Science.gov

Sample records for pleisto-holocenic natural perturbations

  1. The natural and perturbed troposphere

    NASA Technical Reports Server (NTRS)

    Stewart, R. W.; Hameed, S.; Pinto, J.

    1978-01-01

    A quantitative assessment of the chemical and climatic effects of industrial emissions into the atmosphere requires an understanding of the complex interactions of species within the atmosphere and of the atmosphere with other physical systems such as the oceans, lithosphere, and biosphere. The concentration of a particular species is determined by competition between various production and loss processes. The abundances of tropospheric gases are examined. The reactions of the members of the oxygen group are considered along with the models which have been developed to describe the involved relationships. Attention is also given to the natural carbon cycle, perturbations to the carbon cycle, the natural nitrogen cycle, perturbations to the nitrogen cycle, the hydrogen group, the sulfur group, and the halogen group.

  2. Perturbation Measurements on the Degree of Naturalness of Synthesized Vowels.

    PubMed

    Yamasaki, Rosiane; Montagnoli, Arlindo; Murano, Emi Z; Gebrim, Eloisa; Hachiya, Adriana; Lopes da Silva, Jorge Vicente; Behlau, Mara; Tsuji, Domingos

    2017-05-01

    To determine the impact of jitter and shimmer on the degree of naturalness perception of synthesized vowels produced by acoustical simulation with glottal pulses (GP) and with solid model of the vocal tract (SMVT). Prospective study. Synthesized vowels were produced in three steps: 1. Eighty GP were developed (20 with jitter, 20 with shimmer, 20 with jitter+shimmer, 20 without perturbation); 2. A SMVT was produced based on magnetic resonance imaging (MRI) from a woman during phonation-/ε/ and using rapid prototyping technology; 3. Acoustic simulations were performed to obtain eighty synthesized vowels-/ε /. Two experiments were performed. First Experiment: three judges rated 120 vowels (20 humans+80 synthesized+20% repetition) as "human" or "synthesized". Second Experiment: twenty PowerPoint slide sequences were created. Each slide had 4 synthesized vowels produced with the four perturbation condition. Evaluators were asked to rate the vowels from the most natural to the most artificial. First Experiment: all the human vowels were classified as human; 27 out of eighty synthesized vowels were rated as human, 15 of those were produced with jitter+shimmer, 10 with jitter, 2 without perturbation and none with shimmer. Second Experiment: Vowels produced with jitter+shimmer were considered as the most natural. Vowels with shimmer and without perturbation were considered as the most artificial. The association of jitter and shimmer increased the degree of naturalness of synthesized vowels. Acoustic simulations performed with GP and using SMVT demonstrated a possible method to test the effect of the perturbation measurements on synthesized voices. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. Assessing carbon dynamics in natural and perturbed boreal aquatic systems

    NASA Astrophysics Data System (ADS)

    Ouellet, Alexandre; Lalonde, Karine; Plouhinec, Jean-Baptiste; Soumis, Nicolas; Lucotte, Marc; GéLinas, Yves

    2012-09-01

    Most natural freshwater lakes are net greenhouse gas (GHG) emitters. Compared to natural systems, human perturbations such as watershed wood harvesting and long-term reservoir impoundment lead to profound alterations of biogeochemical processes involved in the aquatic cycle of carbon (C). We exploited these anthropogenic alterations to describe the C dynamics in five lakes and two reservoirs from the boreal forest through the analysis of dissolved carbon dioxide (CO2), methane (CH4), oxygen (O2), and organic carbon (DOC), as well as total nitrogen and phosphorus. Dissolved and particulate organic matter, forest soil/litter and leachates, as well as dissolved inorganic carbon were analyzed for elemental and stable isotopic compositions (atomic C:N ratios, δ13Corg, δ13Cinorg and δ15Ntot). We found links between the export of terrestrial organic matter (OM) to these systems and the dissolved CO2 and O2 concentrations in the water column, as well as CO2 fluxes to the atmosphere. All systems were GHG emitters, with greater emissions measured for systems with larger inputs of terrestrial OM. The differences in CO2 concentrations and fluxes appear controlled by bacterial activity in the water column and the sediment. Although we clearly observed differences in the aquatic C cycle between natural and perturbed systems, more work on a larger number of water bodies and encompassing all four seasons should be undertaken to better understand the controls, rates, and spatial as well as temporal variability of GHG emissions, and to make quantitatively meaningful comparisons of GHG emissions (and other key variables) from natural and perturbed systems.

  4. Talking while chewing: speaker response to natural perturbation of speech.

    PubMed

    Mayer, Connor; Gick, Bryan

    2012-01-01

    This study looks at how the conflicting goals of chewing and speech production are reconciled by examining the acoustic and articulatory output of talking while chewing. We consider chewing to be a type of perturbation with regard to speech production, but with some important differences. Ultrasound and acoustic measurements were made while participants chewed gum and produced various utterances containing the sounds /s/, /ʃ/, and /r/. Results show a great deal of individual variation in articulation and acoustics between speakers, but consistent productions and maintenance of relative acoustic distances within speakers. Although chewing interfered with speech production, and this interference manifested itself in a variety of ways across speakers, the objectives of speech production were indirectly achieved within the constraints and variability introduced by individual chewing strategies.

  5. Genome-wide epigenetic perturbation jump-starts patterns of heritable variation found in nature.

    PubMed

    Roux, Fabrice; Colomé-Tatché, Maria; Edelist, Cécile; Wardenaar, René; Guerche, Philippe; Hospital, Frédéric; Colot, Vincent; Jansen, Ritsert C; Johannes, Frank

    2011-08-01

    We extensively phenotyped 6000 Arabidopsis plants with experimentally perturbed DNA methylomes as well as a diverse panel of natural accessions in a common garden. We found that alterations in DNA methylation not only caused heritable phenotypic diversity but also produced heritability patterns closely resembling those of the natural accessions. Our findings indicate that epigenetically induced and naturally occurring variation in complex traits share part of their polygenic architecture and may offer complementary adaptation routes in ecological settings.

  6. Dispersive mixing dynamics of dense miscible plumes: natural perturbation initiation by local-scale heterogeneities

    NASA Astrophysics Data System (ADS)

    Schincariol, Robert A.

    1998-10-01

    Two-dimensional, coupled variable-density flow and transport simulations with heterogeneous media advance understanding of how local-scale non-idealities create and control instabilities. Dense plumes (5000 mg l -1 NaCl) are introduced into a domain (1.50×0.56 m) with synthetically generated permeability fields. Simulations with the first set of realizations [mean permeability ( k)=5.7×10 -11 m 2, ln( k) variance=0.25, longitudinal correlation length ( τx)=0.10 m, transverse correlation length ( τz)=0.02 m] illustrate how the lower plume boundary is naturally perturbed by local-scale heterogeneities. Some of these perturbations are stable, some are highly bounded or pseudostable in certain portions of the field, while others rapidly destabilize the lower plume boundary. Even with similar macroscopic field statistics, widely varying degrees of density-induced mixing occur among different realizations. Unstable perturbations result in complex mixing features, such as coalescing of instability lobes as different portions of the plume sample various regions of the permeability field. Such mixing greatly enhances and controls the dispersion process. Based on the control that local field characteristics exhibit on instability growth and decay, the applicability of stability criteria to plume-type displacements in natural heterogeneous media is likely inappropriate. Additional simulations employing fields of lower variance and lower densities illustrate the delicate balance between these variables and the ability of the field to propagate unstable perturbations.

  7. Long-term Dynamical Behavior of Highly Perturbed Natural and Artificial Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron J.

    This thesis explores the dynamical evolution of celestial bodies, both natural and artificial, which are strongly perturbed by solar radiation pressure---a non-gravitational force that has played an increasingly important role in celestial mechanics since the early 1900s. The particular focus is on the high area-to-mass ratio (HAMR) space debris discovered in near geosynchronous Earth orbit (GEO) through optical observations in 2004, and on micron-sized circumplanetary dust particles in the outer Saturnian system. The formalism developed can also be applied to---and, indeed, was unquestionably influenced by---the orbital motion of spacecraft about small bodies (asteroids and comets). The chief difficulties which arise in getting an accurate understanding of the motion of such bodies in highly perturbed dynamical environments come, in part, from the nonlinearity of the dynamical system, but more so from the inadequacy of the classical approaches and methods. While modern formulations based on numerical integrations can give "precise" solutions for specific initial conditions, these afford little insight into the nature of the problem or the essential dependence of the perturbed motion on the system parameters. The predominant perturbations acting on HAMR objects and circumplanetary dust grains are solar radiation pressure, planetary oblateness, and third-body gravitational interactions induced by the Sun and nearby natural satellites. We developed first-order averaged models, based on the Milankovitch formulation of perturbation theory, which govern the long-term evolution of orbits subject to these perturbing forces. The unexpectedly rich results obtained by the use of this vector formalism are due to certain important circumstances in celestial and quantum mechanics which gave rise to its origin and development. An attempt has been made to trace these historical developments and to put them into the perspective of the present. The averaged equations of motion hold

  8. Recent Progress in Understanding Natural-Hazards-Generated TEC Perturbations: Measurements and Modeling Results

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Yang, Y. M.; Meng, X.; Verkhoglyadova, O. P.; Mannucci, A. J.; Langley, R. B.

    2015-12-01

    Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface.We will show examples for early detection of natural hazards generated ionospheric signatures using ground-based and space-borne GPS receivers. We will also discuss recent results from the U.S. Real-time Earthquake Analysis for Disaster Mitigation Network (READI) exercises utilizing our algorithms. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage. It is also expected that ionospheric monitoring of TEC perturbations might become an integral part of existing natural hazards warning systems.

  9. Detection of Natural Hazards Generated TEC Perturbations and Related New Applications

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Yang, Y.; Langley, R. B.

    2013-12-01

    Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface. This continuing research is expected to provide early warning for tsunamis, earthquakes, volcanic eruptions, and meteor impacts, for example, using GPS and other global navigation satellite systems. We will demonstrate new and upcoming applications including recent natural hazards and artificial explosions that generated TEC perturbations to perform state-of-the-art imaging and modeling of earthquakes, tsunamis and meteor impacts. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage.

  10. Review and perspectives: Understanding natural-hazards-generated ionospheric perturbations using GPS measurements and coupled modeling

    NASA Astrophysics Data System (ADS)

    Komjathy, Attila; Yang, Yu-Ming; Meng, Xing; Verkhoglyadova, Olga; Mannucci, Anthony J.; Langley, Richard B.

    2016-07-01

    Natural hazards including earthquakes, volcanic eruptions, and tsunamis have been significant threats to humans throughout recorded history. Global navigation satellite systems (GNSS; including the Global Positioning System (GPS)) receivers have become primary sensors to measure signatures associated with natural hazards. These signatures typically include GPS-derived seismic deformation measurements, coseismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure, model, and monitor postseismic ionospheric disturbances caused by, e.g., earthquakes, volcanic eruptions, and tsunamis. In this paper, we review research progress at the Jet Propulsion Laboratory and elsewhere using examples of ground-based and spaceborne observation of natural hazards that generated TEC perturbations. We present results for state-of-the-art imaging using ground-based and spaceborne ionospheric measurements and coupled atmosphere-ionosphere modeling of ionospheric TEC perturbations. We also report advancements and chart future directions in modeling and inversion techniques to estimate tsunami wave heights and ground surface displacements using TEC measurements and error estimates. Our initial retrievals strongly suggest that both ground-based and spaceborne GPS remote sensing techniques could play a critical role in detection and imaging of the upper atmosphere signatures of natural hazards including earthquakes and tsunamis. We found that combining ground-based and spaceborne measurements may be crucial in estimating critical geophysical parameters such as tsunami wave heights and ground surface displacements using TEC observations. The GNSS-based remote sensing of natural-hazard-induced ionospheric disturbances could be applied to and used in operational tsunami and earthquake early warning systems.

  11. Vision and photoentrainment in fishes: the effects of natural and anthropogenic perturbation.

    PubMed

    Collin, Shaun P; Hart, Nathan S

    2015-01-01

    Vision and photoentrainment in fishes are vital for feeding, avoiding predation, spatial orientation, navigation, social communication and the synchronization of many homeostatic functions such as activity patterns and sleep. The camera-like (image-forming) eyes of fishes are optimized to provide a clear view of their preferred ecological niche, while non-visual photoreceptors provide irradiance detection that mediates circadian photoentrainment, an endogenous time-keeping mechanism (biological clock) to respond to predictable changes in environmental conditions. Fish and fisheries are under pressure from both natural and anthropogenic perturbation, which in many cases alters the intensity and spectral composition of the light environment on which they depend for their survival. This review examines the effects of a changing light environment and turbidity on the health of fishes within a developmental and ecological context. Understanding the sensory environment of fishes is vital to predicting their responses and, ultimately, their resilience to environmental change and the potential for maintaining sustainable levels of biodiversity.

  12. Optimal networks of nature reserves can be found through eigenvalue perturbation theory of the connectivity matrix.

    PubMed

    Jacobi, Martin Nilsson; Jonsson, Per R

    2011-07-01

    Conservation and management of natural resources and biodiversity need improved criteria to select functional networks of protected areas. The connectivity within networks due to dispersal is rarely considered, partly because it is unclear how connectivity information can be included in the selection of protected areas. We present a novel and general method that applies eigenvalue perturbation theory (EPT) to select optimum networks of protected areas based on connectivity. At low population densities, characteristic of threatened populations, this procedure selects networks that maximize the growth rate of the overall network. This method offers an improved link between connectivity and metapopulation dynamics. Our framework is applied to connectivities estimated for marine larvae and demonstrates that, for open populations, the best strategy is to protect areas acting as both strong donors and recipients of recruits. It should be possible to implement an EPT framework for connectivity analysis into existing holistic tools for design of protected areas.

  13. The distributions of odd nitrogen and odd hydrogen in the natural and perturbed stratosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Alyea, F. N.; Cunnold, D. M.; Katz, A.

    1974-01-01

    In order to quantitatively illustrate the effects of quasi-horizontal transport of certain gases and of the reactions influencing their concentrations, a vertical-meridional pole-to-pole stratospheric model is presented which explicitly predicts concentrations of odd nitrogen and odd hydrogen compounds in the natural stratosphere and also in a perturbed stratosphere incorporating artificial injection of nitrogen oxides by an SST fleet. The northern hemisphere SST operations clearly have a very large local effect on the nitrogen oxide distribution and also have a significant effect on the southern hemisphere. The largest changes are seen at the point of injection of the nitrogen oxides. Results are in agreement with previous one-dimensional models.

  14. Natural and Anthropogenically Perturbed Biogenic Aerosol over Tropical South East Asia

    NASA Astrophysics Data System (ADS)

    Coe, H.; Robinson, N.; Allan, J. D.; Hewitt, C. N.

    2014-12-01

    Tropical forested regions are of interest as sources of atmospheric aerosol since they cover very large areas of the tropics and are a source of a large amount of volatile organic compounds which act as precursors for particle formation. Natural forest regions offer the potential to study the background state of the tropics and so potentially gain some insight into the pre-perturbed atmosphere. However, over the last decade in South East Asia, a considerable fraction of the native tropical deciduous forest has been deforested and replanted with palm oil plantations. This changes the range of volatile organic compounds that are emitted and act as sources of secondary organic aerosol. A suite of intensive ground and airborne measurements were made over both tropical forest and oil palm plantations in Sabah, Malaysia as part of the "Oxidant and Particle Photochemical Processes above a South East Asian tropical rainforest (OP3) during 2008. These data will be used together with recent improvements in our understanding of aerosol formation from biogenic compounds to discuss aerosol formation in tropical regions and the influence of human influence through widespread palm oil agriculture.

  15. An Analytical Theory for the Perturbative Effect of Solar Radiation Pressure on Natural and Artificial Satellites

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.

    Solar radiation pressure is the largest non-gravitational perturbation for most satellites in the solar system, and can therefore have a significant influence on their orbital dynamics. This work presents a new method for representing the solar radiation pressure force acting on a satellite, and applies this theory to natural and artificial satellites. The solar radiation pressure acceleration is modeled as a Fourier series which depends on the Sun's location in a body-fixed frame; a new set of Fourier coefficients are derived for every latitude of the Sun in this frame, and the series is expanded in terms of the longitude of the Sun. The secular effects due to the solar radiation pressure perturbations are given analytically through the application of averaging theory when the satellite is in a synchronous orbit. This theory is then applied to binary asteroid systems to explain the Binary YORP effect. Long term predictions of the evolution of the near-Earth asteroid 1999 KW4 are discussed under the influence of solar radiation pressure, J2, and 3rd body gravitational effects from the Sun. Secular effects are shown to remain when the secondary asteroid becomes non-synchronous due to a librational motion. The theory is also applied to Earth orbiting spacecraft, and is shown to be a valuable tool for improved orbit determination. The Fourier series solar radiation pressure model derived here is shown to give comparable results for orbit determination of the GPS IIR-M satellites as JPL's solar radiation pressure model. The theory is also extended to incorporate the effects of the Earth's shadow analytically. This theory is briefly applied to the evolution of orbital debris to explain the assumptions that are necessary in order to use the cannonball model for debris orbit evolution, as is common in the literature. Finally, the averaging theory methodology is applied to a class of Earth orbiting solar sail spacecraft to show the orbital effects when the sails are made

  16. Testing for the Gaussian nature of cosmological density perturbations through the three-point temperature correlation function

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1993-01-01

    One of the crucial aspects of density perturbations that are produced by the standard inflation scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian. The three-point correlation function of the temperature anisotropy of the cosmic microwave background radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this function is calculated in the general context of various allowed non-Gaussian models. It is shown that the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may be able to provide a crucial test of the Gaussian nature of the perturbations.

  17. Testing for the Gaussian nature of cosmological density perturbations through the three-point temperature correlation function

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1993-01-01

    One of the crucial aspects of density perturbations that are produced by the standard inflation scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian. The three-point correlation function of the temperature anisotropy of the cosmic microwave background radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this function is calculated in the general context of various allowed non-Gaussian models. It is shown that the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may be able to provide a crucial test of the Gaussian nature of the perturbations.

  18. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster

    NASA Astrophysics Data System (ADS)

    Zhuravleva, I.; Churazov, E.; Arévalo, P.; Schekochihin, A. A.; Forman, W. R.; Allen, S. W.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2016-05-01

    Cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy content of gas fluctuations in the Perseus core by probing statistical properties of emissivity fluctuations imprinted in the soft- and hard-band X-ray images. About 80 per cent of the total variance of perturbations on ˜8-70 kpc scales in the core have an isobaric nature, i.e. are consistent with subsonic displacements of the gas in pressure equilibrium with the ambient medium. The observed variance translates to the ratio of energy in perturbations to thermal energy of ˜13 per cent. In the region dominated by weak `ripples', about half of the total variance is associated with isobaric perturbations on scales of a few tens of kpc. If these isobaric perturbations are induced by buoyantly rising bubbles, then these results suggest that most of the AGN-injected energy should first go into bubbles rather than into shocks. Using simulations of a shock propagating through the Perseus atmosphere, we found that models reproducing the observed features of a central shock have more than 50 per cent of the AGN-injected energy associated with the bubble enthalpy and only about 20 per cent is carried away with the shock. Such energy partition is consistent with the AGN-feedback model, mediated by bubbles of relativistic plasma, and supports the importance of turbulence in the cooling-heating balance.

  19. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster

    DOE PAGES

    Zhuravleva, I.; Churazov, E.; Arevalo, P.; ...

    2016-03-07

    In this paper, cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy content of gas fluctuations in the Perseus core by probing statistical properties of emissivity fluctuations imprinted in the soft- and hard-band X-ray images. About 80 per cent of the total variance of perturbations on ~8–70 kpc scales in the core have an isobaric nature, i.e. are consistent with subsonic displacements of the gas in pressure equilibrium with the ambientmore » medium. The observed variance translates to the ratio of energy in perturbations to thermal energy of ~13 per cent. In the region dominated by weak ‘ripples’, about half of the total variance is associated with isobaric perturbations on scales of a few tens of kpc. If these isobaric perturbations are induced by buoyantly rising bubbles, then these results suggest that most of the AGN-injected energy should first go into bubbles rather than into shocks. Using simulations of a shock propagating through the Perseus atmosphere, we found that models reproducing the observed features of a central shock have more than 50 per cent of the AGN-injected energy associated with the bubble enthalpy and only about 20 per cent is carried away with the shock. Such energy partition is consistent with the AGN-feedback model, mediated by bubbles of relativistic plasma, and supports the importance of turbulence in the cooling–heating balance.« less

  20. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster

    SciTech Connect

    Zhuravleva, I.; Churazov, E.; Arevalo, P.; Schekochihin, A. A.; Forman, W. R.; Allen, S. W.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2016-03-07

    In this paper, cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy content of gas fluctuations in the Perseus core by probing statistical properties of emissivity fluctuations imprinted in the soft- and hard-band X-ray images. About 80 per cent of the total variance of perturbations on ~8–70 kpc scales in the core have an isobaric nature, i.e. are consistent with subsonic displacements of the gas in pressure equilibrium with the ambient medium. The observed variance translates to the ratio of energy in perturbations to thermal energy of ~13 per cent. In the region dominated by weak ‘ripples’, about half of the total variance is associated with isobaric perturbations on scales of a few tens of kpc. If these isobaric perturbations are induced by buoyantly rising bubbles, then these results suggest that most of the AGN-injected energy should first go into bubbles rather than into shocks. Using simulations of a shock propagating through the Perseus atmosphere, we found that models reproducing the observed features of a central shock have more than 50 per cent of the AGN-injected energy associated with the bubble enthalpy and only about 20 per cent is carried away with the shock. Such energy partition is consistent with the AGN-feedback model, mediated by bubbles of relativistic plasma, and supports the importance of turbulence in the cooling–heating balance.

  1. Statistical nature of non-Gaussianity from cubic order primordial perturbations: CMB map simulations and genus statistic

    SciTech Connect

    Chingangbam, Pravabati; Park, Changbom E-mail: cbp@kias.re.kr

    2009-12-01

    We simulate CMB maps including non-Gaussianity arising from cubic order perturbations of the primordial gravitational potential, characterized by the non-linearity parameter g{sub NL}. The maps are used to study the characteristic nature of the resulting non-Gaussian temperature fluctuations. We measure the genus and investigate how it deviates from Gaussian shape as a function of g{sub NL} and smoothing scale. We find that the deviation of the non-Gaussian genus curve from the Gaussian one has an antisymmetric, sine function like shape, implying more hot and more cold spots for g{sub NL} > 0 and less of both for g{sub NL} < 0. The deviation increases linearly with g{sub NL} and also exhibits mild increase as the smoothing scale increases. We further study other statistics derived from the genus, namely, the number of hot spots, the number of cold spots, combined number of hot and cold spots and the slope of the genus curve at mean temperature fluctuation. We find that these observables carry signatures of g{sub NL} that are clearly distinct from the quadratic order perturbations, encoded in the parameter f{sub NL}. Hence they can be very useful tools for distinguishing not only between non-Gaussian temperature fluctuations and Gaussian ones but also between g{sub NL} and f{sub NL} type non-Gaussianities.

  2. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques.

    PubMed

    Schmitz, Gunnar; Hättig, Christof

    2016-12-21

    We present an implementation of pair natural orbital coupled cluster singles and doubles with perturbative triples, PNO-CCSD(T), which avoids the quasi-canonical triples approximation (T0) where couplings due to off-diagonal Fock matrix elements are neglected. A numerical Laplace transformation of the canonical expression for the perturbative (T) triples correction is used to avoid an I/O and storage bottleneck for the triples amplitudes. Results for a test set of reaction energies show that only very few Laplace grid points are needed to obtain converged energy differences and that PNO-CCSD(T) is a more robust approximation than PNO-CCSD(T0) with a reduced mean absolute deviation from canonical CCSD(T) results. We combine the PNO-based (T) triples correction with the explicitly correlated PNO-CCSD(F12*) method and investigate the use of specialized F12-PNOs in the conventional triples correction. We find that no significant additional errors are introduced and that PNO-CCSD(F12*)(T) can be applied in a black box manner.

  3. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques

    NASA Astrophysics Data System (ADS)

    Schmitz, Gunnar; Hättig, Christof

    2016-12-01

    We present an implementation of pair natural orbital coupled cluster singles and doubles with perturbative triples, PNO-CCSD(T), which avoids the quasi-canonical triples approximation (T0) where couplings due to off-diagonal Fock matrix elements are neglected. A numerical Laplace transformation of the canonical expression for the perturbative (T) triples correction is used to avoid an I/O and storage bottleneck for the triples amplitudes. Results for a test set of reaction energies show that only very few Laplace grid points are needed to obtain converged energy differences and that PNO-CCSD(T) is a more robust approximation than PNO-CCSD(T0) with a reduced mean absolute deviation from canonical CCSD(T) results. We combine the PNO-based (T) triples correction with the explicitly correlated PNO-CCSD(F12*) method and investigate the use of specialized F12-PNOs in the conventional triples correction. We find that no significant additional errors are introduced and that PNO-CCSD(F12*)(T) can be applied in a black box manner.

  4. Biogeochemical responses of the carbon cycle to natural and human perturbations: Past, present, and future

    SciTech Connect

    Ver, L.M.B.; Mackenzie, F.T.; Lerman, A.

    1999-07-01

    In the past three centuries, human perturbations of the environment have affected the biogeochemical behavior of the global carbon cycle and that of the other three nutrient elements closely coupled to carbon: nitrogen, phosphorus, and sulfur. The partitioning of anthropogenic CO{sub 2} among its various sinks in the past, for the present, and for projections into the near future is controlled by the interactions of these four elemental cycles within the major environmental domains of the land, atmosphere, coastal oceanic zone, and open ocean. The authors analyze the past, present, and future behavior of the global carbon cycle using the Terrestrial-Ocean-aTmosphere Ecosystem Model (TOTEM), a unique process-based model of the four global coupled biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur. They find that during the past 300 yrs, anthropogenic CO{sub 2} was mainly stored in the atmosphere and in the open ocean. Human activities on land caused an enhanced loss of mass from the terrestrial organic matter reservoirs (phytomass and humus) mainly through deforestation and consequently increased humus remineralization, erosion, and transport to the coastal margins by rivers and runoff. Photosynthetic uptake by the terrestrial phytomass was enhanced owing to fertilization by increasing atmospheric CO{sub 2} concentrations and supported by nutrients remineralized from organic matter. TOTEM results indicate that through most of the past 300 yrs, the loss of C from deforestation and other land-use activities was greater than the gain from the enhanced photosynthetic uptake. Since pre-industrial time (since 1700), the net flux of CO{sub 2} from the coastal waters has decreased by 40%, from 0.20 Gt C/yr to 0.12 Gt C/yr. TOTEM analyses of atmospheric CO{sub 2} concentrations for the 21st century were based on the fossil-fuel emission projections of IPCC (business as usual scenario) and of the more restrictive UN 1997 Kyoto Protocol. By the mid-21st century

  5. Local explicitly correlated second-order Møller-Plesset perturbation theory with pair natural orbitals.

    PubMed

    Tew, David P; Helmich, Benjamin; Hättig, Christof

    2011-08-21

    We explore using a pair natural orbital analysis of approximate first-order pair functions as means to truncate the space of both virtual and complementary auxiliary orbitals in the context of explicitly correlated F12 methods using localised occupied orbitals. We demonstrate that this offers an attractive procedure and that only 10-40 virtual orbitals per significant pair are required to obtain second-order valence correlation energies to within 1-2% of the basis set limit. Moreover, for this level of virtual truncation, only 10-40 complementary auxiliary orbitals per pair are required for an accurate resolution of the identity in the computation of the three- and four-electron integrals that arise in explicitly correlated methods.

  6. Recent Advances in Remote Sensing of Natural Hazards-Induced Atmospheric and Ionospheric Perturbations

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Langley, R. B.; Mannucci, A. J.

    2015-12-01

    Traveling ionospheric disturbances (TIDs) induced by acoustic-gravity waves in the neutral atmosphere have significant impact on trans-ionospheric radio waves such as Global Navigation Satellite System (GNSS, including Global Position System (GPS)) measurements. Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS (including GPS) receiver networks. We demonstrate the ability of using ground- and space-based dual-frequency GPS measurements to detect and monitor tsunami wave propagation from the 2011 Tohoku-Oki earthquake and tsunami. Major wave trains with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. In this research, we compared GPS-based observations, corresponding model simulations and tsunami wave propagation. Results are shown to lead to a better understanding of the tsunami-induced ionosphere responses. Based on current distribution of Plate Boundary Observatory GPS stations, the results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the U.S. west coast. It is expected that this GNSS-based technology will become an integral part of future early-warning systems.

  7. Cigarette smoke-mediated perturbations of the immune response: A new therapeutic approach with natural compounds.

    PubMed

    Magrone, Thea; Jirillo, Emilio

    2016-09-27

    Cigarette smoke (CS) accounts for the outcome of several pathologies, even including lung cancer, cardiovascular disease and chronic obstructive pulmonary disease (COPD). Under healthy conditions, lung immune system becomes tolerant in response to various external stimuli. CS exposure alters the pulmonary immune equilibrium, thus leading to a condition of hyper activation of the local innate and adaptive immunity. COPD is one of the major complications of chronic CS exposure where a pro-inflammatory profile of the pulmonary and systemic immunity is predominant. In this review, alternative treatments with natural products to mitigate CS-mediated pulmonary inflammation are proposed. In particular, polyphenols, a class of natural compounds largely present in fruits and vegetables, have been shown to act as anti-inflammatory agents. Accordingly, recent experimental and clinical evidences support polyphenol-mediated potential health benefits in smokers. For instance, pomegranate juice is able to attenuate the damage provoked by CS on cultured human alveolar macrophages. In addition, maqui beery extract has been proven to normalize H2O2 and interleukin-6 levels in exhaled breath condensate in healthy smokers. However, some limitations of alternative treatments are represented by a better knowledge of the mechanism(s) of action exerted by polyphenols and by the lack of animal models of COPD. In any case, the potential targets of polyphenols in the course of COPD will be outlined with special reference to the activation of T regulatory cells as well as to the inhibition of the polymorphonuclear cell and monocyte respiratory burst and of the NF-kB pathway, respectively.

  8. Intralimb compensation strategy depends on the nature of joint perturbation in human hopping.

    PubMed

    Chang, Young-Hui; Roiz, Ronald A; Auyang, Arick G

    2008-01-01

    Due to the well-described spring-mass dynamics of bouncing gaits, human hopping is a tractable model for elucidating basic neuromuscular compensation principles. We tested whether subjects would employ a multi-joint or single-joint response to stabilize leg stiffness while wearing a spring-loaded ankle-foot orthosis (AFO) that applied localized resistive and assistive torques to the ankle. We analyzed kinematics and kinetics data from nine subjects hopping in place on one leg, at three frequencies (2.2, 2.4, and 2.8Hz) and three orthosis conditions (freely articulating AFO, AFO with plantarflexion resistance, and AFO with plantarflexion assistance). Leg stiffness was invariant across AFO conditions, however, compensation strategy depended upon the nature of the applied load. Biological ankle stiffness increased in response to a resistive load at twice the rate that it decreased with an assitive load. Ankle adjustments alone fully compensated for an assistive load with no net change in combined (biological plus applied) total ankle stiffness (p > or =0.133). In contrast, a resistive load resulted in a 7.4-9.0% increase in total ankle stiffness across frequencies and a concomitant 10-15% increase in knee joint stiffness at each frequency (p< or =0.037). The increased knee joint stiffness in response to resistive ankle load allowed subjects to maintain a more flexed knee at mid-stance, which attenuated the effect of the increased total ankle joint stiffness to preserve leg stiffness and whole limb biomechanical performance. Our findings suggest humans maintain invariant leg stiffness in bouncing gaits through different intralimb compensation strategies that are specific to the nature of the joint loading.

  9. Naturally-occurring isoquinolines perturb monamine metabolism in the brain: studied by in vivo microdialysis.

    PubMed

    Maruyama, W; Nakahara, D; Dostert, P; Takahashi, A; Naoi, M

    1993-01-01

    Naturally occurring isoquinolines affected the monoamine metabolism in the rat striatum, as proved by in vivo microdialysis technique. By analysis of monoamines and their metabolites in the dialysate, dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines were found to inhibit monoamine oxidase and catechol-O-methyltransferase activity. 1-Methyl- and 2-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline were found to inhibit activity of type A monoamine oxidase most markedly. To compare the structure-activity relationship, corresponding isoquinolines without a catechol structure were also examined. The inhibition by catechol isoquinolines was more manifest than those without a catechol structure. Among latter isoquinolines, N-methyl-isoquinolinium ion was the most potent inhibitor of monoamine oxidase. In addition, catechol isoquinolines increased monoamine levels in the brain. The number and the site of the methyl group are essentially required for the inhibition of monoamine oxidase and a catechol structure for that of catechol-O-methyl-transferase. These results are discussed in relation to possible involvement of these isoquinolines to the clinical features of some neuro-psychiatric diseases, such as alcoholism or in L-DOPA therapy.

  10. Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2)

    NASA Astrophysics Data System (ADS)

    Menezes, Filipe; Kats, Daniel; Werner, Hans-Joachim

    2016-09-01

    We present a CASPT2 method which exploits local approximations to achieve linear scaling of the computational effort with the molecular size, provided the active space is small and local. The inactive orbitals are localized, and the virtual space for each electron pair is spanned by a domain of pair-natural orbitals (PNOs). The configuration space is internally contracted, and the PNOs are defined for uniquely defined orthogonal pairs. Distant pair energies are obtained by multipole approximations, so that the number of configurations that are explicitly treated in the CASPT2 scales linearly with molecular size (assuming a constant active space). The PNOs are generated using approximate amplitudes obtained in a pair-specific semi-canonical basis of projected atomic orbitals (PAOs). The evaluation and transformation of the two-electron integrals use the same parallel local density fitting techniques as recently described for linear-scaling PNO-LMP2 (local second-order Møller-Plesset perturbation theory). The implementation of the amplitude equations, which are solved iteratively, employs the local integrated tensor framework. The efficiency and accuracy of the method are tested for excitation energies and correlation energies. It is demonstrated that the errors introduced by the local approximations are very small. They can be well controlled by few parameters for the distant pair approximation, initial PAO domains, and the PNO domains.

  11. Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2).

    PubMed

    Menezes, Filipe; Kats, Daniel; Werner, Hans-Joachim

    2016-09-28

    We present a CASPT2 method which exploits local approximations to achieve linear scaling of the computational effort with the molecular size, provided the active space is small and local. The inactive orbitals are localized, and the virtual space for each electron pair is spanned by a domain of pair-natural orbitals (PNOs). The configuration space is internally contracted, and the PNOs are defined for uniquely defined orthogonal pairs. Distant pair energies are obtained by multipole approximations, so that the number of configurations that are explicitly treated in the CASPT2 scales linearly with molecular size (assuming a constant active space). The PNOs are generated using approximate amplitudes obtained in a pair-specific semi-canonical basis of projected atomic orbitals (PAOs). The evaluation and transformation of the two-electron integrals use the same parallel local density fitting techniques as recently described for linear-scaling PNO-LMP2 (local second-order Møller-Plesset perturbation theory). The implementation of the amplitude equations, which are solved iteratively, employs the local integrated tensor framework. The efficiency and accuracy of the method are tested for excitation energies and correlation energies. It is demonstrated that the errors introduced by the local approximations are very small. They can be well controlled by few parameters for the distant pair approximation, initial PAO domains, and the PNO domains.

  12. Modeling the Role of Selected Light Nonmethane Hydrocarbons on the Chemical Composition of Natural and Perturbed Troposphere

    NASA Astrophysics Data System (ADS)

    Gupta, Mohan Lal

    The original Oslo 2-dimensional global tropospheric photochemical model is modified by extending its vertical domain to 24.5 km with new transport coefficients to deduce the annual global source strengths of parent hydrocarbons (C-1 to C-3, or LHCs) and to study the role of photochemistry of these hydrocarbons and isoprene (rm C _5H_8) on the chemical composition of natural and perturbed troposphere. Model transport features are studied by comparing simulated atmospheric distributions and trends of CFC-11, CFC-12 and ^{85}Kr with corresponding long term observations. Four different photochemical schemes PC-1, PC -2, PC-3, and PC-5, that include C-1, C-2, C-3 hydrocarbons and rm C_5H_8 respectively, are developed. OH radical distributions calculated using these schemes and averaged surface observation data of LHCs as their respective lower boundary conditions are validated by comparing simulated atmospheric distribution and trends of rm CH_3CCl_3 with ALE/GAGE observations. Annual steady state source strengths of LHCs and rm C_2Cl _4 are calculated from their surface observations and above stated OH distributions. Comparison of modeled concentrations of C-2 and C-3 hydrocarbons in the lowest model layer with their corresponding observations shows that the sources of these species are seasonal in nature. The effects of photochemistry of light nonmethane hydrocarbons (NMHCs) on distributions of selected tropospheric species and ratio distributions of key species and on the budgets of O_3, CO, NOx and HNO _3 are also evaluated. Simulations of multiple changes in individual source strengths of NOx, CH_4, CO, NMHCs suggest that per molecule injected, NOx from aircraft emissions is the most efficient, the magnitude of which decreases with increase in emissions, in changing the global averaged O_3 concentration. Among NMHCs, changes in propane and ethane emissions are the most effective in changing the global average O _3 concentration and steady state lifetime of CH_4

  13. Exploring a Detonation Nature of Mesoscopic Perturbations and Ejecta Formation from the Mesoscale Probing of the PBX-driven Liners

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Guiruis, Raafat; Rodrigues, Luis; Mendes, Ricardo; Plaksin, Svyatoslav; Fernandes, Eduardo; Ferreira, Claudia

    2015-06-01

    Ejecting debris from free surface of liner is of considerable interest at optimization of explosive devices, in which the PBX-driven liner effects shock compression of gaseous matter. Following factors were historically considered as main drivers of material ejection: granular microstructure of liner material, roughness and surface defects of liner, and shock pressure time history in PBX-driven liner. In contrast to existing models, we are considering the small scale fluctuations of detonation flow as probable dominating factor of surface jetting in the PBX-driven collapsing liners. Obtained experimental evidence is indicative that jetting from the liners is caused by meso-scale perturbations of PBX detonations, which are identified as (1) ejecta of overdriven detonation products through detonation front, (2) ejecta-driven detonation cells, and (3) galloping detonation front motion. Spatially resolved scenarios of each of phenomena (1-3) were obtained in experiments with copper-liners and HMX-based PBXs fabricated on maximum packing density of crystalline constituents. Both the DRZ-induced perturbations translated to a PBX-driven liner and the ejected debris were recorded and quantitatively measured in the mesoscale range with application of the 96-channel optical analyzer MCOA-UC. Work was supported by the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and John Zimmerman Program Managers.

  14. [Study of thermal perturbation of natural bamboo fiber by two dimensional correlation analysis and Fourier transform infrared spectroscopy].

    PubMed

    Huang, An-min; Wang, Ge; Zhou, Qun; Liu, Jun-liang; Sun, Su-qin

    2008-06-01

    The Fourier transform infrared spectroscopy (FTIR) combined with generalized two-dimensional correlation analysis was applied to study the mini-heating process of natural bamboo fiber. The absorption peaks of natural bamboo fiber and bamboo in the FTIR spectra were different, which showed the contents of lignin and hemicelluloses of natural bamboo fiber was lower than those of bamboo. The changes in absorption peaks of natural bamboo fiber in the FTIR spectra at different temperatures were inconspicuous during heating up from 50 to 120 degrees C, which showed that there was not oxidation reaction in natural bamboo fiber during the process. With the help of 2D correlation analysis, the changes of different groups of natural bamboo fiber and bamboo during heating process were reflected. The strongest autopeak of them was all aroused at 1 665 cm1 in synchronous spectrum. The difference was that there were several weak auto-peaks and cross peaks in the natural bamboo fiber, but in the bamboo, one stronger 5 x 5 group was aroused in the 833-1230 cm(-1). Region the reason was the difference in chemistry composition and the change degree during heating process. In conclusion, the 2D correlation analysis of FTIR can be a new method to analyze the microcosmic dynamic change in the structure of natural bamboo fiber and bamboo during the mini-heating process and also offers an important theory gist for the study of oxidation mechanism of them.

  15. Freezing injury to montane Picea rubens; the potential role of and mechanisms for natural and anthropogenic perturbations

    SciTech Connect

    Dehayes, D. )

    1994-06-01

    Winter injury occurs frequently to current-year needles of red spruce in the northern Appalachians and appears to be caused by subfreezing temperatures rather than foliar desiccation. Under ambient conditions, the maximum depth of cold tolerance achieved by red spruce needles in midwinter is barely sufficient to avoid freezing injury at common winter temperatures. Therefore, any perturbation that would decrease midwinter cold tolerance by just a few degrees substantially increases the probability of freezing injury. Laboratory and field experiments have demonstrated that extended winter thaws and exposure to ambient and simulated acidic cloud water increase the freezing sensitivity of red spruce. Repeated experiments have been unable to demonstrate a consistent negative influence of ambient or elevated ozone concentrations or elevated N on cold tolerance or freezing injury susceptibility. Rapid freezing, especially following solar heating of needles, has also resulted in some injury to both current-year and year-old needles, under laboratory conditions. Visible freezing injury and winter cold tolerance appear to be associated with relatively low foliar Ca concentrations. It is hypothesized that Ca leaching by acidic cloud water could increase freezing susceptibility by modifying membrane structure and/or permeability.

  16. Ground and Space-Based Natural Hazard Remote Sensing of Thermosphere-Ionosphere Perturbations Using Gnss Measuremnents

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Komjathy, A.; Mannucci, A. J.

    2013-12-01

    Traveling ionospheric disturbances (TIDs) induced by acoustic-gravity waves in the neutral atmosphere have significant impact on trans-ionospheric Global Navigation Satellite System (GNSS) measurements. Natural hazard events, such as earthquakes, tsunamis and volcano eruptions are actual sources that may trigger acoustic and gravity waves resulting in disturbances in the upper atmosphere. GNSS measurements sense the integrated electron content (IEC) along the signal propagation path. Methods from the previous space weather related research may be applied to detect disturbances in IEC time series. In our work, we use wavelet-based detection and a novel estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomenon using dual frequency IEC time series collected form worldwide GNSS networks of ground and space-based GNSS measurements corresponding to major natural hazard events. Through the analysis from the GNSS sounding, we are able to find major wave trains that may be observable in the measurements using ground networks and spaceborne GNSS receivers. The dominant frequencies are seen to be associated with the selected nature hazard events. Furthermore, a comparison of space and ground-based GNSS observations, corresponding model simulations and other geophysical measurements will be shown to get a better understanding of the atmosphere-ionosphere responses due to major natural hazards. We anticipate that observations from GNSS remote sensing of thermosphere-ionosphere disturbances will become cornerstones for future applications in natural hazard monitoring and it is expected to become integral part of existing early-warning systems.

  17. X-ray natural linear dichroism of graphitic materials across the carbon K-edge: Correction for perturbing high-order harmonics

    NASA Astrophysics Data System (ADS)

    Jansing, C.; Mertins, H. C.; Gaupp, A.; Sokolov, A.; Gilbert, M. C.; Wahab, H.; Timmers, H.

    2016-05-01

    Reflectivity measurements on graphitic materials such as graphene at energies across the carbon K-edge are frustrated by significant intensity loss due to adventitious carbon on beamline mirrors. Such intensity reduction enhances effects due to perturbing high-order harmonics in the beam. These effects distort the actual structure of the reflectance curve. In order to overcome this limitation, a correction technique has been developed and demonstrated first with measurements for highly ordered pyrolytic graphite. The same approach may be applied to other graphitic materials such as graphene and it may be used with other synchrotron beamlines. The fraction of high-order harmonics was determined by passing the incident beam through a 87 nm thin silicon nitride absorber that can be well modeled. Using the corrected measurements the x-ray natural linear dichroism of the sample has been determined.

  18. Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals

    NASA Astrophysics Data System (ADS)

    Hättig, Christof; Tew, David P.; Helmich, Benjamin

    2012-05-01

    We present an algorithm for computing explicitly correlated second- and third-order Møller-Plesset energies near the basis set limit for large molecules with a cost that scales formally as N^4 with system size N. This is achieved through a hybrid approach where locality is exploited first through orbital specific virtuals (OSVs) and subsequently through pair natural orbitals (PNOs) and integrals are approximated using density fitting. Our method combines the low orbital transformation costs of the OSVs with the compactness of the PNO representation of the doubles amplitude vector. The N^4 scaling does not rely upon the a priori definition of domains, enforced truncation of pair lists, or even screening and the energies converge smoothly to the canonical values with decreasing occupation number thresholds, used in the selection of the PNO basis. For MP2.5 intermolecular interaction energies, we find that 99% of benchmark basis set limit correlation energy contributions are recovered using an aug-cc-pVTZ basis and that on average only 50 PNOs are required to correlate the significant orbital pairs.

  19. Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals.

    PubMed

    Hättig, Christof; Tew, David P; Helmich, Benjamin

    2012-05-28

    We present an algorithm for computing explicitly correlated second- and third-order Møller-Plesset energies near the basis set limit for large molecules with a cost that scales formally as N(4) with system size N. This is achieved through a hybrid approach where locality is exploited first through orbital specific virtuals (OSVs) and subsequently through pair natural orbitals (PNOs) and integrals are approximated using density fitting. Our method combines the low orbital transformation costs of the OSVs with the compactness of the PNO representation of the doubles amplitude vector. The N(4) scaling does not rely upon the a priori definition of domains, enforced truncation of pair lists, or even screening and the energies converge smoothly to the canonical values with decreasing occupation number thresholds, used in the selection of the PNO basis. For MP2.5 intermolecular interaction energies, we find that 99% of benchmark basis set limit correlation energy contributions are recovered using an aug-cc-pVTZ basis and that on average only 50 PNOs are required to correlate the significant orbital pairs.

  20. PERTURBING LIGNIFICATION

    USDA-ARS?s Scientific Manuscript database

    Perturbing lignification is possible in multiple and diverse ways. Without obvious growth/development phenotypes, transgenic angiosperms can have lignin levels reduced to half the normal level, can have compositions ranging from very high-guaiacyl/low-syringyl to almost totally syringyl, and can eve...

  1. Morphological controls on barrier-island response and recovery following natural and anthropogenic perturbations, northern Chandeleur Islands, Louisiana

    NASA Astrophysics Data System (ADS)

    Bernier, J.; Miselis, J. L.

    2016-02-01

    Prevailing oceanographic climate, sediment supply, the magnitude and frequency of storm events, and anthropogenic modifications interact to drive the geomorphic evolution of barrier systems at varying spatial and temporal scales. The Chandeleur Islands east of the Louisiana mainland receive little external sediment input, and alongshore currents generally transport sediment away from the nearshore and littoral system to flanking depositional centers. We analyzed Landsat satellite imagery and lidar datasets from the northern Chandeleur Islands to quantify morphological changes that resulted from storm impacts and human-induced sediment input at intra-annual to decadal time scales. Since 2001, the study area was impacted by multiple tropical systems, including Hurricanes Lili (2002), Katrina (2005), and Isaac (2012). Additionally, between June 2010 and April 2011, in response to the Deepwater Horizon oil spill, the State of Louisiana constructed a 2-m high sand berm extending more than 12 km along the northern Chandeleur Islands platform. Berm emplacement provided a unique opportunity to study how anthropogenic sediment input affects the morphologic response of a naturally evolving barrier system. Land-cover and elevation metrics were utilized to test the hypotheses that (1) island geomorphology, in particular marsh extent, significantly influenced both "instantaneous" and longer term morphologic change and recovery following storm events and (2) redistribution of berm sediment depended on both antecedent morphologic controls as well as spatial variability in berm placement relative to the island platform. Despite the rapid post-construction degradation of the berm, imagery and elevation data suggest that some berm sediment remained in the system. Where the barrier-island was backed by healthy marsh platform, shoreward translation of the berm crest and increased elevations landward of the berm provide evidence of berm sand redistribution onto the emergent island. At

  2. The nature of interactions between clusters of Mg and Zn with HCN from symmetry-adapted perturbation theory based of DFT

    NASA Astrophysics Data System (ADS)

    Snyder, Desirée N.; Szcześniak, Małgorzata M.; Chałasiński, Grzegorz

    2009-06-01

    The donor-acceptor complexes HCN-Mgn and HCN-Znn (n =1,…,4), which were recently detected in helium nanodroplet infrared spectroscopy experiments by Miller and co-workers [Science 292, 481 (2001); J. Phys. Chem. A 110, 5620 (2006)] are investigated by the symmetry-adapted perturbation theory based on the density functional monomer description [SAPT(DFT)]. The interaction energy components, such as the electrostatic, exchange, induction, and dispersion, are calculated as a function of the metal cluster size. We find that the donor-acceptor interactions manifest themselves by the large induction and dispersion interactions, which counteract the unusually large exchange repulsion. The dependence of the components on the clusters size n follows different patterns in the complexes of magnesium and zinc. In HCN-Mgn the induction effect increases in magnitude much faster than the dispersion effect. In HCN-Znn there is a slight decrease in both dispersion and induction terms between n =2 and n =3. Then dispersion rises faster than induction between n =3 and n =4. The exchange effects are also much different in both types of complexes. The first-order exchange energy rises much faster with n in the magnesium complexes than in the zinc complexes. Furthermore, in the latter there is a significant drop in the exchange energy between n =2 and n =3. The second-order exchange effects tend to quench a larger percentage of the induction and dispersion contributions in the Mgn complexes than in Znn. These different patterns of the interaction energy variations with n are related to the different nature of nonadditive effects in the neat metal clusters.

  3. On dark energy isocurvature perturbation

    SciTech Connect

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe E-mail: limz@nju.edu.cn

    2011-06-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data.

  4. Causal compensated perturbations in cosmology

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1990-01-01

    A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.

  5. Causal compensated perturbations in cosmology

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1990-01-01

    A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.

  6. Boundary perturbation theory for nonanalytic perturbations

    SciTech Connect

    Pomraning, G.C.

    1983-10-01

    First-order perturbation formulas are derived that give the change in the eigenvalue of a reactive system due to a perturbation in the exterior shape of the system. In physical terms, this perturbation involves adding a thin layer of arbitrary material to the surface of the unperturbed system (or deleting material past a material discontinuity). From a mathematical viewpoint, the perturbation is sufficiently general to give rise to a nonanalytic behavior of the eigenvalue on the smallness parameter. Both transport theory and the diffusion approximation are treated.

  7. Exploring the nature of low-lying excited-states in molecular crystals from many-body perturbation theory beyond the Tamm-Dancoff Approximation

    NASA Astrophysics Data System (ADS)

    Rangel, Tonatiuh; Sharifzadeh, Sahar; Rinn, Andre; da Jornada, Felipe H.; Shao, Meiyue; Witte, Gregor; Yang, Chao; Louie, Steven G.; Chatterjee, Sangaam; Kronik, Leeor; Neaton, Jeffrey B.

