Science.gov

Sample records for pleisto-holocenic natural perturbations

  1. Perturbative nature of color superconductivity

    SciTech Connect

    Brown, William E.; Liu, James T.; Ren, Hai-cang

    2000-06-01

    Color superconductivity is a possible phase of high density QCD. We present a systematic derivation of the transition temperature T{sub C} from the QCD Lagrangian through study of the di-quark proper vertex. With this approach, we confirm the dependence of T{sub C} on the coupling g, namely T{sub C}{approx}{mu}g{sup -5}e{sup -{kappa}}{sup /g}, previously obtained from the one-gluon exchange approximation in the superconducting phase. The diagrammatic approach we employ allows us to examine the perturbative expansion of the vertex and the propagators. We find an additional O(1) contribution to the prefactor of the exponential from the one-loop quark self energy and that the other one-loop radiative contributions and the two gluon exchange vertex contribution are subleading. (c) 2000 The American Physical Society.

  2. Natural arsenic contaminated diets perturb reproduction in fish.

    PubMed

    Boyle, David; Brix, Kevin V; Amlund, Heidi; Lundebye, Anne-Katrine; Hogstrand, Christer; Bury, Nic R

    2008-07-15

    The toxicological effect of natural diets elevated in metals on reproduction in fish is poorly understood. The reproductive output of zebrafish fed the polychaete Nereis diversicolor collected from a metal-impacted estuary, Restronguet Creek, Cornwall, UK, was compared to fish fed N. diversicolor collected from a nonmetal impacted estuary, Blackwater, Essex, UK. Fish fed the metal laden N. diversicolorfor 68 days showed reduced reproductive output, characterized by reduced cumulative egg production (47%), cumulative number of spawns (30%), as well as reduced average number of eggs produced per spawn and % hatch rate. The mRNA transcript levels of the egg-yolk protein vitellogenin was also reduced 1.5 fold in the livers of female fish fed metal-laden N. diversicolor. No difference was seen between the lipid, protein, or moisture content of the two diets and no difference in growth was seen between the two fish populations. The Restronguet Creek polychaetes have elevated arsenic, cadmium, copper, zinc, lead, and silver body burdens, but the only element found to accumulate in the tissues of zebrafish fed this diet was As. The As in these N. diversicolor was found to be predominantly potentially toxic inorganic As species, 58% of total As content, which is unusual for aquatic organisms where arsenic is typically biotransformed into less toxic organoarsenical compounds. These results demonstrate that reproduction in fish is a sensitive target of exposure to a natural diet contaminated with As and this exposure route could be of significance to the health of fish populations. PMID:18754393

  3. Towards Better Understanding of GPS-based Ionospheric TEC Perturbations Caused by Natural Hazards

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Galvan, D. A.; Butala, M. D.; Stephens, P.; Mannucci, A. J.; Hickey, M. P.

    2011-12-01

    Natural hazards including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcano eruptions, and tsunamis. Recent advances in GPS data processing have demonstrated that ground-based GPS receivers are capable of detecting ionospheric TEC perturbations generated by surface Rayleigh, acoustic and gravity waves. There have been a number of papers published discussing TEC perturbations immediately following the Tohoku earthquake in Japan on March 11, 2011. Due to the dense GPS network in Japan (GEONET) and high earthquake magnitude, these reports are the clearest observations to date of the effect of a major earthquake and tsunami on the ionosphere near the epicenter. Most investigators have focused on the ionospheric response up to a few hours following the earthquake and tsunami. In our research we investigate the ionospheric TEC perturbations up to a few days before and after the event. We also address the impact of geomagnetic activity during March 11. We compare TEC perturbations on that day with other days showing similar geomagnetic activities. Initial results have revealed that the earthquake and tsunami generated TEC perturbations that were observable and detectable in the GEONET data for up to 24 hours following the Tohoku event. We will investigate optimized GPS processing techniques to derive high-precision TEC perturbations. The primary application involving the ionosphere will be the real-time monitoring of the

  4. Long-term Dynamical Behavior of Highly Perturbed Natural and Artificial Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron J.

    This thesis explores the dynamical evolution of celestial bodies, both natural and artificial, which are strongly perturbed by solar radiation pressure---a non-gravitational force that has played an increasingly important role in celestial mechanics since the early 1900s. The particular focus is on the high area-to-mass ratio (HAMR) space debris discovered in near geosynchronous Earth orbit (GEO) through optical observations in 2004, and on micron-sized circumplanetary dust particles in the outer Saturnian system. The formalism developed can also be applied to---and, indeed, was unquestionably influenced by---the orbital motion of spacecraft about small bodies (asteroids and comets). The chief difficulties which arise in getting an accurate understanding of the motion of such bodies in highly perturbed dynamical environments come, in part, from the nonlinearity of the dynamical system, but more so from the inadequacy of the classical approaches and methods. While modern formulations based on numerical integrations can give "precise" solutions for specific initial conditions, these afford little insight into the nature of the problem or the essential dependence of the perturbed motion on the system parameters. The predominant perturbations acting on HAMR objects and circumplanetary dust grains are solar radiation pressure, planetary oblateness, and third-body gravitational interactions induced by the Sun and nearby natural satellites. We developed first-order averaged models, based on the Milankovitch formulation of perturbation theory, which govern the long-term evolution of orbits subject to these perturbing forces. The unexpectedly rich results obtained by the use of this vector formalism are due to certain important circumstances in celestial and quantum mechanics which gave rise to its origin and development. An attempt has been made to trace these historical developments and to put them into the perspective of the present. The averaged equations of motion hold

  5. Recent Progress in Understanding Natural-Hazards-Generated TEC Perturbations: Measurements and Modeling Results

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Yang, Y. M.; Meng, X.; Verkhoglyadova, O. P.; Mannucci, A. J.; Langley, R. B.

    2015-12-01

    Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface.We will show examples for early detection of natural hazards generated ionospheric signatures using ground-based and space-borne GPS receivers. We will also discuss recent results from the U.S. Real-time Earthquake Analysis for Disaster Mitigation Network (READI) exercises utilizing our algorithms. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage. It is also expected that ionospheric monitoring of TEC perturbations might become an integral part of existing natural hazards warning systems.

  6. Detection of Natural Hazards Generated TEC Perturbations and Related New Applications

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Yang, Y.; Langley, R. B.

    2013-12-01

    Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface. This continuing research is expected to provide early warning for tsunamis, earthquakes, volcanic eruptions, and meteor impacts, for example, using GPS and other global navigation satellite systems. We will demonstrate new and upcoming applications including recent natural hazards and artificial explosions that generated TEC perturbations to perform state-of-the-art imaging and modeling of earthquakes, tsunamis and meteor impacts. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage.

  7. The distributions of odd nitrogen and odd hydrogen in the natural and perturbed stratosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Alyea, F. N.; Cunnold, D. M.; Katz, A.

    1974-01-01

    In order to quantitatively illustrate the effects of quasi-horizontal transport of certain gases and of the reactions influencing their concentrations, a vertical-meridional pole-to-pole stratospheric model is presented which explicitly predicts concentrations of odd nitrogen and odd hydrogen compounds in the natural stratosphere and also in a perturbed stratosphere incorporating artificial injection of nitrogen oxides by an SST fleet. The northern hemisphere SST operations clearly have a very large local effect on the nitrogen oxide distribution and also have a significant effect on the southern hemisphere. The largest changes are seen at the point of injection of the nitrogen oxides. Results are in agreement with previous one-dimensional models.

  8. Cleansing of the atmosphere: smoke removal under natural and perturbed conditions

    SciTech Connect

    Hallett, J.

    1987-01-01

    The overall cleansing of the atmosphere can be related to the efficiency of the precipitation system, which is small for individual cumulus clouds (O), intermediate for air mass thunderstorms (20%), and larger for a steady-state system such as a supercell or a depression (70%). Air processed by the storm is cleaned of its aerosol loading, depending on the detail of the microphysical process. It follows that in any disaster scenario whereby large amounts of smoke are emitted into the troposphere - volcanic eruption, comet impact, nuclear exchange fires - the immediate cloud forming and precipitation processes are of major importance in determining the scavenging rate and overall scavenging efficiency. Even in the unpolluted atmosphere, removal by any precipitation process depends critically on the likelihood of the aerosol containing air passing into a suitable precipitation system. In the case of Chernobyl, with iodine-activated soot, its removals is more likely as it passes into an ice-forming precipitation system, to be removed directly by ice nucleation. In the present atmosphere, statistics of parcel trajectory can give a mean removal rate; in the case of the perturbed atmosphere, major uncertainties remain on the nature and scale of the initial circulations.

  9. Testing for the Gaussian nature of cosmological density perturbations through the three-point temperature correlation function

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1993-01-01

    One of the crucial aspects of density perturbations that are produced by the standard inflation scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian. The three-point correlation function of the temperature anisotropy of the cosmic microwave background radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this function is calculated in the general context of various allowed non-Gaussian models. It is shown that the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may be able to provide a crucial test of the Gaussian nature of the perturbations.

  10. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster

    NASA Astrophysics Data System (ADS)

    Zhuravleva, I.; Churazov, E.; Arévalo, P.; Schekochihin, A. A.; Forman, W. R.; Allen, S. W.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2016-05-01

    Cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy content of gas fluctuations in the Perseus core by probing statistical properties of emissivity fluctuations imprinted in the soft- and hard-band X-ray images. About 80 per cent of the total variance of perturbations on ˜8-70 kpc scales in the core have an isobaric nature, i.e. are consistent with subsonic displacements of the gas in pressure equilibrium with the ambient medium. The observed variance translates to the ratio of energy in perturbations to thermal energy of ˜13 per cent. In the region dominated by weak `ripples', about half of the total variance is associated with isobaric perturbations on scales of a few tens of kpc. If these isobaric perturbations are induced by buoyantly rising bubbles, then these results suggest that most of the AGN-injected energy should first go into bubbles rather than into shocks. Using simulations of a shock propagating through the Perseus atmosphere, we found that models reproducing the observed features of a central shock have more than 50 per cent of the AGN-injected energy associated with the bubble enthalpy and only about 20 per cent is carried away with the shock. Such energy partition is consistent with the AGN-feedback model, mediated by bubbles of relativistic plasma, and supports the importance of turbulence in the cooling-heating balance.

  11. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster

    DOE PAGESBeta

    Zhuravleva, I.; Churazov, E.; Arevalo, P.; Schekochihin, A. A.; Forman, W. R.; Allen, S. W.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2016-03-07

    In this paper, cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy content of gas fluctuations in the Perseus core by probing statistical properties of emissivity fluctuations imprinted in the soft- and hard-band X-ray images. About 80 per cent of the total variance of perturbations on ~8–70 kpc scales in the core have an isobaric nature, i.e. are consistent with subsonic displacements of the gas in pressure equilibrium with the ambientmore » medium. The observed variance translates to the ratio of energy in perturbations to thermal energy of ~13 per cent. In the region dominated by weak ‘ripples’, about half of the total variance is associated with isobaric perturbations on scales of a few tens of kpc. If these isobaric perturbations are induced by buoyantly rising bubbles, then these results suggest that most of the AGN-injected energy should first go into bubbles rather than into shocks. Using simulations of a shock propagating through the Perseus atmosphere, we found that models reproducing the observed features of a central shock have more than 50 per cent of the AGN-injected energy associated with the bubble enthalpy and only about 20 per cent is carried away with the shock. Such energy partition is consistent with the AGN-feedback model, mediated by bubbles of relativistic plasma, and supports the importance of turbulence in the cooling–heating balance.« less

  12. Biogeochemical responses of the carbon cycle to natural and human perturbations: Past, present, and future

    SciTech Connect

    Ver, L.M.B.; Mackenzie, F.T.; Lerman, A.

    1999-07-01

    In the past three centuries, human perturbations of the environment have affected the biogeochemical behavior of the global carbon cycle and that of the other three nutrient elements closely coupled to carbon: nitrogen, phosphorus, and sulfur. The partitioning of anthropogenic CO{sub 2} among its various sinks in the past, for the present, and for projections into the near future is controlled by the interactions of these four elemental cycles within the major environmental domains of the land, atmosphere, coastal oceanic zone, and open ocean. The authors analyze the past, present, and future behavior of the global carbon cycle using the Terrestrial-Ocean-aTmosphere Ecosystem Model (TOTEM), a unique process-based model of the four global coupled biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur. They find that during the past 300 yrs, anthropogenic CO{sub 2} was mainly stored in the atmosphere and in the open ocean. Human activities on land caused an enhanced loss of mass from the terrestrial organic matter reservoirs (phytomass and humus) mainly through deforestation and consequently increased humus remineralization, erosion, and transport to the coastal margins by rivers and runoff. Photosynthetic uptake by the terrestrial phytomass was enhanced owing to fertilization by increasing atmospheric CO{sub 2} concentrations and supported by nutrients remineralized from organic matter. TOTEM results indicate that through most of the past 300 yrs, the loss of C from deforestation and other land-use activities was greater than the gain from the enhanced photosynthetic uptake. Since pre-industrial time (since 1700), the net flux of CO{sub 2} from the coastal waters has decreased by 40%, from 0.20 Gt C/yr to 0.12 Gt C/yr. TOTEM analyses of atmospheric CO{sub 2} concentrations for the 21st century were based on the fossil-fuel emission projections of IPCC (business as usual scenario) and of the more restrictive UN 1997 Kyoto Protocol. By the mid-21st century

  13. Recent Advances in Remote Sensing of Natural Hazards-Induced Atmospheric and Ionospheric Perturbations

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Langley, R. B.; Mannucci, A. J.

    2015-12-01

    Traveling ionospheric disturbances (TIDs) induced by acoustic-gravity waves in the neutral atmosphere have significant impact on trans-ionospheric radio waves such as Global Navigation Satellite System (GNSS, including Global Position System (GPS)) measurements. Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS (including GPS) receiver networks. We demonstrate the ability of using ground- and space-based dual-frequency GPS measurements to detect and monitor tsunami wave propagation from the 2011 Tohoku-Oki earthquake and tsunami. Major wave trains with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. In this research, we compared GPS-based observations, corresponding model simulations and tsunami wave propagation. Results are shown to lead to a better understanding of the tsunami-induced ionosphere responses. Based on current distribution of Plate Boundary Observatory GPS stations, the results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the U.S. west coast. It is expected that this GNSS-based technology will become an integral part of future early-warning systems.

  14. Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Galvan, D. A.; Stephens, P.; Butala, M. D.; Akopian, V.; Wilson, B.; Verkhoglyadova, O.; Mannucci, A. J.; Hickey, M.

    2012-12-01

    Recent advances in GPS data processing have demonstrated that ground-based GPS receivers are capable of detecting ionospheric TEC perturbations caused by surface-generated Rayleigh, acoustic and gravity waves. There have been a number of publications discussing TEC perturbations immediately following the M 9.0 Tohoku earthquake in Japan on March 11, 2011. Most investigators have focused on the ionospheric responses up to a few hours following the earthquake and tsunami. In our research, in addition to March 11, 2011 we investigate global ionospheric TEC perturbations a day before and after the event. We also compare indices of geomagnetic activity on all three days with perturbations in TEC, revealing strong geomagnetic storm conditions that are also apparent in processed GEONET TEC observations. In addition to the traveling ionospheric disturbances (TIDs) produced by the earthquake and tsunami, we also detect "regular" TIDs across Japan about 5 hours following the Tohoku event, concluding these are likely due to geomagnetic activity. The variety of observed TEC perturbations are consistent with tsunami-generated gravity waves, auroral activity, regular TIDs and equatorial fluctuations induced by increased geomagnetic activity. We demonstrate our capabilities to monitor TEC fluctuations using JPL's real-time Global Assimilative Ionospheric Model (GAIM) system. We show that a real-time global TEC monitoring network is able to detect the acoustic and gravity waves generated by the earthquake and tsunami. With additional real-time stations deployed, this new capability has the potential to provide real-time monitoring of TEC perturbations that could potentially serve as a plug-in to enhance existing early warning systems.

  15. Exploring a Detonation Nature of Mesoscopic Perturbations and Ejecta Formation from the Mesoscale Probing of the PBX-driven Liners

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Guiruis, Raafat; Rodrigues, Luis; Mendes, Ricardo; Plaksin, Svyatoslav; Fernandes, Eduardo; Ferreira, Claudia

    2015-06-01

    Ejecting debris from free surface of liner is of considerable interest at optimization of explosive devices, in which the PBX-driven liner effects shock compression of gaseous matter. Following factors were historically considered as main drivers of material ejection: granular microstructure of liner material, roughness and surface defects of liner, and shock pressure time history in PBX-driven liner. In contrast to existing models, we are considering the small scale fluctuations of detonation flow as probable dominating factor of surface jetting in the PBX-driven collapsing liners. Obtained experimental evidence is indicative that jetting from the liners is caused by meso-scale perturbations of PBX detonations, which are identified as (1) ejecta of overdriven detonation products through detonation front, (2) ejecta-driven detonation cells, and (3) galloping detonation front motion. Spatially resolved scenarios of each of phenomena (1-3) were obtained in experiments with copper-liners and HMX-based PBXs fabricated on maximum packing density of crystalline constituents. Both the DRZ-induced perturbations translated to a PBX-driven liner and the ejected debris were recorded and quantitatively measured in the mesoscale range with application of the 96-channel optical analyzer MCOA-UC. Work was supported by the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and John Zimmerman Program Managers.

  16. Determination of natural frequencies by coupled method of homotopy perturbation and variational method for strongly nonlinear oscillators

    SciTech Connect

    Akbarzade, M.; Langari, J.

    2011-02-15

    In this paper a new approach combining the features of the homotopy concept with variational approach is proposed to find accurate analytical solutions for nonlinear oscillators with and without a fractional power restoring force. Since the first-order approximation leads to very accurate results, comparisons with other results are presented to show the effectiveness of this method. The validity of the method is independent of whether or not there exist small or large parameters in the considered nonlinear equations; the obtained results prove the validity and efficiency of the method, which can be easily extended to other strongly nonlinear problems. At the end we compare our procedure with the optimal homotopy perturbation method.

  17. Freezing injury to montane Picea rubens; the potential role of and mechanisms for natural and anthropogenic perturbations

    SciTech Connect

    Dehayes, D. )

    1994-06-01

    Winter injury occurs frequently to current-year needles of red spruce in the northern Appalachians and appears to be caused by subfreezing temperatures rather than foliar desiccation. Under ambient conditions, the maximum depth of cold tolerance achieved by red spruce needles in midwinter is barely sufficient to avoid freezing injury at common winter temperatures. Therefore, any perturbation that would decrease midwinter cold tolerance by just a few degrees substantially increases the probability of freezing injury. Laboratory and field experiments have demonstrated that extended winter thaws and exposure to ambient and simulated acidic cloud water increase the freezing sensitivity of red spruce. Repeated experiments have been unable to demonstrate a consistent negative influence of ambient or elevated ozone concentrations or elevated N on cold tolerance or freezing injury susceptibility. Rapid freezing, especially following solar heating of needles, has also resulted in some injury to both current-year and year-old needles, under laboratory conditions. Visible freezing injury and winter cold tolerance appear to be associated with relatively low foliar Ca concentrations. It is hypothesized that Ca leaching by acidic cloud water could increase freezing susceptibility by modifying membrane structure and/or permeability.

  18. X-ray natural linear dichroism of graphitic materials across the carbon K-edge: Correction for perturbing high-order harmonics

    NASA Astrophysics Data System (ADS)

    Jansing, C.; Mertins, H. C.; Gaupp, A.; Sokolov, A.; Gilbert, M. C.; Wahab, H.; Timmers, H.

    2016-05-01

    Reflectivity measurements on graphitic materials such as graphene at energies across the carbon K-edge are frustrated by significant intensity loss due to adventitious carbon on beamline mirrors. Such intensity reduction enhances effects due to perturbing high-order harmonics in the beam. These effects distort the actual structure of the reflectance curve. In order to overcome this limitation, a correction technique has been developed and demonstrated first with measurements for highly ordered pyrolytic graphite. The same approach may be applied to other graphitic materials such as graphene and it may be used with other synchrotron beamlines. The fraction of high-order harmonics was determined by passing the incident beam through a 87 nm thin silicon nitride absorber that can be well modeled. Using the corrected measurements the x-ray natural linear dichroism of the sample has been determined.

  19. Tractability gains in symmetry-adapted perturbation theory including coupled double excitations: CCD+ST(CCD) dispersion with natural orbital truncations.

    PubMed

    Parrish, Robert M; Hohenstein, Edward G; Sherrill, C David

    2013-11-01

    This work focuses on efficient and accurate treatment of the intermolecular dispersion interaction using the CCD+ST(CCD) dispersion approach formulated by Williams et al. [J. Chem. Phys. 103, 4586 (1995)]. We apply natural orbital truncation techniques to the solution of the monomer coupled-cluster double (CCD) equations, yielding substantial accelerations in this computationally demanding portion of the SAPT2+(CCD), SAPT2+(3)(CCD), and SAPT2+3(CCD) analyses. It is shown that the wholly rate-limiting dimer-basis particle-particle ladder term can be computed in a reduced natural virtual space which is essentially the same size as the monomer-basis virtual space, with an error on the order of a few thousandths of 1 kcal mol(-1). Coupled with our existing natural orbital techniques for the perturbative triple excitation contributions [E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys. 133, 104107 (2010)], this technique provides speedups of greater than an order of magnitude for the evaluation of the complete SAPT2+3(CCD) decomposition, with a total error of a few hundredths of 1 kcal mol(-1). The combined approach yields tractability gains of almost 2× in the system size, allowing for SAPT2+3(CCD)/aug-cc-pVTZ analysis to be performed for systems such as adenine-thymine for the first time. Natural orbital based SAPT2+3(CCD)/aug-cc-pVTZ results are presented for stacked and hydrogen-bonded configurations of uracil dimer and the adenine-thymine dimer.

  20. Perturbation of the natural killer cell compartment during primary human immunodeficiency virus 1 infection primarily involving the CD56bright subset

    PubMed Central

    Mantegani, Paola; Tambussi, Giuseppe; Galli, Laura; Din, Chiara Tassan; Lazzarin, Adriano; Fortis, Claudio

    2010-01-01

    We investigated the distribution of natural killer (NK) cell subsets, their activating and inhibitory receptors, and their cytolytic potential, in primary human immunodeficiency virus (HIV)-infected (PHI) individuals at baseline and during 1 year of follow-up with or without antiretroviral therapy, and compared the results with those obtained in treatment-naïve, chronically HIV-infected (CHI) individuals, and HIV-seronegative (HN) healthy individuals. The proportion of the CD56dim and CD56bright subsets decreased with disease progression, whereas that of the CD56− CD16+ subset increased. In the CD56dim subset, the proportion of cells with natural cytotoxicity receptors (NCRs) decreased with disease progression, and their cytolytic potential was reduced. Conversely, the CD56bright subset was characterized by a high proportion of NCR-positive, killer cell immunoglobulin-like receptor (KIR)-positive NKG2A+ cells in both CHI and PHI individuals, which was associated with an increase in their cytolytic potential. During the 1 year of follow-up, the PHI individuals with high viraemia levels and low CD4+ T-cell counts who received highly active antiretroviral therapy (HAART) had a similar proportion of NK subsets to CHI individuals, while patients with low viraemia levels and high CD4+ T-cell counts who remained untreated had values similar to those of the HN individuals. Our results indicate a marked perturbation of the NK cell compartment during HIV-1 infection that is multifaceted, starts early and is progressive, primarily involves the CD56bright subset, and is partially corrected by effective HAART. PMID:19824914

  1. Density Relaxation in Time-Dependent Density Functional Theory: Combining Relaxed Density Natural Orbitals and Multireference Perturbation Theories for an Improved Description of Excited States.

    PubMed

    Ronca, Enrico; Angeli, Celestino; Belpassi, Leonardo; De Angelis, Filippo; Tarantelli, Francesco; Pastore, Mariachiara

    2014-09-01

    Making use of the recently developed excited state charge displacement analysis [E. Ronca et al., J. Chem. Phys. 140, 054110 (2014)], suited to quantitatively characterize the charge fluxes coming along an electronic excitation, we investigate the role of the density relaxation effects in the overall description of electronically excited states of different nature, namely, valence, ionic, and charge transfer (CT), considering a large set of prototypical small and medium-sized molecular systems. By comparing the response densities provided by time-dependent density functional theory (TDDFT) and the corresponding relaxed densities obtained by applying the Z-vector postlinear-response approach [N. C. Handy and H. F. Schaefer, J. Chem. Phys. 81, 5031 (1984)] with those obtained by highly correlated state-of-the-art wave function calculations, we show that the inclusion of the relaxation effects is imperative to get an accurate description of the considered excited states. We also examine what happens at the quality of the response function when an increasing amount of Hartree-Fock (HF) exchange is included in the functional, showing that the usually improved excitation energies in the case of CT states are not always the consequence of an improved description of their overall properties. Remarkably, we find that the relaxation of the response densities is always able to reproduce, independently of the extent of HF exchange in the functional, the benchmark wave function densities. Finally, we propose a novel and computationally convenient strategy, based on the use of the natural orbitals derived from the relaxed TDDFT density to build zero-order wave function for multireference perturbation theory calculations. For a significant set of different excited states, the proposed approach provided accurate excitation energies, comparable to those obtained by computationally demanding ab initio calculations.

  2. On dark energy isocurvature perturbation

    SciTech Connect

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe E-mail: limz@nju.edu.cn

    2011-06-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data.

  3. Perturbative QUANTUM GRAVITY

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    2003-12-01

    A good understanding of Perturbative Quantum Gravity is essential for anyone who wishes to proceed towards any kind of non-perturbative approach. This lecture is a brief resumé of the main features of the perturbative regime.

  4. Causal compensated perturbations in cosmology

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1990-01-01

    A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.

  5. Base case and perturbation scenarios

    SciTech Connect

    Edmunds, T

    1998-10-01

    This report describes fourteen energy factors that could affect electricity markets in the future (demand, process, source mix, etc.). These fourteen factors are believed to have the most influence on the State's energy environment. A base case, or most probable, characterization is given for each of these fourteen factors over a twenty year time horizon. The base case characterization is derived from quantitative and qualitative information provided by State of California government agencies, where possible. Federal government databases are nsed where needed to supplement the California data. It is envisioned that a initial selection of issue areas will be based upon an evaluation of them under base case conditions. For most of the fourteen factors, the report identities possible perturbations from base case values or assumptions that may be used to construct additional scenarios. Only those perturbations that are plausible and would have a significant effect on energy markets are included in the table. The fourteen factors and potential perturbations of the factors are listed in Table 1.1. These perturbations can be combined to generate internally consist.ent. combinations of perturbations relative to the base case. For example, a low natural gas price perturbation should be combined with a high natural gas demand perturbation. The factor perturbations are based upon alternative quantitative forecasts provided by other institutions (the Department of Energy - Energy Information Administration in some cases), changes in assumptions that drive the quantitative forecasts, or changes in assumptions about the structure of the California energy markets. The perturbations are intended to be used for a qualitative reexamination of issue areas after an initial evaluation under the base case. The perturbation information would be used as a "tiebreaker;" to make decisions regarding those issue areas that were marginally accepted or rejected under the base case. Hf a

  6. Density perturbation theory

    SciTech Connect

    Palenik, Mark C.; Dunlap, Brett I.

    2015-07-28

    Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.

  7. Exploring the nature of low-lying excited-states in molecular crystals from many-body perturbation theory beyond the Tamm-Dancoff Approximation

    NASA Astrophysics Data System (ADS)

    Rangel, Tonatiuh; Sharifzadeh, Sahar; Rinn, Andre; da Jornada, Felipe H.; Shao, Meiyue; Witte, Gregor; Yang, Chao; Louie, Steven G.; Chatterjee, Sangaam; Kronik, Leeor; Neaton, Jeffrey B.

    Organic semiconductors have attracted attention due to their potential for optoelectronics and novel phenomena, such as singlet fission. Here, we use many-body perturbation theory to simulate neutral excitations in acene and perylene crystals. By diagonalizing the full Bethe-Salpether (BSE) Hamiltonian beyond the Tamm Dancoff approximation (TDA), we find that both low-lying excitation energies and oscillator strengths are in improved agreement with experiments relative to the TDA. We characterize the low-lying excitons, focusing in the degree of charge-transfer and spatial delocalization, connecting their relevance to singlet fission. For perylene, we find overall good agreement with absorption measurements, and we see evidence for the formation of an ``exciton-polariton'' band in β-perylene. This work is supported by the DOE.

  8. Automated Lattice Perturbation Theory

    SciTech Connect

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  9. Perturbative tests of non-perturbative counting

    NASA Astrophysics Data System (ADS)

    Dabholkar, Atish; Gomes, João

    2010-03-01

    We observe that a class of quarter-BPS dyons in mathcal{N} = 4 theories with charge vector ( Q, P) and with nontrivial values of the arithmetic duality invariant I := gcd( Q∧ P) are nonperturbative in one frame but perturbative in another frame. This observation suggests a test of the recently computed nonperturbative partition functions for dyons with nontrivial values of the arithmetic invariant. For all values of I, we show that the nonperturbative counting yields vanishing indexed degeneracy for this class of states everywhere in the moduli space in precise agreement with the perturbative result.

  10. Frame independent cosmological perturbations

    SciTech Connect

    Prokopec, Tomislav; Weenink, Jan E-mail: j.g.weenink@uu.nl

    2013-09-01

    We compute the third order gauge invariant action for scalar-graviton interactions in the Jordan frame. We demonstrate that the gauge invariant action for scalar and tensor perturbations on one physical hypersurface only differs from that on another physical hypersurface via terms proportional to the equation of motion and boundary terms, such that the evolution of non-Gaussianity may be called unique. Moreover, we demonstrate that the gauge invariant curvature perturbation and graviton on uniform field hypersurfaces in the Jordan frame are equal to their counterparts in the Einstein frame. These frame independent perturbations are therefore particularly useful in relating results in different frames at the perturbative level. On the other hand, the field perturbation and graviton on uniform curvature hypersurfaces in the Jordan and Einstein frame are non-linearly related, as are their corresponding actions and n-point functions.

  11. A simultaneous estimation of the mass of Mars and its natural satellites, Phobos and Deimos, from the orbital perturbations on the Mariner 9, Viking 1, and Viking 2 orbiters

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Smith, D. E.; Fricke, S. K.; Mccarthy, J. J.

    1993-01-01

    The natural satellites of Mars, Phobos and Deimos, caused perturbations on the orbits of the Mariner 9, and the Viking spacecraft that were used to estimate the satellite masses. The Viking spacecraft were specifically targeted to make close flybys (within a few hundred kilometers) of Phobos in February 1977 and of Deimos in October 1977. These close encounters were used to estimate the moon's gravitational constant, GM (the universal constant of gravitation multiplied by the satellite mass). However, the Viking and Mariner 9 spacecraft made numerous flybys of Phobos and Deimos at distances of a few thousand kilometers. The tracking data from these more 'distant' encounters were processed to estimate the masses of Mars, Phobos, and Deimos.

  12. Calculating nonadiabatic pressure perturbations during multifield inflation

    NASA Astrophysics Data System (ADS)

    Huston, Ian; Christopherson, Adam J.

    2012-03-01

    Isocurvature perturbations naturally occur in models of inflation consisting of more than one scalar field. In this paper, we calculate the spectrum of isocurvature perturbations generated at the end of inflation for three different inflationary models consisting of two canonical scalar fields. The amount of nonadiabatic pressure present at the end of inflation can have observational consequences through the generation of vorticity and subsequently the sourcing of B-mode polarization. We compare two different definitions of isocurvature perturbations and show how these quantities evolve in different ways during inflation. Our results are calculated using the open source Pyflation numerical package which is available to download.

  13. The Perturbed Puma Model

    NASA Astrophysics Data System (ADS)

    Rong, Shu-Jun; Liu, Qiu-Yu

    2012-04-01

    The puma model on the basis of the Lorentz and CPT violation may bring an economical interpretation to the conventional neutrinos oscillation and part of the anomalous oscillations. We study the effect of the perturbation to the puma model. In the case of the first-order perturbation which keeps the (23) interchange symmetry, the mixing matrix element Ue3 is always zero. The nonzero mixing matrix element Ue3 is obtained in the second-order perturbation that breaks the (23) interchange symmetry.

  14. Persistence despite perturbations for interacting populations.

    PubMed

    Schreiber, Sebastian J

    2006-10-21

    Two definitions of persistence despite perturbations in deterministic models are presented. The first definition, persistence despite frequent small perturbations, is shown to be equivalent to the existence of a positive attractor i.e. an attractor bounded away from extinction. The second definition, persistence despite rare large perturbations, is shown to be equivalent to permanence i.e. a positive attractor whose basin of attraction includes all positive states. Both definitions set up a natural dichotomy for classifying models of interacting populations. Namely, a model is either persistent despite perturbations or not. When it is not persistent, it follows that all initial conditions are prone to extinction due to perturbations of the appropriate type. For frequent small perturbations, this method of classification is shown to be generically robust: there is a dense set of models for which persistent (respectively, extinction prone) models lies within an open set of persistent (resp. extinction prone) models. For rare large perturbations, this method of classification is shown not to be generically robust. Namely, work of Josef Hofbauer and the author have shown there are open sets of ecological models containing a dense sets of permanent models and a dense set of extinction prone models. The merits and drawbacks of these different definitions are discussed.

  15. Primordial perturbations during a slow expansion

    NASA Astrophysics Data System (ADS)

    Piao, Yun-Song

    2007-10-01

    Recently, it has been shown that a slow expansion, which is asymptotically a static state in infinite past and may be described as an evolution with γ≪-1, of early universe may lead to the generation of primordial perturbation responsible for the structure formation of observable universe. However, its feasibility depends on whether the growing mode of Bardeen potential before phase transition can be inherited by the constant mode of curvature perturbation after phase transition. In this paper, we phenomenally regard this slow expansion as that driven by multi-NEC (null energy condition) violating scalar fields. We calculate the curvature perturbation induced by the entropy perturbation before phase transition and find that the spectrum is naturally scale invariant with a slight red tilt. The result has an interesting similarity to that of slow roll inflation.

  16. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank

    2016-03-01

    Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still two important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling "partially contracted" NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient "electron pair prescreening" that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed comparison

  17. SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory.

    PubMed

    Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F; Neese, Frank

    2016-03-01

    Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still two important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling "partially contracted" NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient "electron pair prescreening" that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed comparison

  18. SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory.

    PubMed

    Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F; Neese, Frank

    2016-03-01

    Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still two important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling "partially contracted" NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient "electron pair prescreening" that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed comparison

  19. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  20. Vortex perturbation dynamics

    NASA Technical Reports Server (NTRS)

    Criminale, W. O.; Lasseigne, D. G.; Jackson, T. L.

    1995-01-01

    An initial value approach is used to examine the dynamics of perturbations introduced into a vortex under strain. Both the basic vortex considered and the perturbations are taken as fully three-dimensional. An explicit solution for the time evolution of the vorticity perturbations is given for arbitrary initial vorticity. Analytical solutions for the resulting velocity components are found when the initial vorticity is assumed to be localized. For more general initial vorticity distributions, the velocity components are determined numerically. It is found that the variation in the radial direction of the initial vorticity disturbance is the most important factor influencing the qualitative behavior of the solutions. Transient growth in the magnitude of the velocity components is found to be directly attributable to the compactness of the initial vorticity.

  1. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  2. Scalar cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Uggla, Claes; Wainwright, John

    2012-05-01

    Scalar perturbations of Friedmann-Lemaitre cosmologies can be analyzed in a variety of ways using Einstein’s field equations, the Ricci and Bianchi identities, or the conservation equations for the stress-energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress-energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations.

  3. Liouvillian perturbations of black holes

    NASA Astrophysics Data System (ADS)

    Couch, W. E.; Holder, C. L.

    2007-10-01

    We apply the well-known Kovacic algorithm to find closed form, i.e., Liouvillian solutions, to the differential equations governing perturbations of black holes. Our analysis includes the full gravitational perturbations of Schwarzschild and Kerr, the full gravitational and electromagnetic perturbations of Reissner-Nordstrom, and specialized perturbations of the Kerr-Newman geometry. We also include the extreme geometries. We find all frequencies ω, in terms of black hole parameters and an integer n, which allow Liouvillian perturbations. We display many classes of black hole parameter values and their corresponding Liouvillian perturbations, including new closed-form perturbations of Kerr and Reissner-Nordstrom. We also prove that the only type 1 Liouvillian perturbations of Schwarzschild are the known algebraically special ones and that type 2 Liouvillian solutions do not exist for extreme geometries. In cases where we do not prove the existence or nonexistence of Liouvillian perturbations we obtain sequences of Diophantine equations on which decidability rests.

  4. Aspects of perturbative unitarity

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2016-07-01

    We reconsider perturbative unitarity in quantum field theory and upgrade several arguments and results. The minimum assumptions that lead to the largest time equation, the cutting equations and the unitarity equation are identified. Using this knowledge and a special gauge, we give a new, simpler proof of perturbative unitarity in gauge theories and generalize it to quantum gravity, in four and higher dimensions. The special gauge interpolates between the Feynman gauge and the Coulomb gauge without double poles. When the Coulomb limit is approached, the unphysical particles drop out of the cuts and the cutting equations are consistently projected onto the physical subspace. The proof does not extend to nonlocal quantum field theories of gauge fields and gravity, whose unitarity remains uncertain.

  5. Renormalized Lie perturbation theory

    SciTech Connect

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another.

  6. Degenerate density perturbation theory

    NASA Astrophysics Data System (ADS)

    Palenik, Mark C.; Dunlap, Brett I.

    2016-09-01

    Fractional occupation numbers can be used in density functional theory to create a symmetric Kohn-Sham potential, resulting in orbitals with degenerate eigenvalues. We develop the corresponding perturbation theory and apply it to a system of Nd degenerate electrons in a harmonic oscillator potential. The order-by-order expansions of both the fractional occupation numbers and unitary transformations within the degenerate subspace are determined by the requirement that a differentiable map exists connecting the initial and perturbed states. Using the X α exchange-correlation (XC) functional, we find an analytic solution for the first-order density and first- through third-order energies as a function of α , with and without a self-interaction correction. The fact that the XC Hessian is not positive definite plays an important role in the behavior of the occupation numbers.

  7. Perturbed Trojan satellites

    NASA Astrophysics Data System (ADS)

    Morais, M. H. M.; Murray, C. D.

    1999-09-01

    We present some mechanisms that can lead to instability of initially small eccentricity Trojan-type orbits associated with planetary satellites. Dermott & Murray (1981) showed that in the context of the hierarchical restricted three-body problem (M>> m), stable small eccentricity coorbital motion associated with the mass m, occurs within a region of relative width in semi-major axis a_s=0.74 epsilon (where epsilon is the dimensionless Hill's radius). However, for large eccentricities, the size of the stable coorbital region shrinks as a_s=4 (epsilon /e)(1/2) epsilon (Namouni 1999). The perturbations from other nearby bodies can cause increases in both eccentricity and semi-major axis, leading to ejection from the coorbital region via collisions with the parent body or a nearby perturber. We show that mean motion resonances among saturnian satellites can cause chaotic diffusion of both the eccentricity and the semi-major axis of their associated Trojan orbits. Moreover, we show that secular resonances inside the coorbital regions of some uranian and saturnian satellites can induce significant increases in the eccentricity of Trojan objects. A better insight into the complicated dynamics exhibited by Trojan objects when they are being subject to perturbations is fundamental to be able to assess the likelihood of finding real examples of these configurations. Dermott & Murray (1981). Icarus 48, 1-11. Namouni (1999). Icarus 137, 293-314.

  8. Covariant Bardeen perturbation formalism

    NASA Astrophysics Data System (ADS)

    Vitenti, S. D. P.; Falciano, F. T.; Pinto-Neto, N.

    2014-05-01

    In a previous work we obtained a set of necessary conditions for the linear approximation in cosmology. Here we discuss the relations of this approach with the so-called covariant perturbations. It is often argued in the literature that one of the main advantages of the covariant approach to describe cosmological perturbations is that the Bardeen formalism is coordinate dependent. In this paper we will reformulate the Bardeen approach in a completely covariant manner. For that, we introduce the notion of pure and mixed tensors, which yields an adequate language to treat both perturbative approaches in a common framework. We then stress that in the referred covariant approach, one necessarily introduces an additional hypersurface choice to the problem. Using our mixed and pure tensors approach, we are able to construct a one-to-one map relating the usual gauge dependence of the Bardeen formalism with the hypersurface dependence inherent to the covariant approach. Finally, through the use of this map, we define full nonlinear tensors that at first order correspond to the three known gauge invariant variables Φ, Ψ and Ξ, which are simultaneously foliation and gauge invariant. We then stress that the use of the proposed mixed tensors allows one to construct simultaneously gauge and hypersurface invariant variables at any order.

  9. Converting entropy to curvature perturbations after a cosmic bounce

    NASA Astrophysics Data System (ADS)

    Fertig, Angelika; Lehners, Jean-Luc; Mallwitz, Enno; Wilson-Ewing, Edward

    2016-10-01

    We study two-field bouncing cosmologies in which primordial perturbations are created in either an ekpyrotic or a matter-dominated contraction phase. We use a non-singular ghost condensate bounce model to follow the perturbations through the bounce into the expanding phase of the universe. In contrast to the adiabatic perturbations, which on large scales are conserved across the bounce, entropy perturbations can grow significantly during the bounce phase. If they are converted into adiabatic/curvature perturbations after the bounce, they typically form the dominant contribution to the observed temperature fluctuations in the microwave background, which can have several beneficial implications. For ekpyrotic models, this mechanism loosens the constraints on the amplitude of the ekpyrotic potential while naturally suppressing the intrinsic amount of non-Gaussianity. For matter bounce models, the mechanism amplifies the scalar perturbations compared to the associated primordial gravitational waves.

  10. Rolling axions during inflation: perturbativity and signatures

    NASA Astrophysics Data System (ADS)

    Peloso, Marco; Sorbo, Lorenzo; Unal, Caner

    2016-09-01

    The motion of a pseudo-scalar field X during inflation naturally induces a significant amplification of the gauge fields to which it is coupled. The amplified gauge fields can source characteristic scalar and tensor primordial perturbations. Several phenomenological implications have been discussed in the cases in which (i) X is the inflaton, and (ii) X is a field different from the inflaton, that experiences a temporary speed up during inflation. In this second case, visible sourced gravitational waves (GW) can be produced at the CMB scales without affecting the scalar perturbations, even if the scale of inflation is several orders of magnitude below what is required to produce a visible vacuum GW signal. Perturbativity considerations can be used to limit the regime in which these results are under perturbative control. We revised limits recently claimed for the case (i), and we extend these considerations to the case (ii). We show that, in both cases, these limits are satisfied by the applications that generate signals at CMB scales. Applications that generate gravitational waves and primordial black holes at much smaller scales are at the limit of the validity of this perturbativity analysis, so we expect those results to be valid up to possibly order one corrections.

  11. Discrete reductive perturbation technique

    SciTech Connect

    Levi, Decio; Petrera, Matteo

    2006-04-15

    We expand a partial difference equation (P{delta}E) on multiple lattices and obtain the P{delta}E which governs its far field behavior. The perturbative-reductive approach is here performed on well-known nonlinear P{delta}Es, both integrable and nonintegrable. We study the cases of the lattice modified Korteweg-de Vries (mKdV) equation, the Hietarinta equation, the lattice Volterra-Kac-Van Moerbeke equation and a nonintegrable lattice KdV equation. Such reductions allow us to obtain many new P{delta}Es of the nonlinear Schroedinger type.

  12. Perturbative unidirectional invisibility

    NASA Astrophysics Data System (ADS)

    Mostafazadeh, Ali

    2015-08-01

    We outline a general perturbative method of evaluating scattering features of finite-range complex potentials and use it to examine complex perturbations of a rectangular barrier potential. In optics, these correspond to modulated refractive index profiles of the form n (x ) =n0+f (x ) , where n0 is real, f (x ) is complex valued, and |f (x ) | ≪1 ≤n0 . We give a comprehensive description of the phenomenon of unidirectional invisibility for such media, proving five general theorems on its realization in P T -symmetric and non-P T -symmetric material. In particular, we establish the impossibility of unidirectional invisibility for P T -symmetric samples whose refractive index has a constant real part and show how a simple scaling transformation of a unidirectionally invisible P T -symmetric index profile with n0=1 may be used to generate a hierarchy of unidirectionally invisible P T -symmetric index profiles with n0>1 . The results pertaining to unidirectional invisibility for n0>1 open the way for the experimental studies of this phenomenon in a variety of active materials. As an application of our general results, we show that a medium with n (x ) =n0+ζ ei K x , ζ and K real, and |ζ |≪1 can support unidirectional invisibility only for n0=1 . We then construct unidirectionally invisible index profiles of the form n (x ) =n0+∑ℓzℓei Kℓx with zℓ complex, Kℓ real, | zℓ|≪1 , and n0>1 .

  13. Controlling chaos in a high dimensional system with periodic parametric perturbations

    SciTech Connect

    Mirus, K.A.; Sprott, J.C.

