Publications Warehouse

    Loving, Brian L.; Putnam, James E.; Turk, Donita M.

    2014-01-01

    Continuous real-time information on streams, lakes, and groundwater is an important Kansas resource that can safeguard lives and property, and ensure adequate water resources for a healthy State economy. The U.S. Geological Survey (USGS) operates approximately 230 water-monitoring stations at Kansas streams, lakes, and groundwater sites. Most of these stations are funded cooperatively in partnerships with local, tribal, State, or other Federal agencies. The USGS real-time water-monitoring network provides long-term, accurate, and objective information that meets the needs of many customers. Whether the customer is a water-management or water-quality agency, an emergency planner, a power or navigational official, a farmer, a canoeist, or a fisherman, all can benefit from the continuous real-time water information gathered by the USGS.

  13. Real-time experiment interface for biological control applications.

    PubMed

    Lin, Risa J; Bettencourt, Jonathan; Wha Ite, John; Christini, David J; Butera, Robert J

    2010-01-01

    The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org).

  14. Real-time structured light intraoral 3D measurement pipeline

    NASA Astrophysics Data System (ADS)

    Gheorghe, Radu; Tchouprakov, Andrei; Sokolov, Roman

    2013-02-01

    Computer aided design and manufacturing (CAD/CAM) is increasingly becoming a standard feature and service provided to patients in dentist offices and denture manufacturing laboratories. Although the quality of the tools and data has slowly improved in the last years, due to various surface measurement challenges, practical, accurate, invivo, real-time 3D high quality data acquisition and processing still needs improving. Advances in GPU computational power have allowed for achieving near real-time 3D intraoral in-vivo scanning of patient's teeth. We explore in this paper, from a real-time perspective, a hardware-software-GPU solution that addresses all the requirements mentioned before. Moreover we exemplify and quantify the hard and soft deadlines required by such a system and illustrate how they are supported in our implementation.

  15. Toward Real Time Data Analysis for Smart Grids

    SciTech Connect

    Yin, Jian; Gorton, Ian; Sharma, Poorva

    2012-11-10

    This paper describes the architecture and design of a novel system for supporting large-scale real-time data analysis for future power grid systems. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components of the grid. As a result, the whole system becomes highly dynamic and requires constant adjusting based on real time data. Even though millions of sensors such as phase measurement units (PMU) and smart meters are being widely deployed, a data layer that can analyze this amount of data in real time is needed. Unlike the data fabric in other cloud services, the data layer for smart grids has some unique design requirements. First, this layer must provide real time guarantees. Second, this layer must be scalable to allow a large number of applications to access the data from millions of sensors in real time. Third, reliability is critical and this layer must be able to continue to provide service in face of failures. Fourth, this layer must be secure. We address these challenges though a scalable system architecture that integrates the I/O and data processing capability in a devise set of devices. Data process operations can be placed anywhere from sensors, data storage devices, to control centers. We further employ compression to improve performance. We design a lightweight compression customized for power grid data. Our system can reduce end-to-end response time by reduce I/O overhead through compression and overlap compression operations with I/O. The initial prototype of our system was demonstrated with several use cases from PNNL’s FPGI and show that our system can provide real time guarantees to a diverse set of applications.

  16. High performance real-time flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  17. A heterogeneous hierarchical architecture for real-time computing

    SciTech Connect

    Skroch, D.A.; Fornaro, R.J.

    1988-12-01

    The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

  18. Rapid Real-Time SpaceWire Emulation

    NASA Astrophysics Data System (ADS)

    Mudie, Stephen; Parkes, Steve; Dunstan, Martin

    2015-09-01

    The SpaceWire Electronic Ground Support Equipment (EGSE) test and development unit from STAR-Dundee can be used to very rapidly emulate real-time behaviour of SpaceWire equipment. The behaviour of the equipment to emulate is described in a script using a SpaceWire specific scripting language. Once configured the SpaceWire EGSE unit operates independent of software. This paper describes three camera emulation scripts to demonstrate the rapid real-time SpaceWire emulation possible using the SpaceWire EGSE.

  19. Spectral decontamination of a real-time helicopter simulation

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1983-01-01

    Nonlinear mathematical models of a rotor system, referred to as rotating blade-element models, produce steady-state, high-frequency harmonics of significant magnitude. In a discrete simulation model, certain of these harmonics may be incompatible with realistic real-time computational constraints because of their aliasing into the operational low-pass region. However, the energy is an aliased harmonic may be suppressed by increasing the computation rate of an isolated, causal nonlinearity and using an appropriate filter. This decontamination technique is applied to Sikorsky's real-time model of the Black Hawk helicopter, as supplied to NASA for handling-qualities investigations.

  20. ARTEMIS: Ares Real Time Environments for Modeling, Integration, and Simulation

    NASA Technical Reports Server (NTRS)

    Hughes, Ryan; Walker, David

    2009-01-01

    This slide presentation reviews the use of ARTEMIS in the development and testing of the ARES launch vehicles. Ares Real Time Environment for Modeling, Simulation and Integration (ARTEMIS) is the real time simulation supporting Ares I hardware-in-the-loop (HWIL) testing. ARTEMIS accurately models all Ares/Orion/Ground subsystems which interact with Ares avionics components from pre-launch through orbit insertion The ARTEMIS System integration Lab, and the STIF architecture is reviewed. The functional components of ARTEMIS are outlined. An overview of the models and a block diagram is presented.