    Organic semiconductors have attracted attention due to their potential for optoelectronics and novel phenomena, such as singlet fission. Here, we use many-body perturbation theory to simulate neutral excitations in acene and perylene crystals. By diagonalizing the full Bethe-Salpether (BSE) Hamiltonian beyond the Tamm Dancoff approximation (TDA), we find that both low-lying excitation energies and oscillator strengths are in improved agreement with experiments relative to the TDA. We characterize the low-lying excitons, focusing in the degree of charge-transfer and spatial delocalization, connecting their relevance to singlet fission. For perylene, we find overall good agreement with absorption measurements, and we see evidence for the formation of an ``exciton-polariton'' band in β-perylene. This work is supported by the DOE.

  8. Perturbations i have Known and Loved

    NASA Astrophysics Data System (ADS)

    Field, Robert W.

    2011-06-01

    A spectroscopic perturbation is a disruption of a ^1Σ-^1Σ-like regular pattern that can embody level-shifts, extra lines, and intensity anomalies. Once upon a time, when a band was labeled ``perturbed,'' it was considered worthless because it could at best yield molecular constants unsuited for archival tables. Nevertheless, a few brave spectroscopists, notably Albin Lagerqvist and Richard Barrow, collected perturbations because they knew that the pattern of multiple perturbations formed an intricate puzzle that would eventually reveal the presence and electronic symmetry of otherwise unobservable electronic states. There are many kinds of patterns of broken patterns. In my PhD thesis I showed how to determine absolute vibrational assignments for the perturber from patterns among the observed values of perturbation matrix elements. When a ^3Π state is perturbed, its six (Ω, parity) components capture a pattern of level shifts and intensity anomalies that reveals more about the nature of the perturber than a simple perturbation of the single component of a ^1Σ state. In perturbation-facilitated OODR, a perturbed singlet level acts as a spectroscopic doorway through which the entire triplet manifold may be systematically explored. For polyatomic molecule vibrations, a vibrational polyad (a group of mutually perturbing vibrational levels, among which the perturbation matrix elements are expected to follow harmonic oscillator scaling rules) can contain more components than a ^3Π state and intrapolyad patterns can be exquisitely sensitive not merely to the nature of an interloper within the polyad but also to the eigenvector character of the vibronic state from which the polyad is viewed. Variation of scaled polyad interaction parameters from one polyad to the next, a pattern of patterns, can signal proximity to an isomerization barrier. Everything in Rydberg-land seems to scale as N⋆-3, yet a trespassing valence state causes all scaling and propensity rules go

  9. Density perturbation theory

    SciTech Connect

    Palenik, Mark C.; Dunlap, Brett I.

    2015-07-28

    Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.

  10. A simultaneous estimation of the mass of Mars and its natural satellites, Phobos and Deimos, from the orbital perturbations on the Mariner 9, Viking 1, and Viking 2 orbiters

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Smith, D. E.; Fricke, S. K.; Mccarthy, J. J.

    1993-01-01

    The natural satellites of Mars, Phobos and Deimos, caused perturbations on the orbits of the Mariner 9, and the Viking spacecraft that were used to estimate the satellite masses. The Viking spacecraft were specifically targeted to make close flybys (within a few hundred kilometers) of Phobos in February 1977 and of Deimos in October 1977. These close encounters were used to estimate the moon's gravitational constant, GM (the universal constant of gravitation multiplied by the satellite mass). However, the Viking and Mariner 9 spacecraft made numerous flybys of Phobos and Deimos at distances of a few thousand kilometers. The tracking data from these more 'distant' encounters were processed to estimate the masses of Mars, Phobos, and Deimos.

  11. Instantons from perturbation theory

    NASA Astrophysics Data System (ADS)

    Serone, Marco; Spada, Gabriele; Villadoro, Giovanni

    2017-07-01

    In quantum mechanics and quantum field theory perturbation theory generically requires the inclusion of extra contributions nonperturbative in the coupling, such as instantons, to reproduce exact results. We show how full nonperturbative results can be encoded in a suitable modified perturbative series in a class of quantum mechanical problems. We illustrate this explicitly in examples which are known to contain nonperturbative effects, such as the (supersymmetric) double-well potential, the pure anharmonic oscillator, and the perturbative expansion around a false vacuum.

  12. Automated Lattice Perturbation Theory

    SciTech Connect

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  13. Density matrix perturbation theory.

    PubMed

    Niklasson, Anders M N; Challacombe, Matt

    2004-05-14

    An orbital-free quantum perturbation theory is proposed. It gives the response of the density matrix upon variation of the Hamiltonian by quadratically convergent recursions based on perturbed projections. The technique allows treatment of embedded quantum subsystems with a computational cost scaling linearly with the size of the perturbed region, O(N(pert.)), and as O(1) with the total system size. The method allows efficient high order perturbation expansions, as demonstrated with an example involving a 10th order expansion. Density matrix analogs of Wigner's 2n+1 rule are also presented.

  14. Perturbative stability of catenoidal soap films

    NASA Astrophysics Data System (ADS)

    Jana, Soumya; Kar, Sayan

    2013-09-01

    The perturbative stability of catenoidal soap films formed between parallel, equal radii, coaxial rings is studied using analytical and semi-analytical methods. Using a theorem on the nature of eigenvalues for a class of Sturm-Liouville operators, we show that, for the given boundary conditions, azimuthally asymmetric perturbations are stable, while symmetric perturbations lead to an instability --a result demonstrated in Ben Amar et al. (Eur. Phys. J. B 3, 197 (1998)) using numerics and experiment. Further, we show how to obtain the lowest real eigenvalue of perturbations, using the semi-analytical Asymptotic Iteration Method (AIM). Conclusions using AIM support the analytically obtained result as well as the results by Ben Amar et al.. Finally, we compute the eigenfunctions and show, pictorially, how the perturbed soap film evolves in time.

  15. Bridging Perturbative Expansions with Tensor Networks

    NASA Astrophysics Data System (ADS)

    Vanderstraeten, Laurens; Mariën, Michaël; Haegeman, Jutho; Schuch, Norbert; Vidal, Julien; Verstraete, Frank

    2017-08-01

    We demonstrate that perturbative expansions for quantum many-body systems can be rephrased in terms of tensor networks, thereby providing a natural framework for interpolating perturbative expansions across a quantum phase transition. This approach leads to classes of tensor-network states parametrized by few parameters with a clear physical meaning, while still providing excellent variational energies. We also demonstrate how to construct perturbative expansions of the entanglement Hamiltonian, whose eigenvalues form the entanglement spectrum, and how the tensor-network approach gives rise to order parameters for topological phase transitions.

  16. Asymptotic stability of singularly perturbed differential equations

    NASA Astrophysics Data System (ADS)

    Artstein, Zvi

    2017-02-01

    Asymptotic stability is examined for singularly perturbed ordinary differential equations that may not possess a natural split into fast and slow motions. Rather, the right hand side of the equation is comprised of a singularly perturbed component and a regular one. The limit dynamics consists then of Young measures, with values being invariant measures of the fast contribution, drifted by the slow one. Relations between the asymptotic stability of the perturbed system and the limit dynamics are examined, and a Lyapunov functions criterion, based on averaging, is established.

  17. The Perturbed Puma Model

    NASA Astrophysics Data System (ADS)

    Rong, Shu-Jun; Liu, Qiu-Yu

    2012-04-01

    The puma model on the basis of the Lorentz and CPT violation may bring an economical interpretation to the conventional neutrinos oscillation and part of the anomalous oscillations. We study the effect of the perturbation to the puma model. In the case of the first-order perturbation which keeps the (23) interchange symmetry, the mixing matrix element Ue3 is always zero. The nonzero mixing matrix element Ue3 is obtained in the second-order perturbation that breaks the (23) interchange symmetry.

  18. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank

    2016-03-01

    Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still two important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling "partially contracted" NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient "electron pair prescreening" that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed comparison

  19. SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory.

    PubMed

    Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F; Neese, Frank

    2016-03-07

    Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still two important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling "partially contracted" NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient "electron pair prescreening" that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed comparison

  20. Perturbed nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Proctor, T. G.

    1974-01-01

    For perturbed nonlinear systems, a norm, other than the supremum norm, is introduced on some spaces of continuous functions. This makes possible the study of new types of behavior. A study is presented on a perturbed nonlinear differential equation defined on a half line, and the existence of a family of solutions with special boundedness properties is established. The ideas developed are applied to the study of integral manifolds, and examples are given.

  1. Twisting perturbed parafermions

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2017-07-01

    The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang-Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6) nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current-current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3) sigma model which is reformulated as perturbed parafermions.

  2. Vortex perturbation dynamics

    NASA Technical Reports Server (NTRS)

    Criminale, W. O.; Lasseigne, D. G.; Jackson, T. L.

    1995-01-01

    An initial value approach is used to examine the dynamics of perturbations introduced into a vortex under strain. Both the basic vortex considered and the perturbations are taken as fully three-dimensional. An explicit solution for the time evolution of the vorticity perturbations is given for arbitrary initial vorticity. Analytical solutions for the resulting velocity components are found when the initial vorticity is assumed to be localized. For more general initial vorticity distributions, the velocity components are determined numerically. It is found that the variation in the radial direction of the initial vorticity disturbance is the most important factor influencing the qualitative behavior of the solutions. Transient growth in the magnitude of the velocity components is found to be directly attributable to the compactness of the initial vorticity.

  3. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  4. Perturbed nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Proctor, T. G.

    1972-01-01

    The existence of a solution defined for all t and possessing a type of boundedness property is established for the perturbed nonlinear system y = f(t,y) + F(t,y). The unperturbed system x = f(t,x) has a dichotomy in which some solutions exist and are well behaved as t increases to infinity, and some solution exists and are well behaved as t decreases to minus infinity. A similar study is made for a perturbed nonlinear differential equation defined on a half line, R+, and the existence of a family of solutions with special boundedness properties is established. The ideas are applied to integral manifolds.

  5. Perturbing turbulence beyond collapse

    NASA Astrophysics Data System (ADS)

    Kühnen, Jakob; Scarselli, Davide; Hof, Björn; Nonlinear Dynamics; Turbulence Group Team

    2016-11-01

    Wall-bounded turbulent flows are considered to be in principle stable against perturbations and persist as long as the Reynolds number is sufficiently high. We show for the example of pipe flow that a specific perturbation of the turbulent flow field disrupts the genesis of new turbulence at the wall. This leads to an immediate collapse of the turbulent flow and causes complete relaminarisation further downstream. The annihilation of turbulence is effected by a steady manipulation of the streamwise velocity component only, greatly simplifying control efforts which usually require knowledge of the highly complex three dimensional and time dependent velocity fields. We present several different control schemes from laboratory experiments which achieve the required perturbation of the flow for total relaminarisation. Transient growth, a linear amplification mechanism measuring the efficiency of eddies in redistributing shear that quantifies the maximum perturbation energy amplification achievable over a finite time in a linearized framework, is shown to set a clear-cut threshold below which turbulence is impeded in its formation and thus permanently annihilated.

  6. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  7. Nature

    NASA Astrophysics Data System (ADS)

    Heinhorst, Sabine; Cannon, Gordon

    1997-01-01

    The fact that two of the original articles by this year's Nobel laureates were published in Nature bears witness to the pivotal role of this journal in documenting pioneering discoveries in all areas of science. The prize for Physiology or Medicine was awarded to immunologists Peter C. Doherty (University of Tennessee) and Rolf M. Zinkernagel (University of Zurich, Switzerland), honoring work that, in the 1970s, laid the foundation for our current understanding of the way in which our immune system differentiates between healthy cells and virus-infected ones that are targeted for destruction (p 465 in the October 10 issue of vol. 383). Three researchers share the Chemistry award for their discovery of C60 buckminsterfullerenes. The work by Robert Curl, Richard Smalley (both at Rice University), and Harry Kroto (University of Sussex, UK) has led to a burst of new approaches to materials development and in carbon chemistry (p 561 of the October 17 issue of vol. 383). This year's Nobel prize in physics went to three U.S. researchers, Douglas Osheroff (Stanford University) and David M. Lee and Robert C. Richardson (Cornell University), who were honored for their work on superfluidity, a frictionless liquid state, of supercooled 3He (p 562 of the October 17 issue of vol. 383).

  8. Renormalized Lie perturbation theory

    SciTech Connect

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another.

  9. Covariant Bardeen perturbation formalism

    NASA Astrophysics Data System (ADS)

    Vitenti, S. D. P.; Falciano, F. T.; Pinto-Neto, N.

    2014-05-01

    In a previous work we obtained a set of necessary conditions for the linear approximation in cosmology. Here we discuss the relations of this approach with the so-called covariant perturbations. It is often argued in the literature that one of the main advantages of the covariant approach to describe cosmological perturbations is that the Bardeen formalism is coordinate dependent. In this paper we will reformulate the Bardeen approach in a completely covariant manner. For that, we introduce the notion of pure and mixed tensors, which yields an adequate language to treat both perturbative approaches in a common framework. We then stress that in the referred covariant approach, one necessarily introduces an additional hypersurface choice to the problem. Using our mixed and pure tensors approach, we are able to construct a one-to-one map relating the usual gauge dependence of the Bardeen formalism with the hypersurface dependence inherent to the covariant approach. Finally, through the use of this map, we define full nonlinear tensors that at first order correspond to the three known gauge invariant variables Φ, Ψ and Ξ, which are simultaneously foliation and gauge invariant. We then stress that the use of the proposed mixed tensors allows one to construct simultaneously gauge and hypersurface invariant variables at any order.

  10. Amplitudes of Spiral Perturbations

    NASA Astrophysics Data System (ADS)

    Grosbol, P.; Patsis, P. A.

    2014-03-01

    It has proven very difficult to estimate the amplitudes of spiral perturbations in disk galaxies from observations due to the variation of mass-to-light ratio and extinction across spiral arms. Deep, near-infrared images of grand-design spiral galaxies obtained with HAWK-I/VLT were used to analyze the azimuthal amplitude and shape of arms, which, even in the K-band may, be significantly biased by the presence of young stellar populations. Several techniques were applied to evaluate the relative importance of young stars across the arms, such as surface brightness of the disk with light from clusters subtracted, number density of clusters detected, and texture of the disk. The modulation of the texture measurement, which correlates with the number density of faint clusters, yields amplitudes of the spiral perturbation in the range 0.1-0.2. This estimate gives a better estimate of the mass perturbation in the spiral arms, since it is dominated by old clusters.

  11. Inflationary perturbations and precision cosmology

    SciTech Connect

    Habib, Salman; Heinen, Andreas; Heitmann, Katrin; Jungman, Gerard

    2005-02-15

    Inflationary cosmology provides a natural mechanism for the generation of primordial perturbations which seed the formation of observed cosmic structure and lead to specific signals of anisotropy in the cosmic microwave background radiation. In order to test the broad inflationary paradigm as well as particular models against precision observations, it is crucial to be able to make accurate predictions for the power spectrum of both scalar and tensor fluctuations. We present detailed calculations of these quantities utilizing direct numerical approaches as well as error-controlled uniform approximations, comparing with the (uncontrolled) traditional slow-roll approach. A simple extension of the leading-order uniform approximation yields results for the power spectra amplitudes, the spectral indices, and the running of spectral indices, with accuracy of the order of 0.1%--approximately the same level at which the transfer functions are known. Several representative examples are used to demonstrate these results.

  12. Converting entropy to curvature perturbations after a cosmic bounce

    SciTech Connect

    Fertig, Angelika; Lehners, Jean-Luc; Mallwitz, Enno; Wilson-Ewing, Edward

    2016-10-04

    We study two-field bouncing cosmologies in which primordial perturbations are created in either an ekpyrotic or a matter-dominated contraction phase. We use a non-singular ghost condensate bounce model to follow the perturbations through the bounce into the expanding phase of the universe. In contrast to the adiabatic perturbations, which on large scales are conserved across the bounce, entropy perturbations can grow significantly during the bounce phase. If they are converted into adiabatic/curvature perturbations after the bounce, they typically form the dominant contribution to the observed temperature fluctuations in the microwave background, which can have several beneficial implications. For ekpyrotic models, this mechanism loosens the constraints on the amplitude of the ekpyrotic potential while naturally suppressing the intrinsic amount of non-Gaussianity. For matter bounce models, the mechanism amplifies the scalar perturbations compared to the associated primordial gravitational waves.

  13. Discrete reductive perturbation technique

    SciTech Connect

    Levi, Decio; Petrera, Matteo

    2006-04-15

    We expand a partial difference equation (P{delta}E) on multiple lattices and obtain the P{delta}E which governs its far field behavior. The perturbative-reductive approach is here performed on well-known nonlinear P{delta}Es, both integrable and nonintegrable. We study the cases of the lattice modified Korteweg-de Vries (mKdV) equation, the Hietarinta equation, the lattice Volterra-Kac-Van Moerbeke equation and a nonintegrable lattice KdV equation. Such reductions allow us to obtain many new P{delta}Es of the nonlinear Schroedinger type.

  14. Perturbative cavity quantum electrodynamics

    SciTech Connect

    Hinds., E.A.

    1994-12-31

    Charged particles are coupled to the electromagnetic radiation field at a fundamental level. Even in a vacuum, an atom is perturbed by the zero-point quantum noise of the electromagnetic field, and this coupling is responsible for some basic phenomena such as the Lamb shift and spontaneous radiative decay. These radiative effects can be calculated to high precision using the theory of quantum electrodynamics (QED), and for cases when the atom is in free space, remarkable agreement has been found between theory and experiment. One is led to conclude QED provides a reliable description of the coupling between the charged particles and electromagnetic fields. 101 refs., 20 figs.

  15. Dynamics of free surface perturbations along an annular viscous film.

    PubMed

    Smolka, Linda B; North, Justin; Guerra, Bree K

    2008-03-01

    It is known that the free surface of an axisymmetric viscous film flowing down the outside of a thin vertical fiber under the influence of gravity becomes unstable to interfacial perturbations. We present an experimental study using fluids with different densities, surface tensions, and viscosities to investigate the growth and dynamics of these interfacial perturbations and to test the assumptions made by previous authors. We find that the initial perturbation growth is exponential, followed by a slower phase as the amplitude and wavelength saturate in size. Measurements of the perturbation growth for experiments conducted at low and moderate Reynolds numbers are compared to theoretical predictions developed from linear stability theory. Excellent agreement is found between predictions from a long-wave Stokes flow model [Craster and Matar, J. Fluid Mech. 553, 85 (2006)] and data, while fair to excellent agreement (depending on fiber size) is found between predictions from a moderate-Reynolds-number model [Sisoev, Chem. Eng. Sci. 61, 7279 (2006)] and data. Furthermore, we find that a known transition in the longer-time perturbation dynamics from unsteady to steady behavior at a critical flow rate Q(c) is correlated with a transition in the rate at which perturbations naturally form along the fiber. For Qperturbation formation is constant. As a result, the position along the fiber where perturbations form is nearly fixed, and the spacing between consecutive perturbations remains constant as they travel 2 m down the fiber. For Q>Q(c) (unsteady case), the rate of perturbation formation is modulated. As a result, the position along the fiber where perturbations form oscillates irregularly, and the initial speed and spacing between perturbations varies, resulting in the coalescence of neighboring perturbations further down the fiber.

  16. Dynamics of free surface perturbations along an annular viscous film

    NASA Astrophysics Data System (ADS)

    Smolka, Linda B.; North, Justin; Guerra, Bree K.

    2008-03-01

    It is known that the free surface of an axisymmetric viscous film flowing down the outside of a thin vertical fiber under the influence of gravity becomes unstable to interfacial perturbations. We present an experimental study using fluids with different densities, surface tensions, and viscosities to investigate the growth and dynamics of these interfacial perturbations and to test the assumptions made by previous authors. We find that the initial perturbation growth is exponential, followed by a slower phase as the amplitude and wavelength saturate in size. Measurements of the perturbation growth for experiments conducted at low and moderate Reynolds numbers are compared to theoretical predictions developed from linear stability theory. Excellent agreement is found between predictions from a long-wave Stokes flow model [Craster and Matar, J. Fluid Mech. 553, 85 (2006)] and data, while fair to excellent agreement (depending on fiber size) is found between predictions from a moderate-Reynolds-number model [Sisoev , Chem. Eng. Sci. 61, 7279 (2006)] and data. Furthermore, we find that a known transition in the longer-time perturbation dynamics from unsteady to steady behavior at a critical flow rate Qc is correlated with a transition in the rate at which perturbations naturally form along the fiber. For Qperturbation formation is constant. As a result, the position along the fiber where perturbations form is nearly fixed, and the spacing between consecutive perturbations remains constant as they travel 2 m down the fiber. For Q>Qc (unsteady case), the rate of perturbation formation is modulated. As a result, the position along the fiber where perturbations form oscillates irregularly, and the initial speed and spacing between perturbations varies, resulting in the coalescence of neighboring perturbations further down the fiber.

  17. Perturbations of gravitational instantons

    NASA Astrophysics Data System (ADS)

    Torre, C. G.

    1990-06-01

    Ashtekar's spinorial formulation of general relativity is used to study perturbations of gravitational instantons corresponding to finite-action solutions of the Euclidean Einstein equations (with a nonzero cosmological constant) possessing an anti-self-dual Weyl curvature tensor. It is shown that, with an appropriate ``on-shell'' form of infinitesimal gauge transformations, the space of solutions to the linearized instanton equation can be described in terms of an elliptic complex; the cohomology of the complex defines gauge-inequivalent perturbations. Using this elliptic complex we prove that there are no nontrivial solutions to the linearized instanton equation on conformally anti-self-dual Einstein spaces with a positive cosmological constant. Thus, the space of gravitational instantons is discrete when the cosmological constant is positive; i.e., the dimension of the gravitational moduli space in this case is zero. We discuss the issue of linearization stability as well as the feasibility of using the Atiyah-Singer index theorem to compute the dimension of the gravitational moduli space when the cosmological constant is negative.

  18. A chiral perturbation expansion for gravity

    NASA Astrophysics Data System (ADS)

    Abou-Zeid, Mohab; Hull, Christopher M.

    2006-02-01

    A formulation of Einstein gravity, analogous to that for gauge theory arising from the Chalmers-Siegel action, leads to a perturbation theory about an asymmetric weak coupling limit that treats positive and negative helicities differently. We find power counting rules for amplitudes that suggest the theory could find a natural interpretation in terms of a twistor-string theory for gravity with amplitudes supported on holomorphic curves in twistor space.

  19. Discrete Newtonian cosmology: perturbations

    NASA Astrophysics Data System (ADS)

    Ellis, George F. R.; Gibbons, Gary W.

    2015-03-01

    In a previous paper (Gibbons and Ellis 2014 Discrete Newtonian cosmology Class. Quantum Grav. 31 025003), we showed how a finite system of discrete particles interacting with each other via Newtonian gravitational attraction would lead to precisely the same dynamical equations for homothetic motion as in the case of the pressure-free Friedmann-Lemaître-Robertson-Walker cosmological models of general relativity theory, provided the distribution of particles obeys the central configuration equation. In this paper we show that one can obtain perturbed such Newtonian solutions that give the same linearized structure growth equations as in the general relativity case. We also obtain the Dmitriev-Zel’dovich equations for subsystems in this discrete gravitational model, and show how it leads to the conclusion that voids have an apparent negative mass.

  20. Conformal perturbation theory

    NASA Astrophysics Data System (ADS)

    Amoretti, Andrea; Magnoli, Nicodemo

    2017-08-01

    Statistical systems near a classical critical point have been intensively studied from both theoretical and experimental points of view. In particular, correlation functions are of relevance in comparing theoretical models with the experimental data of real systems. In order to compute physical quantities near a critical point, one needs to know the model at the critical (conformal) point. In this line, recent progress in the knowledge of conformal field theories, through the conformal bootstrap, gives the hope of getting some interesting results also outside of the critical point. In this paper, we will review and clarify how, starting from the knowledge of the critical correlators, one can calculate in a safe way their behavior outside the critical point. The approach illustrated requires the model to be just scale invariant at the critical point. We will clarify the method by applying it to different kind of perturbations of the 2D Ising model.

  1. Perturbed effects at radiation physics

    NASA Astrophysics Data System (ADS)

    Külahcı, Fatih; Şen, Zekâi

    2013-09-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.

  2. Perturbing a quantum gravity condensate

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen

    2015-02-01

    In a recent proposal using the group field theory approach, a spatially homogeneous (generally anisotropic) universe is described as a quantum gravity condensate of "atoms of space," which allows the derivation of an effective cosmological Friedmann equation from the microscopic quantum gravity dynamics. Here we take a first step towards the study of cosmological perturbations over the homogeneous background. We consider a state in which a single "atom" is added to an otherwise homogeneous condensate. Backreaction of the perturbation on the background is negligible and the background dynamics can be solved separately. The dynamics for the perturbation takes the form of a quantum cosmology Hamiltonian for a "wave function," depending on background and perturbations, of the product form usually assumed in a Born-Oppenheimer approximation. We show that the perturbation we consider corresponds to a spatially homogeneous metric perturbation, and for this case derive the usual procedures in quantum cosmology from fundamental quantum gravity.

  3. Cosmological perturbations in massive bigravity

    SciTech Connect

    Lagos, Macarena; Ferreira, Pedro G. E-mail: p.ferreira1@physics.ox.ac.uk

    2014-12-01

    We present a comprehensive analysis of classical scalar, vector and tensor cosmological perturbations in ghost-free massive bigravity. In particular, we find the full evolution equations and analytical solutions in a wide range of regimes. We show that there are viable cosmological backgrounds but, as has been found in the literature, these models generally have exponential instabilities in linear perturbation theory. However, it is possible to find stable scalar cosmological perturbations for a very particular choice of parameters. For this stable subclass of models we find that vector and tensor perturbations have growing solutions. We argue that special initial conditions are needed for tensor modes in order to have a viable model.

  4. On the divergences of inflationary superhorizon perturbations

    SciTech Connect

    Enqvist, K; Nurmi, S; Podolsky, D; Rigopoulos, G I E-mail: sami.nurmi@helsinki.fi E-mail: gerasimos.rigopoulos@helsinki.fi

    2008-04-15

    We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.

  5. Controlling chaos in low and high dimensional systems with periodic parametric perturbations

    SciTech Connect

    Mirus, K.A.; Sprott, J.C.

    1998-06-01

    The effect of applying a periodic perturbation to an accessible parameter of various chaotic systems is examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable periodic orbits of the chaotic systems can result in limit cycles for relatively small perturbations. Such perturbations can also control or significantly reduce the dimension of high-dimensional systems. Initial application to the control of fluctuations in a prototypical magnetic fusion plasma device will be reviewed.

  6. Thermal perturbation of the Sun

    NASA Technical Reports Server (NTRS)

    Twigg, L. W.; Endal, A. S.

    1982-01-01

    Thermal perturbations of the solar convection zone can be modeled (to the first order) by perturbing the mixing length parameter alpha (equal to the ratio of the mixing length to the pressure scale height) used in the standard mixing length theory of convection. Results of such an analysis are presented and discussed in relation to recent work by others.

  7. Perturbation theory in electron diffraction

    NASA Astrophysics Data System (ADS)

    Bakken, L. N.; Marthinsen, K.; Hoeier, R.

    1992-12-01

    The Bloch-wave approach is used for discussing multiple inelastic electron scattering and higher-order perturbation theory in inelastic high-energy electron diffraction. In contrast to previous work, the present work describes three-dimensional diffraction so that higher-order Laue zone (HOLZ) effects are incorporated. Absorption is included and eigenvalues and eigenvectors are calculated from a structure matrix with the inclusion of an absorptive potential. Centrosymmetric as well as non-centrosymmetric crystal structures are allowed. An iteration method with a defined generalized propagation function for solving the inelastic coupling equations is described. It is shown that a similar iteration method with the same propagation function can be used for obtaining higher-order perturbation terms for the wave-function when a perturbation is added to the crystal potential. Finally, perturbation theory by matrix calculations when a general perturbation is added to the structure matrix is considered.

  8. Computing singularities of perturbation series

    SciTech Connect

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be useful for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.

  9. Axion inflation with cross-correlated axion isocurvature perturbations

    SciTech Connect

    Kadota, Kenji; Kobayashi, Tatsuo; Otsuka, Hajime

    2016-01-25

    We study the inflation scenarios, in the framework of superstring theory, where the inflaton is an axion producing the adiabatic curvature perturbations while there exists another light axion producing the isocurvature perturbations. We discuss how the non-trivial couplings among string axions can generically arise, and calculate the consequent cross-correlations between the adiabatic and isocurvature modes through concrete examples. Based on the Planck analysis on the generally correlated isocurvature perturbations, we show that there is a preference for the existence of the correlated isocurvature modes for the axion monodromy inflation while the natural inflation disfavors such isocurvature modes.

  10. Axion inflation with cross-correlated axion isocurvature perturbations

    SciTech Connect

    Kadota, Kenji; Kobayashi, Tatsuo; Otsuka, Hajime E-mail: kobayashi@particle.sci.hokudai.ac.jp

    2016-01-01

    We study the inflation scenarios, in the framework of superstring theory, where the inflaton is an axion producing the adiabatic curvature perturbations while there exists another light axion producing the isocurvature perturbations. We discuss how the non-trivial couplings among string axions can generically arise, and calculate the consequent cross-correlations between the adiabatic and isocurvature modes through concrete examples. Based on the Planck analysis on the generally correlated isocurvature perturbations, we show that there is a preference for the existence of the correlated isocurvature modes for the axion monodromy inflation while the natural inflation disfavors such isocurvature modes.

  11. Geometric perturbation theory and plasma physics

    SciTech Connect

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  12. The power of perturbation theory

    NASA Astrophysics Data System (ADS)

    Serone, Marco; Spada, Gabriele; Villadoro, Giovanni

    2017-05-01

    We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the PicardLefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.

  13. Instabilities in mimetic matter perturbations

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Gorji, Mohammad Ali; Mansoori, Seyed Ali Hosseini

    2017-07-01

    We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.

  14. Inflationary perturbations in bimetric gravity

    SciTech Connect

    Cusin, Giulia; Durrer, Ruth; Guarato, Pietro; Motta, Mariele E-mail: ruth.durrer@unige.ch E-mail: mariele.motta@unige.ch

    2015-09-01

    In this paper we study the generation of primordial perturbations in a cosmological setting of bigravity during inflation. We consider a model of bigravity which can reproduce the ΛCDM background and large scale structure and a simple model of inflation with a single scalar field and a quadratic potential. Reheating is implemented with a toy-model in which the energy density of the inflaton is entirely dissipated into radiation. We present analytic and numerical results for the evolution of primordial perturbations in this cosmological setting. We find that the amplitude of tensor perturbations generated during inflation is sufficiently suppressed to avoid the effects of the tensor instability discovered in refs. [1,2] which develops during the cosmological evolution in the physical sector. We argue that from a pure analysis of the tensor perturbations this bigravity model is compatible with present observations. However, we derive rather stringent limits on inflation from the vector and scalar sectors.

  15. Perturbative gadgets at arbitrary orders

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen P.; Farhi, Edward

    2008-06-01

    Adiabatic quantum algorithms are often most easily formulated using many-body interactions. However, experimentally available interactions are generally two-body. In 2004, Kempe, Kitaev, and Regev introduced perturbative gadgets, by which arbitrary three-body effective interactions can be obtained using Hamiltonians consisting only of two-body interactions. These three-body effective interactions arise from the third order in perturbation theory. Since their introduction, perturbative gadgets have become a standard tool in the theory of quantum computation. Here we construct generalized gadgets so that one can directly obtain arbitrary k -body effective interactions from two-body Hamiltonians. These effective interactions arise from the k th order in perturbation theory.

  16. Robust stability under additive perturbations

    NASA Technical Reports Server (NTRS)

    Bhaya, A.; Desoer, C. A.

    1985-01-01

    A MIMO linear time-invariant feedback system 1S(P,C) is considered which is assumed to be U-stable. The plant P is subjected to an additive perturbation Delta P which is proper but not necessarily stable. It is proved that the perturbed system is U-stable if and only if Delta P(I + Q x Delta P) exp -1 is U-stable.

  17. Lectures on perturbative string theories

    SciTech Connect

    Ooguri, Hirosi; Yin, Z. |

    1997-02-01

    These lecture notes on String Theory constitute an introductory course designed to acquaint the students with some basic factors of perturbative string theories. They are intended as preparation for the more advanced courses on non-perturbative aspects of string theories in the school. The course consists of five lectures: (1) Bosonic String, (2) Toroidal Compactifications, (3) Superstrings, (4) Heterotic Strings, and (5) Orbifold Compactifications.

  18. Using Lagrangian perturbation theory for precision cosmology

    SciTech Connect

    Sugiyama, Naonori S.

    2014-06-10

    We explore the Lagrangian perturbation theory (LPT) at one-loop order with Gaussian initial conditions. We present an expansion method to approximately compute the power spectrum LPT. Our approximate solution has good convergence in the series expansion and enables us to compute the power spectrum in LPT accurately and quickly. Non-linear corrections in this theory naturally satisfy the law of conservation of mass because the relation between matter density and the displacement vector of dark matter corresponds to the conservation of mass. By matching the one-loop solution in LPT to the two-loop solution in standard perturbation theory, we present an approximate solution of the power spectrum which has higher order corrections than the two-loop order in standard perturbation theory with the conservation of mass satisfied. With this approximation, we can use LPT to compute a non-linear power spectrum without any free parameters, and this solution agrees with numerical simulations at k = 0.2 h Mpc{sup –1} and z = 0.35 to better than 2%.

  19. Inflationary perturbations in no-scale theories

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto

    2017-04-01

    We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n_s and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, "the planckion", whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments.

  20. Boundary Layer Instabilities Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.

  1. Evolution equation for non-linear cosmological perturbations

    SciTech Connect

    Brustein, Ram; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch

    2011-11-01

    We present a novel approach, based entirely on the gravitational potential, for studying the evolution of non-linear cosmological matter perturbations. Starting from the perturbed Einstein equations, we integrate out the non-relativistic degrees of freedom of the cosmic fluid and obtain a single closed equation for the gravitational potential. We then verify the validity of the new equation by comparing its approximate solutions to known results in the theory of non-linear cosmological perturbations. First, we show explicitly that the perturbative solution of our equation matches the standard perturbative solutions. Next, using the mean field approximation to the equation, we show that its solution reproduces in a simple way the exponential suppression of the non-linear propagator on small scales due to the velocity dispersion. Our approach can therefore reproduce the main features of the renormalized perturbation theory and (time)-renormalization group approaches to the study of non-linear cosmological perturbations, with some possibly important differences. We conclude by a preliminary discussion of the nature of the full solutions of the equation and their significance.

  2. Bonding charge density from atomic perturbations.

    PubMed

    Wang, Yi; Wang, William Yi; Chen, Long-Qing; Liu, Zi-Kui

    2015-05-15

    Charge transfer among individual atoms is the key concept in modern electronic theory of chemical bonding. In this work, we present a first-principles approach to calculating the charge transfer. Based on the effects of perturbations of an individual atom or a group of atoms on the electron charge density, we determine unambiguously the amount of electron charge associated with a particular atom or a group of atoms. We computed the topological electron loss versus gain using ethylene, graphene, MgO, and SrTiO3 as examples. Our results verify the nature of chemical bonds in these materials at the atomic level.

  3. Generating ekpyrotic curvature perturbations before the big bang

    SciTech Connect

    Lehners, Jean-Luc; Turok, Neil; McFadden, Paul; Steinhardt, Paul J.

    2007-11-15

    We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n{sub s} tends to range from slightly blue to red, with 0.97

  4. Computing singularities of perturbation series

    NASA Astrophysics Data System (ADS)

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-01

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schrödinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be useful for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with δ-function interactions for which Møller-Plesset perturbation theory is considered and the radius of convergence found.

  5. Bounded relative motion under zonal harmonics perturbations

    NASA Astrophysics Data System (ADS)

    Baresi, Nicola; Scheeres, Daniel J.

    2017-04-01

    The problem of finding natural bounded relative trajectories between the different units of a distributed space system is of great interest to the astrodynamics community. This is because most popular initialization methods still fail to establish long-term bounded relative motion when gravitational perturbations are involved. Recent numerical searches based on dynamical systems theory and ergodic maps have demonstrated that bounded relative trajectories not only exist but may extend up to hundreds of kilometers, i.e., well beyond the reach of currently available techniques. To remedy this, we introduce a novel approach that relies on neither linearized equations nor mean-to-osculating orbit element mappings. The proposed algorithm applies to rotationally symmetric bodies and is based on a numerical method for computing quasi-periodic invariant tori via stroboscopic maps, including extra constraints to fix the average of the nodal period and RAAN drift between two consecutive equatorial plane crossings of the quasi-periodic solutions. In this way, bounded relative trajectories of arbitrary size can be found with great accuracy as long as these are allowed by the natural dynamics and the physical constraints of the system (e.g., the surface of the gravitational attractor). This holds under any number of zonal harmonics perturbations and for arbitrary time intervals as demonstrated by numerical simulations about an Earth-like planet and the highly oblate primary of the binary asteroid (66391) 1999 KW4.

  6. Jet Perturbation by HE target

    SciTech Connect

    Poulsen, P; Kuklo, R M

    2001-03-01

    We have previously reported the degree of attenuation and perturbation by a Cu jet passing through Comp B explosive. Similar tests have now been performed with high explosive (HE) targets having CJ pressures higher than and lower than the CJ pressure of Comp B. The explosives were LX-14 and TNT, respectively. We found that the measured exit velocity of the jet where it transitions from perturbed to solid did not vary significantly as a function of HE type for each HE thickness. The radial momentum imparted to the perturbed jet segment did vary as a function of HE type, however, and we report the radial spreading of the jet and the penetration of a downstream target as a function of HE type and thickness.

  7. Multi-field inflation and cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Gong, Jinn-Ouk

    We provide a concise review on multi-field inflation and cosmological perturbations. We discuss convenient and physically meaningful bases in terms of which perturbations can be systematically studied. We give formal accounts on the gauge fixing conditions and present the perturbation action in two gauges. We also briefly review nonlinear perturbations.

  8. Thermal perturbation of the Sun

    NASA Technical Reports Server (NTRS)

    Twigg, L. W.; Endal, A. S.

    1981-01-01

    An investigation of thermal perturbations of the solar convective zone via changes in the mixing length parameter were carried out, with a view toward understanding the possible solar radius and luminosity changes cited in the literature. The results show that: (a) a single perturbation of alpha is probably not the cause of the solar radius change and (b) the parameter W = d lambda nR./d lambda nL. can not be characterized by a single value, as implied in recent work.

  9. Geometric Perturbation Theory and Plasma Physics

    NASA Astrophysics Data System (ADS)

    Omohundro, Stephen Malvern

    1985-12-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem

  10. CMB hemispherical asymmetry from non-linear isocurvature perturbations

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: firouz@mail.ipm.ir E-mail: david.wands@port.ac.uk

    2015-04-01

    We investigate whether non-adiabatic perturbations from inflation could produce an asymmetric distribution of temperature anisotropies on large angular scales in the cosmic microwave background (CMB). We use a generalised non-linear δ N formalism to calculate the non-Gaussianity of the primordial density and isocurvature perturbations due to the presence of non-adiabatic, but approximately scale-invariant field fluctuations during multi-field inflation. This local-type non-Gaussianity leads to a correlation between very long wavelength inhomogeneities, larger than our observable horizon, and smaller scale fluctuations in the radiation and matter density. Matter isocurvature perturbations contribute primarily to low CMB multipoles and hence can lead to a hemispherical asymmetry on large angular scales, with negligible asymmetry on smaller scales. In curvaton models, where the matter isocurvature perturbation is partly correlated with the primordial density perturbation, we are unable to obtain a significant asymmetry on large angular scales while respecting current observational constraints on the observed quadrupole. However in the axion model, where the matter isocurvature and primordial density perturbations are uncorrelated, we find it may be possible to obtain a significant asymmetry due to isocurvature modes on large angular scales. Such an isocurvature origin for the hemispherical asymmetry would naturally give rise to a distinctive asymmetry in the CMB polarisation on large scales.

  11. Adaptation Strategies in Perturbed /s/

    ERIC Educational Resources Information Center

    Brunner, Jana; Hoole, Phil; Perrier, Pascal

    2011-01-01

    The purpose of this work is to investigate the role of three articulatory parameters (tongue position, jaw position and tongue grooving) in the production of /s/. Six normal speakers' speech was perturbed by a palatal prosthesis. The fricative was recorded acoustically and through electromagnetic articulography in four conditions: (1) unperturbed,…

  12. Adaptation Strategies in Perturbed /s/

    ERIC Educational Resources Information Center

    Brunner, Jana; Hoole, Phil; Perrier, Pascal

    2011-01-01

    The purpose of this work is to investigate the role of three articulatory parameters (tongue position, jaw position and tongue grooving) in the production of /s/. Six normal speakers' speech was perturbed by a palatal prosthesis. The fricative was recorded acoustically and through electromagnetic articulography in four conditions: (1) unperturbed,…

  13. New results in perturbative QCD

    SciTech Connect

    Ellis, R.K.

    1985-11-01

    Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: (2 2) jet phenomena calculated in O( sT); new techniques for the calculation of tree graphs; and colour coherence in jet phenomena. 31 refs., 6 figs.

  14. Disformal invariance of curvature perturbation

    SciTech Connect

    Motohashi, Hayato; White, Jonathan E-mail: jwhite@post.kek.jp

    2016-02-01

    We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.

  15. VHS Movies: Perturbations for Morphogenesis.

    ERIC Educational Resources Information Center

    Holmes, Danny L.

    This paper discusses the concept of a family system in terms of an interactive system of interrelated, interdependent parts and suggests that VHS movies can act as perturbations, i.e., change promoting agents, for certain dysfunctional family systems. Several distinct characteristics of a family system are defined with particular emphasis on…

  16. Recent Developments in Perturbative QCD

    SciTech Connect

    Dixon, Lance J.; /SLAC

    2005-07-11

    I review recent progress in perturbative QCD on two fronts: extending next-to-next-to-leading order QCD corrections to a broader range of collider processes, and applying twistor-space methods (and related spinoffs) to computations of multi-parton scattering amplitudes.

  17. PERTURBATION APPROACH FOR QUANTUM COMPUTATION

    SciTech Connect

    G. P. BERMAN; D. I. KAMENEV; V. I. TSIFRINOVICH

    2001-04-01

    We discuss how to simulate errors in the implementation of simple quantum logic operations in a nuclear spin quantum computer with many qubits, using radio-frequency pulses. We verify our perturbation approach using the exact solutions for relatively small (L = 10) number of qubits.

  18. Singularly Perturbed Lie Bracket Approximation

    SciTech Connect

    Durr, Hans-Bernd; Krstic, Miroslav; Scheinker, Alexander; Ebenbauer, Christian

    2015-03-27

    Here, we consider the interconnection of two dynamical systems where one has an input-affine vector field. We show that by employing a singular perturbation analysis and the Lie bracket approximation technique, the stability of the overall system can be analyzed by regarding the stability properties of two reduced, uncoupled systems.

  19. Basics of QCD perturbation theory

    SciTech Connect

    Soper, D.E.

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  20. Inevitable ambiguity in perturbation around flat space-time

    SciTech Connect

    Ichinose, S. ); Kaminaga, Y. )

    1989-12-15

    Perturbation of general-relativistic predictions around flat geometry, in general, introduces inevitable ambiguity. The ambiguity reflects the geometrical nature of general relativity and is never a difficulty of it. We explain it by taking a concrete example of the radar-echo experiment.

  1. Perturbative quantum gravity in double field theory

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Horst, Christoph

    2016-04-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  2. Perturbations and 3R in carbon management.

    PubMed

    Pant, Deepak; Sharma, Virbala; Singh, Pooja; Kumar, Manoj; Giri, Anand; Singh, M P

    2017-02-01

    Perturbations in various carbon pools like biological, geological, oceanic, and missing carbon sink affect its global data, which are generally neglected or ignored in routine calculations. These natural and anthropogenic events need to be considered before projecting a sustainable carbon management plan. These plans have both general and experimental aspects. General plans should focus on (a) minimizing emission; (b) maximizing environmentally sound reuse, reduce, and recycling; (c) effective treatment; and (d) converting carbon into valuable products with atom economy. Experimental carbon management plans involving various biological and chemical techniques with limitation in terms of research level and economic feasibility. Chemical options have benefits of higher productivity and wider product range, but it suffers from its higher-energy requirements and environmental unfriendliness. In contrast to this, biological options are more selective and less energy intensive, but their productivity is very low. Hence, there is a requirement of hybrid process where the benefits of both the options, i.e., biological and chemical, can be reaped. In view of above, the proposed review targets to highlight the various perturbations in the global carbon cycle and their effects; study the currently practiced options of carbon management, specifically in light of 3R principle; and propose various new hybrid methods by compatible combinations of chemical and biological processes to develop better and safer carbon management. These methods are hypothetical so they may require further research and validations but may provide a comprehensive base for developing such management methods.

  3. BRST quantization of cosmological perturbations

    SciTech Connect

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-08

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  4. BRST quantization of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-01

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  5. Cosmological perturbations in unimodular gravity

    SciTech Connect

    Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu

    2014-09-01

    We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.

  6. Gas hydrate inhibition by perturbation of liquid water structure

    NASA Astrophysics Data System (ADS)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  7. Gas hydrate inhibition by perturbation of liquid water structure.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-17

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  8. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  9. R evolution: Improving perturbative QCD

    SciTech Connect

    Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio

    2010-07-01

    Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.

  10. Estimation of velocity perturbations in satellite fragmentation events

    NASA Technical Reports Server (NTRS)

    Tan, Arjun

    1989-01-01

    The magnitude, variance and directionality of the velocity perturbations of the fragments of a satellite can shed valuable information regarding the nature and intensity of the fragmentation. Up until now, the only method used to calculate the three orthogonal components of the velocity change consisted of inverting the process of evaluating the changes in the orbital elements of the fragments due to velocity perturbing forces. But the traditional method failed in five different cases: (1) when the parent satellite's orbit was circular; (2) and (3) when the true anomaly of the parent was either 0 deg or 180 deg; and (4) and (5) when the argument of latitude of the parent was 90 deg or 270 deg. Described here is a new method of calculating the velocity perturbations which is free from the shortcomings of the traditional method and could be used in all occasions, provided the fragmentation data and the orbital elements data are consistent with one another.

  11. Classical Perturbation Theory for Monte Carlo Studies of System Reliability

    SciTech Connect

    Lewins, Jeffrey D.

    2001-03-15

    A variational principle for a Markov system allows the derivation of perturbation theory for models of system reliability, with prospects of extension to generalized Markov processes of a wide nature. It is envisaged that Monte Carlo or stochastic simulation will supply the trial functions for such a treatment, which obviates the standard difficulties of direct analog Monte Carlo perturbation studies. The development is given in the specific mode for first- and second-order theory, using an example with known analytical solutions. The adjoint equation is identified with the importance function and a discussion given as to how both the forward and backward (adjoint) fields can be obtained from a single Monte Carlo study, with similar interpretations for the additional functions required by second-order theory. Generalized Markov models with age-dependence are identified as coming into the scope of this perturbation theory.

  12. Modulations of perturbed KdV wavetrains

    SciTech Connect

    Forest, M.G.; Mclaughlin, D.W.

    1984-04-01

    The modulations of N-phase Korteweg-de Vries (KdV) wavetrains in the presence of external perturbations is investigated. An invariant representation of these modulation equations in terms of differentials on a Riemann surface is derived from averaged perturbed conservation laws. In particular, the explicit dependence of the representation on the external perturbation is obtained. This invariant representation is used to place the equation in a Riemann diagonal form, whose dependence on the external perturbation is explicitly computed. 15 references.

  13. The bispectrum of matter perturbations from cosmic strings

    SciTech Connect

    Regan, Donough; Hindmarsh, Mark E-mail: m.b.hindmarsh@sussex.ac.uk

    2015-03-01

    We present the first calculation of the bispectrum of the matter perturbations induced by cosmic strings. The calculation is performed in two different ways: the first uses the unequal time correlators (UETCs) of the string network - computed using a Gaussian model previously employed for cosmic string power spectra. The second approach uses the wake model, where string density perturbations are concentrated in sheet-like structures whose surface density grows with time. The qualitative and quantitative agreement of the two gives confidence to the results. An essential ingredient in the UETC approach is the inclusion of compensation factors in the integration with the Green's function of the matter and radiation fluids, and we show that these compensation factors must be included in the wake model also. We also present a comparison of the UETCs computed in the Gaussian model, and those computed in the unconnected segment model (USM) used by the standard cosmic string perturbation package CMBACT. We compare numerical estimates for the bispectrum of cosmic strings to those produced by perturbations from an inflationary era, and discover that, despite the intrinsically non-Gaussian nature of string-induced perturbations, the matter bispectrum is unlikely to produce competitive constraints on a population of cosmic strings.

  14. Geometric Hamiltonian structures and perturbation theory

    SciTech Connect

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.

  15. INVESTIGATION OF HALO FORMATION IN CONTINUOUS BEAMS USING WEIGHTED POLYNOMIAL EXPANSIONS AND PERTURBATIONAL ANALYSIS

    SciTech Connect

    C. ALLEN

    2000-08-01

    We consider halo formation in continuous beams oscillating at natural modes by inspecting particle trajectories. Trajectory equations containing field nonlinearities are derived from a weighted polynomial expansion. We then use perturbational techniques to further analyze particle motion.

  16. Evolution of the principal mode of density perturbations in a neutrino-dominated universe

    NASA Astrophysics Data System (ADS)

    Khlebnikov, V. I.

    1982-05-01

    The paper examines the physical features of the evolution of the growing mode of density perturbations in homogeneous isotropic cosmological models. The evolution of density perturbations in the long-wave limit in a neutrino-dominated Friedman universe is determined in the ultrarelativistic asymptotic case and in the general case. It is shown that all natural modes of long-wave scalar perturbations in a relativistic neutrino-dominated universe contain corresponding quadrupole components of the perturbed neutrino-distribution function. With neutrino separation from the Pascal fluid, quadrupole distributions of various modes mutually compensate one another; however, further on there occurs a disharmony of quadrupole moments owing to the difference in the laws of evolution of the natural modes of perturbations.