    1998-10-01

    The effect of applying a periodic perturbation to an accessible parameter of a high-dimensional (coupled-Lorenz) chaotic system is examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable periodic orbits of the chaotic system can result in limit cycles or significantly reduced dimension for relatively small perturbations.

  14. First order perturbations of the Einstein-Straus and Oppenheimer-Snyder models

    NASA Astrophysics Data System (ADS)

    Mars, Marc; Mena, Filipe C.; Vera, Raül

    2008-10-01

    We derive the linearly perturbed matching conditions between a Schwarzschild spacetime region with stationary and axially symmetric perturbations and a Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime with arbitrary perturbations. The matching hypersurface is also perturbed arbitrarily and, in all cases, the perturbations are decomposed into scalars using the Hodge operator on the sphere. This allows us to write down the matching conditions in a compact way. In particular, we find that the existence of a perturbed (rotating, stationary, and vacuum) Schwarzschild cavity in a perturbed FLRW universe forces the cosmological perturbations to satisfy constraints that link rotational and gravitational wave perturbations. We also prove that if the perturbation on the FLRW side vanishes identically, then the vacuole must be perturbatively static and hence Schwarzschild. By the dual nature of the problem, the first result translates into links between rotational and gravitational wave perturbations on a perturbed Oppenheimer-Snyder model, where the perturbed FLRW dust collapses in a perturbed Schwarzschild environment which rotates in equilibrium. The second result implies, in particular, that no region described by FLRW can be a source of the Kerr metric.

  15. First order perturbations of the Einstein-Straus and Oppenheimer-Snyder models

    SciTech Connect

    Mars, Marc; Mena, Filipe C.; Vera, Rauel

    2008-10-15

    We derive the linearly perturbed matching conditions between a Schwarzschild spacetime region with stationary and axially symmetric perturbations and a Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime with arbitrary perturbations. The matching hypersurface is also perturbed arbitrarily and, in all cases, the perturbations are decomposed into scalars using the Hodge operator on the sphere. This allows us to write down the matching conditions in a compact way. In particular, we find that the existence of a perturbed (rotating, stationary, and vacuum) Schwarzschild cavity in a perturbed FLRW universe forces the cosmological perturbations to satisfy constraints that link rotational and gravitational wave perturbations. We also prove that if the perturbation on the FLRW side vanishes identically, then the vacuole must be perturbatively static and hence Schwarzschild. By the dual nature of the problem, the first result translates into links between rotational and gravitational wave perturbations on a perturbed Oppenheimer-Snyder model, where the perturbed FLRW dust collapses in a perturbed Schwarzschild environment which rotates in equilibrium. The second result implies, in particular, that no region described by FLRW can be a source of the Kerr metric.

  16. Canonical density matrix perturbation theory.

    PubMed

    Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias

    2015-12-01

    Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures. PMID:26764847

  17. Cosmological perturbations in massive bigravity

    SciTech Connect

    Lagos, Macarena; Ferreira, Pedro G. E-mail: p.ferreira1@physics.ox.ac.uk

    2014-12-01

    We present a comprehensive analysis of classical scalar, vector and tensor cosmological perturbations in ghost-free massive bigravity. In particular, we find the full evolution equations and analytical solutions in a wide range of regimes. We show that there are viable cosmological backgrounds but, as has been found in the literature, these models generally have exponential instabilities in linear perturbation theory. However, it is possible to find stable scalar cosmological perturbations for a very particular choice of parameters. For this stable subclass of models we find that vector and tensor perturbations have growing solutions. We argue that special initial conditions are needed for tensor modes in order to have a viable model.

  18. Canonical density matrix perturbation theory.

    PubMed

    Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias

    2015-12-01

    Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures.

  19. Geometric perturbation theory and plasma physics

    SciTech Connect

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations.

  20. Do cosmological perturbations have zero mean?

    SciTech Connect

    Armendariz-Picon, Cristian

    2011-03-01

    A central assumption in our analysis of cosmic structure is that cosmological perturbations have a constant ensemble mean, which can be set to zero by appropriate choice of the background. This property is one of the consequences of statistical homogeneity, the invariance of correlation functions under spatial translations. In this article we explore whether cosmological perturbations indeed have zero mean, and thus test one aspect of statistical homogeneity. We carry out a classical test of the zero mean hypothesis against a class of alternatives in which primordial perturbations have inhomogeneous non-vanishing means, but homogeneous and isotropic covariances. Apart from Gaussianity, our test does not make any additional assumptions about the nature of the perturbations and is thus rather generic and model-independent. The test statistic we employ is essentially Student's t statistic, applied to appropriately masked, foreground-cleaned cosmic microwave background anisotropy maps produced by the WMAP mission. We find evidence for a non-zero mean in a particular range of multipoles, but the evidence against the zero mean hypothesis goes away when we correct for multiple testing. We also place constraints on the mean of the temperature multipoles as a function of angular scale. On angular scales smaller than four degrees, a non-zero mean has to be at least an order of magnitude smaller than the standard deviation of the temperature anisotropies.

  1. On the divergences of inflationary superhorizon perturbations

    SciTech Connect

    Enqvist, K; Nurmi, S; Podolsky, D; Rigopoulos, G I E-mail: sami.nurmi@helsinki.fi E-mail: gerasimos.rigopoulos@helsinki.fi

    2008-04-15

    We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.

  2. Controlling chaos in low and high dimensional systems with periodic parametric perturbations

    SciTech Connect

    Mirus, K.A.; Sprott, J.C.

    1998-06-01

    The effect of applying a periodic perturbation to an accessible parameter of various chaotic systems is examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable periodic orbits of the chaotic systems can result in limit cycles for relatively small perturbations. Such perturbations can also control or significantly reduce the dimension of high-dimensional systems. Initial application to the control of fluctuations in a prototypical magnetic fusion plasma device will be reviewed.

  3. Perturbation theory in electron diffraction

    NASA Astrophysics Data System (ADS)

    Bakken, L. N.; Marthinsen, K.; Hoeier, R.

    1992-12-01

    The Bloch-wave approach is used for discussing multiple inelastic electron scattering and higher-order perturbation theory in inelastic high-energy electron diffraction. In contrast to previous work, the present work describes three-dimensional diffraction so that higher-order Laue zone (HOLZ) effects are incorporated. Absorption is included and eigenvalues and eigenvectors are calculated from a structure matrix with the inclusion of an absorptive potential. Centrosymmetric as well as non-centrosymmetric crystal structures are allowed. An iteration method with a defined generalized propagation function for solving the inelastic coupling equations is described. It is shown that a similar iteration method with the same propagation function can be used for obtaining higher-order perturbation terms for the wave-function when a perturbation is added to the crystal potential. Finally, perturbation theory by matrix calculations when a general perturbation is added to the structure matrix is considered.

  4. Modulated preheating and isocurvature perturbations

    SciTech Connect

    Enqvist, Kari; Rusak, Stanislav E-mail: stanislav.rusak@helsinki.fi

    2013-03-01

    We consider a model of preheating where the coupling of the inflaton to the preheat field is modulated by an additional scalar field which is light during inflation. We establish that such a model produces the observed curvature perturbation analogously to the modulated reheating scenario. The contribution of modulated preheating to the power spectrum and to non-Gaussianity can however be significantly larger compared to modulated perturbative reheating. We also consider the implications of the current constraints on isocurvature perturbations in case where the modulating field is responsible for cold dark matter. We find that existing bounds on CDM isocurvature perturbations imply that modulated preheating is unlikely to give a dominant contribution to the curvature perturbation and that the same bounds suggest important constraints on non-Gaussianity and the amount of primordial gravitational waves.

  5. Life expectancy change in perturbed communities: derivation and qualitative analysis.

    PubMed

    Dambacher, Jeffrey M; Levins, Richard; Rossignol, Philippe A

    2005-09-01

    Pollution, loss of habitat, and climate change are introducing dramatic perturbations to natural communities and affecting public health. Populations in perturbed communities can change dynamically, in both abundance and age structure. While analysis of the community matrix can predict changes in population abundance arising from a sustained or press perturbation, perturbations also have the potential to modify life expectancy, which adds yet another means to falsify experimental hypotheses and to monitor management interventions in natural systems. In some instances, an input to a community will produce no change in the abundance of a population but create a major shift in its mean age. We present an analysis of change in both abundance and life expectancy, leading to a formal quantitative assessment as well as qualitative predictions, and illustrate the usefulness of the technique through general examples relating to vector-borne disease and fisheries. PMID:16043195

  6. Characterizing metabolic pathway diversification in the context of perturbation size.

    PubMed

    Yang, Laurence; Srinivasan, Shyamsundhar; Mahadevan, Radhakrishnan; Cluett, William R

    2015-03-01

    Cell metabolism is an important platform for sustainable biofuel, chemical and pharmaceutical production but its complexity presents a major challenge for scientists and engineers. Although in silico strains have been designed in the past with predicted performances near the theoretical maximum, real-world performance is often sub-optimal. Here, we simulate how strain performance is impacted when subjected to many randomly varying perturbations, including discrepancies between gene expression and in vivo flux, osmotic stress, and substrate uptake perturbations due to concentration gradients in bioreactors. This computational study asks whether robust performance can be achieved by adopting robustness-enhancing mechanisms from naturally evolved organisms-in particular, redundancy. Our study shows that redundancy, typically perceived as a ubiquitous robustness-enhancing strategy in nature, can either improve or undermine robustness depending on the magnitude of the perturbations. We also show that the optimal number of redundant pathways used can be predicted for a given perturbation size.

  7. Scalar perturbations in conformal rolling scenario with intermediate stage

    SciTech Connect

    Libanov, M.; Ramazanov, S.; Rubakov, V. E-mail: sabir@ms2.inr.ac.ru

    2011-06-01

    Scalar cosmological perturbations with nearly flat power spectrum may originate from perturbations of the phase of a scalar field conformally coupled to gravity and rolling down negative quartic potential. We consider a version of this scenario whose specific property is a long intermediate stage between the end of conformal rolling and horizon exit of the phase perturbations. Such a stage is natural, e.g., in cosmologies with ekpyrosis or genesis. Its existence results in small negative scalar tilt, statistical anisotropy of all even multipoles starting from quardupole of general structure (in contrast to the usually discussed single quadrupole of special type) and non-Gaussianity of a peculiar form.

  8. Velocity perturbation distributions in the breakup of artificial satellites

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.; Tan, Arjun; Reynolds, Robert C.

    1990-01-01

    A method is presented for calculating the three orthogonal components of the velocity perturbations of satellite fragments, with a view to ascertaining the nature and intensity of the satellite breakup. The method employs three simultaneous equations furnished by changes in fragment specific energy, specific angular momentum, and plane orientation. Velocity perturbations are thereby calculated for fragments from 20 major satellite breakup events; these results, in conjunction with a technique for determining fragment masses, yield a description of the breakup process.

  9. Geometric perturbation theory and plasma physics

    SciTech Connect

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  10. Disformal transformation of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Minamitsuji, Masato

    2014-10-01

    We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar-tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar-tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (non)conservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame.

  11. Perturbational formulation of principal component analysis in molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Tomoda, Shuji; Ueda, Hiroki R.

    2008-10-01

    Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we

  12. Tubulin-perturbing naphthoquinone spiroketals.

    PubMed

    Balachandran, Raghavan; Hopkins, Tamara D; Thomas, Catherine A; Wipf, Peter; Day, Billy W

    2008-02-01

    Several natural and synthetic naphthoquinone spiroketals are potent inhibitors of the thioredoxin-thioredoxin reductase redox system. Based on the antimitotic and weak antitubulin actions noted for SR-7 ([8-(furan-3-ylmethoxy)-1-oxo-1,4-dihydronaphthalene-4-spiro-2'-naphtho[1'',8''-de][1',3'][dioxin]), a library of related compounds was screened for tubulin-perturbing properties. Two compounds, TH-169 (5'-hydroxy-4'H-spiro[1,3-dioxolane-2,1'-naphthalen]-4'-one) and TH-223 (5'-methoxy-4'H-spiro[1,3-dioxane-2,1'-naphthalen]-4'-one), had substantial effects on tubulin assembly and were antiproliferative at low micromolar concentrations. TH-169 was the most potent at blocking GTP-dependent polymerization of 10 mum tubulin in vitro with a remarkable 50% inhibitory concentration of ca. 400 nm. It had no effect on paclitaxel-induced microtubule assembly and did not cause microtubule hypernucleation. TH-169 failed to compete with colchicine for binding to beta-tubulin. The 50% antiproliferative concentration of TH-169 against human cancer cells was at or slightly below 1 mum. Flow cytometry showed that 1 mum TH-169 caused an increase in G(2)/M and hypodiploid cells. TH-169 eliminated the PC-3 cells' polyploid population and increased their expression of p21(WAF1) and Hsp70 in a concentration-dependent manner. The antiproliferative effect of TH-169 was irreversible and independent of changes in caspases, actin, tubulin, glyceraldehyde phosphate dehydrogenase or Bcl-x(S/L). This structurally simple naphthoquinone spiroketal represents a small molecule, tubulin-interactive agent with a novel apoptotic pathway and attractive biological function. PMID:18194192

  13. Using Lagrangian Perturbation Theory for Precision Cosmology

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naonori S.

    2014-06-01

    We explore the Lagrangian perturbation theory (LPT) at one-loop order with Gaussian initial conditions. We present an expansion method to approximately compute the power spectrum LPT. Our approximate solution has good convergence in the series expansion and enables us to compute the power spectrum in LPT accurately and quickly. Non-linear corrections in this theory naturally satisfy the law of conservation of mass because the relation between matter density and the displacement vector of dark matter corresponds to the conservation of mass. By matching the one-loop solution in LPT to the two-loop solution in standard perturbation theory, we present an approximate solution of the power spectrum which has higher order corrections than the two-loop order in standard perturbation theory with the conservation of mass satisfied. With this approximation, we can use LPT to compute a non-linear power spectrum without any free parameters, and this solution agrees with numerical simulations at k = 0.2 h Mpc-1 and z = 0.35 to better than 2%.

  14. Using Lagrangian perturbation theory for precision cosmology

    SciTech Connect

    Sugiyama, Naonori S.

    2014-06-10

    We explore the Lagrangian perturbation theory (LPT) at one-loop order with Gaussian initial conditions. We present an expansion method to approximately compute the power spectrum LPT. Our approximate solution has good convergence in the series expansion and enables us to compute the power spectrum in LPT accurately and quickly. Non-linear corrections in this theory naturally satisfy the law of conservation of mass because the relation between matter density and the displacement vector of dark matter corresponds to the conservation of mass. By matching the one-loop solution in LPT to the two-loop solution in standard perturbation theory, we present an approximate solution of the power spectrum which has higher order corrections than the two-loop order in standard perturbation theory with the conservation of mass satisfied. With this approximation, we can use LPT to compute a non-linear power spectrum without any free parameters, and this solution agrees with numerical simulations at k = 0.2 h Mpc{sup –1} and z = 0.35 to better than 2%.

  15. Dark matter dispersion tensor in perturbation theory

    NASA Astrophysics Data System (ADS)

    Aviles, Alejandro

    2016-03-01

    We compute the dark matter velocity dispersion tensor up to third order in perturbation theory using the Lagrangian formalism, revealing growing solutions at the third and higher orders. Our results are general and can be used for any other perturbative formalism. As an application, corrections to the matter power spectrum are calculated, and we find that some of them have the same structure as those in the effective field theory of large-scale structure, with "EFT-like" coefficients that grow quadratically with the linear growth function and are further suppressed by powers of the logarithmic linear growth factor f ; other corrections present additional k dependence. Due to the velocity dispersions, there exists a free-streaming scale that suppresses the whole 1-loop power spectrum. Furthermore, we find that as a consequence of the nonlinear evolution, the free-streaming length is shifted towards larger scales, wiping out more structure than that expected in linear theory. Therefore, we argue that the formalism developed here is better suited for a perturbation treatment of warm dark matter or neutrino clustering, where the velocity dispersion effects are well known to be important. We discuss implications related to the nature of dark matter.

  16. Evolution equation for non-linear cosmological perturbations

    SciTech Connect

    Brustein, Ram; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch

    2011-11-01

    We present a novel approach, based entirely on the gravitational potential, for studying the evolution of non-linear cosmological matter perturbations. Starting from the perturbed Einstein equations, we integrate out the non-relativistic degrees of freedom of the cosmic fluid and obtain a single closed equation for the gravitational potential. We then verify the validity of the new equation by comparing its approximate solutions to known results in the theory of non-linear cosmological perturbations. First, we show explicitly that the perturbative solution of our equation matches the standard perturbative solutions. Next, using the mean field approximation to the equation, we show that its solution reproduces in a simple way the exponential suppression of the non-linear propagator on small scales due to the velocity dispersion. Our approach can therefore reproduce the main features of the renormalized perturbation theory and (time)-renormalization group approaches to the study of non-linear cosmological perturbations, with some possibly important differences. We conclude by a preliminary discussion of the nature of the full solutions of the equation and their significance.

  17. Boundary Layer Instabilities Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.

  18. Multigrid applied to singular perturbation problems

    NASA Technical Reports Server (NTRS)

    Kamowitz, David

    1987-01-01

    The solution of the singular perturbation problem by a multigrid algorithm is considered. Theoretical and experimental results for a number of different discretizations are presented. The theoretical and observed rates agree with the results developed in an earlier work of Kamowitz and Parter. In addition, the rate of convergence of the algorithm when the coarse grid operator is the natural finite difference analog of the fine grid operator is presented. This is in contrast to the case in the previous work where the Galerkin choice (I sup H sub h L sub h,I sup h sub H) was used for the coarse grid operators.

  19. Generating ekpyrotic curvature perturbations before the big bang

    SciTech Connect

    Lehners, Jean-Luc; Turok, Neil; McFadden, Paul; Steinhardt, Paul J.

    2007-11-15

    We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n{sub s} tends to range from slightly blue to red, with 0.97

  20. Multifractality of quantum wave functions in the presence of perturbations.

    PubMed

    Dubertrand, R; García-Mata, I; Georgeot, B; Giraud, O; Lemarié, G; Martin, J

    2015-09-01

    We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model, and a random matrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong-enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems. PMID:26465547

  1. Identification of perturbation modes and controversies in ekpyrotic perturbations

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-Chan; Noh, Hyerim

    2002-10-01

    If the linear perturbation theory is valid through the bounce, the surviving fluctuations from the ekpyrotic scenario (cyclic one as well) should have very blue spectra with suppressed amplitude for the scalar-type structure. We derive the same (and consistent) result using the curvature perturbation in the uniform-field (comoving) gauge and in the zero-shear gauge. Previously, Khoury et al. interpreted results from the latter gauge condition incorrectly and claimed the scale-invariant spectrum, thus generating controversy in the literature. We also correct similar errors in the literature based on wrong mode identification and joining condition. No joining condition is needed for the derivation.

  2. Jet Perturbation by HE target

    SciTech Connect

    Poulsen, P; Kuklo, R M

    2001-03-01

    We have previously reported the degree of attenuation and perturbation by a Cu jet passing through Comp B explosive. Similar tests have now been performed with high explosive (HE) targets having CJ pressures higher than and lower than the CJ pressure of Comp B. The explosives were LX-14 and TNT, respectively. We found that the measured exit velocity of the jet where it transitions from perturbed to solid did not vary significantly as a function of HE type for each HE thickness. The radial momentum imparted to the perturbed jet segment did vary as a function of HE type, however, and we report the radial spreading of the jet and the penetration of a downstream target as a function of HE type and thickness.

  3. Perturbation theory in thermosphere dynamics

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Volland, H.

    1976-01-01

    It is shown that density and pressure throughout the thermosphere can be adequately described in a logarithmic expansion that provides a sound basis for the application of perturbation theory. This expansion eliminates most of the important nonlinearities associated with density variations. On the basis of this expansion, the validity of perturbation theory can be extended to cover a large variety of atmospheric conditions in which the relative temperature amplitude is less than 0.5 and wind velocities are significantly less than the speed of sound.

  4. Matter perturbations in Galileon cosmology

    SciTech Connect

    De Felice, Antonio; Kase, Ryotaro; Tsujikawa, Shinji

    2011-02-15

    We study the evolution of matter density perturbations in Galileon cosmology where the late-time cosmic acceleration can be realized by a field kinetic energy. We obtain full perturbation equations at linear order in the presence of five covariant Lagrangians L{sub i} (i=1,{center_dot}{center_dot}{center_dot},5) satisfying the Galileon symmetry {partial_derivative}{sub {mu}}{phi}{yields}{partial_derivative}{sub {mu}}{phi}{sup +}b{sub {mu}} in the flat space-time. The equations for a matter perturbation as well as an effective gravitational potential are derived under a quasistatic approximation on subhorizon scales. This approximation can reproduce full numerical solutions with high accuracy for the wavelengths relevant to large-scale structures. For the model parameters constrained by the background expansion history of the Universe, the growth rate of matter perturbations is larger than that in the {Lambda}-cold dark matter model, with the growth index {gamma} today typically smaller than 0.4. We also find that, even on very large scales associated with the integrated-Sachs-Wolfe effect in cosmic microwave background temperature anisotropies, the effective gravitational potential exhibits a temporal growth during the transition from the matter era to the epoch of cosmic acceleration. These properties are useful to distinguish the Galileon model from the {Lambda}-cold dark matter model in future high-precision observations.

  5. Disformal invariance of curvature perturbation

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; White, Jonathan

    2016-02-01

    We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.

  6. VHS Movies: Perturbations for Morphogenesis.

    ERIC Educational Resources Information Center

    Holmes, Danny L.

    This paper discusses the concept of a family system in terms of an interactive system of interrelated, interdependent parts and suggests that VHS movies can act as perturbations, i.e., change promoting agents, for certain dysfunctional family systems. Several distinct characteristics of a family system are defined with particular emphasis on…

  7. Adaptation Strategies in Perturbed /s/

    ERIC Educational Resources Information Center

    Brunner, Jana; Hoole, Phil; Perrier, Pascal

    2011-01-01

    The purpose of this work is to investigate the role of three articulatory parameters (tongue position, jaw position and tongue grooving) in the production of /s/. Six normal speakers' speech was perturbed by a palatal prosthesis. The fricative was recorded acoustically and through electromagnetic articulography in four conditions: (1) unperturbed,…

  8. Basics of QCD perturbation theory

    SciTech Connect

    Soper, D.E.

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  9. Seven topics in perturbative QCD

    SciTech Connect

    Buras, A.J.

    1980-09-01

    The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e/sup +/e/sup -/ annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics.

  10. PERTURBATION APPROACH FOR QUANTUM COMPUTATION

    SciTech Connect

    G. P. BERMAN; D. I. KAMENEV; V. I. TSIFRINOVICH

    2001-04-01

    We discuss how to simulate errors in the implementation of simple quantum logic operations in a nuclear spin quantum computer with many qubits, using radio-frequency pulses. We verify our perturbation approach using the exact solutions for relatively small (L = 10) number of qubits.

  11. Determination of wave fields from perturbed particle orbits

    NASA Astrophysics Data System (ADS)

    Skiff, Fred

    1992-12-01

    The linear problem of determining wave electric fields from measured perturbed particle distributions is considered. Previous work is extended to consider the case of arbitrary wave structure transverse to the magnetic field. The calculations are limited to electrostatic waves, although the ideas extend naturally to electromagnetic waves, and are illustrated in the one-dimensional case using data taken by laser-induced fluorescence.

  12. Perturbative quantum gravity in double field theory

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Horst, Christoph

    2016-04-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  13. Neptune's story. [Triton's orbit perturbation

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Murray, N.; Longaretti, P. Y.; Banfield, D.

    1989-01-01

    It is conjectured that Triton was captured from a heliocentric orbit as the result of a collision with what was then one of Neptune's regular satellites. The immediate post-capture orbit was highly eccentric. Dissipation due to tides raised by Neptune in Triton caused Triton's orbit to evolve to its present state in less than one billion years. For much of this time Triton was almost entirely molten. While its orbit was evolving, Triton cannibalized most of the regular satellites of Neptune and also perturbed Nereid, thus accounting for that satellite's highly eccentric and inclined orbit. The only regular satellites of Neptune that survived were those that formed well within 5 Neptune radii, and they move on inclined orbits as the result of chaotic perturbations forced by Triton.

  14. Cosmological perturbations in unimodular gravity

    SciTech Connect

    Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu

    2014-09-01

    We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.

  15. The status of perturbative QCD

    SciTech Connect

    Ellis, R.K.

    1988-10-01

    The advances in perturbative QCD are reviewed. The status of determinations of the coupling constant ..cap alpha../sub S/ and the parton distribution functions is presented. New theoretical results on the spin dependent structure functions of the proton are also reviewed. The theoretical description of the production of vector bosons, jets and heavy quarks is outlined with special emphasis on new results. Expected rates for top quark production at hadronic colliders are presented. 111 refs., 8 figs.

  16. Quantum fields with classical perturbations

    SciTech Connect

    Dereziński, Jan

    2014-07-15

    The main purpose of these notes is a review of various models of Quantum Field Theory (QFT) involving quadratic Lagrangians. We discuss scalar and vector bosons, spin 1/2 fermions, both neutral and charged. Beside free theories, we study their interactions with classical perturbations, called, depending on the context, an external linear source, mass-like term, current or electromagnetic potential. The notes may serve as a first introduction to QFT.

  17. Gas hydrate inhibition by perturbation of liquid water structure

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-01-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates. PMID:26082291

  18. Gas hydrate inhibition by perturbation of liquid water structure

    NASA Astrophysics Data System (ADS)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  19. Gas hydrate inhibition by perturbation of liquid water structure.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-17

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  20. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  1. R evolution: Improving perturbative QCD

    SciTech Connect

    Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio

    2010-07-01

    Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.

  2. New Representations of the Perturbative S Matrix.

    PubMed

    Baadsgaard, Christian; Bjerrum-Bohr, N E J; Bourjaily, Jacob L; Caron-Huot, Simon; Damgaard, Poul H; Feng, Bo

    2016-02-12

    We propose a new framework to represent the perturbative S matrix which is well defined for all quantum field theories of massless particles, constructed from tree-level amplitudes and integrable term by term. This representation is derived from the Feynman expansion through a series of partial fraction identities, discarding terms that vanish upon integration. Loop integrands are expressed in terms of "Q-cuts" that involve both off-shell and on-shell loop momenta, defined with a precise contour prescription that can be evaluated by ordinary methods. This framework implies recent results found in the scattering equation formalism at one loop, and it has a natural extension to all orders--even nonplanar theories without well-defined forward limits or good ultraviolet behavior. PMID:26918978

  3. Estimation of velocity perturbations in satellite fragmentation events

    NASA Technical Reports Server (NTRS)

    Tan, Arjun

    1989-01-01

    The magnitude, variance and directionality of the velocity perturbations of the fragments of a satellite can shed valuable information regarding the nature and intensity of the fragmentation. Up until now, the only method used to calculate the three orthogonal components of the velocity change consisted of inverting the process of evaluating the changes in the orbital elements of the fragments due to velocity perturbing forces. But the traditional method failed in five different cases: (1) when the parent satellite's orbit was circular; (2) and (3) when the true anomaly of the parent was either 0 deg or 180 deg; and (4) and (5) when the argument of latitude of the parent was 90 deg or 270 deg. Described here is a new method of calculating the velocity perturbations which is free from the shortcomings of the traditional method and could be used in all occasions, provided the fragmentation data and the orbital elements data are consistent with one another.

  4. Cosmological perturbations: Vorticity, isocurvature and magnetic fields

    NASA Astrophysics Data System (ADS)

    Christopherson, Adam J.

    2014-10-01

    In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.

  5. Geometric Hamiltonian structures and perturbation theory

    SciTech Connect

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.

  6. Superconvergent perturbation method in quantum mechanics

    SciTech Connect

    Scherer, W. )

    1995-02-27

    An analog of Kolmogorov's superconvergent perturbation theory in classical mechanics is constructed for self-adjoint operators. It is different from the usual Rayleigh-Schroedinger perturbation theory and yields expansions for eigenvalues and eigenvectors in terms of functions of the perturbation parameter.

  7. INVESTIGATION OF HALO FORMATION IN CONTINUOUS BEAMS USING WEIGHTED POLYNOMIAL EXPANSIONS AND PERTURBATIONAL ANALYSIS

    SciTech Connect

    C. ALLEN

    2000-08-01

    We consider halo formation in continuous beams oscillating at natural modes by inspecting particle trajectories. Trajectory equations containing field nonlinearities are derived from a weighted polynomial expansion. We then use perturbational techniques to further analyze particle motion.

  8. Identifying Network Perturbation in Cancer

    PubMed Central

    Logsdon, Benjamin A.; Gentles, Andrew J.; Lee, Su-In

    2016-01-01

    We present a computational framework, called DISCERN (DIfferential SparsE Regulatory Network), to identify informative topological changes in gene-regulator dependence networks inferred on the basis of mRNA expression datasets within distinct biological states. DISCERN takes two expression datasets as input: an expression dataset of diseased tissues from patients with a disease of interest and another expression dataset from matching normal tissues. DISCERN estimates the extent to which each gene is perturbed—having distinct regulator connectivity in the inferred gene-regulator dependencies between the disease and normal conditions. This approach has distinct advantages over existing methods. First, DISCERN infers conditional dependencies between candidate regulators and genes, where conditional dependence relationships discriminate the evidence for direct interactions from indirect interactions more precisely than pairwise correlation. Second, DISCERN uses a new likelihood-based scoring function to alleviate concerns about accuracy of the specific edges inferred in a particular network. DISCERN identifies perturbed genes more accurately in synthetic data than existing methods to identify perturbed genes between distinct states. In expression datasets from patients with acute myeloid leukemia (AML), breast cancer and lung cancer, genes with high DISCERN scores in each cancer are enriched for known tumor drivers, genes associated with the biological processes known to be important in the disease, and genes associated with patient prognosis, in the respective cancer. Finally, we show that DISCERN can uncover potential mechanisms underlying network perturbation by explaining observed epigenomic activity patterns in cancer and normal tissue types more accurately than alternative methods, based on the available epigenomic data from the ENCODE project. PMID:27145341

  9. Perturbation analyses of intermolecular interactions.

    PubMed

    Koyama, Yohei M; Kobayashi, Tetsuya J; Ueda, Hiroki R

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the

  10. Transport Studies Using Perturbative Experiments

    SciTech Connect

    Hogeweij, G.M.D.

    2004-03-15

    By inducing a small electron temperature perturbation in a plasma in steady state one can in principle determine the conductive and convective components of the electron heat ux, and the associated thermal diffusivity and convection velocity. The same can be done for other plasma parameters, like density or ion temperature.In this paper experimental and analysis techniques are briey reviewed. The fundamental question whether the uxes are linear functions of the gradients or not is discussed. Experimental results are summarized, including so-called 'non-local' phenomena.

  11. Perturbation analyses of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Ueda, Hiroki R.

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the

  12. "Phonon" scattering beyond perturbation theory

    NASA Astrophysics Data System (ADS)

    Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing

    2016-02-01

    Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.

  13. Perturbative Methods in Path Integration

    NASA Astrophysics Data System (ADS)

    Johnson-Freyd, Theodore Paul

    This dissertation addresses a number of related questions concerning perturbative "path" integrals. Perturbative methods are one of the few successful ways physicists have worked with (or even defined) these infinite-dimensional integrals, and it is important as mathematicians to check that they are correct. Chapter 0 provides a detailed introduction. We take a classical approach to path integrals in Chapter 1. Following standard arguments, we posit a Feynman-diagrammatic description of the asymptotics of the time-evolution operator for the quantum mechanics of a charged particle moving nonrelativistically through a curved manifold under the influence of an external electromagnetic field. We check that our sum of Feynman diagrams has all desired properties: it is coordinate-independent and well-defined without ultraviolet divergences, it satisfies the correct composition law, and it satisfies Schrodinger's equation thought of as a boundary-value problem in PDE. Path integrals in quantum mechanics and elsewhere in quantum field theory are almost always of the shape ∫ f es for some functions f (the "observable") and s (the "action"). In Chapter 2 we step back to analyze integrals of this type more generally. Integration by parts provides algebraic relations between the values of ∫ (-) es for different inputs, which can be packaged into a Batalin--Vilkovisky-type chain complex. Using some simple homological perturbation theory, we study the version of this complex that arises when f and s are taken to be polynomial functions, and power series are banished. We find that in such cases, the entire scheme-theoretic critical locus (complex points included) of s plays an important role, and that one can uniformly (but noncanonically) integrate out in a purely algebraic way the contributions to the integral from all "higher modes," reducing ∫ f es to an integral over the critical locus. This may help explain the presence of analytic continuation in questions like the

  14. Perturbations of vortex ring pairs

    NASA Astrophysics Data System (ADS)

    Gubser, Steven S.; Horn, Bart; Parikh, Sarthak

    2016-02-01

    We study pairs of coaxial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.

  15. Robust control with structured perturbations

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1988-01-01

    Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.

  16. Perturbative and non-perturbative aspects in vector model/higher spin duality

    NASA Astrophysics Data System (ADS)

    Jevicki, Antal; Jin, Kewang; Ye, Qibin

    2013-05-01

    We review some recent work on AdS/CFT duality involving the 3D O(N) vector model and AdS4 higher spin gravity. Our construction is based on bi-local collective field theory which provides an off-shell formulation of higher spin gravity with G = 1/N playing the role of a coupling constant. Consequently, perturbative and non-perturbative issues of the theory can be studied. For the correspondence based on free CFTs we discuss the nature of bulk 1/N interactions through an S-matrix which is argued to be equal to 1 (Coleman-Mandula theorem). As a consequence in this class of theories nonlinearities are removable, through a nonlinear field transformation which we show at the exact level. We also describe a geometric (Kähler space) framework for the bi-local theory which applies equally simply to Sp(2N) fermions and the de Sitter correspondence. We discuss in this framework the structure and size of the bi-local Hilbert space and the implementation of (finite N) exclusion principle. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’.

  17. Kato expansion in quantum canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Nikolaev, Andrey

    2016-06-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson's ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  18. On adiabatic perturbations in the ekpyrotic scenario

    SciTech Connect

    Linde, A.; Mukhanov, V.; Vikman, A. E-mail: Viatcheslav.Mukhanov@physik.uni-muenchen.de

    2010-02-01

    In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario.

  19. Cosmological perturbations in coherent oscillating scalar field models

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Maroto, A. L.; Jareño, S. J. Núñez

    2016-03-01

    The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials V( ϕ) = λ| ϕ| n /n. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained c eff 2 = ω = ( n - 2)/( n + 2) with ω the effective equation of state. We also obtain the first order correction in k 2/ ω eff 2 , when the wavenumber k of the perturbations is much smaller than the background oscillation frequency, ω eff. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for δϕ; and for sub-Hubble modes, exploiting Floquet's theorem.

  20. Scalar perturbations in a Friedmann-like metric with non-null Weyl tensor

    SciTech Connect

    Santos, G.B.; Bittencourt, E.; Salim, J.M. E-mail: eduardo.bittencourt@icranet.org

    2015-06-01

    In a previous work the authors have solved the Einstein equations of General Relativity for a class of metrics with constant spatial curvature, where it was found a non vanishing Weyl tensor in the presence of a primordial magnetic field with an anisotropic pressure component. Here, we perform the perturbative analysis of this model in order to study the gravitational stability under linear scalar perturbations. For this purpose, we take the Quasi-Maxwellian formalism of General Relativity as our framework, which offers a naturally covariant and gauge-invariant approach to deal with perturbations that are directly linked to observational quantities. We then compare this scenario with the perturbed dust-dominated Friedmann model emphasizing how the growth of density perturbations are enhanced in our case.

  1. Natural and anthropogenic perturbations of the stratospheric ozone layer

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy P.

    1992-01-01

    The paper reviews potential causes for reduction in the ozone abundance. The response of stratospheric ozone to solar activity is discussed. Ozone changes are simulated in relation with the potential development of a fleet of high-speed stratospheric aircraft and the release in the atmosphere of chlorofluorocarbons. The calculations are performed by a two-dimensional chemical-radiative-dynamical model. The importance of heterogeneous chemistry in polar stratospheric clouds and in the Junge layer (sulfate aerosol) is emphasized. The recently reported ozone trend over the last decade is shown to have been largely caused by the simultaneous effects of increasing concentrations of chlorofluorocarbons and heterogeneous chemistry. The possibility for a reduction in stratospheric ozone following a large volcanic eruption such as that of Mount Pinatubo in 1991 is discussed.

  2. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  3. Non-perturbative approach for curvature perturbations in stochastic δ N formalism

    SciTech Connect

    Fujita, Tomohiro; Kawasaki, Masahiro; Tada, Yuichiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-10-01

    In our previous paper [1], we have proposed a new algorithm to calculate the power spectrum of the curvature perturbations generated in inflationary universe with use of the stochastic approach. Since this algorithm does not need the perturbative expansion with respect to the inflaton fields on super-horizon scale, it works even in highly stochastic cases. For example, when the curvature perturbations are very large or the non-Gaussianities of the curvature perturbations are sizable, the perturbative expansion may break down but our algorithm enables to calculate the curvature perturbations. We apply it to two well-known inflation models, chaotic and hybrid inflation, in this paper. Especially for hybrid inflation, while the potential is very flat around the critical point and the standard perturbative computation is problematic, we successfully calculate the curvature perturbations.

  4. Perturbative theory for Brownian vortexes.

    PubMed

    Moyses, Henrique W; Bauer, Ross O; Grosberg, Alexander Y; Grier, David G

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers. PMID:26172698

  5. Perturbative theory for Brownian vortexes

    NASA Astrophysics Data System (ADS)

    Moyses, Henrique W.; Bauer, Ross O.; Grosberg, Alexander Y.; Grier, David G.

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers.

  6. Chiral perturbation theory with nucleons

    SciTech Connect

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.

  7. Computation of solar perturbations with Poisson series

    NASA Technical Reports Server (NTRS)

    Broucke, R.

    1974-01-01

    Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained.

  8. Phase perturbation measurements through a heated ionosphere

    NASA Technical Reports Server (NTRS)

    Frey, A.; Gordon, W. E.

    1982-01-01

    High frequency radiowaves incident on an overdense (i.e., HF-frequency penetration frequency) ionosphere produce electron density irregularities. The effect of such ionospheric irregularities on the phase of UHF-radiowaves was determined. For that purpose the phase of radiowaves originating from celestial radio sources was observed with two antennas. The radiosources were chosen such that the line of sight to at least one of the antennas (usually both) passed through the modified volume of the ionosphere. Observations at 430 MHz and at 2380 MHz indicate that natural irregularities have a much stronger effect on the UHF phase fluctuations than the HF-induced irregularities for presently achieved HF-power densities of 20-80 uW/sq m. It is not clear whether some of the effects observed are the result of HF-modification of the ionosphere. Upper limits on the phase perturbations produced by HF-modification are 10 deg at 2380 MHz and 80 deg at 430 MHz.

  9. Cosmological perturbations across an S-brane

    SciTech Connect

    Brandenberger, Robert H.; Kounnas, Costas; Partouche, Hervé; Patil, Subodh P.; Toumbas, Nicolaos E-mail: kounnas@lpt.ens.fr E-mail: subodh.patil@cern.ch

    2014-03-01

    Space-filling S-branes can mediate a transition between a contracting and an expanding universe in the Einstein frame. Following up on previous work that uncovered such bouncing solutions in the context of weakly coupled thermal configurations of a certain class of type II superstrings, we set up here the formalism in which we can study the evolution of metric fluctuations across such an S-brane. Our work shows that the specific nature of the S-brane, which is sourced by non-trivial massless thermal string states and appears when the universe reaches a maximal critical temperature, allows for a scale invariant spectrum of curvature fluctuations to manifest at late times via a stringy realization of the matter bounce scenario. The finite energy density at the transition from contraction to expansion provides calculational control over the propagation of the curvature perturbations through the bounce, furnishing a working proof of concept that such a stringy universe can result in viable late time cosmology.

  10. Degenerate Open Shell Density Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Palenik, Mark; Dunlap, Brett

    The density perturbation theory (DPT) methodology we have developed applies the Hohenberg-Kohn theorem to perturbations in density functional theory. At each order, the energy is directly minimized with respect to the density at all lower orders. The difference between the perturbed and unperturbed densities is expanded in terms of a finite number of basis functions, and a single matrix inversion in this space reduces the complexity of the problem to that of non-interacting perturbation theory. For open-shell systems with symmetry, however, the situation becomes more complex. Typically, the perturbation will break the symmetry leading to a zeroth-order shift in the Kohn-Sham potential. Because the symmetry breaking is independent of the strength of the perturbation, the mapping from the initial to the perturbed KS potential is discontinuous and techniques from perturbation theory for noninteracting particles fail. We describe a rigorous formulation of DPT for use in systems that display an initial degeneracy, such as atoms and Fe55Cp*12 clusters and present initial calculations on these systems.

  11. Double soft theorem for perturbative gravity

    NASA Astrophysics Data System (ADS)

    Saha, Arnab Priya

    2016-09-01

    Following up on the recent work of Cachazo, He and Yuan [1], we derive the double soft graviton theorem in perturbative gravity. We show that the double soft theorem derived using CHY formula precisely matches with the perturbative computation involving Feynman diagrams. In particular, we find how certain delicate limits of Feynman diagrams play an important role in obtaining this equivalence.

  12. Intelligent perturbation algorithms for space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1991-01-01

    Intelligent perturbation algorithms for space scheduling optimization are presented in the form of the viewgraphs. The following subject areas are covered: optimization of planning, scheduling, and manifesting; searching a discrete configuration space; heuristic algorithms used for optimization; use of heuristic methods on a sample scheduling problem; intelligent perturbation algorithms are iterative refinement techniques; properties of a good iterative search operator; dispatching examples of intelligent perturbation algorithm and perturbation operator attributes; scheduling implementations using intelligent perturbation algorithms; major advances in scheduling capabilities; the prototype ISF (industrial Space Facility) experiment scheduler; optimized schedule (max revenue); multi-variable optimization; Space Station design reference mission scheduling; ISF-TDRSS command scheduling demonstration; and example task - communications check.

  13. The recursion relation in Lagrangian perturbation theory

    SciTech Connect

    Rampf, Cornelius

    2012-12-01

    We derive a recursion relation in the framework of Lagrangian perturbation theory, appropriate for studying the inhomogeneities of the large scale structure of the universe. We use the fact that the perturbative expansion of the matter density contrast is in one-to-one correspondence with standard perturbation theory (SPT) at any order. This correspondence has been recently shown to be valid up to fourth order for a non-relativistic, irrotational and dust-like component. Assuming it to be valid at arbitrary (higher) order, we express the Lagrangian displacement field in terms of the perturbative kernels of SPT, which are itself given by their own and well-known recursion relation. We argue that the Lagrangian solution always contains more non-linear information in comparison with the SPT solution, (mainly) if the non-perturbative density contrast is restored after the displacement field is obtained.

  14. Covariant generalization of cosmological perturbation theory

    SciTech Connect

    Enqvist, Kari; Hoegdahl, Janne; Nurmi, Sami; Vernizzi, Filippo

    2007-01-15

    We present an approach to cosmological perturbations based on a covariant perturbative expansion between two worldlines in the real inhomogeneous universe. As an application, at an arbitrary order we define an exact scalar quantity which describes the inhomogeneities in the number of e-folds on uniform density hypersurfaces and which is conserved on all scales for a barotropic ideal fluid. We derive a compact form for its conservation equation at all orders and assign it a simple physical interpretation. To make a comparison with the standard perturbation theory, we develop a method to construct gauge-invariant quantities in a coordinate system at arbitrary order, which we apply to derive the form of the nth order perturbation in the number of e-folds on uniform density hypersurfaces and its exact evolution equation. On large scales, this provides the gauge-invariant expression for the curvature perturbation on uniform density hypersurfaces and its evolution equation at any order.

  15. IR divergences in inflation and entropy perturbations

    SciTech Connect

    Xue, Wei; Brandenberger, Robert; Gao, Xian E-mail: xgao@apc.univ-paris7.fr

    2012-06-01

    We study leading order perturbative corrections to the two point correlation function of the scalar field describing the curvature perturbation in a slow-roll inflationary background, paying particular attention to the contribution of entropy mode loops. We find that the infrared divergences are worse than in pure de Sitter space: they are power law rather than logarithmic. The validity of perturbation theory and thus of the effective field theory of cosmological perturbations leads to stringent constraints on the coupling constants describing the interactions, in our model the quartic self-interaction coupling constant of the entropy field. If the self coupling constant is larger than some critical value which depends in particular on the duration of the inflationary phase, then perturbation theory breaks down. Our analysis may have implications for the stability of de Sitter space: the quantum effects which lead to an instability of de Sitter space will be larger in magnitude in the presence of entropy fluctuations.