  1. Real-time nondestructive imaging with THz waves

    NASA Astrophysics Data System (ADS)

    Zhang, LiangLiang; Karpowicz, Nick; Zhang, CunLin; Zhao, YueJin; Zhang, XiCheng

    2008-03-01

    We present a real-time imaging measurement in the terahertz (THz) frequency region. The dynamic subtraction technique is used to reduce long-term optical background drift. The reflective images of two targets, a Nikon camera's lens cap and a plastic toy gun, are obtained. For the lens cap, the image data were processed to be false-color images. For the toy gun, we show that even under an optically opaque canvas bag, a clear terahertz image is obtained. It is shown that terahertz real-time imaging can be used to nondestructively detect concealed objects.

  2. Terahertz real-time imaging for nondestructive detection

    NASA Astrophysics Data System (ADS)

    Zhang, LiangLiang; Karpowicz, Nick; Zhang, CunLin; Zhao, YueJin; Zhang, XiCheng

    2008-03-01

    We present a real time imaging measurement in the terahertz (THz) frequency region. The dynamic subtraction technique is used to reduce long-term optical background drift. The reflective images of two targets, a Nikon camera's lens cap and a plastic toy gun, are obtained. For the lens cap, the image data were processed to be false color images. For the toy gun, we show that even under an optically opaque canvas bag, a clear terahertz image is obtained. It is shown that terahertz real time imaging can be used to nondestructively detect concealed objects.

  3. Handheld portable real-time tracking and communications device

    DOEpatents

    Wiseman, James M.; Riblett, Jr., Loren E.; Green, Karl L.; Hunter, John A.; Cook, III, Robert N.; Stevens, James R.

    2012-05-22

    Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.

  4. Real-time space system control with expert systems

    NASA Technical Reports Server (NTRS)

    Leinweber, David; Hawkinson, Lowell; Perry, John

    1988-01-01

    Many aspects of space system operations involve continuous control of real time processes. These processes include electrical power system monitoring, prelaunch and ongoing propulsion system health and maintenance, environmental and life support systems, space suit checkout, onboard manufacturing, and vehicle servicing including satellites, shuttles, orbital maneuvering vehicles, orbital transfer vehicles and remote teleoperators. Traditionally, monitoring of these critical real time processes has been done by trained human experts monitoring telemetry data. However, the long duration of future space missions and the high cost of crew time in space creates a powerful economic incentive for the development of highly autonomous knowledge based expert control procedures for these space systems.

  5. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  6. Real Time Mars Approach Navigation Aided by the Mars Network

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Duncan, Courtney; Lightsey, E. Glenn; Mogensen, Andreas

    2006-01-01

    A NASA Mars technology project is described that is building a prototype embedded real time Mars approach navigation capability which can be hosted on the Mars Network's Electra transceiver. The paper motivates the reason for doing real time Mars approach navigation via a set of analyses demonstrating its utility for enabling Mars pin-point landing (< 1-km landing error). The development approach, software design, and test results are discussed. Finally, the way forward towards a flight demonstration on the Mars Science Laboratory is presented.

  7. Real Time Mars Approach Navigation Aided by the Mars Network

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Duncan, Courtney; Lightsey, E. Glenn; Mogensen, Andreas

    2006-01-01

    A NASA Mars technology project is described that is building a prototype embedded real time Mars approach navigation capability which can be hosted on the Mars Network's Electra transceiver. The paper motivates the reason for doing real time Mars approach navigation via a set of analyses demonstrating its utility for enabling Mars pin-point landing (less than 1-km landing error). The development approach, software design, and test results are discussed. Finally, the way forward towards a flight demonstration on the Mars Science Laboratory (MSL) is presented.

  8. Real Time Dual-Channel Multiplex SERS Ultradetection.

    PubMed

    Abalde-Cela, Sara; Abell, Chris; Alvarez-Puebla, Ramón A; Liz-Marzán, Luis M

    2014-01-01

    Surface-enhanced Raman scattering (SERS) can be combined with microfluidics for rapid multiplex analyte screening. Through combination of the high intensity and complex signals provided by SERS with the flow characteristics of microfluidic channels, we engineered a microdevice that is capable of monitoring various analytes from different sources in real time. Detection limits down to the nM range may allow the generation of a new family of devices for remote, real time monitoring of environmental samples such as natural or waste waters and application to the high-throughput screening of multiple samples in healthcare diagnostics. PMID:26276183

  9. Application of real-time locating in health care.

    PubMed

    Zigman, Dubravko; Krajina, Slaven; Krznarić, Marija

    2009-12-01

    This paper describes real-time locating technology and its possible use in health care. Real time locating may be applied in different segments of everyday life, including hospitals (medical equipment and devices, locating patients, and alarm in case of emergency), working environment (locating persons to control access to restricted areas or in case of fire to see if anyone has been trapped inside the building), sports, logistics, retail trade, and offices. Tagged hospital equipment is easy to trace inside hospital premises and the system makes it possible to track patients and staff, and to redistribute work in particular wards. PMID:20061250

  10. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  11. Real-time prognosis of ICU physiological data streams.

    PubMed

    Sow, Daby; Biem, Alain; Sun, Jimeng; Hu, Jianying; Ebadollahi, Shahram

    2010-01-01

    This paper presents a system capable of predicting in real-time the evolution of Intensive Care Unit (ICU) physiological patient data streams. It leverages a state of the art stream computing platform to host analytics capable of making such prognosis in real time. The focus is on online algorithms that do not require a training phase. We use Fading-Memory Polynomial filters [8] on the frequency domain to predict windows of ICU data streams. We report on both the system and the performance of this approach when applied to traces of more than 1500 ICU patients obtained from the MIMIC-II database [1]. PMID:21095840

  12. Real-time monitoring for low-level pollution

    SciTech Connect

    Kishkovich, O.P.; Joffe, M.A.