  17. Identifying Network Perturbation in Cancer

    PubMed Central

    Logsdon, Benjamin A.; Gentles, Andrew J.; Lee, Su-In

    2016-01-01

    We present a computational framework, called DISCERN (DIfferential SparsE Regulatory Network), to identify informative topological changes in gene-regulator dependence networks inferred on the basis of mRNA expression datasets within distinct biological states. DISCERN takes two expression datasets as input: an expression dataset of diseased tissues from patients with a disease of interest and another expression dataset from matching normal tissues. DISCERN estimates the extent to which each gene is perturbed—having distinct regulator connectivity in the inferred gene-regulator dependencies between the disease and normal conditions. This approach has distinct advantages over existing methods. First, DISCERN infers conditional dependencies between candidate regulators and genes, where conditional dependence relationships discriminate the evidence for direct interactions from indirect interactions more precisely than pairwise correlation. Second, DISCERN uses a new likelihood-based scoring function to alleviate concerns about accuracy of the specific edges inferred in a particular network. DISCERN identifies perturbed genes more accurately in synthetic data than existing methods to identify perturbed genes between distinct states. In expression datasets from patients with acute myeloid leukemia (AML), breast cancer and lung cancer, genes with high DISCERN scores in each cancer are enriched for known tumor drivers, genes associated with the biological processes known to be important in the disease, and genes associated with patient prognosis, in the respective cancer. Finally, we show that DISCERN can uncover potential mechanisms underlying network perturbation by explaining observed epigenomic activity patterns in cancer and normal tissue types more accurately than alternative methods, based on the available epigenomic data from the ENCODE project. PMID:27145341

  18. Transport Studies Using Perturbative Experiments

    SciTech Connect

    Hogeweij, G.M.D.

    2004-03-15

    By inducing a small electron temperature perturbation in a plasma in steady state one can in principle determine the conductive and convective components of the electron heat ux, and the associated thermal diffusivity and convection velocity. The same can be done for other plasma parameters, like density or ion temperature.In this paper experimental and analysis techniques are briey reviewed. The fundamental question whether the uxes are linear functions of the gradients or not is discussed. Experimental results are summarized, including so-called 'non-local' phenomena.

  19. Perturbation analyses of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Ueda, Hiroki R.

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the

  20. Natural and anthropogenic perturbations of the stratospheric ozone layer

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy P.

    1992-01-01

    The paper reviews potential causes for reduction in the ozone abundance. The response of stratospheric ozone to solar activity is discussed. Ozone changes are simulated in relation with the potential development of a fleet of high-speed stratospheric aircraft and the release in the atmosphere of chlorofluorocarbons. The calculations are performed by a two-dimensional chemical-radiative-dynamical model. The importance of heterogeneous chemistry in polar stratospheric clouds and in the Junge layer (sulfate aerosol) is emphasized. The recently reported ozone trend over the last decade is shown to have been largely caused by the simultaneous effects of increasing concentrations of chlorofluorocarbons and heterogeneous chemistry. The possibility for a reduction in stratospheric ozone following a large volcanic eruption such as that of Mount Pinatubo in 1991 is discussed.

  1. "Phonon" scattering beyond perturbation theory

    NASA Astrophysics Data System (ADS)

    Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing

    2016-02-01

    Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.

  2. Perturbative Methods in Path Integration

    NASA Astrophysics Data System (ADS)

    Johnson-Freyd, Theodore Paul

    This dissertation addresses a number of related questions concerning perturbative "path" integrals. Perturbative methods are one of the few successful ways physicists have worked with (or even defined) these infinite-dimensional integrals, and it is important as mathematicians to check that they are correct. Chapter 0 provides a detailed introduction. We take a classical approach to path integrals in Chapter 1. Following standard arguments, we posit a Feynman-diagrammatic description of the asymptotics of the time-evolution operator for the quantum mechanics of a charged particle moving nonrelativistically through a curved manifold under the influence of an external electromagnetic field. We check that our sum of Feynman diagrams has all desired properties: it is coordinate-independent and well-defined without ultraviolet divergences, it satisfies the correct composition law, and it satisfies Schrodinger's equation thought of as a boundary-value problem in PDE. Path integrals in quantum mechanics and elsewhere in quantum field theory are almost always of the shape ∫ f es for some functions f (the "observable") and s (the "action"). In Chapter 2 we step back to analyze integrals of this type more generally. Integration by parts provides algebraic relations between the values of ∫ (-) es for different inputs, which can be packaged into a Batalin--Vilkovisky-type chain complex. Using some simple homological perturbation theory, we study the version of this complex that arises when f and s are taken to be polynomial functions, and power series are banished. We find that in such cases, the entire scheme-theoretic critical locus (complex points included) of s plays an important role, and that one can uniformly (but noncanonically) integrate out in a purely algebraic way the contributions to the integral from all "higher modes," reducing ∫ f es to an integral over the critical locus. This may help explain the presence of analytic continuation in questions like the

  3. Initial conditions for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-02-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations.

  4. Accuracy of perturbative master equations.

    PubMed

    Fleming, C H; Cummings, N I

    2011-03-01

    We consider open quantum systems with dynamics described by master equations that have perturbative expansions in the system-environment interaction. We show that, contrary to intuition, full-time solutions of order-2n accuracy require an order-(2n+2) master equation. We give two examples of such inaccuracies in the solutions to an order-2n master equation: order-2n inaccuracies in the steady state of the system and order-2n positivity violations. We show how these arise in a specific example for which exact solutions are available. This result has a wide-ranging impact on the validity of coupling (or friction) sensitive results derived from second-order convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.

  5. Robust control with structured perturbations

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1988-01-01

    Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.

  6. Perturbed Radius of Geosynchronous-Satellite Orbit

    NASA Astrophysics Data System (ADS)

    Kawase, Sei-Ichiro

    We analyze theoretically how the radius of geosynchronous orbits would vary owing to the perturbations due to the sun/moon gravity, solar radiation pressure, and the oblate earth. The analysis is simple, as it uses a diagrammatic method to solve near-circular orbital motions. Results are obtained in seven terms of corrections to the radius of non-perturbed ideal orbits. Each correction term is derived, with clear physical meaning, from each component of the perturbing forces.

  7. Kato expansion in quantum canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Nikolaev, Andrey

    2016-06-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson's ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  8. Generic perturbations of linear integrable Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Bounemoura, Abed

    2016-11-01

    In this paper, we investigate perturbations of linear integrable Hamiltonian systems, with the aim of establishing results in the spirit of the KAM theorem (preservation of invariant tori), the Nekhoroshev theorem (stability of the action variables for a finite but long interval of time) and Arnold diffusion (instability of the action variables). Whether the frequency of the integrable system is resonant or not, it is known that the KAM theorem does not hold true for all perturbations; when the frequency is resonant, it is the Nekhoroshev theorem that does not hold true for all perturbations. Our first result deals with the resonant case: we prove a result of instability for a generic perturbation, which implies that the KAM and the Nekhoroshev theorem do not hold true even for a generic perturbation. The case where the frequency is nonresonant is more subtle. Our second result shows that for a generic perturbation the KAM theorem holds true. Concerning the Nekhrosohev theorem, it is known that one has stability over an exponentially long (with respect to some function of ɛ -1) interval of time and that this cannot be improved for all perturbations. Our third result shows that for a generic perturbation one has stability for a doubly exponentially long interval of time. The only question left unanswered is whether one has instability for a generic perturbation (necessarily after this very long interval of time).

  9. Kato expansion in quantum canonical perturbation theory

    SciTech Connect

    Nikolaev, Andrey

    2016-06-15

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  10. Simple Theory of Geosynchronous-Orbit Perturbations

    NASA Astrophysics Data System (ADS)

    Kawase, Sei-Ichiro

    A simple perturbation theory is introduced for modeling geosynchronous orbits. The theory uses diagrammatic representations of orbits, and derives the perturbations in a direct manner without using differential equations. Perturbations of major importance are derived, including satellite-longitude changes due to the earth’s asymmetric shape, orbital eccentricity increase due to the sun-radiation pressure, and orbital plane inclination due to the sun/moon attraction. The theory clarifies the physical/geometrical meaning of the perturbations while using minimal mathematical analysis.

  11. Perturbative spacetimes from Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Luna, Andrés; Monteiro, Ricardo; Nicholson, Isobel; Ochirov, Alexander; O'Connell, Donal; Westerberg, Niclas; White, Chris D.

    2017-04-01

    The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.

  12. Singularity perturbed zero dynamics of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.

    1992-01-01

    Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.

  13. Supernovae data and perturbative deviation from homogeneity

    SciTech Connect

    Enqvist, Kari; Mattsson, Maria; Rigopoulos, Gerasimos E-mail: maria.ronkainen@helsinki.fi

    2009-09-01

    We show that a spherically symmetric perturbation of a dust dominated Ω = 1 FRW universe in the Newtonian gauge can lead to an apparent acceleration of standard candles and provide a fit to the magnitude-redshift relation inferred from the supernovae data, while the perturbation in the gravitational potential remains small at all scales. We also demonstrate that the supernovae data does not necessarily imply the presence of some additional non-perturbative contribution by showing that any Lemaitre-Tolman-Bondi model fitting the supernovae data (with appropriate initial conditions) will be equivalent to a perturbed FRW spacetime along the past light cone.

  14. Scalar perturbations in a Friedmann-like metric with non-null Weyl tensor

    SciTech Connect

    Santos, G.B.; Bittencourt, E.; Salim, J.M. E-mail: eduardo.bittencourt@icranet.org

    2015-06-01

    In a previous work the authors have solved the Einstein equations of General Relativity for a class of metrics with constant spatial curvature, where it was found a non vanishing Weyl tensor in the presence of a primordial magnetic field with an anisotropic pressure component. Here, we perform the perturbative analysis of this model in order to study the gravitational stability under linear scalar perturbations. For this purpose, we take the Quasi-Maxwellian formalism of General Relativity as our framework, which offers a naturally covariant and gauge-invariant approach to deal with perturbations that are directly linked to observational quantities. We then compare this scenario with the perturbed dust-dominated Friedmann model emphasizing how the growth of density perturbations are enhanced in our case.

  15. A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses.

    PubMed

    Olenšek, Andrej; Zadravec, Matjaž; Matjačić, Zlatko

    2016-06-11

    The most common approach to studying dynamic balance during walking is by applying perturbations. Previous studies that investigated dynamic balance responses predominantly focused on applying perturbations in frontal plane while walking on treadmill. The goal of our work was to develop balance assessment robot (BAR) that can be used during overground walking and to assess normative balance responses to perturbations in transversal plane in a group of neurologically healthy individuals. BAR provides three passive degrees of freedom (DoF) and three actuated DoF in pelvis that are admittance-controlled in such a way that the natural movement of pelvis is not significantly affected. In this study BAR was used to assess normative balance responses in neurologically healthy individuals by applying linear perturbations in frontal and sagittal planes and angular perturbations in transversal plane of pelvis. One way repeated measure ANOVA was used to statistically evaluate the effect of selected perturbations on stepping responses. Standard deviations of assessed responses were similar in unperturbed and perturbed walking. Perturbations in frontal direction evoked substantial pelvis displacement and caused statistically significant effect on step length, step width and step time. Likewise, perturbations in sagittal plane also caused statistically significant effect on step length, step width and step time but with less explicit impact on pelvis movement in frontal plane. On the other hand, except from substantial pelvis rotation angular perturbations did not have substantial effect on pelvis movement in frontal and sagittal planes while statistically significant effect was noted only in step length and step width after perturbation in clockwise direction. Results indicate that the proposed device can repeatedly reproduce similar experimental conditions. Results also suggest that "stepping strategy" is the dominant strategy for coping with perturbations in frontal plane

  16. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  17. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  18. Non-perturbative approach for curvature perturbations in stochastic δ N formalism

    SciTech Connect

    Fujita, Tomohiro; Kawasaki, Masahiro; Tada, Yuichiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-10-01

    In our previous paper [1], we have proposed a new algorithm to calculate the power spectrum of the curvature perturbations generated in inflationary universe with use of the stochastic approach. Since this algorithm does not need the perturbative expansion with respect to the inflaton fields on super-horizon scale, it works even in highly stochastic cases. For example, when the curvature perturbations are very large or the non-Gaussianities of the curvature perturbations are sizable, the perturbative expansion may break down but our algorithm enables to calculate the curvature perturbations. We apply it to two well-known inflation models, chaotic and hybrid inflation, in this paper. Especially for hybrid inflation, while the potential is very flat around the critical point and the standard perturbative computation is problematic, we successfully calculate the curvature perturbations.

  19. Perturbative theory for Brownian vortexes

    NASA Astrophysics Data System (ADS)

    Moyses, Henrique W.; Bauer, Ross O.; Grosberg, Alexander Y.; Grier, David G.

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers.

  20. Chiral perturbation theory with nucleons

    SciTech Connect

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.

  1. Perturbative theory for Brownian vortexes.

    PubMed

    Moyses, Henrique W; Bauer, Ross O; Grosberg, Alexander Y; Grier, David G

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers.

  2. Ultra compact stars: reconstructing the perturbation potential

    NASA Astrophysics Data System (ADS)

    Völkel, Sebastian H.; Kokkotas, Kostas D.

    2017-09-01

    In this work we demonstrate how different semi-classical methods can be combined in a novel way to reconstruct the perturbation potential of ultra compact stars. Besides rather general assumptions, the only specific information entering this approach is the spectrum of the trapped axial quasi-normal modes. In general it is not possible to find a unique solution for the potential in the inverse problem, but instead a family of potentials producing the same spectrum. Nevertheless, this already determines important properties of the involved potential and can be used to rule out many candidate models. A unique solution was found based on the additional natural assumption that the exterior part (r ≳ 3 M ) is described by the Regge–Wheeler potential. This is true in general relativity for any non-rotating spherically symmetric object. This technique can be potentially applied for the study of deviations from general relativity. The methods we demonstrate are easy to implement and rather general, therefore we expect them also to be interesting for other fields where inverse spectrum problems are studied, e.g. quantum physics and molecular spectroscopy.

  3. Hadronic Lorentz violation in chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.

    2017-03-01

    Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-4 Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz-violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, one can compare the sensitivity of different types of experiments. Our analysis shows that atomic physics experiments currently provide constraints on the quark parameters that are stronger by about 10 orders of magnitude than astrophysical experiments with relativistic pions. Alternatively, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. Under the assumption that the Lorentz-violating operators considered here are the only ones contributing to the relevant observables and taking the currently unknown hadronic low-energy constants to be of natural size, the resulting estimated bounds on four pion parameters are at the 10-23 level, representing improvements of 10 orders of magnitude.

  4. Computation of solar perturbations with Poisson series

    NASA Technical Reports Server (NTRS)

    Broucke, R.

    1974-01-01

    Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained.

  5. Phase perturbation measurements through a heated ionosphere

    NASA Technical Reports Server (NTRS)

    Frey, A.; Gordon, W. E.

    1982-01-01

    High frequency radiowaves incident on an overdense (i.e., HF-frequency penetration frequency) ionosphere produce electron density irregularities. The effect of such ionospheric irregularities on the phase of UHF-radiowaves was determined. For that purpose the phase of radiowaves originating from celestial radio sources was observed with two antennas. The radiosources were chosen such that the line of sight to at least one of the antennas (usually both) passed through the modified volume of the ionosphere. Observations at 430 MHz and at 2380 MHz indicate that natural irregularities have a much stronger effect on the UHF phase fluctuations than the HF-induced irregularities for presently achieved HF-power densities of 20-80 uW/sq m. It is not clear whether some of the effects observed are the result of HF-modification of the ionosphere. Upper limits on the phase perturbations produced by HF-modification are 10 deg at 2380 MHz and 80 deg at 430 MHz.

  6. Cosmological perturbations across an S-brane

    SciTech Connect

    Brandenberger, Robert H.; Kounnas, Costas; Partouche, Hervé; Patil, Subodh P.; Toumbas, Nicolaos E-mail: kounnas@lpt.ens.fr E-mail: subodh.patil@cern.ch

    2014-03-01

    Space-filling S-branes can mediate a transition between a contracting and an expanding universe in the Einstein frame. Following up on previous work that uncovered such bouncing solutions in the context of weakly coupled thermal configurations of a certain class of type II superstrings, we set up here the formalism in which we can study the evolution of metric fluctuations across such an S-brane. Our work shows that the specific nature of the S-brane, which is sourced by non-trivial massless thermal string states and appears when the universe reaches a maximal critical temperature, allows for a scale invariant spectrum of curvature fluctuations to manifest at late times via a stringy realization of the matter bounce scenario. The finite energy density at the transition from contraction to expansion provides calculational control over the propagation of the curvature perturbations through the bounce, furnishing a working proof of concept that such a stringy universe can result in viable late time cosmology.

  7. Lensing signals from spin-2 perturbations

    SciTech Connect

    Adamek, Julian; Durrer, Ruth; Tansella, Vittorio E-mail: ruth.durrer@unige.ch

    2016-01-01

    We compute the angular power spectra of the E-type and B-type lensing potentials for gravitational waves from inflation and for tensor perturbations induced by scalar perturbations. We derive the tensor-lensed CMB power spectra for both cases. We also apply our formalism to determine the linear lensing potential for a Bianchi I spacetime with small anisotropy.

  8. Scalar Quantum Electrodynamics: Perturbation Theory and Beyond

    SciTech Connect

    Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.

    2006-09-25

    In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory.

  9. The recursion relation in Lagrangian perturbation theory

    SciTech Connect

    Rampf, Cornelius

    2012-12-01

    We derive a recursion relation in the framework of Lagrangian perturbation theory, appropriate for studying the inhomogeneities of the large scale structure of the universe. We use the fact that the perturbative expansion of the matter density contrast is in one-to-one correspondence with standard perturbation theory (SPT) at any order. This correspondence has been recently shown to be valid up to fourth order for a non-relativistic, irrotational and dust-like component. Assuming it to be valid at arbitrary (higher) order, we express the Lagrangian displacement field in terms of the perturbative kernels of SPT, which are itself given by their own and well-known recursion relation. We argue that the Lagrangian solution always contains more non-linear information in comparison with the SPT solution, (mainly) if the non-perturbative density contrast is restored after the displacement field is obtained.

  10. Covariant generalization of cosmological perturbation theory

    SciTech Connect

    Enqvist, Kari; Hoegdahl, Janne; Nurmi, Sami; Vernizzi, Filippo

    2007-01-15

    We present an approach to cosmological perturbations based on a covariant perturbative expansion between two worldlines in the real inhomogeneous universe. As an application, at an arbitrary order we define an exact scalar quantity which describes the inhomogeneities in the number of e-folds on uniform density hypersurfaces and which is conserved on all scales for a barotropic ideal fluid. We derive a compact form for its conservation equation at all orders and assign it a simple physical interpretation. To make a comparison with the standard perturbation theory, we develop a method to construct gauge-invariant quantities in a coordinate system at arbitrary order, which we apply to derive the form of the nth order perturbation in the number of e-folds on uniform density hypersurfaces and its exact evolution equation. On large scales, this provides the gauge-invariant expression for the curvature perturbation on uniform density hypersurfaces and its evolution equation at any order.

  11. The consistency of a species' response to press perturbations with high food web uncertainty.

    PubMed

    Tunney, Tyler D; Carpenter, Stephen R; Vander Zanden, M Jake

    2017-07-01

    Predicting species responses to perturbations is a fundamental challenge in ecology. Decision makers must often identify management perturbations that are the most likely to deliver a desirable management outcome despite incomplete information on the pattern and strength of food web links. Motivated by a current fishery decline in inland lakes of the Midwestern United States, we evaluate consistency of the responses of a target species (walleye [Sander vitreus]) to press perturbations. We represented food web uncertainty with 193 plausible topological models and applied four perturbations to each one. Frequently the direction of the focal predator response to the same perturbation is not consistent across food web topologies. Simultaneous application of management perturbations led to less consistent outcomes compared to the best single perturbation. However, direct manipulation of the adult focal predator produced a desirable outcome in 77% of 193 plausible topologies. Identifying perturbations that produce consistent outcomes in the face of food web uncertainty can have important implications for natural resource conservation and management efforts. © 2017 by the Ecological Society of America.

  12. Inverse scattering problems for perturbed bi-harmonic operator

    NASA Astrophysics Data System (ADS)

    Serov, Valery; Tyni, Teemu

    2016-10-01

    Some inverse scattering problems for operator of order 4 which is the perturbation (in smaller terms) of the biharmonic operator in one and three dimensions are considered. The coefficients of this perturbation are assumed to be from some Sobolev spaces (they might be singular). The classical (as for the Schrödinger operator) scattering theory is developed for this operator of order 4. The classical inverse scattering problems are considered and their uniqueness is proved. The method of inverse scattering Born approximation and an analogue of Saito's formula are justified for this operator of order 4. Using this approximate method the reconstruction of the singularities of the unknown coefficients is proved in the scale of Sobolev spaces. The results have natural generalization for any dimensions.

  13. The perturbative approach to path integrals: A succinct mathematical treatment

    NASA Astrophysics Data System (ADS)

    Nguyen, Timothy

    2016-09-01

    We study finite-dimensional integrals in a way that elucidates the mathematical meaning behind the formal manipulations of path integrals occurring in quantum field theory. This involves a proper understanding of how Wick's theorem allows one to evaluate integrals perturbatively, i.e., as a series expansion in a formal parameter irrespective of convergence properties. We establish invariance properties of such a Wick expansion under coordinate changes and the action of a Lie group of symmetries, and we use this to study essential features of path integral manipulations, including coordinate changes, Ward identities, Schwinger-Dyson equations, Faddeev-Popov gauge-fixing, and eliminating fields by their equation of motion. We also discuss the asymptotic nature of the Wick expansion and the implications this has for defining path integrals perturbatively and nonperturbatively.

  14. Building a non-perturbative quark-gluon vertex from a perturbative one

    NASA Astrophysics Data System (ADS)

    Bermudez, Rocio

    2016-10-01

    The quark-gluon vertex describes the electromagnetic and the strong interaction among these particles. The description of this interaction at high precision in both regimes, perturbative and non-perturbative, continues being a matter of interest in the context of QCD and Hadron Physics. There exist very helpful models in the literature that explain perturbative aspects of the theory but they fail describing non-perturbative phenomena, as confinement and dynamic chiral symmetry breaking. In this work we study the structure of the quark-gluon vertex in a non-perturbative regime examining QCD, checking results with QED, and working in the Schwinger-Dyson formalism.

  15. Quantifying human mobility perturbation and resilience in Hurricane Sandy.

    PubMed

    Wang, Qi; Taylor, John E

    2014-01-01

    Human mobility is influenced by environmental change and natural disasters. Researchers have used trip distance distribution, radius of gyration of movements, and individuals' visited locations to understand and capture human mobility patterns and trajectories. However, our knowledge of human movements during natural disasters is limited owing to both a lack of empirical data and the low precision of available data. Here, we studied human mobility using high-resolution movement data from individuals in New York City during and for several days after Hurricane Sandy in 2012. We found the human movements followed truncated power-law distributions during and after Hurricane Sandy, although the β value was noticeably larger during the first 24 hours after the storm struck. Also, we examined two parameters: the center of mass and the radius of gyration of each individual's movements. We found that their values during perturbation states and steady states are highly correlated, suggesting human mobility data obtained in steady states can possibly predict the perturbation state. Our results demonstrate that human movement trajectories experienced significant perturbations during hurricanes, but also exhibited high resilience. We expect the study will stimulate future research on the perturbation and inherent resilience of human mobility under the influence of hurricanes. For example, mobility patterns in coastal urban areas could be examined as hurricanes approach, gain or dissipate in strength, and as the path of the storm changes. Understanding nuances of human mobility under the influence of such disasters will enable more effective evacuation, emergency response planning and development of strategies and policies to reduce fatality, injury, and economic loss.

  16. Quantifying Human Mobility Perturbation and Resilience in Hurricane Sandy

    PubMed Central

    Wang, Qi; Taylor, John E.

    2014-01-01

    Human mobility is influenced by environmental change and natural disasters. Researchers have used trip distance distribution, radius of gyration of movements, and individuals' visited locations to understand and capture human mobility patterns and trajectories. However, our knowledge of human movements during natural disasters is limited owing to both a lack of empirical data and the low precision of available data. Here, we studied human mobility using high-resolution movement data from individuals in New York City during and for several days after Hurricane Sandy in 2012. We found the human movements followed truncated power-law distributions during and after Hurricane Sandy, although the β value was noticeably larger during the first 24 hours after the storm struck. Also, we examined two parameters: the center of mass and the radius of gyration of each individual's movements. We found that their values during perturbation states and steady states are highly correlated, suggesting human mobility data obtained in steady states can possibly predict the perturbation state. Our results demonstrate that human movement trajectories experienced significant perturbations during hurricanes, but also exhibited high resilience. We expect the study will stimulate future research on the perturbation and inherent resilience of human mobility under the influence of hurricanes. For example, mobility patterns in coastal urban areas could be examined as hurricanes approach, gain or dissipate in strength, and as the path of the storm changes. Understanding nuances of human mobility under the influence of such disasters will enable more effective evacuation, emergency response planning and development of strategies and policies to reduce fatality, injury, and economic loss. PMID:25409009

  17. Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Comer, Kathryn J.

    We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes. We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted. Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations. Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent

  18. Perturbation calculation of thermodynamic density of states

    SciTech Connect

    Brown, Greg; Schulthess, Thomas C; Nicholson, Don M; Eisenbach, Markus; Stocks, George Malcolm

    2011-01-01

    The density of states g( ) is frequently used to calculate the temperature-dependent properties of a thermodynamic system. Here a derivation is given for calculating the warped density of states g ( ) resulting from the addition of a perturbation. The method is validated for a classical Heisenberg model of bcc Fe and the errors in the free energy are shown to be second order in the perturbation. Taking the perturbation to be the difference between a first-principles quantum-mechanical energy and a corresponding classical energy, this method can significantly reduce the computational effort required to calculate g( ) for quantum systems using the Wang-Landau approach.

  19. Vector perturbations in a contracting Universe

    SciTech Connect

    Battefeld, T.J.; Brandenberger, R.

    2004-12-15

    In this note we show that vector perturbations exhibit growing mode solutions in a contracting Universe, such as the contracting phase of the pre big bang or the cyclic/ekpyrotic models of the Universe. This is not a gauge artifact and will in general lead to the breakdown of perturbation theory--a severe problem that has to be addressed in any bouncing model. We also comment on the possibility of explaining, by means of primordial vector perturbations, the existence of the observed large-scale magnetic fields. This is possible since they can be seeded by vorticity.

  20. Quantitative methods in classical perturbation theory.

    NASA Astrophysics Data System (ADS)

    Giorgilli, A.

    Poincaré proved that the series commonly used in Celestial mechanics are typically non convergent, although their usefulness is generally evident. Recent work in perturbation theory has enlightened this conjecture of Poincaré, bringing into evidence that the series of perturbation theory, although non convergent in general, furnish nevertheless valuable approximations to the true orbits for a very large time, which in some practical cases could be comparable with the age of the universe. The aim of the author's paper is to introduce the quantitative methods of perturbation theory which allow to obtain such powerful results.

  1. Cosmological perturbations and the Weinberg theorem

    SciTech Connect

    Akhshik, Mohammad; Firouzjahi, Hassan; Jazayeri, Sadra E-mail: firouz@ipm.ir

    2015-12-01

    The celebrated Weinberg theorem in cosmological perturbation theory states that there always exist two adiabatic scalar modes in which the comoving curvature perturbation is conserved on super-horizon scales. In particular, when the perturbations are generated from a single source, such as in single field models of inflation, both of the two allowed independent solutions are adiabatic and conserved on super-horizon scales. There are few known examples in literature which violate this theorem. We revisit the theorem and specify the loopholes in some technical assumptions which violate the theorem in models of non-attractor inflation, fluid inflation, solid inflation and in the model of pseudo conformal universe.

  2. Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects.

    PubMed

    Bouchard, Hugo; Kamio, Yuji; Palmans, Hugo; Seuntjens, Jan; Duane, Simon

    2015-10-01

    To quantify detector perturbation effects in megavoltage small photon fields and support the theoretical explanation on the nature of quality correction factors in these conditions. In this second paper, a modern approach to radiation dosimetry is defined for any detector and applied to small photon fields. Fano's theorem is adapted in the form of a cavity theory and applied in the context of nonstandard beams to express four main effects in the form of perturbation factors. The pencil-beam decomposition method is detailed and adapted to the calculation of perturbation factors and quality correction factors. The approach defines a perturbation function which, for a given field size or beam modulation, entirely determines these dosimetric factors. Monte Carlo calculations are performed in different cavity sizes for different detection materials, electron densities, and extracameral components. Perturbation effects are detailed with calculated perturbation functions, showing the relative magnitude of the effects as well as the geometrical extent to which collimating or modulating the beam impacts the dosimetric factors. The existence of a perturbation zone around the detector cavity is demonstrated and the approach is discussed and linked to previous approaches in the literature to determine critical field sizes. Monte Carlo simulations are valuable to describe pencil beam perturbation effects and detail the nature of dosimetric factors in megavoltage small photon fields. In practice, it is shown that dosimetric factors could be avoided if the field size remains larger than the detector perturbation zone. However, given a detector and beam quality, a full account for the detector geometry is necessary to determine critical field sizes.

  3. Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects

    SciTech Connect

    Bouchard, Hugo Duane, Simon; Kamio, Yuji; Palmans, Hugo; Seuntjens, Jan

    2015-10-15

    Purpose: To quantify detector perturbation effects in megavoltage small photon fields and support the theoretical explanation on the nature of quality correction factors in these conditions. Methods: In this second paper, a modern approach to radiation dosimetry is defined for any detector and applied to small photon fields. Fano’s theorem is adapted in the form of a cavity theory and applied in the context of nonstandard beams to express four main effects in the form of perturbation factors. The pencil-beam decomposition method is detailed and adapted to the calculation of perturbation factors and quality correction factors. The approach defines a perturbation function which, for a given field size or beam modulation, entirely determines these dosimetric factors. Monte Carlo calculations are performed in different cavity sizes for different detection materials, electron densities, and extracameral components. Results: Perturbation effects are detailed with calculated perturbation functions, showing the relative magnitude of the effects as well as the geometrical extent to which collimating or modulating the beam impacts the dosimetric factors. The existence of a perturbation zone around the detector cavity is demonstrated and the approach is discussed and linked to previous approaches in the literature to determine critical field sizes. Conclusions: Monte Carlo simulations are valuable to describe pencil beam perturbation effects and detail the nature of dosimetric factors in megavoltage small photon fields. In practice, it is shown that dosimetric factors could be avoided if the field size remains larger than the detector perturbation zone. However, given a detector and beam quality, a full account for the detector geometry is necessary to determine critical field sizes.

  4. Mechanical picture of the linear transient growth of vortical perturbations in incompressible smooth shear flows

    NASA Astrophysics Data System (ADS)

    Chagelishvili, George; Hau, Jan-Niklas; Khujadze, George; Oberlack, Martin

    2016-08-01

    The linear dynamics of perturbations in smooth shear flows covers the transient exchange of energies between (1) the perturbations and the basic flow and (2) different perturbations modes. Canonically, the linear exchange of energies between the perturbations and the basic flow can be described in terms of the Orr and the lift-up mechanisms, correspondingly for two-dimensional (2D) and three-dimensional (3D) perturbations. In this paper the mechanical basis of the linear transient dynamics is introduced and analyzed for incompressible plane constant shear flows, where we consider the dynamics of virtual fluid particles in the framework of plane perturbations (i.e., perturbations with plane surfaces of constant phase) for the 2D and 3D case. It is shown that (1) the formation of a pressure perturbation field is the result of countermoving neighboring sets of incompressible fluid particles in the flow, (2) the keystone of the energy exchange mechanism between the basic flow and perturbations is the collision of fluid particles with the planes of constant pressure in accordance with the classical theory of elastic collision of particles with a rigid wall, making the pressure field the key player in this process, (3) the interplay of the collision process and the shear flow kinematics describes the transient growth of plane perturbations and captures the physics of the growth, and (4) the proposed mechanical picture allows us to reconstruct the linearized Euler equations in spectral space with a time-dependent shearwise wave number, the linearized Euler equations for Kelvin modes. This confirms the rigor of the presented analysis, which, moreover, yields a natural generalization of the proposed mechanical picture of the transient growth to the well-established linear phenomenon of vortex-wave-mode coupling.

  5. Perturbed ladder operator method: An algebraic recursive solution of perturbed wave equations

    NASA Astrophysics Data System (ADS)

    Bessis, N.; Bessis, G.

    1990-08-01

    The Schrödinger-Infeld-Hull factorization method is extended within the perturbation scheme in order to treat nonfactorizable Sturm-Liouville eigenequations in the same way as factorizable ones. It is shown that, provided suitable choices of the expansion basis set for the perturbing potential and for the associated perturbed ladder function are made, the solution of the factorizability condition associated with the perturbed eigenequation can be achieved by using an elementary finite difference calculus. An algebraic manufacturing process allowing the determination of the perturbed ladder and factorization functions, capable of handling any order of the perturbation and any type of factorization (Infeld-Hull types A to E), is given. This procedure, well adapted for computer algebra, allows an analytical determination of the perturbed eigenvalues and eigenfunctions without calculation of either the excited unperturbed eigenfunctions or any matrix element. This extension of the exact factorization method within the perturbation scheme can be applied to many model equations of current interest in quantum physics. Special attention is paid to perturbed factorizations that correspond to unperturbed ladder operators that are linear functions of the quantum number (types A to D). Illustrative applications are given. Particularly, the perturbed harmonic-oscillator ladder operators and eigenenergies are obtained in closed form.

  6. Controlling roll perturbations in fruit flies

    PubMed Central

    Beatus, Tsevi; Guckenheimer, John M.; Cohen, Itai

    2015-01-01

    Owing to aerodynamic instabilities, stable flapping flight requires ever-present fast corrective actions. Here, we investigate how flies control perturbations along their body roll angle, which is unstable and their most sensitive degree of freedom. We glue a magnet to each fly and apply a short magnetic pulse that rolls it in mid-air. Fast video shows flies correct perturbations up to 100° within 30 ± 7 ms by applying a stroke-amplitude asymmetry that is well described by a linear proportional–integral controller. For more aggressive perturbations, we show evidence for nonlinear and hierarchical control mechanisms. Flies respond to roll perturbations within 5 ms, making this correction reflex one of the fastest in the animal kingdom. PMID:25762650

  7. Perturbations of black p-branes

    SciTech Connect

    Abdalla, Elcio; Fernandez Piedra, Owen Pavel; Oliveira, Jeferson de; Molina, C.

    2010-03-15

    We consider black p-brane solutions of the low-energy string action, computing scalar perturbations. Using standard methods, we derive the wave equations obeyed by the perturbations and treat them analytically and numerically. We have found that tensorial perturbations obtained via a gauge-invariant formalism leads to the same results as scalar perturbations. No instability has been found. Asymptotically, these solutions typically reduce to a AdS{sub (p+2)}xS{sup (8-p)} space which, in the framework of Maldacena's conjecture, can be regarded as a gravitational dual to a conformal field theory defined in a (p+1)-dimensional flat space-time. The results presented open the possibility of a better understanding the AdS/CFT correspondence, as originally formulated in terms of the relation among brane structures and gauge theories.

  8. General degeneracy in density functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Palenik, Mark C.; Dunlap, Brett I.

    2017-07-01

    Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. Herein, we develop the fully general perturbation theory for open-shell, degenerate systems in Kohn-Sham DFT, without assuming the presence of symmetry or equal occupation of degenerate orbitals. To demonstrate the resulting methodology, we apply it to the iron atom in the central field approximation, perturbed by an electric quadrupole. This system was chosen because it displays both symmetry required degeneracy, between the five 3 d orbitals, as well as accidental degeneracy, between the 3 d and 4 s orbitals. The quadrupole potential couples the degenerate 3 d and 4 s states, serving as an example of the most general perturbation.

  9. Simple Perturbation Example for Quantum Chemistry.

    ERIC Educational Resources Information Center

    Goodfriend, P. L.

    1985-01-01

    Presents a simple example that illustrates various aspects of the Rayleigh-Schrodinger perturbation theory. The example is a particularly good one because it is straightforward and can be compared with both the exact solution and with experimental data. (JN)

  10. The Perturbational MO Method for Saturated Systems.

    ERIC Educational Resources Information Center

    Herndon, William C.

    1979-01-01

    Summarizes a theoretical approach using nonbonding MO's and perturbation theory to correlate properties of saturated hydrocarbons. Discussion is limited to correctly predicted using this method. Suggests calculations can be carried out quickly in organic chemistry. (Author/SA)

  11. Simple Perturbation Example for Quantum Chemistry.

    ERIC Educational Resources Information Center

    Goodfriend, P. L.

    1985-01-01

    Presents a simple example that illustrates various aspects of the Rayleigh-Schrodinger perturbation theory. The example is a particularly good one because it is straightforward and can be compared with both the exact solution and with experimental data. (JN)

  12. The Perturbational MO Method for Saturated Systems.

    ERIC Educational Resources Information Center

    Herndon, William C.

    1979-01-01

    Summarizes a theoretical approach using nonbonding MO's and perturbation theory to correlate properties of saturated hydrocarbons. Discussion is limited to correctly predicted using this method. Suggests calculations can be carried out quickly in organic chemistry. (Author/SA)

  13. Conserved cosmological perturbation in Galileon models

    SciTech Connect

    Gao, Xian

    2011-10-01

    We prove the existence of a fully nonlinear conserved curvature perturbation on large scales in Galileon-type scalar field models in two approaches. The first approach is based on the conservation of energy-momentum tensor of the Galileon field, which is also the familiar approach in understanding the conservation in k-essence or perfect fluid models. We show that the fluid corresponding to the Galileon field becomes perfect and barotropic on large scales, which is responsible to the conservation. The difference from k-essence model is that, besides the energy-momentum conservation, the Einstein equation must be employed in order to complete the proof of barotropy. In the second approach, we derive the fully non-perturbative action for the curvature perturbation ζ in Galileon models on large scales, and argue that ζ = const is indeed an exact solution on large scales. This conservation of curvature perturbation is important since it relates the later and the primordial universe.

  14. Global Links to Local Carbon Cycling Perturbation

    NASA Astrophysics Data System (ADS)

    Chen, J.; Montanez, I. P.; Wang, X.; Qi, Y.

    2016-12-01

    Carbon cycle perturbations recorded by stable carbon isotope excursions (CIEs) play an important role in understanding climate, oceanography, and the biosphere through time. Recent studies, however, reveal the influence of regional processes on apparent global CIEs. Deconvolving local/regional from global processes imprinted in the carbon isotopic records of sedimentary successions requires integrated sedimentologic, stratigraphic, and geochemical study. Here we present coupled C and Sr isotopic records of diagenetically screened micrite and brachiopods from late Mississippian shallow-marine, carbonate platform and contemporaneous carbonate slope successions from the east Paleotethys Ocean region (South China). These records reveal distinctly different signatures of the depositional response to the onset of Carboniferous glaciation. C and Sr isotopic compositions of the platform carbonates exhibit systematic fluctuations in step with inferred sea-level changes captured by depositional cycles. CIEs in the platform succession can be correlated to the contemporaneous C isotope record from the Antler carbonate ramp (Idaho, USA). In contrast, slope carbonate and conodont isotopic records exhibit minimal variability interpreted to record the open-ocean seawater composition. The isotopic disparity between successions is interpreted to record the influence of local depositional, but not diagenetic, processes operating on the carbonate platform in response to glacioeustasy. Variability in the nature of coupled isotopic and inferred sea level fluctuations is interpreted to record stepwise onset of the late Paleozoic ice age in the late Mississippian. Initial large magnitude shifts in C and Sr isotopic compositions of late Visean to early Serpukhovian carbonates correspond to 1 to 2 myr-scale cycles driven by the buildup of continental glaciers. Subsequent decreased magnitude of isotopic shifts coincident with a shift to shorter duration and smaller magnitude sea

  15. Flexoelectricity from density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Stengel, Massimiliano

    2013-11-01

    We derive the complete flexoelectric tensor, including electronic and lattice-mediated effects, of an arbitrary insulator in terms of the microscopic linear response of the crystal to atomic displacements. The basic ingredient, which can be readily calculated from first principles in the framework of density-functional perturbation theory, is the quantum-mechanical probability current response to a long-wavelength acoustic phonon. Its second-order Taylor expansion in the wave vector q around the Γ (q=0) point in the Brillouin zone naturally yields the flexoelectric tensor. At order one in q we recover Martin's theory of piezoelectricity [Martin, Phys. Rev. B 5, 1607 (1972)], thus providing an alternative derivation thereof. To put our derivations on firm theoretical grounds, we perform a thorough analysis of the nonanalytic behavior of the dynamical matrix and other response functions in a vicinity of Γ. Based on this analysis, we find that there is an ambiguity in the specification of the “zero macroscopic field” condition in the flexoelectric case; such arbitrariness can be related to an analytic band-structure term, in close analogy to the theory of deformation potentials. As a by-product, we derive a rigorous generalization of the Cochran-Cowley formula [Cochran and Cowley, J. Phys. Chem. Solids 23, 447 (1962)] to higher orders in q. This can be of great utility in building reliable atomistic models of electromechanical phenomena, as well as for improving the accuracy of the calculation of phonon dispersion curves. Finally, we discuss the physical interpretation of the various contributions to the flexoelectric response, either in the static or dynamic regime, and we relate our findings to earlier theoretical works on the subject.

  16. Singular Perturbation for Discontinuous Ordinary Differential Equations

    NASA Astrophysics Data System (ADS)

    Teixeira, M. A.; da Silva, P. R.

    In this article some qualitative aspects of non-smooth systems on ℝn are studied through methods of Geometric Singular Perturbation Theory (GSP-Theory). We present some results that generalize some settings in low dimension, that bridge the space between such systems and singularly perturbed smooth systems. We analyze the local behavior around typical singularities and prove that the dynamics of the so called Sliding Vector Field is determined by the reduced problem on the center manifold.

  17. Local gravitomagnetic perturbations of the lunar orbit

    NASA Technical Reports Server (NTRS)

    Shahid-Saless, Bahman

    1992-01-01

    Using the metric in the local inertial frame of the Earth, we calculate relativistic effects on the lunar orbit with the synodic month period. It is shown that such perturbations arise entirely from the gravitomagnetic components of the local metric which exist because of the relative motion of the sun with respect to the Earth. In the case of general relativity, the net perturbation has an amplitude of 3 cm for the lunar range.

  18. Quantum geometry of resurgent perturbative/nonperturbative relations

    DOE PAGES

    Basar, Gokce; Dunne, Gerald V.; Unsal, Mithat

    2017-05-16

    For a wide variety of quantum potentials, including the textbook ‘instanton’ examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential.more » These are related to the Chebyshev potentials, which are in turn related to certain N = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and ‘special geometry’. These systems inherit a natural modular structure corresponding to Ramanujan’s theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Lastly, our approach is very elementary, using basic classical geometry combined with all-orders WKB.« less

  19. Quantum geometry of resurgent perturbative/nonperturbative relations

    NASA Astrophysics Data System (ADS)

    Basar, Gökçe; Dunne, Gerald V.; Ünsal, Mithat

    2017-05-01

    For a wide variety of quantum potentials, including the textbook `instanton' examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential. These are related to the Chebyshev potentials, which are in turn related to certain \\mathcal{N} = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and `special geometry'. These systems inherit a natural modular structure corresponding to Ramanujan's theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Our approach is very elementary, using basic classical geometry combined with all-orders WKB.

  20. Nonlinear response of biophoton emission to external perturbations.

    PubMed

    Gu, Q; Popp, F A

    1992-12-01

    By considering an exciplex system consisting of collective molecules in interaction with both the 'pumping' fields and the biophoton fields, the two-level exciplex model and the three-level exciplex model are presented. They are useful for the investigation of the quasi-stationary behaviour of biophoton emission, and biophoton emission as a dynamic process in the presence of external perturbations. Our theoretical results predict a series of nonlinear effects, such as chaos, fractal behaviour, and non-equilibrium phase transition. These effects characterize the coherence nature of living systems. In our approaches, there are two important quantities f and x, which can be used to mark the working points of the two-level and three-level exciplex systems. All the influences of external perturbations on the exciplex systems, e.g. change of temperature, the addition of agents, exposure to light, etc., can be interpreted as shifts of the working points of the systems, leading to a diversity of nonlinear response of biophoton emission. In addition, the agreements of the theoretical results and the corresponding experimental observations on biophoton emission from biological systems in the presence of external perturbations are demonstrated.

  1. Brevity of haptic force perturbations induces heightened adaptive sensitivity.

    PubMed

    Wanda, Paul A; Fine, Michael S; Weeks, Heidi M; Gross, Andrew M; Macy, Jenny L; Thoroughman, Kurt A

    2013-05-01

    We have exposed human participants to both full-movement and pulsatile viscous force perturbations to study the effect of force duration on the incremental transformation of sensation into adaptation. Traditional views of movement biomechanics could suggest that pulsatile forces would largely be attenuated as stiffness and viscosity act as a natural low-pass filter. Sensory transduction, however, tends to react to changes in stimuli and therefore could underlie heightened sensitivity to briefer, pulsatile forces. Here, participants adapted within perturbation duration conditions in a manner proportionate to sensed force and positional errors. Across perturbation conditions, we found participants had greater adaptive sensitivity when experiencing pulsatile forces rather than full-movement forces. In a follow-up experiment, we employed error-clamped, force channel trials to determine changes in predictive force generation. We found that while participants learned to closely compensate for the amplitude and breadth of full-movement forces, they exhibited a persistent mismatch in amplitude and breadth between adapted motor output and experienced pulsatile forces. This mismatch could generate higher salience of error signals that contribute to heightened sensitivity to pulsatile forces.

  2. Brevity of haptic force perturbations induces heightened adaptive sensitivity

    PubMed Central

    Wanda, Paul A.; Fine, Michael S.; Weeks, Heidi M.; Gross, Andrew M.; Macy, Jenny L.; Thoroughman, Kurt A.

    2013-01-01

    We have exposed human participants to both full-movement and pulsatile viscous force perturbations to study the effect of force duration on the incremental transformation of sensation into adaptation. Traditional views of movement biomechanics could suggest that pulsatile forces would largely be attenuated as stiffness and viscosity act as a natural low-pass filter. Sensory transduction, however, tends to react to changes in stimuli and therefore could underlie heightened sensitivity to briefer, pulsatile forces. Here, participants adapted within perturbation duration conditions in a manner proportionate to sensed force and positional errors. Across perturbation conditions, we found participants had greater adaptive sensitivity when experiencing pulsatile forces rather than full-movement forces. In a follow-up experiment, we employed error-clamped, force channel trials to determine changes in predictive force generation. We found that while participants learned to closely compensate for the amplitude and breadth of full-movement forces, they exhibited a persistent mismatch in amplitude and breadth between adapted motor output and experienced pulsatile forces. This mismatch could generate higher salience of error signals that contribute to heightened sensitivity to pulsatile forces. PMID:23468159

  3. Rapid eco-evolutionary responses in perturbed phytoplankton communities.

    PubMed

    Thibodeau, Geneviève; Walsh, David A; Beisner, Beatrix E

    2015-09-07

    Biodiversity currently faces unprecedented threats owing to species extinctions. Ecologically, compensatory dynamics can ensure stable community biomass following perturbation. However, whether there is a contribution of genetic diversity to community responses is an outstanding question. To date, the contribution of evolutionary processes through genotype shifts has not been assessed in naturally co-occurring multi-species communities in the field. We examined the mechanisms contributing to the response of a lake phytoplankton community exposed to either a press or pulse acidification perturbation in lake mesocosms. To assess community shifts in the ecological response of morphospecies, we identified taxa microscopically. We also assessed genotype shifts by sequencing the ITS2 region of ribosomal DNA. We observed ecological and genetic contributions to community responses. The ecological response was attributed to compensatory morphospecies dynamics and occurred primarily in the Pulse perturbation treatment. In the Press treatments, in addition to compensatory dynamics, we observed evidence for genotype selection in two species of chlorophytes, Desmodesmus cuneatus and an unidentified Chlamydomonas. Our study demonstrates that while genotype selection may be rare, it is detectable and occurs especially when new environmental conditions are maintained for long enough to force selection processes on standing variation.

  4. Rapid eco-evolutionary responses in perturbed phytoplankton communities

    PubMed Central

    Thibodeau, Geneviève; Walsh, David A.; Beisner, Beatrix E.

    2015-01-01

    Biodiversity currently faces unprecedented threats owing to species extinctions. Ecologically, compensatory dynamics can ensure stable community biomass following perturbation. However, whether there is a contribution of genetic diversity to community responses is an outstanding question. To date, the contribution of evolutionary processes through genotype shifts has not been assessed in naturally co-occurring multi-species communities in the field. We examined the mechanisms contributing to the response of a lake phytoplankton community exposed to either a press or pulse acidification perturbation in lake mesocosms. To assess community shifts in the ecological response of morphospecies, we identified taxa microscopically. We also assessed genotype shifts by sequencing the ITS2 region of ribosomal DNA. We observed ecological and genetic contributions to community responses. The ecological response was attributed to compensatory morphospecies dynamics and occurred primarily in the Pulse perturbation treatment. In the Press treatments, in addition to compensatory dynamics, we observed evidence for genotype selection in two species of chlorophytes, Desmodesmus cuneatus and an unidentified Chlamydomonas. Our study demonstrates that while genotype selection may be rare, it is detectable and occurs especially when new environmental conditions are maintained for long enough to force selection processes on standing variation. PMID:26311667

  5. Finite element structural redesign by large admissible perturbations

    NASA Technical Reports Server (NTRS)

    Bernitsas, Michael M.; Beyko, E.; Rim, C. W.; Alzahabi, B.

    1991-01-01

    In structural redesign, two structural states are involved; the baseline (known) State S1 with unacceptable performance, and the objective (unknown) State S2 with given performance specifications. The difference between the two states in performance and design variables may be as high as 100 percent or more depending on the scale of the structure. A Perturbation Approach to Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the same finite element model and represented by different values of the design variables. General perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes, static deflections, static stresses, Euler buckling loads, and buckling modes of the objective S2 in terms of its performance specifications, and S1 data and Finite Element Analysis (FEA) results. Large Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the objective S2 incrementally without trial and error by postprocessing FEA results of S1 with no additional FEAs. Systematic numerical applications in redesign of a 10 element 48 degree of freedom (dof) beam, a 104 element 192 dof offshore tower, a 64 element 216 dof plate, and a 144 element 896 dof cylindrical shell show the accuracy, efficiency, and potential of PAR to find an objective state that may differ 100 percent from the baseline design.