  16. Flow-dependent versus flow-independent initial perturbations for ensemble prediction

    NASA Astrophysics Data System (ADS)

    Magnusson, Linus; Nycander, Jonas; Källén, Erland

    2009-03-01

    Ensemble prediction relies on a faithful representation of initial uncertainties in a forecasting system. Early research on initial perturbation methods tested random perturbations by adding `white noise' to the analysis. Here, an alternative kind of random perturbations is introduced by using the difference between two randomly chosen atmospheric states (i.e. analyses). It yields perturbations (random field, RF, perturbations) in approximate flow balance. The RF method is compared with the operational singular vector based ensemble at European Centre for Medium Range Weather Forecasts (ECMWF) and the ensemble transform (ET) method. All three methods have been implemented on the ECMWF IFS-model with resolution TL255L40. The properties of the different perturbation methods have been investigated both by comparing the dynamical properties and the quality of the ensembles in terms of different skill scores. The results show that the RF perturbations initially have the same dynamical properties as the natural variability of the atmosphere. After a day of integration, the perturbations from all three methods converge. The skill scores indicate a statistically significant advantage for the RF method for the first 2-3 d for the most of the evaluated parameters. For the medium range (3-8 d), the differences are very small.

  17. The perturbative approach to path integrals: A succinct mathematical treatment

    NASA Astrophysics Data System (ADS)

    Nguyen, Timothy

    2016-09-01

    We study finite-dimensional integrals in a way that elucidates the mathematical meaning behind the formal manipulations of path integrals occurring in quantum field theory. This involves a proper understanding of how Wick's theorem allows one to evaluate integrals perturbatively, i.e., as a series expansion in a formal parameter irrespective of convergence properties. We establish invariance properties of such a Wick expansion under coordinate changes and the action of a Lie group of symmetries, and we use this to study essential features of path integral manipulations, including coordinate changes, Ward identities, Schwinger-Dyson equations, Faddeev-Popov gauge-fixing, and eliminating fields by their equation of motion. We also discuss the asymptotic nature of the Wick expansion and the implications this has for defining path integrals perturbatively and nonperturbatively.

  18. Remarks on Definitions of Perturbation in General Relativity

    NASA Astrophysics Data System (ADS)

    He, Ping

    2009-02-01

    There are two kinds of definitions of perturbation of physical quantities in the framework of general relativity: one is direct, the other is geometrical. Correspondingly, there are two types of gauge transformation related with these two definitions. The passive approach is based on the property of general covariance, and the active one is through the action of Lie-derivative. Although under a proper coordinate choice, the two approaches seem to agree with each other, they are different in nature. The geometrical definition of relativistic perturbation and the active approach for gauge transformation are more rigorous in mathematics and less confusing in physical explanation. The direct definition, however, seems to be plagued with difficulties in physical meaning, and the passive approach is more awkward to use, especially for high-order gauge transformations.

  19. Quantifying human mobility perturbation and resilience in Hurricane Sandy.

    PubMed

    Wang, Qi; Taylor, John E

    2014-01-01

    Human mobility is influenced by environmental change and natural disasters. Researchers have used trip distance distribution, radius of gyration of movements, and individuals' visited locations to understand and capture human mobility patterns and trajectories. However, our knowledge of human movements during natural disasters is limited owing to both a lack of empirical data and the low precision of available data. Here, we studied human mobility using high-resolution movement data from individuals in New York City during and for several days after Hurricane Sandy in 2012. We found the human movements followed truncated power-law distributions during and after Hurricane Sandy, although the β value was noticeably larger during the first 24 hours after the storm struck. Also, we examined two parameters: the center of mass and the radius of gyration of each individual's movements. We found that their values during perturbation states and steady states are highly correlated, suggesting human mobility data obtained in steady states can possibly predict the perturbation state. Our results demonstrate that human movement trajectories experienced significant perturbations during hurricanes, but also exhibited high resilience. We expect the study will stimulate future research on the perturbation and inherent resilience of human mobility under the influence of hurricanes. For example, mobility patterns in coastal urban areas could be examined as hurricanes approach, gain or dissipate in strength, and as the path of the storm changes. Understanding nuances of human mobility under the influence of such disasters will enable more effective evacuation, emergency response planning and development of strategies and policies to reduce fatality, injury, and economic loss.

  20. Adaptive Modeling Procedure Selection by Data Perturbation*

    PubMed Central

    Zhang, Yongli; Shen, Xiaotong

    2015-01-01

    Summary Many procedures have been developed to deal with the high-dimensional problem that is emerging in various business and economics areas. To evaluate and compare these procedures, modeling uncertainty caused by model selection and parameter estimation has to be assessed and integrated into a modeling process. To do this, a data perturbation method estimates the modeling uncertainty inherited in a selection process by perturbing the data. Critical to data perturbation is the size of perturbation, as the perturbed data should resemble the original dataset. To account for the modeling uncertainty, we derive the optimal size of perturbation, which adapts to the data, the model space, and other relevant factors in the context of linear regression. On this basis, we develop an adaptive data-perturbation method that, unlike its nonadaptive counterpart, performs well in different situations. This leads to a data-adaptive model selection method. Both theoretical and numerical analysis suggest that the data-adaptive model selection method adapts to distinct situations in that it yields consistent model selection and optimal prediction, without knowing which situation exists a priori. The proposed method is applied to real data from the commodity market and outperforms its competitors in terms of price forecasting accuracy. PMID:26640319

  1. Perturbation calculation of thermodynamic density of states

    SciTech Connect

    Brown, Greg; Schulthess, Thomas C; Nicholson, Don M; Eisenbach, Markus; Stocks, George Malcolm

    2011-01-01

    The density of states g( ) is frequently used to calculate the temperature-dependent properties of a thermodynamic system. Here a derivation is given for calculating the warped density of states g ( ) resulting from the addition of a perturbation. The method is validated for a classical Heisenberg model of bcc Fe and the errors in the free energy are shown to be second order in the perturbation. Taking the perturbation to be the difference between a first-principles quantum-mechanical energy and a corresponding classical energy, this method can significantly reduce the computational effort required to calculate g( ) for quantum systems using the Wang-Landau approach.

  2. Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Comer, Kathryn J.

    We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes. We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted. Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations. Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent

  3. Cosmological perturbations and the Weinberg theorem

    SciTech Connect

    Akhshik, Mohammad; Firouzjahi, Hassan; Jazayeri, Sadra E-mail: firouz@ipm.ir

    2015-12-01

    The celebrated Weinberg theorem in cosmological perturbation theory states that there always exist two adiabatic scalar modes in which the comoving curvature perturbation is conserved on super-horizon scales. In particular, when the perturbations are generated from a single source, such as in single field models of inflation, both of the two allowed independent solutions are adiabatic and conserved on super-horizon scales. There are few known examples in literature which violate this theorem. We revisit the theorem and specify the loopholes in some technical assumptions which violate the theorem in models of non-attractor inflation, fluid inflation, solid inflation and in the model of pseudo conformal universe.

  4. Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects

    SciTech Connect

    Bouchard, Hugo Duane, Simon; Kamio, Yuji; Palmans, Hugo; Seuntjens, Jan

    2015-10-15

    Purpose: To quantify detector perturbation effects in megavoltage small photon fields and support the theoretical explanation on the nature of quality correction factors in these conditions. Methods: In this second paper, a modern approach to radiation dosimetry is defined for any detector and applied to small photon fields. Fano’s theorem is adapted in the form of a cavity theory and applied in the context of nonstandard beams to express four main effects in the form of perturbation factors. The pencil-beam decomposition method is detailed and adapted to the calculation of perturbation factors and quality correction factors. The approach defines a perturbation function which, for a given field size or beam modulation, entirely determines these dosimetric factors. Monte Carlo calculations are performed in different cavity sizes for different detection materials, electron densities, and extracameral components. Results: Perturbation effects are detailed with calculated perturbation functions, showing the relative magnitude of the effects as well as the geometrical extent to which collimating or modulating the beam impacts the dosimetric factors. The existence of a perturbation zone around the detector cavity is demonstrated and the approach is discussed and linked to previous approaches in the literature to determine critical field sizes. Conclusions: Monte Carlo simulations are valuable to describe pencil beam perturbation effects and detail the nature of dosimetric factors in megavoltage small photon fields. In practice, it is shown that dosimetric factors could be avoided if the field size remains larger than the detector perturbation zone. However, given a detector and beam quality, a full account for the detector geometry is necessary to determine critical field sizes.

  5. Mechanical picture of the linear transient growth of vortical perturbations in incompressible smooth shear flows

    NASA Astrophysics Data System (ADS)

    Chagelishvili, George; Hau, Jan-Niklas; Khujadze, George; Oberlack, Martin

    2016-08-01

    The linear dynamics of perturbations in smooth shear flows covers the transient exchange of energies between (1) the perturbations and the basic flow and (2) different perturbations modes. Canonically, the linear exchange of energies between the perturbations and the basic flow can be described in terms of the Orr and the lift-up mechanisms, correspondingly for two-dimensional (2D) and three-dimensional (3D) perturbations. In this paper the mechanical basis of the linear transient dynamics is introduced and analyzed for incompressible plane constant shear flows, where we consider the dynamics of virtual fluid particles in the framework of plane perturbations (i.e., perturbations with plane surfaces of constant phase) for the 2D and 3D case. It is shown that (1) the formation of a pressure perturbation field is the result of countermoving neighboring sets of incompressible fluid particles in the flow, (2) the keystone of the energy exchange mechanism between the basic flow and perturbations is the collision of fluid particles with the planes of constant pressure in accordance with the classical theory of elastic collision of particles with a rigid wall, making the pressure field the key player in this process, (3) the interplay of the collision process and the shear flow kinematics describes the transient growth of plane perturbations and captures the physics of the growth, and (4) the proposed mechanical picture allows us to reconstruct the linearized Euler equations in spectral space with a time-dependent shearwise wave number, the linearized Euler equations for Kelvin modes. This confirms the rigor of the presented analysis, which, moreover, yields a natural generalization of the proposed mechanical picture of the transient growth to the well-established linear phenomenon of vortex-wave-mode coupling.

  6. SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS

    PubMed Central

    THIEDE, ERIK; VAN KOTEN, BRIAN; WEARE, JONATHAN

    2015-01-01

    For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations. PMID:26491218

  7. Controlling roll perturbations in fruit flies

    PubMed Central

    Beatus, Tsevi; Guckenheimer, John M.; Cohen, Itai

    2015-01-01

    Owing to aerodynamic instabilities, stable flapping flight requires ever-present fast corrective actions. Here, we investigate how flies control perturbations along their body roll angle, which is unstable and their most sensitive degree of freedom. We glue a magnet to each fly and apply a short magnetic pulse that rolls it in mid-air. Fast video shows flies correct perturbations up to 100° within 30 ± 7 ms by applying a stroke-amplitude asymmetry that is well described by a linear proportional–integral controller. For more aggressive perturbations, we show evidence for nonlinear and hierarchical control mechanisms. Flies respond to roll perturbations within 5 ms, making this correction reflex one of the fastest in the animal kingdom. PMID:25762650

  8. Quarks in Coulomb gauge perturbation theory

    SciTech Connect

    Popovici, C.; Watson, P.; Reinhardt, H.

    2009-02-15

    Coulomb gauge quantum chromodynamics within the first order functional formalism is considered. The quark contributions to the Dyson-Schwinger equations are derived and one-loop perturbative results for the two-point functions are presented.

  9. The Perturbational MO Method for Saturated Systems.

    ERIC Educational Resources Information Center

    Herndon, William C.

    1979-01-01

    Summarizes a theoretical approach using nonbonding MO's and perturbation theory to correlate properties of saturated hydrocarbons. Discussion is limited to correctly predicted using this method. Suggests calculations can be carried out quickly in organic chemistry. (Author/SA)

  10. Cosmological perturbations in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  11. Perturbations of black p-branes

    SciTech Connect

    Abdalla, Elcio; Fernandez Piedra, Owen Pavel; Oliveira, Jeferson de; Molina, C.

    2010-03-15

    We consider black p-brane solutions of the low-energy string action, computing scalar perturbations. Using standard methods, we derive the wave equations obeyed by the perturbations and treat them analytically and numerically. We have found that tensorial perturbations obtained via a gauge-invariant formalism leads to the same results as scalar perturbations. No instability has been found. Asymptotically, these solutions typically reduce to a AdS{sub (p+2)}xS{sup (8-p)} space which, in the framework of Maldacena's conjecture, can be regarded as a gravitational dual to a conformal field theory defined in a (p+1)-dimensional flat space-time. The results presented open the possibility of a better understanding the AdS/CFT correspondence, as originally formulated in terms of the relation among brane structures and gauge theories.

  12. Plasma perturbation induced by laser photodetachment.

    PubMed

    Nishiura, M; Sasao, M; Wada, M; Bacal, M

    2001-03-01

    The plasma dynamics arising from laser photodetachment is discussed herein theoretically and experimentally. The hybrid fluid-kinetic model, where the positive ions and electrons are treated by the fluid theory and the negative ions are treated within the ballistic approximation, is extended and applied to the analysis of densities perturbed by laser photodetachment. The agreement between the theory and measured data confirms the validity of the considered plasma dynamics model. This model, including the positive ion perturbation, shows a good agreement with the time evolution and the spatial distribution of perturbed electron densities which are measured by a Langmuir probe inside and outside the laser beam. From the overshoot in the time evolution of perturbed electron current in the center of the laser beam, the positive ion temperature was found to be in the range 0.1-0.25 eV, while the electron temperature changes from 0.3 to 3.2 eV.

  13. Flexoelectricity from density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Stengel, Massimiliano

    2013-11-01

    We derive the complete flexoelectric tensor, including electronic and lattice-mediated effects, of an arbitrary insulator in terms of the microscopic linear response of the crystal to atomic displacements. The basic ingredient, which can be readily calculated from first principles in the framework of density-functional perturbation theory, is the quantum-mechanical probability current response to a long-wavelength acoustic phonon. Its second-order Taylor expansion in the wave vector q around the Γ (q=0) point in the Brillouin zone naturally yields the flexoelectric tensor. At order one in q we recover Martin's theory of piezoelectricity [Martin, Phys. Rev. B 5, 1607 (1972)], thus providing an alternative derivation thereof. To put our derivations on firm theoretical grounds, we perform a thorough analysis of the nonanalytic behavior of the dynamical matrix and other response functions in a vicinity of Γ. Based on this analysis, we find that there is an ambiguity in the specification of the “zero macroscopic field” condition in the flexoelectric case; such arbitrariness can be related to an analytic band-structure term, in close analogy to the theory of deformation potentials. As a by-product, we derive a rigorous generalization of the Cochran-Cowley formula [Cochran and Cowley, J. Phys. Chem. Solids 23, 447 (1962)] to higher orders in q. This can be of great utility in building reliable atomistic models of electromechanical phenomena, as well as for improving the accuracy of the calculation of phonon dispersion curves. Finally, we discuss the physical interpretation of the various contributions to the flexoelectric response, either in the static or dynamic regime, and we relate our findings to earlier theoretical works on the subject.

  14. On perturbations of a quintom bounce

    SciTech Connect

    Cai Yifu; Qiu Taotao; Zhang Xinmin; Brandenberger, Robert; Piao Yunsong E-mail: qiutt@mail.ihep.ac.cn E-mail: yspiao@gucas.ac.cn

    2008-03-15

    A quintom universe with an equation of state crossing the cosmological constant boundary can provide a bouncing solution dubbed the quintom bounce and thus resolve the big bang singularity. In this paper, we investigate the cosmological perturbations of the quintom bounce both analytically and numerically. We find that the fluctuations in the dominant mode in the post-bounce expanding phase couple to the growing mode of the perturbations in the pre-bounce contracting phase.

  15. Regular attractors and nonautonomous perturbations of them

    SciTech Connect

    Vishik, Marko I; Zelik, Sergey V; Chepyzhov, Vladimir V

    2013-01-31

    We study regular global attractors of dissipative dynamical semigroups with discrete or continuous time and we investigate attractors for nonautonomous perturbations of such semigroups. The main theorem states that the regularity of global attractors is preserved under small nonautonomous perturbations. Moreover, nonautonomous regular global attractors remain exponential and robust. We apply these general results to model nonautonomous reaction-diffusion systems in a bounded domain of R{sup 3} with time-dependent external forces. Bibliography: 22 titles.

  16. Aspects of Perturbative Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Srednyak, Stanislav

    This thesis consists of three parts. The first is devoted to the calculation of multiplicity of two-gluon production in heavy ion collisions in the framework of Colour Glass Condensate. The second exhibits a finite basis for the perturbative correlation functions at a given loop order. The third demonstrates that the number of integrations in a perturbative amplitude can be reduced in half in even dimensions, and provides explicit formula for such a reduction in the (2,2) signature.

  17. Coupled perturbed modes and internal solitary waves.

    PubMed

    Higham, C J; Tindle, C T

    2003-05-01

    Coupled perturbed mode theory combines conventional coupled modes and perturbation theory. The theory is used to directly calculate mode coupling in a range-dependent shallow water problem involving propagation through continental shelf internal solitary waves. The solitary waves considered are thermocline depressions, separating well-mixed upper and lower layers. The method is fast and accurate. Results highlight mode coupling associated with internal solitary waves, and mode capture or loss to and from the discrete mode spectrum.

  18. Rapid eco-evolutionary responses in perturbed phytoplankton communities

    PubMed Central

    Thibodeau, Geneviève; Walsh, David A.; Beisner, Beatrix E.

    2015-01-01

    Biodiversity currently faces unprecedented threats owing to species extinctions. Ecologically, compensatory dynamics can ensure stable community biomass following perturbation. However, whether there is a contribution of genetic diversity to community responses is an outstanding question. To date, the contribution of evolutionary processes through genotype shifts has not been assessed in naturally co-occurring multi-species communities in the field. We examined the mechanisms contributing to the response of a lake phytoplankton community exposed to either a press or pulse acidification perturbation in lake mesocosms. To assess community shifts in the ecological response of morphospecies, we identified taxa microscopically. We also assessed genotype shifts by sequencing the ITS2 region of ribosomal DNA. We observed ecological and genetic contributions to community responses. The ecological response was attributed to compensatory morphospecies dynamics and occurred primarily in the Pulse perturbation treatment. In the Press treatments, in addition to compensatory dynamics, we observed evidence for genotype selection in two species of chlorophytes, Desmodesmus cuneatus and an unidentified Chlamydomonas. Our study demonstrates that while genotype selection may be rare, it is detectable and occurs especially when new environmental conditions are maintained for long enough to force selection processes on standing variation. PMID:26311667

  19. Finite element structural redesign by large admissible perturbations

    NASA Technical Reports Server (NTRS)

    Bernitsas, Michael M.; Beyko, E.; Rim, C. W.; Alzahabi, B.

    1991-01-01

    In structural redesign, two structural states are involved; the baseline (known) State S1 with unacceptable performance, and the objective (unknown) State S2 with given performance specifications. The difference between the two states in performance and design variables may be as high as 100 percent or more depending on the scale of the structure. A Perturbation Approach to Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the same finite element model and represented by different values of the design variables. General perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes, static deflections, static stresses, Euler buckling loads, and buckling modes of the objective S2 in terms of its performance specifications, and S1 data and Finite Element Analysis (FEA) results. Large Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the objective S2 incrementally without trial and error by postprocessing FEA results of S1 with no additional FEAs. Systematic numerical applications in redesign of a 10 element 48 degree of freedom (dof) beam, a 104 element 192 dof offshore tower, a 64 element 216 dof plate, and a 144 element 896 dof cylindrical shell show the accuracy, efficiency, and potential of PAR to find an objective state that may differ 100 percent from the baseline design.

  20. Rapid eco-evolutionary responses in perturbed phytoplankton communities.

    PubMed

    Thibodeau, Geneviève; Walsh, David A; Beisner, Beatrix E

    2015-09-01

    Biodiversity currently faces unprecedented threats owing to species extinctions. Ecologically, compensatory dynamics can ensure stable community biomass following perturbation. However, whether there is a contribution of genetic diversity to community responses is an outstanding question. To date, the contribution of evolutionary processes through genotype shifts has not been assessed in naturally co-occurring multi-species communities in the field. We examined the mechanisms contributing to the response of a lake phytoplankton community exposed to either a press or pulse acidification perturbation in lake mesocosms. To assess community shifts in the ecological response of morphospecies, we identified taxa microscopically. We also assessed genotype shifts by sequencing the ITS2 region of ribosomal DNA. We observed ecological and genetic contributions to community responses. The ecological response was attributed to compensatory morphospecies dynamics and occurred primarily in the Pulse perturbation treatment. In the Press treatments, in addition to compensatory dynamics, we observed evidence for genotype selection in two species of chlorophytes, Desmodesmus cuneatus and an unidentified Chlamydomonas. Our study demonstrates that while genotype selection may be rare, it is detectable and occurs especially when new environmental conditions are maintained for long enough to force selection processes on standing variation. PMID:26311667

  1. Gauge and motion in perturbation theory

    NASA Astrophysics Data System (ADS)

    Pound, Adam

    2015-08-01

    Through second order in perturbative general relativity, a small compact object in an external vacuum spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external background geometry, it is in free fall with respect to a certain effective vacuum geometry. However, this single principle takes very different mathematical forms, with very different behaviors, depending on how one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald approximation, can be derived from a second, called the self-consistent approximation. I next present a general treatment of smooth gauge transformations in both approximations, in which I emphasize that the approximations' governing equations can be formulated in an invariant manner. All of these analyses are carried through second perturbative order, but the methods are general enough to go to any order. Furthermore, the tools I develop, and many of the results, should have broad applicability to any description of perturbed motion, including osculating-geodesic and two-timescale descriptions.

  2. Thermally unstable perturbations in stratified conducting atmospheres

    NASA Astrophysics Data System (ADS)

    Reale, Fabio; Serio, Salvatore; Peres, Giovanni

    1994-10-01

    We investigate the thermal stability of isobaric perturbations in a stratified isothermal background atmosphere with solar abundances, as resulting from the competition of optically thin plasma radiative cooling and of heating conducted from the surrounding atmosphere. We have analyzed the threshold line between stable and unstable perturbations, in the plane of the two important control parameters: the initial size of the perturbation and the temperature of the unperturbed medium; this line changes with the pressure of the unperturbed atmosphere. We have extended the results of linear perturbation analysis by means of numerical calculations of the evolution of spherical isobaric perturbations, using a two-dimensional hydrodynamic code including Spitzer heat conduction. We explore a wide range of the parameters appropriate to the solar and stellar upper atmospheres: the background uniform temperature is between 105 K and 107 K, the initial pressure betweeen 0.1 and 10 dyn/sq cm, and the perturbation size between 105 and 1010 cm. The numerical results are in substantial agreement with the linear analysis. We discuss possible implications of our results also in terms of observable effects, especially concerning plasma downflows, and propose thermal instability as a possible candidate to explain the observed redshifts in solar and stellar transition region lines.

  3. Lipid Bilayer Membrane Perturbation by Embedded Nanopores: A Simulation Study.

    PubMed

    Garcia-Fandiño, Rebeca; Piñeiro, Ángel; Trick, Jemma L; Sansom, Mark S P

    2016-03-22

    A macromolecular nanopore inserted into a membrane may perturb the dynamic organization of the surrounding lipid bilayer. To better understand the nature of such perturbations, we have undertaken a systematic molecular dynamics simulation study of lipid bilayer structure and dynamics around three different classes of nanopore: a carbon nanotube, three related cyclic peptide nanotubes differing in the nature of their external surfaces, and a model of a β-barrel nanopore protein. Periodic spatial distributions of several lipid properties as a function of distance from the nanopore were observed. This was especially clear for the carbon nanotube system, for which the density of lipids, the bilayer thickness, the projection of lipid head-to-tail vectors onto the membrane plane, and lipid lateral diffusion coefficients exhibited undulatory behavior as a function of the distance from the surface of the channel. Overall, the differences in lipid behavior as a function of the nanopore structure reveal local adaptation of the bilayer structure and dynamics to different embedded nanopore structures. Both the local structure and dynamic behavior of lipids around membrane-embedded nanopores are sensitive to the geometry and nature of the outer surface of the macromolecule/molecular assembly forming the pore.

  4. Perturbative Solutions of the Einstein Klein-Gordon Equations

    NASA Astrophysics Data System (ADS)

    Puliti, Gianluca; Jennings, Mara; Mamo, Vincent; Vuille, Chris

    2005-11-01

    As the Klein-Gordon equation is important in quantum theory and describes spin-0 particles, it is of interest to discover the nature of the gravity field such particles would be expected to create. In this paper, we solve the static, massive Einstein-Klein-Gordon (EKG) equations in perturbation, and compare the results with a similar calculation developed for the Einstein-Proca system. Subsequently, we study the massless static Klein-Gordon equation, and compare the result to the Reissner-Nordstrom metric.

  5. Non-linear dynamical analysis of crack surface perturbations and their dependence on velocity and direction

    NASA Astrophysics Data System (ADS)

    Sherman, Dov; Be'ery, Ilan

    2004-04-01

    The fracture surfaces of single crystal [1 0 0] silicon specimens, fractured under three-point bending (3PB) and subjected to a high strain energy upon cracking, revealed exceptional surface perturbations, generated during the unstable propagation. While macroscopically the crack is propagating on the (1 1 1) low energy cleavage plane, microscopic examination revealed small angled deviations from and fluctuations along that plane. Furthermore, while the crack is propagating at a velocity of nearly 3000 m/s in the [1 1¯ 0] direction, its velocity in the [1 1 2¯] direction is two orders of magnitude lower, with distinctive surface perturbations. The amplitude and complexity of the perturbations increase as the normal velocity vector changes its direction and magnitude. These perturbations were recorded with a profilometer and analyzed using non-linear dynamical analysis tools. This study provides an opportunity to interpret surface phenomena of one of the most general cases of fracture and to study the effect of major variables on the nature of the perturbations involved, such as the local crack tip velocity and the crystallographic orientations. It is shown that the surface perturbations are chaotic deterministic in nature and can be described by high order non-linear differential equations; the order of the equation varying with the variations of the local velocity and direction.

  6. Statistics and dynamics of the perturbed universe

    NASA Astrophysics Data System (ADS)

    Lemson, G.

    1995-09-01

    In the not too distant past, our theorizing about the nature of the Universe we live in, was not much limited by observational constraints. Consequently, no true science could be developed dealing with the nature of the Universe at large: its origin, its present state and its future. This was the realm of religion and philosophy. In this century, revolutionary developments in physics have provided the framework within which to describe the Universe as a whole and which finally made it possible to obtain tentative answers to questions we have only recently learned to ask. In this thesis, I present investigations that deal with a small part of the theory of cosmology. In particular, I have investigated certain aspects of the theory of structure formation in the Universe. This subject has been extensively studied in the last few decennia. It originated from the realization that the Universe has not always been the same as observed at present. The Universe as we observe it today is filled with objects of a great variety of sizes and shapes. In the 2nd and 3rd decade of this century Hubble discovered that our Universe is expanding. This implies that in the past the Universe was smaller and therefore denser. All the structures we observe nowadays, if also existing in the past, would have been closer and at some time would have touched and overlapped. Furthermore, the theories that were developed to describe such an expanding Universe in quantitative detail, required that the Universe be homogeneous and isotropic, i.e. it should look the same at every position and in every direction. All mass and radiation must once have been distributed uniformly throughout space. With these theories, Gamov (1946, 1948ab) predicted that in the past the Universe must have been much hotter than presently, and that the afterglow of this epoch should still be observable as a faint radio signal at a temperature a few degrees above the absolute zero point. In the early sixties, Penzias and

  7. Secular Planetary Perturbations in Circumstellar Debris Disks

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.; Capobianco, C.

    2006-12-01

    Circumstellar debris disks are likely the by-product of collisions among unseen planetesimals. Planetesimals are also the seeds of planets, so it is reasonable to expect that some debris disks might also harbor planets. In fact several such disks, like those orbiting beta Pictoris, Fomalhaut, etc., do appear to be perturbed by unseen planets orbiting within. The signatures of planetary perturbations include: central gaps, warps, and radial offsets in the disk's surface brightness. By modeling the disturbances observed in a circumstellar dust disk, one can then measure or constrain the masses and orbits of the planets that may be lurking within. Of particular interest here are the warps and radial offsets seen in such disks, since these features can be due to secular planetary perturbations (Mouillet et al 1997, Wyatt et al 1999). Secular perturbations are the slowly varying gravitational perturbations that can excite orbital eccentricities and inclinations in a disk, and can also drive a slow orbital precession. Note that a dust grain's motion is completely analytic when suffering secular perturbations (Murray & Dermott 1999), which allows us to rapidly generate a synthetic image of a simulated disk as would be seen in scattered starlight or via thermal emission. And because this model is quite fast, our model can rapidly scan a rather large parameter space in order to determine the planetary configuration that may be responsible for the disk's perturbed appearance. We have applied this dust-disk model to Hubble observations of the β Pictoris dust-disk (from Heap et al 2000), and will report on the planets that may be responsible for the warp seen in this edge-on disk. We will also apply the model to optical and IR observations of debris disks at Fomalhaut, AU Microscopii, and others, with additional results to be reported at conference time.

  8. Mathematical inference and control of molecular networks from perturbation experiments

    NASA Astrophysics Data System (ADS)

    Mohammed-Rasheed, Mohammed

    One of the main challenges facing biologists and mathematicians in the post genomic era is to understand the behavior of molecular networks and harness this understanding into an educated intervention of the cell. The cell maintains its function via an elaborate network of interconnecting positive and negative feedback loops of genes, RNA and proteins that send different signals to a large number of pathways and molecules. These structures are referred to as genetic regulatory networks (GRNs) or molecular networks. GRNs can be viewed as dynamical systems with inherent properties and mechanisms, such as steady-state equilibriums and stability, that determine the behavior of the cell. The biological relevance of the mathematical concepts are important as they may predict the differentiation of a stem cell, the maintenance of a normal cell, the development of cancer and its aberrant behavior, and the design of drugs and response to therapy. Uncovering the underlying GRN structure from gene/protein expression data, e.g., microarrays or perturbation experiments, is called inference or reverse engineering of the molecular network. Because of the high cost and time consuming nature of biological experiments, the number of available measurements or experiments is very small compared to the number of molecules (genes, RNA and proteins). In addition, the observations are noisy, where the noise is due to the measurements imperfections as well as the inherent stochasticity of genetic expression levels. Intra-cellular activities and extra-cellular environmental attributes are also another source of variability. Thus, the inference of GRNs is, in general, an under-determined problem with a highly noisy set of observations. The ultimate goal of GRN inference and analysis is to be able to intervene within the network, in order to force it away from undesirable cellular states and into desirable ones. However, it remains a major challenge to design optimal intervention strategies

  9. Nonambipolar Transport and Torque in Perturbed Equilibria

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Park, J.-K.; Wang, Z. R.; Berkery, J. W.; Kim, K.; Menard, J. E.

    2013-10-01

    A new Perturbed Equilibrium Nonambipolar Transport (PENT) code has been developed to calculate the neoclassical toroidal torque from radial current composed of both passing and trapped particles in perturbed equilibria. This presentation outlines the physics approach used in the development of the PENT code, with emphasis on the effects of retaining general aspect-ratio geometric effects. First, nonambipolar transport coefficients and corresponding neoclassical toroidal viscous (NTV) torque in perturbed equilibria are re-derived from the first order gyro-drift-kinetic equation in the ``combined-NTV'' PENT formalism. The equivalence of NTV torque and change in potential energy due to kinetic effects [J-K. Park, Phys. Plas., 2011] is then used to showcase computational challenges shared between PENT and stability codes MISK and MARS-K. Extensive comparisons to a reduced model, which makes numerous large aspect ratio approximations, are used throughout to emphasize geometry dependent physics such as pitch angle resonances. These applications make extensive use of the PENT code's native interfacing with the Ideal Perturbed Equilibrium Code (IPEC), and the combination of these codes is a key step towards an iterative solver for self-consistent perturbed equilibrium torque. Supported by US DOE contract #DE-AC02-09CH11466 and the DOE Office of Science Graduate Fellowship administered by the Oak Ridge Institute for Science & Education under contract #DE-AC05-06OR23100.

  10. Cosmological perturbations on the phantom brane

    NASA Astrophysics Data System (ADS)

    Bag, Satadru; Viznyuk, Alexander; Shtanov, Yuri; Sahni, Varun

    2016-07-01

    We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, weff < ‑1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the `Weyl fluid' or `dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch (z lesssim 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.

  11. Cosmological perturbations on the phantom brane

    NASA Astrophysics Data System (ADS)

    Bag, Satadru; Viznyuk, Alexander; Shtanov, Yuri; Sahni, Varun

    2016-07-01

    We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, weff < -1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the `Weyl fluid' or `dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch (z lesssim 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.

  12. Effect of tape recording on perturbation measures.

    PubMed

    Jiang, J; Lin, E; Hanson, D G

    1998-10-01

    Tape recorders have been shown to affect measures of voice perturbation. Few studies, however, have been conducted to quantitatively justify the use or exclusion of certain types of recorders in voice perturbation studies. This study used sinusoidal and triangular waves and synthesized vowels to compare perturbation measures extracted from directly digitized signals with those recorded and played back through various tape recorders, including 3 models of digital audio tape recorders, 2 models of analog audio cassette tape recorders, and 2 models of video tape recorders. Signal contamination for frequency perturbation values was found to be consistently minimal with digital recorders (percent jitter = 0.01%-0.02%), mildly increased with video recorders (0.05%-0.10%), moderately increased with a high-quality analog audio cassette tape recorder (0.15%), and most prominent with a low-quality analog audio cassette tape recorder (0.24%). Recorder effect on amplitude perturbation measures was lowest in digital recorders (percent shimmer = 0.09%-0.20%), mildly to moderately increased in video recorders and a high-quality analog audio cassette tape recorder (0.25%-0.45%), and most prominent in a low-quality analog audio cassette tape recorder (0.98%). The effect of cassette tape material, length of spooled tape, and duration of analysis were also tested and are discussed.

  13. Compensation to whole body active rotation perturbation.

    PubMed

    Rossi, S; Gazzellini, S; Petrarca, M; Patanè, F; Salfa, I; Castelli, E; Cappa, P

    2014-01-01

    The aim of the present study is the exploration of the compensation mechanisms in healthy adults elicited by superimposing a horizontal perturbation, through a rotation of the support base, during a whole body active rotation around the participant's own vertical body axis. Eight healthy participants stood on a rotating platform while executing 90° whole body rotations under three conditions: no concurrent platform rotation (NP), support surface rotation of ± 45° in the same (45-S) and opposite (45-O) directions. Participants' kinematics and CoP displacements were analyzed with an optoelectronic system and a force platform. In both 45-S and 45-O conditions, there was a tendency for the head to be affected by the external perturbation and to be the last and least perturbed segment while the pelvis was the most perturbed. The observed reduced head perturbation in 45-S and 45-O trials is consistent with a goal-oriented strategy mediated by vision and vestibular information, whereas the tuning of lumbar rotation is consistent with control mechanisms mediated by somato-sensory information.

  14. Local perturbations perturb—exponentially-locally

    NASA Astrophysics Data System (ADS)

    De Roeck, W.; Schütz, M.

    2015-06-01

    We elaborate on the principle that for gapped quantum spin systems with local interaction, "local perturbations [in the Hamiltonian] perturb locally [the groundstate]." This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835-871 (2012)], relying on the "spectral flow technique" or "quasi-adiabatic continuation" [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique "bulk ground state" or "topological quantum order." We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate.

  15. A special perturbation method in orbital dynamics

    NASA Astrophysics Data System (ADS)

    Peláez, Jesús; Hedo, José Manuel; Rodríguez de Andrés, Pedro

    2007-02-01

    The special perturbation method considered in this paper combines simplicity of computer implementation, speed and precision, and can propagate the orbit of any material particle. The paper describes the evolution of some orbital elements based in Euler parameters, which are constants in the unperturbed problem, but which evolve in the time scale imposed by the perturbation. The variation of parameters technique is used to develop expressions for the derivatives of seven elements for the general case, which includes any type of perturbation. These basic differential equations are slightly modified by introducing one additional equation for the time, reaching a total order of eight. The method was developed in the Grupo de Dinámica de Tethers (GDT) of the UPM, as a tool for dynamic simulations of tethers. However, it can be used in any other field and with any kind of orbit and perturbation. It is free of singularities related to small inclination and/or eccentricity. The use of Euler parameters makes it robust. The perturbation forces are handled in a very simple way: the method requires their components in the orbital frame or in an inertial frame. A comparison with other schemes is performed in the paper to show the good performance of the method.

  16. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    SciTech Connect

    Haro, Jaime

    2013-11-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce provided by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.

  17. Controlling Complex Networks with Compensatory Perturbations

    NASA Astrophysics Data System (ADS)

    Cornelius, Sean; Kath, William; Motter, Adilson

    2012-02-01

    The response of complex networks to perturbations is of critical importance in areas as diverse as ecosystem management, power system design, and cell reprogramming. These systems have the property that localized perturbations can propagate through the network, causing the system as a whole to change behavior and possibly collapse. We will show how this same mechanism can actually be exploited to prevent such failures and, more generally, control a network's behavior. This strategy is based on counteracting a deleterious perturbation through the judicious application of additional, compensatory perturbations---a prospect recently demonstrated heuristically in metabolic and food-web networks. Here, we introduce a method to identify such compensatory perturbations in general complex networks, under arbitrary constraints that restrict the interventions one can actually implement in real systems. Our method accounts for the full nonlinear time evolution of real complex networks, and in fact capitalizes on this behavior to bring the system to a desired target state even when this state is not directly accessible. Altogether, these results provide a new framework for the rescue, control, and reprogramming of complex networks in various domains.

  18. Perturbation calculation of thermodynamic density of states.

    PubMed

    Brown, G; Schulthess, T C; Nicholson, D M; Eisenbach, M; Stocks, G M

    2011-12-01

    The density of states g (ε) is frequently used to calculate the temperature-dependent properties of a thermodynamic system. Here a derivation is given for calculating the warped density of states g*(ε) resulting from the addition of a perturbation. The method is validated for a classical Heisenberg model of bcc Fe and the errors in the free energy are shown to be second order in the perturbation. Taking the perturbation to be the difference between a first-principles quantum-mechanical energy and a corresponding classical energy, this method can significantly reduce the computational effort required to calculate g(ε) for quantum systems using the Wang-Landau approach.

  19. Perturbations in a regular bouncing universe

    SciTech Connect

    Battefeld, T.J.; Geshnizjani, G.

    2006-03-15

    We consider a simple toy model of a regular bouncing universe. The bounce is caused by an extra timelike dimension, which leads to a sign flip of the {rho}{sup 2} term in the effective four dimensional Randall Sundrum-like description. We find a wide class of possible bounces: big bang avoiding ones for regular matter content, and big rip avoiding ones for phantom matter. Focusing on radiation as the matter content, we discuss the evolution of scalar, vector and tensor perturbations. We compute a spectral index of n{sub s}=-1 for scalar perturbations and a deep blue index for tensor perturbations after invoking vacuum initial conditions, ruling out such a model as a realistic one. We also find that the spectrum (evaluated at Hubble crossing) is sensitive to the bounce. We conclude that it is challenging, but not impossible, for cyclic/ekpyrotic models to succeed, if one can find a regularized version.

  20. Non-gravitational perturbations and satellite geodesy

    SciTech Connect

    Milani, A.; Nobill, A.M.; Farinella, P.

    1987-01-01

    This book presents the basic ideas of the physics of non-gravitational perturbations and the mathematics required to compute their orbital effects. It conveys the relevance of the different problems that must be solved to achieve a given level of accuracy in orbit determination and in recovery of geophysically significant parameters. Selected Contents are: Orders of Magnitude of the Perturbing Forces, Tides and Apparent Forces, Tools from Celestial Mechanics, Solar Radiation Pressure-Direct Effects: Satellite-Solar Radiation Interaction, Long-Term Effects on Semi-Major Axis, Radiation Pressure-Indirect Effects: Earth-Reflected Radiation Pressure, Anisotropic Thermal Emission, Drag: Orbital Perturbations by a Drag-Like Force, and Charged Particle Drag.

  1. Inhomogeneous Broadening in Perturbed Angular Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bunker, Austin; Adams, Mike; Hodges, Jeffery; Park, Tyler; Stufflebeam, Michael; Evenson, William; Matheson, Phil; Zacate, Matthew

    2009-10-01

    Our research concerns the effect of a static distribution of defects on the net electric field gradient (EFG) within crystal structures. Defects and vacancies perturb the distribution of gamma rays emitted from radioactive probe nuclei within the crystal. These defects and vacancies produce a net EFG at the site of the probe which causes the magnetic quadrupole moment of the nucleus of the probe to precess about the EFG. The net EFG, which is strongly dependent upon the defect concentration, perturbs the angular correlation (PAC) of the gamma rays, and is seen in the damping of the perturbation function, G2(t), in time and broadening of the spectral peaks in the Fourier transform. We have used computer simulations to study the probability distribution of EFG tensor components in order to uncover the concentration dependence of G2(t). This in turn can be used to analyze experimental PAC data and quantitatively describe properties of the crystal.

  2. Perturbation measurement of waveguides for acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Lin, H.; Feng, X. J.; Zhang, J. T.

    2013-09-01

    Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.

  3. Singular perturbations and the sounding rocket problem

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1979-01-01

    In this paper, Goddard's problem of maximizing the final altitude of a sounding rocket (a singular problem of optimal control) is analyzed using singular perturbation methods. The problem is first cast in singular perturbation form and then solved to zero order by adding boundary-layer corrections to the reduced solution. For a quadratic drag law, a closed-form solution is obtained, although consideration of a numerical example indicates that this solution is not useful for practical sounding rockets. However, use of state variable transformations allows a very accurate numerical approximation to be constructed. It is concluded that application of singular perturbation methods to the well-known sounding rocket problem indicates that these methods may have utility in dealing with singular problems of optimal control.

  4. Perturbation analysis of electromagnetic geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Ren, Haijun

    2014-06-01

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δBθ, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξθ. The parallel perturbation of magnetic field, δB∥, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δBθ to the leading order. The radial displacement ξr is of order O(βɛξθ) but plays a significant role in determining δB∥, where β is the plasma/magnetic pressure ratio and ɛ is the inverse aspect ratio.

  5. Non-perturbative quantum geometry III

    NASA Astrophysics Data System (ADS)

    Krefl, Daniel

    2016-08-01

    The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stokes phenomena over the combined string coupling and quantized Kähler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local ℙ1 + ℙ1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stokes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local ℙ2 near the conifold point in moduli space is also provided.

  6. Hypersurface-invariant approach to cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.; Stewart, J. M.

    1995-01-01

    Using Hamilton-Jacobi theory, we develop a formalism for solving semiclassical cosmological perturbations which does not require an explicit choice of time hypersurface. The Hamilton-Jacobi equation for gravity interacting with matter (either a scalar or dust field) is solved by making an ansatz which includes all terms quadratic in the spatial curvature. Gravitational radiation and scalar perturbations are treated on an equal footing. Our technique encompasses linear perturbation theory and it also describes some mild nonlinear effects. As a concrete example of the method, we compute the galaxy-galaxy correlation function as well as large-angle microwave background fluctuations for power-law inflation, and we compare with recent observations.

  7. Cosmological perturbations in extended massive gravity

    NASA Astrophysics Data System (ADS)

    Gümrükçüoğlu, A. Emir; Hinterbichler, Kurt; Lin, Chunshan; Mukohyama, Shinji; Trodden, Mark

    2013-07-01

    We study cosmological perturbations around self-accelerating solutions to two extensions of nonlinear massive gravity: the quasi-dilaton theory and the mass-varying theory. We examine stability of the cosmological solutions, and the extent to which the vanishing of the kinetic terms for scalar and vector perturbations of self-accelerating solutions in massive gravity is generic when the theory is extended. We find that these kinetic terms are in general nonvanishing in both extensions, though there are constraints on the parameters and background evolution from demanding that they have the correct sign. In particular, the self-accelerating solutions of the quasi-dilaton theory are always unstable to scalar perturbations with wavelength shorter than the Hubble length.

  8. Perturbation analysis of electromagnetic geodesic acoustic modes

    SciTech Connect

    Ren, Haijun

    2014-06-15

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δB{sub θ}, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξ{sub θ}. The parallel perturbation of magnetic field, δB{sub ∥}, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δB{sub θ} to the leading order. The radial displacement ξ{sub r} is of order O(βϵξ{sub θ}) but plays a significant role in determining δB{sub ∥}, where β is the plasma/magnetic pressure ratio and ϵ is the inverse aspect ratio.

  9. An Aircraft Separation Algorithm with Feedback and Perturbation

    NASA Technical Reports Server (NTRS)

    White, Allan L.

    2010-01-01

    A separation algorithm is a set of rules that tell aircraft how to maneuver in order to maintain a minimum distance between them. This paper investigates demonstrating that separation algorithms satisfy the FAA requirement for the occurrence of incidents by means of simulation. Any demonstration that a separation algorithm, or any other aspect of flight, satisfies the FAA requirement is a challenge because of the stringent nature of the requirement and the complexity of airspace operations. The paper begins with a probability and statistical analysis of both the FAA requirement and demonstrating meeting it by a Monte Carlo approach. It considers the geometry of maintaining separation when one plane must change its flight path. It then develops a simple feedback control law that guides the planes on their paths. The presence of feedback control permits the introduction of perturbations, and the stochastic nature of the chosen perturbation is examined. The simulation program is described. This paper is an early effort in the realistic demonstration of a stringent requirement. Much remains to be done.