    1997-11-01

    Real-time monitors provide a valuable addition to the arsenal of air-sampling methods used for IAQ applications. They are accurate, dependable, flexible, and provide IAQ professionals with more detailed quantitative information. RTM improves efficiency of many IAQ sampling applications and, in some cases, cannot be matched by other sampling techniques. Adequate instrumentation for demanding IAQ applications is available today. Future needs are expanding the range of pollutants that can be monitored with real-time instruments, improving reliability and portability of monitoring instrumentation, and devising cost-effective multiplexing schemes for multi-point RTM sampling.

  13. Real-time prognosis of ICU physiological data streams.

    PubMed

    Sow, Daby; Biem, Alain; Sun, Jimeng; Hu, Jianying; Ebadollahi, Shahram

    2010-01-01

    This paper presents a system capable of predicting in real-time the evolution of Intensive Care Unit (ICU) physiological patient data streams. It leverages a state of the art stream computing platform to host analytics capable of making such prognosis in real time. The focus is on online algorithms that do not require a training phase. We use Fading-Memory Polynomial filters [8] on the frequency domain to predict windows of ICU data streams. We report on both the system and the performance of this approach when applied to traces of more than 1500 ICU patients obtained from the MIMIC-II database [1].

  14. Real-time medical collaboration services over the web.

    PubMed

    Andrikos, Christos; Rassias, Georgios; Tsanakas, Panayiotis; Maglogiannis, Ilias

    2015-08-01

    The gradual shift in modern medical practice, from working alone clinical doctors to MDTs (Multi-Disciplinary Teams), raises the need of online real-time collaboration among geographically distributed medical personnel. The paper presents a Web-based platform, featuring an efficient medical data management and exchange, for hosting real-time collaborative services. The presented work leverages state-of-the-art features of the web (technologies and APIs) to support client-side medical data processing. Moreover, to address the typical bandwidth bottleneck and known scalability issues of centralized data sharing, an indirect RPC (Remote Process Call) scheme is introduced through object synchronization over the WebRTC paradigm.

  15. Embedded real-time operating system micro kernel design

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-hui; Li, Ming-qiang; Wang, Xin-zheng

    2005-12-01

    Embedded systems usually require a real-time character. Base on an 8051 microcontroller, an embedded real-time operating system micro kernel is proposed consisting of six parts, including a critical section process, task scheduling, interruption handle, semaphore and message mailbox communication, clock managent and memory managent. Distributed CPU and other resources are among tasks rationally according to the importance and urgency. The design proposed here provides the position, definition, function and principle of micro kernel. The kernel runs on the platform of an ATMEL AT89C51 microcontroller. Simulation results prove that the designed micro kernel is stable and reliable and has quick response while operating in an application system.

  16. Programmable Real-Time Acousto-Optic/CCD SAR processor

    NASA Technical Reports Server (NTRS)

    Haney, M.; Wagner, K.; Psaltis, D.

    1984-01-01

    The theory of operation of the Real-Time Acousto-Optic SAR Processor is reviewed and recent experimental results are presented. The results include a demonstration of the real-time imaging capability of the processor with simulated radar signals. An advanced version of this processor is then described in which a programmable reference function is entered via a second acousto-optic device to eliminate the need for a 2-D SLM. In this implementation the reference function is updated by electronic means to give the processor the flexibility to adapt rapidly to changes in the parameters of the radar/target geometry.

  17. Real-time monitoring in vitro transcription using molecular beacons.

    PubMed

    Liu, Jianwei; Feldman, Patricia; Chung, Thomas D Y

    2002-01-01

    A homogeneous fluorescence-based molecular beacon (MB) method has been developed for real-time monitoring of in vitro transcription reactions. MB probes are structured as target-specific antisense oligodeoxynucleotides containing a proximate fluorophore-quencher pair. Upon binding to its target sequence, the probe undergoes a structural rearrangement that separates the proximate pair, thus dequenching fluorescence. We demonstrate that this simple, inexpensive, rapid, and homogeneous fluorescence-based assay permits real-time monitoring of in vitro transcription and end-point measurement of RNA. The results from the RNA MB assay were comparable to those from other methods.

  18. Real-Time Multiprocessor Programming Language (RTMPL) user's manual

    NASA Technical Reports Server (NTRS)

    Arpasi, D. J.

    1985-01-01

    A real-time multiprocessor programming language (RTMPL) has been developed to provide for high-order programming of real-time simulations on systems of distributed computers. RTMPL is a structured, engineering-oriented language. The RTMPL utility supports a variety of multiprocessor configurations and types by generating assembly language programs according to user-specified targeting information. Many programming functions are assumed by the utility (e.g., data transfer and scaling) to reduce the programming chore. This manual describes RTMPL from a user's viewpoint. Source generation, applications, utility operation, and utility output are detailed. An example simulation is generated to illustrate many RTMPL features.

  19. Real-time optical holographic tracking of multiple objects

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1989-01-01

    A coherent optical correlation technique for real-time simultaneous tracking of several different objects making independent movements is described, and experimental results are presented. An evaluation of this system compared with digital computing systems is made. The real-time processing capability is obtained through the use of a liquid crystal television spatial light modulator and a dichromated gelatin multifocus hololens. A coded reference beam is utilized in the separation of the output correlation plane associated with each input target so that independent tracking can be achieved.

  20. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.; Todorov, E.; Levesque, S.