  6. Modeling of Perturbations in Mid-Ocean Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Singh, S.; Lowell, R. P.

    2013-12-01

    Mid-ocean ridge hydrothermal systems are complex fluid circulation systems straddling the locations of formation of oceanic crust. Due to the dynamic nature of the crust building process, these systems are episodically subject to magmatic and seismic perturbations. Magma may be emplaced deep or shallow in the oceanic crust thereby changing the thermal structure and permeability of the system. Such events would enhance hydrothermal venting resulting in an increase in vent temperature and heat output along with a decrease in vent salinity in a phase separating system. Event plumes, which may be associated with dike intrusions into the shallow crust, are an important class of such perturbations. In this case, the formation of low salinity vapor may add to the thermal buoyancy flux and allow the plume to rise rapidly to a considerable height above the seafloor. Additionally, seismic or tectonic disturbances may occur both deep and shallow in the crust, changing the fluid-flow structure in the system. Upon knowledge of a major magmatic or seismotectonic event, temporary surveillance at the respective mid ocean ridge site is often increased as a result of rapid response cruises. One of the most common observations made after such events is the temperature of vent fluids, which is then correlated to time of observed activity and used to estimate the residence time of fluids in the system. However, our numerical results indicate that for deep-seated perturbations, surface salinity may show quicker response than temperature. This result serves as our motivation to seek better understanding of propagation mechanism of perturbations through hydrothermal systems. We construct analytical models for fluid flow, heat and salt transfer in both single cracks and through porous media to investigate how perturbations affect both heat and salt transfer to the surface. Our preliminary results for simplified fluid circulation systems tend to support the results from numerical modeling

  7. Lipid Bilayer Membrane Perturbation by Embedded Nanopores: A Simulation Study.

    PubMed

    Garcia-Fandiño, Rebeca; Piñeiro, Ángel; Trick, Jemma L; Sansom, Mark S P

    2016-03-22

    A macromolecular nanopore inserted into a membrane may perturb the dynamic organization of the surrounding lipid bilayer. To better understand the nature of such perturbations, we have undertaken a systematic molecular dynamics simulation study of lipid bilayer structure and dynamics around three different classes of nanopore: a carbon nanotube, three related cyclic peptide nanotubes differing in the nature of their external surfaces, and a model of a β-barrel nanopore protein. Periodic spatial distributions of several lipid properties as a function of distance from the nanopore were observed. This was especially clear for the carbon nanotube system, for which the density of lipids, the bilayer thickness, the projection of lipid head-to-tail vectors onto the membrane plane, and lipid lateral diffusion coefficients exhibited undulatory behavior as a function of the distance from the surface of the channel. Overall, the differences in lipid behavior as a function of the nanopore structure reveal local adaptation of the bilayer structure and dynamics to different embedded nanopore structures. Both the local structure and dynamic behavior of lipids around membrane-embedded nanopores are sensitive to the geometry and nature of the outer surface of the macromolecule/molecular assembly forming the pore.

  8. Gauge and motion in perturbation theory

    NASA Astrophysics Data System (ADS)

    Pound, Adam

    2015-08-01

    Through second order in perturbative general relativity, a small compact object in an external vacuum spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external background geometry, it is in free fall with respect to a certain effective vacuum geometry. However, this single principle takes very different mathematical forms, with very different behaviors, depending on how one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald approximation, can be derived from a second, called the self-consistent approximation. I next present a general treatment of smooth gauge transformations in both approximations, in which I emphasize that the approximations' governing equations can be formulated in an invariant manner. All of these analyses are carried through second perturbative order, but the methods are general enough to go to any order. Furthermore, the tools I develop, and many of the results, should have broad applicability to any description of perturbed motion, including osculating-geodesic and two-timescale descriptions.

  9. Noise Perturbation for Supervised Speech Separation

    PubMed Central

    Chen, Jitong; Wang, Yuxuan; Wang, DeLiang

    2016-01-01

    Speech separation can be treated as a mask estimation problem, where interference-dominant portions are masked in a time-frequency representation of noisy speech. In supervised speech separation, a classifier is typically trained on a mixture set of speech and noise. It is important to efficiently utilize limited training data to make the classifier generalize well. When target speech is severely interfered by a nonstationary noise, a classifier tends to mistake noise patterns for speech patterns. Expansion of a noise through proper perturbation during training helps to expose the classifier to a broader variety of noisy conditions, and hence may lead to better separation performance. This study examines three noise perturbations on supervised speech separation: noise rate, vocal tract length, and frequency perturbation at low signal-to-noise ratios (SNRs). The speech separation performance is evaluated in terms of classification accuracy, hit minus false-alarm rate and short-time objective intelligibility (STOI). The experimental results show that frequency perturbation is the best among the three perturbations in terms of speech separation. In particular, the results show that frequency perturbation is effective in reducing the error of misclassifying a noise pattern as a speech pattern. PMID:26900194

  10. Dynamics of jet breakup induced by perturbation

    NASA Astrophysics Data System (ADS)

    Shum, Ho Cheung; Li, Jingmei; Mak, Sze Yi

    2014-11-01

    We study the breakup of jet to form droplets, as induced by controlled perturbation, in a microchannel. Controlled mechanical perturbation is introduced to the tubing through which the jet phase is injected into the device, which is monitored under high-speed optical imaging. We measure the frequency of droplet formation and the sizes of the droplets as the frequency and amplitude of the perturbation is varied. Droplets can be induced to form at the perturbation frequency only above a critical frequency and amplitude. In this manner, the droplet size can be precisely controlled. The amplitude needed to induce breakup decreases as the interfacial tension of the system is lowered. Moreover, by selectively varying the wettability of the inner wall of the channel, double emulsion droplets can be generated in one step by applying large-amplitude perturbation of the jet phase. Our work demonstrates the potential of using controlled perturbation to generate droplets with tunable size and shapes, with implications on new designs of liquid dispensing nozzles.

  11. Dark and singular optical solitons perturbation with fractional temporal evolution

    NASA Astrophysics Data System (ADS)

    Younis, Muhammad; ur Rehman, Hamood; Rizvi, Syed Tahir Raza; Mahmood, Syed Amer

    2017-04-01

    The article studies the dynamics of dark, singular, combined optical solitons and many other periodic solutions to fractional temporal perturbed nonlinear Schrödinger equation in nonlinear optics. The fractional extended Fan sub-equation method is first time used for any fractional temporal nonlinear Schrödinger equation. The solutions are of qualitatively different nature, depending on the five parameters. The constraint conditions, for the existence of the solitons, are also listed. Moreover a couple of other solutions known as combined soliton and combined periodic solution, fall out as a by product in limiting cases.

  12. Perturbations of the Robertson-Walker space

    NASA Astrophysics Data System (ADS)

    Hwang, Jai Chan

    This dissertation contains three parts consisting of thirteen chapters. Each chapter is self-contained, and can be read independently. In chapter 1, we have presented a complete set of cosmological perturbation equations using the covariant equations. We also present an explicit solution for the evolution of large scale cosmological density perturbations assuming a perfect fluid. In chapter 2, two independent gauge-invariant variables are derived which are continuous at any transition where there is a discontinuous change in pressure. In chapter 3, we present a Newtonian counterpart to the general relativistic covariant approach to cosmological perturbations. In chapter 4, we present a simple way of deriving cosmological perturbation equations in generalized gravity theories which accounts for metric perturbations in gauge-invariant way. We apply this approach to the f(phi,R)-omega(phi)phi, cphi;c Lagrangian. In chapter 5, we have derived second order differential equations for cosmological perturbations in a Robertson-Walker space, for each of the following gravity theories: f(R) gravity, generalized scalar-tensor gravity, gravity with non-minimally coupled scalar field, and induced gravity. Asymptotic solutions are derived for the large and small scale limits. In chapter 6, classical evolution of density perturbations in the large scale limit is clarified in the generalized gravity theories. In chapter 7, we apply our method to a theory with the Lagrangian L approximately f(R) + gamma RR;c;c. In chapter 8, T(M)ab;b equals 0 is shown in a general ground. In chapter 9, the origin of the Friedmann-like behavior of the perturbed model in the large scale limit is clarified in a comoving gauge. Thus, when the imperfect fluid contributions are negligible, the large scale perturbations in a nearly flat background evolve like separate Friedmann models. In chapter 10, we generalize the perturbation equations applicable to a class of generalized gravity theories with multi

  13. Statistics and dynamics of the perturbed universe

    NASA Astrophysics Data System (ADS)

    Lemson, G.

    1995-09-01

    In the not too distant past, our theorizing about the nature of the Universe we live in, was not much limited by observational constraints. Consequently, no true science could be developed dealing with the nature of the Universe at large: its origin, its present state and its future. This was the realm of religion and philosophy. In this century, revolutionary developments in physics have provided the framework within which to describe the Universe as a whole and which finally made it possible to obtain tentative answers to questions we have only recently learned to ask. In this thesis, I present investigations that deal with a small part of the theory of cosmology. In particular, I have investigated certain aspects of the theory of structure formation in the Universe. This subject has been extensively studied in the last few decennia. It originated from the realization that the Universe has not always been the same as observed at present. The Universe as we observe it today is filled with objects of a great variety of sizes and shapes. In the 2nd and 3rd decade of this century Hubble discovered that our Universe is expanding. This implies that in the past the Universe was smaller and therefore denser. All the structures we observe nowadays, if also existing in the past, would have been closer and at some time would have touched and overlapped. Furthermore, the theories that were developed to describe such an expanding Universe in quantitative detail, required that the Universe be homogeneous and isotropic, i.e. it should look the same at every position and in every direction. All mass and radiation must once have been distributed uniformly throughout space. With these theories, Gamov (1946, 1948ab) predicted that in the past the Universe must have been much hotter than presently, and that the afterglow of this epoch should still be observable as a faint radio signal at a temperature a few degrees above the absolute zero point. In the early sixties, Penzias and

  14. Perturbations of ultralight vector field dark matter

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Maroto, A. L.; Núñez Jareño, S. J.

    2017-02-01

    We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with {k}^2≪ Hma, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with {k}^2≫ Hma, we get a wave-like behaviour in which the sound speed is non-vanishing and of order c s 2 ≃ k 2/ m 2 a 2. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order ( Φ - Ψ)/ Φ ˜ c s 2 . Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also h/ Φ ˜ c s 2 . This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.

  15. Mathematical inference and control of molecular networks from perturbation experiments

    NASA Astrophysics Data System (ADS)

    Mohammed-Rasheed, Mohammed

    One of the main challenges facing biologists and mathematicians in the post genomic era is to understand the behavior of molecular networks and harness this understanding into an educated intervention of the cell. The cell maintains its function via an elaborate network of interconnecting positive and negative feedback loops of genes, RNA and proteins that send different signals to a large number of pathways and molecules. These structures are referred to as genetic regulatory networks (GRNs) or molecular networks. GRNs can be viewed as dynamical systems with inherent properties and mechanisms, such as steady-state equilibriums and stability, that determine the behavior of the cell. The biological relevance of the mathematical concepts are important as they may predict the differentiation of a stem cell, the maintenance of a normal cell, the development of cancer and its aberrant behavior, and the design of drugs and response to therapy. Uncovering the underlying GRN structure from gene/protein expression data, e.g., microarrays or perturbation experiments, is called inference or reverse engineering of the molecular network. Because of the high cost and time consuming nature of biological experiments, the number of available measurements or experiments is very small compared to the number of molecules (genes, RNA and proteins). In addition, the observations are noisy, where the noise is due to the measurements imperfections as well as the inherent stochasticity of genetic expression levels. Intra-cellular activities and extra-cellular environmental attributes are also another source of variability. Thus, the inference of GRNs is, in general, an under-determined problem with a highly noisy set of observations. The ultimate goal of GRN inference and analysis is to be able to intervene within the network, in order to force it away from undesirable cellular states and into desirable ones. However, it remains a major challenge to design optimal intervention strategies

  16. Perturbed kernel approximation on homogeneous manifolds

    NASA Astrophysics Data System (ADS)

    Levesley, J.; Sun, X.

    2007-02-01

    Current methods for interpolation and approximation within a native space rely heavily on the strict positive-definiteness of the underlying kernels. If the domains of approximation are the unit spheres in euclidean spaces, then zonal kernels (kernels that are invariant under the orthogonal group action) are strongly favored. In the implementation of these methods to handle real world problems, however, some or all of the symmetries and positive-definiteness may be lost in digitalization due to small random errors that occur unpredictably during various stages of the execution. Perturbation analysis is therefore needed to address the stability problem encountered. In this paper we study two kinds of perturbations of positive-definite kernels: small random perturbations and perturbations by Dunkl's intertwining operators [C. Dunkl, Y. Xu, Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, vol. 81, Cambridge University Press, Cambridge, 2001]. We show that with some reasonable assumptions, a small random perturbation of a strictly positive-definite kernel can still provide vehicles for interpolation and enjoy the same error estimates. We examine the actions of the Dunkl intertwining operators on zonal (strictly) positive-definite kernels on spheres. We show that the resulted kernels are (strictly) positive-definite on spheres of lower dimensions.

  17. Local perturbations perturb—exponentially–locally

    SciTech Connect

    De Roeck, W. Schütz, M.

    2015-06-15

    We elaborate on the principle that for gapped quantum spin systems with local interaction, “local perturbations [in the Hamiltonian] perturb locally [the groundstate].” This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835–871 (2012)], relying on the “spectral flow technique” or “quasi-adiabatic continuation” [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique “bulk ground state” or “topological quantum order.” We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate.

  18. Consistent perturbations in an imperfect fluid

    SciTech Connect

    Sawicki, Ignacy; Amendola, Luca; Saltas, Ippocratis D.; Kunz, Martin E-mail: i.saltas@sussex.ac.uk E-mail: martin.kunz@unige.ch

    2013-01-01

    We present a new prescription for analysing cosmological perturbations in a more-general class of scalar-field dark-energy models where the energy-momentum tensor has an imperfect-fluid form. This class includes Brans-Dicke models, f(R) gravity, theories with kinetic gravity braiding and generalised galileons. We employ the intuitive language of fluids, allowing us to explicitly maintain a dependence on physical and potentially measurable properties. We demonstrate that hydrodynamics is not always a valid description for describing cosmological perturbations in general scalar-field theories and present a consistent alternative that nonetheless utilises the fluid language. We apply this approach explicitly to a worked example: k-essence non-minimally coupled to gravity. This is the simplest case which captures the essential new features of these imperfect-fluid models. We demonstrate the generic existence of a new scale separating regimes where the fluid is perfect and imperfect. We obtain the equations for the evolution of dark-energy density perturbations in both these regimes. The model also features two other known scales: the Compton scale related to the breaking of shift symmetry and the Jeans scale which we show is determined by the speed of propagation of small scalar-field perturbations, i.e. causality, as opposed to the frequently used definition of the ratio of the pressure and energy-density perturbations.

  19. Compensation to whole body active rotation perturbation.

    PubMed

    Rossi, S; Gazzellini, S; Petrarca, M; Patanè, F; Salfa, I; Castelli, E; Cappa, P

    2014-01-01

    The aim of the present study is the exploration of the compensation mechanisms in healthy adults elicited by superimposing a horizontal perturbation, through a rotation of the support base, during a whole body active rotation around the participant's own vertical body axis. Eight healthy participants stood on a rotating platform while executing 90° whole body rotations under three conditions: no concurrent platform rotation (NP), support surface rotation of ± 45° in the same (45-S) and opposite (45-O) directions. Participants' kinematics and CoP displacements were analyzed with an optoelectronic system and a force platform. In both 45-S and 45-O conditions, there was a tendency for the head to be affected by the external perturbation and to be the last and least perturbed segment while the pelvis was the most perturbed. The observed reduced head perturbation in 45-S and 45-O trials is consistent with a goal-oriented strategy mediated by vision and vestibular information, whereas the tuning of lumbar rotation is consistent with control mechanisms mediated by somato-sensory information. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Haro, Jaime

    2013-11-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce provided by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.

  1. Unified approach for singularly perturbed control systems

    NASA Astrophysics Data System (ADS)

    Singh, Hardev

    2001-07-01

    The theory of singular perturbation has been a highly recognized and rapidly developing area of control systems in the last thirty years. Results now exists for both the continuous-time and discrete-time systems. However, in the way that these results are normally presented, the solutions to the discrete-time and continuous-time cases evolve from different starting points and seem to bear no relationship to each other. The aim of this dissertation is to develop a unified framework for discrete-time and continuous-time singularly perturbed systems. The discrete-time singularly perturbed control systems results are reorganized so that they are compatible in a way that the continuous-time singularly perturbed control system results are normally presented. This is, in part, achieved by using a newly developed "Unified Approach" to digital system theory, first proposed by Middleton and Goodwin. We first formulate the problem by modeling the singular perturbation parameter from the standpoint of the state space formulation and the second order unified equation. Building upon these results, we further apply this technique to state-feedback, robust state-feedback, Linear Quadratic Regulator (LQR) and Hinfinity optimization control problems. The unified results developed in this Dissertation are valid for both the continuous-time case (sampling interval T = 0) and the discrete-time (sampling interval T > 0).

  2. Mode coupling of Schwarzschild perturbations: Ringdown frequencies

    NASA Astrophysics Data System (ADS)

    Pazos, Enrique; Brizuela, David; Martín-García, José M.; Tiglio, Manuel

    2010-11-01

    Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity (ℓ=2, m=±2) perturbations and odd-parity (ℓ=2, m=0) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that—in contrast to previous predictions in the literature—the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.

  3. Cosmological perturbations on the phantom brane

    NASA Astrophysics Data System (ADS)

    Bag, Satadru; Viznyuk, Alexander; Shtanov, Yuri; Sahni, Varun

    2016-07-01

    We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, weff < -1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the `Weyl fluid' or `dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch (z lesssim 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.

  4. An Aircraft Separation Algorithm with Feedback and Perturbation

    NASA Technical Reports Server (NTRS)

    White, Allan L.

    2010-01-01

    A separation algorithm is a set of rules that tell aircraft how to maneuver in order to maintain a minimum distance between them. This paper investigates demonstrating that separation algorithms satisfy the FAA requirement for the occurrence of incidents by means of simulation. Any demonstration that a separation algorithm, or any other aspect of flight, satisfies the FAA requirement is a challenge because of the stringent nature of the requirement and the complexity of airspace operations. The paper begins with a probability and statistical analysis of both the FAA requirement and demonstrating meeting it by a Monte Carlo approach. It considers the geometry of maintaining separation when one plane must change its flight path. It then develops a simple feedback control law that guides the planes on their paths. The presence of feedback control permits the introduction of perturbations, and the stochastic nature of the chosen perturbation is examined. The simulation program is described. This paper is an early effort in the realistic demonstration of a stringent requirement. Much remains to be done.

  5. Dynamic response of ramjet inlets to downstream perturbations

    NASA Astrophysics Data System (ADS)

    Sajben, M.; Bogar, T. J.; Kroutil, J. C.

    1983-01-01

    An external-compression inlet with high-aspect-ratio, rectangular cross sections was investigated in a semi-freejet arrangement at M(infinity) = 1.84 and zero incidence, over a wide range of super- and subcritical conditions. The response of the inlet flows to periodic perturbations imposed at the downstream end was determined. The perturbations were created by mechanical modulation of the choked exhaust area at frequencies from 20 to 360 Hz. The amplitude of the pressure fluctuations induced at the downstream end of the inlet was varied up to 8% of the time-mean static pressure at the same location. The observed oscillations were categorized according to position ranges associated with the shock motion. In supercritical oscillations, the pressure fluctuation amplitudes within the inlet were found to be linearly proportional to the fluctuation intensity at the exit station, establishing the latter as the appropriate quantity for normalization. In subcritical conditions, the inlet displays a large-amplitude natural oscillation (buzz). Superimposed excitation may couple with the natural oscillations in two distinctly different ways, both strongly nonlinear. Combinations of mean flow condition, excitation amplitude, and frequency that cause the terminal shock to move upstream of the cowl or the ramp were determined.

  6. Elementary theorems regarding blue isocurvature perturbations

    NASA Astrophysics Data System (ADS)

    Chung, Daniel J. H.; Yoo, Hojin

    2015-04-01

    Blue CDM-photon isocurvature perturbations are attractive in terms of observability and may be typical from the perspective of generic mass relations in supergravity. We present and apply three theorems useful for blue isocurvature perturbations arising from linear spectator scalar fields. In the process, we give a more precise formula for the blue spectrum associated with the axion model of Kasuya and Kawasaki [Axion Isocurvature Fluctuations with Extremely Blue Spectrum, Phys. Rev. D 80, 023516 (2009).], which can in a parametric corner give a factor of O (10 ) correction. We explain how a conserved current associated with Peccei-Quinn symmetry plays a crucial role and explicitly plot several example spectra including the breaks in the spectra. We also resolve a little puzzle arising from a naive multiplication of isocurvature expression that sheds light on the gravitational imprint of the adiabatic perturbations on the fields responsible for blue isocurvature fluctuations.

  7. Note on the semiclassicality of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Donà, Pietro; Marcianò, Antonino

    2016-12-01

    Moving from the consideration that matter fields must be treated in terms of their fundamental quantum counterparts, we show straightforward arguments, within the framework of ordinary quantum mechanics and quantum field theory, in order to convince readers that cosmological perturbations must be addressed in term of the semiclassical limit of the expectation value of quantum fields. We first take into account cosmological perturbations originated by a quantum scalar field, and then extend our treatment in order to account for the expectation values of bilinears of Dirac fermion fields. The latter can indeed transform as scalar quantities under diffeomorphisms, as well as all the other bilinear of the Dirac fields that belong to the Clifford algebra. This is the first of a series of works that is intended to prove that cosmological quantum perturbations can actually be accounted for in terms of Dirac fermion fields, which must be treated as fundamental quantum objects, and their dynamics.

  8. Perturbation analysis of electromagnetic geodesic acoustic modes

    SciTech Connect

    Ren, Haijun

    2014-06-15

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δB{sub θ}, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξ{sub θ}. The parallel perturbation of magnetic field, δB{sub ∥}, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δB{sub θ} to the leading order. The radial displacement ξ{sub r} is of order O(βϵξ{sub θ}) but plays a significant role in determining δB{sub ∥}, where β is the plasma/magnetic pressure ratio and ϵ is the inverse aspect ratio.

  9. Interactions of simultaneous perturbations of stratospheric photochemistry

    NASA Technical Reports Server (NTRS)

    Butler, D. M.; Stolarski, R. S.

    1978-01-01

    The combined effects of two specific ozone perturbation mechanisms are examined. The need to look back to predictions of the near past as well as the future as a means of testing model results is emphasized. The two perturbations examined are that due to chlorofluoromethane (CFM) release and that due to the air pollutants CO and nitrogen oxide. A steady-state model is used to investigate the characteristics of the stratospheric-tropospheric photochemical system for differing levels of CO and nitrogen oxide fluxes at the ground and for simultaneously changing the stratospheric from CFM release. Two basic scenarios chosen to illustrate the competing effects of the two types of perturbation use the time-dependence for chlorine radical buildup calculated for constant continued release of CFM's.

  10. Perturbed particle disks. [planetary rings application

    NASA Technical Reports Server (NTRS)

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1983-01-01

    The velocity ellipsoid in a particle disk near an isolated satellite resonance is determined by solving the Boltzmann moment equations, and solutions are obtained that are stationary functions of the azimuthal angle in a coordinate frame which rotates with the pattern speed of the perturbation potential. The magnitude of the deformation rate tensor in a perturbed particle disk is bounded from above by an expression which includes the orbital angular velocity, the optical depth, and a dimensionless constant of order unity. It is also found that, in sufficiently perturbed regions, there are ranges of azimuthal angle over which the radial component of the angular momentum flux is negative. It is also possible for the angular momentum luminosity to be negative. These results are pertinent to the understanding of sharp edges and density wave decay in planetary rings.

  11. Perturbations in a regular bouncing universe

    SciTech Connect

    Battefeld, T.J.; Geshnizjani, G.

    2006-03-15

    We consider a simple toy model of a regular bouncing universe. The bounce is caused by an extra timelike dimension, which leads to a sign flip of the {rho}{sup 2} term in the effective four dimensional Randall Sundrum-like description. We find a wide class of possible bounces: big bang avoiding ones for regular matter content, and big rip avoiding ones for phantom matter. Focusing on radiation as the matter content, we discuss the evolution of scalar, vector and tensor perturbations. We compute a spectral index of n{sub s}=-1 for scalar perturbations and a deep blue index for tensor perturbations after invoking vacuum initial conditions, ruling out such a model as a realistic one. We also find that the spectrum (evaluated at Hubble crossing) is sensitive to the bounce. We conclude that it is challenging, but not impossible, for cyclic/ekpyrotic models to succeed, if one can find a regularized version.

  12. Non-gravitational perturbations and satellite geodesy

    SciTech Connect

    Milani, A.; Nobill, A.M.; Farinella, P.

    1987-01-01

    This book presents the basic ideas of the physics of non-gravitational perturbations and the mathematics required to compute their orbital effects. It conveys the relevance of the different problems that must be solved to achieve a given level of accuracy in orbit determination and in recovery of geophysically significant parameters. Selected Contents are: Orders of Magnitude of the Perturbing Forces, Tides and Apparent Forces, Tools from Celestial Mechanics, Solar Radiation Pressure-Direct Effects: Satellite-Solar Radiation Interaction, Long-Term Effects on Semi-Major Axis, Radiation Pressure-Indirect Effects: Earth-Reflected Radiation Pressure, Anisotropic Thermal Emission, Drag: Orbital Perturbations by a Drag-Like Force, and Charged Particle Drag.

  13. The non-perturbative unquenched quark model

    NASA Astrophysics Data System (ADS)

    Entern, D. R.; Ortega, P. G.; Fernández, F.

    2017-03-01

    In recent years states in the quarkonium spectrum not expected in the naive quark model have appeared and created a lot of interest. In the theoretical side the study of the effect of meson-meson thresholds in the spectrum have been performed in different approximations. In a quark model framework, and in the spirit of the Cornell model, when a meson-meson threshold is included, the coupling to all the quark-antiquark states have to be considered. In practice only the closest states are included perturbatively. In this contribution we will present a framework in which we couple quark-antiquark states with meson-meson states non-perturbatively, taking into account effectively the coupling to all quark-antiquark states. The method will be applied to the study of the X(3872) and a comparison with the perturbative calculation will be performed.

  14. Covariant approach to parametrized cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Tattersall, Oliver J.; Lagos, Macarena; Ferreira, Pedro G.

    2017-09-01

    We present a covariant formulation for constructing general quadratic actions for cosmological perturbations, invariant under a given set of gauge symmetries for a given field content. This approach allows us to analyze scalar, vector, and tensor perturbations at the same time in a straightforward manner. We apply the procedure to diffeomorphism invariant single-tensor, scalar-tensor, and vector-tensor theories and show explicitly the full covariant form of the quadratic actions in such cases, in addition to the actions determining the evolution of vector and tensor perturbations. We also discuss the role of the symmetry of the background in identifying the set of cosmologically relevant free parameters describing these classes of theories, including calculating the relevant free parameters for an axisymmetric Bianchi-I vacuum universe.

  15. Instability of charged Lovelock black holes: Vector perturbations and scalar perturbations

    NASA Astrophysics Data System (ADS)

    Takahashi, Tomohiro

    2013-01-01

    We examine the stability of charged Lovelock black hole solutions under vector-type and scalar-type perturbations. We find suitable master variables for the stability analysis; the equations for these variables are Schrödinger-type equations with two components, and these Schrödinger operators are symmetric. By these master equations, we show that charged Lovelock black holes are stable under vector-type perturbations. For scalar-type perturbations, we show the criteria for instability and check these numerically. In our previous paper [T. Takahashi, Prog. Theor. Phys. 125, 1289 (2011)], we have shown that nearly extreme black holes show instability under tensor-type perturbations. In this paper, we find that black holes with a small charge show instability under scalar-type perturbations even if they have a relatively large mass.

  16. Non-perturbative twist of attosecond extreme-ultraviolet vortex beams

    NASA Astrophysics Data System (ADS)

    Hernández García, Carlos; Rego, Laura; San Román, Julio; Picón, Antonio; Plaja, Luis

    2017-02-01

    Extreme-ultraviolet (EUV) attosecond vortices carrying orbital angular momentum (OAM) are produced through high-order harmonic generation (HHG) from the nonlinear conversion of infrared twisted beams. While previous works demonstrated a linear scaling law of the vortex OAM content with the harmonic order, an unexpectedly rich scenario for the OAM buildup appears when HHG is driven by a vortex combination. The non-perturbative nature of HHG increases the OAM content of the attosecond vortices when the driving field presents an azimuthally varying intensity profile. We theoretically explore the underlying mechanisms for this diversity and disentangle the perturbative and non-perturbative nature in the generation of EUV attosecond twisted through numerical simulations.

  17. Perturbative approach to Markovian open quantum systems

    PubMed Central

    Li, Andy C. Y.; Petruccione, F.; Koch, Jens

    2014-01-01

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical. PMID:24811607

  18. Continuum methods in lattice perturbation theory

    SciTech Connect

    Becher, Thomas G

    2002-11-15

    We show how methods of continuum perturbation theory can be used to simplify perturbative lattice calculations. We use the technique of asymptotic expansions to expand lattice loop integrals around the continuum limit. After the expansion, all nontrivial dependence on momenta and masses is encoded in continuum loop integrals and the only genuine lattice integrals left are tadpole integrals. Using integration-by-parts relations all of these can be expressed in terms of a small number of master integrals. Four master integrals are needed for bosonic one loop integrals, sixteen in QCD with Wilson or staggered fermions.

  19. Galilean invariant resummation schemes of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Peloso, Marco; Pietroni, Massimo

    2017-01-01

    Many of the methods proposed so far to go beyond Standard Perturbation Theory break invariance under time-dependent boosts (denoted here as extended Galilean Invariance, or GI). This gives rise to spurious large scale effects which spoil the small scale predictions of these approximation schemes. By using consistency relations we derive fully non-perturbative constraints that GI imposes on correlation functions. We then introduce a method to quantify the amount of GI breaking of a given scheme, and to correct it by properly tailored counterterms. Finally, we formulate resummation schemes which are manifestly GI, discuss their general features, and implement them in the so called Time-Flow, or TRG, equations.

  20. Perturbative approach to Markovian open quantum systems.

    PubMed

    Li, Andy C Y; Petruccione, F; Koch, Jens

    2014-05-08

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.

  1. Non-perturbative QCD and hadron physics

    NASA Astrophysics Data System (ADS)

    Cobos-Martínez, J. J.

    2016-10-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented.

  2. Conservative perturbation theory for nonconservative systems

    NASA Astrophysics Data System (ADS)

    Shah, Tirth; Chattopadhyay, Rohitashwa; Vaidya, Kedar; Chakraborty, Sagar

    2015-12-01

    In this paper, we show how to use canonical perturbation theory for dissipative dynamical systems capable of showing limit-cycle oscillations. Thus, our work surmounts the hitherto perceived barrier for canonical perturbation theory that it can be applied only to a class of conservative systems, viz., Hamiltonian systems. In the process, we also find Hamiltonian structure for an important subset of Liénard system—a paradigmatic system for modeling isolated and asymptotic oscillatory state. We discuss the possibility of extending our method to encompass an even wider range of nonconservative systems.

  3. Evolution of perturbations in an inflationary universe

    NASA Technical Reports Server (NTRS)

    Frieman, J. A.; Will, C. M.

    1982-01-01

    The evolution of inhomogeneous density perturbations in a model of the very early universe that is dominated for a time by a constant energy density of a false quantum-mechanical vacuum is analyzed. During this period, the universe inflates exponentially and supercools exponentially, until a phase transition back to the true vacuum reheats the matter and radiation. Focus is on the physically measurable, coordinate-independent modes of inhomogeneous perturbations of this model and it is found that all modes either are constant or are exponentially damped during the inflationary era.

  4. Poynting-Robertson effect. II - Perturbation equations

    NASA Astrophysics Data System (ADS)

    Klacka, J.

    1992-12-01

    The paper addresses the problem of the complete set of perturbation equations of celestial mechanics as applied to the Poynting-Robertson effect. Differential equations and initial conditions for them are justified. The sudden beginning of the operation of the Poynting-Robertson effect (e.g., sudden release of dust particles from a comet) is taken into account. Two sets of differential equations and initial conditions for them are obtained. Both of them are completely equivalent to Newton's equation of motion. It is stressed that the transformation mu yields mu(1-beta) must be made in perturbation equations of celestial mechanics.

  5. On perturbative gravity and gauge theory

    SciTech Connect

    Dixon, L.

    2000-02-14

    The authors review some applications of tree-level (classical) relations between gravity and gauge theory that follow from string theory. Together with D-dimensional unitarily, these relations can be used to perturbatively quantize gravity theories, i.e. They contain the necessary information for obtaining loop contributions. The authors also review recent applications of these ideas showing that N = 1, D = 11 supergravity diverges, and review arguments that N = 8, D = 4 supergravity is less divergent than previously thought, though it does appear to diverge at five loops. Finally, the authors describe field variables for the Einstein-Hilbert Lagrangian that help clarify the perturbative relationship between gravity and gauge theory.

  6. Death to perturbative QCD in exclusive processes?

    SciTech Connect

    Eckardt, R.; Hansper, J.; Gari, M.F.

    1994-04-01

    The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.

  7. A perturbative DFT approach for magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Khoo, Khoong Hong; Laskowski, Robert

    2017-04-01

    We develop a perturbative formalism for computing magnetocrystalline anisotropy within density functional theory and the magnetic force theorem. Instead of computing eigenvalues of the spin-orbit Hamiltonian for selected spin polarizations, as in the conventional ;force theorem; approach, we show that the effect can be cast into a redefined form of the spin-orbit operator. This allows to separate the large eigenvalue shift due to spin-orbit interaction common for both polarizations from the much smaller magnetic anisotropy splitting. As a consequence the anisotropy splitting may by considered as a perturbation.

  8. Perturbative renormalization of the electric field correlator

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Laine, M.

    2016-04-01

    The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3) gauge theory, finding a ∼ 12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.

  9. Resonances under rank-one perturbations

    NASA Astrophysics Data System (ADS)

    Bourget, Olivier; Cortés, Víctor H.; Del Río, Rafael; Fernández, Claudio

    2017-09-01

    We study resonances generated by rank-one perturbations of self-adjoint operators with eigenvalues embedded in the continuous spectrum. Instability of these eigenvalues is analyzed and almost exponential decay for the associated resonant states is exhibited. We show how these results can be applied to Sturm-Liouville operators. Main tools are the Aronszajn-Donoghue theory for rank-one perturbations, a reduction process of the resolvent based on the Feshbach-Livsic formula, the Fermi golden rule, and a careful analysis of the Fourier transform of quasi-Lorentzian functions. We relate these results to sojourn time estimates and spectral concentration phenomena.

  10. Bayesian model selection and isocurvature perturbations

    NASA Astrophysics Data System (ADS)

    Beltrán, María; García-Bellido, Juan; Lesgourgues, Julien; Liddle, Andrew R.; Slosar, Anže

    2005-03-01

    Present cosmological data are well explained assuming purely adiabatic perturbations, but an admixture of isocurvature perturbations is also permitted. We use a Bayesian framework to compare the performance of cosmological models including isocurvature modes with the purely adiabatic case; this framework automatically and consistently penalizes models which use more parameters to fit the data. We compute the Bayesian evidence for fits to a data set comprised of WMAP and other microwave anisotropy data, the galaxy power spectrum from 2dFGRS and SDSS, and Type Ia supernovae luminosity distances. We find that Bayesian model selection favors the purely adiabatic models, but so far only at low significance.

  11. The effect of repetitive ankle perturbations on muscle reaction time and muscle activity.

    PubMed

    Thain, Peter Kevin; Hughes, Gerwyn Trefor Gareth; Mitchell, Andrew Charles Stephen

    2016-10-01

    The use of a tilt platform to simulate a lateral ankle sprain and record muscle reaction time is a well-established procedure. However, a potential caveat is that repetitive ankle perturbation may cause a natural attenuation of the reflex latency and amplitude. This is an important area to investigate as many researchers examine the effect of an intervention on muscle reaction time. Muscle reaction time, peak and average amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain (combined inversion and plantar flexion movement) were calculated in twenty-two physically active participants. The 40 perturbations were divided into 4 even groups of 10 dominant limb perturbations. Within-participants repeated measures analysis of variance (ANOVA) tests were conducted to assess the effect of habituation over time for each variable. There was a significant reduction in the peroneus longus average amplitude between the aggregated first and last 10 consecutive ankle perturbations (F2.15,45.09=3.90, P=0.03, ɳp(2)=0.16). Authors should implement no more than a maximum of 30 consecutive ankle perturbations (inclusive of practice perturbations) in future protocols simulating a lateral ankle sprain in an effort to avoid significant attenuation of muscle activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Phenotypic states become increasingly sensitive to perturbations near a bifurcation in a synthetic gene network

    PubMed Central

    Axelrod, Kevin; Sanchez, Alvaro; Gore, Jeff

    2015-01-01

    Microorganisms often exhibit a history-dependent phenotypic response after exposure to a stimulus which can be imperative for proper function. However, cells frequently experience unexpected environmental perturbations that might induce phenotypic switching. How cells maintain phenotypic states in the face of environmental fluctuations remains an open question. Here, we use environmental perturbations to characterize the resilience of phenotypic states in a synthetic gene network near a critical transition. We find that far from the critical transition an environmental perturbation may induce little to no phenotypic switching, whereas close to the critical transition the same perturbation can cause many cells to switch phenotypic states. This loss of resilience was observed for perturbations that interact directly with the gene circuit as well as for a variety of generic perturbations-such as salt, ethanol, or temperature shocks-that alter the state of the cell more broadly. We obtain qualitatively similar findings in natural gene circuits, such as the yeast GAL network. Our findings illustrate how phenotypic memory can become destabilized by environmental variability near a critical transition. DOI: http://dx.doi.org/10.7554/eLife.07935.001 PMID:26302311

  13. Plume Diagnostics of the RSRM Static Firings for the Pressure Perturbation Studies

    NASA Technical Reports Server (NTRS)

    Mathias, Edward C.; Sambamurthi, Jay K.; Alvarado, Alexis

    1995-01-01

    During the STS-54 launch (RSRM-29), the right hand solid rocket motor experienced a 13.9 psi chamber pressure perturbation at 67 seconds into the motor operation. This pressure augmentation equated to a thrust change of 51 klb. Concerns were raised regarding the adverse effects of this thrust imbalance on the shuttle system and the overall thrust into the external tank structural elements. Pressure perturbations have been observed in solid rocket motors due to expulsion of igniter or insulation materials; the motor thrust during such events drop abruptly before rising. However, the RSRM motors do not exhibit such behavior during the large chamber pressure perturbation events. Several scenarios were investigated to explain these pressure perturbations in the RSRM motors based on a fault tree developed after STS-54. Of these, the expulsion of the slag accumulated in the submerged nozzle region appeared to be the most plausible scenario to explain the observations. Slag is a natural combustion product of aluminized solid rocket motors. The RSRM propellant contains 16% by weight of aluminum. Any ejection of this slag mass during nozzle vectoring or other side loads on the motor will result in the chamber pressure perturbation. Two RSRM static firings were instrumented extensively to further understand the slag expulsion phenomenon in the RSRM and the associated pressure perturbations.

  14. The hydrogen perturbation in molecular connectivity computations.

    PubMed

    Pogliani, Lionello

    2006-05-01

    A new algorithm for the delta(v) number, the basic parameter of molecular connectivity indices, is proposed. The new algorithm, which is centered on graph concepts like complete graphs and general graphs, encodes the information of the bonded hydrogen on different atoms through a perturbation parameter that makes use of no new graph concepts. The model quality of the new algorithm is tested with 13 properties of seven different classes of compounds, as well as with composite classes of compounds with the same property and with composite properties of the same class of compounds. Chosen properties and classes of compounds display different percentage of bonded hydrogen atoms, which allow a checking of the importance of this parameter. A comparison is drawn with previous results with zero contribution for the hydrogen perturbation as well as among results obtained by changing the number of compounds of a property but keeping constant the percentage of hydrogen atoms. Results underline the importance of the property as well as the importance of the number of compounds in determining the level of the hydrogen perturbation. Molecular connectivity terms are in some cases more critical than the combination of indices in detecting the perturbation introduced by the hydrogen atoms. (c) 2006 Wiley Periodicals, Inc.

  15. Privacy Is Become with, Data Perturbation

    NASA Astrophysics Data System (ADS)

    Singh, Er. Niranjan; Singhai, Niky

    2011-06-01

    Privacy is becoming an increasingly important issue in many data mining applications that deal with health care, security, finance, behavior and other types of sensitive data. Is particularly becoming important in counterterrorism and homeland security-related applications. We touch upon several techniques of masking the data, namely random distortion, including the uniform and Gaussian noise, applied to the data in order to protect it. These perturbation schemes are equivalent to additive perturbation after the logarithmic Transformation. Due to the large volume of research in deriving private information from the additive noise perturbed data, the security of these perturbation schemes is questionable Many artificial intelligence and statistical methods exist for data analysis interpretation, Identifying and measuring the interestingness of patterns and rules discovered, or to be discovered is essential for the evaluation of the mined knowledge and the KDD process as a whole. While some concrete measurements exist, assessing the interestingness of discovered knowledge is still an important research issue. As the tool for the algorithm implementations we chose the language of choice in industrial world MATLAB.

  16. What Perturbs the ggrdgr Rings of Uranus?

    PubMed

    French, R G; Kangas, J A; Elliot, J L

    1986-01-31

    The gamma and delta rings have by far the largest radial perturbations of any of the nine known Uranian rings. These two rings deviate from Keplerian orbits, having typical root-mean-square residuals of about 3 kilometers (compared to a few hundred meters for the other seven known rings). Possible causes for the perturbations include nearby shepherd satellites and Lindblad resonances. If shepherd satellites are responsible, they could be as large as several tens of kilometers in diameter. The perturbation patterns of the gamma and delta rings have been examined for evidence of Lindblad resonances of azimuthal wave number m = 0, 1, 2, 3, and 4. The beta ring radial residuals are well matched by a 2:1 Lindblad resonance. If this represents a real physical phenomenon and is not an artifact of undersampling, then the most plausible interpretation is that there is an undiscovered satellite orbiting 76,522 +/- 8 kilometers from Uranus, with an orbital period of 15.3595 +/- 0.0001 hours and a radius of 75 to 100 kilometers. Such a satellite would be easily detected by the Voyager spacecraft when it encounters Uranus. The 2:1 resonance location is 41 +/- 9 kilometers inside the delta ring, which makes it unlikely that the resonance is due to a viscous instability within the ring. In contrast, no low-order Lindblad resonance matches the gamma ring perturbations, which are probably caused by one or more shepherd satellites large enough to be clearly visible in Voyager images.

  17. Magnetic perturbation inspection of inner bearing races

    NASA Technical Reports Server (NTRS)

    Barton, J. R.; Lankford, J.

    1972-01-01

    Approximately 100 inner race bearings were inspected nondestructively prior to endurance testing. Two of the bearings which failed during testing spalled at the sites of subsurface inclusions previously detected by using magnetic field perturbation. At other sites initially judged to be suspect, subsurface inclusion-nucleated cracking was observed. Inspection records and metallurgical sectioning results are presented and discussed.

  18. Staggered heavy baryon chiral perturbation theory

    SciTech Connect

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  19. On-Shell Methods in Perturbative QCD

    SciTech Connect

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2007-04-25

    We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider.

  20. Aharonov-Bohm Effect in Perturbation Theory.

    ERIC Educational Resources Information Center

    Purcell, Kay M.; Henneberger, Walter C.

    1978-01-01

    The Aharonov-Bohn effect is obtained in first-order perturbation theory. It is shown that the effect occurs only when the initial state is a superposition of eigenstates of Lz corresponding to eigenvalues having opposite sign. (Author/GA)

  1. Cosmological perturbations and classical change of signature

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme

    1995-12-01

    Cosmological perturbations on a manifold admitting signature change are studied. The background solution consists in a Friedmann-Lemaître-Robertson-Walker universe filled by a constant scalar field playing the role of a cosmological constant. It is shown that no regular solution exists satisfying the junction conditions at the surface of change. The comparison with similar studies in quantum cosmology is made.

  2. Non-perturbative study of QCD correlators

    NASA Astrophysics Data System (ADS)

    Lokhov, A. Y.

    2006-07-01

    This PhD dissertation is devoted to a non-perturbative study of QCD correlators. The main tool that we use is lattice QCD. We concentrated our efforts on the study of the main correlators of the pure Yang - Mills theory in the Landau gauge, namely the ghost and the gluon propagators. We are particularly interested in determining the Lqcd parameter. It is extracted by means of perturbative predictions available up to NNNLO. The related topic is the influence of non-perturbative effects that show up as appearance of power-corrections to the low-momentum behaviour of the Green functions. A new method of removing these power corrections allows a better estimate of Lqcd. Our result is Lambda^{n_f=0}_{ms} = 269(5)^{+12}_{-9} MeV. Another question that we address is the infrared behaviour of Green functions, at momenta of order and below Lqcd. At low energy the momentum dependence of the propagators changes considerably, and this is probably related to confinement. The lattice approach allows to check the predictions of analytical methods because it gives access to non-perturbative correlators. According to our analysis the gluon propagator is finite and non-zero at vanishing momentum, and the power-law behaviour of the ghost propagator is the same as in the free case.

  3. Revealing global regulatory perturbations across human cancers

    PubMed Central

    Goodarzi, Hani; Elemento, Olivier; Tavazoie, Saeed

    2010-01-01

    Summary The discovery of pathways and regulatory networks whose perturbation contributes to neoplastic transformation remains a fundamental challenge for cancer biology. We show that such pathway perturbations, and the cis-regulatory elements through which they operate, can be efficiently extracted from global gene-expression profiles. Our approach utilizes information-theoretic analysis of expression levels, pathways, and genomic sequences. Analysis across a diverse set of human cancers reveals the majority of previously known cancer pathways. Through de novo motif discovery we associate these pathways with transcription-factor binding sites and miRNA targets, including those of E2F, NF-Y, p53, and let-7. Follow-up experiments confirmed that these predictions correspond to functional in vivo regulatory interactions. Strikingly, the majority of the perturbations, associated with putative cis-regulatory elements, fall outside of known cancer pathways. Our study provides a systems-level dissection of regulatory perturbations in cancer—an essential component of a rational strategy for therapeutic intervention and drug-target discovery. PMID:20005852

  4. Cosmological perturbations from the Standard Model Higgs

    SciTech Connect

    Simone, Andrea De; Riotto, Antonio E-mail: antonio.riotto@unige.ch

    2013-02-01

    We propose that the Standard Model (SM) Higgs is responsible for generating the cosmological perturbations of the universe by acting as an isocurvature mode during a de Sitter inflationary stage. In view of the recent ATLAS and CMS results for the Higgs mass, this can happen if the Hubble rate during inflation is in the range (10{sup 10}−10{sup 14}) GeV (depending on the SM parameters). Implications for the detection of primordial tensor perturbations through the B-mode of CMB polarization via the PLANCK satellite are discussed. For example, if the Higgs mass value is confirmed to be m{sub h} = 125.5 GeV and m{sub t},α{sub s} are at their central values, our mechanism predicts tensor perturbations too small to be detected in the near future. On the other hand, if tensor perturbations will be detected by PLANCK through the B-mode of CMB, then there is a definite relation between the Higgs and top masses, making the mechanism predictive and falsifiable.

  5. Doubly perturbed neutral stochastic functional equations

    NASA Astrophysics Data System (ADS)

    Hu, Lanying; Ren, Yong

    2009-09-01

    In this paper, we prove the existence and uniqueness of the solution to a class of doubly perturbed neutral stochastic functional equations (DPNSFEs in short) under some non-Lipschitz conditions. The solution is constructed by successive approximation. Furthermore, we give the continuous dependence of the solution on the initial value by means of the corollary of Bihari inequality.

  6. The General Necessary Condition for the Validity of Dirac's Transition Perturbation Theory

    NASA Technical Reports Server (NTRS)

    Quang, Nguyen Vinh

    1996-01-01

    For the first time, from the natural requirements for the successive approximation the general necessary condition of validity of the Dirac's method is explicitly established. It is proved that the conception of 'the transition probability per unit time' is not valid. The 'super-platinium rules' for calculating the transition probability are derived for the arbitrarily strong time-independent perturbation case.

  7. Characterization of the Head Stabilization Response to a Lateral Perturbation During Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello-Stout, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2009-01-01

    A main contributor of fractures in older adults is from a lateral fall. The decline in sensory systems results in difficulty maintaining balance stability. Head stabilization contributes to postural control by serving as a stable platform for the sensory systems. The purpose of this study was to characterize the head stabilization response to a lateral perturbation while walking. A total of 16 healthy older adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors placed on the center of mass of the head and trunk collected head and trunk movement in all three planes of motion. The roll plane was analyzed to examine motion in the plane of the perturbation. Subjects stepped onto the platform with the right foot. Recovery step time and distance were recorded. The first trial was analyzed to capture the novelty of the perturbation. Results indicate a significant difference in footfall distance t=0.004, p<0.05, as well as the speed of foot recovery t=0.001, p<0.05, between natural and perturbed walking. Results indicate that the head t=0.005, p<0.05, and trunk t=0.0001, p<0.05, velocities increase during perturbed compared to natural walking. Older adults place their recovery foot down faster when perturbed to re-establish their base of support. Head and trunk segments are less stable and move with greater velocities to reestablish stability when perturbed.

  8. Characterization of the Head Stabilization Response to a Lateral Perturbation During Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello-Stout, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2009-01-01

    A main contributor of fractures in older adults is from a lateral fall. The decline in sensory systems results in difficulty maintaining balance stability. Head stabilization contributes to postural control by serving as a stable platform for the sensory systems. The purpose of this study was to characterize the head stabilization response to a lateral perturbation while walking. A total of 16 healthy older adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors placed on the center of mass of the head and trunk collected head and trunk movement in all three planes of motion. The roll plane was analyzed to examine motion in the plane of the perturbation. Subjects stepped onto the platform with the right foot. Recovery step time and distance were recorded. The first trial was analyzed to capture the novelty of the perturbation. Results indicate a significant difference in footfall distance t=0.004, p<0.05, as well as the speed of foot recovery t=0.001, p<0.05, between natural and perturbed walking. Results indicate that the head t=0.005, p<0.05, and trunk t=0.0001, p<0.05, velocities increase during perturbed compared to natural walking. Older adults place their recovery foot down faster when perturbed to re-establish their base of support. Head and trunk segments are less stable and move with greater velocities to reestablish stability when perturbed.

  9. Plant Host and Geographic Location Drive Endophyte Community Composition in the Face of Perturbation.

    PubMed

    Christian, Natalie; Sullivan, Courtney; Visser, Noelle D; Clay, Keith

    2016-10-01

    All plants form symbioses with endophytic fungi, which affect host plant health and function. Most endophytic fungi are horizontally transmitted, and consequently, local environment and geographic location greatly influence endophyte community composition. Growing evidence also suggests that identity of the plant host (e.g., species, genotype) can be important in shaping endophyte communities. However, little is known about how disturbances to plants affect their fungal symbiont communities. The goal of this study was to test if disturbances, from both natural and anthropogenic sources, can alter endophyte communities independent of geographic location or plant host identity. Using the plant species white snakeroot (Ageratina altissima; Asteraceae), we conducted two experiments that tested the effect of perturbation on endophyte communities. First, we examined endophyte response to leaf mining insect activity, a natural perturbation, in three replicate populations. Second, for one population, we applied fungicide to plant leaves to test endophyte community response to an anthropogenic perturbation. Using culture-based methods and Sanger sequencing of fungal isolates, we then examined abundance, diversity, and community structure of endophytic fungi in leaves subjected to perturbations by leaf mining and fungicide application. Our results show that plant host individual and geographic location are the major determinants of endophyte community composition even in the face of perturbations. Unexpectedly, we found that leaf mining did not impact endophyte communities in white snakeroot, but fungicide treatment resulted in small but significant changes in endophyte community structure. Together, our results suggest that endophyte communities are highly resistant to biotic and anthropogenic disturbances.