  10. Perturbation-induced dynamics of dark solitons

    NASA Astrophysics Data System (ADS)

    Kivshar, Yuri S.; Yang, Xiaoping

    1994-02-01

    We study analytically and numerically the effect of perturbations on (spatial and temporal) dark optical solitons. Our purpose is to elaborate a general analytical approach to describe the dynamics of dark solitons in the presence of physically important effects which break integrability of the primary nonlinear Schrödinger equation. We show that the corresponding perturbation theory differs for the cases of constant and varying backgrounds which support the dark solitons. We present a general formalism describing the perturbation-induced dynamics for both cases and also analyze the influence of several physically important effects, such as linear and two-photon absorption, Raman self-induced scattering, gain with saturation, on the propagation of the dark soliton. As we show, the perturbation-induced dynamics of a dark soliton may be treated as a result of the combined effect of the background evolution and internal soliton dynamics, the latter being characterized by the soliton phase angle. A similar approach is applied to the problem of the dark-soliton propagation on a finite-width background. We analyze adiabatic modification of a dark pulse propagating on a dispersively spreading finite-width background, and we prove analytically that a frequency chirp of the background does not affect the soliton motion. As a matter of fact, the results obtained describe the perturbation-induced dynamics of dark solitons in the so-called adiabatic approximation and, as we show for all the cases analyzed, they are in excellent agreement with direct numerical simulations of the corresponding perturbed nonlinear Schrödinger equation, provided the effects produced by the emitted radiation are small.

  11. Intracranial compensatory mechanisms for volume perturbations: a theoretical analysis.

    PubMed

    Balachandra, S; Anand, S

    1993-06-01

    The proposed mathematical formulation accounts for the role of the absorption and production mechanisms of the intracranial cavity. The transport barrier conduction is governed by the pressure gradients across them and hence by the instantaneous flow rates. The above mentioned mechanisms have now been incorporated into a previous model for static changes in the cranial cavity. The integrated model now evolved is simulated for a constant, bolus and sinusoidal infusion. The output has been correlated to experimentally observed trends. The results that emerge, point to a system whose response is sensitive to the nature of CSF volume perturbations. The production and absorption mechanisms function in a relay configuration, whose primary objective is to maintain the base line CSF pressure values when deviations in pressure occur. These mechanisms have a finite activation time which is dependent on the nature of the volume variation.

  12. Perturbative QCD at Finite Temperature and Density

    NASA Astrophysics Data System (ADS)

    Niégawa, A.

    This is a comprehensive review on the perturbative hot QCD including the recent developments. The main body of the review is concentrated upon dealing with physical quantities like reaction rates. Contents: S1. Introduction, S2. Perturbative thermal field theory: Feynman rules, S3. Reaction-rate formula, S4. Hard-thermal-loop resummation scheme in hot QCD, S5. Effective action, S6. Hard modes with |P2| ≤ O (g2 T2), S7. Application to the computation of physical quantities, S8. Beyond the hard-thermal-loop resummation scheme, S9. Conclusions.

  13. Death to perturbative QCD in exclusive processes?

    SciTech Connect

    Eckardt, R.; Hansper, J.; Gari, M.F.

    1994-04-01

    The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.

  14. Conservative perturbation theory for nonconservative systems

    NASA Astrophysics Data System (ADS)

    Shah, Tirth; Chattopadhyay, Rohitashwa; Vaidya, Kedar; Chakraborty, Sagar

    2015-12-01

    In this paper, we show how to use canonical perturbation theory for dissipative dynamical systems capable of showing limit-cycle oscillations. Thus, our work surmounts the hitherto perceived barrier for canonical perturbation theory that it can be applied only to a class of conservative systems, viz., Hamiltonian systems. In the process, we also find Hamiltonian structure for an important subset of Liénard system—a paradigmatic system for modeling isolated and asymptotic oscillatory state. We discuss the possibility of extending our method to encompass an even wider range of nonconservative systems.

  15. Perturbative approach to Markovian open quantum systems

    NASA Astrophysics Data System (ADS)

    Li, Andy C. Y.; Petruccione, F.; Koch, Jens

    2014-05-01

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.

  16. Evolution of perturbations in an inflationary universe

    NASA Technical Reports Server (NTRS)

    Frieman, J. A.; Will, C. M.

    1982-01-01

    The evolution of inhomogeneous density perturbations in a model of the very early universe that is dominated for a time by a constant energy density of a false quantum-mechanical vacuum is analyzed. During this period, the universe inflates exponentially and supercools exponentially, until a phase transition back to the true vacuum reheats the matter and radiation. Focus is on the physically measurable, coordinate-independent modes of inhomogeneous perturbations of this model and it is found that all modes either are constant or are exponentially damped during the inflationary era.

  17. Continuum methods in lattice perturbation theory

    SciTech Connect

    Becher, Thomas G

    2002-11-15

    We show how methods of continuum perturbation theory can be used to simplify perturbative lattice calculations. We use the technique of asymptotic expansions to expand lattice loop integrals around the continuum limit. After the expansion, all nontrivial dependence on momenta and masses is encoded in continuum loop integrals and the only genuine lattice integrals left are tadpole integrals. Using integration-by-parts relations all of these can be expressed in terms of a small number of master integrals. Four master integrals are needed for bosonic one loop integrals, sixteen in QCD with Wilson or staggered fermions.

  18. Conservative perturbation theory for nonconservative systems.

    PubMed

    Shah, Tirth; Chattopadhyay, Rohitashwa; Vaidya, Kedar; Chakraborty, Sagar

    2015-12-01

    In this paper, we show how to use canonical perturbation theory for dissipative dynamical systems capable of showing limit-cycle oscillations. Thus, our work surmounts the hitherto perceived barrier for canonical perturbation theory that it can be applied only to a class of conservative systems, viz., Hamiltonian systems. In the process, we also find Hamiltonian structure for an important subset of Liénard system-a paradigmatic system for modeling isolated and asymptotic oscillatory state. We discuss the possibility of extending our method to encompass an even wider range of nonconservative systems. PMID:26764794

  19. Screened perturbation theory to three loops

    SciTech Connect

    Andersen, Jens O.; Braaten, Eric; Strickland, Michael

    2001-05-15

    The thermal physics of a massless scalar field with a {phi}{sup 4} interaction is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the Lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to two-loop order. In contrast with the weak-coupling expansion, the SPT-improved approximations appear to converge even for rather large values of the coupling constant.

  20. Computing model independent perturbations in dark energy and modified gravity

    SciTech Connect

    Battye, Richard A.; Pearson, Jonathan A. E-mail: jonathan.pearson@durham.ac.uk

    2014-03-01

    We present a methodology for computing model independent perturbations in dark energy and modified gravity. This is done from the Lagrangian for perturbations, by showing how field content, symmetries, and physical principles are often sufficient ingredients for closing the set of perturbed fluid equations. The fluid equations close once ''equations of state for perturbations'' are identified: these are linear combinations of fluid and metric perturbations which construct gauge invariant entropy and anisotropic stress perturbations for broad classes of theories. Our main results are the proof of the equation of state for perturbations presented in a previous paper, and the development of the required calculational tools.

  1. Collective response to perturbations in a data-driven fish school model

    PubMed Central

    Calovi, Daniel S.; Lopez, Ugo; Schuhmacher, Paul; Chaté, Hugues; Sire, Clément; Theraulaz, Guy

    2015-01-01

    Fish schools are able to display a rich variety of collective states and behavioural responses when they are confronted by threats. However, a school's response to perturbations may be different depending on the nature of its collective state. Here we use a previously developed data-driven fish school model to investigate how the school responds to perturbations depending on its different collective states, we measure its susceptibility to such perturbations, and exploit its relation with the intrinsic fluctuations in the school. In particular, we study how a single or a small number of perturbing individuals whose attraction and alignment parameters are different from those of the main population affect the long-term behaviour of a school. We find that the responsiveness of the school to the perturbations is maximum near the transition region between milling and schooling states where the school exhibits multistability and regularly shifts between these two states. It is also in this region that the susceptibility, and hence the fluctuations, of the polarization order parameter is maximal. We also find that a significant school's response to a perturbation only happens below a certain threshold of the noise to social interactions ratio. PMID:25631571

  2. The effect of repetitive ankle perturbations on muscle reaction time and muscle activity.

    PubMed

    Thain, Peter Kevin; Hughes, Gerwyn Trefor Gareth; Mitchell, Andrew Charles Stephen

    2016-10-01

    The use of a tilt platform to simulate a lateral ankle sprain and record muscle reaction time is a well-established procedure. However, a potential caveat is that repetitive ankle perturbation may cause a natural attenuation of the reflex latency and amplitude. This is an important area to investigate as many researchers examine the effect of an intervention on muscle reaction time. Muscle reaction time, peak and average amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain (combined inversion and plantar flexion movement) were calculated in twenty-two physically active participants. The 40 perturbations were divided into 4 even groups of 10 dominant limb perturbations. Within-participants repeated measures analysis of variance (ANOVA) tests were conducted to assess the effect of habituation over time for each variable. There was a significant reduction in the peroneus longus average amplitude between the aggregated first and last 10 consecutive ankle perturbations (F2.15,45.09=3.90, P=0.03, ɳp(2)=0.16). Authors should implement no more than a maximum of 30 consecutive ankle perturbations (inclusive of practice perturbations) in future protocols simulating a lateral ankle sprain in an effort to avoid significant attenuation of muscle activity.

  3. Measurement of High Frequency Perturbations to the Ion Velocity Distribution in the HELIX Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Boivin, R. F.; Franck, C.; Klinger, T.; Scime, E. E.

    2001-10-01

    Using lasers to measure plasma parameters has become more common in recent years. Lasers can provide information about plasma parameters without perturbing the plasma. The most common technique for ion parameter measurements is Laser Induced Fluorescence (LIF). LIF typically measures the ion velocity distribution and provides information about the ion temperatures and ion flows in the plasma. More recently, Skiff and Anderegg [1987] and Safarty et al. [1996] have shown that measurements of the perturbed ion velocity distribution can provide wave number information for waves propagating in a plasma due the non-local nature of the dielectric tensor. In the past two years, attempts have been made to measure the perturbed ion velocity distribution function at frequencies relevant to Helicon plasma sources. The objective of the measurements is to identify electrostatic oscillation associated to the slow wave or "Trivelpeice Gould modes" in helicon plasma sources. Past efforts to measure the perturbed ion velocity distribution function have been unsuccessful due to technical difficulties associated with measuring the cross correlation of the photon and reference signals. Using a high frequency SR544 Stanford Research lock-in amplifier, high frequency perturbations to the ion velocity distribution in a helicon source have been measured. Perturbed ion velocity distribution measurements, along with the related theory will be presented.

  4. Plume Diagnostics of the RSRM Static Firings for the Pressure Perturbation Studies

    NASA Technical Reports Server (NTRS)

    Mathias, Edward C.; Sambamurthi, Jay K.; Alvarado, Alexis

    1995-01-01

    During the STS-54 launch (RSRM-29), the right hand solid rocket motor experienced a 13.9 psi chamber pressure perturbation at 67 seconds into the motor operation. This pressure augmentation equated to a thrust change of 51 klb. Concerns were raised regarding the adverse effects of this thrust imbalance on the shuttle system and the overall thrust into the external tank structural elements. Pressure perturbations have been observed in solid rocket motors due to expulsion of igniter or insulation materials; the motor thrust during such events drop abruptly before rising. However, the RSRM motors do not exhibit such behavior during the large chamber pressure perturbation events. Several scenarios were investigated to explain these pressure perturbations in the RSRM motors based on a fault tree developed after STS-54. Of these, the expulsion of the slag accumulated in the submerged nozzle region appeared to be the most plausible scenario to explain the observations. Slag is a natural combustion product of aluminized solid rocket motors. The RSRM propellant contains 16% by weight of aluminum. Any ejection of this slag mass during nozzle vectoring or other side loads on the motor will result in the chamber pressure perturbation. Two RSRM static firings were instrumented extensively to further understand the slag expulsion phenomenon in the RSRM and the associated pressure perturbations.

  5. The Beauty of Lattice Perturbation Theory: the Role of Lattice Perturbation Theory in B Physics

    NASA Astrophysics Data System (ADS)

    Monahan, C. J.

    2012-12-01

    As new experimental data arrive from the LHC the prospect of indirectly detecting new physics through precision tests of the Standard Model grows more exciting. Precise experimental and theoretical inputs are required to test the unitarity of the CKM matrix and to search for new physics effects in rare decays. Lattice QCD calculations of non-perturbative inputs have reached a precision at the level of a few percent; in many cases aided by the use of lattice perturbation theory. This review examines the role of lattice perturbation theory in B physics calculations on the lattice in the context of two questions: how is lattice perturbation theory used in the different heavy quark formalisms implemented by the major lattice collaborations? And what role does lattice perturbation theory play in determinations of non-perturbative contributions to the physical processes at the heart of the search for new physics? Framing and addressing these questions reveals that lattice perturbation theory is a tool with a spectrum of applications in lattice B physics.

  6. Statistics and dynamics of the perturbed universe

    NASA Astrophysics Data System (ADS)

    Lemson, G.

    1995-09-01

    In the not too distant past, our theorizing about the nature of the Universe we live in, was not much limited by observational constraints. Consequently, no true science could be developed dealing with the nature of the Universe at large: its origin, its present state and its future. This was the realm of religion and philosophy. In this century, revolutionary developments in physics have provided the framework within which to describe the Universe as a whole and which finally made it possible to obtain tentative answers to questions we have only recently learned to ask. In this thesis, I present investigations that deal with a small part of the theory of cosmology. In particular, I have investigated certain aspects of the theory of structure formation in the Universe. This subject has been extensively studied in the last few decennia. It originated from the realization that the Universe has not always been the same as observed at present. The Universe as we observe it today is filled with objects of a great variety of sizes and shapes. In the 2nd and 3rd decade of this century Hubble discovered that our Universe is expanding. This implies that in the past the Universe was smaller and therefore denser. All the structures we observe nowadays, if also existing in the past, would have been closer and at some time would have touched and overlapped. Furthermore, the theories that were developed to describe such an expanding Universe in quantitative detail, required that the Universe be homogeneous and isotropic, i.e. it should look the same at every position and in every direction. All mass and radiation must once have been distributed uniformly throughout space. With these theories, Gamov (1946, 1948ab) predicted that in the past the Universe must have been much hotter than presently, and that the afterglow of this epoch should still be observable as a faint radio signal at a temperature a few degrees above the absolute zero point. In the early sixties, Penzias and

  7. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.

    2016-07-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  8. Privacy Is Become with, Data Perturbation

    NASA Astrophysics Data System (ADS)

    Singh, Er. Niranjan; Singhai, Niky

    2011-06-01

    Privacy is becoming an increasingly important issue in many data mining applications that deal with health care, security, finance, behavior and other types of sensitive data. Is particularly becoming important in counterterrorism and homeland security-related applications. We touch upon several techniques of masking the data, namely random distortion, including the uniform and Gaussian noise, applied to the data in order to protect it. These perturbation schemes are equivalent to additive perturbation after the logarithmic Transformation. Due to the large volume of research in deriving private information from the additive noise perturbed data, the security of these perturbation schemes is questionable Many artificial intelligence and statistical methods exist for data analysis interpretation, Identifying and measuring the interestingness of patterns and rules discovered, or to be discovered is essential for the evaluation of the mined knowledge and the KDD process as a whole. While some concrete measurements exist, assessing the interestingness of discovered knowledge is still an important research issue. As the tool for the algorithm implementations we chose the language of choice in industrial world MATLAB.

  9. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.

    2016-07-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai-Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  10. Effective field theory of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Piazza, Federico; Vernizzi, Filippo

    2013-11-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.

  11. WACCM climate chemistry sensitivity to sprite perturbations

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Smith, A. K.; Enell, C.-F.; Kero, A.; Dinelli, B. M.

    2014-06-01

    Transient luminous events affect Earth's atmosphere between thunderstorm tops and the lower ionosphere through ion-neutral chemistry reactions. Particular emphasis has been given to sprites, with models and observations suggesting a capability of perturbing atmospheric nitrogen oxides at a local level, as it is known to occur for tropospheric lightning and laboratory air discharges. However, it is as yet unknown whether sprites can be a relevant source of nitrogen oxides for the upper atmosphere. In this paper, we study the sensitivity of the Whole Atmosphere Community Climate Model (WACCM) to sprite-like nitrogen oxide perturbations. We take a top-down approach to estimate what magnitude sprite perturbations should have to become significant as compared to other relevant atmospheric processes and study the sensitivity of the model response within the given uncertainties. We show that, based on current predictions by sprite streamer chemistry models, sprites can perturb Tropical NOx at 70 km altitude between 0.015 ppbv (buried in the background variability) and 0.15 ppbv (about 20%), adopting a local NOx production per sprite of 1.5·1023 and 1.5·1024 molecules respectively at this altitude. Below the lowest of the adopted values, sprites are irrelevant at global scales. Sprite NOx may build up to significantly larger amounts locally above active thunderstorms, further aided by other transient luminous events and possibly terrestrial gamma ray flashes. We also use model results to interpret the available observational studies and give recommendations for future campaigns.

  12. On-Shell Methods in Perturbative QCD

    SciTech Connect

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2007-04-25

    We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider.

  13. Degenerate adiabatic perturbation theory: Foundations and applications

    NASA Astrophysics Data System (ADS)

    Rigolin, Gustavo; Ortiz, Gerardo

    2014-08-01

    We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.

  14. Mixing at shocked interfaces with known perturbations

    NASA Astrophysics Data System (ADS)

    Cook, Andrew; Weber, Chris; Bonazza, Riccardo; Cabot, Bill

    2012-11-01

    We derive a growth-rate model for the Richtmyer-Meshkov mixing layer, given arbitrary but known initial conditions. The initial growth rate is determined by the net mass flux through the center plane of the perturbed interface immediately after shock passage. The net mass flux is determined by the correlation between the post-shock density and streamwise velocity. The post-shock density field is computed from the known initial perturbations and the shock jump conditions. The streamwise velocity is computed via Biot-Savart integration of the vorticity field. The vorticity deposited by the shock is obtained from the baroclinic torque with an impulsive acceleration. Using the initial growth rate and characteristic perturbation wavelength as scaling factors, the model collapses growth rates over a broad range of Mach numbers, Atwood numbers and perturbation types. The mixing layer at late times exhibits a power-law growth with an average exponent of theta=0.23. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Additional support was provided to the University of Wisconsin by U.S. DOE Grant No. DE-FG52-06NA26196.

  15. Long periodic perturbations of Trojan asteroids.

    NASA Astrophysics Data System (ADS)

    Érdi, B.

    1987-03-01

    The motion of the Trojan asteroids is studied in the elliptic restricted three-body problem of the Sun-Jupiter-asteroid system. Long periodic perturbations of the orbital elements are discussed. Relations between dynamical parameters are considered and comparisons are made with Bien's and Schubart's results.

  16. Long periodic perturbations of Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Erdi, B.

    The motion of the Trojan asteroids is studied in the elliptic restricted three-body problem of the Sun-Jupiter-asteroid system. Long periodic perturbations of the orbital elements are discussed. Relations between dynamical parameters are considered and comparisons are made with Bien's and Schubart's results.

  17. Staggered heavy baryon chiral perturbation theory

    SciTech Connect

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  18. What Perturbs the ggrdgr Rings of Uranus?

    PubMed

    French, R G; Kangas, J A; Elliot, J L

    1986-01-31

    The gamma and delta rings have by far the largest radial perturbations of any of the nine known Uranian rings. These two rings deviate from Keplerian orbits, having typical root-mean-square residuals of about 3 kilometers (compared to a few hundred meters for the other seven known rings). Possible causes for the perturbations include nearby shepherd satellites and Lindblad resonances. If shepherd satellites are responsible, they could be as large as several tens of kilometers in diameter. The perturbation patterns of the gamma and delta rings have been examined for evidence of Lindblad resonances of azimuthal wave number m = 0, 1, 2, 3, and 4. The beta ring radial residuals are well matched by a 2:1 Lindblad resonance. If this represents a real physical phenomenon and is not an artifact of undersampling, then the most plausible interpretation is that there is an undiscovered satellite orbiting 76,522 +/- 8 kilometers from Uranus, with an orbital period of 15.3595 +/- 0.0001 hours and a radius of 75 to 100 kilometers. Such a satellite would be easily detected by the Voyager spacecraft when it encounters Uranus. The 2:1 resonance location is 41 +/- 9 kilometers inside the delta ring, which makes it unlikely that the resonance is due to a viscous instability within the ring. In contrast, no low-order Lindblad resonance matches the gamma ring perturbations, which are probably caused by one or more shepherd satellites large enough to be clearly visible in Voyager images. PMID:17776019

  19. Characterizing heterogeneous cellular responses to perturbations.

    PubMed

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-01

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  20. Toward controlling perturbations in robotic sensor networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Ashis G.; Majumder, Saikat R.

    2014-06-01

    Robotic sensor networks (RSNs), which consist of networks of sensors placed on mobile robots, are being increasingly used for environment monitoring applications. In particular, a lot of work has been done on simultaneous localization and mapping of the robots, and optimal sensor placement for environment state estimation1. The deployment of RSNs, however, remains challenging in harsh environments where the RSNs have to deal with significant perturbations in the forms of wind gusts, turbulent water flows, sand storms, or blizzards that disrupt inter-robot communication and individual robot stability. Hence, there is a need to be able to control such perturbations and bring the networks to desirable states with stable nodes (robots) and minimal operational performance (environment sensing). Recent work has demonstrated the feasibility of controlling the non-linear dynamics in other communication networks like emergency management systems and power grids by introducing compensatory perturbations to restore network stability and operation2. In this paper, we develop a computational framework to investigate the usefulness of this approach for RSNs in marine environments. Preliminary analysis shows promising performance and identifies bounds on the original perturbations within which it is possible to control the networks.

  1. Staggered heavy baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  2. What Perturbs the ggrdgr Rings of Uranus?

    PubMed

    French, R G; Kangas, J A; Elliot, J L

    1986-01-31

    The gamma and delta rings have by far the largest radial perturbations of any of the nine known Uranian rings. These two rings deviate from Keplerian orbits, having typical root-mean-square residuals of about 3 kilometers (compared to a few hundred meters for the other seven known rings). Possible causes for the perturbations include nearby shepherd satellites and Lindblad resonances. If shepherd satellites are responsible, they could be as large as several tens of kilometers in diameter. The perturbation patterns of the gamma and delta rings have been examined for evidence of Lindblad resonances of azimuthal wave number m = 0, 1, 2, 3, and 4. The beta ring radial residuals are well matched by a 2:1 Lindblad resonance. If this represents a real physical phenomenon and is not an artifact of undersampling, then the most plausible interpretation is that there is an undiscovered satellite orbiting 76,522 +/- 8 kilometers from Uranus, with an orbital period of 15.3595 +/- 0.0001 hours and a radius of 75 to 100 kilometers. Such a satellite would be easily detected by the Voyager spacecraft when it encounters Uranus. The 2:1 resonance location is 41 +/- 9 kilometers inside the delta ring, which makes it unlikely that the resonance is due to a viscous instability within the ring. In contrast, no low-order Lindblad resonance matches the gamma ring perturbations, which are probably caused by one or more shepherd satellites large enough to be clearly visible in Voyager images.

  3. Cosmological perturbations from the Standard Model Higgs

    SciTech Connect

    Simone, Andrea De; Riotto, Antonio E-mail: antonio.riotto@unige.ch

    2013-02-01

    We propose that the Standard Model (SM) Higgs is responsible for generating the cosmological perturbations of the universe by acting as an isocurvature mode during a de Sitter inflationary stage. In view of the recent ATLAS and CMS results for the Higgs mass, this can happen if the Hubble rate during inflation is in the range (10{sup 10}−10{sup 14}) GeV (depending on the SM parameters). Implications for the detection of primordial tensor perturbations through the B-mode of CMB polarization via the PLANCK satellite are discussed. For example, if the Higgs mass value is confirmed to be m{sub h} = 125.5 GeV and m{sub t},α{sub s} are at their central values, our mechanism predicts tensor perturbations too small to be detected in the near future. On the other hand, if tensor perturbations will be detected by PLANCK through the B-mode of CMB, then there is a definite relation between the Higgs and top masses, making the mechanism predictive and falsifiable.

  4. Perturbative Implementation of the Furry Picture

    NASA Astrophysics Data System (ADS)

    Huber, Matthias; Stockmeyer, Edgardo

    2007-01-01

    Recently the block-diagonalization of Dirac-operators was investigated from a mathematical point of view in the one-particle case [14]. We extend this result to the N-particle case. This leads to a perturbative realization of the Furry picture in the N-particle two-spinor space.

  5. A new size extensive multireference perturbation theory.

    PubMed

    Chen, Feiwu; Fan, Zhihui

    2014-01-15

    A new multireference perturbation series is derived based on the Rayleigh-Schrödinger perturbation theory. It is orbitally invariant. Its computational cost is comparable to the single reference Møller-Plesset perturbation theory. It is demonstrated numerically that the present multireference second- and third-order energies are size extensive by two types of supermolecules composed of H2 and BH monomers. Spectroscopic constants of F2(X1Σg+),Cl2(X1Σg+),C2-(X2Σg+),B2(X3Σg-),and C2+(X4Σg-) as well as the ground state energies of H2O, NH2, and CH2 at three bond lengths have been calculated with the second multireference perturbation theory. The dissociation behaviors of CH4 and HF have also been investigated. Comparisons with other approximate theoretical models as well as the experimental data have been carried out to show their relative performances.

  6. The General Necessary Condition for the Validity of Dirac's Transition Perturbation Theory

    NASA Technical Reports Server (NTRS)

    Quang, Nguyen Vinh

    1996-01-01

    For the first time, from the natural requirements for the successive approximation the general necessary condition of validity of the Dirac's method is explicitly established. It is proved that the conception of 'the transition probability per unit time' is not valid. The 'super-platinium rules' for calculating the transition probability are derived for the arbitrarily strong time-independent perturbation case.

  7. Characterization of the Head Stabilization Response to a Lateral Perturbation During Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello-Stout, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2009-01-01

    A main contributor of fractures in older adults is from a lateral fall. The decline in sensory systems results in difficulty maintaining balance stability. Head stabilization contributes to postural control by serving as a stable platform for the sensory systems. The purpose of this study was to characterize the head stabilization response to a lateral perturbation while walking. A total of 16 healthy older adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors placed on the center of mass of the head and trunk collected head and trunk movement in all three planes of motion. The roll plane was analyzed to examine motion in the plane of the perturbation. Subjects stepped onto the platform with the right foot. Recovery step time and distance were recorded. The first trial was analyzed to capture the novelty of the perturbation. Results indicate a significant difference in footfall distance t=0.004, p<0.05, as well as the speed of foot recovery t=0.001, p<0.05, between natural and perturbed walking. Results indicate that the head t=0.005, p<0.05, and trunk t=0.0001, p<0.05, velocities increase during perturbed compared to natural walking. Older adults place their recovery foot down faster when perturbed to re-establish their base of support. Head and trunk segments are less stable and move with greater velocities to reestablish stability when perturbed.

  8. Plant Host and Geographic Location Drive Endophyte Community Composition in the Face of Perturbation.

    PubMed

    Christian, Natalie; Sullivan, Courtney; Visser, Noelle D; Clay, Keith

    2016-10-01

    All plants form symbioses with endophytic fungi, which affect host plant health and function. Most endophytic fungi are horizontally transmitted, and consequently, local environment and geographic location greatly influence endophyte community composition. Growing evidence also suggests that identity of the plant host (e.g., species, genotype) can be important in shaping endophyte communities. However, little is known about how disturbances to plants affect their fungal symbiont communities. The goal of this study was to test if disturbances, from both natural and anthropogenic sources, can alter endophyte communities independent of geographic location or plant host identity. Using the plant species white snakeroot (Ageratina altissima; Asteraceae), we conducted two experiments that tested the effect of perturbation on endophyte communities. First, we examined endophyte response to leaf mining insect activity, a natural perturbation, in three replicate populations. Second, for one population, we applied fungicide to plant leaves to test endophyte community response to an anthropogenic perturbation. Using culture-based methods and Sanger sequencing of fungal isolates, we then examined abundance, diversity, and community structure of endophytic fungi in leaves subjected to perturbations by leaf mining and fungicide application. Our results show that plant host individual and geographic location are the major determinants of endophyte community composition even in the face of perturbations. Unexpectedly, we found that leaf mining did not impact endophyte communities in white snakeroot, but fungicide treatment resulted in small but significant changes in endophyte community structure. Together, our results suggest that endophyte communities are highly resistant to biotic and anthropogenic disturbances. PMID:27341838

  9. Plant Host and Geographic Location Drive Endophyte Community Composition in the Face of Perturbation.

    PubMed

    Christian, Natalie; Sullivan, Courtney; Visser, Noelle D; Clay, Keith

    2016-10-01

    All plants form symbioses with endophytic fungi, which affect host plant health and function. Most endophytic fungi are horizontally transmitted, and consequently, local environment and geographic location greatly influence endophyte community composition. Growing evidence also suggests that identity of the plant host (e.g., species, genotype) can be important in shaping endophyte communities. However, little is known about how disturbances to plants affect their fungal symbiont communities. The goal of this study was to test if disturbances, from both natural and anthropogenic sources, can alter endophyte communities independent of geographic location or plant host identity. Using the plant species white snakeroot (Ageratina altissima; Asteraceae), we conducted two experiments that tested the effect of perturbation on endophyte communities. First, we examined endophyte response to leaf mining insect activity, a natural perturbation, in three replicate populations. Second, for one population, we applied fungicide to plant leaves to test endophyte community response to an anthropogenic perturbation. Using culture-based methods and Sanger sequencing of fungal isolates, we then examined abundance, diversity, and community structure of endophytic fungi in leaves subjected to perturbations by leaf mining and fungicide application. Our results show that plant host individual and geographic location are the major determinants of endophyte community composition even in the face of perturbations. Unexpectedly, we found that leaf mining did not impact endophyte communities in white snakeroot, but fungicide treatment resulted in small but significant changes in endophyte community structure. Together, our results suggest that endophyte communities are highly resistant to biotic and anthropogenic disturbances.

  10. Effects of aging and perturbation intensities on temporal parameters during slipping-like perturbations.

    PubMed

    Tropea, Peppino; Martelli, Dario; Aprigliano, Federica; Micera, Silvestro; Monaco, Vito

    2015-01-01

    The aim of this study was to analyze the modifications of temporal parameters during slipping-like perturbations associated both with aging and perturbation intensities. Twelve participants equally distributed from two age groups (elderly and young) were recorded while, during steady locomotion, managing unexpected slipping-like perturbations, in forward direction, at different intensity and amplitude of foot shift. Two metrics were extrapolated from the analysis of the ground reaction force supplied by ad hoc platform aimed at destabilizing the balance control. The results indicated that the analyzed timing variables, both for elderly and young, are strongly modified by intensity of the perturbation, but only slight altered by the amplitude. Concerning the comparison about the two groups, elderly people seem to have slower reactive response than young subjects. These findings support further investigations in order to gain a better understanding of fall dynamics in elderly people.

  11. Passive heat transfer augmentation in a cylindrical annulus utilizing multiple perturbations on the inner and outer cylinders

    SciTech Connect

    Iyer, S.V.; Vafai, K.

    1999-05-14

    The study of natural convection flow and heat transfer within a cylindrical annulus has received considerable attention because of its numerous applications, such as in nuclear reactor design, electronic component cooling, thermal storage systems, energy conservation, energy storage, and energy transmission. Here, the effects of multiple geometric perturbations on the inner and outer cylinders of an annulus with impermeable end walls are investigated in this work. A three-dimensional study was done using a numerical scheme based on a Galerkin method of finite element formulation. The nature of the buoyancy-induced flow field has been analyzed in detail. The flow fields for the cases considered were found to be qualitatively similar, and the introduction of each additional perturbation altered the flow field in a regular and recurring manner. The introduction of each perturbation on the outer cylinder causes clockwise and counterclock-wise rotating patterns on either side of the perturbation in the upper circumferential regions of the annulus. The motion of the fluid entrained by these circulatory patterns constitutes the key features of the flow pattern observed in the annulus. It is observed that the presence of multiple perturbations on the inner and outer cylinders substantially increases the overall heat transfer rate as compared to the regular annulus without any perturbation. Key qualitative and quantitative effects of the introduction of perturbations on both the inner and outer cylinders of the annulus are discussed.

  12. Conformal invariant cosmological perturbations via the covariant approach

    SciTech Connect

    Li, Mingzhe; Mou, Yicen E-mail: moinch@mail.ustc.edu.cn

    2015-10-01

    It is known that some cosmological perturbations are conformal invariant. This facilitates the studies of perturbations within some gravitational theories alternative to general relativity, for example the scalar-tensor theory, because it is possible to do equivalent analysis in a certain frame in which the perturbation equations are simpler. In this paper we revisit the problem of conformal invariances of cosmological perturbations in terms of the covariant approach in which the perturbation variables have clear geometric and physical meanings. We show that with this approach the conformal invariant perturbations are easily identified.

  13. Non-adiabatic perturbations in multi-component perfect fluids

    SciTech Connect

    Koshelev, N.A.

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  14. Kurtosis, skewness, and non-Gaussian cosmological density perturbations

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1993-01-01

    Cosmological topological defects as well as some nonstandard inflation models can give rise to non-Gaussian density perturbations. Skewness and kurtosis are the third and fourth moments that measure the deviation of a distribution from a Gaussian. Measurement of these moments for the cosmological density field and for the microwave background temperature anisotropy can provide a test of the Gaussian nature of the primordial fluctuation spectrum. In the case of the density field, the importance of measuring the kurtosis is stressed since it will be preserved through the weakly nonlinear gravitational evolution epoch. Current constraints on skewness and kurtosis of primeval perturbations are obtained from the observed density contrast on small scales and from recent COBE observations of temperature anisotropies on large scales. It is also shown how, in principle, future microwave anisotropy experiments might be able to reveal the initial skewness and kurtosis. It is shown that present data argue that if the initial spectrum is adiabatic, then it is probably Gaussian, but non-Gaussian isocurvature fluctuations are still allowed, and these are what topological defects provide.

  15. High-order primordial perturbations with quantum gravitational effects

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Wang, Anzhong; Kirsten, Klaus; Cleaver, Gerald; Sheng, Qin

    2016-06-01

    In this paper, we provide a systematic investigation of high-order primordial perturbations with nonlinear dispersion relations due to quantum gravitational effects in the framework of uniform asymptotic approximations. Because of these effects, the equation of motion of the mode function in general has multiple turning points. After obtaining analytically approximated solutions to any order in different regions, associated with different types of turning points, we match them to the third one. To this order the errors are less than 0.15%. General expressions of the power spectra of the primordial tensor and scalar perturbations are derived explicitly. We also investigate effects of backreactions of the quantum gravitational corrections, and make sure that inflation lasts long enough in order to solve the underlying problems, such as flatness, horizon, and monopole. Then we study various features of the spectra that are observationally relevant. In particular, under a moderate assumption about the energy scale of the underlying theory of quantum gravity, we have shown that the quantum gravitational effects may alter significantly the ratio between the tensor and scalar power spectra, thereby providing a natural mechanism to alleviate the tension between observations and certain inflationary models, including the one with a quadratic potential.

  16. Cytomegalovirus immune evasion by perturbation of endosomal trafficking

    PubMed Central

    Lučin, Pero; Mahmutefendić, Hana; Blagojević Zagorac, Gordana; Ilić Tomaš, Maja

    2015-01-01

    Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms. PMID:25263490

  17. Head perturbations during walking while viewing a head-fixed target

    NASA Technical Reports Server (NTRS)

    Das, Vallabh E.; Zivotofsky, Ari Z.; Discenna, Alfred O.; Leigh, R. John

    1995-01-01

    Inexpensive, head-fixed computer displays are now available that subjects can wear during locomotion. Our hypothesis is that viewing a head-fixed visual display will change the character- istics of rotational head perturbations during natural walking. Using a 3-axis angular rate sensor, we measured head rotations during natural or treadmill walking, in 10 normal subjects and 2 patients with deficient vestibular function, as they attempted to view (1) a stationary target at optical infinity; and (2) a target at a distance of 20 cm rigidly attached to the head. Normal subjects and patients showed no significant change in the predominant frequency of head rotations in any plane (ranging 0.7-5.7 Hz) during the two different viewing tasks. Mean peak head velocities also showed no difference during the two viewing conditions except in the yaw plane, in which values were greater while viewing the near target. Predominant frequencies of head rotations were similar in the pitch plane during natural or treadmill walking; however, peak velocities of pitch head rotations were substantially greater during natural walking. One vestibular patient showed modest increases of head velocity during natural walking compared with normal subjects. Rotational head perturbations that occur during natural walking are largely unaffected when subjects view a head-fixed target. There is need to study how such perturbations, which induce vestibular eye movements, affect vision of head-fixed displays.

  18. Intelligent perturbation algorithms for space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1990-01-01

    The optimization of space operations is examined in the light of optimization heuristics for computer algorithms and iterative search techniques. Specific attention is given to the search concepts known collectively as intelligent perturbation algorithms (IPAs) and their application to crew/resource allocation problems. IPAs iteratively examine successive schedules which become progressively more efficient, and the characteristics of good perturbation operators are listed. IPAs can be applied to aerospace systems to efficiently utilize crews, payloads, and resources in the context of systems such as Space-Station scheduling. A program is presented called the MFIVE Space Station Scheduling Worksheet which generates task assignments and resource usage structures. The IPAs can be used to develop flexible manifesting and scheduling for the Industrial Space Facility.

  19. Relativistic perturbations for all the planets

    NASA Astrophysics Data System (ADS)

    Lestrade, J.-F.; Bretagnon, P.

    1982-01-01

    The relativistic perturbations in the osculating elements of all the planets, due to the theory of General Relativity, are presented where only the gravitational field of the sun is taken into account and the effects are calculated in the post-Newtonian approximation. The relativistic effects are calculated with the requirement that an accuracy of 5 x 10 to the -12th UA be kept over an interval of 1000 years, and are expressed in series form depending on the dynamical time in the isotropic coordinate and standard coordinate systems. The method uses equations derived from the equations of Gauss for the relativistic acceleration. A theory of the motion of Mercury is derived through the addition of the relativistic perturbations to the third-order Newtonian theory of Bretagnon (1981). It is noted that the computer programs used allow any values for the physical parameters Gamma and Beta of the Eddigton-Robertson metric.

  20. Inflationary tensor perturbations after BICEP2.

    PubMed

    Caligiuri, Jerod; Kosowsky, Arthur

    2014-05-16

    The measurement of B-mode polarization of the cosmic microwave background at large angular scales by the BICEP experiment suggests a stochastic gravitational wave background from early-Universe inflation with a surprisingly large amplitude. The power spectrum of these tensor perturbations can be probed both with further measurements of the microwave background polarization at smaller scales and also directly via interferometry in space. We show that sufficiently sensitive high-resolution B-mode measurements will ultimately have the ability to test the inflationary consistency relation between the amplitude and spectrum of the tensor perturbations, confirming their inflationary origin. Additionally, a precise B-mode measurement of the tensor spectrum will predict the tensor amplitude on solar system scales to 20% accuracy for an exact power-law tensor spectrum, so a direct detection will then measure the running of the tensor spectral index to high precision.

  1. Perturbative search for dead-end CFTs

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu

    2015-05-01

    To explore the possibility of self-organized criticality, we look for CFTs without any relevant scalar deformations (a.k.a. dead-end CFTs) within power-counting renormalizable quantum field theories with a weakly coupled Lagrangian description. In three dimensions, the only candidates are pure (Abelian) gauge theories, which may be further deformed by Chern-Simons terms. In four dimensions, we show that there are infinitely many non-trivial candidates based on chiral gauge theories. Using the three-loop beta functions, we compute the gap of scaling dimensions above the marginal value, and it can be as small as and robust against the perturbative corrections. These classes of candidates are very weakly coupled and our perturbative conclusion seems difficult to refute. Thus, the hypothesis that non-trivial dead-end CFTs do not exist is likely to be false in four dimensions.

  2. Control of Asymmetric Magnetic Perturbations in Tokamaks

    SciTech Connect

    Park, Jong-kyu; Schaffer, Michael J.; Menard, Jonathan E.; Boozer, Allen H.

    2007-10-03

    The sensitivity of tokamak plasmas to very small deviations from the axisymmetry of the magnetic field |δ→(over)Β/→(over)Β|≈ 10–4 is well known. What was not understood until very recently is the importance of the perturbation to the plasma equilibrium in assessing the effects of externally produced asymmetries in the magnetic field, even far from a stability limit. DIII-D and NSTX experiments find that when the deleterious effects of asymmetries are mitigated, the external asymmetric field was often made stronger and with an increased interaction with the magnetic field of the unperturbed equilibrium fields. This paper explains these counter intuitive results. The explanation using ideal perturbed equilibria has important implications for the control of field errors in all toroidal plasmas.

  3. Relaxing Lorentz invariance in general perturbative anomalies

    SciTech Connect

    Salvio, A.

    2008-10-15

    We analyze the role of Lorentz symmetry in the perturbative nongravitational anomalies for a single family of fermions. The theory is assumed to be translational-invariant, power-counting renormalizable and based on a local action, but is allowed to have general Lorentz violating operators. We study the conservation of global and gauge currents associated with general internal symmetry groups and find, by using a perturbative approach, that Lorentz symmetry does not participate in the clash of symmetries that leads to the anomalies. We first analyze the triangle graphs and prove that there are regulators for which the anomalous part of the Ward identities exactly reproduces the Lorentz-invariant case. Then we show, by means of a regulator independent argument, that the anomaly cancellation conditions derived in Lorentz-invariant theories remain necessary ingredients for anomaly freedom.

  4. Thermostat-Like Perturbations of an Oscillator

    NASA Astrophysics Data System (ADS)

    Freidlin, Mark

    2016-07-01

    We consider an oscillator with one degree of freedom perturbed by a deterministic thermostat-like perturbation and another system, in particular, another oscillator, coupled with the first one. If the Hamiltonian of the first system has saddle points, the whole system has, in a sense, a stochastic behavior on long time intervals. Under certain conditions, one can introduce the relative entropy and describe metastability and other large deviation effects in this deterministic system. If the coupled system is also an oscillator, the long time evolution of the energy of this oscillator has a diffusion approximation. To get these results one has to regularize the system. But the results are, to some extent, independent of the regularization: the stochasticity is due to instabilities at saddle points of the original system.

  5. Inflationary tensor perturbations after BICEP2.

    PubMed

    Caligiuri, Jerod; Kosowsky, Arthur

    2014-05-16

    The measurement of B-mode polarization of the cosmic microwave background at large angular scales by the BICEP experiment suggests a stochastic gravitational wave background from early-Universe inflation with a surprisingly large amplitude. The power spectrum of these tensor perturbations can be probed both with further measurements of the microwave background polarization at smaller scales and also directly via interferometry in space. We show that sufficiently sensitive high-resolution B-mode measurements will ultimately have the ability to test the inflationary consistency relation between the amplitude and spectrum of the tensor perturbations, confirming their inflationary origin. Additionally, a precise B-mode measurement of the tensor spectrum will predict the tensor amplitude on solar system scales to 20% accuracy for an exact power-law tensor spectrum, so a direct detection will then measure the running of the tensor spectral index to high precision. PMID:24877926

  6. Perturbation theory for solitons in optical fibers

    NASA Astrophysics Data System (ADS)

    Kaup, D. J.

    1990-11-01

    Using a singular perturbation expansion, we study the evolution of a Raman loss compensated soliton in an optical fiber. Our analytical results agree quite well with the numerical results of Mollenauer, Gordon, and Islam [IEEE J. Quantum Electron. QE-22, 157 (1986)]. However, there are some differences in that our theory predicts an additional structure that was only partially seen in the numerical calculations. Our analytical results do give a quite good qualitative and quantitative check of the numerical results.

  7. Tests of Chiral Perturbation Theory with COMPASS

    SciTech Connect

    Friedrich, Jan

    2010-12-28

    The COMPASS experiment at CERN studies with high precision pion-photon induced reactions on nuclear targets via the Primakoff effect. This offers the possibility to test chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the longstanding question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.

  8. A new perturbative approach to nonlinear problems

    SciTech Connect

    Bender, C. M.; Milton, K. A.; Pinsky, S. S.; Simmons, L. M., Jr.

    1989-07-01

    A recently proposed perturbative technique for quantum field theory consistsof replacing nonlinear terms in the Lagrangian such as /phi//sup 4/ by(/phi//sup 2/)/sup 1+delta/ and then treating delta as a small parameter. It is shown herethat the same approach gives excellent results when applied to difficultnonlinear differential equations such as the Lane--Emden, Thomas--Fermi,Blasius, and Duffing equations.