    2014-02-18

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  1. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect

    Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol; Evgueni Todorov; Steve Levesque; Feng Yu; Robert Danna Couch

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  2. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated. PMID:22938303

  3. Real time mass flow computer for Arc Jet Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Vidal, J.

    1978-01-01

    Experiments at the Arc Jet Tunnel at Ames Research Center have typical run times of 5-10 sec during which the test model is subjected to an environment simulating reentry into Jupiter. Previous real-time determination of mass flow required off-line manual computations from taped or strip chart data. The present paper describes a computer which provides personnel with real-time computations of mass flow. Using an 8-bit microprocessor and standard TTL interface circuitry, the unit interrogates temperature and pressure instruments with other parameters to compute mass flow.

  4. Real-time programmable acoustooptic synthetic aperture radar processor.

    PubMed

    Haney, M; Psaltis, D

    1988-05-01

    The acoustooptic time-and-space integrating approach to real-time synthetic aperture radar (SAR) processing is reviewed, and novel hybrid optical/electronic techniques, which generalize the basic architecture, are described. The generalized architecture is programmable and has the ability to compensate continuously for range migration changes in the parameters of the radar/target geometry and anomalous platform motion. The new architecture is applicable to the spotlight mode of SAR, particularly for applications in which real-time onboard processing is required.

  5. Principles of real-time sonography in modern obstetrics

    SciTech Connect

    Perone, N.

    1984-01-01

    Introductory chapters assist the obstetrician in establishing an office-based ultrasound facility and choosing real-time ultrasound equipment. The author then offers step-by-step, superbly illustrated instructions on evaluation of the fetus in utero. Special attention is devoted to use of ultrasound in early pregnancy, antenatal assessment of fetal growth, evaluation of the placenta, diagnosis of congenital defects, and monitoring of fetal activity. Also included are chapters on the use of real-time sonography in invasive procedures such as amniocentesis and on sonographic study of gallbladder function in pregnancy.

  6. Combining Instruction Prefetching with Partial Cache Locking to Improve WCET in Real-Time Systems

    PubMed Central

    Ni, Fan; Long, Xiang; Wan, Han; Gao, Xiaopeng

    2013-01-01

    Caches play an important role in embedded systems to bridge the performance gap between fast processor and slow memory. And prefetching mechanisms are proposed to further improve the cache performance. While in real-time systems, the application of caches complicates the Worst-Case Execution Time (WCET) analysis due to its unpredictable behavior. Modern embedded processors often equip locking mechanism to improve timing predictability of the instruction cache. However, locking the whole cache may degrade the cache performance and increase the WCET of the real-time application. In this paper, we proposed an instruction-prefetching combined partial cache locking mechanism, which combines an instruction prefetching mechanism (termed as BBIP) with partial cache locking to improve the WCET estimates of real-time applications. BBIP is an instruction prefetching mechanism we have already proposed to improve the worst-case cache performance and in turn the worst-case execution time. The estimations on typical real-time applications show that the partial cache locking mechanism shows remarkable WCET improvement over static analysis and full cache locking. PMID:24386133

  7. Some real-time simulation applications to Space Shuttle approach and landing design and test

    NASA Technical Reports Server (NTRS)

    Law, H. G., III; Stegall, H. W.

    1984-01-01

    In the present discussion of the roles played by real time, man-in-the-loop engineering simulation in the development of NASA Space Shuttle approaches and landings, attention is given to the function of the simulator as a design and verification tool. Aspects of the problem posed by Shuttle landings, and the difficulties involved in this problem's quantification, are noted. Recent results of control system studies for pitch axis control, using fixed- and motion-base simulators, are discussed.

  8. A digital approach for real time high-rate high-resolution radiation measurements

    NASA Astrophysics Data System (ADS)

    Gerardi, G.; Abbene, L.

    2014-12-01

    Modern spectrometers are currently developed by using digital pulse processing (DPP) systems, showing several advantages over traditional analog electronics. The aim of this work is to present digital strategies, in a time domain, for the development of real time high-rate high-resolution spectrometers. We propose a digital method, based on the single delay line (SDL) shaping technique, able to perform multi-parameter analysis with high performance even at high photon counting rates. A robust pulse shape and height analysis (PSHA), applied on single isolated time windows of the detector output waveforms, is presented. The potentialities of the proposed strategy are highlighted through both theoretical and experimental approaches. To strengthen our approach, the implementation of the method on a real-time system together with some experimental results are presented. X-ray spectra measurements with a semiconductor detector are performed both at low and high photon counting rates (up to 1.1 Mcps).

  9. Real Time Updating Genetic Network Programming for Adapting to the Change of Stock Prices

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro

    The key in stock trading model is to take the right actions for trading at the right time, primarily based on the accurate forecast of future stock trends. Since an effective trading with given information of stock prices needs an intelligent strategy for the decision making, we applied Genetic Network Programming (GNP) to creating a stock trading model. In this paper, we propose a new method called Real Time Updating Genetic Network Programming (RTU-GNP) for adapting to the change of stock prices. There are three important points in this paper: First, the RTU-GNP method makes a stock trading decision considering both the recommendable information of technical indices and the candlestick charts according to the real time stock prices. Second, we combine RTU-GNP with a Sarsa learning algorithm to create the programs efficiently. Also, sub-nodes are introduced in each judgment and processing node to determine appropriate actions (buying/selling) and to select appropriate stock price information depending on the situation. Third, a Real Time Updating system has been firstly introduced in our paper considering the change of the trend of stock prices. The experimental results on the Japanese stock market show that the trading model with the proposed RTU-GNP method outperforms other models without real time updating. We also compared the experimental results using the proposed method with Buy&Hold method to confirm its effectiveness, and it is clarified that the proposed trading model can obtain much higher profits than Buy&Hold method.

  10. Development of decision support systems for real-time freeway traffic routing: Volume 2. Final report

    SciTech Connect

    Sadek, A.W.; Smith, B.L.; McGhee, C.C.; Demetsky, M.J.