  10. Using in silico models to simulate dual perturbation experiments: procedure development and interpretation of outcomes

    PubMed Central

    Jamshidi, Neema; Palsson, Bernhard O

    2009-01-01

    Background A growing number of realistic in silico models of metabolic functions are being formulated and can serve as 'dry lab' platforms to prototype and simulate experiments before they are performed. For example, dual perturbation experiments that vary both genetic and environmental parameters can readily be simulated in silico. Genetic and environmental perturbations were applied to a cell-scale model of the human erythrocyte and subsequently investigated. Results The resulting steady state fluxes and concentrations, as well as dynamic responses to the perturbations were analyzed, yielding two important conclusions: 1) that transporters are informative about the internal states (fluxes and concentrations) of a cell and, 2) that genetic variations can disrupt the natural sequence of dynamic interactions between network components. The former arises from adjustments in energy and redox states, while the latter is a result of shifting time scales in aggregate pool formation of metabolites. These two concepts are illustrated for glucose-6 phosphate dehydrogenase (G6PD) and pyruvate kinase (PK) in the human red blood cell. Conclusion Dual perturbation experiments in silico are much more informative for the characterization of functional states than single perturbations. Predictions from an experimentally validated cellular model of metabolism indicate that the measurement of cofactor precursor transport rates can inform the internal state of the cell when the external demands are altered or a causal genetic variation is introduced. Finally, genetic mutations that alter the clinical phenotype may also disrupt the 'natural' time scale hierarchy of interactions in the network. PMID:19405968

  11. Excited states of ethylene interpreted in terms of perturbed Rydberg series

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shigeyoshi; Tatewaki, Hiroshi

    2003-11-01

    We have investigated the excited states of the ethylene molecule by the multireference configuration interaction (MRCI) method. In particular, the nature of the V state (1 1B 1u π→π *) was interpreted in terms of perturbed Rydberg series. To clarify the role of the perturbers, we use pseudo-restricted Hartree-Fock natural orbitals (PRHFNO), which would be the most suitable molecular orbital set to describe Rydberg series. It is well known that the expectation value of x2 for the V state is reduced from 44a 02 (RHF) to around 17a 02 by considering electron correlation effects, where x is the direction out of the molecular plane. In the present study, a reasonable < x2> value was obtained from small multireference configuration interaction with single excitations (MRCIS), where the π→π * configurations and a few perturbers were assigned as the reference configurations. The major perturbers were found to be five configurations represented by 3a g → 3b 1u, 1b 3g → 3b 2u, 2b 1u → 4a g, 2a g → 3b 1u, and 1b 2u → 2b 3g with respect to the ground state configuration. The V state can therefore be described as a scattering process of the π→π * state by these perturbers. Other low-lying excited states are also investigated by the MRCI method.

  12. Growth of matter perturbation in quintessence cosmology

    NASA Astrophysics Data System (ADS)

    Mulki, Fargiza A. M.; Wulandari, Hesti R. T.

    2017-01-01

    Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.

  13. Transverse, propagating velocity perturbations in solar coronal loops

    NASA Astrophysics Data System (ADS)

    De Moortel, I.; Pascoe, D. J.; Wright, A. N.; Hood, A. W.

    2016-01-01

    As waves and oscillations carry both energy and information, they have enormous potential as a plasma heating mechanism and, through seismology, to provide estimates of local plasma properties which are hard to obtain from direct measurements. Being sufficiently near to allow high-resolution observations, the atmosphere of the Sun forms a natural plasma laboratory. Recent observations have revealed that an abundance of waves and oscillations is present in the solar atmosphere, leading to a renewed interest in wave heating mechanisms. This short review paper gives an overview of recently observed transverse, propagating velocity perturbations in coronal loops. These ubiquitous perturbations are observed to undergo strong damping as they propagate. Using 3D numerical simulations of footpoint-driven transverse waves propagating in a coronal plasma with a cylindrical density structure, in combination with analytical modelling, it is demonstrated that the observed velocity perturbations can be understood in terms of coupling of different wave modes in the inhomogeneous boundaries of the loops. Mode coupling in the inhomogeneous boundary layers of the loops leads to the coupling of the transversal (kink) mode to the azimuthal (Alfvén) mode, observed as the decay of the transverse kink oscillations. Both the numerical and analytical results show the spatial profile of the damped wave has a Gaussian shape to begin with, before switching to exponential decay at large heights. In addition, recent analysis of CoMP (Coronal Multi-channel Polarimeter) Doppler shift observations of large, off-limb, trans-equatorial loops shows that Fourier power at the apex appears to be higher in the high-frequency part of the spectrum than expected from theoretical models. This excess high-frequency FFT power could be tentative evidence for the onset of a cascade of the low-to-mid frequency waves into (Alfvénic) turbulence.

  14. Tenacious myths about cosmological perturbations larger than the horizon size

    NASA Astrophysics Data System (ADS)

    Press, W. H.; Vishniac, E. T.

    1980-07-01

    The linear perturbation theory of the Einstein-de Sitter (k = 0, Friedmann) big-bang cosmology in synchronous gauge is reviewed, with particular care taken to distinguish physical perturbations, which are locally measurable, from pure-gauge perturbations, which correspond to an unperturbed spacetime written in gauge-perturbed coordinates. Some new results are obtained about the growth of physical perturbations at early times, while they are still outside their horizon; and some commonly accepted rules for estimating the growth and decay of perturbations are shown to be false. Source terms corresponding to inhomogeneous perturbations in the equation of state (or, equivalently, to isothermal perturbations) are next included: the density perturbations that are induced are calculated, including both pressure terms and (higher-order) pressure-gradient terms. Here also, some uncritical beliefs are shown to be incorrect.

  15. Tenacious myths about cosmological perturbations larger than the horizon size

    SciTech Connect

    Press, W.H.; Vishniac, E.T.

    1980-07-01

    We review the linear perturbation theory of the Einstein--de Sitter (k=0, Friedmann) big-bang cosmology in synchronous gauge, taking particular care to distinguish physical perturbations, which are locally measurable, from pure-gauge perturbations, which correspond to an unperturbed spacetime written in gauge-perturbed coordinates. Some new results are obtained about the growth of physical perturbations at early times, while they are still outside their horizon; and some commonly accepted rules for estimating the growth and decay of perturbations are shown to be false. Source terms corresponding to inhomogeneous perturbations in the equation of state (or, equivalently, to isothermal perturbations) are next included: we calculate the density perturbations that are induced, including both pressure terms and (higher-order) pressure-gradient terms. Here also, some uncritical beliefs are shown to be incorrect.

  16. Non-perturbative effects of primordial curvature perturbations on the apparent value of a cosmological constant

    NASA Astrophysics Data System (ADS)

    Enea Romano, Antonio; Sanes Negrete, Sergio; Sasaki, Misao; Starobinsky, Alexei A.

    2014-06-01

    We study effects on the luminosity distance of a local inhomogeneity seeded by primordial curvature perturbations of the type predicted by the inflationary scenario and constrained by the cosmic microwave background radiation. We find that a local underdensity originated from a one, two or three standard deviations peaks of the primordial curvature perturbations field can induce corrections to the value of a cosmological constant of the order of 0.6{%},1{%},1.5{%} , respectively. These effects cannot be neglected in the precision cosmology era in which we are entering. Our results can be considered an upper bound for the effect of the monopole component of the local non-linear structure which can arise from primordial curvature perturbations and requires a fully non-perturbative relativistic treatment.

  17. Head perturbations during walking while viewing a head-fixed target

    NASA Technical Reports Server (NTRS)

    Das, Vallabh E.; Zivotofsky, Ari Z.; Discenna, Alfred O.; Leigh, R. John

    1995-01-01

    Inexpensive, head-fixed computer displays are now available that subjects can wear during locomotion. Our hypothesis is that viewing a head-fixed visual display will change the character- istics of rotational head perturbations during natural walking. Using a 3-axis angular rate sensor, we measured head rotations during natural or treadmill walking, in 10 normal subjects and 2 patients with deficient vestibular function, as they attempted to view (1) a stationary target at optical infinity; and (2) a target at a distance of 20 cm rigidly attached to the head. Normal subjects and patients showed no significant change in the predominant frequency of head rotations in any plane (ranging 0.7-5.7 Hz) during the two different viewing tasks. Mean peak head velocities also showed no difference during the two viewing conditions except in the yaw plane, in which values were greater while viewing the near target. Predominant frequencies of head rotations were similar in the pitch plane during natural or treadmill walking; however, peak velocities of pitch head rotations were substantially greater during natural walking. One vestibular patient showed modest increases of head velocity during natural walking compared with normal subjects. Rotational head perturbations that occur during natural walking are largely unaffected when subjects view a head-fixed target. There is need to study how such perturbations, which induce vestibular eye movements, affect vision of head-fixed displays.

  18. Kurtosis, skewness, and non-Gaussian cosmological density perturbations

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1993-01-01

    Cosmological topological defects as well as some nonstandard inflation models can give rise to non-Gaussian density perturbations. Skewness and kurtosis are the third and fourth moments that measure the deviation of a distribution from a Gaussian. Measurement of these moments for the cosmological density field and for the microwave background temperature anisotropy can provide a test of the Gaussian nature of the primordial fluctuation spectrum. In the case of the density field, the importance of measuring the kurtosis is stressed since it will be preserved through the weakly nonlinear gravitational evolution epoch. Current constraints on skewness and kurtosis of primeval perturbations are obtained from the observed density contrast on small scales and from recent COBE observations of temperature anisotropies on large scales. It is also shown how, in principle, future microwave anisotropy experiments might be able to reveal the initial skewness and kurtosis. It is shown that present data argue that if the initial spectrum is adiabatic, then it is probably Gaussian, but non-Gaussian isocurvature fluctuations are still allowed, and these are what topological defects provide.

  19. On the Milankovitch orbital elements for perturbed Keplerian motion

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron J.; Scheeres, Daniel J.

    2014-03-01

    We consider sets of natural vectorial orbital elements of the Milankovitch type for perturbed Keplerian motion. These elements are closely related to the two vectorial first integrals of the unperturbed two-body problem; namely, the angular momentum vector and the Laplace-Runge-Lenz vector. After a detailed historical discussion of the origin and development of such elements, nonsingular equations for the time variations of these sets of elements under perturbations are established, both in Lagrangian and Gaussian form. After averaging, a compact, elegant, and symmetrical form of secular Milankovitch-like equations is obtained, which reminds of the structure of canonical systems of equations in Hamiltonian mechanics. As an application of this vectorial formulation, we analyze the motion of an object orbiting about a planet (idealized as a point mass moving in a heliocentric elliptical orbit) and subject to solar radiation pressure acceleration (obeying an inverse-square law). We show that the corresponding secular problem is integrable and we give an explicit closed-form solution.

  20. Cytomegalovirus immune evasion by perturbation of endosomal trafficking

    PubMed Central

    Lučin, Pero; Mahmutefendić, Hana; Blagojević Zagorac, Gordana; Ilić Tomaš, Maja

    2015-01-01

    Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms. PMID:25263490

  1. Conformal invariant cosmological perturbations via the covariant approach

    SciTech Connect

    Li, Mingzhe; Mou, Yicen E-mail: moinch@mail.ustc.edu.cn

    2015-10-01

    It is known that some cosmological perturbations are conformal invariant. This facilitates the studies of perturbations within some gravitational theories alternative to general relativity, for example the scalar-tensor theory, because it is possible to do equivalent analysis in a certain frame in which the perturbation equations are simpler. In this paper we revisit the problem of conformal invariances of cosmological perturbations in terms of the covariant approach in which the perturbation variables have clear geometric and physical meanings. We show that with this approach the conformal invariant perturbations are easily identified.

  2. Evolution of the curvature perturbations during warm inflation

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomohiro

    2009-06-01

    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum.

  3. Non-adiabatic perturbations in multi-component perfect fluids

    SciTech Connect

    Koshelev, N.A.

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  4. A numerical-perturbation method for the nonlinear analysis of structural vibrations

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Mook, D. T.; Lobitz, D. W.

    1974-01-01

    A numerical-perturbation method is proposed for the determination of the nonlinear forced response of structural elements. Purely analytical techniques are capable of determining the response of structural elements having simple geometries and simple variations in thickness and properties, but they are not applicable to elements with complicated structure and boundaries. Numerical techniques are effective in determining the linear response of complicated structures, but they are not optimal for determining the nonlinear response of even simple elements when modal interactions take place due to the complicated nature of the response. Therefore, the optimum is a combined numerical and perturbation technique. The present technique is applied to beams with varying cross sections.

  5. Encke's special perturbation technique associated with the KS regularized variables. I - Satellite motions in the earth's gravitational field with axial symmetry

    NASA Astrophysics Data System (ADS)

    Awad, Mervat El-Sayed

    1988-10-01

    A special perturbation technique of Encke type associated with the Kustaanheimo-Stiefel (KS) regularized variables is developed for satellite motions in the earth's gravitational field with axial symmetry. Its computational algorithm is of recursive nature and could be applied to any perturbed conic motion, whatever the number of the zonal harmonic coefficients may be. Applications of the algorithm are also included.

  6. Bred vectors with customizable scale: 'À la carte' ensemble perturbations

    NASA Astrophysics Data System (ADS)

    Homar Santaner, V.; Stensrud, D. J.

    2009-09-01

    Short-range forecasts of severe weather are one of the most challenging tasks faced by the atmospheric science community. Our persistent failure to generate accurate numerical forecasts of tornadoes, large hail, heavy precipitation or strong wind events is caused by two fundamental aspects of numerical forecast systems: the chaotic nature of the governing equations and the large uncertainties in both the atmospheric state and the models that govern its evolution. Currently, we cope with both sources of error by describing the state of the atmosphere in a probabilistic manner. In this framework, forecasting becomes predicting the probability density function (pdf) of future states, given the pdf of initial states that are compatible with available observations and previous forecasts. This probabilistic perspective is often created by generating ensembles of deterministic predictions that are aimed at sampling the most important sources of uncertainty in the forecasting system. The ensemble generation/sampling strategy is a crucial aspect of their performance and various methods have been proposed. Although global forecasting offices have been using ensembles of perturbed initial conditions for medium-range operational forecasts since 1994, no consensus exists regarding the optimum sampling strategy for high resolution short-range ensemble forecasts with predicting skill in the mesoscale. Bred vectors, however, have been hypothesized to better capture the growing modes in the highly nonlinear mesoscale dynamics of severe episodes than singular vectors or observation perturbations. Yet even this technique is not able to produce enough diversity in the ensembles to accurately and routinely predict extreme phenomena such as severe weather. Thus, we propose a new method to generate ensembles of initial conditions perturbations that is based on the breeding technique. Given a standard bred mode, a set of customized perturbations is derived with specified amplitudes and

  7. Random matter density perturbations and LMA

    NASA Astrophysics Data System (ADS)

    Reggiani, N.; Guzzo, M. M.; de Holanda, P. C.

    There are reasons to believe that mechanisms exist in the solar interior which lead to random density perturbations in the resonant region of the Large Mixing Angle solution to the solar neutrino problem. We find that, in the presence of these density perturbations, the best fit point in the (sin 2 2θ , Δ m2) parameter space moves to smaller values, compared with the values obtained for the standard LMA solution. Combining solar data with KamLAND results, we find a new compatibility region, which we call VERY-LOW LMA, where sin 2 2θ ~ 0.6 and Δm2 2× 10-5 eV2, for random density fluctuations of order 5% < ξ < 8%. We argue that such values of density fluctuations are still allowed by helioseismological observations at small scales of order 10 - 1000 km deep inside the solar core. PACS: 26.65 - 90.60J - 96.60.H

  8. Revisiting perturbations in extended quasidilaton massive gravity

    NASA Astrophysics Data System (ADS)

    Heisenberg, Lavinia

    2015-04-01

    In this work we study the theory of extended quasidilaton massive gravity together with the presence of matter fields. After discussing the homogeneous and isotropic fully dynamical background equations, which governs the exact expansion history of the universe, we consider small cosmological perturbations around these general FLRW solutions. The stability of tensor, vector and scalar perturbations on top of these general background solutions give rise to slightly different constraints on the parameters of the theory than those obtained in the approximative assumption of the late-time asymptotic form of the expansion history, which does not correspond to our current epoch. This opens up the possibility of stable FLRW solutions to be compared with current data on cosmic expansion with the restricted parameter space based on theoretical ground.

  9. Darboux transformation in black hole perturbation theory

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Johnson, Aaron D.; Kennefick, Daniel

    2017-07-01

    The Darboux transformation between ordinary differential equations is a 19th century technique that has seen wide use in quantum theory for producing exactly solvable potentials for the Schrödinger equation with specific spectral properties. In this paper we show that the same transformation appears in black hole theory, relating, for instance, the Zerilli and Regge-Wheeler equations for axial and polar Schwarzschild perturbations. The transformation reveals these two equations to be isospectral, a well known result whose method has been repeatedly reintroduced under different names. We highlight the key role that the so-called algebraically special solutions play in the black hole Darboux theory and show that a similar relation exists between the Chandrasekhar-Detweiler equations for Kerr perturbations. Finally, we discuss the limitations of the method when dealing with long-range potentials and explore the possibilities offered by a generalized Darboux transformation.

  10. Confinement with Perturbation Theory, After All?

    NASA Astrophysics Data System (ADS)

    Hoyer, Paul

    2015-09-01

    I call attention to the possibility that QCD bound states (hadrons) could be derived using rigorous Hamiltonian, perturbative methods. Solving Gauss' law for A 0 with a non-vanishing boundary condition at spatial infinity gives an linear potential for color singlet and qqq states. These states are Poincaré and gauge covariant and thus can serve as initial states of a perturbative expansion, replacing the conventional free in and out states. The coupling freezes at , allowing reasonable convergence. The bound states have a sea of pairs, while transverse gluons contribute only at . Pair creation in the linear A 0 potential leads to string breaking and hadron loop corrections. These corrections give finite widths to excited states, as required by unitarity. Several of these features have been verified analytically in D = 1 + 1 dimensions, and some in D = 3 + 1.

  11. Stability of gradient semigroups under perturbations

    NASA Astrophysics Data System (ADS)

    Aragão-Costa, E. R.; Caraballo, T.; Carvalho, A. N.; Langa, J. A.

    2011-07-01

    In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).

  12. Control of Asymmetric Magnetic Perturbations in Tokamaks

    SciTech Connect

    Park, Jong-kyu; Schaffer, Michael J.; Menard, Jonathan E.; Boozer, Allen H.

    2007-10-03

    The sensitivity of tokamak plasmas to very small deviations from the axisymmetry of the magnetic field |δ→(over)Β/→(over)Β|≈ 10–4 is well known. What was not understood until very recently is the importance of the perturbation to the plasma equilibrium in assessing the effects of externally produced asymmetries in the magnetic field, even far from a stability limit. DIII-D and NSTX experiments find that when the deleterious effects of asymmetries are mitigated, the external asymmetric field was often made stronger and with an increased interaction with the magnetic field of the unperturbed equilibrium fields. This paper explains these counter intuitive results. The explanation using ideal perturbed equilibria has important implications for the control of field errors in all toroidal plasmas.

  13. A Numerical, Literal, and Converged Perturbation Algorithm

    NASA Astrophysics Data System (ADS)

    Wiesel, William E.

    2017-09-01

    The KAM theorem and von Ziepel's method are applied to a perturbed harmonic oscillator, and it is noted that the KAM methodology does not allow for necessary frequency or angle corrections, while von Ziepel does. The KAM methodology can be carried out with purely numerical methods, since its generating function does not contain momentum dependence. The KAM iteration is extended to allow for frequency and angle changes, and in the process apparently can be successfully applied to degenerate systems normally ruled out by the classical KAM theorem. Convergence is observed to be geometric, not exponential, but it does proceed smoothly to machine precision. The algorithm produces a converged perturbation solution by numerical methods, while still retaining literal variable dependence, at least in the vicinity of a given trajectory.

  14. Gluonic Lorentz violation and chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Noordmans, J. P.

    2017-04-01

    By applying chiral-perturbation-theory methods to the QCD sector of the Lorentz-violating Standard-Model Extension, we investigate Lorentz violation in the strong interactions. In particular, we consider the C P T -even pure-gluon operator of the minimal Standard-Model Extension. We construct the lowest-order chiral effective Lagrangian for three as well as two light quark flavors. We develop the power-counting rules and construct the heavy-baryon chiral-perturbation-theory Lagrangian, which we use to calculate Lorentz-violating contributions to the nucleon self-energy. Using the constructed effective operators, we derive the first stringent limits on many of the components of the relevant Lorentz-violating parameter. We also obtain the Lorentz-violating nucleon-nucleon potential. We suggest that this potential may be used to obtain new limits from atomic-clock or deuteron storage-ring experiments.

  15. Theory of cosmological perturbations with cuscuton

    NASA Astrophysics Data System (ADS)

    Boruah, Supranta S.; Kim, Hyung J.; Geshnizjani, Ghazal

    2017-07-01

    This paper presents the first derivation of the quadratic action for curvature perturbations, ζ, within the framework of cuscuton gravity. We study the scalar cosmological perturbations sourced by a canonical single scalar field in the presence of cuscuton field. We identify ζ as comoving curvature with respect to the source field and we show that it retains its conservation characteristic on super horizon scales. The result provides an explicit proof that cuscuton modification of gravity around Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is ghost free. We also investigate the potential development of other instabilities in cuscuton models. We find that in a large class of these models, there is no generic instability problem. However, depending on the details of slow-roll parameters, specific models may display gradient instabilities.

  16. Four-loop screened perturbation theory

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Kyllingstad, Lars

    2008-10-01

    We study the thermodynamics of massless ϕ4-theory using screened perturbation theory. In this method, the perturbative expansion is reorganized by adding and subtracting a thermal mass term in the Lagrangian. We calculate the free energy through four loops expanding in a double power expansion in m/T and g2, where m is the thermal mass and g is the coupling constant. The expansion is truncated at order g7 and the loop expansion is shown to have better convergence properties than the weak-coupling expansion. The free energy at order g6 involves the four-loop triangle sum-integral evaluated by Gynther, Laine, Schröder, Torrero, and Vuorinen using the methods developed by Arnold and Zhai. The evaluation of the free energy at order g7 requires the evaluation of a nontrivial three-loop sum-integral, which we calculate by the same methods.

  17. Control of asymmetric magnetic perturbations in tokamaks.

    PubMed

    Park, Jong-Kyu; Schaffer, Michael J; Menard, Jonathan E; Boozer, Allen H

    2007-11-09

    The sensitivity of tokamak plasmas to very small deviations from the axisymmetry of the magnetic field |deltaB/B| approximately 10{-4} is well known. What was not understood until very recently is the importance of the perturbation to the plasma equilibrium in assessing the effects of externally produced asymmetries in the magnetic field, even far from a stability limit. DIII-D and NSTX experiments find that when the deleterious effects of asymmetries are mitigated, the external asymmetric field was often made stronger and had an increased interaction with the magnetic field of the unperturbed equilibrium. This Letter explains these counterintuitive results. The explanation using ideal perturbed equilibria has important implications for the control of field errors in all toroidal plasmas.

  18. Revisiting perturbations in extended quasidilaton massive gravity

    SciTech Connect

    Heisenberg, Lavinia

    2015-04-01

    In this work we study the theory of extended quasidilaton massive gravity together with the presence of matter fields. After discussing the homogeneous and isotropic fully dynamical background equations, which governs the exact expansion history of the universe, we consider small cosmological perturbations around these general FLRW solutions. The stability of tensor, vector and scalar perturbations on top of these general background solutions give rise to slightly different constraints on the parameters of the theory than those obtained in the approximative assumption of the late-time asymptotic form of the expansion history, which does not correspond to our current epoch. This opens up the possibility of stable FLRW solutions to be compared with current data on cosmic expansion with the restricted parameter space based on theoretical ground.

  19. Uniqueness of static photon surfaces: Perturbative approach

    NASA Astrophysics Data System (ADS)

    Yoshino, Hirotaka

    2017-02-01

    A photon surface S is defined as a three-dimensional timelike hypersurface such that any null geodesic initially tangent to S continues to be included in S , like r =3 M of the Schwarzschild spacetime. Using analytic solutions to static perturbations of a Schwarzschild spacetime, we examine whether a nonspherical spacetime can possess a distorted static photon surface. It is shown that if the region outside of r =3 M is vacuum, no distorted photon surface can be present. Therefore, we establish the perturbative uniqueness for an asymptotically flat vacuum spacetime with a static photon surface. It is also pointed out that if matter is present in the outside region, there is a possibility that a distorted photon surface could form.

  20. Linear density perturbations in multifield coupled quintessence

    NASA Astrophysics Data System (ADS)

    Leithes, Alexander; Malik, Karim A.; Mulryne, David J.; Nunes, Nelson J.

    2017-06-01

    We study the behavior of linear perturbations in multifield coupled quintessence models. Using gauge-invariant linear cosmological perturbation theory we provide the full set of governing equations for this class of models, and solve the system numerically. We apply the numerical code to generate growth functions for various examples, and compare these both to the standard Λ cold dark matter model and to current and future observational bounds. Finally, we examine the applicability of the "small scale approximation" often used to calculate growth functions in quintessence models, in light of upcoming experiments such as SKA and Euclid. We find the deviation of the full equation results for large k modes from the approximation exceeds the experimental uncertainty for these future surveys. The numerical code, Pyessence, written in Python will be publicly available.

  1. Nucleophilicity index from perturbed electrostatic potentials.

    PubMed

    Cedillo, A; Contreras, R; Galván, M; Aizman, A; Andrés, J; Safont, V S

    2007-03-29

    We introduce and test a nucleophilicity index as a new descriptor of chemical reactivity. The index is derived from a perturbation model for the interaction between the nucleophile and a positive test charge. The computational implementation of the model uses an isoelectronic process involving the minimum values of the electronic part of the perturbed molecular electrostatic potential. The working expression defining the nucleophilicity index encompasses both the electrostatic contributions and the second-order polarization effects in a form which is consistent with the empirical scales previously proposed. The index is validated for a series of neutral nucleophiles in the gas phase for which the nucleophilicity pattern has been experimentally established within a spectroscopic scale.

  2. Perturbation theory for asymmetric deformed microdisk cavities

    NASA Astrophysics Data System (ADS)

    Kullig, Julius; Wiersig, Jan

    2016-10-01

    In an article by Dubertrand et al. [Phys. Rev. A 77, 013804 (2008), 10.1103/PhysRevA.77.013804] the perturbation theory for slightly deformed optical microcavities with a mirror-reflection symmetry was developed. However, in real experiments such a mirror-reflection symmetry is often not present either intended or unintended via production tolerances. In this paper we therefore extended the perturbation theory to asymmetric boundary deformations. Consequently, we are able to describe interesting non-Hermitian phenomena like copropagation of optical modes in the (counter-)clockwise direction inside the cavity. The derived analytic formulas are demonstrated at two generic boundary shapes, the spiral and the double-notched circle where a good agreement to the numerical boundary element method is observed.

  3. Thermostat-Like Perturbations of an Oscillator

    NASA Astrophysics Data System (ADS)

    Freidlin, Mark

    2016-07-01

    We consider an oscillator with one degree of freedom perturbed by a deterministic thermostat-like perturbation and another system, in particular, another oscillator, coupled with the first one. If the Hamiltonian of the first system has saddle points, the whole system has, in a sense, a stochastic behavior on long time intervals. Under certain conditions, one can introduce the relative entropy and describe metastability and other large deviation effects in this deterministic system. If the coupled system is also an oscillator, the long time evolution of the energy of this oscillator has a diffusion approximation. To get these results one has to regularize the system. But the results are, to some extent, independent of the regularization: the stochasticity is due to instabilities at saddle points of the original system.

  4. Intelligent perturbation algorithms for space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1990-01-01

    The optimization of space operations is examined in the light of optimization heuristics for computer algorithms and iterative search techniques. Specific attention is given to the search concepts known collectively as intelligent perturbation algorithms (IPAs) and their application to crew/resource allocation problems. IPAs iteratively examine successive schedules which become progressively more efficient, and the characteristics of good perturbation operators are listed. IPAs can be applied to aerospace systems to efficiently utilize crews, payloads, and resources in the context of systems such as Space-Station scheduling. A program is presented called the MFIVE Space Station Scheduling Worksheet which generates task assignments and resource usage structures. The IPAs can be used to develop flexible manifesting and scheduling for the Industrial Space Facility.

  5. Constraining compensated isocurvature perturbations using the CMB

    NASA Astrophysics Data System (ADS)

    Smith, Tristan L.; Rhiannon Smith, Kyle Yee, Julian Munoz, Daniel Grin

    2017-01-01

    Compensated isocurvature perturbations (CIPs) are variations in the cosmic baryon fraction which leave the total non-relativistic matter (and radiation) density unchanged. They are predicted by models of inflation which involve more than one scalar field, such as the curvaton scenario. At linear order, they leave the CMB two-point correlation function nearly unchanged: this is why existing constraints to CIPs are so much more permissive than constraints to typical isocurvature perturbations. Recent work articulated an efficient way to calculate the second order CIP effects on the CMB two-point correlation. We have implemented this method in order to explore constraints to the CIP amplitude using current Planck temperature and polarization data. In addition, we have computed the contribution of CIPs to the CMB lensing estimator which provides us with a novel method to use CMB data to place constraints on CIPs. We find that Planck data places a constraint to the CIP amplitude which is competitive with other methods.

  6. Cosmological perturbations in transient phantom inflation scenarios

    NASA Astrophysics Data System (ADS)

    Richarte, Martín G.; Kremer, Gilberto M.

    2017-01-01

    We present a model of inflation where the inflaton is accommodated as a phantom field which exhibits an initial transient pole behavior and then decays into a quintessence field which is responsible for a radiation era. We must stress that the present unified model only deals with a single field and that the transition between the two eras is achieved in a smooth way, so the model does not suffer from the eternal inflation issue. We explore the conditions for the crossing of the phantom divide line within the inflationary era along with the structural stability of several critical points. We study the behavior of the phantom field within the slow-climb approximation along with the necessary conditions to have sufficient inflation. We also examine the model at the level of classical perturbations within the Newtonian gauge and determine the behavior of the gravitational potential, contrast density and perturbed field near the inflation stage and the subsequent radiation era.

  7. Tangles of the ideal separatrix from low mn perturbation in the DIII-D

    NASA Astrophysics Data System (ADS)

    Goss, Talisa; Crank, Willie; Ali, Halima; Punjabi, Alkesh

    2010-11-01

    The equilibrium EFIT data for the DIII-D shot 115467 at 3000 ms is used to construct the equilibrium generating function for magnetic field line trajectories in the DIII-D tokamak in natural canonical coordinates [A. Punjabi, and H. Ali, Phys. Plasmas 15, 122502 (2008); A. Punjabi, Nucl. Fusion 49, 115020 (2009)]. The generating function represents the axisymmetric magnetic geometry and the topology of the DIII-D shot very accurately. A symplectic map for field line trajectories in the natural canonical coordinates in the DIII-D is constructed. We call this map the DIII-D map. The natural canonical coordinates can be readily inverted to physical coordinates (R,φ,Z). Low mn magnetic perturbation with mode numbers (m,n)=(1,1)+(1,-1) is added to the generating function of the map. The amplitude for the low mn perturbation is chosen to be 6X10-4, which is the expected value of the amplitude in tokamaks. The forward and backward DIII-D maps with low mn perturbation are used to calculate the tangles of the ideal separatrix from low mn perturbation in the DIII-D. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.

  8. (Perturbed angular correlations in zirconia ceramics)

    SciTech Connect

    Not Available

    1990-01-01

    This is the progress report for the first year of the currently-approved three year funding cycle. We have carried on a vigorous program of experimental and theoretical research on microscopic properties of zirconia and ceria using the Perturbed Angular Correlation (PAC) experimental technique. The experimental method was described in the original proposal and in a number of references as well as several of the technical reports that accompany this progress report.

  9. Perturbations of nested branes with induced gravity

    NASA Astrophysics Data System (ADS)

    Sbisà, Fulvio; Koyama, Kazuya

    2014-06-01

    We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ``ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.

  10. Possible Astrometric Perturbation of LHS 288

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Ianna, P. A.; Begam, M. C.

    2007-05-01

    A sample of 13 stars from the University of Virginia southern hemisphere parallax program has been tested for possible astrometric perturbations due to low-mass companions. The selected objects are primarily early to mid-M dwarfs with large parallaxes, all are within 25 parsecs, that are not known to be binaries. The data were collected from CCD parallax observations made between 1991 and 2002 with the 1-meter reflector at the Siding Spring Observatory, Coonabarabran, Australia. Following our standard central overlap solution for parallax and proper motion, the residuals were subjected to a time-series analysis using the Lomb-Scargle normalized periodogram method (Press et al. 1992). Of these, LHS 288 displays a possible perturbation due to a very low mass companion; such a companion might be as small as 2.4 Jupiter masses. Because LHS 288 is a high proper-motion star in a rich field, the possibility that it passed over an undetected faint star during these observations cannot be eliminated; such a distorted point-spread function might mimic a perturbation. Additional observations from an independent data set could help determine whether the suggested perturbation is real. The remaining stars demonstrate no indication of any companions greater than about 17 Jupiter masses with orbits between 1.5 and 10 years. The single stars are LHS 34 (white dwarf), LHS 271, LHS 337, LHS 532, LHS 1134, LHS 1565, LHS 2310, LHS 2739, LHS 2813, LHS 3064, LHS 3242, and LHS 3418. We acknowledge support from NSF grants AST 98-20711 and 05-07711, Georgia State University, the Space Interferometry Mission (SIM), F. H. Levinson Fund of the Peninsula Community Foundation, UVa, and Hampden-Sydney College in addition to support and generous observing time allocations from the Research School of Astronomy and Astrophysics, Australian National University.

  11. Tests of Chiral Perturbation Theory with COMPASS

    SciTech Connect

    Friedrich, Jan

    2010-12-28

    The COMPASS experiment at CERN studies with high precision pion-photon induced reactions on nuclear targets via the Primakoff effect. This offers the possibility to test chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the longstanding question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.

  12. Multiple scattering by deep perturbed gratings

    SciTech Connect

    Knotts, M.E.; O`Donnell, K.A.

    1994-11-01

    We present measurements of the far-field scattered intensity for gratings consisting of uniform, regularly spaced, wavelength-scale grooves that have randomly fluctuating depths. The complete polarization dependence of the scattering is determined, and particular attention is given to measurements that isolate multiple scattering. For both perturbed and unperturbed gratings, effects similar to backscattering enhancement seen for randomly rough surfaces are observed, and these effects are linked to the coherent interference of reciprocal pairs of waves multiply scattered within the grooves.

  13. Study of the spectrum of inflaton perturbations

    NASA Astrophysics Data System (ADS)

    Glenz, Matthew M.; Parker, Leonard

    2009-09-01

    We examine the spectrum of inflaton fluctuations resulting from any given long period of exponential inflation. Infrared and ultraviolet divergences in the inflaton dispersion summed over all modes do not appear in our approach. We show how the scale invariance of the perturbation spectrum arises. We also examine the spectrum of scalar perturbations of the metric that is created by the inflaton fluctuations that have left the Hubble sphere during inflation and the spectrum of density perturbations that they produce at reentry after inflation has ended. When the inflaton dispersion spectrum is renormalized during the expansion, we show (for the case of the quadratic inflaton potential) that the density perturbation spectrum approaches a mass-independent limit as the inflaton mass approaches zero, and remains near that limiting value for masses less than about 1/4 of the inflationary Hubble constant. We show that this limiting behavior does not occur if one only makes the Minkowski space subtraction, without the further adiabatic subtractions that involve time derivatives of the expansion scale factor a(t). We also find a parametrized expression for the energy density produced by the change in a(t) as inflation ends. If the end of inflation were sufficiently abrupt, then the temperature corresponding to this energy density could be very significant. We also show that fluctuations of the inflaton field that are present before inflation starts are not dissipated during inflation and could have a significant observational effect today. The mechanism for this is caused by the initial fluctuations through stimulated emission from the vacuum.

  14. Study of the spectrum of inflaton perturbations

    SciTech Connect

    Glenz, Matthew M.; Parker, Leonard

    2009-09-15

    We examine the spectrum of inflaton fluctuations resulting from any given long period of exponential inflation. Infrared and ultraviolet divergences in the inflaton dispersion summed over all modes do not appear in our approach. We show how the scale invariance of the perturbation spectrum arises. We also examine the spectrum of scalar perturbations of the metric that is created by the inflaton fluctuations that have left the Hubble sphere during inflation and the spectrum of density perturbations that they produce at reentry after inflation has ended. When the inflaton dispersion spectrum is renormalized during the expansion, we show (for the case of the quadratic inflaton potential) that the density perturbation spectrum approaches a mass-independent limit as the inflaton mass approaches zero, and remains near that limiting value for masses less than about 1/4 of the inflationary Hubble constant. We show that this limiting behavior does not occur if one only makes the Minkowski space subtraction, without the further adiabatic subtractions that involve time derivatives of the expansion scale factor a(t). We also find a parametrized expression for the energy density produced by the change in a(t) as inflation ends. If the end of inflation were sufficiently abrupt, then the temperature corresponding to this energy density could be very significant. We also show that fluctuations of the inflaton field that are present before inflation starts are not dissipated during inflation and could have a significant observational effect today. The mechanism for this is caused by the initial fluctuations through stimulated emission from the vacuum.

  15. Intelligent perturbation algorithms to space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1991-01-01

    The limited availability and high cost of crew time and scarce resources make optimization of space operations critical. Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex scheduling problems that were previously considered computationally intractable. Described here is a class of search techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms to optimize the scheduling of space crew, payload, and resource operations are also discussed.

  16. Perturbations Involving nu1 of NCCN.

    PubMed

    Maki; Klee

    1999-01-01

    From high-resolution infrared spectra of 14N12C12C14N, 14N13C13C14N, and 15N12C12C15N, we find that the levels 1000(0)0(0), 1000(0)1(1), 1000(0)2(0,2), and 1000(0)3(1,3) have very pronounced perturbations. Our analysis shows that these perturbations are due to a vibrational resonance among the levels 1000(0)0(0), 0102(0)2(0), and 0102(0)2(2) in the one case, and equivalent levels with one or more additional quanta of nu5 in the other three cases. The resonance constant for the perturbation involving nu1 is 0.25 cm-1. It has the dependence on v5 and l5 that is expected for the sextic potential constant, K124455, although it seems too large for such a high-order constant. The Deltal (or Deltak) = 2 interaction between, for instance, 1000(0)0(0) and 0102(0)2(2e) is shown to be primarily due to the l-type resonance mixing of the 0102(0)2(0) and 0102(0)2(2e) states. The resonance is nearly "turned off" for the 1000(0)2(0,2) and 1000(0)3(1,3) states of 14N13C13C14N because there are no level crossings between the interacting states and the band centers are too far away to have an obvious effect, although careful analysis shows that the perturbation can be seen in their effective centrifugal distortion constants. The spectrum of 15N12C12C15N shows level crossings only in the case of the 1000(0)1(1), 1000(0)2(0,2), and 1000(0)3(1,3) states. Copyright 1999 Academic Press.

  17. Perturbational analysis of plasmon decay in jellium

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Macke, Wilhelm; Miesenböck, Helga M.; Schinner, Andreas

    1991-02-01

    Plasmon damping in the three-dimensional homogeneous electron gas is investigated within second order perturbation theory for the density-density response function. The equivalence of several existing approaches that take into account lowest order two-pair excitations is shown explicitly. Finally, a complete Monte-Carlo analysis of the multi-dimensional integrals for the dielectric function is made for arbitrary densities.

  18. Perturbations of nested branes with induced gravity

    SciTech Connect

    Sbisà, Fulvio; Koyama, Kazuya E-mail: kazuya.koyama@port.ac.uk

    2014-06-01

    We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ''ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.

  19. Multifrequency perturbations in matter-wave interferometry

    NASA Astrophysics Data System (ADS)

    Günther, A.; Rembold, A.; Schütz, G.; Stibor, A.

    2015-11-01

    High-contrast matter-wave interferometry is essential in various fundamental quantum mechanical experiments as well as for technical applications. Thereby, contrast and sensitivity are typically reduced by decoherence and dephasing effects. While decoherence accounts for a general loss of quantum information in a system due to entanglement with the environment, dephasing is due to collective time-dependent external phase shifts, which can be related to temperature drifts, mechanical vibrations, and electromagnetic oscillations. In contrast to decoherence, dephasing can, in principle, be reversed. Here, we demonstrate in experiment and theory a method for the analysis and reduction of the influence of dephasing noise and perturbations consisting of several external frequencies in an electron interferometer. This technique uses the high spatial and temporal resolution of a delay-line detector to reveal and remove dephasing perturbations by second-order correlation analysis. It allows matter-wave experiments under perturbing laboratory conditions and can be applied, in principle, to electron, atom, ion, neutron, and molecule interferometers.

  20. Convergence of coupled cluster perturbation theory

    NASA Astrophysics Data System (ADS)

    Eriksen, Janus J.; Kristensen, Kasper; Matthews, Devin A.; Jørgensen, Poul; Olsen, Jeppe

    2016-12-01

    The convergence of a recently proposed coupled cluster (CC) family of perturbation series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)], in which the energetic difference between two CC models—a low-level parent and a high-level target model—is expanded in orders of the Møller-Plesset (MP) fluctuation potential, is investigated for four prototypical closed-shell systems (Ne, singlet CH2, distorted HF, and F-) in standard and augmented basis sets. In these investigations, energy corrections of the various series have been calculated to high orders and their convergence radii have been determined by probing for possible front- and back-door intruder states, the existence of which would make the series divergent. In summary, we conclude how it is primarily the choice of the target state, and not the choice of the parent state, which ultimately governs the convergence behavior of a given series. For example, restricting the target state to, say, triple or quadruple excitations might remove intruders present in series which target the full configuration interaction limit, such as the standard MP series. Furthermore, we find that whereas a CC perturbation series might converge within standard correlation consistent basis sets, it may start to diverge whenever these become augmented by diffuse functions, similar to the MP case. However, unlike for the MP case, such potential divergences are not found to invalidate the practical use of the low-order corrections of the CC perturbation series.

  1. Non-perturbative effects in spin glasses

    NASA Astrophysics Data System (ADS)

    Castellana, Michele; Parisi, Giorgio

    2015-03-01

    We present a numerical study of an Ising spin glass with hierarchical interactions--the hierarchical Edwards-Anderson model with an external magnetic field (HEA). We study the model with Monte Carlo (MC) simulations in the mean-field (MF) and non-mean-field (NMF) regions corresponding to d >= 4 and d < 4 for the d-dimensional ferromagnetic Ising model respectively. We compare the MC results with those of a renormalization-group (RG) study where the critical fixed point is treated as a perturbation of the MF one, along the same lines as in the -expansion for the Ising model. The MC and the RG method agree in the MF region, predicting the existence of a transition and compatible values of the critical exponents. Conversely, the two approaches markedly disagree in the NMF case, where the MC data indicates a transition, while the RG analysis predicts that no perturbative critical fixed point exists. Also, the MC estimate of the critical exponent ν in the NMF region is about twice as large as its classical value, even if the analog of the system dimension is within only ~2% from its upper-critical-dimension value. Taken together, these results indicate that the transition in the NMF region is governed by strong non-perturbative effects.

  2. Quantum inflaton, primordial perturbations, and CMB fluctuations

    SciTech Connect

    Cao, F.J.; Vega, H.J. de; Sanchez, N.G.

    2004-10-15

    We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow-roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current Wilkinson Microwave Anisotropy Probe observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of (m{sup 2}/NH{sup 2}), where m is the inflaton mass and H the Hubble constant at the moment of horizon crossing. An upper estimate turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it.

  3. Generating Curvature Perturbations in a Contracting Universe

    NASA Astrophysics Data System (ADS)

    Levy, Aaron M.

    This thesis studies bouncing cosmologies in which the present-day expansion of the universe was preceded not by a "big bang"- before which time and space ceased to have meaning- but by a contracting phase that then bounced. We discuss two competing paradigms for generating the observed, scale-invariant spectrum of primordial density perturbations during the contracting phase: "the matter bounce scenario" and "ekpyrosis." First, we discuss the matter bounce scenario, and in particular, its fine-tuning instability to the growth of anisotropic stress. Then, we examine ekpyrosis. In the best-understood ekpyrotic models, one scalar field drives the background evolution of the universe while another (entropic) scalar field generates the density perturbations. We study the stability of these models, showing that in contrast to previous theorems, the simplest (as measured by parameters and degrees of freedom), observationally viable realizations are dynamical attractors. Finally, we present a new mechanism called "warm ekpyrosis," which eliminates altogether the need for the second (entropic) scalar field. Rather, a single field falls down its ekpyrotic potential, smoothing and flattening the universe, while simultaneously, through couplings to lighter degrees of freedom, decaying into hot, ultrarelativistic matter. This decay allows both for the production of a scale-invariant density perturbation and for a possible mechanism of reheating.

  4. Quantum Perturbative Approach to Discrete Redshift

    NASA Astrophysics Data System (ADS)

    Roberts, Mark D.

    On the largest scales there is evidence of discrete structure, examples of this are superclusters and voids and also by redshift taking discrete values. In this paper it is proposed that discrete redshift can be explained by using the spherical harmonic integer l; this occurs both in the metric or density perturbations and also in the solution of wave equations in Robertson-Walker spacetime. It is argued that the near conservation of energy implies that l varies regularly for wave equations in Robertson-Walker spacetime, whereas for density perturbations l cannot vary regularly. Once this is assumed then perhaps the observed value of discrete redshift provides the only observational or experimental data that directly requires an explanation using both gravitational and quantum theory. In principle a model using this data could predict the scale factor R (or equivalently the deceleration parameter q). Solutions of the Klein-Gordon equation in Robertson-Walker spacetimes are used to devise models which have redshift taking discrete values, but they predict a microscopic value for R. A model in which the stress of the Klein-Gordon equation induces a metrical perturbation of Robertson-Walker spacetime is devised. Calculations based upon this model predict that the Universe is closed with 2_q0 - 1=10^-4.

  5. Cosmic perturbations through the cyclic ages

    SciTech Connect

    Erickson, Joel K.; Gratton, Steven; Steinhardt, Paul J.; Turok, Neil

    2007-06-15

    We analyze the evolution of cosmological perturbations in the cyclic model, paying particular attention to their behavior and interplay over multiple cycles. Our key results are: (1) galaxies and large scale structure present in one cycle are generated by the quantum fluctuations in the preceding cycle without interference from perturbations or structure generated in earlier cycles and without interfering with structure generated in later cycles; (2) the ekpyrotic phase, an epoch of gentle contraction with equation of state w>>1 preceding the hot big bang, makes the universe homogeneous, isotropic and flat within any given observer's horizon; and (3) although the universe is uniform within each observer's horizon, the structure of the cyclic universe on very large scales is more complex, owing to the effects of superhorizon length perturbations, and cannot be described globally as a Friedmann-Robertson-Walker cosmology. In particular, we show that the ekpyrotic contraction phase is so effective in smoothing, flattening and isotropizing the universe within the horizon that this phase alone suffices to solve the horizon and flatness problems even without an extended period of dark energy domination (a kind of low energy inflation). Instead, the cyclic model rests on a genuinely novel, noninflationary mechanism (ekpyrotic contraction) for resolving the classic cosmological conundrums.

  6. Perturbed dissipative solitons: A variational approach

    NASA Astrophysics Data System (ADS)

    Sahoo, Ambaresh; Roy, Samudra; Agrawal, Govind P.

    2017-07-01

    We adopt a variational technique to study the dynamics of perturbed dissipative solitons whose evolution is governed by a Ginzburg-Landau equation (GLE). As a specific example of such solitons, we consider a silicon-based active waveguide in which free carriers are generated through two-photon absorption. In this case, dissipative solitons are perturbed by physical processes such as third-order dispersion, intrapulse Raman scattering, self-steepening, and free-carrier generation. To solve the variational problem, we adopt the Pereira-Stenflo soliton as an ansatz since this soliton is the exact solution of the unperturbed GLE. With this ansatz, we derive a set of six coupled differential equations exhibiting the dynamics of various pulse parameters. This set of equations provides considerable physical insight into the complex behavior of perturbed dissipative solitons. Its predictions are found to be in good agreement with direct numerical simulations of the GLE. More specifically, the spectral and temporal shifts of the chirped soliton induced by free carriers and intrapulse Raman scattering are predicted quite accurately. We also provide simple analytic expressions of these shifts by making suitable approximations. Our semianalytic treatment is useful for gaining physical insight into complex soliton-evolution processes.

  7. Non-perturbative effects in spin glasses

    PubMed Central

    Castellana, Michele; Parisi, Giorgio

    2015-01-01

    We present a numerical study of an Ising spin glass with hierarchical interactions—the hierarchical Edwards-Anderson model with an external magnetic field (HEA). We study the model with Monte Carlo (MC) simulations in the mean-field (MF) and non-mean-field (NMF) regions corresponding to d ≥ 4 and d < 4 for the d-dimensional ferromagnetic Ising model respectively. We compare the MC results with those of a renormalization-group (RG) study where the critical fixed point is treated as a perturbation of the MF one, along the same lines as in the -expansion for the Ising model. The MC and the RG method agree in the MF region, predicting the existence of a transition and compatible values of the critical exponents. Conversely, the two approaches markedly disagree in the NMF case, where the MC data indicates a transition, while the RG analysis predicts that no perturbative critical fixed point exists. Also, the MC estimate of the critical exponent ν in the NMF region is about twice as large as its classical value, even if the analog of the system dimension is within only ~2% from its upper-critical-dimension value. Taken together, these results indicate that the transition in the NMF region is governed by strong non-perturbative effects. PMID:25733337

  8. Topological quantum order: Stability under local perturbations

    SciTech Connect

    Bravyi, Sergey; Hastings, Matthew B.; Michalakis, Spyridon

    2010-09-15

    We study zero-temperature stability of topological phases of matter under weak time-independent perturbations. Our results apply to quantum spin Hamiltonians that can be written as a sum of geometrically local commuting projectors on a D-dimensional lattice with certain topological order conditions. Given such a Hamiltonian H{sub 0}, we prove that there exists a constant threshold {epsilon}>0 such that for any perturbation V representable as a sum of short-range bounded-norm interactions, the perturbed Hamiltonian H=H{sub 0}+{epsilon}V has well-defined spectral bands originating from low-lying eigenvalues of H{sub 0}. These bands are separated from the rest of the spectra and from each other by a constant gap. The band originating from the smallest eigenvalue of H{sub 0} has exponentially small width (as a function of the lattice size). Our proof exploits a discrete version of Hamiltonian flow equations, the theory of relatively bounded operators, and the Lieb-Robinson bound.