  9. Perturbation Theory for Superfluid in Nonuniform Potential

    NASA Astrophysics Data System (ADS)

    Koshida, Shinji; Kato, Yusuke

    2016-05-01

    Perturbation theory of superfluid fraction in terms of nonuniform potential is constructed. We find that the coefficient of the leading term is determined by the dynamical structure factor or density fluctuation of the system. The results for the ideal Bose gas and the interacting Bose system with linear dispersion are consistent to implications from Landau's criterion. We also find that the superfluidity of Tomonaga-Luttinger liquid with K>2 is shown to be stable against nonuniform potential.

  10. (Perturbed angular correlations in zirconia ceramics)

    SciTech Connect

    Not Available

    1990-01-01

    This is the progress report for the first year of the currently-approved three year funding cycle. We have carried on a vigorous program of experimental and theoretical research on microscopic properties of zirconia and ceria using the Perturbed Angular Correlation (PAC) experimental technique. The experimental method was described in the original proposal and in a number of references as well as several of the technical reports that accompany this progress report.

  11. Perturbations of nested branes with induced gravity

    SciTech Connect

    Sbisà, Fulvio; Koyama, Kazuya E-mail: kazuya.koyama@port.ac.uk

    2014-06-01

    We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ''ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.

  12. Intelligent perturbation algorithms to space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1991-01-01

    The limited availability and high cost of crew time and scarce resources make optimization of space operations critical. Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex scheduling problems that were previously considered computationally intractable. Described here is a class of search techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms to optimize the scheduling of space crew, payload, and resource operations are also discussed.

  13. Noninflationary model with scale invariant cosmological perturbations

    SciTech Connect

    Peter, Patrick; Pinho, Emanuel J. C.; Pinto-Neto, Nelson

    2007-01-15

    We show that a contracting universe which bounces due to quantum cosmological effects and connects to the hot big-bang expansion phase, can produce an almost scale invariant spectrum of perturbations provided the perturbations are produced during an almost matter dominated era in the contraction phase. This is achieved using Bohmian solutions of the canonical Wheeler-DeWitt equation, thus treating both the background and the perturbations in a fully quantum manner. We find a very slightly blue spectrum (n{sub S}-1>0). Taking into account the spectral index constraint as well as the cosmic microwave background normalization measure yields an equation of state that should be less than {omega} < or approx. 8x10{sup -4}, implying n{sub S}-1{approx}O(10{sup -4}), and that the characteristic curvature scale of the Universe at the bounce is L{sub 0}{approx}10{sup 3}l{sub Pl}, a region where one expects that the Wheeler-DeWitt equation should be valid without being spoiled by string or loop quantum gravity effects. We have also obtained a consistency relation between the tensor-to-scalar ratio T/S and the scalar spectral index as T/S{approx}4.6x10{sup -2}{radical}(n{sub S}-1), leading to potentially measurable differences with inflationary predictions.

  14. Numerical optimization of perturbative coils for tokamaks

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel; Park, Jong-Kyu; Logan, Nikolas; Boozer, Allen; NSTX-U Research Team

    2014-10-01

    Numerical optimization of coils which apply three dimensional (3D) perturbative fields to tokamaks is presented. The application of perturbative 3D magnetic fields in tokamaks is now commonplace for control of error fields, resistive wall modes, resonant field drive, and neoclassical toroidal viscosity (NTV) torques. The design of such systems has focused on control of toroidal mode number, with coil shapes based on simple window-pane designs. In this work, a numerical optimization suite based on the STELLOPT 3D equilibrium optimization code is presented. The new code, IPECOPT, replaces the VMEC equilibrium code with the IPEC perturbed equilibrium code, and targets NTV torque by coupling to the PENT code. Fixed boundary optimizations of the 3D fields for the NSTX-U experiment are underway. Initial results suggest NTV torques can be driven by normal field spectrums which are not pitch-resonant with the magnetic field lines. Work has focused on driving core torque with n = 1 and edge torques with n = 3 fields. Optimizations of the coil currents for the planned NSTX-U NCC coils highlight the code's free boundary capability. This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy.

  15. Multifrequency perturbations in matter-wave interferometry

    NASA Astrophysics Data System (ADS)

    Günther, A.; Rembold, A.; Schütz, G.; Stibor, A.

    2015-11-01

    High-contrast matter-wave interferometry is essential in various fundamental quantum mechanical experiments as well as for technical applications. Thereby, contrast and sensitivity are typically reduced by decoherence and dephasing effects. While decoherence accounts for a general loss of quantum information in a system due to entanglement with the environment, dephasing is due to collective time-dependent external phase shifts, which can be related to temperature drifts, mechanical vibrations, and electromagnetic oscillations. In contrast to decoherence, dephasing can, in principle, be reversed. Here, we demonstrate in experiment and theory a method for the analysis and reduction of the influence of dephasing noise and perturbations consisting of several external frequencies in an electron interferometer. This technique uses the high spatial and temporal resolution of a delay-line detector to reveal and remove dephasing perturbations by second-order correlation analysis. It allows matter-wave experiments under perturbing laboratory conditions and can be applied, in principle, to electron, atom, ion, neutron, and molecule interferometers.

  16. Non-perturbative Renormalization with Staggered Fermions

    NASA Astrophysics Data System (ADS)

    Lytle, Andrew

    Lattice studies of Standard Model phenomenology frequently require knowledge of matching factors, or "Z-factors," that convert lattice operators defined at the lattice scale to operators in a continuum scheme at a scale mu. We make the first non-perturbative determinations of Z-factors for improved, fully dynamical staggered fermions. We compute the mass renormalization factor Zm for the Asqtad action, which is the action used by the MILC collaboration[1]. We find the strange quark mass to be mMSs (2 GeV) = 103(3) MeV; significantly larger than the result obtained using the perturbative Z-factor[2]. We compute all 256 bilinear Z-factors for the HYP-smeared action, which provides a laboratory for comparison to the results of one-loop perturbation theory[3]. Our results indicate broad agreement for ratios of Z-factors, at the few percent level, while the Z-factors themselves differ at around the ten percent level. The bilinear calculations are a stepping stone towards computation of the four-Fermi Z-factors relevant for an ongoing precision calculation of BK[4, 5, 6, 7], the knowledge of which is used to constrain the CKM matrix. Uncertainty in the required matching factors constitutes the dominant source of error.

  17. Verification against perturbed analyses and observations

    NASA Astrophysics Data System (ADS)

    Bowler, N. E.; Cullen, M. J. P.; Piccolo, C.

    2015-07-01

    It has long been known that verification of a forecast against the sequence of analyses used to produce those forecasts can under-estimate the magnitude of forecast errors. Here we show that under certain conditions the verification of a short-range forecast against a perturbed analysis coming from an ensemble data assimilation scheme can give the same root-mean-square error as verification against the truth. This means that a perturbed analysis can be used as a reliable proxy for the truth. However, the conditions required for this result to hold are rather restrictive: the analysis must be optimal, the ensemble spread must be equal to the error in the mean, the ensemble size must be large and the forecast being verified must be the background forecast used in the data assimilation. Although these criteria are unlikely to be met exactly it becomes clear that for most cases verification against a perturbed analysis gives better results than verification against an unperturbed analysis. We demonstrate the application of these results in a idealised model framework and a numerical weather prediction context. In deriving this result we recall that an optimal (Kalman) analysis is one for which the analysis increments are uncorrelated with the analysis errors.

  18. Relativistic Positioning System in perturbed spacetime

    NASA Astrophysics Data System (ADS)

    Kostić, Uroš; Horvat, Martin; Gomboc, Andreja

    2015-11-01

    We present a variant of a Global Navigation Satellite System called a Relativistic Positioning System (RPS), which is based on emission coordinates. We modelled the RPS dynamics in a spacetime around Earth, described by a perturbed Schwarzschild metric, where we included the perturbations due to Earth multipoles (up to the 6th), the Moon, the Sun, Venus, Jupiter, solid tide, ocean tide, and Kerr rotation effect. The exchange of signals between the satellites and a user was calculated using a ray-tracing method in the Schwarzschild spacetime. We find that positioning in a perturbed spacetime is feasible and is highly accurate already with standard numerical procedures: the positioning algorithms used to transform between the emission and the Schwarzschild coordinates of the user are very accurate and time efficient—on a laptop it takes 0.04 s to determine the user’s spatial and time coordinates with a relative accuracy of {10}-28-{10}-26 and {10}-32-{10}-30, respectively.

  19. Cosmic perturbations through the cyclic ages

    SciTech Connect

    Erickson, Joel K.; Gratton, Steven; Steinhardt, Paul J.; Turok, Neil

    2007-06-15

    We analyze the evolution of cosmological perturbations in the cyclic model, paying particular attention to their behavior and interplay over multiple cycles. Our key results are: (1) galaxies and large scale structure present in one cycle are generated by the quantum fluctuations in the preceding cycle without interference from perturbations or structure generated in earlier cycles and without interfering with structure generated in later cycles; (2) the ekpyrotic phase, an epoch of gentle contraction with equation of state w>>1 preceding the hot big bang, makes the universe homogeneous, isotropic and flat within any given observer's horizon; and (3) although the universe is uniform within each observer's horizon, the structure of the cyclic universe on very large scales is more complex, owing to the effects of superhorizon length perturbations, and cannot be described globally as a Friedmann-Robertson-Walker cosmology. In particular, we show that the ekpyrotic contraction phase is so effective in smoothing, flattening and isotropizing the universe within the horizon that this phase alone suffices to solve the horizon and flatness problems even without an extended period of dark energy domination (a kind of low energy inflation). Instead, the cyclic model rests on a genuinely novel, noninflationary mechanism (ekpyrotic contraction) for resolving the classic cosmological conundrums.

  20. Cosmological scalar field perturbations can grow

    NASA Astrophysics Data System (ADS)

    Alcubierre, Miguel; de la Macorra, Axel; Diez-Tejedor, Alberto; Torres, José M.

    2015-09-01

    It has been argued that the small perturbations to the homogeneous and isotropic configurations of a canonical scalar field in an expanding universe do not grow. We show that this is not true in general, and clarify the root of the misunderstanding. We revisit a simple model in which the zero mode of a free scalar field oscillates with high frequency around the minimum of the potential. Under this assumption the linear perturbations grow like those in the standard cold dark matter scenario, but with a Jeans length at the scale of the Compton wavelength of the scalar particle. Contrary to previous analyses in the literature our results do not rely on time averages and/or fluid identifications, and instead we solve both analytically (in terms of a well-defined series expansion) and numerically the linearized Einstein-Klein-Gordon system. Also, we use gauge-invariant fields, which makes the physical analysis more transparent and simplifies the comparison with previous works carried out in different gauges. As a byproduct of this study we identify a time-dependent modulation of the different physical quantities associated to the background as well as the perturbations with potential observational consequences in dark matter models.

  1. Baryonic matter perturbations in decaying vacuum cosmology

    SciTech Connect

    Marttens, R.F. vom; Zimdahl, W.; Hipólito-Ricaldi, W.S. E-mail: wiliam.ricaldi@ufes.br

    2014-08-01

    We consider the perturbation dynamics for the cosmic baryon fluid and determine the corresponding power spectrum for a Λ(t)CDM model in which a cosmological term decays into dark matter linearly with the Hubble rate. The model is tested by a joint analysis of data from supernovae of type Ia (SNIa) (Constitution and Union 2.1), baryonic acoustic oscillations (BAO), the position of the first peak of the anisotropy spectrum of the cosmic microwave background (CMB) and large-scale-structure (LSS) data (SDSS DR7). While the homogeneous and isotropic background dynamics is only marginally influenced by the baryons, there are modifications on the perturbative level if a separately conserved baryon fluid is included. Considering the present baryon fraction as a free parameter, we reproduce the observed abundance of the order of 5% independently of the dark-matter abundance which is of the order of 32% for this model. Generally, the concordance between background and perturbation dynamics is improved if baryons are explicitly taken into account.

  2. Supersymmetric perturbations of the M5 brane

    NASA Astrophysics Data System (ADS)

    Niarchos, Vasilis

    2014-05-01

    We study long-wavelength supersymmetric deformations of brane solutions in supergravity using an extension of previous ideas within the general scheme of the blackfold approach. As a concrete example, we consider long-wavelength perturbations of the planar M2-M5 bound state solution in eleven-dimensional supergravity. We propose a specific ansatz for the first order deformation of the supergravity fields and explore how this deformation perturbs the Killing spinor equations. We find that a special part of these equations gives a projection equation on the Killing spinors that has the same structure as the κ-symmetry condition of the abelian M5 brane theory. Requiring a match between supergravity and gauge theory implies a specific non-linear gauge-gravity map between the bosonic fields of the abelian M5 brane theory and the gravity-induced fluid-like degrees of freedom of the blackfold equations that control the perturbative gravity solution. This observation sheds new light on the SUGRA/DBI correspondence.

  3. Quantum inflaton, primordial perturbations, and CMB fluctuations

    SciTech Connect

    Cao, F.J.; Vega, H.J. de; Sanchez, N.G.

    2004-10-15

    We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow-roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current Wilkinson Microwave Anisotropy Probe observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of (m{sup 2}/NH{sup 2}), where m is the inflaton mass and H the Hubble constant at the moment of horizon crossing. An upper estimate turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it.

  4. Perturbative Critical Behavior from Spacetime Dependent Couplings

    SciTech Connect

    Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo

    2012-08-03

    We find novel perturbative fixed points by introducing mildly spacetime-dependent couplings into otherwise marginal terms. In four-dimensional QFT, these are physical analogues of the small-{epsilon} Wilson-Fisher fixed point. Rather than considering 4-{epsilon} dimensions, we stay in four dimensions but introduce couplings whose leading spacetime dependence is of the form {lambda}x{sup {kappa}}{mu}{sup {kappa}}, with a small parameter {kappa} playing a role analogous to {epsilon}. We show, in {phi}{sup 4} theory and in QED and QCD with massless flavors, that this leads to a critical theory under perturbative control over an exponentially wide window of spacetime positions x. The exact fixed point coupling {lambda}{sub *}(x) in our theory is identical to the running coupling of the translationally invariant theory, with the scale replaced by 1/x. Similar statements hold for three-dimensional {phi}{sup 6} theories and two-dimensional sigma models with curved target spaces. We also describe strongly coupled examples using conformal perturbation theory.

  5. Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime

    SciTech Connect

    Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying

    2014-10-15

    We propose an interesting scheme for tunable high-order sideband comb generation by utilizing ultrastrong optomechanical interaction in a GaAs optomechanical disk resonator beyond the perturbative approximation. We analyze the nonlinear nature of the optomechanical interaction, and give a full description of the non-perturbative effects. It is shown, within the non-perturbative regime, that high-order sideband comb with large intensities can be realized and controlled in a GaAs optomechanical disk resonator with experimentally achievable system parameters, and the non-perturbative regime leads to rich and nontrivial behavior.

  6. Determination of the Sediment Carrying Capacity Based on Perturbed Theory

    PubMed Central

    Ni, Zhi-hui; Zeng, Qiang; Li-chun, Wu

    2014-01-01

    According to the previous studies of sediment carrying capacity, a new method of sediment carrying capacity on perturbed theory was proposed. By taking into account the average water depth, average flow velocity, settling velocity, and other influencing factors and introducing the median grain size as one main influencing factor in deriving the new formula, we established a new sediment carrying capacity formula. The coefficients were determined by the principle of dimensional analysis, multiple linear regression method, and the least square method. After that, the new formula was verified through measuring data of natural rivers and flume tests and comparing the verified results calculated by Cao Formula, Zhang Formula, Li Formula, Engelung-Hansen Formula, Ackers-White Formula, and Yang Formula. According to the compared results, it can be seen that the new method is of high accuracy. It could be a useful reference for the determination of sediment carrying capacity. PMID:25136652

  7. Quantum-to-classical transition for ekpyrotic perturbations

    NASA Astrophysics Data System (ADS)

    Battarra, Lorenzo; Lehners, Jean-Luc

    2014-03-01

    We examine the processes of quantum squeezing and decoherence of density perturbations produced during a slowly contracting ekpyrotic phase in which entropic perturbations are converted to curvature perturbations before the bounce to an expanding phase. During the generation phase, the entropic fluctuations evolve into a highly squeezed quantum state, analogous to the evolution of inflationary perturbations. Subsequently, during the conversion phase, quantum coherence is lost very efficiently due to the interactions of entropy and adiabatic modes. Moreover, while decoherence occurs, the adiabatic curvature perturbations inherit their semiclassicality from the entropic perturbations. Our results confirm that, just as for inflation, an ekpyrotic phase can generate nearly scale-invariant curvature perturbations which may be treated as a statistical ensemble of classical density perturbations, in agreement with observations of the cosmic background radiation.

  8. Non-Gaussian density fluctuations from entropically generated curvature perturbations in ekpyrotic models

    SciTech Connect

    Lehners, Jean-Luc; Steinhardt, Paul J.

    2008-03-15

    We analyze the non-Gaussian density perturbations generated in ekpyrotic/cyclic models based on heterotic M theory. In this picture, two scalar fields produce nearly scale-invariant entropic perturbations during an ekpyrotic phase that are converted into curvature modes after the ekpyrotic phase is complete and just before the big bang. Both intrinsic nonlinearity in the entropy perturbation and the conversion process contribute to non-Gaussianity. The range of the non-Gaussianity parameter f{sub NL} depends on how gradual the conversion process is and the steepness of the scalar field potential during the ekpyrotic phase. Although a wider range is possible, in principle, natural values of the ekpyrotic parameters combined with a gradual conversion process lead to values of -50 < or approx. f{sub NL} < or approx. +200, typically much greater than slow-roll inflation but within the current observational bounds.

  9. Thermodynamic Bounds on Nonlinear Electrostatic Perturbations in Intense Charged Particle Beams

    SciTech Connect

    Nikolas C. Logan and Ronald C. Davidson

    2012-07-18

    This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (TllT⊥ < 1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions.

  10. Thermodynamic bounds on nonlinear electrostatic perturbations in intense charged particle beams

    SciTech Connect

    Logan, Nikolas C.; Davidson, Ronald C.

    2012-07-15

    This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (T{sub Parallel-To }/T{sub Up-Tack }<1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry, and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions.

  11. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe-Strogatz integrability

    NASA Astrophysics Data System (ADS)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-08-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.

  12. Fully non-linear cosmological perturbations of multicomponent fluid and field systems

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Noh, Hyerim; Park, Chan-Gyung

    2016-09-01

    We present fully non-linear and exact cosmological perturbation equations in the presence of multiple components of fluids and minimally coupled scalar fields. We ignore the tensor-type perturbation. The equations are presented without taking the temporal gauge condition in the Friedmann background with general curvature and the cosmological constant. We include the anisotropic stress. Even in the absence of anisotropic stress of individual component, the multiple component nature introduces the anisotropic stress in the collective fluid quantities. We prove the Newtonian limit of multiple fluids in the zero-shear gauge and the uniform-expansion gauge conditions, present the Newtonian hydrodynamic equations in the presence of general relativistic pressure in the zero-shear gauge, and present the fully non-linear equations and the third-order perturbation equations of the non-relativistic pressure fluids in the CDM-comoving gauge.

  13. A perturbational h[sup 4] exponential finite difference scheme for the convective diffusion equation

    SciTech Connect

    Chen, G.Q.; Gao, Z. ); Yang, Z.F. )

    1993-01-01

    A perturbational h[sup 4] compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h[sup 2] exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes. Besides, the h[sup 4] accuracy of the perturbational scheme is verified using double precision arithmetic.

  14. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe–Strogatz integrability

    NASA Astrophysics Data System (ADS)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-08-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.

  15. An Examination of Environment Perturbation Effects on Single Event Upset Rates

    NASA Technical Reports Server (NTRS)

    Gates, Michele M.; Leidecker, Henning W.; Lewis, Mark J.

    1997-01-01

    This paper presents an analysis of the sensitivity of single event upset (SEU) rate predictions to changes in the direct ionization-inducing environment. An examination based on the nature of the SEU rate equation is presented for the case in which the perturbation is constant across varying particle linear energy transfer (LET). It is shown that the relative variation in SEU rate is equal to the relative perturbation in flux. Results are also presented for the case in which the environment perturbations exist in small LET bins. Through this analysis it is shown that the relative variation in expected SEU rate is equal to that in flux only for the LET regime in which the product of the cross section and differential flux is maximum.

  16. Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways

    PubMed Central

    Jo, Kyuri; Jung, Inuk; Moon, Ji Hwan; Kim, Sun

    2016-01-01

    Motivation: To understand the dynamic nature of the biological process, it is crucial to identify perturbed pathways in an altered environment and also to infer regulators that trigger the response. Current time-series analysis methods, however, are not powerful enough to identify perturbed pathways and regulators simultaneously. Widely used methods include methods to determine gene sets such as differentially expressed genes or gene clusters and these genes sets need to be further interpreted in terms of biological pathways using other tools. Most pathway analysis methods are not designed for time series data and they do not consider gene-gene influence on the time dimension. Results: In this article, we propose a novel time-series analysis method TimeTP for determining transcription factors (TFs) regulating pathway perturbation, which narrows the focus to perturbed sub-pathways and utilizes the gene regulatory network and protein–protein interaction network to locate TFs triggering the perturbation. TimeTP first identifies perturbed sub-pathways that propagate the expression changes along the time. Starting points of the perturbed sub-pathways are mapped into the network and the most influential TFs are determined by influence maximization technique. The analysis result is visually summarized in TF-Pathway map in time clock. TimeTP was applied to PIK3CA knock-in dataset and found significant sub-pathways and their regulators relevant to the PIP3 signaling pathway. Availability and Implementation: TimeTP is implemented in Python and available at http://biohealth.snu.ac.kr/software/TimeTP/. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: sunkim.bioinfo@snu.ac.kr PMID:27307609

  17. BOLD coherence reveals segregated functional neural interactions when adapting to distinct torque perturbations

    PubMed Central

    Tunik, Eugene; Schmitt, Paul J.; Grafton, Scott T.

    2007-01-01

    In the natural world, we experience and adapt to multiple extrinsic perturbations. This poses a challenge to neural circuits in discriminating between different context-appropriate responses. Using event-related fMRI, we characterized the neural dynamics involved in this process by randomly delivering a position- or velocity-dependent torque perturbation to subjects’ arms during a target capture task. Each perturbation was color-cued during movement preparation to provide contextual information. Though trajectories differed between perturbations, subjects significantly reduced error under both conditions. This was paralleled by reduced BOLD signal in the right dentate nucleus, the left sensorimotor cortex, and the left intraparietal sulcus. Trials included ‘NoGo’ conditions to dissociate activity related to preparation from execution and adaptation. Subsequent analysis identified perturbation-specific neural processes underlying preparation (‘NoGo’) and adaptation (‘Go’) early and late into learning. Between-perturbation comparisons of BOLD magnitude revealed negligible differences for both preparation and adaptation trials. However, a network-level analysis of BOLD coherence revealed that by late learning, response preparation (‘NoGo’) was attributed to a relative focusing of coherence within cortical and basal ganglia networks in both perturbation conditions, demonstrating a common network interaction for establishing arbitrary visuomotor associations. Conversely, late-learning adaptation (‘Go’) was attributed to a focusing of BOLD coherence between a cortical-basal ganglia network in the viscous condition and between a cortical-cerebellar network in the positional condition. Our findings demonstrate that trial-to-trial acquisition of two distinct adaptive responses is attributed not to anatomically segregated regions, but to differential functional interactions within common sensorimotor circuits. PMID:17202232

  18. Helical temperature perturbations associated with tearing modes in tokamak plasmas

    SciTech Connect

    Fitzpatrick, R.

    1994-06-01

    An investigation is made into the electron temperature perturbations associated with tearing modes in tokamak plasmas, with a view to determining the mode structure using Electron Cyclotron Emission (ECE) data. It is found that there is a critical magnetic island width below which the conventional picture where the temperature is flattened inside the separatrix is invalid. This effect comes about because of the stagnation of magnetic field lines in the vicinity of the rational surface and the finite parallel thermal conductivity of the plasma. For islands whose widths lie below the critical value there is no flattening of the electron temperature inside the separatrix. Such islands have quite different ECE signatures to conventional magnetic islands. In fact the two island types could, in principle, be differentiated experimentally. It should also be possible to map out the outer ideal magnetohydrodynamical eigenfunctions using ECE data. Islands whose widths are much less than the critical value are not destabilized by the perturbed bootstrap current, unlike conventional magnetic islands. This effect is found to have a number of very interesting consequences and may, indeed, provide an explanation for some puzzling experimental results regarding error field induced magnetic reconnection. All islands whose widths are much greater than the critical width possess a boundary layer on the separatrix which enables heat to be transported from one side of the island to the other via the X-point region. The structure of this boundary layer is described in some detail. Finally, the critical island width is found to be fairly substantial in conventional tokamak plasmas, provided that the long mean free path nature of parallel heat transport and the anomalous nature of perpendicular heat transport are taken into account in the calculation.

  19. CDM/baryon isocurvature perturbations in a sneutrino curvaton model

    SciTech Connect

    Harigaya, Keisuke; Kawasaki, Masahiro; Hayakawa, Taku; Yokoyama, Shuichiro E-mail: taku1215@icrr.u-tokyo.ac.jp E-mail: shuichiro@rikkyo.ac.jp

    2014-10-01

    Matter isocurvature perturbations are strictly constrained from cosmic microwave background observations. We study a sneutrino curvaton model where both cold dark matter (CDM)/baryon isocurvature perturbations are generated. In our model, total matter isocurvature perturbations are reduced since the CDM/baryon isocurvature perturbations compensate for each other. We show that this model can not only avoid the stringent observational constraints but also suppress temperature anisotropies on large scales, which leads to improved agreement with observations.

  20. The collision singularity in a perturbed n-body problem.

    NASA Technical Reports Server (NTRS)

    Sperling, H. J.

    1972-01-01

    Collision of all bodies in a perturbed n-body problem is analyzed by an extension of the author's results for a perturbed two-body problem (1969). A procedure is set forth to prove that the absolute value of energy in a perturbed n-body system remains bounded until the moment of collision. It is shown that the characteristics of motion in both perturbed problems are basically the same.

  1. Persistence of the Hopf bifurcation under singular perturbations

    SciTech Connect

    Abed, E.H.

    1984-05-01

    The purpose of this paper is to study persistence of the Hopf bifurcation under singular perturbations of the associated vector field. Both single parameter and multiparameter singular perturbation problems are considered. In each case, hyperbolicity of an associated fast time system is shown to imply persistence. For single parameter singular perturbation problems, we employ Fenichel's center manifold theorem for singularly perturbed systems (1) to prove regular degeneration of the bifurcated periodic solutions and to study their stability.

  2. On spectral perturbation caused by bounded variation of potential

    SciTech Connect

    Ismagilov, R S

    2014-01-31

    The harmonic oscillator operator is perturbed by an arbitrary bounded continuous term. This results in the perturbation of the spectrum. The map sending the first of these perturbations into the second is examined. Its approximation by a linear map is studied. Bibliography: 2 titles.

  3. High resolution detection and excitation of resonant magnetic perturbations in a wall-stabilized tokamak

    SciTech Connect

    Maurer, David A.; Shiraki, Daisuke; Levesque, Jeffrey P.; Bialek, James; Angelini, Sarah; Byrne, Patrick; DeBono, Bryan; Hughes, Paul; Mauel, Michael E.; Navratil, Gerald A.; Peng Qian; Rhodes, Dov; Rath, Nickolaus; Stoafer, Christopher

    2012-05-15

    We report high-resolution detection of the 3D plasma magnetic response of wall-stabilized tokamak discharges in the High Beta Tokamak-Extended Pulse [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)] device. A new adjustable conducting wall has been installed on HBT-EP made up of 20 independent, movable, wall segments instrumented with three distinct sets of 40 modular coils that can be independently driven to generate a wide variety of magnetic perturbations. High-resolution detection of the plasma response is made with 216 poloidal and radial magnetic sensors that have been located and calibrated with high-accuracy. Static and dynamic plasma responses to resonant and non-resonant magnetic perturbations are observed through measurement of the step-response following a rapid change in the toroidal phase of the applied perturbations. Biorthogonal decomposition of the full set of magnetic sensors clearly defines the structures of naturally occurring external kinks as being composed of independent m/n = 3/1 and 6/2 modes. Resonant magnetic perturbations were applied to discharges with pre-existing, saturated m/n = 3/1 external kink mode activity. This m/n = 3/1 kink mode was observed to lock to the applied perturbation field. During this kink mode locked period, the plasma resonant response is characterized by a linear, a saturated, and a disruptive plasma regime dependent on the magnitude of the applied field and value of the edge safety factor and plasma rotation.

  4. Measurements of effective delayed neutron fraction in a fast neutron reactor using the perturbation method

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Jun; Yin, Yan-Peng; Fan, Xiao-Qiang; Li, Zheng-Hong; Pu, Yi-Kang

    2016-06-01

    A perturbation method is proposed to obtain the effective delayed neutron fraction β eff of a cylindrical highly enriched uranium reactor. Based on reactivity measurements with and without a sample at a specified position using the positive period technique, the reactor reactivity perturbation Δρ of the sample in β eff units is measured. Simulations of the perturbation experiments are performed using the MCNP program. The PERT card is used to provide the difference dk of effective neutron multiplication factors with and without the sample inside the reactor. Based on the relationship between the effective multiplication factor and the reactivity, the equation β eff = dk/Δρ is derived. In this paper, the reactivity perturbations of 13 metal samples at the designable position of the reactor are measured and calculated. The average β eff value of the reactor is given as 0.00645, and the standard uncertainty is 3.0%. Additionally, the perturbation experiments for β eff can be used to evaluate the reliabilities of the delayed neutron parameters. This work shows that the delayed neutron data of 235U and 238U from G.R. Keepin’s publication are more reliable than those from ENDF-B6.0, ENDF-B7.0, JENDL3.3 and CENDL2.2. Supported by Foundation of Key Laboratory of Neutron Physics, China Academy of Engineering Physics (2012AA01, 2014AA01), National Natural Science Foundation (11375158, 91326104)

  5. Exploration of magnetic perturbation effects on advanced divertor configurations in NSTX-U

    NASA Astrophysics Data System (ADS)

    Frerichs, H.; Schmitz, O.; Waters, I.; Canal, G. P.; Evans, T. E.; Feng, Y.; Soukhanovskii, V. A.

    2016-06-01

    The control of divertor heat loads - both steady state and transient - remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (Edge Localized Modes) (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads is so called "advanced divertors" which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts - magnetic perturbations and advanced divertors - will have to work together, and we explore their interaction based on the NSTX-U setup. An overview of different divertor configurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which are related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.

  6. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  7. Transfer function analysis of thermospheric perturbations

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.; Spencer, N. W.

    1986-01-01

    Applying perturbation theory, a spectral model in terms of vectors spherical harmonics (Legendre polynomials) is used to describe the short term thermospheric perturbations originating in the auroral regions. The source may be Joule heating, particle precipitation or ExB ion drift-momentum coupling. A multiconstituent atmosphere is considered, allowing for the collisional momentum exchange between species including Ar, O2, N2, O, He and H. The coupled equations of energy, mass and momentum conservation are solved simultaneously for the major species N2 and O. Applying homogeneous boundary conditions, the integration is carred out from the Earth's surface up to 700 km. In the analysis, the spherical harmonics are treated as eigenfunctions, assuming that the Earth's rotation (and prevailing circulation) do not significantly affect perturbations with periods which are typically much less than one day. Under these simplifying assumptions, and given a particular source distribution in the vertical, a two dimensional transfer function is constructed to describe the three dimensional response of the atmosphere. In the order of increasing horizontal wave numbers (order of polynomials), this transfer function reveals five components. To compile the transfer function, the numerical computations are very time consuming (about 100 hours on a VAX for one particular vertical source distribution). However, given the transfer function, the atmospheric response in space and time (using Fourier integral representation) can be constructed with a few seconds of a central processing unit. This model is applied in a case study of wind and temperature measurements on the Dynamics Explorer B, which show features characteristic of a ringlike excitation source in the auroral oval. The data can be interpreted as gravity waves which are focused (and amplified) in the polar region and then are reflected to propagate toward lower latitudes.

  8. Whitham theory for perturbed Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Kamchatnov, A. M.

    2016-10-01

    Original Whitham's method of derivation of modulation equations is applied to systems whose dynamics is described by a perturbed Korteweg-de Vries equation. Two situations are distinguished: (i) the perturbation leads to appearance of right-hand sides in the modulation equations so that they become non-uniform; (ii) the perturbation leads to modification of the matrix of Whitham velocities. General form of Whitham modulation equations is obtained in both cases. The essential difference between them is illustrated by an example of so-called 'generalized Korteweg-de Vries equation'. Method of finding steady-state solutions of perturbed Whitham equations in the case of dissipative perturbations is considered.

  9. Large field cutoffs make perturbative series converge

    NASA Astrophysics Data System (ADS)

    Meurice, Yannick

    For λφ4 problems, convergent perturbative series can be obtained by cutting off the large field configurations. The modified series converge to values exponentially close to the exact ones. For λ larger than some critical value, the method outperforms Padé approximants and Borel summations. We discuss some aspects of the semi-classical methods used to calculate the modified Feynman rules and estimate the error associated with the procedure. We provide a simple numerical example where the procedure works despite the fact that the Borel sum has singularities on the positive real axis.

  10. Large field cutoffs make perturbative series converge

    NASA Astrophysics Data System (ADS)

    Meurice, Yannick

    2002-03-01

    For λφ 4 problems, convergent perturbative series can be obtained by cutting off the large field configurations. The modified series converge to values exponentially close to the exact ones. For λ larger than some critical value, the method outperforms Padé approximants and Borel summations. We discuss some aspects of the semi-classical methods used to calculate the modified Feynman rules and estimate the error associated with the procedure. We provide a simple numerical example where the procedure works despite the fact that the Borel sum has singularities on the positive real axis.

  11. Cosmological explosions from cold dark matter perturbations

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.

  12. Numerical simulation of small perturbation transonic flows

    NASA Technical Reports Server (NTRS)

    Seebass, A. R.; Yu, N. J.

    1976-01-01

    The results of a systematic study of small perturbation transonic flows are presented. Both the flow over thin airfoils and the flow over wedges were investigated. Various numerical schemes were employed in the study. The prime goal of the research was to determine the efficiency of various numerical procedures by accurately evaluating the wave drag, both by computing the pressure integral around the body and by integrating the momentum loss across the shock. Numerical errors involved in the computations that affect the accuracy of drag evaluations were analyzed. The factors that effect numerical stability and the rate of convergence of the iterative schemes were also systematically studied.

  13. Gravitational perturbation and Kerr/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Ghezelbash, A. M.

    2016-07-01

    We find the explicit form of two-point function for the conformal spin-2 energy momentum operators on the near horizon of a near extremal Kerr black hole by variation of a proper boundary action. In this regard, we consider an appropriate boundary action for the gravitational perturbation of the Kerr black hole. We show that the variation of the boundary action with respect to the boundary fields yields the two-point function for the energy momentum tensor of a conformal field theory. We find agreement between the two-point function and the correlators of the dual conformal field theory to the Kerr black hole.

  14. Anisotropic perturbations due to dark energy

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Moss, Adam

    2006-08-01

    A variety of observational tests seem to suggest that the Universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with P/ρ=-2/3, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model.

  15. Light-Front Perturbation Without Spurious Singularities

    NASA Astrophysics Data System (ADS)

    Przeszowski, Jerzy A.; Dzimida-Chmielewska, Elżbieta; Żochowski, Jan

    2016-07-01

    A new form of the light front Feynman propagators is proposed. It contains no energy denominators. Instead the dependence on the longitudinal subinterval x^2_L = 2 x+ x- is explicit and a new formalism for doing the perturbative calculations is invented. These novel propagators are implemented for the one-loop effective potential and various 1-loop 2-point functions for a massive scalar field. The consistency with results for the standard covariant Feynman diagrams is obtained and no spurious singularities are encountered at all. Some remarks on the calculations with fermion and gauge fields in QED and QCD are added.

  16. Exciton dynamics in perturbed vibronic molecular aggregates

    PubMed Central

    Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.

    2015-01-01

    A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840

  17. Efficient perturbation theory for quantum lattice models.

    PubMed

    Hafermann, H; Li, G; Rubtsov, A N; Katsnelson, M I; Lichtenstein, A I; Monien, H

    2009-05-22

    We present a novel approach to long-range correlations beyond dynamical mean-field theory, through a ladder approximation to dual fermions. The new technique is applied to the two-dimensional Hubbard model. We demonstrate that the transformed perturbation series for the nonlocal dual fermions has superior convergence properties over standard diagrammatic techniques. The critical Néel temperature of the mean-field solution is suppressed in the ladder approximation, in accordance with quantum Monte Carlo results. An illustration of how the approach captures and allows us to distinguish short- and long-range correlations is given.

  18. Amplification of curvature perturbations in cyclic cosmology

    SciTech Connect

    Zhang Jun; Liu Zhiguo; Piao Yunsong

    2010-12-15

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  19. g-FUNCTION in Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Konechny, Anatoly

    We present some explicit computations checking a particular form of gradient formula for a boundary beta function in two-dimensional quantum field theory on a disk. The form of the potential function and metric that we consider were introduced in Refs. 16 and 18 in the context of background independent open string field theory. We check the gradient formula to the third order in perturbation theory around a fixed point. Special consideration is given to situations when resonant terms are present exhibiting logarithmic divergences and universal nonlinearities in beta functions. The gradient formula is found to work to the given order.

  20. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Mirus, Kevin Andrew

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Rossler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high- dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  1. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    SciTech Connect

    Mirus, K.A.

    1998-06-01

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Roessler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high-dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  2. Inferring propagation paths for sparsely observed perturbations on complex networks

    PubMed Central

    Massucci, Francesco Alessandro; Wheeler, Jonathan; Beltrán-Debón, Raúl; Joven, Jorge; Sales-Pardo, Marta; Guimerà, Roger

    2016-01-01

    In a complex system, perturbations propagate by following paths on the network of interactions among the system’s units. In contrast to what happens with the spreading of epidemics, observations of general perturbations are often very sparse in time (there is a single observation of the perturbed system) and in “space” (only a few perturbed and unperturbed units are observed). A major challenge in many areas, from biology to the social sciences, is to infer the propagation paths from observations of the effects of perturbation under these sparsity conditions. We address this problem and show that it is possible to go beyond the usual approach of using the shortest paths connecting the known perturbed nodes. Specifically, we show that a simple and general probabilistic model, which we solved using belief propagation, provides fast and accurate estimates of the probabilities of nodes being perturbed.

  3. H(infinity) filtering for fuzzy singularly perturbed systems.

    PubMed

    Yang, Guang-Hong; Dong, Jiuxiang

    2008-10-01

    This paper considers the problem of designing H(infinity) filters for fuzzy singularly perturbed systems with the consideration of improving the bound of singular-perturbation parameter epsilon. First, a linear-matrix-inequality (LMI)-based approach is presented for simultaneously designing the bound of the singularly perturbed parameter epsilon, and H(infinity) filters for a fuzzy singularly perturbed system. When the bound of singularly perturbed parameter epsilon is not under consideration, the result reduces to an LMI-based design method for H(infinity) filtering of fuzzy singularly perturbed systems. Furthermore, a method is given for evaluating the upper bound of singularly perturbed parameter subject to the constraint that the considered system is to be with a prescribed H(infinity) performance bound, and the upper bound can be obtained by solving a generalized eigenvalue problem. Finally, numerical examples are given to illustrate the effectiveness of the proposed methods.

  4. Perturbation Theory for Parent Hamiltonians of Matrix Product States

    NASA Astrophysics Data System (ADS)

    Szehr, Oleg; Wolf, Michael M.

    2015-05-01

    This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).

  5. Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.

  6. Optical characterization of perturbed sites and C3i sites in rare earth doped oxide crystals

    NASA Astrophysics Data System (ADS)

    Reinemer, Gregoy Donald

    Energies, linewidths, and line strengths for some intrinsic and perturbed site transitions of seven different rare-earth ions doped into Y3Al 5O12 were measured as a function of concentration using visible and infrared absorption. Nearest and next-nearest neighbor ion pair transitions were characterized by their concentration dependence, and an analysis of Pr 3+ and Nd3+ pairs showed that those ions are distributed randomly in the lattice. For all transitions studied, the intrinsic D2 site and pair site transitions accounted for 92%--95% of the total line strength; the remaining 5%--8% was assigned to perturbed site transitions. No significant dependence of perturbed site line strength on ionic radius was observed. The nominally equal perturbed site line strength for all transitions studied implied that oscillator strengths for intrinsic and perturbed sites were similar. The perturbed sites appear to be a normal property of the Y3Al 5O12 lattice. To further investigate the nature of the perturbed sites, experiments were done showing that Er3+ occupies a site in Er3+ :Y3Al5O12 with a threefold axis along <111> that is consistent with occupation of the octahedral Al3+ site with C3i symmetry. Allowed magnetic dipole transitions at 1.5 microns were identified in the 4I15/2(1)→ 4I13/2 absorption spectrum using site selective fluorescence. Angle dependent Zeeman experiments on these transitions confirmed that they are from a site with a threefold axis along <111>. Using optical nutation experiments, the number density for Er 3+ C3i sites in 1.0 at.% Er3+:Y3Al 5O12 was determined to be (5 +/- 2) x 10 17 Er3+/cm3. Since Er3+ has nearly the same ionic radius as Y3+, the occupation of these same sites by Y3+ was deduced to be 0.6% +/- 0.3%. Assuming each Y3+ C3i site perturbs 12 D2 sites, the fractional line strength for perturbed sites would be 5% +/- 2%. Similar experiments on 0.05 at.% Er3+:Y2O 3 characterized C3i site Er3+ 4I 15/2 and 4I13/2 crystal field levels and g

  7. A new perturbation theory for electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Drunsel, F.; Zmpitas, W.; Gross, J.

    2014-08-01

    Developing physically based equations of state for electrolyte solutions is demanding due to the long range behaviour of the Coulombic interaction potentials. In this work, we present a new perturbation approach for nonprimitive model electrolyte solutions consisting of hard spheres with a positive or negative point charge or with point dipoles. We overcome the problem of diverging correlation integrals by separating the interaction potentials into short ranged parts and a long ranged contribution. For the point charges, the division is done like in most implementations of the Ewald sum. The perturbation expansion to 3rd order is formulated using the short ranged part of the potentials only, which results in converging correlation integrals for which we provide simple analytical expressions. The long range contribution to the Helmholtz energy is taken into account by a analytical term that has recently been presented by Rodgers and Weeks [J. M. Rodgers and J. D. Weeks, J. Chem. Phys. 131, 244108 (2009)]. In order to assess the proposed theory, we present molecular simulation data for Helmholtz energies of the same model electrolyte solutions. Predictions for the Helmholtz energy from the new theory are found to be in very good agreement with results from the molecular simulations for all state points we regarded.

  8. Perturbation solutions of combustion instability problems

    NASA Technical Reports Server (NTRS)

    Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.

    1979-01-01

    A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.

  9. Monte Carlo small-sample perturbation calculations

    SciTech Connect

    Feldman, U.; Gelbard, E.; Blomquist, R.

    1983-01-01

    Two different Monte Carlo methods have been developed for benchmark computations of small-sample-worths in simplified geometries. The first is basically a standard Monte Carlo perturbation method in which neutrons are steered towards the sample by roulette and splitting. One finds, however, that two variance reduction methods are required to make this sort of perturbation calculation feasible. First, neutrons that have passed through the sample must be exempted from roulette. Second, neutrons must be forced to undergo scattering collisions in the sample. Even when such methods are invoked, however, it is still necessary to exaggerate the volume fraction of the sample by drastically reducing the size of the core. The benchmark calculations are then used to test more approximate methods, and not directly to analyze experiments. In the second method the flux at the surface of the sample is assumed to be known. Neutrons entering the sample are drawn from this known flux and tracking by Monte Carlo. The effect of the sample or the fission rate is then inferred from the histories of these neutrons. The characteristics of both of these methods are explored empirically.

  10. Remarks on simple modified perturbation theory

    NASA Astrophysics Data System (ADS)

    Shirkov, D. V.

    2015-03-01

    The goal is to devise a pQCD modification that should be regular in the low energy region and could serve practically for the data analysis below 1 GeV up to the infra-red limit. The recently observed "blow-up" of the 4-loop pQCD series for the Bjorken sum rule form-factor around Q ≲ 1 GeV and partial resolving of the issue with the help of the Analytic Perturbation Theory (APT) until Q ˜ 0.6 GeV provided the impetus for this attempt. The " massive pQCD" under construction has two grounds. The first is pQCD with only one parameter added, an effective " glueball mass" m ρ ≲ M glb ≲ 1 GeV, serving as an infrared regulator. Roughly, we introduce it by changing the ultra-violet ln Q 2 for a massive log, ln( Q 2 + M {/glb 2}) regular in the low energy region and finite in the infra-red limit. The second stems from the ghost-free APT comprising non-power perturbative expansion that makes it compatible with linear integral transformations.