    1998-10-01

    Real-time traffic flow routing is a promising approach to alleviating congestion. Existing approaches to developing real-time routing strategies, however, have limitations. The study explored the potential for using case-based reasoning (CBR), an emerging artificial intelligence paradigm, to overcome such limitations. CBR solves new problems by reusing solutions of similar past problems. To illustrate the feasibility of the approach, the research team developed and evaluated a prototype CBR routing system for the interstate network in Hampton Roads, Virginia. They generated cases for building the system`s case-base using a heuristic dynamic traffic assignment (DTA) model designed for the region. Using a second set of cases, the research team evaluated the performance of the prototype system by comparing its solutions with those of the DTA model. The research team found that CBR has the potential to overcome many of the limitations to existing approaches to real-time routing and a CBR routing system is capable of producing high-quality solutions with reasonable a case-base size. In addition, the research team found that real-time traffic flow routing will likely lead to significant user cost savings.

  11. Real-time visual feedback for gait retraining: toward application in knee osteoarthritis.

    PubMed

    van den Noort, Josien C; Steenbrink, Frans; Roeles, Sanne; Harlaar, Jaap

    2015-03-01

    Real-time visual feedback might be effective for gait retraining in patients with knee osteoarthritis, to potentially relieve symptoms and postpone knee replacement. In this study, we investigated the effect of various types of real-time visual feedback on a kinetic and a kinematic gait parameter and the different kinematic strategies adopted to reduce knee load. Seventeen healthy subjects walked on an instrumented treadmill while receiving real-time visual kinetic feedback aimed at minimizing the external knee adduction moment (KAdM, reflecting the knee load) or kinematic feedback on the hip internal rotation angle (HIR, a gait modification to reduce the KAdM). Four types of visual feedback (bar, polar plot, color change, graph) were provided. The KAdM decreased by 50 % with kinetic feedback, while kinematic feedback resulted in an HIR increase of 8° but no decrease in KAdM. The degree of change was not influenced by the type of visual feedback. The kinematic changes that reduced KAdM were increased toe-in, increased step width, and decreased hip adduction. Real-time visual feedback can effectively modify gait parameters. Feedback of the KAdM may be more effective in reducing the KAdM than controlling a kinematic parameter that is assumed to unload the knee.

  12. Real-time fMRI-based activation analysis and stimulus control

    NASA Astrophysics Data System (ADS)

    Moench, Tobias; Hollmann, Maurice; Bernarding, Johannes

    2007-03-01

    The real-time analysis of brain activation using functional MRI data offers a wide range of new experiments such as investigating self-regulation or learning strategies. However, besides special data acquisition and real-time data analysing techniques such examination requires dynamic and adaptive stimulus paradigms and self-optimising MRI-sequences. This paper presents an approach that enables the unified handling of parameters influencing the different software systems involved in the acquisition and analysing process. By developing a custom-made Experiment Description Language (EDL) this concept is used for a fast and flexible software environment which treats aspects like extraction and analysis of activation as well as the modification of the stimulus presentation. We describe how extracted real-time activation is subsequently evaluated by comparing activation patterns to previous acquired templates representing activated regions of interest for different predefined conditions. According to those results the stimulus presentation is adapted. The results showed that the developed system in combination with EDL is able to reliably detect and evaluate activation patterns in real-time. With a processing time for data analysis of about one second the approach is only limited by the natural time course of the hemodynamic response function of the brain activation.

  13. Real-time pattern recognition using an optical generalized Hough transform.

    PubMed

    Fernández, Ariel; Flores, Jorge L; Alonso, Julia R; Ferrari, José A

    2015-12-20

    We present some pattern recognition applications of a generalized optical Hough transform and the temporal multiplexing strategies for dynamic scale and orientation-variant detection. Unlike computer-based implementations of the Hough transform, in principle its optical implementation does not impose restrictions on the execution time or on the resolution of the images or frame rate of the videos to be processed, which is potentially useful for real-time applications. Validation experiments are presented. PMID:26837021

  14. Advantages of Single-Molecule Real-Time Sequencing in High-GC Content Genomes

    PubMed Central

    Shin, Seung Chul; Ahn, Do Hwan; Kim, Su Jin; Lee, Hyoungseok; Oh, Tae-Jin; Lee, Jong Eun; Park, Hyun

    2013-01-01

    Next-generation sequencing has become the most widely used sequencing technology in genomics research, but it has inherent drawbacks when dealing with high-GC content genomes. Recently, single-molecule real-time sequencing technology (SMRT) was introduced as a third-generation sequencing strategy to compensate for this drawback. Here, we report that the unbiased and longer read length of SMRT sequencing markedly improved genome assembly with high GC content via gap filling and repeat resolution. PMID:23894349

  15. Real-time measurements of jet aircraft engine exhaust.

    PubMed

    Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F

    2005-05-01

    Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.

  16. Real-time depth map manipulation for 3D visualization

    NASA Astrophysics Data System (ADS)

    Ideses, Ianir; Fishbain, Barak; Yaroslavsky, Leonid

    2009-02-01

    One of the key aspects of 3D visualization is computation of depth maps. Depth maps enables synthesis of 3D video from 2D video and use of multi-view displays. Depth maps can be acquired in several ways. One method is to measure the real 3D properties of the scene objects. Other methods rely on using two cameras and computing the correspondence for each pixel. Once a depth map is acquired for every frame, it can be used to construct its artificial stereo pair. There are many known methods for computing the optical flow between adjacent video frames. The drawback of these methods is that they require extensive computation power and are not very well suited to high quality real-time 3D rendering. One efficient method for computing depth maps is extraction of motion vector information from standard video encoders. In this paper we present methods to improve the 3D visualization quality acquired from compression CODECS by spatial/temporal and logical operations and manipulations. We show how an efficient real time implementation of spatial-temporal local order statistics such as median and local adaptive filtering in 3D-DCT domain can substantially improve the quality of depth maps and consequently 3D video while retaining real-time rendering. Real-time performance is achived by utilizing multi-core technology using standard parallelization algorithms and libraries (OpenMP, IPP).