  9. Perturbative gravity in the causal approach

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.

    2010-01-01

    Quantum theory of the gravitation in the causal approach is studied up to the second order of perturbation theory in the causal approach. We emphasize the use of cohomology methods in this framework. After describing in detail the mathematical structure of the cohomology method we apply it in three different situations: (a) the determination of the most general expression of the interaction Lagrangian; (b) the proof of gauge invariance in the second order of perturbation theory for the pure gravity system—massless and massive; (c) the investigation of the arbitrariness of the second-order chronological products compatible with renormalization principles and gauge invariance (i.e. the renormalization problem in the second order of perturbation theory). In case (a) we investigate pure gravity systems and the interaction of massless gravity with matter (described by scalars and spinors) and massless Yang-Mills fields. We obtain a difference with respect to the classical field theory due to the fact that in quantum field theory one cannot enforce the divergenceless property on the vector potential and this spoils the divergenceless property of the usual energy-momentum tensor. To correct this one needs a supplementary ghost term in the interaction Lagrangian. In all three case, the computations are more simple than by the usual methods.

  10. Relativistic Positioning System in perturbed spacetime

    NASA Astrophysics Data System (ADS)

    Kostić, Uroš; Horvat, Martin; Gomboc, Andreja

    2015-11-01

    We present a variant of a Global Navigation Satellite System called a Relativistic Positioning System (RPS), which is based on emission coordinates. We modelled the RPS dynamics in a spacetime around Earth, described by a perturbed Schwarzschild metric, where we included the perturbations due to Earth multipoles (up to the 6th), the Moon, the Sun, Venus, Jupiter, solid tide, ocean tide, and Kerr rotation effect. The exchange of signals between the satellites and a user was calculated using a ray-tracing method in the Schwarzschild spacetime. We find that positioning in a perturbed spacetime is feasible and is highly accurate already with standard numerical procedures: the positioning algorithms used to transform between the emission and the Schwarzschild coordinates of the user are very accurate and time efficient—on a laptop it takes 0.04 s to determine the user’s spatial and time coordinates with a relative accuracy of {10}-28-{10}-26 and {10}-32-{10}-30, respectively.

  11. Perturbative Critical Behavior from Spacetime Dependent Couplings

    SciTech Connect

    Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo

    2012-08-03

    We find novel perturbative fixed points by introducing mildly spacetime-dependent couplings into otherwise marginal terms. In four-dimensional QFT, these are physical analogues of the small-{epsilon} Wilson-Fisher fixed point. Rather than considering 4-{epsilon} dimensions, we stay in four dimensions but introduce couplings whose leading spacetime dependence is of the form {lambda}x{sup {kappa}}{mu}{sup {kappa}}, with a small parameter {kappa} playing a role analogous to {epsilon}. We show, in {phi}{sup 4} theory and in QED and QCD with massless flavors, that this leads to a critical theory under perturbative control over an exponentially wide window of spacetime positions x. The exact fixed point coupling {lambda}{sub *}(x) in our theory is identical to the running coupling of the translationally invariant theory, with the scale replaced by 1/x. Similar statements hold for three-dimensional {phi}{sup 6} theories and two-dimensional sigma models with curved target spaces. We also describe strongly coupled examples using conformal perturbation theory.

  12. Noninflationary model with scale invariant cosmological perturbations

    SciTech Connect

    Peter, Patrick; Pinho, Emanuel J. C.; Pinto-Neto, Nelson

    2007-01-15

    We show that a contracting universe which bounces due to quantum cosmological effects and connects to the hot big-bang expansion phase, can produce an almost scale invariant spectrum of perturbations provided the perturbations are produced during an almost matter dominated era in the contraction phase. This is achieved using Bohmian solutions of the canonical Wheeler-DeWitt equation, thus treating both the background and the perturbations in a fully quantum manner. We find a very slightly blue spectrum (n{sub S}-1>0). Taking into account the spectral index constraint as well as the cosmic microwave background normalization measure yields an equation of state that should be less than {omega} < or approx. 8x10{sup -4}, implying n{sub S}-1{approx}O(10{sup -4}), and that the characteristic curvature scale of the Universe at the bounce is L{sub 0}{approx}10{sup 3}l{sub Pl}, a region where one expects that the Wheeler-DeWitt equation should be valid without being spoiled by string or loop quantum gravity effects. We have also obtained a consistency relation between the tensor-to-scalar ratio T/S and the scalar spectral index as T/S{approx}4.6x10{sup -2}{radical}(n{sub S}-1), leading to potentially measurable differences with inflationary predictions.

  13. Baryonic matter perturbations in decaying vacuum cosmology

    SciTech Connect

    Marttens, R.F. vom; Zimdahl, W.; Hipólito-Ricaldi, W.S. E-mail: wiliam.ricaldi@ufes.br

    2014-08-01

    We consider the perturbation dynamics for the cosmic baryon fluid and determine the corresponding power spectrum for a Λ(t)CDM model in which a cosmological term decays into dark matter linearly with the Hubble rate. The model is tested by a joint analysis of data from supernovae of type Ia (SNIa) (Constitution and Union 2.1), baryonic acoustic oscillations (BAO), the position of the first peak of the anisotropy spectrum of the cosmic microwave background (CMB) and large-scale-structure (LSS) data (SDSS DR7). While the homogeneous and isotropic background dynamics is only marginally influenced by the baryons, there are modifications on the perturbative level if a separately conserved baryon fluid is included. Considering the present baryon fraction as a free parameter, we reproduce the observed abundance of the order of 5% independently of the dark-matter abundance which is of the order of 32% for this model. Generally, the concordance between background and perturbation dynamics is improved if baryons are explicitly taken into account.

  14. Hamiltonian formalism for Perturbed Black Hole Spacetimes

    NASA Astrophysics Data System (ADS)

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Present and future gravitational wave observations provide a new mechanism to probe the predictions of general relativity. Observations of extreme mass ratio inspirals with millihertz gravitational wave detectors such as LISA will provide exquisite constraints on the spacetime structure outside astrophysical black holes, enabling tests of the no-hair property that all general relativistic black holes are described by the Kerr metric. Previous work to understand what constraints LISA observations will be able to place has focussed on specific alternative theories of gravity, or generic deviations that preserve geodesic separability. We describe an alternative approach to this problem--a technique that employs canonical perturbations of the Hamiltonian function describing motion in the Kerr metric. We derive this new approach and demonstrate its application to the cases of a slowly rotating Kerr black hole which is viewed as a perturbation of a Schwarzschild black hole, of coupled perturbations of black holes in the second-order Chern-Simons modified gravity theory, and several more indicative scenarios. Deyan Mihaylov is funded by STFC.

  15. Measuring the speed of dark: Detecting dark energy perturbations

    SciTech Connect

    Putter, Roland de; Huterer, Dragan; Linder, Eric V.

    2010-05-15

    The nature of dark energy can be probed not only through its equation of state but also through its microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure. As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both cosmic microwave background and matter power spectra. We show that current data can put no significant constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can begin to show more interesting results for early dark energy models. For example, the best fit model for current data has a slight preference for dynamics [w(a){ne}-1], degrees of freedom distinct from quintessence (c{sub s{ne}}1), and early presence of dark energy [{Omega}{sub de}(a<<1){ne}0]. Future data may open a new window on dark energy by measuring its spatial as well as time variation.

  16. Local density approximation for a perturbative equation of state

    SciTech Connect

    Astrakharchik, G. E.

    2005-12-15

    Knowledge of a series expansion of the equation of state provides a deep insight into the physical nature of a quantum system. Starting from a generic 'perturbative' equation of state of a homogeneous ultracold gas we make predictions for the properties of the gas in the presence of harmonic confinement. The local density approximation is used to obtain the chemical potential, total and release energies, Thomas-Fermi size, and density profile of a trapped system in three-, two-, and one-dimensional geometries. The frequencies of the lowest breathing modes are calculated using scaling and sum-rule approaches and could be used in an experiment as a high-precision tool for obtaining the expansion terms of the equation of state. The derived formalism is applied to dilute Bose and Fermi gases in different dimensions and to integrable one-dimensional models. The physical meaning of the expansion terms in a number of systems is discussed.

  17. Development of a vortex generator to perturb fish locomotion.

    PubMed

    Seth, Deeksha; Flammang, Brooke E; Lauder, George V; Tangorra, James L

    2017-03-15

    Knowledge about the stiffness of fish fins, and whether stiffness is modulated during swimming, is important for understanding the mechanics of a fin's force production. However, the mechanical properties of fins have not been studied during natural swimming, in part because of a lack of instrumentation. To remedy this, a vortex generator was developed that produces traveling vortices of adjustable strength which can be used to perturb the fins of swimming fish. Experiments were conducted to understand how the generator's settings affected the resulting vortex rings. A variety of vortices (14-32 mm diameter traveling at 371-2155 mm s(-1)) were produced that elicited adequate responses from the fish fins to help us to understand the fin's mechanical properties at various swimming speeds (0-350 mm s(-1)).

  18. Determination of the sediment carrying capacity based on perturbed theory.

    PubMed

    Ni, Zhi-hui; Zeng, Qiang; Li-chun, Wu

    2014-01-01

    According to the previous studies of sediment carrying capacity, a new method of sediment carrying capacity on perturbed theory was proposed. By taking into account the average water depth, average flow velocity, settling velocity, and other influencing factors and introducing the median grain size as one main influencing factor in deriving the new formula, we established a new sediment carrying capacity formula. The coefficients were determined by the principle of dimensional analysis, multiple linear regression method, and the least square method. After that, the new formula was verified through measuring data of natural rivers and flume tests and comparing the verified results calculated by Cao Formula, Zhang Formula, Li Formula, Engelung-Hansen Formula, Ackers-White Formula, and Yang Formula. According to the compared results, it can be seen that the new method is of high accuracy. It could be a useful reference for the determination of sediment carrying capacity.

  19. Influence of rotating resonant magnetic perturbations on particle confinement

    NASA Astrophysics Data System (ADS)

    Hu, Qiming; Yu, Q.; Wang, Nengchao; Shi, Peng; Yi, Bin; Ding, Yonghua; Rao, Bo; Chen, Zhipeng; Gao, Li; Hu, Xiwei; Jin, Hai; Li, Mao; Li, Jianchao; Yu, Kexun; Zhuang, Ge; the J-TEXT Team

    2014-12-01

    The effect of resonant magnetic perturbations (RMPs) on particle confinement is studied in J-TEXT tokamak by using externally applied rotating RMPs. It is found that RMPs cause improved (degraded) particle confinement when its frequency is higher (lower) than the natural m/n = 2/1 tearing mode frequency, and the amount of change in electron density is proportional to the difference between these two frequencies, where m and n are the poloidal and toroidal mode number, respectively. These results reveal the important role of the relative rotation between RMPs and the electron fluid in affecting the particle confinement. The experimental results are compared to numerical ones based on nonlinear two-fluid equations, and quantitative agreement is found.

  20. Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime

    SciTech Connect

    Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying

    2014-10-15

    We propose an interesting scheme for tunable high-order sideband comb generation by utilizing ultrastrong optomechanical interaction in a GaAs optomechanical disk resonator beyond the perturbative approximation. We analyze the nonlinear nature of the optomechanical interaction, and give a full description of the non-perturbative effects. It is shown, within the non-perturbative regime, that high-order sideband comb with large intensities can be realized and controlled in a GaAs optomechanical disk resonator with experimentally achievable system parameters, and the non-perturbative regime leads to rich and nontrivial behavior.

  1. Non-Gaussian density fluctuations from entropically generated curvature perturbations in ekpyrotic models

    SciTech Connect

    Lehners, Jean-Luc; Steinhardt, Paul J.

    2008-03-15

    We analyze the non-Gaussian density perturbations generated in ekpyrotic/cyclic models based on heterotic M theory. In this picture, two scalar fields produce nearly scale-invariant entropic perturbations during an ekpyrotic phase that are converted into curvature modes after the ekpyrotic phase is complete and just before the big bang. Both intrinsic nonlinearity in the entropy perturbation and the conversion process contribute to non-Gaussianity. The range of the non-Gaussianity parameter f{sub NL} depends on how gradual the conversion process is and the steepness of the scalar field potential during the ekpyrotic phase. Although a wider range is possible, in principle, natural values of the ekpyrotic parameters combined with a gradual conversion process lead to values of -50 < or approx. f{sub NL} < or approx. +200, typically much greater than slow-roll inflation but within the current observational bounds.

  2. Fully non-linear cosmological perturbations of multicomponent fluid and field systems

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Noh, Hyerim; Park, Chan-Gyung

    2016-09-01

    We present fully non-linear and exact cosmological perturbation equations in the presence of multiple components of fluids and minimally coupled scalar fields. We ignore the tensor-type perturbation. The equations are presented without taking the temporal gauge condition in the Friedmann background with general curvature and the cosmological constant. We include the anisotropic stress. Even in the absence of anisotropic stress of individual component, the multiple component nature introduces the anisotropic stress in the collective fluid quantities. We prove the Newtonian limit of multiple fluids in the zero-shear gauge and the uniform-expansion gauge conditions, present the Newtonian hydrodynamic equations in the presence of general relativistic pressure in the zero-shear gauge, and present the fully non-linear equations and the third-order perturbation equations of the non-relativistic pressure fluids in the CDM-comoving gauge.

  3. Analytic description of Dvali-Gabadadze-Porrati perturbations on all scales

    NASA Astrophysics Data System (ADS)

    Seahra, Sanjeev S.; Hu, Wayne

    2010-12-01

    We develop analytic solutions for the linear evolution of metric perturbations in the Dvali-Gabadadze-Porrati braneworld modified gravity scenario including near-horizon and superhorizon modes where solutions in the bulk are required. These solutions apply to both the self-accelerating and normal branch and elucidate the nature of coordinate singularities and initial data in the bulk as well as their effect on perturbation evolution on the brane. Even on superhorizon scales, the evolution of metric perturbations is no longer necessarily scale free due to multiple resonances in the bulk. Based on these analytic solutions, we devise convenient fitting functions for the evolutions that bridge the various spatial and temporal regimes. Compared with a direct numerical integration of the bulk equations, the fits are accurate at the percent level and are sufficient for current and upcoming observational tests.

  4. Thermodynamic Bounds on Nonlinear Electrostatic Perturbations in Intense Charged Particle Beams

    SciTech Connect

    Nikolas C. Logan and Ronald C. Davidson

    2012-07-18

    This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (TllT⊥ < 1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions.

  5. Managing perturbations during handover meetings: a joint activity framework.

    PubMed

    Mayor, Eric; Bangerter, Adrian

    2015-11-01

    To document the prevalence of perturbations of handover meetings and understand how nurses manage temporal, physical and social meeting boundaries in response to perturbations. Handovers are joint activities performed collaboratively by participating nurses. Perturbations of handover are frequent and may potentially threaten continuity of care. We observed and videotaped handovers during five successive days in four nursing care units in two Swiss hospitals in 2009. Videorecordings were transcribed. All perturbations during the handovers were noted. We performed content analysis of the sources of perturbations from the notes and interactional micro-analyses of handover interactions based on video and transcripts. Nurses are the most frequent sources of perturbations during handovers. Perturbations are collaboratively managed. A tacit division of labour is enacted via multimodal communication strategies, whereby perturbations are dealt with using both linguistic and bodily signals.

  6. Helical temperature perturbations associated with tearing modes in tokamak plasmas

    SciTech Connect

    Fitzpatrick, R.

    1994-06-01

    An investigation is made into the electron temperature perturbations associated with tearing modes in tokamak plasmas, with a view to determining the mode structure using Electron Cyclotron Emission (ECE) data. It is found that there is a critical magnetic island width below which the conventional picture where the temperature is flattened inside the separatrix is invalid. This effect comes about because of the stagnation of magnetic field lines in the vicinity of the rational surface and the finite parallel thermal conductivity of the plasma. For islands whose widths lie below the critical value there is no flattening of the electron temperature inside the separatrix. Such islands have quite different ECE signatures to conventional magnetic islands. In fact the two island types could, in principle, be differentiated experimentally. It should also be possible to map out the outer ideal magnetohydrodynamical eigenfunctions using ECE data. Islands whose widths are much less than the critical value are not destabilized by the perturbed bootstrap current, unlike conventional magnetic islands. This effect is found to have a number of very interesting consequences and may, indeed, provide an explanation for some puzzling experimental results regarding error field induced magnetic reconnection. All islands whose widths are much greater than the critical width possess a boundary layer on the separatrix which enables heat to be transported from one side of the island to the other via the X-point region. The structure of this boundary layer is described in some detail. Finally, the critical island width is found to be fairly substantial in conventional tokamak plasmas, provided that the long mean free path nature of parallel heat transport and the anomalous nature of perpendicular heat transport are taken into account in the calculation.

  7. Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations.

    PubMed

    Mongeon, David; Blanchet, Pierre; Messier, Julie

    2013-03-01

    The capacity to learn new visuomotor associations is fundamental to adaptive motor behavior. Evidence suggests visuomotor learning deficits in Parkinson's disease (PD). However, the exact nature of these deficits and the ability of dopamine medication to improve them are under-explored. Previous studies suggested that learning driven by large and small movement errors engaged distinct neural mechanisms. Here, we investigated whether PD patients have a generalized impairment in visuomotor learning or selective deficits in learning from large explicit errors which engages cognitive strategies or small imperceptible movement errors involving primarily implicit learning processes. Visuomotor learning skills of non-medicated and medicated patients were assessed in two reaching tasks in which the size of visuospatial errors experienced during learning was manipulated using a novel three-dimensional virtual reality environment. In the explicit perturbation task, the visuomotor perturbation was applied suddenly resulting in large consciously detected initial spatial errors, whereas in the implicit perturbation task, the perturbation was gradually introduced in small undetectable steps such that subjects never experienced large movement errors. A major finding of this study was that PD patients in non-medicated and medicated conditions displayed slower learning rates and smaller adaptation magnitudes than healthy subjects in the explicit perturbation task, but performance similar to healthy controls in the implicit perturbation task. Also, non-medicated patients showed an average reduced deadaptation relative to healthy controls when exposed to the large errors produced by the sudden removal of the perturbation in both the explicit and implicit perturbation tasks. Although dopaminergic medication consistently improved motor signs, it produced a variable impact on learning the explicit perturbation and deadaptation and unexpectedly worsened performance in some patients

  8. New implementation of the configuration-based multi-reference second order perturbation theory

    NASA Astrophysics Data System (ADS)

    Lei, Yibo; Wang, Yubin; Han, Huixian; Song, Qi; Suo, Bingbing; Wen, Zhenyi

    2012-10-01

    We present an improved version of the configuration-based multi-reference second-order perturbation approach (CB-MRPT2) according to the formulation of Lindgren on perturbation theory of a degenerate model space. This version involves a reclassification of the perturbation functions and new algorithms to calculate matrix elements in the perturber energy expressions utilizing the graphical unitary group approach and the hole-particle symmetry. The diagonalize-then-perturb (DP), including Rayleigh-Schrödinger and Brillouin-Wigner, and diagonalize-then-perturb-then-diagonalize (DPD) modes have been implemented. The new CB-MRPT2 method is applied to several typical and interesting systems: (1) the vertical excitation energies for several states of CO and N2, (2) energy comparison and timing of the ground state of C4H6, (3) the quasi-degeneracy of states in LiF, (4) the intruder state problems of AgH, and (5) the relative energies of di-copper-oxygen-ammonia complex isomers. The results indicate that the computational accuracy and efficiency of the presented methods are competitive and intruder-free. It should be emphasized that the DPD method rectifies naturally the shortcomings of LiF potential energy curves constructed by the original second order complete active space perturbation theory (CASPT2), without having to recourse to the so-called state mixture. Unlike CASPT2, the new methods give the same energy ordering for the two di-copper-oxygen-ammonia isomers as the previous multi-reference configuration interaction with single and double excitations methods. The new CB-MRPT2 method is shown to be a useful tool to study small to medium-sized systems.

  9. Improvement and performance evaluation of the perturbation source method for an exact Monte Carlo perturbation calculation in fixed source problems

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hiroki; Yamamoto, Toshihiro

    2017-09-01

    This paper presents improvement and performance evaluation of the ;perturbation source method;, which is one of the Monte Carlo perturbation techniques. The formerly proposed perturbation source method was first-order accurate, although it is known that the method can be easily extended to an exact perturbation method. A transport equation for calculating an exact flux difference caused by a perturbation is solved. A perturbation particle representing a flux difference is explicitly transported in the perturbed system, instead of in the unperturbed system. The source term of the transport equation is defined by the unperturbed flux and the cross section (or optical parameter) changes. The unperturbed flux is provided by an ;on-the-fly; technique during the course of the ordinary fixed source calculation for the unperturbed system. A set of perturbation particle is started at the collision point in the perturbed region and tracked until death. For a perturbation in a smaller portion of the whole domain, the efficiency of the perturbation source method can be improved by using a virtual scattering coefficient or cross section in the perturbed region, forcing collisions. Performance is evaluated by comparing the proposed method to other Monte Carlo perturbation methods. Numerical tests performed for a particle transport in a two-dimensional geometry reveal that the perturbation source method is less effective than the correlated sampling method for a perturbation in a larger portion of the whole domain. However, for a perturbation in a smaller portion, the perturbation source method outperforms the correlated sampling method. The efficiency depends strongly on the adjustment of the new virtual scattering coefficient or cross section.

  10. Perturbative and gauge invariant treatment of gravitational wave memory

    NASA Astrophysics Data System (ADS)

    Bieri, Lydia; Garfinkle, David

    2014-04-01

    We present a perturbative treatment of gravitational wave memory. The coordinate invariance of Einstein's equations leads to a type of gauge invariance in perturbation theory. As with any gauge invariant theory, results are more clear when expressed in terms of manifestly gauge invariant quantities. Therefore we derive all our results from the perturbed Weyl tensor rather than the perturbed metric. We derive gravitational wave memory for the Einstein equations coupled to a general energy-momentum tensor that reaches null infinity.

  11. Nonconvergence to Saddle Boundary Points under Perturbed Reinforcement Learning

    DTIC Science & Technology

    2012-12-07

    perturbed reinforcement learning scheme with a state-based perturbation function. Section 4 states some standard results from Lyapunov -based...property (1), property (4) establishes equivalence among perturbed and unperturbed dynamics when λ = 0. For example, a candidate perturbation function is: ζi...reinforcement learning schemes, we will use a) stochastic Lyapunov stability analysis, in order to investigate the probabilities that a sample function exits

  12. Perturbation theory applied to potential energy surfaces. I. The choice of a suitable reference function u(0)

    SciTech Connect

    Nyden, M.R.; Petersson, G.A.

    1981-06-01

    The effect of the choice of zero order wave function on the accuracy of third-order perturbation theory is examined. The restricted Hartree--Fock, unrestricted Hartree--Fock, and generalized valence bond wave functions are considered as zero order wave functions for both Epstein--Nesbet and Moller--Plesset perturbation theory. In each case the third-order perturbation results are reported for the H/sub 2/ X/sup 1/S/sup +//sub g/ potential energy curve. The behavior of Epstein--Nesbet perturbation theory relative to Moller--Plesset perturbation theory is found to be independent of u(0). However, the nature of the perturbation and hence the absolute accuracy of both perturbation theories is determined by the choice of u(0). A comparison with CI calculations demonstrates that of the three examples, only the GVB perturbation theory is consistently accurate over the entire potential surface. The RHF expansion as expected becomes slowly convergent at large internuclear separations as a direct result of improper dissociation. On the other hand, the third-order UHF perturbation calculations have large errors (approx.0.0225 hartree) at intermediate internuclear separations (3--4 bohr) where there is a strong contribution from single excitations. In contrast, the third-order EN--GVB perturbation theory has a maximum error of only 0.0001 hartree for any H/sub 2/ geometry. The errors in the MP--GVB expansion for H3'' are about an order of magnitude larger but can be considerably reduced (to approx.0.0002 hartree) by using the geometric approximation.

  13. High resolution detection and excitation of resonant magnetic perturbations in a wall-stabilized tokamak

    SciTech Connect

    Maurer, David A.; Shiraki, Daisuke; Levesque, Jeffrey P.; Bialek, James; Angelini, Sarah; Byrne, Patrick; DeBono, Bryan; Hughes, Paul; Mauel, Michael E.; Navratil, Gerald A.; Peng Qian; Rhodes, Dov; Rath, Nickolaus; Stoafer, Christopher

    2012-05-15

    We report high-resolution detection of the 3D plasma magnetic response of wall-stabilized tokamak discharges in the High Beta Tokamak-Extended Pulse [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)] device. A new adjustable conducting wall has been installed on HBT-EP made up of 20 independent, movable, wall segments instrumented with three distinct sets of 40 modular coils that can be independently driven to generate a wide variety of magnetic perturbations. High-resolution detection of the plasma response is made with 216 poloidal and radial magnetic sensors that have been located and calibrated with high-accuracy. Static and dynamic plasma responses to resonant and non-resonant magnetic perturbations are observed through measurement of the step-response following a rapid change in the toroidal phase of the applied perturbations. Biorthogonal decomposition of the full set of magnetic sensors clearly defines the structures of naturally occurring external kinks as being composed of independent m/n = 3/1 and 6/2 modes. Resonant magnetic perturbations were applied to discharges with pre-existing, saturated m/n = 3/1 external kink mode activity. This m/n = 3/1 kink mode was observed to lock to the applied perturbation field. During this kink mode locked period, the plasma resonant response is characterized by a linear, a saturated, and a disruptive plasma regime dependent on the magnitude of the applied field and value of the edge safety factor and plasma rotation.

  14. Exploration of magnetic perturbation effects on advanced divertor configurations in NSTX-U

    SciTech Connect

    Frerichs, H.; Schmitz, O.; Waters, I.; Canal, G. P.; Evans, T. E.; Feng, Y.; Soukhanovskii, V. A.

    2016-06-15

    The control of divertor heat loads—both steady state and transient—remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (Edge Localized Modes) (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads is so called “advanced divertors” which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts—magnetic perturbations and advanced divertors—will have to work together, and we explore their interaction based on the NSTX-U setup. An overview of different divertor configurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which are related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.

  15. Exploration of magnetic perturbation effects on advanced divertor configurations in NSTX-U

    DOE Data Explorer

    Frerichs, H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Waters, I. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Schmitz, O. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Canal, G. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Evans, T. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Feng, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Soukhanovskii, V. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The control of divertor heat loads - both steady state and transient - remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads are so called 'advanced divertors' which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts - magnetic perturbations and advanced divertors - will have to work together, and we explore their interaction based on the NSTX-U setup. An overview of different divertor configurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which is related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.

  16. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  17. Measurements of effective delayed neutron fraction in a fast neutron reactor using the perturbation method

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Jun; Yin, Yan-Peng; Fan, Xiao-Qiang; Li, Zheng-Hong; Pu, Yi-Kang

    2016-06-01

    A perturbation method is proposed to obtain the effective delayed neutron fraction β eff of a cylindrical highly enriched uranium reactor. Based on reactivity measurements with and without a sample at a specified position using the positive period technique, the reactor reactivity perturbation Δρ of the sample in β eff units is measured. Simulations of the perturbation experiments are performed using the MCNP program. The PERT card is used to provide the difference dk of effective neutron multiplication factors with and without the sample inside the reactor. Based on the relationship between the effective multiplication factor and the reactivity, the equation β eff = dk/Δρ is derived. In this paper, the reactivity perturbations of 13 metal samples at the designable position of the reactor are measured and calculated. The average β eff value of the reactor is given as 0.00645, and the standard uncertainty is 3.0%. Additionally, the perturbation experiments for β eff can be used to evaluate the reliabilities of the delayed neutron parameters. This work shows that the delayed neutron data of 235U and 238U from G.R. Keepin’s publication are more reliable than those from ENDF-B6.0, ENDF-B7.0, JENDL3.3 and CENDL2.2. Supported by Foundation of Key Laboratory of Neutron Physics, China Academy of Engineering Physics (2012AA01, 2014AA01), National Natural Science Foundation (11375158, 91326104)

  18. Singular perturbation and time scale approaches in discrete control systems

    NASA Technical Reports Server (NTRS)

    Naidu, D. S.; Price, D. B.

    1988-01-01

    After considering a singularly perturbed discrete control system, a singular perturbation approach is used to obtain outer and correction subsystems. A time scale approach is then applied via block diagonalization transformations to decouple the system into slow and fast subsystems. To a zeroth-order approximation, the singular perturbation and time-scale approaches are found to yield equivalent results.

  19. Exact Controllability and Perturbation Analysis for Elastic Beams

    SciTech Connect

    Moreles, Miguel Angel

    2004-05-15

    The Rayleigh beam is a perturbation of the Bernoulli-Euler beam. We establish convergence of the solution of the Exact Controllability Problem for the Rayleigh beam to the corresponding solution of the Bernoulli-Euler beam. Convergence is related to a Singular Perturbation Problem. The main tool in solving this perturbation problem is a weak version of a lower bound for hyperbolic polynomials.

  20. On spectral perturbation caused by bounded variation of potential

    SciTech Connect

    Ismagilov, R S

    2014-01-31

    The harmonic oscillator operator is perturbed by an arbitrary bounded continuous term. This results in the perturbation of the spectrum. The map sending the first of these perturbations into the second is examined. Its approximation by a linear map is studied. Bibliography: 2 titles.

  1. Second floor order perturbation calculation in energy exchange of FEL

    SciTech Connect

    Wei, J.; Lee, S. Y.

    1987-06-01

    Perturbation expansion of standard FEL equations is performed up to second nontrivial order in the Vlasov's equation. We found that the perturbation expansion can be characterized by a single parameter, Ωτ, the number of sychrotron oscillations in the wiggler. The validity of perturbation theory is discussed in this paper.

  2. On spectral perturbation caused by bounded variation of potential

    NASA Astrophysics Data System (ADS)

    Ismagilov, R. S.

    2014-01-01

    The harmonic oscillator operator is perturbed by an arbitrary bounded continuous term. This results in the perturbation of the spectrum. The map sending the first of these perturbations into the second is examined. Its approximation by a linear map is studied. Bibliography: 2 titles.

  3. Perturbations of matter fields in the second-order gauge-invariant cosmological perturbation theory

    NASA Astrophysics Data System (ADS)

    Nakamura, Kouji

    2009-12-01

    To show that the general framework of the second-order gauge-invariant perturbation theory developed by K. Nakamura [Prog. Theor. Phys. 110, 723 (2003)PTPKAV0033-068X10.1143/PTP.110.723; Prog. Theor. Phys. 113, 481 (2005)PTPKAV0033-068X10.1143/PTP.113.481] is applicable to a wide class of cosmological situations, some formulas for the perturbations of the matter fields are summarized within the framework of the second-order gauge-invariant cosmological perturbation theory in a four-dimensional homogeneous isotropic universe, which is developed in Prog. Theor. Phys. 117, 17 (2007)PTPKAV0033-068X10.1143/PTP.117.17. We derive the formulas for the perturbations of the energy-momentum tensors and equations of motion for a perfect fluid, an imperfect fluid, and a single scalar field, and show that all equations are derived in terms of gauge-invariant variables without any gauge fixing. Through these formulas, we may say that the decomposition formulas for the perturbations of any tensor field into gauge-invariant and gauge-variant parts, which are proposed in the above papers, are universal.

  4. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  5. Dynamics of a single ion in a perturbed Penning trap: octupolar perturbation.

    PubMed

    Lara, Martín; Salas, J Pablo

    2004-09-01

    Imperfections in the design or implementation of Penning traps may give rise to electrostatic perturbations that introduce nonlinearities in the dynamics. In this paper we investigate, from the point of view of classical mechanics, the dynamics of a single ion trapped in a Penning trap perturbed by an octupolar perturbation. Because of the axial symmetry of the problem, the system has two degrees of freedom. Hence, this model is ideal to be managed by numerical techniques like continuation of families of periodic orbits and Poincaré surfaces of section. We find that, through the variation of the two parameters controlling the dynamics, several periodic orbits emanate from two fundamental periodic orbits. This process produces important changes (bifurcations) in the phase space structure leading to chaotic behavior.

  6. Transfer function analysis of thermospheric perturbations

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.; Spencer, N. W.

    1986-01-01

    Applying perturbation theory, a spectral model in terms of vectors spherical harmonics (Legendre polynomials) is used to describe the short term thermospheric perturbations originating in the auroral regions. The source may be Joule heating, particle precipitation or ExB ion drift-momentum coupling. A multiconstituent atmosphere is considered, allowing for the collisional momentum exchange between species including Ar, O2, N2, O, He and H. The coupled equations of energy, mass and momentum conservation are solved simultaneously for the major species N2 and O. Applying homogeneous boundary conditions, the integration is carred out from the Earth's surface up to 700 km. In the analysis, the spherical harmonics are treated as eigenfunctions, assuming that the Earth's rotation (and prevailing circulation) do not significantly affect perturbations with periods which are typically much less than one day. Under these simplifying assumptions, and given a particular source distribution in the vertical, a two dimensional transfer function is constructed to describe the three dimensional response of the atmosphere. In the order of increasing horizontal wave numbers (order of polynomials), this transfer function reveals five components. To compile the transfer function, the numerical computations are very time consuming (about 100 hours on a VAX for one particular vertical source distribution). However, given the transfer function, the atmospheric response in space and time (using Fourier integral representation) can be constructed with a few seconds of a central processing unit. This model is applied in a case study of wind and temperature measurements on the Dynamics Explorer B, which show features characteristic of a ringlike excitation source in the auroral oval. The data can be interpreted as gravity waves which are focused (and amplified) in the polar region and then are reflected to propagate toward lower latitudes.

  7. Pentaquark masses in chiral perturbation theory

    SciTech Connect

    Mohta, Vivek

    2004-12-01

    Heavy baryon chiral perturbation theory for pentaquarks is applied beyond leading order. The mass splitting in the pentaquark antidecuplet is calculated up to next-to-next-to-leading order in the absence of other exotic multiplets nearby in mass. An expansion in the coupling of the antidecuplet to nonexotic baryons simplifies calculations and makes the pentaquark masses insensitive to the pentaquark-nucleon mass difference. It is assumed that no other pentaquark multiplets are nearby in the mass spectrum. The possibility of determining coupling constants in the chiral Lagrangian on the lattice is discussed. Both positive and negative parities are considered.

  8. Amplification of curvature perturbations in cyclic cosmology

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Liu, Zhi-Guo; Piao, Yun-Song

    2010-12-01

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  9. Cosmological explosions from cold dark matter perturbations

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.

  10. Polyakov loop correlator in perturbation theory

    NASA Astrophysics Data System (ADS)

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter; Vairo, Antonio

    2017-07-01

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series reexponentiates into singlet and adjoint contributions. We calculate the order g7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the reexponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  11. Light-Front Perturbation Without Spurious Singularities

    NASA Astrophysics Data System (ADS)

    Przeszowski, Jerzy A.; Dzimida-Chmielewska, Elżbieta; Żochowski, Jan

    2016-07-01

    A new form of the light front Feynman propagators is proposed. It contains no energy denominators. Instead the dependence on the longitudinal subinterval x^2_L = 2 x+ x- is explicit and a new formalism for doing the perturbative calculations is invented. These novel propagators are implemented for the one-loop effective potential and various 1-loop 2-point functions for a massive scalar field. The consistency with results for the standard covariant Feynman diagrams is obtained and no spurious singularities are encountered at all. Some remarks on the calculations with fermion and gauge fields in QED and QCD are added.

  12. Sidelobe Sector Nulling with Minimized Phase Perturbations.

    DTIC Science & Technology

    1985-03-01

    Sciences Division FOR THE COMMANDER: ~t~4iq JOHN A. RITZ Acting Chief, Plans Office If your address has changed or if you wish to be removed from the...Perturbations for Arrays of 11, 21, and 41 Elements W~41 z~ 21 7N II -2. 4.0 -J.0 -2.0 -11.6 0.0 1.!0 2.0 3.0 4.0 5.0 LOGI 0 (42141) Figure 3. Look...Trans. Antennas Propag. AP-20:432 -436. 4. Baird , C. A., and Rassweiler, G. G. (1976) Adaptive sidelobe nulling using digitally controlled phase

  13. Growth rate, population entropy, and perturbation theory.

    PubMed

    Demetrius, L

    1989-04-01

    This paper is concerned with the connection between two classes of population variables: measures of population growth rate--the Malthusian parameter, the net reproduction rate, the gross reproduction rate, and the mean life expectancy; and measures of demographic heterogeneity--population entropy. It is shown that the entropy functions predict the response of the growth rate parameters to perturbations in the age-specific fecundity and mortality schedule. These results are invoked to introduce the notion of environmental intensity. The intensity function, expressed in terms of the entropy parameters, is applied to give a comparative study of the effect of environmental factors on the dynamics of Swedish and French populations.

  14. Exciton dynamics in perturbed vibronic molecular aggregates

    PubMed Central

    Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.

    2015-01-01

    A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840

  15. Anomaly freedom in perturbative loop quantum gravity

    SciTech Connect

    Bojowald, Martin; Hossain, Golam Mortuza; Kagan, Mikhail; Shankaranarayanan, S.

    2008-09-15

    A fully consistent linear perturbation theory for cosmology is derived in the presence of quantum corrections as they are suggested by properties of inverse volume operators in loop quantum gravity. The underlying constraints present a consistent deformation of the classical system, which shows that the discreteness in loop quantum gravity can be implemented in effective equations without spoiling space-time covariance. Nevertheless, nontrivial quantum corrections do arise in the constraint algebra. Since correction terms must appear in tightly controlled forms to avoid anomalies, detailed insights for the correct implementation of constraint operators can be gained. The procedures of this article thus provide a clear link between fundamental quantum gravity and phenomenology.

  16. Transport studies in fusion plasmas: Perturbative experiments

    SciTech Connect

    Cardozo, N.J.L.

    1996-03-01

    By subjecting a plasma in steady state to small perturbations and measuring the response, it is possible to determine elements of the matrix of transport coefficients. Experimentally this is difficult, and results are mainly limited to transport driven by the pressure and temperature gradients. Importantly, off-diagonal elements in the transport matrix appear to be important. This has also implications for the interpretation of the so-called `power balance` diffusivity, determined from the steady state fluxes and gradients. Experimental techniques, analysis techniques, basic formulas, etc., are briefly reviewed. Experimental results are summarized. The fundamental question whether the fluxes are linear functions of the gradients or not is discussed. 31 refs.

  17. Cosmological explosions from cold dark matter perturbations

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.

  18. Amplification of curvature perturbations in cyclic cosmology

    SciTech Connect

    Zhang Jun; Liu Zhiguo; Piao Yunsong

    2010-12-15

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  19. Comparison of electroglottographic and acoustic analysis of pitch perturbation.

    PubMed

    LaBlance, G R; Maves, M D; Scialfa, T M; Eitnier, C M; Steckol, K F

    1992-11-01

    Pitch perturbation is a measure of the cycle-to-cycle variation in vocal fold vibration. Perturbation can be assessed by means of electroglottographic or acoustic signals. The purpose of this study was to determine if these two analysis techniques are equivalent measures. The Laryngograph, an electroglottograph, and the Visi-Pitch, an acoustic analyzer, were used to measure pitch perturbation in 80 dysphonic subjects. Both instruments use Koike's formula to calculate relative average perturbation. While intra-subject variability appeared erratic, statistical analysis of intersubject data indicated that the two instruments provided an equivalent measure of pitch perturbation.

  20. The spectrum of density perturbations in an expanding universe

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1974-01-01

    The basic dynamic equations that govern the evolution of perturbations in a Friedmann-Lemaitre universe are derived. General solutions describing the evolution of adiabatic perturbations in the density of matter are obtained, and the choice of the appropriate initial conditions is examined. The various perturbation modes are compared, and the effects of decoupling on the perturbation spectrum are studied. The scheme used to follow the evolution of density perturbations through decoupling is based on an extension of the Eddington approximation to the radiative transfer equation, and is strictly valid in both optically thick and thin limits.

  1. May chaos always be suppressed by parametric perturbations?

    PubMed

    Schwalger, Tilo; Dzhanoev, Arsen; Loskutov, Alexander

    2006-06-01

    The problem of chaos suppression by parametric perturbations is considered. Despite the widespread opinion that chaotic behavior may be stabilized by perturbations of any system parameter, we construct a counterexample showing that this is not necessarily the case. In general, chaos suppression means that parametric perturbations should be applied within a set of parameters at which the system has a positive maximal Lyapunov exponent. Analyzing the known Duffing-Holmes model by a Melnikov method, we showed that chaotic dynamics cannot be suppressed by harmonic perturbations of a certain parameter, independently from the other parameter values. Thus, to stabilize the behavior of chaotic systems, the perturbation and parameters should be carefully chosen.

  2. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    SciTech Connect

    Mirus, Kevin A.

    1998-01-01

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Roessler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high-dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  3. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Mirus, Kevin Andrew

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Rossler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high- dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  4. Structural Perturbations to Population Skeletons: Transient Dynamics, Coexistence of Attractors and the Rarity of Chaos

    PubMed Central

    Singh, Brajendra K.; Parham, Paul E.; Hu, Chin-Kun

    2011-01-01

    Background Simple models of insect populations with non-overlapping generations have been instrumental in understanding the mechanisms behind population cycles, including wild (chaotic) fluctuations. The presence of deterministic chaos in natural populations, however, has never been unequivocally accepted. Recently, it has been proposed that the application of chaos control theory can be useful in unravelling the complexity observed in real population data. This approach is based on structural perturbations to simple population models (population skeletons). The mechanism behind such perturbations to control chaotic dynamics thus far is model dependent and constant (in size and direction) through time. In addition, the outcome of such structurally perturbed models is [almost] always equilibrium type, which fails to commensurate with the patterns observed in population data. Methodology/Principal Findings We present a proportional feedback mechanism that is independent of model formulation and capable of perturbing population skeletons in an evolutionary way, as opposed to requiring constant feedbacks. We observe the same repertoire of patterns, from equilibrium states to non-chaotic aperiodic oscillations to chaotic behaviour, across different population models, in agreement with observations in real population data. Model outputs also indicate the existence of multiple attractors in some parameter regimes and this coexistence is found to depend on initial population densities or the duration of transient dynamics. Our results suggest that such a feedback mechanism may enable a better understanding of the regulatory processes in natural populations. PMID:21980342

  5. Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.

  6. Evolution of dark energy perturbations in scalar-tensor cosmologies

    SciTech Connect

    Bueno Sanchez, J. C.; Perivolaropoulos, L.

    2010-05-15

    We solve analytically and numerically the generalized Einstein equations in scalar-tensor cosmologies to obtain the evolution of dark energy and matter linear perturbations. We compare our results with the corresponding results for minimally coupled quintessence perturbations. We find that scalar-tensor dark energy density perturbations are amplified by a factor of about 10{sup 4} compared to minimally coupled quintessence perturbations on scales less than about 1000 h{sup -1} Mpc (sub-Hubble scales). On these scales dark energy perturbations constitute a fraction of about 10% compared to matter density perturbations. Scalar-tensor dark energy density perturbations are anticorrelated with matter linear perturbations on sub-Hubble scales. This anticorrelation of matter with negative pressure perturbations induces a mild amplification of matter perturbations by about 10% on sub-Hubble scales. The evolution of scalar field perturbations on sub-Hubble scales is scale independent and therefore corresponds to a vanishing effective speed of sound (c{sub s{Phi}=}0). We briefly discuss the observational implications of our results, which may include predictions for galaxy and cluster halo profiles that are modified compared to {Lambda}CDM. The observed properties of these profiles are known to be in some tension with the predictions of {Lambda}CDM.

  7. Perturbation Theory for Parent Hamiltonians of Matrix Product States

    NASA Astrophysics Data System (ADS)

    Szehr, Oleg; Wolf, Michael M.

    2015-05-01

    This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).

  8. Inferring propagation paths for sparsely observed perturbations on complex networks

    PubMed Central

    Massucci, Francesco Alessandro; Wheeler, Jonathan; Beltrán-Debón, Raúl; Joven, Jorge; Sales-Pardo, Marta; Guimerà, Roger

    2016-01-01

    In a complex system, perturbations propagate by following paths on the network of interactions among the system’s units. In contrast to what happens with the spreading of epidemics, observations of general perturbations are often very sparse in time (there is a single observation of the perturbed system) and in “space” (only a few perturbed and unperturbed units are observed). A major challenge in many areas, from biology to the social sciences, is to infer the propagation paths from observations of the effects of perturbation under these sparsity conditions. We address this problem and show that it is possible to go beyond the usual approach of using the shortest paths connecting the known perturbed nodes. Specifically, we show that a simple and general probabilistic model, which we solved using belief propagation, provides fast and accurate estimates of the probabilities of nodes being perturbed. PMID:27819038

  9. H(infinity) filtering for fuzzy singularly perturbed systems.

    PubMed

    Yang, Guang-Hong; Dong, Jiuxiang

    2008-10-01

    This paper considers the problem of designing H(infinity) filters for fuzzy singularly perturbed systems with the consideration of improving the bound of singular-perturbation parameter epsilon. First, a linear-matrix-inequality (LMI)-based approach is presented for simultaneously designing the bound of the singularly perturbed parameter epsilon, and H(infinity) filters for a fuzzy singularly perturbed system. When the bound of singularly perturbed parameter epsilon is not under consideration, the result reduces to an LMI-based design method for H(infinity) filtering of fuzzy singularly perturbed systems. Furthermore, a method is given for evaluating the upper bound of singularly perturbed parameter subject to the constraint that the considered system is to be with a prescribed H(infinity) performance bound, and the upper bound can be obtained by solving a generalized eigenvalue problem. Finally, numerical examples are given to illustrate the effectiveness of the proposed methods.

  10. Localized Perturbations in Saturn's C Ring

    NASA Astrophysics Data System (ADS)

    Spitale, Joseph N.; Tiscareno, Matthew S.

    2016-10-01

    Years of high-resolution imaging of Saturn's rings have revealed many examples of perturbations arising from local causes. For example, the presence of 100-m-scale and smaller moonlets is inferred in the A ring based on the propeller-shaped disturbances that they create (Tiscareno et al. 2006, 2010); the F ring is shaped by regular collisions with its shepherd Prometheus, as well as with other smaller bodies orbiting in the vicinity (Murray et al. 2005, 2008); the "wisps" on the outer edge of the Keeler gap (Porco et al. 2005) may mark the locations of small moonlets that have emerged from the A ring (Tiscareno and Arnault 2015); wakes in the Huygens ringlet imply the presence of two multi-km bodies, and the irregular shape of its inner edge suggests the presence of many smaller bodies (Spitale and Hahn 2016); based on shadow measurements, the B ring contains an embedded 300-m object that produces a small propeller-shaped disturbance (Spitale and Porco 2010; Spitale and Tiscareno 2012).Here, we present evidence for localized perturbations in the C ring. The ringlet embedded in the Bond gap, near 1.470 Saturn radii, shows discrete clumps orbiting at the Keplerian rate in images spanning about eight years. The clumps are not detected in all image sequences at the expected longitudes. The Dawes ringlet, near 1.495 Saturn radii, has an irregular edge that does not appear as a simple superposition of low-wavenumber normal modes.

  11. Approaches to the Treatment of Equilibrium Perturbations

    NASA Astrophysics Data System (ADS)

    Canagaratna, Sebastian G.

    2003-10-01

    Perturbations from equilibrium are treated in the textbooks by a combination of Le Châtelier's principle, the comparison of the equilibrium constant K with the reaction quotient Q,and the kinetic approach. Each of these methods is briefly reviewed. This is followed by derivations of the variation of the equilibrium value of the extent of reaction, ξeq, with various parameters on which it depends. Near equilibrium this relationship can be represented by a straight line. The equilibrium system can be regarded as moving on this line as the parameter is varied. The slope of the line depends on quantities like enthalpy of reaction, volume of reaction and so forth. The derivation shows that these quantities pertain to the equilibrium system, not the standard state. Also, the derivation makes clear what kind of assumptions underlie our conclusions. The derivation of these relations involves knowledge of thermodynamics that is well within the grasp of junior level physical chemistry students. The conclusions that follow from the derived relations are given as subsidiary rules in the form of the slope of ξeq, with T, p, et cetera. The rules are used to develop a visual way of predicting the direction of shift of a perturbed system. This method can be used to supplement one of the other methods even at the introductory level.

  12. Perturbation of physiological systems by nanoparticles.

    PubMed

    Zhang, Yi; Bai, Yuhong; Jia, Jianbo; Gao, Ningning; Li, Yang; Zhang, Ruinan; Jiang, Guibin; Yan, Bing

    2014-05-21

    Nanotechnology is having a tremendous impact on our society. However, societal concerns about human safety under nanoparticle exposure may derail the broad application of this promising technology. Nanoparticles may enter the human body via various routes, including respiratory pathways, the digestive tract, skin contact, intravenous injection, and implantation. After absorption, nanoparticles are carried to distal organs by the bloodstream and the lymphatic system. During this process, they interact with biological molecules and perturb physiological systems. Although some ingested or absorbed nanoparticles are eliminated, others remain in the body for a long time. The human body is composed of multiple systems that work together to maintain physiological homeostasis. The unexpected invasion of these systems by nanoparticles disturbs normal cell signaling, impairs cell and organ functions, and may even cause pathological disorders. This review examines the comprehensive health risks of exposure to nanoparticles by discussing how nanoparticles perturb various physiological systems as revealed by animal studies. The potential toxicity of nanoparticles to each physiological system and the implications of disrupting the balance among systems are emphasized.

  13. Shock wave perturbation decay in granular materials

    DOE PAGES

    Vogler, Tracy J.

    2015-11-05

    A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtainedmore » for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. As a result, the limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.« less

  14. Shock wave perturbation decay in granular materials

    SciTech Connect

    Vogler, Tracy J.

    2015-11-05

    A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtained for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. As a result, the limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.

  15. Perturbation solutions of combustion instability problems

    NASA Technical Reports Server (NTRS)

    Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.

    1979-01-01

    A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.

  16. Perturbation analysis for patch occupancy dynamics

    USGS Publications Warehouse

    Martin, Julien; Nichols, James D.; McIntyre, Carol L.; Ferraz, Goncalo; Hines, James E.

    2009-01-01

    Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species.

  17. Testing gravity theories using tensor perturbations

    NASA Astrophysics Data System (ADS)

    Lin, Weikang; Ishak-Boushaki, Mustapha B.