  11. Aircraft Range Optimization Using Singular Perturbations

    NASA Technical Reports Server (NTRS)

    Oconnor, Joseph Taffe

    1973-01-01

    An approximate analytic solution is developed for the problem of maximizing the range of an aircraft for a fixed end state. The problem is formulated as a singular perturbation and solved by matched inner and outer asymptotic expansions and the minimum principle of Pontryagin. Cruise in the stratosphere, and on transition to and from cruise at constant Mach number are discussed. The state vector includes altitude, flight path angle, and mass. Specific fuel consumption becomes a linear function of power approximating that of the cruise values. Cruise represents the outer solution; altitude and flight path angle are constants, and only mass changes. Transitions between cruise and the specified initial and final conditions correspond to the inner solutions. The mass is constant and altitude and velocity vary. A solution is developed which is valid for cruise but which is not for the initial and final conditions. Transforming of the independent variable near the initial and final conditions result in solutions which are valid for the two inner solutions but not for cruise. The inner solutions can not be obtained without simplifying the state equations. The singular perturbation approach overcomes this difficulty. A quadratic approximation of the state equations is made. The resulting problem is solved analytically, and the two inner solutions are matched to the outer solution.

  12. Consonantal perturbations of pitch in Halkomelem Salish

    NASA Astrophysics Data System (ADS)

    Brown, Jason; Thompson, James J.

    2005-04-01

    It has long been noted that consonants have an effect on the pitch of a following vowel: voiceless stops tend to raise F0, while voiced stops lower it. It has also been suggested that the duration of such perturbations is shorter in tone languages than in non-tone languages [Hombert, Studies in African Linguistics (1977)]. This study compares the effects that consonants have on F0 in two closely related Salish languages: Island Halkomelem, a non-tone language, and Upriver Halkomelem, a language that has reportedly undergone some limited tonogenesis but offers no clear prosodic clues regarding tonality. The effects of the voiceless and ejective stop series were observed, and measurements of F0 were taken at the onset of voicing for the vowel, then at 20 msec. intervals up to 100 msec. Preliminary results indicate that i) Island Halkomelem shows a greater magnitude of difference in F0 at vowel onset between the voiceless and ejective stops than Upriver Halkomelem, and ii) Island Halkomelem shows greater durations of consonantal perturbations of F0 than does Upriver Halkomelem. This suggests that Upriver Halkomelem may have become more sensitive to pitch than the Island dialect, supporting the interpretation of this language as tonal. [Work supported by Phillips Fund.

  13. Hormonal Perturbations in Occupationally Exposed Nickel Workers

    PubMed Central

    Beshir, Safia; Ibrahim, Khadiga Salah; Shaheen, Weam; Shahy, Eman M.

    2016-01-01

    BACKGROUND: Nickel exposure is recognized as an endocrine disruptor because of its adverse effects on reproduction. AIM: This study was designed to investigate the possible testiculo-hormonal perturbations on workers occupationally exposed to nickel and to assess its effects on human male sexual function. METHODS: Cross-sectional comparative study, comprising 105 electroplating male non-smoker, non-alcoholic workers exposed to soluble nickel and 60 controls was done. Serum luteinizing hormone, follicle stimulating hormone, testosterone levels and urinary nickel concentrations were determined for the studied groups. RESULTS: Serum luteinizing hormone, follicle stimulating hormone, urinary nickel and the simultaneous incidence of more than one sexual disorder were significantly higher in the exposed workers compared to controls. The occurrence of various types of sexual disorders (decreased libido, impotence and premature ejaculation) in the exposed workers was 9.5, 5.1 and 4.4 folds respectively than the controls. CONCLUSIONS: Exposure to nickel produces possible testiculo-hormonal perturbations in those exposed workers. PMID:27335607

  14. Cosmological perturbations in a mimetic matter model

    NASA Astrophysics Data System (ADS)

    Matsumoto, Jiro; Odintsov, Sergei D.; Sushkov, Sergey V.

    2015-03-01

    We investigate the cosmological evolution of a mimetic matter model with arbitrary scalar potential. The cosmological reconstruction—which is the method for constructing a model for an arbitrary evolution of the scale factor—is explicitly performed for different choices of potential. The cases where the mimetic matter model shows the evolution as cold dark matter (CDM), the w CDM model, dark matter and dark energy with a dynamical O m (z ) [where O m (z )≡[(H (z )/H0)2-1 ]/[(1 +z )3-1 ] ], and phantom dark energy with a phantom-nonphantom crossing are presented in detail. The cosmological perturbations for such evolutions are studied in the mimetic matter model. For instance, the evolution behavior of the matter density contrast (which is different than the usual one, i.e., δ ¨+2 H δ ˙-κ2ρ δ /2 =0 ) is investigated. The possibility of a peculiar evolution of δ in the model under consideration is shown. Special attention is paid to the behavior of the matter density contrast near the future singularity, where the decay of perturbations may occur much earlier than the singularity.

  15. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging.

  16. Geoacoustic inversion by mode amplitude perturbation

    NASA Astrophysics Data System (ADS)

    Poole, Travis L.; Lynch, James F.; Pierce, Allan D.; Frisk, George V.

    2005-09-01

    In a shallow-water waveguide the geoacoustic properties of the seafloor have a significant effect on the way sound propagates through the water. Because of this, measurements of the pressure field in the water can be used to estimate bottom properties. In this talk a perturbative method is presented which allows one to use measurements of the modal amplitudes to estimate a set of bottom parameters. A key component of the method is an expression for the derivative of the mode functions with respect to some bottom parameter. Following from the work of Thode and Kim [J. Acoust. Soc. Am. 116, 3370-2283 (2004)], the derivative is expressed as a weighted sum over all modes (both propagating and leaky). It is thought that this method can be used alongside eigenvalue perturbation [Rajan et al., J. Acoust. Soc. Am. 82, 998-1017 (1987)] to provide an inversion scheme more robust to measurement noise. To demonstrate its feasibility, the method is applied to synthetic and real data. [Work supported by the WHOI education office.

  17. Perturbation resilience and superiorization of iterative algorithms

    NASA Astrophysics Data System (ADS)

    Censor, Y.; Davidi, R.; Herman, G. T.

    2010-06-01

    Iterative algorithms aimed at solving some problems are discussed. For certain problems, such as finding a common point in the intersection of a finite number of convex sets, there often exist iterative algorithms that impose very little demand on computer resources. For other problems, such as finding that point in the intersection at which the value of a given function is optimal, algorithms tend to need more computer memory and longer execution time. A methodology is presented whose aim is to produce automatically for an iterative algorithm of the first kind a 'superiorized version' of it that retains its computational efficiency but nevertheless goes a long way toward solving an optimization problem. This is possible to do if the original algorithm is 'perturbation resilient', which is shown to be the case for various projection algorithms for solving the consistent convex feasibility problem. The superiorized versions of such algorithms use perturbations that steer the process in the direction of a superior feasible point, which is not necessarily optimal, with respect to the given function. After presenting these intuitive ideas in a precise mathematical form, they are illustrated in image reconstruction from projections for two different projection algorithms superiorized for the function whose value is the total variation of the image.

  18. Approaches to the Treatment of Equilibrium Perturbations

    NASA Astrophysics Data System (ADS)

    Canagaratna, Sebastian G.

    2003-10-01

    Perturbations from equilibrium are treated in the textbooks by a combination of Le Châtelier's principle, the comparison of the equilibrium constant K with the reaction quotient Q,and the kinetic approach. Each of these methods is briefly reviewed. This is followed by derivations of the variation of the equilibrium value of the extent of reaction, ξeq, with various parameters on which it depends. Near equilibrium this relationship can be represented by a straight line. The equilibrium system can be regarded as moving on this line as the parameter is varied. The slope of the line depends on quantities like enthalpy of reaction, volume of reaction and so forth. The derivation shows that these quantities pertain to the equilibrium system, not the standard state. Also, the derivation makes clear what kind of assumptions underlie our conclusions. The derivation of these relations involves knowledge of thermodynamics that is well within the grasp of junior level physical chemistry students. The conclusions that follow from the derived relations are given as subsidiary rules in the form of the slope of ξeq, with T, p, et cetera. The rules are used to develop a visual way of predicting the direction of shift of a perturbed system. This method can be used to supplement one of the other methods even at the introductory level.

  19. Molecular cluster perturbation theory. I. Formalism

    NASA Astrophysics Data System (ADS)

    Byrd, Jason N.; Jindal, Nakul; Molt, Robert W., Jr.; Bartlett, Rodney J.; Sanders, Beverly A.; Lotrich, Victor F.

    2015-11-01

    We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.

  20. Localized Perturbations in Saturn's C Ring

    NASA Astrophysics Data System (ADS)

    Spitale, Joseph N.; Tiscareno, Matthew S.

    2016-10-01

    Years of high-resolution imaging of Saturn's rings have revealed many examples of perturbations arising from local causes. For example, the presence of 100-m-scale and smaller moonlets is inferred in the A ring based on the propeller-shaped disturbances that they create (Tiscareno et al. 2006, 2010); the F ring is shaped by regular collisions with its shepherd Prometheus, as well as with other smaller bodies orbiting in the vicinity (Murray et al. 2005, 2008); the "wisps" on the outer edge of the Keeler gap (Porco et al. 2005) may mark the locations of small moonlets that have emerged from the A ring (Tiscareno and Arnault 2015); wakes in the Huygens ringlet imply the presence of two multi-km bodies, and the irregular shape of its inner edge suggests the presence of many smaller bodies (Spitale and Hahn 2016); based on shadow measurements, the B ring contains an embedded 300-m object that produces a small propeller-shaped disturbance (Spitale and Porco 2010; Spitale and Tiscareno 2012).Here, we present evidence for localized perturbations in the C ring. The ringlet embedded in the Bond gap, near 1.470 Saturn radii, shows discrete clumps orbiting at the Keplerian rate in images spanning about eight years. The clumps are not detected in all image sequences at the expected longitudes. The Dawes ringlet, near 1.495 Saturn radii, has an irregular edge that does not appear as a simple superposition of low-wavenumber normal modes.

  1. Quasi-periodic oscillations of perturbed tori

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Varadarajan; Manousakis, Antonios; Kluźniak, Włodzimierz

    2016-05-01

    We performed axisymmetric hydrodynamical simulations of oscillating tori orbiting a non-rotating black hole. The tori in equilibrium were constructed with a constant distribution of angular momentum in a pseudo-Newtonian potential (Kluźniak-Lee). Motions of the torus were triggered by adding subsonic velocity fields: radial, vertical and diagonal to the tori in equilibrium. As the perturbed tori evolved in time, we measured L2 norm of density and obtained the power spectrum of L2 norm which manifested eigenfrequencies of tori modes. The most prominent modes of oscillation excited in the torus by a quasi-random perturbation are the breathing mode and the radial and vertical epicyclic modes. The radial and the plus modes, as well as the vertical and the breathing modes will have frequencies in an approximate 3:2 ratio if the torus is several Schwarzschild radii away from the innermost stable circular orbit. Results of our simulations may be of interest in the context of high-frequency quasi-periodic oscillations observed in stellar-mass black hole binaries, as well as in supermassive black holes.

  2. Quantum cosmological perturbations of multiple fluids

    NASA Astrophysics Data System (ADS)

    Peter, Patrick; Pinto-Neto, N.; Vitenti, Sandro D. P.

    2016-01-01

    The formalism to treat quantization and evolution of cosmological perturbations of multiple fluids is described. We first construct the Lagrangian for both the gravitational and matter parts, providing the necessary relevant variables and momenta leading to the quadratic Hamiltonian describing linear perturbations. The final Hamiltonian is obtained without assuming any equations of motions for the background variables. This general formalism is applied to the special case of two fluids, having in mind the usual radiation and matter mix which made most of our current Universe history. Quantization is achieved using an adiabatic expansion of the basis functions. This allows for an unambiguous definition of a vacuum state up to the given adiabatic order. Using this basis, we show that particle creation is well defined for a suitable choice of vacuum and canonical variables, so that the time evolution of the corresponding quantum fields is unitary. This provides constraints for setting initial conditions for an arbitrary number of fluids and background time evolution. We also show that the common choice of variables for quantization can lead to an ill-defined vacuum definition. Our formalism is not restricted to the case where the coupling between fields is small, but is only required to vary adiabatically with respect to the ultraviolet modes, thus paving the way to consistent descriptions of general models not restricted to single-field (or fluid).

  3. Shock wave perturbation decay in granular materials

    SciTech Connect

    Vogler, Tracy J.

    2015-11-05

    A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtained for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. As a result, the limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.

  4. Shock wave perturbation decay in granular materials

    DOE PAGESBeta

    Vogler, Tracy J.

    2015-11-05

    A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtainedmore » for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. As a result, the limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.« less

  5. Density perturbations in general modified gravitational theories

    SciTech Connect

    De Felice, Antonio; Tsujikawa, Shinji; Mukohyama, Shinji

    2010-07-15

    We derive the equations of linear cosmological perturbations for the general Lagrangian density f(R,{phi},X)/2+L{sub c}, where R is a Ricci scalar, {phi} is a scalar field, and X=-{partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}/}2 is a field kinetic energy. We take into account a nonlinear self-interaction term L{sub c}={xi}({phi}) {open_square}{phi}({partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}}) recently studied in the context of ''Galileon'' cosmology, which keeps the field equations at second order. Taking into account a scalar-field mass explicitly, the equations of matter density perturbations and gravitational potentials are obtained under a quasistatic approximation on subhorizon scales. We also derive conditions for the avoidance of ghosts and Laplacian instabilities associated with propagation speeds. Our analysis includes most of modified gravity models of dark energy proposed in literature; and thus it is convenient to test the viability of such models from both theoretical and observational points of view.

  6. Perturbation analysis for patch occupancy dynamics

    USGS Publications Warehouse

    Martin, Julien; Nichols, James D.; McIntyre, Carol L.; Ferraz, Goncalo; Hines, James E.

    2009-01-01

    Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species.

  7. Terrestrial perturbation experiments for environmental assessment

    NASA Astrophysics Data System (ADS)

    Suter, G. W.

    1982-01-01

    The National Environmental Policy Act of 1969 (NEPA) was initially interpreted as requiring full disclosure of the environmental impact of a federal action. Because of the limitations of time, money, and manpower, the requirement that all impacts be considered has led to superficial analysis of many important impacts. Data collection has largely been limited to the enumeration of species because this information can be applied to the analysis of any problem. The President's Council on Environment Quality (CEQ) has provided a solution to this problem by reinterpreting NEPA as requiring analysis of those impacts that have significant bearing on decision making. Because assessment resources can now be concentrated on a few critical issues, it should be possible to perform field perturbation experiments to provide direct evidence of the effects of a specific mixture of pollutants or physical disturbances on the specific receiving ecosystem. Techniques are described for field simulation of gaseous and particulate air pollution, polluted rain, soil pollutants, disturbance of the soil, and disturbance of wildlife. These techniques are discussed in terms of their realism, cost, and the restrictions that they place on the measurement of ecological parameters. Development and use of these field perturbation techniques should greatly improve the accuracy of predictive assessments and further our understanding of ecosystem processes.

  8. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  9. Magneto-reheating constraints from curvature perturbations

    SciTech Connect

    Ringeval, Christophe; Suyama, Teruaki; Yokoyama, Jun'ichi E-mail: suyama@resceu.s.u-tokyo.ac.jp

    2013-09-01

    As additional perturbative degrees of freedom, it is known that magnetic fields of inflationary origin can source curvature perturbations on super-Hubble scales. By requiring the magnetic generated curvature to remain smaller than its inflationary adiabatic counterpart during inflation and reheating, we derive new constraints on the maximal field value today, the reheating energy scale and its equation of state parameter. These bounds end up being stronger by a few order of magnitude than those associated with a possible backreaction of the magnetic field onto the background. Our results are readily applicable to any slow-roll single field inflationary models and any magnetic field having its energy density scaling as a{sup γ} during inflation. As an illustrative example, massive inflation is found to remain compatible with a magnetic field today B{sub 0} = 5 × 10{sup −15} G for some values of γ only if a matter dominated reheating takes place at energies larger than 10{sup 5} GeV. Conversely, assuming γ = −1, massive inflation followed by a matter dominated reheating cannot explain large scale magnetic fields larger than 10{sup −20} G today.

  10. Perturbation analysis for patch occupancy dynamics.

    PubMed

    Martin, Julien; Nichols, James D; McIntyre, Carol L; Ferraz, Gonçalo; Hines, James E

    2009-01-01

    Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species. PMID:19294907

  11. BICEP2, the curvature perturbation and supersymmetry

    SciTech Connect

    Lyth, David H.

    2014-11-01

    The tensor fraction r ≅ 0.16 found by BICEP2 corresponds to a Hubble parameter H ≅ 1.0 × 10{sup 14} GeV during inflation. This has two implications for the (single-field) slow-roll inflation hypothesis. First, the inflaton perturbation must account for much more than 10% of the curvature perturbation ζ, which barring fine-tuning means that it accounts for practically all of it. It follows that a curvaton-like mechanism for generating ζ requires an alternative to slow roll such as k-inflation. Second, accepting slow-roll inflation, the excursion of the inflaton field is at least of order Planck scale. As a result, the flatness of the inflaton presumably requires a shift symmetry. I point out that if such is the case, the resulting potential is likely to have at least approximately the quadratic form suggested in 1983 by Linde, which is known to be compatible with the observed r as well as the observed spectral index n{sub s}. The shift symmetry does not require supersymmetry. Also, the big H may rule out a GUT by restoring the symmetry and producing fatal cosmic strings. The absence of a GUT would correspond to the absence of superpartners for the Standard Model particles, which indeed have yet to be found at the LHC.

  12. Fast ion loss associated with perturbed field by resonant magnetic perturbation coils in KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Jun Young; Kim, Junghee; Rhee, Tongnyeol; Yoon, S. W.; Park, G. Y.; Jeon, Y. M.; Isobe, M.; Shimizu, A.; Ogawa, K.; Park, J.-K.; Garcia-Munoz, M.

    2013-10-01

    Resonant magnetic perturbation (RMP) is the most promising strategies for ELM mitigation/suppression. However, it has been found through the modeling and the experiments that RMP for the ELM mitigation can enhance the toroidally localized fast ion loss. During KSTAR experimental campaigns in 2011 and 2012, sudden increase or decrease of the fast ion loss has been observed by the scintillator-based fast ion loss detector (FILD) when the RMP is applied. Three-dimensional perturbed magnetic field by RMP coil in vacuum is calculated by Biot-Savart's law embedded in the Lorentz orbit code (LORBIT). The LORBIT code which is based on gyro-orbit following motion has been used for the simulation of the three-dimensional fast ion trajectories in presence of non-axisymmetric magnetic perturbation. It seems the measured fast ion loss rate at the localized position depends on not only the RMP field configuration but also the plasma profile such as safety factor and so on, varying the ratio between radial drift and stochastization of the fat-ion orbits. The simulation results of fast ion orbit under magnetic perturbation w/ and w/o plasma responses will be presented and compared with KSTAR FILD measurement results in various cases.

  13. Approximating frustration scores in complex networks via perturbed Laplacian spectra

    NASA Astrophysics Data System (ADS)

    Savol, Andrej J.; Chennubhotla, Chakra S.

    2015-12-01

    Systems of many interacting components, as found in physics, biology, infrastructure, and the social sciences, are often modeled by simple networks of nodes and edges. The real-world systems frequently confront outside intervention or internal damage whose impact must be predicted or minimized, and such perturbations are then mimicked in the models by altering nodes or edges. This leads to the broad issue of how to best quantify changes in a model network after some type of perturbation. In the case of node removal there are many centrality metrics which associate a scalar quantity with the removed node, but it can be difficult to associate the quantities with some intuitive aspect of physical behavior in the network. This presents a serious hurdle to the application of network theory: real-world utility networks are rarely altered according to theoretic principles unless the kinetic impact on the network's users are fully appreciated beforehand. In pursuit of a kinetically interpretable centrality score, we discuss the f-score, or frustration score. Each f-score quantifies whether a selected node accelerates or inhibits global mean first passage times to a second, independently selected target node. We show that this is a natural way of revealing the dynamical importance of a node in some networks. After discussing merits of the f-score metric, we combine spectral and Laplacian matrix theory in order to quickly approximate the exact f-score values, which can otherwise be expensive to compute. Following tests on both synthetic and real medium-sized networks, we report f-score runtime improvements over exact brute force approaches in the range of 0 to 400 % with low error (<3 % ).

  14. Approximating frustration scores in complex networks via perturbed Laplacian spectra

    PubMed Central

    Savol, Andrej J.; Chennubhotla, Chakra S.

    2016-01-01

    Systems of many interacting components, as found in physics, biology, infrastructure, and the social sciences, are often modeled by simple networks of nodes and edges. The real-world systems frequently confront outside intervention or internal damage whose impact must be predicted or minimized, and such perturbations are then mimicked in the models by altering nodes or edges. This leads to the broad issue of how to best quantify changes in a model network after some type of perturbation. In the case of node removal there are many centrality metrics which associate a scalar quantity with the removed node, but it can be difficult to associate the quantities with some intuitive aspect of physical behavior in the network. This presents a serious hurdle to the application of network theory: real-world utility networks are rarely altered according to theoretic principles unless the kinetic impact on the network’s users are fully appreciated beforehand. In pursuit of a kinetically-interpretable centrality score, we discuss the f-score, or frustration score. Each f-score quantifies whether a selected node accelerates or inhibits global mean first passage times to a second, independently-selected target node. We show that this is a natural way of revealing the dynamical importance of a node in some networks. After discussing merits of the f-score metric, we combine spectral and Laplacian matrix theory in order to quickly approximate the exact f-score values, which can otherwise be expensive to compute. Following tests on both synthetic and real medium-sized networks, we report f-score runtime improvements over exact brute force approaches in the range of 0 to 400% with low error (< 3%). PMID:26764743

  15. A stochastic perturbation theory for non-autonomous systems

    SciTech Connect

    Moon, W.; Wettlaufer, J. S.

    2013-12-15

    We develop a perturbation theory for a class of first order nonlinear non-autonomous stochastic ordinary differential equations that arise in climate physics. The perturbative procedure produces moments in terms of integral delay equations, whose order by order decay is characterized in a Floquet-like sense. Both additive and multiplicative sources of noise are discussed and the question of how the nature of the noise influences the results is addressed theoretically and numerically. By invoking the Martingale property, we rationalize the transformation of the underlying Stratonovich form of the model to an Ito form, independent of whether the noise is additive or multiplicative. The generality of the analysis is demonstrated by developing it both for a Brownian particle moving in a periodically forced quartic potential, which acts as a simple model of stochastic resonance, as well as for our more complex climate physics model. The validity of the approach is shown by comparison with numerical solutions. The particular climate dynamics problem upon which we focus involves a low-order model for the evolution of Arctic sea ice under the influence of increasing greenhouse gas forcing ΔF{sub 0}. The deterministic model, developed by Eisenman and Wettlaufer [“Nonlinear threshold behavior during the loss of Arctic sea ice,” Proc. Natl. Acad. Sci. U.S.A. 106(1), 28–32 (2009)] exhibits several transitions as ΔF{sub 0} increases and the stochastic analysis is used to understand the manner in which noise influences these transitions and the stability of the system.

  16. A geometric singular perturbation approach for planar stationary shock waves

    NASA Astrophysics Data System (ADS)

    Wang, Zhuopu; Zhang, Jiazhong; Ren, Junheng; Aslam, Muhammad Nauman

    2015-08-01

    The non-linear non-equilibrium nature of shock waves in gas dynamics is investigated for the planar case. Along each streamline, the Euler equations with non-equilibrium pressure are reduced to a set of ordinary differential equations defining a slow-fast system, and geometric singular perturbation theory is applied. The proposed theory shows that an orbit on the slow manifold corresponds to the smooth part of the solution to the Euler equation, where non-equilibrium effects are negligible; and a relaxation motion from the unsteady to the steady branch of the slow manifold corresponds to a shock wave, where the flow relaxes from non-equilibrium to equilibrium. Recognizing the shock wave as a fast motion is found to be especially useful for shock wave detection when post-processing experimental measured or numerical calculated flow fields. Various existing shock detection methods can be derived from the proposed theory in a rigorous mathematical manner. The proposed theory provides a new shock detection method based on its non-linear non-equilibrium nature, and may also serve as the theoretical foundation for many popular shock wave detection techniques.

  17. Difference equation for tracking perturbations in systems of Boolean nested canalyzing functions

    NASA Astrophysics Data System (ADS)

    Dimitrova, Elena S.; Yordanov, Oleg I.; Matache, Mihaela T.

    2015-06-01

    This paper studies the spread of perturbations through networks composed of Boolean functions with special canalyzing properties. Canalyzing functions have the property that at least for one value of one of the inputs the output is fixed, irrespective of the values of the other inputs. In this paper the focus is on partially nested canalyzing functions, in which multiple, but not all inputs have this property in a cascading fashion. They naturally describe many relationships in real networks. For example, in a gene regulatory network, the statement "if gene A is expressed, then gene B is not expressed regardless of the states of other genes" implies that A is canalyzing. On the other hand, the additional statement "if gene A is not expressed, and gene C is expressed, then gene B is automatically expressed; otherwise gene B 's state is determined by some other type of rule" implies that gene B is expressed by a partially nested canalyzing function with more than two variables, but with two canalyzing variables. In this paper a difference equation model of the probability that a network node's value is affected by an initial perturbation over time is developed, analyzed, and validated numerically. It is shown that the effect of a perturbation decreases towards zero over time if the Boolean functions are canalyzing in sufficiently many variables. The maximum dynamical impact of a perturbation is shown to be comparable to the average impact for a wide range of values of the average sensitivity of the network. Percolation limits are also explored; these are parameter values which generate a transition of the expected perturbation effect to zero as other parameters are varied, so that the initial perturbation does not scale up with the parameters once the percolation limits are reached.

  18. Difference equation for tracking perturbations in systems of Boolean nested canalyzing functions.

    PubMed

    Dimitrova, Elena S; Yordanov, Oleg I; Matache, Mihaela T

    2015-06-01

    This paper studies the spread of perturbations through networks composed of Boolean functions with special canalyzing properties. Canalyzing functions have the property that at least for one value of one of the inputs the output is fixed, irrespective of the values of the other inputs. In this paper the focus is on partially nested canalyzing functions, in which multiple, but not all inputs have this property in a cascading fashion. They naturally describe many relationships in real networks. For example, in a gene regulatory network, the statement "if gene A is expressed, then gene B is not expressed regardless of the states of other genes" implies that A is canalyzing. On the other hand, the additional statement "if gene A is not expressed, and gene C is expressed, then gene B is automatically expressed; otherwise gene B's state is determined by some other type of rule" implies that gene B is expressed by a partially nested canalyzing function with more than two variables, but with two canalyzing variables. In this paper a difference equation model of the probability that a network node's value is affected by an initial perturbation over time is developed, analyzed, and validated numerically. It is shown that the effect of a perturbation decreases towards zero over time if the Boolean functions are canalyzing in sufficiently many variables. The maximum dynamical impact of a perturbation is shown to be comparable to the average impact for a wide range of values of the average sensitivity of the network. Percolation limits are also explored; these are parameter values which generate a transition of the expected perturbation effect to zero as other parameters are varied, so that the initial perturbation does not scale up with the parameters once the percolation limits are reached.

  19. A hybrid-perturbation-Galerkin technique which combines multiple expansions

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method for the solution of a variety of differential equations type problems is found to give better results when multiple perturbation expansions are employed. The method assumes that there is parameter in the problem formulation and that a perturbation method can be sued to construct one or more expansions in this perturbation coefficient functions multiplied by computed amplitudes. In step one, regular and/or singular perturbation methods are used to determine the perturbation coefficient functions. The results of step one are in the form of one or more expansions each expressed as a sum of perturbation coefficient functions multiplied by a priori known gauge functions. In step two the classical Bubnov-Galerkin method uses the perturbation coefficient functions computed in step one to determine a set of amplitudes which replace and improve upon the gauge functions. The hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Galerkin methods as applied separately, while combining some of their better features. The proposed method is applied, with two perturbation expansions in each case, to a variety of model ordinary differential equations problems including: a family of linear two-boundary-value problems, a nonlinear two-point boundary-value problem, a quantum mechanical eigenvalue problem and a nonlinear free oscillation problem. The results obtained from the hybrid methods are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.

  20. Formation of Voids from Negative Density Perturbations

    NASA Astrophysics Data System (ADS)

    de Araujo, J. C. N.; Opher, R.

    1990-11-01

    RESUMEN. Se estudia la formaci6n de huecos a partir de un espectro negativo de perturbaciones, tomando en cuenta la expansi6n del Universo, arrastre por fotones, enfriamiento por fotones, fotoionizaci6n, ioniza- ci6n colisional, enfriamiento Lyman a y la formaci6n y enfriamiento de moleculas H2. Nuestros resultados predicen la existencia de regiones 1/10 de Ia densidad promedio para regiones de masa lO - 1O10M . ABSTRACT. In the present paer we study the formation of voids from a negative spectrum of perturbations taking into account the expansion of the Universe, photon-drag, photon-cooling, photoionization, collisional ionization, Lyman a cooling and the formation and cooling of 112 molecules. Our results predict the existence of regions 1/10 the average density for regions of mass 1O - 1O10M@ : CLUSTERS-GALAXIES - COSMOLOGY

  1. Dynamical entropy for systems with stochastic perturbation

    PubMed

    Ostruszka; Pakonski; Slomczynski; Zyczkowski

    2000-08-01

    Dynamics of deterministic systems perturbed by random additive noise is characterized quantitatively. Since for such systems the Kolmogorov-Sinai (KS) entropy diverges if the diameter of the partition tends to zero, we analyze the difference between the total entropy of a noisy system and the entropy of the noise itself. We show that this quantity is finite and non-negative and we call it the dynamical entropy of the noisy system. In the weak noise limit this quantity is conjectured to tend to the KS entropy of the deterministic system. In particular, we consider one-dimensional systems with noise described by a finite-dimensional kernel for which the Frobenius-Perron operator can be represented by a finite matrix.

  2. Perturbation technique to analyze nonlinear oscillations

    SciTech Connect

    Tu, S.T.

    1986-01-01

    Using perturbation and asymptotic methods, the author analyzes the nonlinear oscillations of two dynamical systems: the Bonhoeffer-van der Pol equations and the forced Duffing equation. In the two-dimensional model of the former system, he studies the transition from stable steady-state to relaxation oscillation as a parameter is varied. The analysis also helps to clarify a phenomenon commonly known as the duck trajectory. In the three-dimensional model, bursting oscillation is explained. In the forced Duffing equation, the main interest is the trajectory near the homoclinic orbit and the saddle point. A map of that trajectory is analytically constructed. From that map, limit cycles and their linear stability are investigated.

  3. Inflationary perturbations in a closed FLRW universe

    NASA Astrophysics Data System (ADS)

    Yokomizo, Nelson; Bonga, Beatrice; Gupt, Brajesh

    2016-03-01

    We investigate the evolution of gauge invariant quantum perturbations in the closed FLRW model in the presence of an inflationary potential. We first find out initial conditions for the background geometry which lead to a desired slow-roll phase that is compatible with observation. Providing the initial conditions for the quantum field at the onset of slow-roll we study the influence of the spatial curvature on the scalar and tensor power spectra at the end of inflation. By comparing our results with the recent Planck data we discuss the role of spatial curvature on the estimation of various cosmological parameters. We highlight the main differences from the standard inflationary scenario in a flat FLRW model and potential implications for future observations. Finally, we comment on the quantum gravitational extension of this scenario to the Planck scale. Supported by CNPq-Brazil and NSF.

  4. Non-perturbative background field calculations

    NASA Astrophysics Data System (ADS)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  5. Robustness of topological quantum codes: Ising perturbation

    NASA Astrophysics Data System (ADS)

    Zarei, Mohammad Hossein

    2015-02-01

    We study the phase transition from two different topological phases to the ferromagnetic phase by focusing on points of the phase transition. To this end, we present a detailed mapping from such models to the Ising model in a transverse field. Such a mapping is derived by rewriting the initial Hamiltonian in a new basis so that the final model in such a basis has a well-known approximated phase transition point. Specifically, we consider the toric codes and the color codes on various lattices with Ising perturbation. Our results provide a useful table to compare the robustness of the topological codes and to explicitly show that the robustness of the topological codes depends on triangulation of their underlying lattices.

  6. Modified contour-improved perturbation theory

    SciTech Connect

    Cvetic, Gorazd; Loewe, Marcelo; Martinez, Cristian; Valenzuela, Cristian

    2010-11-01

    The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard ''contour-improved'' method based on a derivative expansion of the Adler function. The new approach has some advantages compared to contour-improved perturbation theory. The renormalization scale dependence is weaker by more than a factor of 2 and the last term of the expansion is reduced by about 10%, while the renormalization scheme dependence remains approximately equal. The extracted QCD coupling at the tau mass scale is by 2% lower than the contour-improved value. We find {alpha}{sub s}(M{sub Z}{sup 2})=0.1211{+-}0.0010.

  7. Perturbation approach applied to modal diffraction methods.

    PubMed

    Bischoff, Joerg; Hehl, Karl

    2011-05-01

    Eigenvalue computation is an important part of many modal diffraction methods, including the rigorous coupled wave approach (RCWA) and the Chandezon method. This procedure is known to be computationally intensive, accounting for a large proportion of the overall run time. However, in many cases, eigenvalue information is already available from previous calculations. Some of the examples include adjacent slices in the RCWA, spectral- or angle-resolved scans in optical scatterometry and parameter derivatives in optimization. In this paper, we present a new technique that provides accurate and highly reliable solutions with significant improvements in computational time. The proposed method takes advantage of known eigensolution information and is based on perturbation method. PMID:21532698

  8. Perturbative analysis in higher-spin theories

    NASA Astrophysics Data System (ADS)

    Didenko, V. E.; Misuna, N. G.; Vasiliev, M. A.

    2016-07-01

    A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higherspin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.

  9. Applications of partially quenched chiral perturbation theory

    SciTech Connect

    Golterman, M.F.; Leung, K.C.

    1998-05-01

    Partially quenched theories are theories in which the valence- and sea-quark masses are different. In this paper we calculate the nonanalytic one-loop corrections of some physical quantities: the chiral condensate, weak decay constants, Goldstone boson masses, B{sub K}, and the K{sup +}{r_arrow}{pi}{sup +}{pi}{sup 0} decay amplitude, using partially quenched chiral perturbation theory. Our results for weak decay constants and masses agree with, and generalize, results of previous work by Sharpe. We compare B{sub K} and the K{sup +} decay amplitude with their real-world values in some examples. For the latter quantity, two other systematic effects that plague lattice computations, namely, finite-volume effects and unphysical values of the quark masses and pion external momenta, are also considered. We find that typical one-loop corrections can be substantial. {copyright} {ital 1998} {ital The American Physical Society}

  10. Singular perturbations in the state regulator problem

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1972-01-01

    Most of the results of singular perturbation theory have been concerned with initial value problems whereas optimal control problems are of two-point boundary value type. The portions of this theory applicable to the open loop state regulator problem are reviewed. For obtaining approximate solutions to the state regulator problem the method of matched asymptotic expansions is employed. This method has been developed in connection with certain fluid mechanics problems and is applicable to nonlinear as well as linear problems. It has been found in the past to be advantageous not to formulate this method generally but to apply it to each individual problem and this approach is adopted here. A general recipe for the method is given and its application is illustrated by using the method to obtain an approximate solution to a simple, specific state regulator problem.

  11. Plasma Braking Due to External Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, Kejo; Brunsell, P. R.; Khan, M. W. M.; Drake, J. R.

    2010-11-01

    The RFP EXTRAP T2R is equipped with a comprehensive active feedback system (128 active saddle coils in the full-coverage array) and active control of both resonant and non-resonant MHD modes has been demonstrated. The feedback algorithms, based on modern control methodology such as reference mode tracking (both amplitude and phase), are a useful tool to improve the ``state of the art'' of the MHD mode control. But this tool can be used also to improve the understanding and the characterization of other phenomena such as the ELM mitigation with a resonant magnetic perturbation or the plasma viscosity. The present work studies plasma and mode braking due to static RMPs. Results show that a static RMP produces a global braking of the flow profile. The study of the effect of RMPs characterized by different helicities will also give information on the plasma viscosity profile. Experimental results are finally compared to theoretical models.

  12. A human source for ELF magnetic perturbations.

    PubMed

    Liboff, A R

    2016-01-01

    Current models that frame consciousness in terms of electromagnetic field theory carry implications that have yet to be fully explored. Endogenous weak extremely low frequency (ELF) magnetic fields are generated by ionic charge flow in axons, dendrites and synaptic transmitters. Because neural tissues are transparent to such fields, these provide the basis for the globally unifying qualities required to properly describe consciousness as a field. At the same time, however, an electromagnetic approach predicts partial transmission of this 1-100 nT field, suggesting external interactions similar to the various ELF magnetic perturbations that are linked to homeostatic and endocrine-related physiological effects. It follows that humans may represent an additional, previously unrecognized source of weak (1-10 nT) ambient ELF magnetic fields. PMID:27355315

  13. Degenerate R-S perturbation theory

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Certain, P. R.

    1973-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.

  14. Computation of trunk stability in forward perturbations: effects of preload, perturbation load, initial flexion and abdominal preactivation.

    PubMed

    Shahvarpour, Ali; Shirazi-Adl, Aboulfazl; Larivière, Christian; Bazrgari, Babak

    2015-02-26

    Spine stability demand influences active-passive coordination of the trunk response, especially during sudden perturbations. The objective of this study was to look at the role of passive, stationary active and reflexive subsystems on spinal stability. Spine stability was evaluated here during pre- and post-perturbation phases by computing the minimum (i.e., critical) muscle stiffness coefficient required to maintain stability. The effects of pre-perturbation conditions (preloading, initial posture and abdominal antagonistic coactivation) as well as perturbation magnitude were studied. Results revealed that higher preload, initially flexed trunk posture and abdominal pre-activation enhanced pre-perturbation stiffness and stability. In contrast to the preload, however, larger sudden load, initial flexion and abdominal preactivation significantly increased post-perturbation stability margin. As a result, much lower critical muscle stiffness coefficient was required post-perturbation. Compared to the pre-perturbation phase, the trunk stiffness and stability substantially increased post-perturbation demanding thus a much lower critical muscle stiffness coefficient. Overall, these findings highlight the crucial role of the ligamentous spine and muscles (in both passive and active states) in augmenting the trunk stiffness and hence stability during pre- and post-perturbation phases; a role much evident in the presence of initial trunk flexion.

  15. Non-Gaussian isocurvature perturbations in dark radiation

    SciTech Connect

    Kawakami, Etsuko; Kawasaki, Masahiro; Miyamoto, Koichi; Nakayama, Kazunori; Sekiguchi, Toyokazu E-mail: kawasaki@icrr.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp

    2012-07-01

    We study non-Gaussian properties of the isocurvature perturbations in the dark radiation, which consists of the active neutrinos and extra light species, if exist. We first derive expressions for the bispectra of primordial perturbations which are mixtures of curvature and dark radiation isocurvature perturbations. We also discuss CMB bispectra produced in our model and forecast CMB constraints on the non-linearity parameters based on the Fisher matrix analysis. Some concrete particle physics motivated models are presented in which large isocurvature perturbations in extra light species and/or the neutrino density isocurvature perturbations as well as their non-Gaussianities may be generated. Thus detections of non-Gaussianity in the dark radiation isocurvature perturbation will give us an opportunity to identify the origin of extra light species and lepton asymmetry.

  16. Gravitational arcs as a perturbation of the perfect ring

    NASA Astrophysics Data System (ADS)

    Alard, C.

    2007-11-01

    The image of a point situated at the centre of a circularly symmetric potential is a perfect circle. The perturbative effect of non-symmetrical potential terms is to displace and break the perfect circle. These two effects, displacement and breaking, are directly related to the Taylor expansion of the perturbation at first order on the circle. The numerical accuracy of this perturbative approach is tested in the case of an elliptical potential with a core radius. The contour of the images and the caustic lines are well reproduced by the perturbative approach. These results suggest that the modelling of arcs, and in particular that of tangential arcs, may be simplified by using a general perturbative representation for points located on the circle. This linear perturbative approach is accurate when the gradient of the circular potential is almost linear; this constraint is satisfied when the potential is nearly isothermal.

  17. Non-perturbative String Theory from Water Waves

    SciTech Connect

    Iyer, Ramakrishnan; Johnson, Clifford V.; Pennington, Jeffrey S.; /SLAC

    2012-06-14

    We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.

  18. Intersegmental coupling and recovery from perturbations in freely running cockroaches.

    PubMed

    Couzin-Fuchs, Einat; Kiemel, Tim; Gal, Omer; Ayali, Amir; Holmes, Philip

    2015-01-15

    Cockroaches are remarkably stable runners, exhibiting rapid recovery from external perturbations. To uncover the mechanisms behind this important behavioral trait, we recorded leg kinematics of freely running animals in both undisturbed and perturbed trials. Functional coupling underlying inter-leg coordination was monitored before and during localized perturbations, which were applied to single legs via magnetic impulses. The resulting transient effects on all legs and the recovery times to normal pre-perturbation kinematics were studied. We estimated coupling architecture and strength by fitting experimental data to a six-leg-unit phase oscillator model. Using maximum-likelihood techniques, we found that a network with nearest-neighbor inter-leg coupling best fitted the data and that, although coupling strengths vary among preparations, the overall inputs entering each leg are approximately balanced and consistent. Simulations of models with different coupling strengths encountering perturbations suggest that the coupling schemes estimated from our experiments allow animals relatively fast and uniform recoveries from perturbations.

  19. Adiabatic and isocurvature perturbation projections in multi-field inflation

    SciTech Connect

    Gordon, Chris; Saffin, Paul M. E-mail: Paul.Saffin@nottingham.ac.uk

    2013-08-01

    Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.

  20. Investigations of Probe Induced Perturbations in a Hall Thruster

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2002-08-12

    An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities.

  1. Inferring the perturbation time from biological time course data

    PubMed Central

    Yang, Jing; Penfold, Christopher A.; Grant, Murray R.; Rattray, Magnus

    2016-01-01

    Motivation: Time course data are often used to study the changes to a biological process after perturbation. Statistical methods have been developed to determine whether such a perturbation induces changes over time, e.g. comparing a perturbed and unperturbed time course dataset to uncover differences. However, existing methods do not provide a principled statistical approach to identify the specific time when the two time course datasets first begin to diverge after a perturbation; we call this the perturbation time. Estimation of the perturbation time for different variables in a biological process allows us to identify the sequence of events following a perturbation and therefore provides valuable insights into likely causal relationships. Results: We propose a Bayesian method to infer the perturbation time given time course data from a wild-type and perturbed system. We use a non-parametric approach based on Gaussian Process regression. We derive a probabilistic model of noise-corrupted and replicated time course data coming from the same profile before the perturbation time and diverging after the perturbation time. The likelihood function can be worked out exactly for this model and the posterior distribution of the perturbation time is obtained by a simple histogram approach, without recourse to complex approximate inference algorithms. We validate the method on simulated data and apply it to study the transcriptional change occurring in Arabidopsis following inoculation with Pseudomonas syringae pv. tomato DC3000 versus the disarmed strain DC3000hrpA. Availability and Implementation: An R package, DEtime, implementing the method is available at https://github.com/ManchesterBioinference/DEtime along with the data and code required to reproduce all the results. Contact: Jing.Yang@manchester.ac.uk or Magnus.Rattray@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27288495

  2. Anomaly-free cosmological perturbations in effective canonical quantum gravity

    SciTech Connect

    Barrau, Aurelien; Calcagni, Gianluca; Grain, Julien E-mail: bojowald@gravity.psu.edu E-mail: julien.grain@ias.u-psud.fr

    2015-05-01

    This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.

  3. Constraints on primordial density perturbations from induced gravitational waves

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David

    2010-01-15

    We consider the stochastic background of gravitational waves produced during the radiation-dominated hot big bang as a constraint on the primordial density perturbation on comoving length scales much smaller than those directly probed by the cosmic microwave background or large-scale structure. We place weak upper bounds on the primordial density perturbation from current data. Future detectors such as BBO and DECIGO will place much stronger constraints on the primordial density perturbation on small scales.

  4. Equation-of-motion coupled cluster perturbation theory revisited

    SciTech Connect

    Eriksen, Janus J. Jørgensen, Poul; Olsen, Jeppe; Gauss, Jürgen

    2014-05-07

    The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally converges towards the full configuration interaction energy limit. The series is based on a Møller-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby remedying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz.

  5. Resonant magnetic perturbations and edge ergodization on the COMPASS tokamak

    SciTech Connect

    Cahyna, P.; Fuchs, V.; Krlin, L.

    2008-09-15

    Results of calculations of resonant magnetic perturbation spectra on the COMPASS tokamak are presented. Spectra of the perturbations are calculated from the vacuum field of the perturbation coils. Ergodization is then estimated by applying the criterion of overlap of the resulting islands and verified by field line tracing. Results show that for the chosen configuration of perturbation coils an ergodic layer appears in the pedestal region. The ability to form an ergodic layer is similar to the theoretical results for the ELM suppression experiment at DIII-D; thus, a comparable effect on ELMs can be expected.