  17. A Short Term Real Time Study in Syntactic Change.

    ERIC Educational Resources Information Center

    Duarte, Maria Eugenia Lamoglia

    Recent research has shown that Brazilian Portuguese is undergoing a change regarding the null subject parameter, evolving from a null subject to a non-null subject language. This paper presents the results of a short term, real time study of speakers of Brazilian Portuguese with low and mid levels of formal education. The study was based on…

  18. Performance and application of real-time hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Dombrowski, Mark S.; Willson, Paul D.; LaBaw, Clayton C.

    1998-10-01

    Hyperspectral imaging is the latest advent in imaging technology, providing the potential to extract information about the objects in a scene that is unavailable to panchromatic imagers. This increased utility, however, comes at the cost of tremendously increased data. The ultimate utility of hyperspectral imagery is in the information that can be gleaned from the spectral dimension, rather than in the hyperspectral imagery itself. To have the broadest range of applications, extraction of this information must occur in real-time. Attempting to produce and exploit complete cubes of hyperspectral imagery at video rates, however, present unique problems for both the imager and the processor, since data rates are scaled by the number of spectral planes in the cube. MIDIS, the Multi-band Identification and Discrimination Imaging Spectroradiometer, allows both real-time here are the major design innovations associated with producing high-speed, high-sensitivity hyperspectral imagers operating in the SWIR and LWIR, and of the electronics capable of handling data rates up to 160 megapixels per second, continuously. Discussion of real-time algorithms capable of exploiting the spectral dimension of the imagery is also included. Beyond design and performance issues associated with producing and processing hyperspectral imagery at such high speeds, this paper also discusses applications of real-time hyperspectral imaging technology. Example imagery includes such problems as detecting counterfeit money, inspecting surfaces, and countering CCD.

  19. Algorithms star in multipurpose systems (real-time operating systems)

    SciTech Connect

    Not Available

    1983-03-24

    Important aspects of real-time operating systems are examined. These aspects include the multitasking schedules and queues; interrupt handling; protocols, intertask communication and monitors; and methods of reducing overheads. The discussion is illustrated with mentions of actual systems. 1 ref.

  20. Real-Time Attitude Independent Three Axis Magnetometer Calibration

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Lai, Kok-Lam; Harman, Richard R.

    2003-01-01

    In this paper new real-time approaches for three-axis magnetometer sensor calibration are derived. These approaches rely on a conversion of the magnetometer-body and geomagnetic-reference vectors into an attitude independent observation by using scalar checking. The goal of the full calibration problem involves the determination of the magnetometer bias vector, scale factors and non-orthogonality corrections. Although the actual solution to this full calibration problem involves the minimization of a quartic loss function, the problem can be converted into a quadratic loss function by a centering approximation. This leads to a simple batch linear least squares solution. In this paper we develop alternative real-time algorithms based on both the extended Kalman filter and Unscented filter. With these real-time algorithms, a full magnetometer calibration can now be performed on-orbit during typical spacecraft mission-mode operations. Simulation results indicate that both algorithms provide accurate integer resolution in real time, but the Unscented filter is more robust to large initial condition errors than the extended Kalman filter. The algorithms are also tested using actual data from the Transition Region and Coronal Explorer (TRACE).

  1. Real-Time Capture of Student Reasoning While Writing

    ERIC Educational Resources Information Center

    Franklin, Scott V.; Hermsen, Lisa M.

    2014-01-01

    We present a new approach to investigating student reasoning while writing: real-time capture of the dynamics of the writing process. Key-capture or video software is used to record the entire writing episode, including all pauses, deletions, insertions, and revisions. A succinct shorthand, "S notation," is used to highlight significant…

  2. BENEFITS OF SEWERAGE SYSTEM REAL-TIME CONTROL

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed computer-assisted management system for a specific urban sewerage network that is activated during a wet-weather flow event. Though uses of RTC systems had started in the mid 60s, recent developments in computers, telecommunication, in...

  3. REAL-TIME CONTROL OF COMBINED SEWER NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed management program for a specific urban sewerage system during a wet-weather event. The function of RTC is to assure efficient operation of the sewerage system and maximum utilization of existing storage capacity, either to fully conta...

  4. Real-time hyperspectral processing for automatic nonferrous material sorting

    NASA Astrophysics Data System (ADS)

    Picón, Artzai; Ghita, Ovidiu; Bereciartua, Aranzazu; Echazarra, Jone; Whelan, Paul F.; Iriondo, Pedro M.

    2012-01-01

    The application of hyperspectral sensors in the development of machine vision solutions has become increasingly popular as the spectral characteristics of the imaged materials are better modeled in the hyperspectral domain than in the standard trichromatic red, green, blue data. While there is no doubt that the availability of detailed spectral information is opportune as it opens the possibility to construct robust image descriptors, it also raises a substantial challenge when this high-dimensional data is used in the development of real-time machine vision systems. To alleviate the computational demand, often decorrelation techniques are commonly applied prior to feature extraction. While this approach has reduced to some extent the size of the spectral descriptor, data decorrelation alone proved insufficient in attaining real-time classification. This fact is particularly apparent when pixel-wise image descriptors are not sufficiently robust to model the spectral characteristics of the imaged materials, a case when the spatial information (or textural properties) also has to be included in the classification process. The integration of spectral and spatial information entails a substantial computational cost, and as a result the prospects of real-time operation for the developed machine vision system are compromised. To answer this requirement, in this paper we have reengineered the approach behind the integration of the spectral and spatial information in the material classification process to allow the real-time sorting of the nonferrous fractions that are contained in the waste of electric and electronic equipment scrap.