    2017-01-01

    Primordial gravitational waves constitute a promising probe of the very early universe physics and the laws of gravity. We study the changes to tensor-mode perturbations that can arise in various modified gravity theories. These include a modified friction and a nonstandard dispersion relation. We introduce a physically motivated parametrization of these effects and use current data to obtain excluded parameter spaces. Taking into account the foreground subtraction, we then perform a forecast analysis focusing on the tensor-mode modified-gravity parameters as constrained by future experiments COrE, Stage-IV and PIXIE. For the tensor-to-scalar ratio r=0.01, we find the minimum detectible modified-gravity effects. In particular, the minimum detectable graviton mass is about 7.8˜9.7×10-33 eV, which is of the same order of magnitude as the graviton mass that allows massive gravity to produce late-time cosmic acceleration. Finally, we study the tensor-mode perturbations in modified gravity during inflation. We find that, the tensor spectral index would be additionally related to the friction parameter ν0 by nT=-3ν0-r/8. In some cases, the future experiments will be able to distinguish this relation from the standard one. In sum, primordial gravitational waves provide a complementary avenue to test gravity theories.

  18. Hormonal Perturbations in Occupationally Exposed Nickel Workers

    PubMed Central

    Beshir, Safia; Ibrahim, Khadiga Salah; Shaheen, Weam; Shahy, Eman M.

    2016-01-01

    BACKGROUND: Nickel exposure is recognized as an endocrine disruptor because of its adverse effects on reproduction. AIM: This study was designed to investigate the possible testiculo-hormonal perturbations on workers occupationally exposed to nickel and to assess its effects on human male sexual function. METHODS: Cross-sectional comparative study, comprising 105 electroplating male non-smoker, non-alcoholic workers exposed to soluble nickel and 60 controls was done. Serum luteinizing hormone, follicle stimulating hormone, testosterone levels and urinary nickel concentrations were determined for the studied groups. RESULTS: Serum luteinizing hormone, follicle stimulating hormone, urinary nickel and the simultaneous incidence of more than one sexual disorder were significantly higher in the exposed workers compared to controls. The occurrence of various types of sexual disorders (decreased libido, impotence and premature ejaculation) in the exposed workers was 9.5, 5.1 and 4.4 folds respectively than the controls. CONCLUSIONS: Exposure to nickel produces possible testiculo-hormonal perturbations in those exposed workers. PMID:27335607

  19. Covariant perturbations in a multifluid cosmological medium

    NASA Astrophysics Data System (ADS)

    Dunsby, Peter K. S.; Bruni, Marco; Ellis, George F. R.

    1992-08-01

    In a series of recent papers, a new covariant formalism was introduced to treat inhomogeneities in any spacetime. The variables introduced in these papers are gauge-invariant with respect to a Robertson-Walker background spacetime because they vanish identically in such models, and they have a transparent physical meaning. Exact evolution equations were found for these variables, and the linearized form of these equations were obtained, showing that they give the standard results for a barotropic perfect fluid. In this paper we extend this formalism to the general case of multicomponent fluid sources with interactions between them. We show, using the tilted formalism of King and Ellis, (1973) that choosing either the energy frame or the particle frame gives rise to a set of physically well-defined covariant and gauge-invariant variables which describe density and velocity perturbations, both for the total fluid and its constituent components. We then derive a complete set of equations for these variables and show, through harmonic analysis, that they are equivalent to those of Bardeen (1980) and of Kodama and Sasaki (1984). We discuss a number of interesting applications, including the case where the universe is filled with a mixture of baryons and radiation, coupled through Thomson scattering, and we derive solutions for the density and velocity perturbations in the large-scale limit. We also correct a number of errors in the previous literature.

  20. BICEP2, the curvature perturbation and supersymmetry

    SciTech Connect

    Lyth, David H.

    2014-11-01

    The tensor fraction r ≅ 0.16 found by BICEP2 corresponds to a Hubble parameter H ≅ 1.0 × 10{sup 14} GeV during inflation. This has two implications for the (single-field) slow-roll inflation hypothesis. First, the inflaton perturbation must account for much more than 10% of the curvature perturbation ζ, which barring fine-tuning means that it accounts for practically all of it. It follows that a curvaton-like mechanism for generating ζ requires an alternative to slow roll such as k-inflation. Second, accepting slow-roll inflation, the excursion of the inflaton field is at least of order Planck scale. As a result, the flatness of the inflaton presumably requires a shift symmetry. I point out that if such is the case, the resulting potential is likely to have at least approximately the quadratic form suggested in 1983 by Linde, which is known to be compatible with the observed r as well as the observed spectral index n{sub s}. The shift symmetry does not require supersymmetry. Also, the big H may rule out a GUT by restoring the symmetry and producing fatal cosmic strings. The absence of a GUT would correspond to the absence of superpartners for the Standard Model particles, which indeed have yet to be found at the LHC.

  1. Consonantal perturbations of pitch in Halkomelem Salish

    NASA Astrophysics Data System (ADS)

    Brown, Jason; Thompson, James J.

    2005-04-01

    It has long been noted that consonants have an effect on the pitch of a following vowel: voiceless stops tend to raise F0, while voiced stops lower it. It has also been suggested that the duration of such perturbations is shorter in tone languages than in non-tone languages [Hombert, Studies in African Linguistics (1977)]. This study compares the effects that consonants have on F0 in two closely related Salish languages: Island Halkomelem, a non-tone language, and Upriver Halkomelem, a language that has reportedly undergone some limited tonogenesis but offers no clear prosodic clues regarding tonality. The effects of the voiceless and ejective stop series were observed, and measurements of F0 were taken at the onset of voicing for the vowel, then at 20 msec. intervals up to 100 msec. Preliminary results indicate that i) Island Halkomelem shows a greater magnitude of difference in F0 at vowel onset between the voiceless and ejective stops than Upriver Halkomelem, and ii) Island Halkomelem shows greater durations of consonantal perturbations of F0 than does Upriver Halkomelem. This suggests that Upriver Halkomelem may have become more sensitive to pitch than the Island dialect, supporting the interpretation of this language as tonal. [Work supported by Phillips Fund.

  2. Running vacuum cosmological models: linear scalar perturbations

    NASA Astrophysics Data System (ADS)

    Perico, E. L. D.; Tamayo, D. A.

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ(H2) or Λ(R). Such models assume an equation of state for the vacuum given by bar PΛ = - bar rhoΛ, relating its background pressure bar PΛ with its mean energy density bar rhoΛ ≡ Λ/8πG. This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely bar rhoΛ = Σibar rhoΛi. Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ(H2) scenario the vacuum is coupled with every matter component, whereas the Λ(R) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  3. Newtonian perturbations on models with matter creation

    NASA Astrophysics Data System (ADS)

    Jesus, J. F.; Oliveira, F. A.; Basilakos, S.; Lima, J. A. S.

    2011-09-01

    Creation of cold dark matter (CCDM) can macroscopically be described by a negative pressure, and, therefore, the mechanism is capable to accelerate the Universe, without the need of an additional dark energy component. In this framework, we discuss the evolution of perturbations by considering a Neo-Newtonian approach where, unlike in the standard Newtonian cosmology, the fluid pressure is taken into account even in the homogeneous and isotropic background equations (Lima, Zanchin, and Brandenberger, MNRAS 291, L1, 1997). The evolution of the density contrast is calculated in the linear approximation and compared to the one predicted by the ΛCDM model. The difference between the CCDM and ΛCDM predictions at the perturbative level is quantified by using three different statistical methods, namely: a simple χ2-analysis in the relevant space parameter, a Bayesian statistical inference, and, finally, a Kolmogorov-Smirnov test. We find that under certain circumstances, the CCDM scenario analyzed here predicts an overall dynamics (including Hubble flow and matter fluctuation field) which fully recovers that of the traditional cosmic concordance model. Our basic conclusion is that such a reduction of the dark sector provides a viable alternative description to the accelerating ΛCDM cosmology.

  4. Perceived timing of a postural perturbation.

    PubMed

    Lupo, Julian; Barnett-Cowan, Michael

    2017-02-03

    Falling down is a common event that threatens the survival of an organism. Simple, yet sophisticated neural mechanisms allow for rapid detection of a fall as well as the generation of compensatory reflexes designed to prevent a fall. Fall awareness and preventative alerting devices could potentially mitigate the likelihood of a fall, however, relatively little is known about the perceived timing of a fall. Common anecdotal reports suggest that humans often describe distortions in their perception of time with very little recollection of what occurred during the fall. Previous research has also found that the vestibular system is perceptually slow compared to the other senses (45-160ms delay), indicating that vestibular stimuli must occur prior to other sensory stimuli in order for it to be perceived as synchronous. Here we examine whether fall perception is similarly slow. Participants made temporal order judgments identifying whether fall or sound onset came first to measure the point of subjective simultaneity. Results show that fall perception is slow, where the onset of a perturbation has to precede an auditory stimulus by ∼44 ms to appear coincident with the fall. We suggest that the central nervous system's rapid detection and response capabilities are restricted to reflexive behaviour, with conscious awareness of a fall being prioritized less. The additional lead times for detecting perturbation onset constrain possible fall detection and alert systems that have been proposed to inform a user to prevent falls and may also help explain the increased likelihood for fall incidence in the elderly.

  5. Quantum cosmological perturbations of multiple fluids

    NASA Astrophysics Data System (ADS)

    Peter, Patrick; Pinto-Neto, N.; Vitenti, Sandro D. P.

    2016-01-01

    The formalism to treat quantization and evolution of cosmological perturbations of multiple fluids is described. We first construct the Lagrangian for both the gravitational and matter parts, providing the necessary relevant variables and momenta leading to the quadratic Hamiltonian describing linear perturbations. The final Hamiltonian is obtained without assuming any equations of motions for the background variables. This general formalism is applied to the special case of two fluids, having in mind the usual radiation and matter mix which made most of our current Universe history. Quantization is achieved using an adiabatic expansion of the basis functions. This allows for an unambiguous definition of a vacuum state up to the given adiabatic order. Using this basis, we show that particle creation is well defined for a suitable choice of vacuum and canonical variables, so that the time evolution of the corresponding quantum fields is unitary. This provides constraints for setting initial conditions for an arbitrary number of fluids and background time evolution. We also show that the common choice of variables for quantization can lead to an ill-defined vacuum definition. Our formalism is not restricted to the case where the coupling between fields is small, but is only required to vary adiabatically with respect to the ultraviolet modes, thus paving the way to consistent descriptions of general models not restricted to single-field (or fluid).

  6. Density perturbations in general modified gravitational theories

    SciTech Connect

    De Felice, Antonio; Tsujikawa, Shinji; Mukohyama, Shinji

    2010-07-15

    We derive the equations of linear cosmological perturbations for the general Lagrangian density f(R,{phi},X)/2+L{sub c}, where R is a Ricci scalar, {phi} is a scalar field, and X=-{partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}/}2 is a field kinetic energy. We take into account a nonlinear self-interaction term L{sub c}={xi}({phi}) {open_square}{phi}({partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}}) recently studied in the context of ''Galileon'' cosmology, which keeps the field equations at second order. Taking into account a scalar-field mass explicitly, the equations of matter density perturbations and gravitational potentials are obtained under a quasistatic approximation on subhorizon scales. We also derive conditions for the avoidance of ghosts and Laplacian instabilities associated with propagation speeds. Our analysis includes most of modified gravity models of dark energy proposed in literature; and thus it is convenient to test the viability of such models from both theoretical and observational points of view.

  7. Gauge invariant perturbations of the Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan E.; Chen, Hector; Whiting, Bernard F.

    2017-09-01

    Beginning with the pioneering work of Regge and Wheeler (1957 Phys. Rev. 108 1063), there have been many studies of perturbations away from the Schwarzschild spacetime background. In particular several authors Moncrief (1974 Ann. Phys. 88 323), Sachs (1964 Relativity, Groups and Topology (New York: Gordon and Breach)) and Brizuela et al (2007 Phys. Rev. D 76 024004) have investigated gauge invariant quantities of the Regge-Wheeler (RW) formalism. Steven Detweiler also investigated perturbations of Schwarzschild in his own formalism, introducing his own gauge choice which he denoted the ‘easy (EZ) gauge’, and which he was in the process of adapting for use in the second-order self-force problem. We present here a compilation of some of his working results, arising from notes for which there seems to have been no manuscript in preparation. In particular, we outline Detweiler’s formalism, list the gauge invariant quantities he used, and explain the process by which he found them.

  8. Gradient expansion, curvature perturbations, and magnetized plasmas

    SciTech Connect

    Giovannini, Massimo; Rezaei, Zahra

    2011-04-15

    The properties of magnetized plasmas are always investigated under the hypothesis that the relativistic inhomogeneities stemming from the fluid sources and from the geometry itself are sufficiently small to allow for a perturbative description prior to photon decoupling. The latter assumption is hereby relaxed and predecoupling plasmas are described within a suitable expansion where the inhomogeneities are treated to a given order in the spatial gradients. It is argued that the (general relativistic) gradient expansion shares the same features of the drift approximation, customarily employed in the description of cold plasmas, so that the two schemes are physically complementary in the large-scale limit and for the low-frequency branch of the spectrum of plasma modes. The two-fluid description, as well as the magnetohydrodynamical reduction, is derived and studied in the presence of the spatial gradients of the geometry. Various solutions of the coupled system of evolution equations in the anti-Newtonian regime and in the quasi-isotropic approximation are presented. The relation of this analysis to the so-called separate universe paradigm is outlined. The evolution of the magnetized curvature perturbations in the nonlinear regime is addressed for the magnetized adiabatic mode in the plasma frame.

  9. Aircraft Range Optimization Using Singular Perturbations

    NASA Technical Reports Server (NTRS)

    Oconnor, Joseph Taffe

    1973-01-01

    An approximate analytic solution is developed for the problem of maximizing the range of an aircraft for a fixed end state. The problem is formulated as a singular perturbation and solved by matched inner and outer asymptotic expansions and the minimum principle of Pontryagin. Cruise in the stratosphere, and on transition to and from cruise at constant Mach number are discussed. The state vector includes altitude, flight path angle, and mass. Specific fuel consumption becomes a linear function of power approximating that of the cruise values. Cruise represents the outer solution; altitude and flight path angle are constants, and only mass changes. Transitions between cruise and the specified initial and final conditions correspond to the inner solutions. The mass is constant and altitude and velocity vary. A solution is developed which is valid for cruise but which is not for the initial and final conditions. Transforming of the independent variable near the initial and final conditions result in solutions which are valid for the two inner solutions but not for cruise. The inner solutions can not be obtained without simplifying the state equations. The singular perturbation approach overcomes this difficulty. A quadratic approximation of the state equations is made. The resulting problem is solved analytically, and the two inner solutions are matched to the outer solution.

  10. Membrane Perturbation Induced by Interfacially Adsorbed Peptides

    PubMed Central

    Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio

    2004-01-01

    The structural and energetic characteristics of the interaction between interfacially adsorbed (partially inserted) α-helical, amphipathic peptides and the lipid bilayer substrate are studied using a molecular level theory of lipid chain packing in membranes. The peptides are modeled as “amphipathic cylinders” characterized by a well-defined polar angle. Assuming two-dimensional nematic order of the adsorbed peptides, the membrane perturbation free energy is evaluated using a cell-like model; the peptide axes are parallel to the membrane plane. The elastic and interfacial contributions to the perturbation free energy of the “peptide-dressed” membrane are evaluated as a function of: the peptide penetration depth into the bilayer's hydrophobic core, the membrane thickness, the polar angle, and the lipid/peptide ratio. The structural properties calculated include the shape and extent of the distorted (stretched and bent) lipid chains surrounding the adsorbed peptide, and their orientational (C-H) bond order parameter profiles. The changes in bond order parameters attendant upon peptide adsorption are in good agreement with magnetic resonance measurements. Also consistent with experiment, our model predicts that peptide adsorption results in membrane thinning. Our calculations reveal pronounced, membrane-mediated, attractive interactions between the adsorbed peptides, suggesting a possible mechanism for lateral aggregation of membrane-bound peptides. As a special case of interest, we have also investigated completely hydrophobic peptides, for which we find a strong energetic preference for the transmembrane (inserted) orientation over the horizontal (adsorbed) orientation. PMID:15189858

  11. A stochastic perturbation theory for non-autonomous systems

    NASA Astrophysics Data System (ADS)

    Moon, Woosok; Wettlaufer, John

    2014-05-01

    We develop a perturbation theory for a class of first order nonlinear non-autonomous stochastic ordinary differential equations that arise in climate physics. The perturbative procedure produces moments in terms of integral delay equations, whose order by order decay is characterized in a Floquet-like sense. Both additive and multiplicative sources of noise are discussed and the question of how the nature of the noise influences the results is addressed theoretically and numerically. By invoking the Martingale property, we rationalize the transformation of the underlying Stratonovich form of the model to an Ito form, independent of whether the noise is additive or multiplicative. The generality of the analysis is demonstrated by developing it both for a Brownian particle moving in a periodically forced quartic potential, which acts as a simple model of stochastic resonance, as well as for our more complex climate physics model. The validity of the approach is shown by comparison with numerical solutions. The particular climate dynamics problem upon which we focus involves a low-order model for the evolution of Arctic sea ice under the influence of increasing greenhouse gas forcing ΔF0. The deterministic model, developed by Eisenman and Wettlaufer EW09 exhibits several transitions as ΔF0 increases and the stochastic analysis is used to understand the manner in which noise influences these transitions and the stability of the system. Eisenman, I., and J. S. Wettlaufer, 'Nonlinear threshold behavior during the loss of Arctic sea ice,' Proc. Natl. Acad. Sci. USA, 106, 28-32, 2009.

  12. A stochastic perturbation theory for non-autonomous systems

    NASA Astrophysics Data System (ADS)

    Moon, W.; Wettlaufer, J. S.

    2013-12-01

    We develop a perturbation theory for a class of first order nonlinear non-autonomous stochastic ordinary differential equations that arise in climate physics. The perturbative procedure produces moments in terms of integral delay equations, whose order by order decay is characterized in a Floquet-like sense. Both additive and multiplicative sources of noise are discussed and the question of how the nature of the noise influences the results is addressed theoretically and numerically. By invoking the Martingale property, we rationalize the transformation of the underlying Stratonovich form of the model to an Ithat{o} form, independent of whether the noise is additive or multiplicative. The generality of the analysis is demonstrated by developing it both for a Brownian particle moving in a periodically forced quartic potential, which acts as a simple model of stochastic resonance, as well as for our more complex climate physics model. The validity of the approach is shown by comparison with numerical solutions. The particular climate dynamics problem upon which we focus involves a low-order model for the evolution of Arctic sea ice under the influence of increasing greenhouse gas forcing ΔF0. The deterministic model, developed by Eisenman and Wettlaufer ["Nonlinear threshold behavior during the loss of Arctic sea ice," Proc. Natl. Acad. Sci. U.S.A. 106(1), 28-32 (2009)] exhibits several transitions as ΔF0 increases and the stochastic analysis is used to understand the manner in which noise influences these transitions and the stability of the system.

  13. Approximating frustration scores in complex networks via perturbed Laplacian spectra

    NASA Astrophysics Data System (ADS)

    Savol, Andrej J.; Chennubhotla, Chakra S.

    2015-12-01

    Systems of many interacting components, as found in physics, biology, infrastructure, and the social sciences, are often modeled by simple networks of nodes and edges. The real-world systems frequently confront outside intervention or internal damage whose impact must be predicted or minimized, and such perturbations are then mimicked in the models by altering nodes or edges. This leads to the broad issue of how to best quantify changes in a model network after some type of perturbation. In the case of node removal there are many centrality metrics which associate a scalar quantity with the removed node, but it can be difficult to associate the quantities with some intuitive aspect of physical behavior in the network. This presents a serious hurdle to the application of network theory: real-world utility networks are rarely altered according to theoretic principles unless the kinetic impact on the network's users are fully appreciated beforehand. In pursuit of a kinetically interpretable centrality score, we discuss the f-score, or frustration score. Each f-score quantifies whether a selected node accelerates or inhibits global mean first passage times to a second, independently selected target node. We show that this is a natural way of revealing the dynamical importance of a node in some networks. After discussing merits of the f-score metric, we combine spectral and Laplacian matrix theory in order to quickly approximate the exact f-score values, which can otherwise be expensive to compute. Following tests on both synthetic and real medium-sized networks, we report f-score runtime improvements over exact brute force approaches in the range of 0 to 400 % with low error (<3 % ).

  14. Approximating frustration scores in complex networks via perturbed Laplacian spectra

    PubMed Central

    Savol, Andrej J.; Chennubhotla, Chakra S.

    2016-01-01

    Systems of many interacting components, as found in physics, biology, infrastructure, and the social sciences, are often modeled by simple networks of nodes and edges. The real-world systems frequently confront outside intervention or internal damage whose impact must be predicted or minimized, and such perturbations are then mimicked in the models by altering nodes or edges. This leads to the broad issue of how to best quantify changes in a model network after some type of perturbation. In the case of node removal there are many centrality metrics which associate a scalar quantity with the removed node, but it can be difficult to associate the quantities with some intuitive aspect of physical behavior in the network. This presents a serious hurdle to the application of network theory: real-world utility networks are rarely altered according to theoretic principles unless the kinetic impact on the network’s users are fully appreciated beforehand. In pursuit of a kinetically-interpretable centrality score, we discuss the f-score, or frustration score. Each f-score quantifies whether a selected node accelerates or inhibits global mean first passage times to a second, independently-selected target node. We show that this is a natural way of revealing the dynamical importance of a node in some networks. After discussing merits of the f-score metric, we combine spectral and Laplacian matrix theory in order to quickly approximate the exact f-score values, which can otherwise be expensive to compute. Following tests on both synthetic and real medium-sized networks, we report f-score runtime improvements over exact brute force approaches in the range of 0 to 400% with low error (< 3%). PMID:26764743

  15. A stochastic perturbation theory for non-autonomous systems

    SciTech Connect

    Moon, W.; Wettlaufer, J. S.

    2013-12-15

    We develop a perturbation theory for a class of first order nonlinear non-autonomous stochastic ordinary differential equations that arise in climate physics. The perturbative procedure produces moments in terms of integral delay equations, whose order by order decay is characterized in a Floquet-like sense. Both additive and multiplicative sources of noise are discussed and the question of how the nature of the noise influences the results is addressed theoretically and numerically. By invoking the Martingale property, we rationalize the transformation of the underlying Stratonovich form of the model to an Ito form, independent of whether the noise is additive or multiplicative. The generality of the analysis is demonstrated by developing it both for a Brownian particle moving in a periodically forced quartic potential, which acts as a simple model of stochastic resonance, as well as for our more complex climate physics model. The validity of the approach is shown by comparison with numerical solutions. The particular climate dynamics problem upon which we focus involves a low-order model for the evolution of Arctic sea ice under the influence of increasing greenhouse gas forcing ΔF{sub 0}. The deterministic model, developed by Eisenman and Wettlaufer [“Nonlinear threshold behavior during the loss of Arctic sea ice,” Proc. Natl. Acad. Sci. U.S.A. 106(1), 28–32 (2009)] exhibits several transitions as ΔF{sub 0} increases and the stochastic analysis is used to understand the manner in which noise influences these transitions and the stability of the system.

  16. A stochastic perturbation theory for non-autonomous systems

    SciTech Connect

    Moon, W.; Wettlaufer, J. S.

    2013-12-15

    We develop a perturbation theory for a class of first order nonlinear non-autonomous stochastic ordinary differential equations that arise in climate physics. The perturbative procedure produces moments in terms of integral delay equations, whose order by order decay is characterized in a Floquet-like sense. Both additive and multiplicative sources of noise are discussed and the question of how the nature of the noise influences the results is addressed theoretically and numerically. By invoking the Martingale property, we rationalize the transformation of the underlying Stratonovich form of the model to an Ito form, independent of whether the noise is additive or multiplicative. The generality of the analysis is demonstrated by developing it both for a Brownian particle moving in a periodically forced quartic potential, which acts as a simple model of stochastic resonance, as well as for our more complex climate physics model. The validity of the approach is shown by comparison with numerical solutions. The particular climate dynamics problem upon which we focus involves a low-order model for the evolution of Arctic sea ice under the influence of increasing greenhouse gas forcing ΔF{sub 0}. The deterministic model, developed by Eisenman and Wettlaufer [“Nonlinear threshold behavior during the loss of Arctic sea ice,” Proc. Natl. Acad. Sci. U.S.A. 106(1), 28–32 (2009)] exhibits several transitions as ΔF{sub 0} increases and the stochastic analysis is used to understand the manner in which noise influences these transitions and the stability of the system.

  17. Fast ion loss associated with perturbed field by resonant magnetic perturbation coils in KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Jun Young; Kim, Junghee; Rhee, Tongnyeol; Yoon, S. W.; Park, G. Y.; Jeon, Y. M.; Isobe, M.; Shimizu, A.; Ogawa, K.; Park, J.-K.; Garcia-Munoz, M.

    2013-10-01

    Resonant magnetic perturbation (RMP) is the most promising strategies for ELM mitigation/suppression. However, it has been found through the modeling and the experiments that RMP for the ELM mitigation can enhance the toroidally localized fast ion loss. During KSTAR experimental campaigns in 2011 and 2012, sudden increase or decrease of the fast ion loss has been observed by the scintillator-based fast ion loss detector (FILD) when the RMP is applied. Three-dimensional perturbed magnetic field by RMP coil in vacuum is calculated by Biot-Savart's law embedded in the Lorentz orbit code (LORBIT). The LORBIT code which is based on gyro-orbit following motion has been used for the simulation of the three-dimensional fast ion trajectories in presence of non-axisymmetric magnetic perturbation. It seems the measured fast ion loss rate at the localized position depends on not only the RMP field configuration but also the plasma profile such as safety factor and so on, varying the ratio between radial drift and stochastization of the fat-ion orbits. The simulation results of fast ion orbit under magnetic perturbation w/ and w/o plasma responses will be presented and compared with KSTAR FILD measurement results in various cases.

  18. A geometric singular perturbation approach for planar stationary shock waves

    NASA Astrophysics Data System (ADS)

    Wang, Zhuopu; Zhang, Jiazhong; Ren, Junheng; Aslam, Muhammad Nauman

    2015-08-01

    The non-linear non-equilibrium nature of shock waves in gas dynamics is investigated for the planar case. Along each streamline, the Euler equations with non-equilibrium pressure are reduced to a set of ordinary differential equations defining a slow-fast system, and geometric singular perturbation theory is applied. The proposed theory shows that an orbit on the slow manifold corresponds to the smooth part of the solution to the Euler equation, where non-equilibrium effects are negligible; and a relaxation motion from the unsteady to the steady branch of the slow manifold corresponds to a shock wave, where the flow relaxes from non-equilibrium to equilibrium. Recognizing the shock wave as a fast motion is found to be especially useful for shock wave detection when post-processing experimental measured or numerical calculated flow fields. Various existing shock detection methods can be derived from the proposed theory in a rigorous mathematical manner. The proposed theory provides a new shock detection method based on its non-linear non-equilibrium nature, and may also serve as the theoretical foundation for many popular shock wave detection techniques.

  19. Dynamic of ion density perturbations observed in a microwave-plasma interaction

    SciTech Connect

    Kamal-Al-Hassan, Md.; Ito, Hiroaki; Yugami, Noboru; Nishida, Yasushi

    2005-11-15

    The dynamical behavior of ion density perturbations propagated at low-frequency wave nature is experimentally observed in microwave-plasma interaction. An unmagnetized, inhomogeneous laboratory plasma irradiated by an obliquely incident microwave with maximum power P=10 kW and pulse width approximately ion plasma period ({tau}{sub pi}{approx_equal}2{pi}/{omega}{sub pi}) is studied. The p-polarized electric-field component of the interacted microwave of frequency {omega}{sub 0} leads to a nonlinear phenomenon driven by the ponderomotive force by the process of resonance absorption at the critical layer where {omega}{sub 0}={omega}{sub p} is satisfied. The nonlinear ion density perturbations are created from the resonant layer and propagated to an underdense plasma as an electrostatic wave nature.

  20. Constraints on a mixed inflaton and curvaton scenario for the generation of the curvature perturbation

    SciTech Connect

    Lazarides, George; Ruiz de Austri, Roberto; Trotta, Roberto

    2004-12-15

    We consider a simple supersymmetric grand unified model which naturally solves the strong CP and {mu} problems via a Peccei-Quinn symmetry and leads to the standard realization of hybrid inflation. We show that the Peccei-Quinn field of this model can act as a curvaton. In contrast to the standard curvaton hypothesis, both the inflaton and the curvaton contribute to the total curvature perturbation. The model predicts the existence of an isocurvature perturbation, too, which has mixed correlation with the adiabatic one. The cold dark matter of the Universe is mostly constituted by axions, which are produced at the QCD phase transition, plus a small amount of lightest sparticles. The predictions of the model are confronted with the first-year Wilkinson microwave anisotropy probe and other cosmic microwave background radiation data. We analyze in detail two representative choices of parameters for our model and derive bounds on the curvaton contribution to the adiabatic perturbation. We find that, for the choice which provides the best fitting of the data, the curvaton contribution to the amplitude of the adiabatic perturbation must be smaller than about 67% and the amplitude of the partial curvature perturbation from the curvaton smaller than 43.2x10{sup -5} (both at 95% confidence level). The best-fit power spectra are dominated by the adiabatic part of the inflaton contribution. We use Bayesian model comparison to show that this choice of parameters is disfavored with respect to the pure inflaton scale-invariant case with odds of about 50 to 1. For the second choice of parameters examined, the adiabatic mode is dominated by the curvaton, but this choice is strongly disfavored relative to the pure inflaton scale-invariant case (with odds of about 10{sup 7} to 1). We conclude that in the present framework the perturbations must be dominated by the adiabatic component from the inflaton.

  1. Difference equation for tracking perturbations in systems of Boolean nested canalyzing functions

    NASA Astrophysics Data System (ADS)

    Dimitrova, Elena S.; Yordanov, Oleg I.; Matache, Mihaela T.

    2015-06-01

    This paper studies the spread of perturbations through networks composed of Boolean functions with special canalyzing properties. Canalyzing functions have the property that at least for one value of one of the inputs the output is fixed, irrespective of the values of the other inputs. In this paper the focus is on partially nested canalyzing functions, in which multiple, but not all inputs have this property in a cascading fashion. They naturally describe many relationships in real networks. For example, in a gene regulatory network, the statement "if gene A is expressed, then gene B is not expressed regardless of the states of other genes" implies that A is canalyzing. On the other hand, the additional statement "if gene A is not expressed, and gene C is expressed, then gene B is automatically expressed; otherwise gene B 's state is determined by some other type of rule" implies that gene B is expressed by a partially nested canalyzing function with more than two variables, but with two canalyzing variables. In this paper a difference equation model of the probability that a network node's value is affected by an initial perturbation over time is developed, analyzed, and validated numerically. It is shown that the effect of a perturbation decreases towards zero over time if the Boolean functions are canalyzing in sufficiently many variables. The maximum dynamical impact of a perturbation is shown to be comparable to the average impact for a wide range of values of the average sensitivity of the network. Percolation limits are also explored; these are parameter values which generate a transition of the expected perturbation effect to zero as other parameters are varied, so that the initial perturbation does not scale up with the parameters once the percolation limits are reached.

  2. A hybrid-perturbation-Galerkin technique which combines multiple expansions

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method for the solution of a variety of differential equations type problems is found to give better results when multiple perturbation expansions are employed. The method assumes that there is parameter in the problem formulation and that a perturbation method can be sued to construct one or more expansions in this perturbation coefficient functions multiplied by computed amplitudes. In step one, regular and/or singular perturbation methods are used to determine the perturbation coefficient functions. The results of step one are in the form of one or more expansions each expressed as a sum of perturbation coefficient functions multiplied by a priori known gauge functions. In step two the classical Bubnov-Galerkin method uses the perturbation coefficient functions computed in step one to determine a set of amplitudes which replace and improve upon the gauge functions. The hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Galerkin methods as applied separately, while combining some of their better features. The proposed method is applied, with two perturbation expansions in each case, to a variety of model ordinary differential equations problems including: a family of linear two-boundary-value problems, a nonlinear two-point boundary-value problem, a quantum mechanical eigenvalue problem and a nonlinear free oscillation problem. The results obtained from the hybrid methods are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.

  3. Testing gravity theories using tensor perturbations

    NASA Astrophysics Data System (ADS)

    Lin, Weikang; Ishak, Mustapha

    2016-12-01

    Primordial gravitational waves constitute a promising probe of the very early Universe and the laws of gravity. We study in this work changes to tensor-mode perturbations that can arise in various proposed modified gravity theories. These include additional friction effects, nonstandard dispersion relations involving a massive graviton, a modified speed, and a small-scale modification. We introduce a physically motivated parametrization of these effects and use current available data to obtain exclusion regions in the parameter spaces. Taking into account the foreground subtraction, we then perform a forecast analysis focusing on the tensor-mode modified-gravity parameters as constrained by the future experiments COrE, Stage-IV and PIXIE. For a fiducial value of the tensor-to-scalar ratio r =0.01 , we find that an additional friction of 3.5-4.5% compared to GR will be detected at 3 -σ by these experiments, while a decrease in friction will be more difficult to detect. The speed of gravitational waves needs to be by 5-15% different from the speed of light for detection. We find that the minimum detectable graviton mass is about 7.8 - 9.7 ×10-33 eV , which is of the same order of magnitude as the graviton mass that allows massive gravity theories to produce late-time cosmic acceleration. Finally, we study the tensor-mode perturbations in modified gravity during inflation using our parametrization. We find that, in addition to being related to r , the tensor spectral index would be related to the friction parameter ν0 by nT=-3 ν0-r /8 . Assuming that the friction parameter is unchanged throughout the history of the Universe, and that ν0 is much larger than r , the future experiments considered here will be able to distinguish this modified-gravity consistency relation from the standard inflation consistency relation, and thus can be used as a further test of modified gravity. In summary, tensor-mode perturbations and cosmic-microwave-background B

  4. Measuring the Sensitivity of Single-locus “Neutrality Tests” Using a Direct Perturbation Approach

    PubMed Central

    Garrigan, Daniel; Lewontin, Richard; Wakeley, John

    2010-01-01

    A large number of statistical tests have been proposed to detect natural selection based on a sample of variation at a single genetic locus. These tests measure the deviation of the allelic frequency distribution observed within populations from the distribution expected under a set of assumptions that includes both neutral evolution and equilibrium population demography. The present study considers a new way to assess the statistical properties of these tests of selection, by their behavior in response to direct perturbations of the steady-state allelic frequency distribution, unconstrained by any particular nonequilibrium demographic scenario. Results from Monte Carlo computer simulations indicate that most tests of selection are more sensitive to perturbations of the allele frequency distribution that increase the variance in allele frequencies than to perturbations that decrease the variance. Simulations also demonstrate that it requires, on average, 4N generations (N is the diploid effective population size) for tests of selection to relax to their theoretical, steady-state distributions following different perturbations of the allele frequency distribution to its extremes. This relatively long relaxation time highlights the fact that these tests are not robust to violations of the other assumptions of the null model besides neutrality. Lastly, genetic variation arising under an example of a regularly cycling demographic scenario is simulated. Tests of selection performed on this last set of simulated data confirm the confounding nature of these tests for the inference of natural selection, under a demographic scenario that likely holds for many species. The utility of using empirical, genomic distributions of test statistics, instead of the theoretical steady-state distribution, is discussed as an alternative for improving the statistical inference of natural selection. PMID:19744997

  5. Plasma Braking Due to External Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, Kejo; Brunsell, P. R.; Khan, M. W. M.; Drake, J. R.

    2010-11-01

    The RFP EXTRAP T2R is equipped with a comprehensive active feedback system (128 active saddle coils in the full-coverage array) and active control of both resonant and non-resonant MHD modes has been demonstrated. The feedback algorithms, based on modern control methodology such as reference mode tracking (both amplitude and phase), are a useful tool to improve the ``state of the art'' of the MHD mode control. But this tool can be used also to improve the understanding and the characterization of other phenomena such as the ELM mitigation with a resonant magnetic perturbation or the plasma viscosity. The present work studies plasma and mode braking due to static RMPs. Results show that a static RMP produces a global braking of the flow profile. The study of the effect of RMPs characterized by different helicities will also give information on the plasma viscosity profile. Experimental results are finally compared to theoretical models.

  6. Applications of partially quenched chiral perturbation theory

    SciTech Connect

    Golterman, M.F.; Leung, K.C.

    1998-05-01

    Partially quenched theories are theories in which the valence- and sea-quark masses are different. In this paper we calculate the nonanalytic one-loop corrections of some physical quantities: the chiral condensate, weak decay constants, Goldstone boson masses, B{sub K}, and the K{sup +}{r_arrow}{pi}{sup +}{pi}{sup 0} decay amplitude, using partially quenched chiral perturbation theory. Our results for weak decay constants and masses agree with, and generalize, results of previous work by Sharpe. We compare B{sub K} and the K{sup +} decay amplitude with their real-world values in some examples. For the latter quantity, two other systematic effects that plague lattice computations, namely, finite-volume effects and unphysical values of the quark masses and pion external momenta, are also considered. We find that typical one-loop corrections can be substantial. {copyright} {ital 1998} {ital The American Physical Society}

  7. Degenerate R-S perturbation theory

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Certain, P. R.

    1973-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.

  8. Pressure perturbation calorimetry of unfolded proteins.

    PubMed

    Tsamaloukas, Alekos D; Pyzocha, Neena K; Makhatadze, George I

    2010-12-16

    We report the application of pressure perturbation calorimetry (PPC) to study unfolded proteins. Using PPC we have measured the temperature dependence of the thermal expansion coefficient, α(T), in the unfolded state of apocytochrome C and reduced BPTI. We have shown that α(T) is a nonlinear function and decreases with increasing temperature. The decrease is most significant in the low (2-55 °C) temperature range. We have also tested an empirical additivity approach to predict α(T) of unfolded state from the amino acid sequence using α(T) values for individual amino acids. A comparison of the experimental and calculated functions shows a very good agreement, both in absolute values of α(T) and in its temperature dependence. Such an agreement suggests the applicability of using empirical calculations to predict α(T) of any unfolded protein.

  9. Modified contour-improved perturbation theory

    SciTech Connect

    Cvetic, Gorazd; Loewe, Marcelo; Martinez, Cristian; Valenzuela, Cristian

    2010-11-01

    The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard ''contour-improved'' method based on a derivative expansion of the Adler function. The new approach has some advantages compared to contour-improved perturbation theory. The renormalization scale dependence is weaker by more than a factor of 2 and the last term of the expansion is reduced by about 10%, while the renormalization scheme dependence remains approximately equal. The extracted QCD coupling at the tau mass scale is by 2% lower than the contour-improved value. We find {alpha}{sub s}(M{sub Z}{sup 2})=0.1211{+-}0.0010.

  10. Nulling Stabilization in the Presence of Perturbation

    NASA Astrophysics Data System (ADS)

    Houairi, K.; Cassaing, F.; Le Duigou, J. M.; Barillot, M.; Coudé du Foresto, V.; Hénault, F.; Jacquinod, S.; Ollivier, M.; Reess, J.-M.; Sorrente, B.

    2007-07-01

    Nulling interferometry is one of the most promising methods to study habitable extrasolar systems. In this context, several projects have been proposed such as ALADDIN on ground or DARWIN and PEGASE in space. A first step towards these missions will be performed with a laboratory breadboard, named PERSEE, built by a consortium including CNES, IAS, LESIA, OCA, ONERA and TAS. Its main goals are the demonstration of a polychromatic null with a 10-4 rejection rate and a 10-5 stability despite the introduction of realistic perturbations, the study of the interfaces with the formation-flying spacecrafts and the joint operation of the cophasing system with the nuller. The broadboard integration should end in 2009, then PERSEE will be open to proposals from the scientific community.

  11. Ergodicity in randomly perturbed quantum systems

    NASA Astrophysics Data System (ADS)

    Gherardini, Stefano; Lovecchio, Cosimo; Müller, Matthias M.; Lombardi, Pietro; Caruso, Filippo; Saverio Cataliotti, Francesco

    2017-03-01

    The theoretical cornerstone of statistical mechanics is the ergodic assumption, i.e. the assumption that the time average of an observable equals its ensemble average. Here, we show how such a property is present when an open quantum system is continuously perturbed by an external environment effectively observing the system at random times while the system dynamics approaches the quantum Zeno regime. In this context, by large deviation theory we analytically show how the most probable value of the probability for the system to be in a given state eventually deviates from the non-stochastic case when the Zeno condition is not satisfied. We experimentally test our results with ultra-cold atoms prepared on an atom chip.

  12. Perturbing Misiurewicz Parameters in the Exponential Family

    NASA Astrophysics Data System (ADS)

    Dobbs, Neil

    2015-04-01

    In one-dimensional real and complex dynamics, a map whose post-singular (or post-critical) set is bounded and uniformly repelling is often called a Misiurewicz map. In results hitherto, perturbing a Misiurewicz map is likely to give a non-hyperbolic map, as per Jakobson's Theorem for unimodal interval maps. This is despite genericity of hyperbolic parameters (at least in the interval setting). We show the contrary holds in the complex exponential family Misiurewicz maps are Lebesgue density points for hyperbolic parameters. As a by-product, we also show that Lyapunov exponents almost never exist for exponential Misiurewicz maps. The lower Lyapunov exponent is -∞ almost everywhere. The upper Lyapunov exponent is non-negative and depends on the choice of metric.

  13. Perturbative High Harmonic Wave Front Control

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Brown, Graham; Ko, Dong Hyuk; Kong, Fanqi; Arissian, Ladan; Corkum, P. B.

    2017-01-01

    We pattern the wave front of a high harmonic beam by intersecting the intense driving laser pulse that generates the high harmonic with a weak control pulse. To illustrate the potential of wave-front control, we imprint a Fresnel zone plate pattern on a harmonic beam, causing the harmonics to focus and defocus. The quality of the focus that we achieve is measured using the spectral wave-front optical reconstruction by diffraction method. We will show that it is possible to enhance the peak intensity by orders of magnitude without a physical optical element in the path of the extreme ultraviolet (XUV) beam. Through perturbative wave-front control, XUV beams can be created with a flexibility approaching what technology allows for visible and infrared light.

  14. Systematic analysis of endocytosis by cellular perturbations.

    PubMed

    Kühling, Lena; Schelhaas, Mario

    2014-01-01

    Endocytosis is an essential process of eukaryotic cells that facilitates numerous cellular and organismal functions. The formation of vesicles from the plasma membrane serves the internalization of ligands and receptors and leads to their degradation or recycling. A number of distinct mechanisms have been described over the years, several of which are only partially characterized in terms of mechanism and function. These are often referred to as novel endocytic pathways. The pathways differ in their mode of uptake and in their intracellular destination. Here, an overview of the set of cellular proteins that facilitate the different pathways is provided. Further, the approaches to distinguish between the pathways by different modes of perturbation are critically discussed, emphasizing the use of genetic tools such as dominant negative mutant proteins.

  15. Profiling DNA damage response following mitotic perturbations

    PubMed Central

    S. Pedersen, Ronni; Karemore, Gopal; Gudjonsson, Thorkell; Rask, Maj-Britt; Neumann, Beate; Hériché, Jean-Karim; Pepperkok, Rainer; Ellenberg, Jan; Gerlich, Daniel W.; Lukas, Jiri; Lukas, Claudia

    2016-01-01

    Genome integrity relies on precise coordination between DNA replication and chromosome segregation. Whereas replication stress attracted much attention, the consequences of mitotic perturbations for genome integrity are less understood. Here, we knockdown 47 validated mitotic regulators to show that a broad spectrum of mitotic errors correlates with increased DNA breakage in daughter cells. Unexpectedly, we find that only a subset of these correlations are functionally linked. We identify the genuine mitosis-born DNA damage events and sub-classify them according to penetrance of the observed phenotypes. To demonstrate the potential of this resource, we show that DNA breakage after cytokinesis failure is preceded by replication stress, which mounts during consecutive cell cycles and coincides with decreased proliferation. Together, our results provide a resource to gauge the magnitude and dynamics of DNA breakage associated with mitotic aberrations and suggest that replication stress might limit propagation of cells with abnormal karyotypes. PMID:27976684

  16. Local perturbations of conservative C 1 diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Buzzi, Jérôme; Crovisier, Sylvain; Fisher, Todd

    2017-09-01

    A number of techniques have been developed to perturb the dynamics of C 1-diffeomorphisms and to modify the properties of their periodic orbits. For instance, one can locally linearize the dynamics, change the tangent dynamics, or create local homoclinic orbits. These techniques have been crucial for the understanding of C 1 dynamics, but their most precise forms have mostly been shown in the dissipative setting. This work extends these results to volume-preserving and especially symplectic systems. These tools underlie our study of the entropy of C 1-diffeomorphisms in Buzzi et al (2016 (arXiv:1606.01765)). We also give an application to the approximation of transitive invariant sets without genericity assumptions.

  17. Chiral nontopological solitons with perturbative quantum pions

    NASA Astrophysics Data System (ADS)

    Williams, A. G.; Dodd, L. R.

    1988-04-01

    We investigate chiral extensions of a broad class of nontopological soliton bag models. Chiral symmetry is restored in a nonlinear realization through the introduction of an elementary pion field. We show in particular that it is consistent to treat the pions as a perturbative quantum field, as is done in the cloudy-bag model. The cloudy-bag model is recovered as a limiting case. A careful comparison is made between predictions of chiral extensions of the Friedberg-Lee and the Nielsen-Patkos color-dielectric nontopological soliton models and the cloudy-bag model. Once the overall distance scale is fixed we find relative insensitivity to the detailed choice of nontopological soliton parameters. We investigate two versions of chiral nontopological solitons, analogous to the surface- and volume-coupled cloudy-bag model, and discuss their relation to current algebra.

  18. Perturbative analysis in higher-spin theories

    NASA Astrophysics Data System (ADS)

    Didenko, V. E.; Misuna, N. G.; Vasiliev, M. A.

    2016-07-01

    A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higherspin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.

  19. Formation of Voids from Negative Density Perturbations

    NASA Astrophysics Data System (ADS)

    de Araujo, J. C. N.; Opher, R.

    1990-11-01

    RESUMEN. Se estudia la formaci6n de huecos a partir de un espectro negativo de perturbaciones, tomando en cuenta la expansi6n del Universo, arrastre por fotones, enfriamiento por fotones, fotoionizaci6n, ioniza- ci6n colisional, enfriamiento Lyman a y la formaci6n y enfriamiento de moleculas H2. Nuestros resultados predicen la existencia de regiones 1/10 de Ia densidad promedio para regiones de masa lO - 1O10M . ABSTRACT. In the present paer we study the formation of voids from a negative spectrum of perturbations taking into account the expansion of the Universe, photon-drag, photon-cooling, photoionization, collisional ionization, Lyman a cooling and the formation and cooling of 112 molecules. Our results predict the existence of regions 1/10 the average density for regions of mass 1O - 1O10M@ : CLUSTERS-GALAXIES - COSMOLOGY

  20. Relativistic Lagrangian displacement field and tensor perturbations

    NASA Astrophysics Data System (ADS)

    Rampf, Cornelius; Wiegand, Alexander

    2014-12-01

    We investigate the purely spatial Lagrangian coordinate transformation from the Lagrangian to the basic Eulerian frame. We demonstrate three techniques for extracting the relativistic displacement field from a given solution in the Lagrangian frame. These techniques are (a) from defining a local set of Eulerian coordinates embedded into the Lagrangian frame; (b) from performing a specific gauge transformation; and (c) from a fully nonperturbative approach based on the Arnowitt-Deser-Misner (ADM) split. The latter approach shows that this decomposition is not tied to a specific perturbative formulation for the solution of the Einstein equations. Rather, it can be defined at the level of the nonperturbative coordinate change from the Lagrangian to the Eulerian description. Studying such different techniques is useful because it allows us to compare and develop further the various approximation techniques available in the Lagrangian formulation. We find that one has to solve the gravitational wave equation in the relativistic analysis, otherwise the corresponding Newtonian limit will necessarily contain spurious nonpropagating tensor artifacts at second order in the Eulerian frame. We also derive the magnetic part of the Weyl tensor in the Lagrangian frame, and find that it is not only excited by gravitational waves but also by tensor perturbations which are induced through the nonlinear frame dragging. We apply our findings to calculate for the first time the relativistic displacement field, up to second order, for a Λ CDM Universe in the presence of a local primordial non-Gaussian component. Finally, we also comment on recent claims about whether mass conservation in the Lagrangian frame is violated.

  1. Gaussian-4 theory using reduced perturbation orders.

    SciTech Connect

    Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Indiana Univ.

    2007-01-01

    Two modifications of Gaussian-4 (G4) theory [L. A. Curtiss et al., J. Chem. Phys. 126, 084108 (2007)] are presented in which second- and third-order perturbation theories are used in place of fourth-order perturbation theory. These two new methods are referred to as G4(MP2) and G4(MP3), respectively. Both methods have been assessed on the G3/05 test set of accurate experimental data. The average absolute deviation from experiment for the 454 energies in this test set is 1.04 kcal/mol for G4(MP2) theory and 1.03 kcal/mol for G4(MP3) theory compared to 0.83 kcal/mol for G4 theory. G4(MP2) is slightly more accurate for enthalpies of formation than G4(MP3) (0.99 versus 1.04 kcal/mol), while G4(MP3) is more accurate for ionization potentials and electron affinities. Overall, the G4(MP2) method provides an accurate and economical method for thermochemical predictions. It has an overall accuracy for the G3/05 test set that is much better than G3(MP2) theory (1.04 versus 1.39 kcal/mol) and even better than G3 theory (1.04 versus 1.13 kcal/mol). In addition, G4(MP2) does better for challenging hypervalent systems such as H2SO4 and for nonhydrogen species than G3(MP2) theory.

  2. Orbit Averaging in Perturbed Planetary Rings

    NASA Astrophysics Data System (ADS)

    Stewart, Glen R.

    2015-11-01

    The orbital period is typically much shorter than the time scale for dynamical evolution of large-scale structures in planetary rings. This large separation in time scales motivates the derivation of reduced models by averaging the equations of motion over the local orbit period (Borderies et al. 1985, Shu et al. 1985). A more systematic procedure for carrying out the orbit averaging is to use Lie transform perturbation theory to remove the dependence on the fast angle variable from the problem order-by-order in epsilon, where the small parameter epsilon is proportional to the fractional radial distance from exact resonance. This powerful technique has been developed and refined over the past thirty years in the context of gyrokinetic theory in plasma physics (Brizard and Hahm, Rev. Mod. Phys. 79, 2007). When the Lie transform method is applied to resonantly forced rings near a mean motion resonance with a satellite, the resulting orbit-averaged equations contain the nonlinear terms found previously, but also contain additional nonlinear self-gravity terms of the same order that were missed by Borderies et al. and by Shu et al. The additional terms result from the fact that the self-consistent gravitational potential of the perturbed rings modifies the orbit-averaging transformation at nonlinear order. These additional terms are the gravitational analog of electrostatic ponderomotive forces caused by large amplitude waves in plasma physics. The revised orbit-averaged equations are shown to modify the behavior of nonlinear density waves in planetary rings compared to the previously published theory. This reserach was supported by NASA's Outer Planets Reserach program.