  6. Perturbation Monte Carlo methods for tissue structure alterations.

    PubMed

    Nguyen, Jennifer; Hayakawa, Carole K; Mourant, Judith R; Spanier, Jerome

    2013-01-01

    This paper describes an extension of the perturbation Monte Carlo method to model light transport when the phase function is arbitrarily perturbed. Current perturbation Monte Carlo methods allow perturbation of both the scattering and absorption coefficients, however, the phase function can not be varied. The more complex method we develop and test here is not limited in this way. We derive a rigorous perturbation Monte Carlo extension that can be applied to a large family of important biomedical light transport problems and demonstrate its greater computational efficiency compared with using conventional Monte Carlo simulations to produce forward transport problem solutions. The gains of the perturbation method occur because only a single baseline Monte Carlo simulation is needed to obtain forward solutions to other closely related problems whose input is described by perturbing one or more parameters from the input of the baseline problem. The new perturbation Monte Carlo methods are tested using tissue light scattering parameters relevant to epithelia where many tumors originate. The tissue model has parameters for the number density and average size of three classes of scatterers; whole nuclei, organelles such as lysosomes and mitochondria, and small particles such as ribosomes or large protein complexes. When these parameters or the wavelength is varied the scattering coefficient and the phase function vary. Perturbation calculations give accurate results over variations of ∼15-25% of the scattering parameters.

  7. On the Singular Perturbations for Fractional Differential Equation

    PubMed Central

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method. PMID:24683357

  8. Multifield cosmological perturbations at third order and the ekpyrotic trispectrum

    SciTech Connect

    Lehners, Jean-Luc; Renaux-Petel, Sebastien

    2009-09-15

    Using the covariant formalism, we derive the equations of motion for adiabatic and entropy perturbations at third order in perturbation theory for cosmological models involving two scalar fields. We use these equations to calculate the trispectrum of ekpyrotic and cyclic models in which the density perturbations are generated via the entropic mechanism. In these models, the conversion of entropy into curvature perturbations occurs just before the big bang, either during the ekpyrotic phase or during the subsequent kinetic energy dominated phase. In both cases, we find that the nonlinearity parameters f{sub NL} and g{sub NL} combine to leave a very distinct observational imprint.

  9. The Liouvillian perturbations of the Kerr-Newman black hole

    NASA Astrophysics Data System (ADS)

    Holder, Cody

    The well-known Kovacic algorithm is applied to the differential equations that govern the "synthetic" radial perturbations of the Kerr-Newman black hole as a means to identify all of the Liouvillian (i.e. closed-form) solutions. The analysis includes the scalar, Dirac, electromagnetic and gravitational perturbations (i.e. spin 0,1/2,1,2 fields), the non-extreme and extreme geometries, and the perturbations of the Kerr and Schwarzschild black holes. This work presents new results that extend, and essentially complete, the analysis of the Liouvillian perturbations of the Kerr-Newman black hole initiated by this author and supervisor in a recent article.

  10. Nondimensional forms for singular perturbation analyses of aircraft energy climbs

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Markopoulos, N.; Corban, J. E.

    1991-01-01

    This paper proposes a systematic approach for identifying the perturbation parameter in singular perturbation analysis of aircraft optimal guidance, and in particular considers a family of problems related to aircraft energy climbs. The approach, which is based on a nondimensionalization of the equations of motion, is used to evaluatae the appropriateness of forced singular perturbation formulations used in the past for transport and fighter aircraft, and to assess the applicability of energy state approximations and singular perturbation analysis for airbreathing transatmospheric vehicles with hypersonic cruise and orbital capabilities.

  11. Non-linear isocurvature perturbations and non-Gaussianities

    SciTech Connect

    Langlois, David; Vernizzi, Filippo; Wands, David E-mail: filippo.vernizzi@cea.fr

    2008-12-15

    We study non-linear primordial adiabatic and isocurvature perturbations and their non-Gaussianity. After giving a general formulation in the context of an extended {delta}N formalism, we analyse in detail two illustrative examples. The first is a mixed curvaton-inflaton scenario in which fluctuations of both the inflaton and a curvaton (a light isocurvature field during inflation) contribute to the primordial density perturbation. The second example is that of double inflation involving two decoupled massive scalar fields during inflation. In the mixed curvaton-inflaton scenario we find that the bispectrum of primordial isocurvature perturbations may be large and comparable to the bispectrum of adiabatic curvature perturbations.

  12. Concurrent multiple-state analytic perturbation theory via supersymmetry

    NASA Astrophysics Data System (ADS)

    Dhatt, Sharmistha; Bhattacharyya, Kamal

    2011-04-01

    Conventional nondegenerate perturbation theory for some nth state starts with the corresponding unperturbed state. The present formulation yields recursively perturbation expansions for any bound state using the sole information of the unperturbed ground state. Logarithmic perturbation theory is exploited along with supersymmetric quantum mechanics to achieve this end. As the method involves ground-state perturbations of a series of supersymmetric Hamiltonians, concern about nodal shifts of targeted excited states arises only at the ultimate step, thus, minimizing considerably the labor of clumsy computations involved in dealing with excited states.

  13. Quaternion regularization and stabilization of perturbed central motion. II

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    1993-04-01

    Generalized regular quaternion equations for the three-dimensional two-body problem in terms of Kustaanheimo-Stiefel variables are obtained within the framework of the quaternion theory of regularizing and stabilizing transformations of the Newtonian equations for perturbed central motion. Regular quaternion equations for perturbed central motion of a material point in a central field with a certain potential Pi are also derived in oscillatory and normal forms. In addition, systems of perturbed central motion equations are obtained which include quaternion equations of perturbed orbit orientations in oscillatory or normal form, and a generalized Binet equation is derived. A comparative analysis of the equations is carried out.

  14. Design of a wearable perturbator for human knee impedance estimation during gait.

    PubMed

    Tucker, Michael R; Moser, Adrian; Lambercy, Olivier; Sulzer, James; Gassert, Roger

    2013-06-01

    Mechanical impedance modulation is the key to natural, stable and efficient human locomotion. An improved understanding of this mechanism is necessary for the development of the next generation of intelligent prosthetic and orthotic devices. This paper documents the design methodologies that were employed to realize a knee perturbator that can experimentally estimate human knee impedance during gait through the application of angular velocity perturbations. The proposed experiment requires a light, transparent, wearable, and remotely actuated device that closely follows the movement of the biological joint. A genetic algorithm was used to design a polycentric hinge whose instantaneous center of rotation is optimized to be kinematically compatible with the human knee. A wafer disc clutch was designed to switch between a high transparency passive mode and a high impedance actuated mode. A remote actuation and transmission scheme was designed to enable high power output perturbations while minimizing the device's mass. Position and torque sensors were designed for device control and to provide data for post-processing and joint impedance estimation. Pending the fabrication and mechanical testing of the device, we expect this knee perturbator to be a valuable tool for experimental investigation of locomotive joint impedance modulation.

  15. Experimental assessment of the sensitiveness of an electrochemical oscillator towards chemical perturbations.

    PubMed

    Ferreira, Graziela C A; Batista, Bruno C; Varela, Hamilton

    2012-01-01

    In this study we address the problem of the response of a (electro)chemical oscillator towards chemical perturbations of different magnitudes. The chemical perturbation was achieved by addition of distinct amounts of trifluoromethanesulfonate (TFMSA), a rather stable and non-specifically adsorbing anion, and the system under investigation was the methanol electro-oxidation reaction under both stationary and oscillatory regimes. Increasing the anion concentration resulted in a decrease in the reaction rates of methanol oxidation and a general decrease in the parameter window where oscillations occurred. Furthermore, the addition of TFMSA was found to decrease the induction period and the total duration of oscillations. The mechanism underlying these observations was derived mathematically and revealed that inhibition in the methanol oxidation through blockage of active sites was found to further accelerate the intrinsic non-stationarity of the unperturbed system. Altogether, the presented results are among the few concerning the experimental assessment of the sensitiveness of an oscillator towards chemical perturbations. The universal nature of the complex chemical oscillator investigated here might be used for reference when studying the dynamics of other less accessible perturbed networks of (bio)chemical reactions.

  16. Complex relativity and real solutions. IV. Perturbations of vacuum Kerr-Schild spaces.

    NASA Astrophysics Data System (ADS)

    Hickman, M. S.; McIntosh, C. B. G.

    1986-12-01

    In this paper the theory of integrable double Kerr-Schild (IDKS) spaces is examined. The vacuum field equations are shown to reduce to the single equation of Plebański and Robinson [20]. These metrics are given essentially in terms of one potentialH. First-order perturbations ofH lead to metric (gravitational) perturbations of vacuum algebraically degenerate spaces in a direct manner and give results in agreement with those of Cohen and Kegeles [6, 7, 8], Stewart [9], Teukolsky [5], Torres del Castillo [12, 13], and others. Higher-order perturbations ofH are also obtained with the view that, in the limit, these solutions should yield (new) exact vacuum solutions. The success of this construction lies in the (complex) geometric structure of IDKS spaces. This structure induces a natural splitting of the field equations which allows a potentialization of the perturbation (as well as the vacuum metric itself). It also allows massless spin 1/2 and 1 fields to be examined on the IDKS background in a similar manner.

  17. Simulations of Long-Term Community Dynamics in Coral Reefs - How Perturbations Shape Trajectories

    PubMed Central

    Kubicek, Andreas; Muhando, Christopher; Reuter, Hauke

    2012-01-01

    Tropical coral reefs feature extraordinary biodiversity and high productivity rates in oligotrophic waters. Due to increasing frequencies of perturbations – anthropogenic and natural – many reefs are under threat. Such perturbations often have devastating effects on these unique ecosystems and especially if they occur simultaneously and amplify each other's impact, they might trigger a phase shift and create irreversible conditions. We developed a generic, spatially explicit, individual-based model in which competition drives the dynamics of a virtual benthic reef community – comprised of scleractinian corals and algae – under different environmental settings. Higher system properties, like population dynamics or community composition arise through self-organization as emergent properties. The model was parameterized for a typical coral reef site at Zanzibar, Tanzania and features coral bleaching and physical disturbance regimes as major sources of perturbations. Our results show that various types and modes (intensities and frequencies) of perturbations create diverse outcomes and that the switch from high diversity to single species dominance can be evoked by small changes in a key parameter. Here we extend the understanding of coral reef resilience and the identification of key processes, drivers and respective thresholds, responsible for changes in local situations. One future goal is to provide a tool which may aid decision making processes in management of coral reefs. PMID:23209397

  18. A study of early/slow VLF perturbations observed at Agra, India

    NASA Astrophysics Data System (ADS)

    Pandey, Uma; Singh, Ashutosh K.; Singh, Om P.; Singh, Birbal; Saraswat, Vibhav K.

    2016-06-01

    We present here the results of sub-ionospheric VLF perturbations observed on NWC (19.8 kHz) transmitter signal propagating in the Earth-ionosphere waveguide, monitored at our low latitude station Agra. During the period of observation (June-December 2011), we found 89 cases of VLF perturbation, while only 73 cases showing early character associated with strong lightning discharges. Out of 73 events, 64 (~84%) of the early VLF perturbations are found to be early/slow in nature; the remaining 9 events are early/fast. The onset duration of these early/slow VLF perturbations is up to ~ 5 s. A total of 54 observed early events show amplitude change lying between ± 3.0 dB, and phase change ± 12 degree, respectively, and found to occur mainly during nighttime. One of the interesting results we found is that the events with larger recovery time lie far away from the VLF propagation path, while events with smaller duration of recovery are within the ± 50-100 km of signal path. The World Wide Lightning Location Network (WWLLN) data is analysed to find the location of causative lightning and temporal variation. The lightning discharge and associated processes that lead to early VLF events are discussed.

  19. Weak lensing generated by vector perturbations and detectability of cosmic strings

    SciTech Connect

    Yamauchi, Daisuke; Namikawa, Toshiya; Taruya, Atsushi E-mail: namikawa@utap.phys.s.u-tokyo.ac.jp

    2012-10-01

    We study the observational signature of vector metric perturbations through the effect of weak gravitational lensing. In the presence of vector perturbations, the non-vanishing signals for B-mode cosmic shear and curl-mode deflection angle, which have never appeared in the case of scalar metric perturbations, naturally arise. Solving the geodesic and geodesic deviation equations, we drive the full-sky formulas for angular power spectra of weak lensing signals, and give the explicit expressions for E-/B-mode cosmic shear and gradient-/curl-mode deflection angle. As a possible source for seeding vector perturbations, we then consider a cosmic string network, and discuss its detectability from upcoming weak lensing and CMB measurements. Based on the formulas and a simple model for cosmic string network, we calculate the angular power spectra and expected signal-to-noise ratios for the B-mode cosmic shear and curl-mode deflection angle. We find that the weak lensing signals are enhanced for a smaller intercommuting probability of the string network, P, and they are potentially detectable from the upcoming cosmic shear and CMB lensing observations. For P ∼ 10{sup −1}, the minimum detectable tension of the cosmic string will be down to Gμ ∼ 5 × 10{sup −8}. With a theoretically inferred smallest value P ∼ 10{sup −3}, we could even detect the string with Gμ ∼ 5 × 10{sup −10}.

  20. New probe of naturalness.

    PubMed

    Craig, Nathaniel; Englert, Christoph; McCullough, Matthew

    2013-09-20

    Any new scalar fields that perturbatively solve the hierarchy problem by stabilizing the Higgs boson mass also generate new contributions to the Higgs boson field-strength renormalization, irrespective of their gauge representation. These new contributions are physical, and in explicit models their magnitude can be inferred from the requirement of quadratic divergence cancellation; hence, they are directly related to the resolution of the hierarchy problem. Upon canonically normalizing the Higgs field, these new contributions lead to modifications of Higgs couplings that are typically great enough that the hierarchy problem and the concept of electroweak naturalness can be probed thoroughly within a precision Higgs boson program. Specifically, at a lepton collider this can be achieved through precision measurements of the Higgs boson associated production cross section. This would lead to indirect constraints on perturbative solutions to the hierarchy problem in the broadest sense, even if the relevant new fields are gauge singlets.

  1. Invariant exchange perturbation theory for multicenter systems: Time-dependent perturbations

    SciTech Connect

    Orlenko, E. V. Evstafev, A. V.; Orlenko, F. E.

    2015-02-15

    A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithium atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated.

  2. Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations.

    PubMed

    Vera-Garcia, Francisco J; Elvira, José L L; Brown, Stephen H M; McGill, Stuart M

    2007-10-01

    Much discussion exists about which is the most effective technique to improve spine stability. The purpose of this study was to evaluate the effectiveness of abdominal bracing and abdominal hollowing maneuvers to control spine motion and stability against rapid perturbations. Eleven healthy males were posteriorly loaded in different experimental conditions: resting with no knowledge of the perturbation timing; performing each of the stabilization maneuvers at 10%, 15% and 20% of internal oblique maximum voluntary contraction with no knowledge of the perturbation timing; and naturally coactivating the trunk muscles when perturbation timing was known. An EMG biofeedback system was used to control the pattern and intensity of abdominal coactivation. The muscular preactivation of seven trunk muscles (bilaterally registered), the applied force, and the torso muscular and kinematic responses to loading were measured; and the spine stability and compression were modeled. The hollowing maneuver was not effective for reducing the kinematic response to sudden perturbation. On the contrary, the bracing maneuver fostered torso cocontraction, reduced lumbar displacement, and increased trunk stability, but at the cost of increasing spinal compression. When the timing of the perturbation was known, the participants were able to stabilize the trunk while imposing smaller spine compressive loads. PMID:16996278

  3. Comparative numerical-experimental analysis of the universal impact of arbitrary perturbations on transport in three-dimensional unsteady flows.

    PubMed

    Wu, F; Speetjens, M F M; Vainchtein, D L; Trieling, R R; Clercx, H J H

    2014-12-01

    Numerical studies of three-dimensional (3D) time-periodic flow inside a lid-driven cylinder revealed that a weak perturbation of the noninertial state (Reynolds number Re=0) has a strong impact on the Lagrangian flow structure by inducing transition of a global family of nested spheroidal invariant surfaces into intricate coherent structures consisting of adiabatic invariant surfaces connected by tubes. These tubes provide paths for passive tracers to escape from one invariant surface to another. Perturbation is introduced in two ways: (i) weak fluid inertia by nonzero Re∼O(10(-3)); (ii) small disturbance of the external flow forcing. Both induce essentially the same dynamics, implying a universal response in the limit of a weak perturbation. Moreover, we show that the motion inside tubes possesses an adiabatic invariant. Long-term experiments were conducted using 3D particle-tracking velocimetry and relied on experimental imperfections as natural weak perturbations. This provided first experimental evidence of the tube formation and revealed close agreement with numerical simulations. We experimentally validated the universality of the perturbation response and, given the inevitability of imperfections, exposed the weakly perturbed state as the true "unperturbed state" in realistic systems. PMID:25615182

  4. Perturbative and non-perturbative aspects of the two-dimensional string/Yang-Mills correspondence

    NASA Astrophysics Data System (ADS)

    Lelli, Simone; Maggiore, Michele; Rissone, Anna

    2003-04-01

    It is known that YM 2 with gauge group SU( N) is equivalent to a string theory with coupling gs=1/ N, order by order in the 1/ N expansion. We show how this result can be obtained from the bosonization of the fermionic formulation of YM 2, improving on results in the literature, and we examine a number of non-perturbative aspects of this string/YM correspondence. We find contributions to the YM 2 partition function of order exp{- kA/( πα' gs)} with k an integer and A the area of the target space, which would correspond, in the string interpretation, to D1-branes. Effects which could be interpreted as D0-branes are instead strictly absent, suggesting a non-perturbative structure typical of type 0B string theories. We discuss effects from the YM side that are interpreted in terms of the stringy exclusion principle of Maldacena and Strominger. We also find numerically an interesting phase structure, with a region where YM 2 is described by a perturbative string theory separated from a region where it is described by a topological string theory.

  5. Perturbing Streaming in Dictyostelium discoidium Aggregation

    NASA Astrophysics Data System (ADS)

    Rericha, Erin; Garcia, Gene; Parent, Carole; Losert, Wolfgang

    2009-03-01

    The ability of cells to move towards environmental cues is a critical process allowing the destruction of intruders by the immune system, the formation of the vascular system and the whole scale remodeling of tissues during embryo development. We examine the initial transition from single cell to group migration in the social amoeba Dictyostelium discoidium. Upon starvation, D. discoidium cells enter into a developmental program that triggers solitary cells to aggregate into a multicellular structure. The aggregation is mediated by the small molecule, cyclic-AMP, that cells sense, synthesize, secrete and migrate towards often in a head-to-tail fashion called a stream. Using experiment and numerical simulation, we study the sensitivity of streams to perturbations in the cyclic-AMP concentration field. We find the stability of the streams requires cells to shape the cyclic-AMP field through localized secretion and degradation. In addition, we find the streaming phenotype is sensitive to changes in the substrate properties, with slicker surfaces leading to longer more branched streams that yield large initial aggregates.

  6. Planetary system disruption by Galactic perturbations to wide binary stars.

    PubMed

    Kaib, Nathan A; Raymond, Sean N; Duncan, Martin

    2013-01-17

    Nearly half the exoplanets found within binary star systems reside in very wide binaries with average stellar separations greater than 1,000 astronomical units (one astronomical unit (AU) being the Earth-Sun distance), yet the influence of such distant binary companions on planetary evolution remains largely unstudied. Unlike their tighter counterparts, the stellar orbits of wide binaries continually change under the influence of the Milky Way's tidal field and impulses from other passing stars. Here we report numerical simulations demonstrating that the variable nature of wide binary star orbits dramatically reshapes the planetary systems they host, typically billions of years after formation. Contrary to previous understanding, wide binary companions may often strongly perturb planetary systems, triggering planetary ejections and increasing the orbital eccentricities of surviving planets. Although hitherto not recognized, orbits of giant exoplanets within wide binaries are statistically more eccentric than those around isolated stars. Both eccentricity distributions are well reproduced when we assume that isolated stars and wide binaries host similar planetary systems whose outermost giant planets are scattered beyond about 10 AU from their parent stars by early internal instabilities. Consequently, our results suggest that although wide binaries eventually remove the most distant planets from many planetary systems, most isolated giant exoplanet systems harbour additional distant, still undetected planets. PMID:23292514

  7. Atmospheric bromine and ozone perturbations in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Pinto, J. P.; Watson, R. T.; Sander, S. P.

    1980-01-01

    The role of bromine compounds in the photochemistry of the natural and perturbed stratosphere has been reexamined using an expanded reaction scheme and the results of recent laboratory studies of several key reactions. The most important finding is that through the reaction BrO + ClO yielding Br + Cl + O2 there is a synergistic effect between bromine and chlorine which results in an efficient catalytic destruction of ozone in the lower stratosphere. One-dimensional photochemical model results indicate that BrO is the major bromine species throughout the stratosphere, followed by BrONO2, HBr, HOBr and Br. It is shown from the foregoing that bromine is more efficient than chlorine as a catalyst for destroying ozone, and the implications for stratospheric ozone of possible future growth in the industrial and agricultural use of bromine are discussed. Bromine concentrations of 20 pptv (2 x 10 to the -11th power), as suggested by recent observations, can decrease the present-day integrated ozone column density by 2.4%, and can enhance ozone depletion from steady-state chlorofluoromethane release at 1973 rates by a factor of 1.1-1.2.

  8. Planetary system disruption by Galactic perturbations to wide binary stars.

    PubMed

    Kaib, Nathan A; Raymond, Sean N; Duncan, Martin

    2013-01-17

    Nearly half the exoplanets found within binary star systems reside in very wide binaries with average stellar separations greater than 1,000 astronomical units (one astronomical unit (AU) being the Earth-Sun distance), yet the influence of such distant binary companions on planetary evolution remains largely unstudied. Unlike their tighter counterparts, the stellar orbits of wide binaries continually change under the influence of the Milky Way's tidal field and impulses from other passing stars. Here we report numerical simulations demonstrating that the variable nature of wide binary star orbits dramatically reshapes the planetary systems they host, typically billions of years after formation. Contrary to previous understanding, wide binary companions may often strongly perturb planetary systems, triggering planetary ejections and increasing the orbital eccentricities of surviving planets. Although hitherto not recognized, orbits of giant exoplanets within wide binaries are statistically more eccentric than those around isolated stars. Both eccentricity distributions are well reproduced when we assume that isolated stars and wide binaries host similar planetary systems whose outermost giant planets are scattered beyond about 10 AU from their parent stars by early internal instabilities. Consequently, our results suggest that although wide binaries eventually remove the most distant planets from many planetary systems, most isolated giant exoplanet systems harbour additional distant, still undetected planets.

  9. A Unified Approach for Solving Nonlinear Regular Perturbation Problems

    ERIC Educational Resources Information Center

    Khuri, S. A.

    2008-01-01

    This article describes a simple alternative unified method of solving nonlinear regular perturbation problems. The procedure is based upon the manipulation of Taylor's approximation for the expansion of the nonlinear term in the perturbed equation. An essential feature of this technique is the relative simplicity used and the associated unified…

  10. The perturbations of the orbital elements of Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Erdi, B.

    1981-08-01

    An asymptotic solution for the cylindrical coordinates of Trojan asteroids is derived by using a three-variable expansion method in the elliptic restricted three-body problem. The perturbations of the orbital elements are obtained from this solution by applying the formulas of the two-body problem. The main perturbations of the mean motion are studied in detail.

  11. Variational Perturbation Treatment of the Confined Hydrogen Atom

    ERIC Educational Resources Information Center

    Montgomery, H. E., Jr.

    2011-01-01

    The Schrodinger equation for the ground state of a hydrogen atom confined at the centre of an impenetrable cavity is treated using variational perturbation theory. Energies calculated from variational perturbation theory are comparable in accuracy to the results from a direct numerical solution. The goal of this exercise is to introduce the…

  12. Quantum radiation from superluminal refractive-index perturbations.

    PubMed

    Belgiorno, F; Cacciatori, S L; Ortenzi, G; Sala, V G; Faccio, D

    2010-04-01

    We analyze in detail photon production induced by a superluminal refractive-index perturbation in realistic experimental operating conditions. The interaction between the refractive-index perturbation and the quantum vacuum fluctuations of the electromagnetic field leads to the production of photon pairs.

  13. Reconfigurable Optical Spectra from Perturbations on Elliptical Whispering Gallery Resonances

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2008-01-01

    Elastic strain, electrical bias, and localized geometric deformations were applied to elliptical whispering-gallery-mode resonators fabricated with lithium niobate. The resultant perturbation of the mode spectrum is highly dependant on the modal indices, resulting in a discretely reconfigurable optical spectrum. Breaking of the spatial degeneracy of the whispering-gallery modes due to perturbation is also observed.

  14. Spatially cascading effect of perturbations in experimental meta-ecosystems.

    PubMed

    Harvey, Eric; Gounand, Isabelle; Ganesanandamoorthy, Pravin; Altermatt, Florian

    2016-09-14

    Ecosystems are linked to neighbouring ecosystems not only by dispersal, but also by the movement of subsidy. Such subsidy couplings between ecosystems have important landscape-scale implications because perturbations in one ecosystem may affect community structure and functioning in neighbouring ecosystems via increased/decreased subsidies. Here, we combine a general theoretical approach based on harvesting theory and a two-patch protist meta-ecosystem experiment to test the effect of regional perturbations on local community dynamics. We first characterized the relationship between the perturbation regime and local population demography on detritus production using a mathematical model. We then experimentally simulated a perturbation gradient affecting connected ecosystems simultaneously, thus altering cross-ecosystem subsidy exchanges. We demonstrate that the perturbation regime can interact with local population dynamics to trigger unexpected temporal variations in subsidy pulses from one ecosystem to another. High perturbation intensity initially led to the highest level of subsidy flows; however, the level of perturbation interacted with population dynamics to generate a crash in subsidy exchange over time. Both theoretical and experimental results show that a perturbation regime interacting with local community dynamics can induce a collapse in population levels for recipient ecosystems. These results call for integrative management of human-altered landscapes that takes into account regional dynamics of both species and resource flows. PMID:27629038

  15. ELF/VLF Perturbations Above the Haarp Transmitter Recorded by the Demeter Satellite in the Upper Ionosphere

    NASA Astrophysics Data System (ADS)

    Titova, E. E.; Demekhov, A. G.; Mochalov, A. A.; Gvozdevsky, B. B.; Mogilevsky, M. M.; Parrot, M.

    2015-08-01

    In the studies of the data received from DEMETER (orbit altitude above the Earth is about 700 km), we detected for the first time electromagnetic perturbations, which are due to the ionospheric modification by HAARP, a high-power high-frequency transmitter, simultaneously in the extremely low-frequency (ELF, below 1200 Hz) and very low-frequency (VLF, below 20 kHz) ranges. Of the thirteen analyzed flybys of the satellite above the heated area, the ELF/VLF signals were detected in three cases in the daytime (LT = 11-12 h), when the minimum distance between the geomagnetic projections of the satellite and the heated area center on the Earth's surface did not exceed 31 km. During the nighttime flybys, the ELF/VLF perturbations were not detected. The size of the perturbed region was about 100 km. The amplitude, spectrum, and polarization of the ELF perturbations were analyzed, and their comparison with the characteristics of natural ELF noise above the HAARP transmitter was performed. In particular, it was shown that in the daytime the ELF perturbation amplitude above the heated area can exceed by a factor of 3 to 8 the amplitude of natural ELF noise. The absence of the nighttime records of artificial ELF/VLF perturbations above the heated area can be due to both the lower frequency of the heating signal, at which the heating occurs in the lower ionosphere, and the higher level of natural noise. The spectrum of the VLF signals related to the HAARP transmitter operation had two peaks at frequencies of 8 to 10 kHz and 15 to 18 kHz, which are close to the first and second harmonics of the lower-hybrid resonance in the heated area. The effect of the whistler wave propagation near the lower-hybrid resonance region on the perturbation spectrum recorded in the upper ionosphere for these signals has been demonstrated. In particular, some of the spectrum features can be explained by assuming that the VLF signals propagate in quasiresonance, rather than quasilongitudinal, regime

  16. Plasma-satellite interaction driven magnetic field perturbations

    SciTech Connect

    Saeed-ur-Rehman; Marchand, Richard

    2014-09-15

    We report the first fully kinetic quantitative estimate of magnetic field perturbations caused by the interaction of a spacecraft with space environment. Such perturbations could affect measurements of geophysical magnetic fields made with very sensitive magnetometers on-board satellites. Our approach is illustrated with a calculation of perturbed magnetic fields near the recently launched Swarm satellites. In this case, magnetic field perturbations do not exceed 20 pT, and they are below the sensitivity threshold of the on-board magnetometers. Anticipating future missions in which satellites and instruments would be subject to more intense solar UV radiation, however, it appears that magnetic field perturbations associated with satellite interaction with space environment, might approach or exceed instruments' sensitivity thresholds.

  17. Higher-order Lagrangian perturbative theory for the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Tatekawa, Takayuki; Mizuno, Shuntaro

    2016-10-01

    Zel'dovich proposed Lagrangian perturbation theory (LPT) for structure formation in the Universe. After this, higher-order perturbative equations have been derived. Recently fourth-order LPT (4LPT) have been derived by two group. We have shown fifth-order LPT (5LPT) In this conference, we notice fourth- and more higher-order perturbative equations. In fourth-order perturbation, because of the difference in handling of spatial derivative, there are two groups of equations. Then we consider the initial conditions for cosmological N-body simulations. Crocce, Pueblas, and Scoccimarro (2007) noticed that second-order perturbation theory (2LPT) is required for accuracy of several percents. We verify the effect of 3LPT initial condition for the simulations. Finally we discuss the way of further improving approach and future applications of LPTs.

  18. Duality between QCD perturbative series and power corrections

    NASA Astrophysics Data System (ADS)

    Narison, S.; Zakharov, V. I.

    2009-08-01

    We elaborate on the relation between perturbative and power-like corrections to short-distance sensitive QCD observables. We confront theoretical expectations with explicit perturbative calculations existing in literature. As is expected, the quadratic correction is dual to a long perturbative series and one should use one of them but not both. However, this might be true only for very long perturbative series, with number of terms needed in most cases exceeding the number of terms available. What has not been foreseen, the quartic corrections might also be dual to the perturbative series. If confirmed, this would imply a crucial modification of the dogma. We confront this quadratic correction against existing phenomenology (QCD (spectral) sum rules scales, determinations of light quark masses and of αs from τ-decay). We find no contradiction and (to some extent) better agreement with the data and with recent lattice calculations.

  19. Elliptic inflation: generating the curvature perturbation without slow-roll

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomohiro

    2006-09-01

    There are many inflationary models in which the inflaton field does not satisfy the slow-roll condition. However, in such models, it is always difficult to generate the curvature perturbation during inflation. Thus, to generate the curvature perturbation, one must introduce another component into the theory. To cite a case, curvatons may generate the dominant part of the curvature perturbation after inflation. However, we question whether it is realistic to consider the generation of the curvature perturbation during inflation without slow-roll. Assuming multifield inflation, we encounter the generation of curvature perturbation during inflation without slow-roll. The potential along the equipotential surface is flat by definition and thus we do not have to worry about symmetry. We also discuss KKLT (Kachru Kallosh Linde Trivedi) models, in which corrections lifting the inflationary direction may not become a serious problem if there is a symmetry enhancement at the tip (not at the moving brane) of the inflationary throat.

  20. Reducing Plasma Perturbations with Segmented Metal Shielding on Electrostatic Probes

    SciTech Connect

    Staack, D.; Raitses, Y.; Fisch N.J.

    2002-10-02

    Electrostatic probes are widely used to measure spatial plasma parameters in the quasi-neutral plasma created in Hall thrusters and similar E x B electric discharge devices. Significant perturbations of the plasma, induced by such probes, can mask the actual physics involved in operation of these devices. In an attempt to reduce these perturbations in Hall thrusters, the perturbations were examined by varying the component material, penetration distance, and residence time of various probe designs. This study leads us to a conclusion that secondary electron emission from insulator ceramic tubes of the probe can affect local changes of the plasma parameters causing plasma perturbations. A probe design, which consists of a segmented metal shielding of the probe insulator, is suggested to reduce these perturbations. This new probe design can be useful for plasma applications in which the electron temperature is sufficient to produce secondary electron emission by interaction of plasma electrons with dielectric materials.

  1. A new model for realistic random perturbations of stochastic oscillators

    NASA Astrophysics Data System (ADS)

    Dieci, Luca; Li, Wuchen; Zhou, Haomin

    2016-08-01

    Classical theories predict that solutions of differential equations will leave any neighborhood of a stable limit cycle, if white noise is added to the system. In reality, many engineering systems modeled by second order differential equations, like the van der Pol oscillator, show incredible robustness against noise perturbations, and the perturbed trajectories remain in the neighborhood of a stable limit cycle for all times of practical interest. In this paper, we propose a new model of noise to bridge this apparent discrepancy between theory and practice. Restricting to perturbations from within this new class of noise, we consider stochastic perturbations of second order differential systems that -in the unperturbed case- admit asymptotically stable limit cycles. We show that the perturbed solutions are globally bounded and remain in a tubular neighborhood of the underlying deterministic periodic orbit. We also define stochastic Poincaré map(s), and further derive partial differential equations for the transition density function.

  2. On perturbation and pattern coexistence in postural coordination dynamics.

    PubMed

    Bardy, Benoît G; Oullier, Olivier; Lagarde, Julien; Stoffregen, Thomas A

    2007-07-01

    In studies of postural control, investigators have used either experimentally induced perturbations to stance or unperturbed stance. The distinction between perturbed and unperturbed stance has gained renewed importance in the context of inphase and antiphase coordination of the hips and ankles. Several contributions have replicated the findings published over the past decade, suggesting the possibility of a unified view of postural control. However, any proposed unified view depends on how so called perturbed and unperturbed are defined. The authors argue that, to date, there is no explicit and general definition of those terms. The main reason is that all perturbations are relative and depend on appropriate frames of reference for perception and action. Arguments about empirical or theoretical unification of perturbed and unperturbed stance are premature.

  3. Assessment of multireference perturbation methods for chemical reaction barrier heights.

    PubMed

    Fracchia, Francesco; Cimiraglia, Renzo; Angeli, Celestino

    2015-05-28

    A few flavors of multireference perturbation theory, two variants of the n-electron valence state perturbation theory and two of the complete active space perturbation theory, are here tested for the calculation of barrier heights for the set of chemical reactions included in the DBH24/08 database, for which very accurate values are available. The comparison of the results obtained with these approaches with those already published for other theoretical models indicates that multireference perturbation theory is a valuable tool for the description of a chemical reaction. Moreover, limiting the comparison to the perturbation theory approaches, one observes that the bad behavior found for single reference methods (such as Møller-Plesset to second and fourth order in the energy) is markedly improved upon moving to the multireference generalizations.

  4. Characterization of laser-generated perturbations and instability measurements on a flared cone

    NASA Astrophysics Data System (ADS)

    Chou, Amanda

    The Purdue laser perturber was refurbished and prepared for use in the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The laser perturber is to create controlled perturbations in the freestream flow for receptivity studies. Measurements were similar to those by McGuire, Schmisseur and Salyer. Pressure and time-of-arrival measurements of the perturbations created by the laser agree well with theory, except when taken close to the perturbation. This could be due to shortcomings of the theory or to attenuation in the sensors, due to their low frequency response. An optical system for the BAM6QT was also designed. Natural transition in fully quiet flow is difficult to produce and it has likely not been seen before. Thus, a flared cone was designed to produce large second-mode waves which might lead to transition in quiet flow. Pressure fluctuations were measured with PCB fast pressure sensors, and temperature-sensitive paints (TSP) were used to visualize heat transfer on the surface of the compression cone. PCB measurements show that growth of the second-mode waves occurs under noisy flow, but not always as expected under quiet flow. The TSP measurements revealed streamwise streaks under quiet flow that were not present under noisy flow. These streaks had not been seen before. Small roughness dots were used to change the spacing of the streaks; these also then affected the location of transition. Surprisingly high computed N-factors at transition were found for this cone. In noisy flow, the computed N-factor at transition onset is 9. It is unclear if transition is seen in quiet flow on a smooth flared cone. When roughness dots are added, transition onset occurs at a computed N = 18.

  5. Formation of model-free motor memories during motor adaptation depends on perturbation schedule.

    PubMed

    Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2015-04-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124-136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations.

  6. Compensation for a lip-tube perturbation in 4-year-olds: Articulatory, acoustic, and perceptual data analyzed in comparison with adults.

    PubMed

    Ménard, Lucie; Perrier, Pascal; Aubin, Jérôme

    2016-05-01

    The nature of the speech goal in children was investigated in a study of compensation strategies for a lip-tube perturbation. Acoustic, articulatory, and perceptual analyses of the vowels /y/ and /u/ produced by ten 4-year-old French speakers and ten adult French speakers were conducted under two conditions: normal and with a large tube inserted between the lips. Ultrasound and acoustic recordings of isolated vowels were made in the normal condition before any perturbation, for each of the trials in the perturbed condition, and in the normal condition after the perturbed trials. Data revealed that adult participants moved their tongues in the perturbed condition more than children did. The perturbation was generally at least partly compensated for during the perturbed trials in adults, but children did not show a typical learning effect. In particular, unsystematic improvements were observed during the sequence of perturbed trials, and after-effects were not clear in the articulatory domain. This suggests that children may establish associative links between multisensory phonemic representations and articulatory maneuvers, but those links may mainly rely on trial-to-trial, error-based feedback correction mechanisms rather than on the internal model of the speech production apparatus, as they are in adults. PMID:27250147

  7. Compensation for a lip-tube perturbation in 4-year-olds: Articulatory, acoustic, and perceptual data analyzed in comparison with adults.

    PubMed

    Ménard, Lucie; Perrier, Pascal; Aubin, Jérôme

    2016-05-01

    The nature of the speech goal in children was investigated in a study of compensation strategies for a lip-tube perturbation. Acoustic, articulatory, and perceptual analyses of the vowels /y/ and /u/ produced by ten 4-year-old French speakers and ten adult French speakers were conducted under two conditions: normal and with a large tube inserted between the lips. Ultrasound and acoustic recordings of isolated vowels were made in the normal condition before any perturbation, for each of the trials in the perturbed condition, and in the normal condition after the perturbed trials. Data revealed that adult participants moved their tongues in the perturbed condition more than children did. The perturbation was generally at least partly compensated for during the perturbed trials in adults, but children did not show a typical learning effect. In particular, unsystematic improvements were observed during the sequence of perturbed trials, and after-effects were not clear in the articulatory domain. This suggests that children may establish associative links between multisensory phonemic representations and articulatory maneuvers, but those links may mainly rely on trial-to-trial, error-based feedback correction mechanisms rather than on the internal model of the speech production apparatus, as they are in adults.

  8. Arithmetic with X-ray images of galaxy clusters: effective equation of state for small-scale perturbations in the ICM

    NASA Astrophysics Data System (ADS)

    Churazov, E.; Arevalo, P.; Forman, W.; Jones, C.; Schekochihin, A.; Vikhlinin, A.; Zhuravleva, I.

    2016-11-01

    We discuss a novel technique of manipulating X-ray images of galaxy clusters to reveal the nature of small-scale density/temperature perturbations in the intracluster medium (ICM). As we show, this technique can be used to differentiate between sound waves and isobaric perturbations in Chandra images of the Perseus and M87/Virgo clusters. The comparison of the manipulated images with the radio data and with the results of detailed spectral analysis shows that this approach successfully classifies the types of perturbations and helps to reveal their nature. For the central regions (5-100 kpc) of the M87 and Perseus clusters, this analysis suggests that observed images are dominated by isobaric perturbations, followed by perturbations caused by bubbles of relativistic plasma and weak shocks. Such a hierarchy is best explained in a `slow' active galactic nuclei feedback scenario, when much of the mechanical energy output of a central black hole is captured by the bubble enthalpy that is gradually released during buoyant rise of the bubbles. The `image arithmetic' works best for prominent structure and for data sets with excellent statistics, visualizing the perturbations with a given effective equation of state. The same approach can be extended to faint perturbations via cross-spectrum analysis of surface brightness fluctuations in X-ray images in different energy bands.

  9. Arithmetic with X-ray images of galaxy clusters: effective equation of state for small-scale perturbations in the ICM

    NASA Astrophysics Data System (ADS)

    Churazov, E.; Arevalo, P.; Forman, W.; Jones, C.; Schekochihin, A.; Vikhlinin, A.; Zhuravleva, I.

    2016-08-01

    We discuss a novel technique of manipulating X-ray images of galaxy clusters to reveal the nature of small-scale density/temperature perturbations in the intra cluster medium (ICM). As we show, this technique can be used to differentiate between sound waves and isobaric perturbations in Chandra images of the Perseus and M87/Virgo clusters. The comparison of the manipulated images with the radio data and with the results of detailed spectral analysis shows that this approach successfully classifies the types of perturbations and helps to reveal their nature. For the central regions (5-100 kpc) of the M87 and Perseus clusters this analysis suggests that observed images are dominated by isobaric perturbations, followed by perturbations caused by bubbles of relativistic plasma and weak shocks. Such a hierarchy is best explained in a "slow" AGN feedback scenario, when much of the mechanical energy output of a central black hole is captured by the bubble enthalpy that is gradually released during buoyant rise of the bubbles. The "image arithmetic" works best for prominent structure and for datasets with excellent statistics, visualizing the perturbations with a given effective equation of state. The same approach can be extended to faint perturbations via cross-spectrum analysis of surface brightness fluctuations in X-ray images in different energy bands.

  10. Repeating seismicity in the shallow crust modulated by transient stress perturbations

    NASA Astrophysics Data System (ADS)

    Frank, William B.; Shapiro, Nikolaï M.; Husker, Allen L.; Kostoglodov, Vladimir; Campillo, Michel

    2016-09-01

    Recent studies have reported seismic phenomena that are modulated by small stress perturbations (∼10 kPa), revealing their critically stressed nature. Such observations have been principally limited to plate interfaces with their occurrence linked to high fluid pore-pressure. In this study, we report observations of nine repeating seismic sources in the shallow crust in Guerrero, Mexico that emit events at rates comparable to other seismic phenomena in low stress environments. Testing their susceptibility to small stress perturbations, we find that all nine sources appear to be modulated by mining activity, tides, and a large slow slip event (Mw 7.5). Our results suggest that the fault conditions necessary for low effective stress seismicity can occur away from plate interfaces.

  11. Cosmological perturbations of self-accelerating universe in nonlinear massive gravity

    SciTech Connect

    Gümrükçüoğlu, A. Emir; Lin, Chunshan; Mukohyama, Shinji E-mail: chunshan.lin@ipmu.jp

    2012-03-01

    We study cosmological perturbations of self-accelerating universe solutions in the recently proposed nonlinear theory of massive gravity, with general matter content. While the broken diffeomorphism invariance implies that there generically are 2 tensor, 2 vector and 2 scalar degrees of freedom in the gravity sector, we find that the scalar and vector degrees have vanishing kinetic terms and nonzero mass terms. Depending on their nonlinear behavior, this indicates either nondynamical nature of these degrees or strong couplings. Assuming the former, we integrate out the 2 vector and 2 scalar degrees of freedom. We then find that in the scalar and vector sectors, gauge-invariant variables constructed from metric and matter perturbations have exactly the same quadratic action as in general relativity. The difference from general relativity arises only in the tensor sector, where the graviton mass modifies the dispersion relation of gravitational waves, with a time-dependent effective mass. This may lead to modification of stochastic gravitational wave spectrum.

  12. Observation of a new electronic state of CO perturbing W ¹Π(v=1).

    PubMed

    Heays, A N; Eidelsberg, M; Stark, G; Lemaire, J L; Gavilan, L; Federman, S R; Lewis, B R; Lyons, J R; de Oliveira, N; Joyeux, D

    2014-10-14

    We observe photoabsorption of the W(1) ← X(0) band in five carbon monoxide isotopologues with a vacuum-ultraviolet Fourier-transform spectrometer and a synchrotron radiation source. We deduce transition energies, integrated cross sections, and natural linewidths of the observed rotational transitions and find a perturbation affecting these. Following a deperturbation analysis of all five isotopologues, the perturbing state is assigned to the v = 0 level of a previously unobserved (1)Π state predicted by ab initio calculations to occur with the correct symmetry and equilibrium internuclear distance. We label this new state E″ (1)Π. Both of the interacting levels W(1) and E″(0) are predissociated, leading to dramatic interference effects in their corresponding linewidths. PMID:25318726

  13. Challenges in the extraction of TMDs from SIDIS data: perturbative vs non-perturbative aspects

    SciTech Connect

    Boglione, Mariaelena; Gonzalez Hernandez, Jose O.; Melis, Stefano; Prokudin, Alexey

    2015-09-01

    We present our recent results on the study of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, qT. Using the Collins-Soper-Sterman (CSS) formalism, we study the matching between the region where fixed-order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. We comment on the impact that the nonperturbative component has even at relatively high energies.