  5. ADA and multi-microprocessor real-time simulation

    NASA Technical Reports Server (NTRS)

    Feyock, S.; Collins, W. R.

    1983-01-01

    The selection of a high-order programming language for a real-time distributed network simulation is described. The additional problem of implementing a language on a possibly changing network is addressed. The recently designed language ADA (trademarked by DoD) was chosen since it provides the best model of the underlying application to be simulated.

  6. Rendering energy-conservative scenes in real time

    NASA Astrophysics Data System (ADS)

    Olson, Eric M.; Garbo, Dennis L.; Crow, Dennis R.; Coker, Charles F.

    1997-07-01

    Real-time infrared (IR) scene generation from HardWare-in- the-Loop (HWIL) testing of IR seeker systems is a complex problem due to the required frame rates and image fidelity. High frame rates are required for current generation seeker systems to perform designation, discrimination, identification, tracking, and aimpoint selection tasks. Computational requirements for IR signature phenomenology and sensor effects have been difficult to perform in real- time to support HWIL testing. Commercial scene generation hardware is rapidly improving and is becoming a viable solution for HWIL testing activities being conducted at the Kinetic Kill Vehicle Hardware-in-the-Loop Simulator facility at Eglin AFB, Florida. This paper presents computational techniques performed to overcome IR scene rendering errors incurred with commercially available hardware and software for real-time scene generation in support of HWIL testing. These techniques provide an acceptable solution to real-time IR scene generation that strikes a balance between physical accuracy and image framing rates. The results of these techniques are investigated as they pertain to rendering accuracy and speed for target objects which begin as a point source during acquisition and develop into an extended source representation during aimpoint selection.

  7. Real-time delay statistics in wireless IP networks

    NASA Astrophysics Data System (ADS)

    Huo, D.

    2012-09-01

    In the wireless communication, the variation of the transmission delay is called jitter and is one of the variables responsible for the degradation of the service quality. Jitter is present in every section of the transmission system. Its stochastic behavior depends on the technology implemented in the system and the service provided by the system. This paper focuses on mathematical modeling and phenomenological analysis of the jitter encountered by the real-time services in a wireless network. Using the data made available to the public by the wireless industry, we explore the stochastic characterizations of the jitter in a wireless IP networks. Within the scope of real-time service, we studied the relation between delay, jitter and the inter-packet time. Evaluation of the sample data indicates a long range dependence of the inter-packet time of the received packets in a real-time connection. The result helps understanding the transmission delay encountered by the real-time service over wireless IP networks.

  8. Real-Time "Garbage Collection" for List Processing

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.

    1987-01-01

    Two proposed algorithmic techniques for list processing enable immediate identification of computer memory cells having become inactive through disconnection from active cells, together with addition of these inactive cells to pool of reusable cells. These two "garbage collection" techniques reduce memory requirements of list processors or increase their speed or both. With both techniques, processing continuity maintained, enabling real-time processing.

  9. Real-time measurements of jet aircraft engine exhaust.

    PubMed

    Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F

    2005-05-01

    Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations. PMID:15991667

  10. Development of a Real-Time Intelligent Network Environment.

    ERIC Educational Resources Information Center

    Gordonov, Anatoliy; Kress, Michael; Klibaner, Roberta

    This paper presents a model of an intelligent computer network that provides real-time evaluation of students' performance by incorporating intelligence into the application layer protocol. Specially designed drills allow students to independently solve a number of problems based on current lecture material; students are switched to the most…

  11. Detection of magnetising inrush current using real time integration method

    NASA Astrophysics Data System (ADS)

    Ling, P. C. Y.; Basak, A.

    1990-01-01

    A technique of predicting magnetising inrush currents in transformers is described. Computed results show an inconsistency in second harmonic decay resulting detection failure while using conventional second harmonic techniques. A new detection scheme using real time integration values of the inrush current is proposed to provide reliable relay operation.

  12. Real-Time Confocal Imaging Of The Living Eye

    NASA Astrophysics Data System (ADS)

    Jester, James V.; Cavanagh, H. Dwight; Essepian, John; Shields, William J.; Lemp, Michael A.

    1989-12-01

    In 1986, we adapted the Tandem Scanning Reflected Light Microscope of Petran and Hadraysky to permit non-invasive, confocal imaging of the living eye in real-time. We were first to obtain stable, confocal optical sections in vivo, from human and animal eyes. Using confocal imaging systems we have now studied living, normal volunteers, rabbits, cats and primates sequentially, non-invasively, and in real-time. The continued development of real-time confocal imaging systems will unlock the door to a new field of cell biology involving for the first time the study of dynamic cellular processes in living organ systems. Towards this end we have concentrated our initial studies on three areas (1) evaluation of confocal microscope systems for real-time image acquisition, (2) studies of the living normal cornea (epithelium, stroma, endothelium) in human and other species; and (3) sequential wound-healing responses in the cornea in single animals to lamellar-keratectomy injury (cellular migration, inflammation, scarring). We believe that this instrument represents an important, new paradigm for research in cell biology and pathology and that it will fundamentally alter all experimental and clinical approaches in future years.