  3. Scalar perturbations of nonsingular nonrotating black holes in conformal gravity

    NASA Astrophysics Data System (ADS)

    Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Schee, Jan

    2017-09-01

    We study scalar and electromagnetic perturbations of a family of nonsingular nonrotating black hole spacetimes that are solutions in a large class of conformally invariant theories of gravity. The effective potential for scalar perturbations depends on the exact form of the scaling factor. Electromagnetic perturbations do not feel the scaling factor, and the corresponding quasinormal mode spectrum is the same as in the Schwarzschild metric. We find that these black hole metrics are stable under scalar and electromagnetic perturbations. Assuming that the quasinormal mode spectrum for scalar perturbations is not too different from that for gravitational perturbations, we can expect that the calculation of the quasinormal mode spectrum and the observation with gravitational wave detectors of quasinormal modes from astrophysical black holes can constrain the scaling factor and test these solutions.

  4. Nonlinear Generation of Fluting Perturbations by Kink Mode

    NASA Astrophysics Data System (ADS)

    Ruderman, M. S.

    2017-08-01

    We study the excitation of fluting perturbations in a magnetic tube by an initially imposed kink mode. We use the ideal magnetohydrodynamic (MHD) equations in the cold-plasma approximation. We also use the thin-tube approximation and scale the dependent and independent variables accordingly. Then we assume that the dimensionless amplitude of the kink mode is small and use it as an expansion parameter in the regular perturbation method. We obtain the expression for the tube boundary perturbation in the second-order approximation. This perturbation is a superposition of sausage and fluting perturbations. The amplitude of the fluting perturbation takes its maximum at the middle of the tube, and it monotonically decreases with the distance from the middle of the tube.

  5. Separating metric perturbations in near-horizon extremal Kerr spacetimes

    NASA Astrophysics Data System (ADS)

    Chen, Baoyi; Stein, Leo C.

    2017-09-01

    Linear perturbation theory is a powerful toolkit for studying black hole spacetimes. However, the perturbation equations are hard to solve unless we can use separation of variables. In the Kerr spacetime, metric perturbations do not separate, but curvature perturbations do. The cost of curvature perturbations is a very complicated metric-reconstruction procedure. This procedure can be avoided using a symmetry-adapted choice of basis functions in highly symmetric spacetimes, such as near-horizon extremal Kerr. In this paper, we focus on this spacetime and (i) construct the symmetry-adapted basis functions; (ii) show their orthogonality; and (iii) show that they lead to separation of variables of the scalar, Maxwell, and metric perturbation equations. This separation turns the system of partial differential equations into one of ordinary differential equations over a compact domain, the polar angle.

  6. Non-perturbative String Theory from Water Waves

    SciTech Connect

    Iyer, Ramakrishnan; Johnson, Clifford V.; Pennington, Jeffrey S.; /SLAC

    2012-06-14

    We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.

  7. Adiabatic and isocurvature perturbation projections in multi-field inflation

    SciTech Connect

    Gordon, Chris; Saffin, Paul M. E-mail: Paul.Saffin@nottingham.ac.uk

    2013-08-01

    Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.

  8. Intersegmental coupling and recovery from perturbations in freely running cockroaches.

    PubMed

    Couzin-Fuchs, Einat; Kiemel, Tim; Gal, Omer; Ayali, Amir; Holmes, Philip

    2015-01-15

    Cockroaches are remarkably stable runners, exhibiting rapid recovery from external perturbations. To uncover the mechanisms behind this important behavioral trait, we recorded leg kinematics of freely running animals in both undisturbed and perturbed trials. Functional coupling underlying inter-leg coordination was monitored before and during localized perturbations, which were applied to single legs via magnetic impulses. The resulting transient effects on all legs and the recovery times to normal pre-perturbation kinematics were studied. We estimated coupling architecture and strength by fitting experimental data to a six-leg-unit phase oscillator model. Using maximum-likelihood techniques, we found that a network with nearest-neighbor inter-leg coupling best fitted the data and that, although coupling strengths vary among preparations, the overall inputs entering each leg are approximately balanced and consistent. Simulations of models with different coupling strengths encountering perturbations suggest that the coupling schemes estimated from our experiments allow animals relatively fast and uniform recoveries from perturbations.

  9. Delta-Measure Perturbations of a Contact Discontinuity

    NASA Astrophysics Data System (ADS)

    Baty, Roy

    2012-11-01

    In this presentation, nonstandard analysis is applied to study generalized function perturbations of contact discontinuities in compressible, inviscid fluids. Nonstandard analysis is an area of modern mathematics that studies extensions of the real number system to nonstandard number systems that contain infinitely large and infinitely small numbers. Perturbations of a contact discontinuity are considered that represent one-dimensional analogs of the two-dimensional perturbations observed in the initial evolution of a Richtmyer-Meshkov instability on a density interface. Nonstandard predistributions of the Dirac delta measure and its derivatives are applied as the perturbations of a contact discontinuity. The one-dimensional Euler equations are used to model the flow field of a fluid containing a perturbed density interface and generalized solutions are constructed for the perturbed flow field.

  10. Constraints on primordial density perturbations from induced gravitational waves

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David

    2010-01-15

    We consider the stochastic background of gravitational waves produced during the radiation-dominated hot big bang as a constraint on the primordial density perturbation on comoving length scales much smaller than those directly probed by the cosmic microwave background or large-scale structure. We place weak upper bounds on the primordial density perturbation from current data. Future detectors such as BBO and DECIGO will place much stronger constraints on the primordial density perturbation on small scales.

  11. Anomaly-free cosmological perturbations in effective canonical quantum gravity

    SciTech Connect

    Barrau, Aurelien; Calcagni, Gianluca; Grain, Julien E-mail: bojowald@gravity.psu.edu E-mail: julien.grain@ias.u-psud.fr

    2015-05-01

    This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.

  12. Density Perturbations in the Universe from Massive Vector Fields

    SciTech Connect

    Dimopoulos, K.

    2007-11-20

    I discuss the possibility of using a massive vector field to generate the density perturbation in the Universe. I find that a scale-invariant superhorizon spectrum of vector field perturbations is possible to generate during inflation. The associated curvature perturbation is imprinted onto the Universe following the curvaton scenario. The mechanism does not generate a long-range anisotropy because an oscillating massive vector field behaves as a pressureless isotropic fluid.

  13. Investigations of Probe Induced Perturbations in a Hall Thruster

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2002-08-12

    An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities.

  14. Complete synchronization of the noise-perturbed Chua's circuits

    NASA Astrophysics Data System (ADS)

    Lin, Wei; He, Yangbo

    2005-06-01

    In this paper, complete synchronization between unidirectionally coupled Chua's circuits within stochastic perturbation is investigated. Sufficient conditions of complete synchronization between these noise-perturbed circuits are established by means of the so-called LaSalle-type invariance principle for stochastic differential equations. Specific examples and their numerical simulations are also provided to demonstrate the feasibility of these conditions. Furthermore, the results obtained for the coupled Chua's circuits are further generalized to the wide class of coupled systems within stochastic perturbation.

  15. Complete synchronization of the noise-perturbed Chua's circuits.

    PubMed

    Lin, Wei; He, Yangbo

    2005-06-01

    In this paper, complete synchronization between unidirectionally coupled Chua's circuits within stochastic perturbation is investigated. Sufficient conditions of complete synchronization between these noise-perturbed circuits are established by means of the so-called LaSalle-type invariance principle for stochastic differential equations. Specific examples and their numerical simulations are also provided to demonstrate the feasibility of these conditions. Furthermore, the results obtained for the coupled Chua's circuits are further generalized to the wide class of coupled systems within stochastic perturbation.

  16. Quark Matter Equation of State from Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Vuorinen, Aleksi

    2017-03-01

    In this proceedings contribution, we discuss recent developments in the perturbative determination of the Equation of State of dense quark matter, relevant for the microscopic description of neutron star cores. First, we introduce the current state of the art in the problem, both at zero and small temperatures, and then present results from two recent perturbative studies that pave the way towards extending the EoS to higher orders in perturbation theory.

  17. Equation-of-motion coupled cluster perturbation theory revisited.

    PubMed

    Eriksen, Janus J; Jørgensen, Poul; Olsen, Jeppe; Gauss, Jürgen

    2014-05-07

    The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally converges towards the full configuration interaction energy limit. The series is based on a Møller-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby remedying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz.

  18. Perturbation-induced radiation by the Ablowitz-Ladik soliton.

    PubMed

    Doktorov, E V; Matsuka, N P; Rothos, V M

    2003-12-01

    An efficient formalism is elaborated to analytically describe dynamics of the Ablowitz-Ladik soliton in the presence of perturbations. This formalism is based on using the Riemann-Hilbert problem and provides the means of calculating evolution of the discrete soliton parameters, as well as shape distortion and perturbation-induced radiation effects. As an example, soliton characteristics are calculated for linear damping and quintic perturbations.

  19. Equation-of-motion coupled cluster perturbation theory revisited

    SciTech Connect

    Eriksen, Janus J. Jørgensen, Poul; Olsen, Jeppe; Gauss, Jürgen

    2014-05-07

    The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally converges towards the full configuration interaction energy limit. The series is based on a Møller-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby remedying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz.

  20. Asymptotic analysis of perturbed dust cosmologies to second order

    NASA Astrophysics Data System (ADS)

    Uggla, Claes; Wainwright, John

    2013-08-01

    Nonlinear perturbations of Friedmann-Lemaitre cosmologies with dust and a cosmological constant Λ >0 have recently attracted considerable attention. In this paper our first goal is to compare the evolution of the first and second order perturbations by determining their asymptotic behaviour at late times in ever-expanding models. We show that in the presence of spatial curvature K or a cosmological constant, the density perturbation approaches a finite limit both to first and second order, but the rate of approach depends on the model, being power law in the scale factor if Λ >0 but logarithmic if Λ =0 and K<0. Scalar perturbations in general contain a growing and a decaying mode. We find, somewhat surprisingly, that if Λ >0 the decaying mode does not die away, i.e. it contributes on an equal footing as the growing mode to the asymptotic expression for the density perturbation. On the other hand, the future asymptotic regime of the Einstein-de Sitter universe (K=Λ =0) is completely different, as exemplified by the density perturbation which diverges; moreover, the second order perturbation diverges faster than the first order perturbation, which suggests that the Einstein-de Sitter universe is unstable to perturbations, and that the perturbation series do not converge towards the future. We conclude that the presence of spatial curvature or a cosmological constant stabilizes the perturbations. Our second goal is to derive an explicit expression for the second order density perturbation that can be used to study the effects of including a cosmological constant and spatial curvature.

  1. A new method to compute lunisolar perturbations in satellite motions

    NASA Technical Reports Server (NTRS)

    Kozai, Y.

    1973-01-01

    A new method to compute lunisolar perturbations in satellite motion is proposed. The disturbing function is expressed by the orbital elements of the satellite and the geocentric polar coordinates of the moon and the sun. The secular and long periodic perturbations are derived by numerical integrations, and the short periodic perturbations are derived analytically. The perturbations due to the tides can be included in the same way. In the Appendix, the motion of the orbital plane for a synchronous satellite is discussed; it is concluded that the inclination cannot stay below 7 deg.

  2. Primordial perturbations in a rainbow universe with running Newton constant

    NASA Astrophysics Data System (ADS)

    Brighenti, Francesco; Gubitosi, Giulia; Magueijo, Joao

    2017-03-01

    We compute the spectral index of primordial perturbations in a rainbow universe. We allow the Newton constant G to run at (super-) Planckian energies and we consider both vacuum and thermal perturbations. If the rainbow metric is the one associated to a generalized Horava-Lifshitz dispersion relation, we find that only when G tends asymptotically to 0 can one match the observed value of the spectral index and solve the horizon problem, both for vacuum and thermal perturbations. For vacuum fluctuations the observational constraints imply that the primordial universe expansion can be both accelerating or decelerating, while in the case of thermal perturbations only decelerating expansion is allowed.

  3. On the singular perturbations for fractional differential equation.

    PubMed

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  4. Nondimensional forms for singular perturbation analyses of aircraft energy climbs

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Markopoulos, N.; Corban, J. E.

    1991-01-01

    This paper proposes a systematic approach for identifying the perturbation parameter in singular perturbation analysis of aircraft optimal guidance, and in particular considers a family of problems related to aircraft energy climbs. The approach, which is based on a nondimensionalization of the equations of motion, is used to evaluatae the appropriateness of forced singular perturbation formulations used in the past for transport and fighter aircraft, and to assess the applicability of energy state approximations and singular perturbation analysis for airbreathing transatmospheric vehicles with hypersonic cruise and orbital capabilities.

  5. Resonant magnetic perturbations and edge ergodization on the COMPASS tokamak

    SciTech Connect

    Cahyna, P.; Fuchs, V.; Krlin, L.

    2008-09-15

    Results of calculations of resonant magnetic perturbation spectra on the COMPASS tokamak are presented. Spectra of the perturbations are calculated from the vacuum field of the perturbation coils. Ergodization is then estimated by applying the criterion of overlap of the resulting islands and verified by field line tracing. Results show that for the chosen configuration of perturbation coils an ergodic layer appears in the pedestal region. The ability to form an ergodic layer is similar to the theoretical results for the ELM suppression experiment at DIII-D; thus, a comparable effect on ELMs can be expected.

  6. Multifield cosmological perturbations at third order and the ekpyrotic trispectrum

    SciTech Connect

    Lehners, Jean-Luc; Renaux-Petel, Sebastien

    2009-09-15

    Using the covariant formalism, we derive the equations of motion for adiabatic and entropy perturbations at third order in perturbation theory for cosmological models involving two scalar fields. We use these equations to calculate the trispectrum of ekpyrotic and cyclic models in which the density perturbations are generated via the entropic mechanism. In these models, the conversion of entropy into curvature perturbations occurs just before the big bang, either during the ekpyrotic phase or during the subsequent kinetic energy dominated phase. In both cases, we find that the nonlinearity parameters f{sub NL} and g{sub NL} combine to leave a very distinct observational imprint.

  7. The study of effects of small perturbations on chaotic systems

    SciTech Connect

    Grebogi, C. . Lab. for Plasma Research); Yorke, J.A. . Inst. for Physical Science and Technology)

    1990-12-01

    This report discusses the following topics on small perturbations on chaotic systems: controlling chaos; shadowing and noise reduction; chaotic scattering; random maps; magnetic dynamo; and aids transmission. (LSP)

  8. Perturbation Monte Carlo methods for tissue structure alterations.

    PubMed

    Nguyen, Jennifer; Hayakawa, Carole K; Mourant, Judith R; Spanier, Jerome

    2013-01-01

    This paper describes an extension of the perturbation Monte Carlo method to model light transport when the phase function is arbitrarily perturbed. Current perturbation Monte Carlo methods allow perturbation of both the scattering and absorption coefficients, however, the phase function can not be varied. The more complex method we develop and test here is not limited in this way. We derive a rigorous perturbation Monte Carlo extension that can be applied to a large family of important biomedical light transport problems and demonstrate its greater computational efficiency compared with using conventional Monte Carlo simulations to produce forward transport problem solutions. The gains of the perturbation method occur because only a single baseline Monte Carlo simulation is needed to obtain forward solutions to other closely related problems whose input is described by perturbing one or more parameters from the input of the baseline problem. The new perturbation Monte Carlo methods are tested using tissue light scattering parameters relevant to epithelia where many tumors originate. The tissue model has parameters for the number density and average size of three classes of scatterers; whole nuclei, organelles such as lysosomes and mitochondria, and small particles such as ribosomes or large protein complexes. When these parameters or the wavelength is varied the scattering coefficient and the phase function vary. Perturbation calculations give accurate results over variations of ∼15-25% of the scattering parameters.

  9. Scalar field perturbations in Hořava-Lifshitz cosmology

    NASA Astrophysics Data System (ADS)

    Wang, Anzhong; Wands, David; Maartens, Roy

    2010-03-01

    We study perturbations of a scalar field cosmology in Hořava-Lifshitz gravity, adopting the most general setup without detailed balance but with the projectability condition. We derive the generalized Klein-Gordon equation, which is sixth-order in spatial derivatives. Then we investigate scalar field perturbations coupled to gravity in a flat Friedmann-Robertson-Walker background. In the sub-horizon regime, the metric and scalar field modes have independent oscillations with different frequencies and phases except in particular cases. On super-horizon scales, the perturbations become adiabatic during slow-roll inflation driven by a single field, and the comoving curvature perturbation is constant.

  10. Non-linear isocurvature perturbations and non-Gaussianities

    SciTech Connect

    Langlois, David; Vernizzi, Filippo; Wands, David E-mail: filippo.vernizzi@cea.fr

    2008-12-15

    We study non-linear primordial adiabatic and isocurvature perturbations and their non-Gaussianity. After giving a general formulation in the context of an extended {delta}N formalism, we analyse in detail two illustrative examples. The first is a mixed curvaton-inflaton scenario in which fluctuations of both the inflaton and a curvaton (a light isocurvature field during inflation) contribute to the primordial density perturbation. The second example is that of double inflation involving two decoupled massive scalar fields during inflation. In the mixed curvaton-inflaton scenario we find that the bispectrum of primordial isocurvature perturbations may be large and comparable to the bispectrum of adiabatic curvature perturbations.

  11. Non-perturbative renormalization of lattice operators in coordinate space

    NASA Astrophysics Data System (ADS)

    Giménez, V.; Giusti, L.; Guerriero, S.; Lubicz, V.; Martinelli, G.; Petrarca, S.; Reyes, J.; Taglienti, B.; Trevigne, E.

    2004-09-01

    We present the first numerical implementation of a non-perturbative renormalization method for lattice operators, based on the study of correlation functions in coordinate space at short Euclidean distance. The method is applied to compute the renormalization constants of bilinear quark operators for the non-perturbative O (a)-improved Wilson action in the quenched approximation. The matching with perturbative schemes, such as MS bar, is computed at the next-to-leading order in continuum perturbation theory. A feasibility study of this technique with Neuberger fermions is also presented.

  12. Some topics on scale-invariant perturbations from noninflationary universe

    NASA Astrophysics Data System (ADS)

    Li, Mingzhe

    In this paper, we review some topics on generations of scale-invariant primordial scalar and tensor perturbations in the early universe models different from inflation. The content includes generation of scale-invariant and Gaussian scalar perturbation in the ekpyrotic/cyclic universe, and production scale-invariant tensor perturbation in contracting universe. The main property of the models reviewed in this paper is the nonminimal couplings, include nonminimal couplings between the scalar fields and those to the gravity. By introducing these couplings, it is not difficult to achieve scale-invariances for the perturbations in the early universe models alternative to inflation.

  13. Quaternion regularization and stabilization of perturbed central motion. II

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    1993-04-01

    Generalized regular quaternion equations for the three-dimensional two-body problem in terms of Kustaanheimo-Stiefel variables are obtained within the framework of the quaternion theory of regularizing and stabilizing transformations of the Newtonian equations for perturbed central motion. Regular quaternion equations for perturbed central motion of a material point in a central field with a certain potential Pi are also derived in oscillatory and normal forms. In addition, systems of perturbed central motion equations are obtained which include quaternion equations of perturbed orbit orientations in oscillatory or normal form, and a generalized Binet equation is derived. A comparative analysis of the equations is carried out.

  14. Experimental assessment of the sensitiveness of an electrochemical oscillator towards chemical perturbations.

    PubMed

    Ferreira, Graziela C A; Batista, Bruno C; Varela, Hamilton

    2012-01-01

    In this study we address the problem of the response of a (electro)chemical oscillator towards chemical perturbations of different magnitudes. The chemical perturbation was achieved by addition of distinct amounts of trifluoromethanesulfonate (TFMSA), a rather stable and non-specifically adsorbing anion, and the system under investigation was the methanol electro-oxidation reaction under both stationary and oscillatory regimes. Increasing the anion concentration resulted in a decrease in the reaction rates of methanol oxidation and a general decrease in the parameter window where oscillations occurred. Furthermore, the addition of TFMSA was found to decrease the induction period and the total duration of oscillations. The mechanism underlying these observations was derived mathematically and revealed that inhibition in the methanol oxidation through blockage of active sites was found to further accelerate the intrinsic non-stationarity of the unperturbed system. Altogether, the presented results are among the few concerning the experimental assessment of the sensitiveness of an oscillator towards chemical perturbations. The universal nature of the complex chemical oscillator investigated here might be used for reference when studying the dynamics of other less accessible perturbed networks of (bio)chemical reactions.

  15. Simulations of long-term community dynamics in coral reefs--how perturbations shape trajectories.

    PubMed

    Kubicek, Andreas; Muhando, Christopher; Reuter, Hauke

    2012-01-01

    Tropical coral reefs feature extraordinary biodiversity and high productivity rates in oligotrophic waters. Due to increasing frequencies of perturbations--anthropogenic and natural--many reefs are under threat. Such perturbations often have devastating effects on these unique ecosystems and especially if they occur simultaneously and amplify each other's impact, they might trigger a phase shift and create irreversible conditions.We developed a generic, spatially explicit, individual-based model in which competition drives the dynamics of a virtual benthic reef community--comprised of scleractinian corals and algae--under different environmental settings. Higher system properties, like population dynamics or community composition arise through self-organization as emergent properties. The model was parameterized for a typical coral reef site at Zanzibar, Tanzania and features coral bleaching and physical disturbance regimes as major sources of perturbations. Our results show that various types and modes (intensities and frequencies) of perturbations create diverse outcomes and that the switch from high diversity to single species dominance can be evoked by small changes in a key parameter. Here we extend the understanding of coral reef resilience and the identification of key processes, drivers and respective thresholds, responsible for changes in local situations. One future goal is to provide a tool which may aid decision making processes in management of coral reefs.

  16. A Study of Early/Slow VLF Perturbations Observed at Agra, India

    NASA Astrophysics Data System (ADS)

    Pandey, Uma; Singh, Ashutosh K.; Singh, Om P.; Singh, Birbal; Saraswat, Vibhav K.

    2016-06-01

    We present here the results of sub-ionospheric VLF perturbations observed on NWC (19.8 kHz) transmitter signal propagating in the Earth-ionosphere waveguide, monitored at our low latitude station Agra. During the period of observation (June-December 2011), we found 89 cases of VLF perturbation, while only 73 cases showing early character associated with strong lightning discharges. Out of 73 events, 64 ( 84%) of the early VLF perturbations are found to be early/slow in nature; the remaining 9 events are early/fast. The onset duration of these early/slow VLF perturbations is up to 5 s. A total of 54 observed early events show amplitude change lying between ± 3.0 dB, and phase change ± 12 degree, respectively, and found to occur mainly during nighttime. One of the interesting results we found is that the events with larger recovery time lie far away from the VLF propagation path, while events with smaller duration of recovery are within the ± 50-100 km of signal path. The World Wide Lightning Location Network (WWLLN) data is analysed to find the location of causative lightning and temporal variation. The lightning discharge and associated processes that lead to early VLF events are discussed.

  17. Weak lensing generated by vector perturbations and detectability of cosmic strings

    SciTech Connect

    Yamauchi, Daisuke; Namikawa, Toshiya; Taruya, Atsushi E-mail: namikawa@utap.phys.s.u-tokyo.ac.jp

    2012-10-01

    We study the observational signature of vector metric perturbations through the effect of weak gravitational lensing. In the presence of vector perturbations, the non-vanishing signals for B-mode cosmic shear and curl-mode deflection angle, which have never appeared in the case of scalar metric perturbations, naturally arise. Solving the geodesic and geodesic deviation equations, we drive the full-sky formulas for angular power spectra of weak lensing signals, and give the explicit expressions for E-/B-mode cosmic shear and gradient-/curl-mode deflection angle. As a possible source for seeding vector perturbations, we then consider a cosmic string network, and discuss its detectability from upcoming weak lensing and CMB measurements. Based on the formulas and a simple model for cosmic string network, we calculate the angular power spectra and expected signal-to-noise ratios for the B-mode cosmic shear and curl-mode deflection angle. We find that the weak lensing signals are enhanced for a smaller intercommuting probability of the string network, P, and they are potentially detectable from the upcoming cosmic shear and CMB lensing observations. For P ∼ 10{sup −1}, the minimum detectable tension of the cosmic string will be down to Gμ ∼ 5 × 10{sup −8}. With a theoretically inferred smallest value P ∼ 10{sup −3}, we could even detect the string with Gμ ∼ 5 × 10{sup −10}.

  18. Perturbation analysis of the Kuramoto phase-diffusion equation subject to quenched frequency disorder.

    PubMed

    Tönjes, Ralf; Blasius, Bernd

    2009-01-01

    The Kuramoto phase-diffusion equation is a nonlinear partial differential equation which describes the spatiotemporal evolution of a phase variable in an oscillatory reaction-diffusion system. Synchronization manifests itself in a stationary phase gradient where all phases throughout a system evolve with the same velocity, the synchronization frequency. The formation of concentric waves can be explained by local impurities of higher frequency which can entrain their surroundings. Concentric waves in synchronization also occur in heterogeneous systems, where the local frequencies are distributed randomly. We present a perturbation analysis of the synchronization frequency where the perturbation is given by the heterogeneity of natural frequencies in the system. The nonlinearity in the form of dispersion leads to an overall acceleration of the oscillation for which the expected value can be calculated from the second-order perturbation terms. We apply the theory to simple topologies, like a line or sphere, and deduce the dependence of the synchronization frequency on the size and the dimension of the oscillatory medium. We show that our theory can be extended to include rotating waves in a medium with periodic boundary conditions. By changing a system parameter, the synchronized state may become quasidegenerate. We demonstrate how perturbation theory fails at such a critical point.

  19. Cosmological perturbations and the physical meaning of gauge-invariant variables

    NASA Astrophysics Data System (ADS)

    Bruni, Marco; Dunsby, Peter K. S.; Ellis, George F. R.

    1992-08-01

    This paper concerns gauge-invariant perturbations of Robertson-Walker spacetimes, with the aim of (1) giving a complete set of perturbation equations and (2) comparing the coordinate-based method of Bardeen with the covariant approach of Ellis and Bruni (1989). To this end, we first consider covariantly defined quantities which are gauge-invariant in a perturbed Robertson-Walker universe: for these variables we derive a complete set of covariant linearized equations as they follow from the Bianchi and Ricci identities, and we show various possible ways of obtaining a second-order linear equation for the density perturbation variables. Then we systematically expand the covariant and gauge-invariant variables, recovering Bardeen's variables as first-order terms in this expansion: thus the two sets of variables are equivalent to first order. Through this comparison Bardeen's variables are shown to have a natural physical and geometrical meaning, which can be determined without the need of a gauge specification, and Bardeen's equations follow directly.

  20. Design of a wearable perturbator for human knee impedance estimation during gait.

    PubMed

    Tucker, Michael R; Moser, Adrian; Lambercy, Olivier; Sulzer, James; Gassert, Roger

    2013-06-01

    Mechanical impedance modulation is the key to natural, stable and efficient human locomotion. An improved understanding of this mechanism is necessary for the development of the next generation of intelligent prosthetic and orthotic devices. This paper documents the design methodologies that were employed to realize a knee perturbator that can experimentally estimate human knee impedance during gait through the application of angular velocity perturbations. The proposed experiment requires a light, transparent, wearable, and remotely actuated device that closely follows the movement of the biological joint. A genetic algorithm was used to design a polycentric hinge whose instantaneous center of rotation is optimized to be kinematically compatible with the human knee. A wafer disc clutch was designed to switch between a high transparency passive mode and a high impedance actuated mode. A remote actuation and transmission scheme was designed to enable high power output perturbations while minimizing the device's mass. Position and torque sensors were designed for device control and to provide data for post-processing and joint impedance estimation. Pending the fabrication and mechanical testing of the device, we expect this knee perturbator to be a valuable tool for experimental investigation of locomotive joint impedance modulation.

  1. Experimental Assessment of the Sensitiveness of an Electrochemical Oscillator towards Chemical Perturbations

    PubMed Central

    Ferreira, Graziela C. A.; Batista, Bruno C.; Varela, Hamilton

    2012-01-01

    In this study we address the problem of the response of a (electro)chemical oscillator towards chemical perturbations of different magnitudes. The chemical perturbation was achieved by addition of distinct amounts of trifluoromethanesulfonate (TFMSA), a rather stable and non-specifically adsorbing anion, and the system under investigation was the methanol electro-oxidation reaction under both stationary and oscillatory regimes. Increasing the anion concentration resulted in a decrease in the reaction rates of methanol oxidation and a general decrease in the parameter window where oscillations occurred. Furthermore, the addition of TFMSA was found to decrease the induction period and the total duration of oscillations. The mechanism underlying these observations was derived mathematically and revealed that inhibition in the methanol oxidation through blockage of active sites was found to further accelerate the intrinsic non-stationarity of the unperturbed system. Altogether, the presented results are among the few concerning the experimental assessment of the sensitiveness of an oscillator towards chemical perturbations. The universal nature of the complex chemical oscillator investigated here might be used for reference when studying the dynamics of other less accessible perturbed networks of (bio)chemical reactions. PMID:23185559

  2. Simulations of Long-Term Community Dynamics in Coral Reefs - How Perturbations Shape Trajectories

    PubMed Central

    Kubicek, Andreas; Muhando, Christopher; Reuter, Hauke

    2012-01-01

    Tropical coral reefs feature extraordinary biodiversity and high productivity rates in oligotrophic waters. Due to increasing frequencies of perturbations – anthropogenic and natural – many reefs are under threat. Such perturbations often have devastating effects on these unique ecosystems and especially if they occur simultaneously and amplify each other's impact, they might trigger a phase shift and create irreversible conditions. We developed a generic, spatially explicit, individual-based model in which competition drives the dynamics of a virtual benthic reef community – comprised of scleractinian corals and algae – under different environmental settings. Higher system properties, like population dynamics or community composition arise through self-organization as emergent properties. The model was parameterized for a typical coral reef site at Zanzibar, Tanzania and features coral bleaching and physical disturbance regimes as major sources of perturbations. Our results show that various types and modes (intensities and frequencies) of perturbations create diverse outcomes and that the switch from high diversity to single species dominance can be evoked by small changes in a key parameter. Here we extend the understanding of coral reef resilience and the identification of key processes, drivers and respective thresholds, responsible for changes in local situations. One future goal is to provide a tool which may aid decision making processes in management of coral reefs. PMID:23209397

  3. Second-order perturbation theory using correlated orbitals. I. Full-valence reference functions

    NASA Astrophysics Data System (ADS)

    Parisel, O.; Ellinger, Y.

    1994-11-01

    Recent developments of performant perturbation treatments on multiconfiguration wave functions have renewed interest in the coupling of variational and perturbative methods. In this communication it is shown that the choice of both the orbitals and the perturbation Hamiltonian to be used is as crucial as the choice of the reference space for obtaining accurate results. Møller-Plesset and Epstein-Nesbet perturbation series are applied to full-valence configuration interaction (FVCI) wave functions built on MCSCF (multi-configurational self-consistent field), FOCI (first-order configuration interaction) and SOCI (second-order configuration interaction) natural orbitals. Applications are presented for the following well-known systems: CH 2 (X 3B 1-a 1A 1), CH 2+ (X 2A 1, 1 2B 1, 1 2A 2, 1 2B 2), SiH 2 (X 1A 1, a 3B 1, A 1B 1) and NH 2 (X 2A 1, A 2B 1). The results are compared to the corresponding full configuration interaction (FCI) when available.

  4. Second-order perturbation theory using correlated orbitals. 1: Full-valence reference functions

    NASA Astrophysics Data System (ADS)

    Parisel, O.; Ellinger, Y.

    1994-11-01

    Recent developments of performant perturbation treatments on multiconfiguration wave functions have renewed interest in the coupling of variational and perturbative methods. In this communication it is shown that the choice of both the orbitals and the perturbation Hamiltonian to be used is as crucial as the choice of the reference space for obtaining accurate results. Moller-Plesset and Epstein-Nesbet perturbation series are applied to full-valence configuration interaction (FVCI) wave functions built on MCSCF (multi-configurational self-consistent field), FOCI (first-order configuration interaction) and SOCI (second-order configuration interaction) natural orbitals. Applications are presented for the following well-known systems: CH2(X(sup 3)B(sub 1) -a(sup 1)A(sub 1), CH2(+)(X(sup 2)A(sub 1), 1(sup 2)B(sub 1), 1(sup 2)A(sub 2), 1(sup 2)B(sub 2)), SiH2(X(sub 1)A(sub 1), a(sup 3)B(sub 1), A(sup 1)B(sub 1) and NH2(X(sup 2)A(sub 1), A(sup 2)B(sub 1)). The results are compared to the corresponding full configuration interaction (FCI) when available.

  5. Invariant exchange perturbation theory for multicenter systems: Time-dependent perturbations

    SciTech Connect

    Orlenko, E. V. Evstafev, A. V.; Orlenko, F. E.

    2015-02-15

    A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithium atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated.

  6. Structure functions at large Bjorken x and the Transition between perturbative and non-perturbative QCD

    SciTech Connect

    Liuti, S.; Bianchi, N.; Fantoni, A.

    2005-10-06

    We study both polarized and unpolarized proton structure functions in the kinematical region of large Bjorken x and four-momentum tranfer of few GeV2, characterized by the phenomenon of parton-hadron duality between the smooth continuation of the deep inelastic scattering curve and the average of the nucleon resonances which dominate this region. We present results on a perturbative-QCD analysis using recent accurate data aimed at extracting the infrared behavior of the nucleon structure functions.

  7. Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations.

    PubMed

    Vera-Garcia, Francisco J; Elvira, José L L; Brown, Stephen H M; McGill, Stuart M

    2007-10-01

    Much discussion exists about which is the most effective technique to improve spine stability. The purpose of this study was to evaluate the effectiveness of abdominal bracing and abdominal hollowing maneuvers to control spine motion and stability against rapid perturbations. Eleven healthy males were posteriorly loaded in different experimental conditions: resting with no knowledge of the perturbation timing; performing each of the stabilization maneuvers at 10%, 15% and 20% of internal oblique maximum voluntary contraction with no knowledge of the perturbation timing; and naturally coactivating the trunk muscles when perturbation timing was known. An EMG biofeedback system was used to control the pattern and intensity of abdominal coactivation. The muscular preactivation of seven trunk muscles (bilaterally registered), the applied force, and the torso muscular and kinematic responses to loading were measured; and the spine stability and compression were modeled. The hollowing maneuver was not effective for reducing the kinematic response to sudden perturbation. On the contrary, the bracing maneuver fostered torso cocontraction, reduced lumbar displacement, and increased trunk stability, but at the cost of increasing spinal compression. When the timing of the perturbation was known, the participants were able to stabilize the trunk while imposing smaller spine compressive loads.

  8. Perturbative and non-perturbative aspects of the two-dimensional string/Yang-Mills correspondence

    NASA Astrophysics Data System (ADS)

    Lelli, Simone; Maggiore, Michele; Rissone, Anna

    2003-04-01

    It is known that YM 2 with gauge group SU( N) is equivalent to a string theory with coupling gs=1/ N, order by order in the 1/ N expansion. We show how this result can be obtained from the bosonization of the fermionic formulation of YM 2, improving on results in the literature, and we examine a number of non-perturbative aspects of this string/YM correspondence. We find contributions to the YM 2 partition function of order exp{- kA/( πα' gs)} with k an integer and A the area of the target space, which would correspond, in the string interpretation, to D1-branes. Effects which could be interpreted as D0-branes are instead strictly absent, suggesting a non-perturbative structure typical of type 0B string theories. We discuss effects from the YM side that are interpreted in terms of the stringy exclusion principle of Maldacena and Strominger. We also find numerically an interesting phase structure, with a region where YM 2 is described by a perturbative string theory separated from a region where it is described by a topological string theory.

  9. Solitary magnetic perturbations at the ELM onset

    NASA Astrophysics Data System (ADS)

    Wenninger, R. P.; Zohm, H.; Boom, J. E.; Burckhart, A.; Dunne, M. G.; Dux, R.; Eich, T.; Fischer, R.; Fuchs, C.; Garcia-Munoz, M.; Igochine, V.; Hölzl, M.; Luhmann N., C., Jr.; Lunt, T.; Maraschek, M.; Müller, H. W.; Park, H. K.; Schneider, P. A.; Sommer, F.; Suttrop, W.; Viezzer, E.; the ASDEX Upgrade Team

    2012-11-01

    Tokamak H-mode plasmas frequently exhibit edge-localized modes (ELMs). ELMs allow maintaining sufficient plasma purity and thus enable stationary H-mode. On the other hand in a future device ELMs may cause divertor power flux densities far in excess of tolerable material limits. The size of the energy loss per ELM is determined by saturation effects in the non-linear phase of the ELM, which at present is hardly understood. ASDEX Upgrade is now equipped with a set of fast sampling diagnostics, which is well suited to investigate the chain of events around the ELM crash with appropriate temporal resolution (⩽10 µs). Solitary magnetic perturbations (SMPs) are identified as dominant features in the radial magnetic fluctuations below 100 kHz. They are typically observed close (±100 µs) to the onset of pedestal erosion. SMPs are field aligned structures rotating in the electron diamagnetic drift direction with perpendicular velocities of about 10 km s-1. A comparison of perpendicular velocities suggests that the perturbation evoking SMPs is located at or inside the separatrix. Analysis of very pronounced examples showed that the number of peaks per toroidal turn is 1 or 2, which is clearly lower than the corresponding numbers in linear stability calculations. In combination with strong peaking of the magnetic signals this results in a solitary appearance resembling modes like palm tree modes, edge snakes or outer modes. This behaviour has been quantified as solitariness and correlated with main plasma parameters. SMPs may be considered as a signature of the non-linear ELM phase originating at the separatrix or further inside. Thus they provide a handle to investigate the transition from linear to non-linear ELM phase. By comparison with data from gas puff imaging processes in the non-linear phase at or inside the separatrix and in the scrape-off layer (SOL) can be correlated. A connection between the passing of an SMP and the onset of radial filament propagation has

  10. Hurricane ensemble prediction using EOF-based perturbations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan

    1997-10-01

    In this study, a method to generate perturbations for hurricane ensemble prediction is proposed and examined on five hurricane cases with different kinds of tracks. The model used is the Florida State University Global Spectral Model (FSUGSM) with horizontal spectral resolution of T63 and 14 vertical levels. The method proposed here is based on the premise that (a) model perturbation grows linearly during the first few days of model integration; and (b) in order to make a complete set of ensemble perturbations of hurricane forecasts, both initial intensity and position of the hurricane need to be perturbed. The initial position of the hurricane is perturbed by displacing its original position 50 km equally toward the north, south, east and west directions. The fast growing perturbations can be generated by implementing EOF analysis to the differences between forecasts starting from regular analysis and randomly perturbed analysis. The eigenmode with the largest eigenvalue is then considered as the fast growing perturbation. The proposed perturbation method has been examined through five hurricane case studies. The results show that EOF based perturbations are indeed the optimal perturbations for hurricane ensemble forecasting compared to Monte Carlo Forecasting method. A comparison has also been made between the control experiment (single forecast from regular analysis) and the ensemble experiment. The results show that the predicted hurricane position errors are largely reduced by the ensemble prediction for most of the hurricane cases that have been tested, compared with the control experiment. A higher horizontal resolution model T106 is performed on one hurricane case (Andrew) to provide a comparison between different resolution models.

  11. Carbon content on perturbed wetlands of Yucatan

    NASA Astrophysics Data System (ADS)

    Morales Ojeda, S. M.; Orellana, R.; Herrera Silveira, J.

    2013-05-01

    The north coast of Yucatan Peninsula is a karstic scenario where the water flows mainly underground through the so called "cenotes"-ring system ("sink holes") toward the coast. This underground water system enhances the connection between watershed condition and coastal ecosystem health. Inland activities such as livestock, agriculture and urban development produce changes in the landscape, hydrological connectivity and in the water quality that can decrease wetland coverage specially mangroves and seagrasses. We conducted studies on the description of structure, biomass and carbon content of the soil, above and below ground of four different types of wetland in a perturbed region. The wetland ecological types were freshwater (Typha domingensis), dwarf mangroves (Avicenia germinans), grassland (Cyperacea) and Seagrasses. Due to the area is mainly covered by mangroves, they represent the most important carbon storage nevertheless the condition of the structure determine the carbon content in soil. Through GIS tools we explore the relationships between land use and costal condition in order to determine priority areas for conservation within the watershed that could be efficient to preserve the carbon storage of this area.

  12. Previrialization: Perturbative and N-Body Results

    NASA Astrophysics Data System (ADS)

    Lokas, E. L.; Juszkiewicz, R.; Bouchet, F. R.; Hivon, E.

    1996-08-01

    We present a series of N-body experiments which confirm the reality of the previrialization effect. We use also a weakly nonlinear perturbative approach to study the phenomenon. These two approaches agree when the rms density contrast, σ, is small; more surprisingly, they remain in agreement when σ ~ 1. When the slope of the initial power spectrum is n > -1, nonlinear tidal interactions slow down the growth of density fluctuations, and the magnitude of the suppression increases when n (i.e., the relative amount of small-scale power) is increased. For n < -1, we see an opposite effect: the fluctuations grow more rapidly than in linear theory. The transition occurs at n = -1 when the weakly nonlinear correction to σ is close to zero and the growth rate is close to linear. Our results resolve recent controversy between two N- body studies of previrialization. Peebles assumed n = 0 and found strong evidence in support of previrialization, while Evrard & Crone, who assumed n = -1, reached opposite conclusions. As we show here, the initial conditions with n = -1 are rather special because the nonlinear effects nearly cancel out for that particular spectrum. In addition to our calculations for scale-free initial spectra, we show results for a more realistic spectrum of Peacock & Dodds. Its slope near the scale usually adopted for normalization is close to -1, so σ is close to linear. Our results retroactively justify linear normalization at 8 h^-1^ Mpc while also demonstrating the danger and limitations of this practice.

  13. Extended MHD simulation of resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.; Sugiyama, L.; Park, G. Y.; Chang, C. S.; Ku, S.; Joseph, I.

    2009-05-01

    Resonant magnetic perturbations (RMPs) have been found effective in suppressing edge localized modes (ELMs) in the DIII-D experiment (Evans et al 2006 Phys. Plasmas 13 056121, Moyer et al 2005 Phys. Plasmas 12 056119). Simulations with the M3D initial value code indicate that plasma rotation, due to an MHD toroidal rotation or to two-fluid drifts, has an essential effect on the RMP. When the flow is below a threshold, the RMP field can couple to a resistive mode with a helical structure, different from the usual ELM, that amplifies the non-axisymmetric field. The magnetic field becomes stochastic in the outer part of the plasma, causing density and temperature loss. At higher rotation speed, the resistive mode is stabilized and the applied RMP is screened from the plasma, so that the stochastic magnetic layer is thinner and the temperature remains similar to the initial unperturbed state. The rotational flow effects, along with the remnants of the screened RMP, cause a density loss which extends into the plasma core. The two-fluid model contains intrinsic drift motion and axisymmetric toroidal rotation may not be needed to screen the RMP nor stabilize the resistive mode.

  14. The Classification of Diagrams in Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Phillips, D. R.; Afnan, I. R.

    1995-06-01

    The derivation of scattering equations connecting the amplitudes obtained from diagrammatic expansions is of interest in many branches of physics. One method for deriving such equations is the classification-of-diagrams technique of Taylor. However, as we shall explain in this paper, there are certain points of Taylor's method which require clarification. Firstly, it is not clear whether Taylor's original method is equivalent to the simpler classification-of-diagrams scheme used by Thomas, Rinat, Afnan, and Blankleider (TRAB). Secondly, when the Taylor method is applied to certain problems in a time-dependent perturbation theory it leads to the over-counting of some diagrams. This paper first restates Taylor's method, in the process uncovering reasons why certain diagrams might be double-counted in the Taylor method. It then explores how far Taylor's method is equivalent to the simpler TRAB method. Finally, it examines precisely why the double-counting occurs in Taylor's method and derives corrections which compensate for this double-counting.

  15. Perturbation theory for multipolar discrete fluids.

    PubMed

    Benavides, Ana L; Gámez, Francisco

    2011-10-07

    An analytical expression for the Helmholtz free energy of discrete multipolar potentials as a function of density, temperature, and intermolecular parameters is obtained as an extension of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Río, Physica A 202, 420 (1994)]. The presented procedure is suitable for the description of a more general intermolecular potential model taking into account the overlap and dispersion forces through a discrete potential represented by a sequence of square-shoulders and wells, as well as electrostatic interactions. The main advantage of this approach is that since the Helmholtz free energy is given as an explicit expression in terms of the intermolecular parameters characterizing the interaction, the properties of interest can be easily obtained through usual thermodynamic relations. Besides, since a great variety of discretized potentials can be used with this equation of state, its applicability is very vast. By varying the intermolecular parameters, some illustrative cases are considered, and their phase diagrams are tested against available simulation data. It is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the vapor-liquid equilibrium of the chosen potentials with different multipole moment of varied strengths, except in the critical region. © 2011 American Institute of Physics

  16. Perturbation theory for multipolar discrete fluids

    NASA Astrophysics Data System (ADS)

    Benavides, Ana L.; Gámez, Francisco

    2011-10-01

    An analytical expression for the Helmholtz free energy of discrete multipolar potentials as a function of density, temperature, and intermolecular parameters is obtained as an extension of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Río, Physica A 202, 420 (1994), 10.1016/0378-4371(94)90469-3]. The presented procedure is suitable for the description of a more general intermolecular potential model taking into account the overlap and dispersion forces through a discrete potential represented by a sequence of square-shoulders and wells, as well as electrostatic interactions. The main advantage of this approach is that since the Helmholtz free energy is given as an explicit expression in terms of the intermolecular parameters characterizing the interaction, the properties of interest can be easily obtained through usual thermodynamic relations. Besides, since a great variety of discretized potentials can be used with this equation of state, its applicability is very vast. By varying the intermolecular parameters, some illustrative cases are considered, and their phase diagrams are tested against available simulation data. It is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the vapor-liquid equilibrium of the chosen potentials with different multipole moment of varied strengths, except in the critical region.

  17. Perturbing Streaming in Dictyostelium discoidium Aggregation

    NASA Astrophysics Data System (ADS)

    Rericha, Erin; Garcia, Gene; Parent, Carole; Losert, Wolfgang

    2009-03-01

    The ability of cells to move towards environmental cues is a critical process allowing the destruction of intruders by the immune system, the formation of the vascular system and the whole scale remodeling of tissues during embryo development. We examine the initial transition from single cell to group migration in the social amoeba Dictyostelium discoidium. Upon starvation, D. discoidium cells enter into a developmental program that triggers solitary cells to aggregate into a multicellular structure. The aggregation is mediated by the small molecule, cyclic-AMP, that cells sense, synthesize, secrete and migrate towards often in a head-to-tail fashion called a stream. Using experiment and numerical simulation, we study the sensitivity of streams to perturbations in the cyclic-AMP concentration field. We find the stability of the streams requires cells to shape the cyclic-AMP field through localized secretion and degradation. In addition, we find the streaming phenotype is sensitive to changes in the substrate properties, with slicker surfaces leading to longer more branched streams that yield large initial aggregates.

  18. Perturbative quantum gravity with the Immirzi parameter

    NASA Astrophysics Data System (ADS)

    Benedetti, Dario; Speziale, Simone

    2011-06-01

    We study perturbative quantum gravity in the first-order tetrad formalism. The lowest order action corresponds to Einstein-Cartan plus a parity-odd term, and is known in the literature as the Holst action. The coupling constant of the parity-odd term can be identified with the Immirzi parameter γ of loop quantum gravity. We compute the quantum effective action in the one-loop expansion. As in the metric second-order formulation, we find that in the case of pure gravity the theory is on-shell finite, and the running of Newton's constant and the Immirzi parameter is inessential. In the presence of fermions, the situation changes in two fundamental aspects. First, non-renormalizable logarithmic divergences appear, as usual. Second, the Immirzi parameter becomes a priori observable, and we find that it is renormalized by a four-fermion interaction generated by radiative corrections. We compute its beta function and discuss possible implications. The sign of the beta function depends on whether the Immirzi parameter is larger or smaller than one in absolute value, and γ2 = 1 is a UV fixed-point (we work in Euclidean signature). Finally, we find that the Holst action is stable with respect to radiative corrections in the case of minimal coupling, up to higher order non-renormalizable interactions.

  19. Perturbed hematopoiesis in mice lacking ATMIN

    PubMed Central

    Anjos-Afonso, Fernando; Loizou, Joanna I.; Bradburn, Amy; Kanu, Nnennaya; Purewal, Sukhveer; Da Costa, Clive; Behrens, Axel

    2016-01-01

    The ataxia telangiectasia mutated (ATM)-interacting protein ATMIN mediates noncanonical ATM signaling in response to oxidative and replicative stress conditions. Like ATM, ATMIN can function as a tumor suppressor in the hematopoietic system: deletion of Atmin under the control of CD19-Cre results in B-cell lymphomas in aging mice. ATM signaling is essential for lymphopoiesis and hematopoietic stem cell (HSC) function; however, little is known about the role of ATMIN in hematopoiesis. We thus sought to investigate whether the absence of ATMIN would affect primitive hematopoietic cells in an ATM-dependent or -independent manner. Apart from its role in B-cell development, we show that ATMIN has an ATM-independent function in the common myeloid progenitors (CMPs) by deletion of Atmin in the entire hematopoietic system using Vav-Cre. Despite the lack of lymphoma formation, ATMIN-deficient mice developed chronic leukopenia as a result of high levels of apoptosis in B cells and CMPs and induced a compensatory mechanism in which HSCs displayed enhanced cycling. Consequently, ATMIN-deficient HSCs showed impaired regeneration ability with the induction of the DNA oxidative stress response, especially when aged. ATMIN, therefore, has multiple roles in different cell types, and its absence results in perturbed hematopoiesis, especially during stress conditions and aging. PMID:27581360

  20. A perturbative framework for jet quenching

    NASA Astrophysics Data System (ADS)

    Zapp, Korinna C.; Krauss, Frank; Wiedemann, Urs A.

    2013-03-01

    We present a conceptually new framework for describing jet evolution in the dense medium produced in ultra-relativistic nucleus-nucleus collisions using perturbative QCD and its implementation into the Monte Carlo event generator Jewel. The rescattering of hard partons in the medium is modelled by infrared continued pQCD matrix elements supplemented with parton showers. The latter approximate higher order real-emission matrix elements and thus generate medium-induced gluon emissions. The interplay between different emissions is governed by their formation times. The destructive interference between subsequent scattering processes, the non-Abelian version of the Landau-Pomeranchuk-Migdal effect, is also taken into account. In this way the complete radiation pattern is consistently treated in a uniform way. Results obtained within this minimal and theoretically well constrained framework are compared with a variety of experimental data susceptible to jet-quenching effects at both RHIC and the LHC. Overall, a good agreement between data and simulation is found. This new framework also allows to identify and quantify the dominant uncertainties in the simulation, and we show some relevant examples for this.