  13. Real-Time Case Method: Analysis of a Second Implementation

    ERIC Educational Resources Information Center

    Theroux, James M.

    2009-01-01

    In 2005, M. Hopkins and J. Theroux implemented the second example of an experimental case study, at 11 business schools in the United States and Canada. The new type of case study, named the "real-time case (RTC) study," uses the Internet to bring business reality to business courses and to facilitate communication among faculty, students, and the…

  14. Model Checking Real Time Java Using Java PathFinder

    NASA Technical Reports Server (NTRS)

    Lindstrom, Gary; Mehlitz, Peter C.; Visser, Willem

    2005-01-01

    The Real Time Specification for Java (RTSJ) is an augmentation of Java for real time applications of various degrees of hardness. The central features of RTSJ are real time threads; user defined schedulers; asynchronous events, handlers, and control transfers; a priority inheritance based default scheduler; non-heap memory areas such as immortal and scoped, and non-heap real time threads whose execution is not impeded by garbage collection. The Robust Software Systems group at NASA Ames Research Center has JAVA PATHFINDER (JPF) under development, a Java model checker. JPF at its core is a state exploring JVM which can examine alternative paths in a Java program (e.g., via backtracking) by trying all nondeterministic choices, including thread scheduling order. This paper describes our implementation of an RTSJ profile (subset) in JPF, including requirements, design decisions, and current implementation status. Two examples are analyzed: jobs on a multiprogramming operating system, and a complex resource contention example involving autonomous vehicles crossing an intersection. The utility of JPF in finding logic and timing errors is illustrated, and the remaining challenges in supporting all of RTSJ are assessed.

  15. Real-time pair-feeding of animals

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Connolly, J. P.; Hitchman, M. J.; Humbert, J. E.

    1972-01-01

    Automatic pair-feeding system was developed which immediately dispenses same amount of food to control animal as has been consumed by experimental animal that has free access to food. System consists of: master feeding system; slave feeding station; and control mechanism. Technique performs real time pair-feeding without attendant time lag.

  16. Real-Time Ocean Data in the Classroom

    ERIC Educational Resources Information Center

    Murray, Laura; Gibson, Deidre; Ward, Angela

    2008-01-01

    To apply students' savvy internet skills in the science classroom--as well as capture their interest in science and investigation, and provide opportunities for authentic research--introduce them to real-time data from ocean-observing systems. Students can use data from these ocean-observing systems to discover the winds and waves from storms or…

  17. Species identification in meat products using real-time PCR.

    PubMed

    Jonker, K M; Tilburg, J J H C; Hagele, G H; de Boer, E

    2008-05-01

    One of the most convenient methods for the identification of animal species in processed meat products is the examination of DNA sequences. Real-time polymerase chain reaction (qPCR) techniques are particularly suitable because even small fragments of DNA formed during heat processing of the meat can be amplified and identified. A real-time PCR method has been developed and evaluated for the identification of processed meat products. In test mixtures containing beef, pork, horse, mutton, chicken and turkey, it was possible to identify these species down to a level of 0.05%. By adjusting the number of cycles, it was possible to detect levels as low as 0.01% of these species. Cross-reactivity between these species was not found, except for pure horsemeat (250 ng DNA) in the assay for turkey meat. Cross-reactivity of deer, roe, ostrich, kangaroo, goat, domestic duck, mallard, goose, pigeon, guinea fowl, quail and pheasant was also investigated and it was found that amounts as high as 250 ng DNA of these species in the reaction vial did not result in (false) positive signals except for amounts higher than 125 ng deer DNA and higher than 50 ng pigeon DNA in the determination of chicken and beef, respectively. More than 150 meat samples were examined using DNA hybridization and real-time PCR. A comparison of the results showed a better performance of the real-time procedure compared to DNA hybridization.

  18. Real-time speech gisting for ATC applications

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Kirk A.

    1995-06-01

    Command and control within the ATC environment remains primarily voice-based. Hence, automatic real time, speaker independent, continuous speech recognition (CSR) has many obvious applications and implied benefits to the ATC community: automated target tagging, aircraft compliance monitoring, controller training, automatic alarm disabling, display management, and many others. However, while current state-of-the-art CSR systems provide upwards of 98% word accuracy in laboratory environments, recent low-intrusion experiments in the ATCT environments demonstrated less than 70% word accuracy in spite of significant investments in recognizer tuning. Acoustic channel irregularities and controller/pilot grammar verities impact current CSR algorithms at their weakest points. It will be shown herein, however, that real time context- and environment-sensitive gisting can provide key command phrase recognition rates of greater than 95% using the same low-intrusion approach. The combination of real time inexact syntactic pattern recognition techniques and a tight integration of CSR, gisting, and ATC database accessor system components is the key to these high phase recognition rates. A system concept for real time gisting in the ATC context is presented herein. After establishing an application context, discussion presents a minimal CSR technology context then focuses on the gisting mechanism, desirable interfaces into the ATCT database environment, and data and control flow within the prototype system. Results of recent tests for a subset of the functionality are presented together with suggestions for further research.

  19. The Real-Time Corporate University Becomes a Reality.

    ERIC Educational Resources Information Center

    Dealtry, Richard

    2002-01-01

    Traces the evolution of the corporate university, which combines traditional management tools with new learning process models, bridging strategic theory and real-time learning. Advocates the need for movement away from traditional cognitive paradigms, suggesting the use of image simulations and metamanagement thinking. (SK)

  20. Improving performance of real-time multispectral imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time multispectral imaging system can be a science-based tool for fecal and ingesta contaminant detection during poultry processing. For the implementation of this imaging system at commercial poultry processing plant, false positive errors must be removed. For doing this, we tested and imp...