  14. A Non-perturbing Probe of Coiled Coil Formation Based on Electron Transfer Mediated Fluorescence Quenching.

    PubMed

    Watson, Matthew D; Peran, Ivan; Raleigh, Daniel P

    2016-07-01

    Coiled coils are abundant in nature, occurring in ∼3% of proteins across sequenced genomes, and are found in proteins ranging from transcription factors to structural proteins. The motif continues to be an important model system for understanding protein-protein interactions and is finding increased use in bioinspired materials and synthetic biology. Knowledge of the thermodynamics of self-assembly, particularly the dissociation constant KD, is essential for the application of designed coiled coils and for understanding the in vivo specificity of natural coiled coils. Standard methods for measuring KD typically rely on concentration dependent circular dichroism (CD). Fluorescence methods are an attractive alternative; however Trp is rarely found in an interior position of a coiled coil, and appending unnatural fluorophores can perturb the system. We demonstrate a simple, non-perturbing method to monitor coiled coil formation using p-cyanophenylalanine (FCN) and selenomethionine (MSe), the Se analogue of Met. FCN fluorescence can be selectively excited and is effectively quenched by electron transfer with MSe. Both FCN and MSe represent minimally perturbing substitutions in coiled coils. MSe quenching of FCN fluorescence is shown to offer a non-perturbing method for following coiled coil formation and for accurately determining dissociation constants. The method is validated using a designed heterodimeric coiled coil. The KD deduced by fluorescence monitored titration is in excellent agreement with the value deduced from concentration dependent CD measurements to within the uncertainty of the measurement. However, the fluorescence approach requires less protein, is less time-consuming, can be applied to lower concentrations and could be applied to high throughput screens. PMID:27258904

  15. Shock Boundary Layer Interaction Sensitivity to Upstream Geometric Perturbations

    NASA Astrophysics Data System (ADS)

    Campo, Laura; Helmer, David; Eaton, John

    2012-11-01

    Shock boundary layer interactions (SBLIs) can have drastic effects on the performance of external aerodynamics and propulsion systems in high speed flight vehicles. In such systems, the upstream and boundary conditions of the flow are uncertain, and the sensitivity of SBLIs to perturbations in these conditions is unknown. The sensitivity of two SBLIs - a compression corner interaction and an incident shock interaction - to small geometric perturbations was investigated using particle image velocity measurements. Tests were performed in a continuously operated, low aspect ratio, Mach 2.1 wind tunnel. The shock was generated by a 1.1mm high 20° wall-mounted compression wedge, and various configurations of small (h < 0 . 2 δ) steady bumps were introduced upstream on the opposite wall. 100 perturbed cases were tested in order to generate a dataset which is well suited for validation of CFD codes. Both SBLIs were very sensitive to perturbations in a given region and insensitive to perturbations outside of it. Depending on the location of the perturbations, the compression corner interaction could be significantly strengthened or weakened. The position of the incident SBLI was also a strong function of both the location and size of the upstream perturbations.

  16. Development of a perturbation generator for vortex stability studies

    NASA Technical Reports Server (NTRS)

    Riester, J. E.; Ash, Robert L.

    1991-01-01

    Theory predicts vortex instability when subjected to certain types of disturbances. It was desired to build a device which could introduce controlled velocity perturbations into a trailing line vortex in order to study the effects on stability. A perturbation generator was designed and manufactured which can be attached to the centerbody of an airfoil type vortex generator. Details of design tests and manufacturing of the perturbation generator are presented. The device produced controlled perturbation with frequencies in excess of 250 Hz. Preliminary testing and evaluation of the perturbation generator performance was conducted in a 4 inch cylindrical pipe. Observations of vortex shedding frequencies from a centerbody were measured. Further evaluation with the perturbation generator attached to the vortex generator in a 2 x 3 foot wind tunnel were also conducted. Hot-wire anemometry was used to confirm the perturbation generator's ability to introduce controlled frequency fluctuations. Comparison of the energy levels of the disturbances in the vortex core was made between locations 42 chord lengths and 15 chord lengths downstream.

  17. Postural responses to unexpected perturbations of balance during reaching

    PubMed Central

    Trivedi, Hari; Leonard, Julia A.; Ting, Lena H.; Stapley, Paul J.

    2014-01-01

    To study the interaction between feedforward and feedback modes of postural control, we investigated postural responses during unexpected perturbations of the support surface that occurred during forward reaching in a standing position. We examined postural responses in lower limb muscles of 9 human subjects. Baseline measures were obtained when subjects executed reaching movements to a target placed in front of them (R condition) and during postural responses to forward and backward support-surface perturbations (no reaching, P condition) during quiet stance. Perturbations were also given at different delays after the onset of reaching movements (RP conditions) as well as with the arm extended in the direction of the target, but not reaching (P/AE condition). Results showed that during perturbations to reaching (RP), the initial automatic postural response, occurring around 100 ms after the onset of perturbations, was relatively unchanged in latency or amplitude compared to control conditions (P and P/AE). However, longer latency postural responses were modulated to aid in the reaching movements during forward perturbations but not during backward perturbations. Our results suggest that the nervous system prioritizes the maintenance of a stable postural base during reaching, and that later components of the postural responses can be modulated to ensure the performance of the voluntary task. PMID:20035321

  18. Adjustments after an ankle dorsiflexion perturbation during human running.

    PubMed

    Scohier, M; De Jaeger, D; Schepens, B

    2012-01-01

    In this study we investigated the effect of a mechanical perturbation of unexpected timing during human running. With the use of a powered exoskeleton, we evoked a dorsiflexion of the right ankle during its swing phase while subjects ran on a treadmill. The perturbation resulted in an increase of the right ankle dorsiflexion of at least 5°. The first two as well as the next five steps after the perturbation were analyzed to observe the possible immediate and late biomechanical adjustments. In all cases subjects continued to run after the perturbation. The immediate adjustments were the greatest and the most frequent when the delay between the right ankle perturbation and the subsequent right foot touch-down was the shortest. For example, the vertical impact peak force was strongly modified on the first step after the perturbations and this adjustment was correlated to a right ankle angle still clearly modified at touch-down. Some late adjustments were observed in the subsequent steps predominantly occurring during left steps. Subjects maintained the step length and the step period as constant as possible by adjusting other step parameters in order to avoid stumbling and continue running at the speed imposed by the treadmill. To our knowledge, our experiments are the first to investigate perturbations of unexpected timing during human running. The results show that humans have a time-dependent, adapted strategy to maintain their running pattern. PMID:21872474

  19. Perturbing polynomials with all their roots on the unit circle

    NASA Astrophysics Data System (ADS)

    Mossinghoff, M. J.; Pinner, C. G.; Vaaler, J. D.

    1998-10-01

    Given a monic real polynomial with all its roots on the unit circle, we ask to what extent one can perturb its middle coefficient and still have a polynomial with all its roots on the unit circle. We show that the set of possible perturbations forms a closed interval of length at most 4, with 4 achieved only for polynomials of the form x(2n) + cx(n) + 1 with c in [-2, 2]. The problem can also be formulated in terms of perturbing the constant coefficient of a polynomial having all its roots in [-1, 1]. If we restrict to integer coefficients, then the polynomials in question are products of cyclotomics. We show that in this case there are no perturbations of length 3 that do not arise from a perturbation of length 4. We also investigate the connection between slightly perturbed products of cyclotomic polynomials and polynomials with small Mahler measure. We describe an algorithm for searching for polynomials with small Mahler measure by perturbing the middle coefficients of products of cyclotomic polynomials. We show that the complexity of this algorithm is O(C-root d), where d is the degree, and we report on the polynomials found by this algorithm through degree 64.

  20. Transport of energetic ions by low-n magnetic perturbations

    SciTech Connect

    Mynick, H.E.

    1992-10-01

    The stochastic transport of MeV ions induced by low-n magnetic perturbations is studied, focussing chiefly on the stochastic mechanism operative for passing particles in low frequency perturbations. Beginning with a single-harmonic form for the perturbing field, it iii first shown numerically and analytically that the stochastic threshold of energetic particles can be much lower than that of the magnetic field, contrary to earlier expectations, so that MHD perturbations could cause appreciable loss of energetic ions without destroying the bulk confinement. The analytic theory is then extended in a number of directions, to darity the relation of the present stochaistic mechanism to instances already found, to allow for more complex perturbations, and to consider the more general relationship between the stochasticity of magnetic fields, and that of particles of differing energies (and pitch angles) moving in those fields. It is shown that the stochastic threshold is in general a nonmonotonic function of energy, whose form can to some extent be tailored to achieve desired goals (e.g., burn control or ash removal) by a judicious choice of the perturbation. Illustrative perturbations are exhibited which are stochastic for low but not for high-energy ions, for high but not for low-energy ions, and for intermediate-energy ions, but not for low or high energy. The second possibility is the behavior needed for burn control; the third provides a possible mechanism for ash removal.

  1. A synthetic theory for the perturbations of Titan on Hyperion

    NASA Astrophysics Data System (ADS)

    Taylor, D. B.

    1992-11-01

    A theory for Hyperion is developed in which the perturbations by Titan have been developed synthetically. These perturbations were derived by fitting a sum of periodic terms to the numerical integration of Sinclair and Taylor (1985) extended to +/- 25 yr from the epoch used, 1973.87. A theory for Hyperion, constructed by adding the solar perturbations to the synthetic theory and including expressions for the motion of the orbit plane, was, together with the theories for the other major satellites of Saturn fitted to observations from 1967 to 1983.

  2. Curvature and isocurvature perturbations in two-field inflation

    NASA Astrophysics Data System (ADS)

    Lalak, Z.; Langlois, D.; Pokorski, S.; Turzyński, K.

    2007-07-01

    We study cosmological perturbations in two-field inflation, allowing for non-standard kinetic terms. We calculate analytically the spectra of curvature and isocurvature modes at Hubble crossing, up to first order in the slow-roll parameters. We also compute numerically the evolution of the curvature and isocurvature modes from well within the Hubble radius until the end of inflation. We show explicitly for a few examples, including the recently proposed model of 'roulette' inflation, how isocurvature perturbations affect significantly the curvature perturbation between Hubble crossing and the end of inflation.

  3. Extreme Value Analysis of Tidal Stream Velocity Perturbations

    SciTech Connect

    Harding, Samuel; Thomson, Jim; Polagye, Brian; Richmond, Marshall C.; Durgesh, Vibhav; Bryden, Ian

    2011-04-26

    This paper presents a statistical extreme value analysis of maximum velocity perturbations from the mean flow speed in a tidal stream. This study was performed using tidal velocity data measured using both an Acoustic Doppler Velocimeter (ADV) and an Acoustic Doppler Current Profiler (ADCP) at the same location which allows for direct comparison of predictions. The extreme value analysis implements of a Peak-Over-Threshold method to explore the effect of perturbation length and time scale on the magnitude of a 50-year perturbation.

  4. Spectra of magnetic chain graphs: coupling constant perturbations

    NASA Astrophysics Data System (ADS)

    Exner, Pavel; Manko, Stepan S.

    2015-03-01

    We analyze spectral properties of a quantum graph in the form of a ring chain with a δ coupling in the vertices exposed to a homogeneous magnetic field perpendicular to the graph plane. We find the band spectrum in the case when the chain exhibits a translational symmetry and study the discrete spectrum in the gaps resulting from changing a finite number of vertex coupling constants. In particular, we discuss in detail some examples such as perturbations of one or two vertices, weak perturbation asymptotics, and a pair of distant perturbations.

  5. Disentangling perturbative and power corrections in precision tau decay analysis

    SciTech Connect

    Gorbunov, D.S.; Pivovarov, A.A.

    2005-01-01

    Hadronic tau decay precision data are analyzed with account of both perturbative and power corrections of high orders within QCD. It is found that contributions of high order power corrections are essential for extracting a numerical value for the strange quark mass from the data on Cabibbo suppressed tau decays. We show that with inclusion of new five-loop perturbative corrections in the analysis the convergence of perturbation theory remains acceptable only for few low order moments. We obtain m{sub s}(M{sub {tau}})=130{+-}27 MeV in agreement with previous estimates.

  6. Cosmological perturbations of a perfect fluid and noncommutative variables

    SciTech Connect

    De Felice, Antonio; Gerard, Jean-Marc; Suyama, Teruaki

    2010-03-15

    We describe the linear cosmological perturbations of a perfect fluid at the level of an action, providing thus an alternative to the standard approach based only on the equations of motion. This action is suited not only to perfect fluids with a barotropic equation of state, but also to those for which the pressure depends on two thermodynamical variables. By quantizing the system we find that (1) some perturbation fields exhibit a noncommutativity quite analogous to the one observed for a charged particle moving in a strong magnetic field, (2) local curvature and pressure perturbations cannot be measured simultaneously, (3) ghosts appear if the null energy condition is violated.

  7. Stability of coflowing capillary jets under nonaxisymmetric perturbations.

    PubMed

    Montanero, J M; Gañán-Calvo, A M

    2008-04-01

    In this paper, linear hydrodynamic stability analysis is used to study the response of a capillary jet and a coflowing fluid to both axisymmetric and nonaxisymmetric perturbations. The temporal analysis revealed that nonaxisymmetric perturbations were damped (or overdamped) within the region of parameter space explored, which involved equal velocities for the jet and focusing fluid. It is explained how an extension to a spatiotemporal analysis implies that those perturbations can yield no transition from convective (jetting) to absolute (whipping) instability for that parameter region. This result provides a theoretical explanation for the absence of that kind of transition in most experimental results in the literature.

  8. Simple bounds from the perturbative regime of inflation

    SciTech Connect

    Leblond, Louis; Shandera, Sarah E-mail: sarah@phys.columbia.edu

    2008-08-15

    We examine the conditions under which a perturbative expansion around an inflating background is valid. When inflation is driven by a single field with a general sound speed, we find a lower limit on the sound speed related to the amplitude of the inflationary power spectrum. Generalizing the sound speed constraints to include scale dependence can limit the number of e-folds obtained in the perturbative regime and restrict otherwise apparently viable models. We also show that, for models with a low sound speed, eternal inflation cannot occur in the perturbative regime.

  9. Second-order perturbation on a SDCI calculation

    NASA Astrophysics Data System (ADS)

    Maynau, Daniel; Heully, Jean-Louis

    1993-08-01

    Starting from a SDCI calculation the SD eigenvector is perturbed by all triply and quadruply excited determinants. Efficiency is promoted through direct CI techniques, however, some flexibility has been kept, making possible the use of various perturbational schemes (here: Epstein—Nesbet and M∅ller—Plesset). The SDCI starting point avoids divergence problems posed by CCSD(T) and also by purely perturbative methods such as MP4. Several calculations on the potential curves of some molecules (H 2O, N 2, F 2, Ne 2) show that the present method is at least as good as the MP4 or CCSD(T) methods at comparable computational cost.

  10. Curvature perturbation and waterfall dynamics in hybrid inflation

    SciTech Connect

    Abolhasani, Ali Akbar; Firouzjahi, Hassan; Sasaki, Misao E-mail: firouz@mail.ipm.ir

    2011-10-01

    We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here.

  11. Anticipation of direction and time of perturbation modulates the onset latency of trunk muscle responses during sitting perturbations.

    PubMed

    Milosevic, Matija; Shinya, Masahiro; Masani, Kei; Patel, Kramay; McConville, Kristiina M V; Nakazawa, Kimitaka; Popovic, Milos R

    2016-02-01

    Trunk muscles are responsible for maintaining trunk stability during sitting. However, the effects of anticipation of perturbation on trunk muscle responses are not well understood. The objectives of this study were to identify the responses of trunk muscles to sudden support surface translations and quantify the effects of anticipation of direction and time of perturbation on the trunk neuromuscular responses. Twelve able-bodied individuals participated in the study. Participants were seated on a kneeling chair and support surface translations were applied in the forward and backward directions with and without direction and time of perturbation cues. The trunk started moving on average approximately 40ms after the perturbation. During unanticipated perturbations, average latencies of the trunk muscle contractions were in the range between 103.4 and 117.4ms. When participants anticipated the perturbations, trunk muscle latencies were reduced by 16.8±10.0ms and the time it took the trunk to reach maximum velocity was also reduced, suggesting a biomechanical advantage caused by faster muscle responses. These results suggested that trunk muscles have medium latency responses and use reflexive mechanisms. Moreover, anticipation of perturbation decreased trunk muscles latencies, suggesting that the central nervous system modulated readiness of the trunk based on anticipatory information. PMID:26746011

  12. Anticipation of direction and time of perturbation modulates the onset latency of trunk muscle responses during sitting perturbations.

    PubMed

    Milosevic, Matija; Shinya, Masahiro; Masani, Kei; Patel, Kramay; McConville, Kristiina M V; Nakazawa, Kimitaka; Popovic, Milos R

    2016-02-01

    Trunk muscles are responsible for maintaining trunk stability during sitting. However, the effects of anticipation of perturbation on trunk muscle responses are not well understood. The objectives of this study were to identify the responses of trunk muscles to sudden support surface translations and quantify the effects of anticipation of direction and time of perturbation on the trunk neuromuscular responses. Twelve able-bodied individuals participated in the study. Participants were seated on a kneeling chair and support surface translations were applied in the forward and backward directions with and without direction and time of perturbation cues. The trunk started moving on average approximately 40ms after the perturbation. During unanticipated perturbations, average latencies of the trunk muscle contractions were in the range between 103.4 and 117.4ms. When participants anticipated the perturbations, trunk muscle latencies were reduced by 16.8±10.0ms and the time it took the trunk to reach maximum velocity was also reduced, suggesting a biomechanical advantage caused by faster muscle responses. These results suggested that trunk muscles have medium latency responses and use reflexive mechanisms. Moreover, anticipation of perturbation decreased trunk muscles latencies, suggesting that the central nervous system modulated readiness of the trunk based on anticipatory information.

  13. Renormalization-scheme-invariant perturbation theory: Miracle or mirage

    SciTech Connect

    Chyla, J.

    1985-05-15

    A recently proposed solution to the renormalization-scheme ambiguity in perturbation theory is critically analyzed and shown to possess another kind of ambiguity closely related to the one it is supposed to cure.

  14. Capillary-mediated interface perturbations: Deterministic pattern formation

    NASA Astrophysics Data System (ADS)

    Glicksman, Martin E.

    2016-09-01

    Leibniz-Reynolds analysis identifies a 4th-order capillary-mediated energy field that is responsible for shape changes observed during melting, and for interface speed perturbations during crystal growth. Field-theoretic principles also show that capillary-mediated energy distributions cancel over large length scales, but modulate the interface shape on smaller mesoscopic scales. Speed perturbations reverse direction at specific locations where they initiate inflection and branching on unstable interfaces, thereby enhancing pattern complexity. Simulations of pattern formation by several independent groups of investigators using a variety of numerical techniques confirm that shape changes during both melting and growth initiate at locations predicted from interface field theory. Finally, limit cycles occur as an interface and its capillary energy field co-evolve, leading to synchronized branching. Synchronous perturbations produce classical dendritic structures, whereas asynchronous perturbations observed in isotropic and weakly anisotropic systems lead to chaotic-looking patterns that remain nevertheless deterministic.

  15. Cosmological perturbations of axion with a dynamical decay constant

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takeshi; Takahashi, Fuminobu

    2016-08-01

    A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the number of degenerate vacua along the axion potential.

  16. Revised Perturbation Statistics for the Global Scale Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1975-01-01

    Magnitudes and scales of atmospheric perturbations about the monthly mean for the thermodynamic variables and wind components are presented by month at various latitudes. These perturbation statistics are a revision of the random perturbation data required for the global scale atmospheric model program and are from meteorological rocket network statistical summaries in the 22 to 65 km height range and NASA grenade and pitot tube data summaries in the region up to 90 km. The observed perturbations in the thermodynamic variables were adjusted to make them consistent with constraints required by the perfect gas law and the hydrostatic equation. Vertical scales were evaluated by Buell's depth of pressure system equation and from vertical structure function analysis. Tables of magnitudes and vertical scales are presented for each month at latitude 10, 30, 50, 70, and 90 degrees.

  17. Tensor perturbations in a general class of Palatini theories

    SciTech Connect

    Jiménez, Jose Beltrán; Heisenberg, Lavinia; Olmo, Gonzalo J. E-mail: laviniah@kth.se

    2015-06-01

    We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the space-time metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.

  18. Tracking perturbations in Boolean networks with spectral methods.

    PubMed

    Kesseli, Juha; Rämö, Pauli; Yli-Harja, Olli

    2005-08-01

    In this paper we present a method for predicting the spread of perturbations in Boolean networks. The method is applicable to networks that have no regular topology. The prediction of perturbations can be performed easily by using a presented result which enables the efficient computation of the required iterative formulas. This result is based on abstract Fourier transform of the functions in the network. In this paper the method is applied to show the spread of perturbations in networks containing a distribution of functions found from biological data. The advances in the study of the spread of perturbations can directly be applied to enable ways of quantifying chaos in Boolean networks. Derrida plots over an arbitrary number of time steps can be computed and thus distributions of functions compared with each other with respect to the amount of order they create in random networks. PMID:16196674

  19. Some methods for calculation of perturbations in nuclear reactors

    SciTech Connect

    Abramov, B. D.

    2015-12-15

    Some methods for calculation of local perturbations of neutron fields and reactivity effects accompanying them are considered. Existence, uniqueness, properties and methods for finding solutions to the considered problems are discussed.

  20. Global terrestrial biogeochemistry: Perturbations, interactions, and time scales

    SciTech Connect

    Braswell, B.H. Jr.

    1996-12-01

    Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.

  1. Noise Reduction in High-Throughput Gene Perturbation Screens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Motivation: Accurate interpretation of perturbation screens is essential for a successful functional investigation. However, the screened phenotypes are often distorted by noise, and their analysis requires specialized statistical analysis tools. The number and scope of statistical methods available...

  2. Cosmic-string-induced hot dark matter perturbations

    NASA Technical Reports Server (NTRS)

    Van Dalen, Anthony

    1990-01-01

    This paper investigates the evolution of initially relativistic matter, radiation, and baryons around cosmic string seed perturbations. A detailed analysis of the linear evolution of spherical perturbations in a universe is carried out, and this formalism is used to study the evolution of perturbations around a sphere of uniform density and fixed radius, approximating a loop of cosmic string. It was found that, on scales less than a few megaparsec, the results agree with the nonrelativistic calculation of previous authors. On greater scales, there is a deviation approaching a factor of 2-3 in the perturbation mass. It is shown that a scenario with cosmic strings, hot dark matter, and a Hubble constant greater than 75 km/sec per Mpc can generally produce structure on the observed mass scales and at the appropriate time: 1 + z = about 4 for galaxies and 1 + z = about 1.5 for Abell clusters.

  3. Gyroscope test of gravitation: An analysis of the important perturbations

    NASA Technical Reports Server (NTRS)

    Oconnell, R. F.

    1971-01-01

    Two perturbations, the earth's quadrupole moment and the earth's revolution around the sun, are discussed. Schiff's proposed gyroscope test of gravitation is analyzed, along with the capability of deciphering each separate contribution to the angular velocity of spin precession.

  4. Perturbed atoms in molecules and solids: The PATMOS model.

    PubMed

    Røeggen, Inge; Gao, Bin

    2013-09-01

    A new computational method for electronic-structure studies of molecules and solids is presented. The key element in the new model - denoted the perturbed atoms in molecules and solids model - is the concept of a perturbed atom in a complex. The basic approximation of the new model is unrestricted Hartree Fock (UHF). The UHF orbitals are localized by the Edmiston-Ruedenberg procedure. The perturbed atoms are defined by distributing the orbitals among the nuclei in such a way that the sum of the intra-atomic UHF energies has a minimum. Energy corrections with respect to the UHF energy, are calculated within the energy incremental scheme. The most important three- and four-electron corrections are selected by introducing a modified geminal approach. Test calculations are performed on N2, Li2, and parallel arrays of hydrogen atoms. The character of the perturbed atoms is illustrated by calculations on H2, CH4, and C6H6.

  5. Inflationary perturbations in anisotropic, shear-free universes

    SciTech Connect

    Pereira, Thiago S.; Carneiro, Saulo; Marugan, Guillermo A. Mena E-mail: saulo.carneiro@pq.cnpq.br

    2012-05-01

    In this work, the linear and gauge-invariant theory of cosmological perturbations in a class of anisotropic and shear-free spacetimes is developed. After constructing an explicit set of complete eigenfunctions in terms of which perturbations can be expanded, we identify the effective degrees of freedom during a generic slow-roll inflationary phase. These correspond to the anisotropic equivalent of the standard Mukhanov-Sasaki variables. The associated equations of motion present a remarkable resemblance to those found in perturbed Friedmann-Robertson-Walker spacetimes with curvature, apart from the spectrum of the Laplacian, which exhibits the characteristic frequencies of the underlying geometry. In particular, it is found that the perturbations cannot develop arbitrarily large super-Hubble modes.

  6. On the breakdown of the curvature perturbation ζ during reheating

    NASA Astrophysics Data System (ADS)

    Tarman Algan, Merve; Kaya, Ali; Seyma Kutluk, Emine

    2015-04-01

    It is known that in single scalar field inflationary models the standard curvature perturbation ζ, which is supposedly conserved at superhorizon scales, diverges during reheating at times 0dot phi=, i.e. when the time derivative of the background inflaton field vanishes. This happens because the comoving gauge 0varphi=, where varphi denotes the inflaton perturbation, breaks down when 0dot phi=. The issue is usually bypassed by averaging out the inflaton oscillations but strictly speaking the evolution of ζ is ill posed mathematically. We solve this problem in the free theory by introducing a family of smooth gauges that still eliminates the inflaton fluctuation varphi in the Hamiltonian formalism and gives a well behaved curvature perturbation ζ, which is now rigorously conserved at superhorizon scales. At the linearized level, this conserved variable can be used to unambiguously propagate the inflationary perturbations from the end of inflation to subsequent epochs. We discuss the implications of our results for the inflationary predictions.

  7. The probability equation for the cosmological comoving curvature perturbation

    SciTech Connect

    Riotto, Antonio; Sloth, Martin S. E-mail: sloth@cern.ch

    2011-10-01

    Fluctuations of the comoving curvature perturbation with wavelengths larger than the horizon length are governed by a Langevin equation whose stochastic noise arise from the quantum fluctuations that are assumed to become classical at horizon crossing. The infrared part of the curvature perturbation performs a random walk under the action of the stochastic noise and, at the same time, it suffers a classical force caused by its self-interaction. By a path-interal approach and, alternatively, by the standard procedure in random walk analysis of adiabatic elimination of fast variables, we derive the corresponding Kramers-Moyal equation which describes how the probability distribution of the comoving curvature perturbation at a given spatial point evolves in time and is a generalization of the Fokker-Planck equation. This approach offers an alternative way to study the late time behaviour of the correlators of the curvature perturbation from infrared effects.

  8. Convergent perturbation theory for lattice models with fermions

    NASA Astrophysics Data System (ADS)

    Sazonov, V. K.

    2016-05-01

    The standard perturbation theory in QFT and lattice models leads to the asymptotic expansions. However, an appropriate regularization of the path or lattice integrals allows one to construct convergent series with an infinite radius of the convergence. In the earlier studies, this approach was applied to the purely bosonic systems. Here, using bosonization, we develop the convergent perturbation theory for a toy lattice model with interacting fermionic and bosonic fields.

  9. Perturbations from cosmic strings in cold dark matter

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1992-01-01

    A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.

  10. Perturbations from cosmic strings in cold dark matter

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1991-01-01

    A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.

  11. Adjoint Function: Physical Basis of Variational & Perturbation Theory in Transport

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following legacy book for free distribution: Importance: The Adjoint Function: The Physical Basis of Variational and Perturbation Theory in Transport and Diffusion Problems, North-Holland Publishing Company - Amsterdam, 582 pages, 1966 Introduction: Continuous Systems and the Variational Principle 1. The Fundamental Variational Principle 2. The Importance Function 3. Adjoint Equations 4. Variational Methods 5. Perturbation and Iterative Methods 6. Non-Linear Theory

  12. Control of Transport-Barrier Relaxations by Resonant Magnetic Perturbations

    SciTech Connect

    Leconte, M.; Beyer, P.; Benkadda, S.

    2009-01-30

    Transport-barrier relaxation oscillations in the presence of resonant magnetic perturbations are investigated using three-dimensional global fluid turbulence simulations from first principles at the edge of a tokamak. It is shown that resonant magnetic perturbations have a stabilizing effect on these relaxation oscillations and that this effect is due mainly to a modification of the pressure profile linked to the presence of both residual magnetic island chains and a stochastic layer.

  13. Effective gravitational couplings for cosmological perturbations in generalized Proca theories

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li

    2016-08-01

    We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lemaître-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to nontrivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling Geff with matter density perturbations under a quasistatic approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility for reducing Geff. In fact, within the parameter space, Geff can be even smaller than the Newton gravitational constant G at the late cosmological epoch, with a peculiar phantom dark energy equation of state (without ghosts). The modifications to the slip parameter η and the evolution of the growth rate f σ8 are discussed as well. Thus, dark energy models in the framework of generalized Proca theories can be observationally distinguished from the Λ CDM model according to both cosmic growth and expansion history. Furthermore, we study the evolution of vector perturbations and show that outside the vector sound horizon the perturbations are nearly frozen and start to decay with oscillations after the horizon entry.

  14. Perturbations from strings don't look like strings!

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1991-01-01

    A systematic analysis is challenging popular ideas about perturbation from cosmic strings. One way in which the picture has changed is reviewed. It is concluded that, while the scaling properties of cosmic strings figure significantly in the analysis, care must be taken when thinking in terms of single time snapshots. The process of seeding density perturbations is not fundamentally localized in time, and this fact can wash out many of the details which appear in a single snapshot.

  15. Right-handed neutrinos as the source of density perturbations

    SciTech Connect

    Boubekeur, Lotfi; Creminelli, Paolo

    2006-05-15

    We study the possibility that cosmological density perturbations are generated by the inhomogeneous decay of right-handed neutrinos. This will occur if a scalar field whose fluctuations are created during inflation is coupled to the neutrino sector. Robust predictions of the model are a detectable level of non-Gaussianity and, if standard leptogenesis is the source of the baryon asymmetry, a baryon isocurvature perturbations at the level of the present experimental constraints.

  16. Newtonian limit of fully nonlinear cosmological perturbations in Einstein's gravity

    SciTech Connect

    Hwang, Jai-chan; Noh, Hyerim E-mail: hr@kasi.re.kr

    2013-04-01

    We prove that in the infinite speed-of-light limit (i.e., non-relativistic and subhorizon limits), the relativistic fully nonlinear cosmological perturbation equations in two gauge conditions, the zero-shear gauge and the uniform-expansion gauge, exactly reproduce the Newtonian hydrodynamic perturbation equations in the cosmological background; as a consequence, in the same two gauge conditions, the Newtonian hydrodynamic equations are exactly recovered in the Minkowsky background.

  17. Process for computing geometric perturbations for probabilistic analysis

    DOEpatents

    Fitch, Simeon H. K.; Riha, David S.; Thacker, Ben H.

    2012-04-10

    A method for computing geometric perturbations for probabilistic analysis. The probabilistic analysis is based on finite element modeling, in which uncertainties in the modeled system are represented by changes in the nominal geometry of the model, referred to as "perturbations". These changes are accomplished using displacement vectors, which are computed for each node of a region of interest and are based on mean-value coordinate calculations.

  18. Perturbation Predictability Can Influence the Long-Latency Stretch Response

    PubMed Central

    Forgaard, Christopher J.; Franks, Ian M.; Maslovat, Dana; Chua, Romeo

    2016-01-01

    Perturbations applied to the upper limbs elicit short (M1: 25–50 ms) and long-latency (M2: 50–100 ms) responses in the stretched muscle. M1 is produced by a spinal reflex loop, and M2 receives contribution from multiple spinal and supra-spinal pathways. While M1 is relatively immutable to voluntary intention, the remarkable feature of M2 is that its size can change based on intention or goal of the participant (e.g., increasing when resisting the perturbation and decreasing when asked to let-go or relax following the perturbation). While many studies have examined modulation of M2 between passive and various active conditions, through the use of constant foreperiods (interval between warning signal and a perturbation), it has also been shown that the magnitude of the M2 response in a passive condition can change based on factors such as habituation and anticipation of perturbation delivery. To prevent anticipation of a perturbation, most studies have used variable foreperiods; however, the range of possible foreperiod duration differs between experiments. The present study examined the influence of different variable foreperiods on modulation of the M2 response. Fifteen participants performed active and passive responses to a perturbation that stretched wrist flexors. Each block of trials had either a short (2.5–3.5 seconds; high predictability) or long (2.5–10.5 seconds; low predictability) variable foreperiod. As expected, no differences were found between any conditions for M1, while M2 was larger in the active rather than passive conditions. Interestingly, within the two passive conditions, the long variable foreperiods resulted in greater activity at the end of the M2 response than the trials with short foreperiods. These results suggest that perturbation predictability, even when using a variable foreperiod, can influence circuitry contributing to the long-latency stretch response. PMID:27727293

  19. Linear perturbations of a Schwarzschild blackhole by thin disc - convergence

    NASA Astrophysics Data System (ADS)

    Čížek, P.; Semerák, O.

    2012-07-01

    In order to find the perturbation of a Schwarzschild space-time due to a rotating thin disc, we try to adjust the method used by [4] in the case of perturbation by a one-dimensional ring. This involves solution of stationary axisymmetric Einstein's equations in terms of spherical-harmonic expansions whose convergence however turned out questionable in numerical examples. Here we show, analytically, that the series are almost everywhere convergent, but in some regions the convergence is not absolute.

  20. On the perturbation of a uniform tiling with resistors

    NASA Astrophysics Data System (ADS)

    Owaidat, M. Q.; Asad, J. H.; Tan, Zhi-Zhong

    2016-06-01

    The perturbation of a uniformly tiled resistor network by adding an edge (a resistor) to the network is considered. The two-point resistance on the perturbed tiling in terms of that on the perfect tiling is obtained using Green’s function. Some theoretical results are presented for an infinite modified square lattice. These results are confirmed experimentally by constructing an actual resistor lattice of size 13 × 13.

  1. Cosmic Portrait of a Perturbed Family

    NASA Astrophysics Data System (ADS)

    2005-11-01

    ESO PR Photo 34a/05 shows in amazing details a group of galaxies known as Robert's Quartet [1]. The image is based on data collected with the FORS2 multi-mode instrument on ESO's Very Large Telescope. Robert's Quartet is a family of four very different galaxies, located at a distance of about 160 million light-years, close to the centre of the southern constellation of the Phoenix. Its members are NGC 87, NGC 88, NGC 89 and NGC 92, discovered by John Herschel in the 1830s. NGC 87 (upper right) is an irregular galaxy similar to the satellites of our Milky Way, the Magellanic Clouds. NGC 88 (centre) is a spiral galaxy with an external diffuse envelope, most probably composed of gas. NGC 89 (lower middle) is another spiral galaxy with two large spiral arms. The largest member of the system, NGC 92 (left), is a spiral Sa galaxy with an unusual appearance. One of its arms, about 100,000 light-years long, has been distorted by interactions and contains a large quantity of dust. The quartet is one of the finest examples of compact groups of galaxies. Because such groups contain four to eight galaxies in a very small region, they are excellent laboratories for the study of galaxy interactions and their effects, in particular on the formation of stars. Using another set of VLT data also obtained with FORS2, astronomers [2] were able to study the properties of regions of active star formation ("HII regions" [3]) in the sister members of Robert's Quartet. They found more than 200 of such regions in NGC 92, with a size between 500 and 1,500 light-years (see ESO PR Photo 34b/05). For NGC 87, they detected 56 HII regions, while the two other galaxies appear to have far fewer of them. For NGC 88, however, they found two plume-like features, while NGC 89 presents a ring of enhanced stellar activity. The system is thus clearly showing increased star formation activity, most probably as the result of the interaction between its members. The sisters clearly belong to a perturbed

  2. Perturbative Calculation of Quasi-Potential in Non-equilibrium Diffusions: A Mean-Field Example

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Gawȩdzki, Krzysztof; Nardini, Cesare

    2016-06-01

    In stochastic systems with weak noise, the logarithm of the stationary distribution becomes proportional to a large deviation rate function called the quasi-potential. The quasi-potential, and its characterization through a variational problem, lies at the core of the Freidlin-Wentzell large deviations theory (Freidlin and Wentzell, Random perturbations of dynamical systems, 2012). In many interacting particle systems, the particle density is described by fluctuating hydrodynamics governed by Macroscopic Fluctuation Theory (Bertini et al., arXiv:1404.6466 , 2014), which formally fits within Freidlin-Wentzell's framework with a weak noise proportional to 1/√{N}, where N is the number of particles. The quasi-potential then appears as a natural generalization of the equilibrium free energy to non-equilibrium particle systems. A key physical and practical issue is to actually compute quasi-potentials from their variational characterization for non-equilibrium systems for which detailed balance does not hold. We discuss how to perform such a computation perturbatively in an external parameter λ , starting from a known quasi-potential for λ =0. In a general setup, explicit iterative formulae for all terms of the power-series expansion of the quasi-potential are given for the first time. The key point is a proof of solvability conditions that assure the existence of the perturbation expansion to all orders. We apply the perturbative approach to diffusive particles interacting through a mean-field potential. For such systems, the variational characterization of the quasi-potential was proven by Dawson and Gartner (Stochastics 20:247-308, 1987; Stochastic differential systems, vol 96, pp 1-10, 1987). Our perturbative analysis provides new explicit results about the quasi-potential and about fluctuations of one-particle observables in a simple example

  3. Towards the Right Hamiltonian for Singular Perturbations via Regularization and Extension Theory

    NASA Astrophysics Data System (ADS)

    Neidhardt, Hagen; Zagrebnov, Valentin

    For singular potentials in quantum mechanics it can happen that the Schrödinger operator is not esssentially self-adjoint on a natural domain, i.e., each self-adjoint extension is a candidate for the right physical Hamiltonian. Traditional way to single out this Hamiltonian is the removing cut-offs for regularizing potential. Connecting regularization and extension theory we develop an abstract operator method to treat the problem of the right Hamiltonian. We show that, using the notion of the maximal (with respect to the perturbation) Friedrichs extension of unperturbed operator, one can classify the above problem as wellposed or ill-posed depending on intersection of the quadratic form domain of perturbation and deficiency subspace corresponding to restriction of unperturbed operator to stability domain. If this intersection is trivial, then the right Hamiltonian is unique: it coincides with the form sum of perturbation and the Friedrich extension of the unperturbed operator restricted to the stability domain. Otherwise it is not unique: the family of “right Hamiltonians” can be described in terms of symmetric extensions reducing the ill-posed problem to the well-posed problem.

  4. In Situ Rates of Sulfate Reduction in Response to Geochemical Perturbations

    USGS Publications Warehouse

    Kneeshaw, T.A.; McGuire, J.T.; Cozzarelli, I.M.; Smith, E.W.

    2011-01-01

    Rates of in situ microbial sulfate reduction in response to geochemical perturbations were determined using Native Organism Geochemical Experimentation Enclosures (NOGEEs), a new in situ technique developed to facilitate evaluation of controls on microbial reaction rates. NOGEEs function by first trapping a native microbial community in situ and then subjecting it to geochemical perturbations through the introduction of various test solutions. On three occasions, NOGEEs were used at the Norman Landfill research site in Norman, Oklahoma, to evaluate sulfate-reduction rates in wetland sediments impacted by landfill leachate. The initial experiment, in May 2007, consisted of five introductions of a sulfate test solution over 11 d. Each test stimulated sulfate reduction with rates increasing until an apparent maximum was achieved. Two subsequent experiments, conducted in October 2007 and February 2008, evaluated the effects of concentration on sulfate-reduction rates. Results from these experiments showed that faster sulfate-reduction rates were associated with increased sulfate concentrations. Understanding variability in sulfate-reduction rates in response to perturbations may be an important factor in predicting rates of natural attenuation and bioremediation of contaminants in systems not at biogeochemical equilibrium. Copyright ?? 2011 The Author(s). Journal compilation ?? 2011 National Ground Water Association.

  5. Time-sliced perturbation theory for large scale structure I: general formalism

    NASA Astrophysics Data System (ADS)

    Blas, Diego; Garny, Mathias; Ivanov, Mikhail M.; Sibiryakov, Sergey

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.

  6. Coarse-grained cosmological perturbation theory: Stirring up the dust model

    NASA Astrophysics Data System (ADS)

    Uhlemann, Cora; Kopp, Michael

    2015-04-01

    We study the effect of coarse graining the dynamics of a pressureless self-gravitating fluid (coarse-grained dust) in the context of cosmological perturbation theory, in both the Eulerian and Lagrangian frameworks. We obtain recursion relations for the Eulerian perturbation kernels of the coarse-grained dust model by relating them to those of the standard pressureless fluid model. The effect of the coarse graining is illustrated by means of power and cross spectra for the density and velocity, which are computed up to one-loop order. In particular, the large-scale vorticity power spectrum that arises naturally from a mass-weighted velocity is derived from first principles. We find qualitatively good agreement for the magnitude, shape, and spectral index of the vorticity power spectrum with recent measurements from N -body simulations and results from the effective field theory of large-scale structure. To lay the ground for applications in the context of Lagrangian perturbation theory, we finally describe how the kernels obtained in Eulerian space can be mapped to Lagrangian ones.

  7. Non-Gaussianities in the cosmological perturbation spectrum due to primordial anisotropy II

    SciTech Connect

    Dey, Anindya; Kovetz, Ely; Paban, Sonia E-mail: elykovetz@gmail.com

    2012-10-01

    We continue to investigate possible signatures of a pre-inflationary anisotropic phase in two-point and three point correlation functions of the curvature perturbation for high-momentum modes which exit the horizon well after isotropization. The late time dynamics of these modes is characterized by a non-Bunch Davies vacuum state which encodes all the information about initial anisotropy in the background space-time. We observe that, unlike the non-planar momenta, there exist regimes of planar momenta for which scale invariance of the power spectrum is strongly broken. This regime of planar momenta gives rise to enhanced non-Gaussianity in certain squeezed triangle configurations, although the enhancement of the f{sub NL} parameter is limited by the breakdown of linear perturbation theory at ''exact planarity{sup .} Finally, we demonstrate that for the range of planar modes for which scale invariance of the power spectrum is preserved, non-Gaussianity in the curvature perturbation spectrum is naturally constrained to be extremely small.

  8. Perturbative treatment of anharmonic vibrational effects on bond distances: an extended Langevin dynamics method.

    PubMed

    Shen, Tonghao; Su, Neil Qiang; Wu, Anan; Xu, Xin

    2014-03-01

    In this work, we first review the perturbative treatment of an oscillator with cubic anharmonicity. It is shown that there is a quantum-classical correspondence in terms of mean displacement, mean-squared displacement, and the corresponding variance in the first-order perturbation theory, provided that the amplitude of the classical oscillator is fixed at the zeroth-order energy of quantum mechanics EQM (0). This correspondence condition is realized by proposing the extended Langevin dynamics (XLD), where the key is to construct a proper driving force. It is assumed that the driving force adopts a simple harmonic form with its amplitude chosen according to EQM (0), while the driving frequency chosen as the harmonic frequency. The latter can be improved by using the natural frequency of the system in response to the potential if its anharmonicity is strong. By comparing to the accurate numeric results from discrete variable representation calculations for a set of diatomic species, it is shown that the present method is able to capture the large part of anharmonicity, being competitive with the wave function-based vibrational second-order perturbation theory, for the whole frequency range from ∼4400 cm(-1) (H2 ) to ∼160 cm(-1) (Na2 ). XLD shows a substantial improvement over the classical molecular dynamics which ceases to work for hard mode when zero-point energy effects are significant. PMID:24375394

  9. Searching for less perturbed elliptical orbits around Europa

    NASA Astrophysics Data System (ADS)

    Cardoso dos Santos, J.; Carvalho, J. P. S.; Prado, A. F. B. A.; Vilhena de Moraes, R.

    2015-10-01

    Space missions intending to visit Europa, one of the famous Galilean's moons of Jupiter, are among the most important topics in space activities today. There is an increasing interest in the scientific community to send spacecrafts to be inserted into Europa's orbit, with goals like mapping its surface and gravitational field. From the quality of the observations until the orbital maneuvers, the required aspects for the success of the mission will depend on the orbits used by the spacecraft. The present work searches for less perturbed elliptical orbits around Europa, because they are very important, since these orbits are expected to be more stable to place the spacecraft. The development of the study is based on the net effects of the perturbing forces over the time, evaluated by the integral of those forces with respect to the time. The value of this integral depends both on the dynamical model and the orbit of the spacecraft. Jupiter's third-body perturbation and the J2 and J3 terms of the gravitational potential of Europa are the perturbing forces considered. The results presented here are obtained by performing numerical integrations of the perturbing forces, and they show the locations of the less perturbed orbits.

  10. Linear effects models of signaling pathways from combinatorial perturbation data

    PubMed Central

    Szczurek, Ewa; Beerenwinkel, Niko

    2016-01-01

    Motivation: Perturbations constitute the central means to study signaling pathways. Interrupting components of the pathway and analyzing observed effects of those interruptions can give insight into unknown connections within the signaling pathway itself, as well as the link from the pathway to the effects. Different pathway components may have different individual contributions to the measured perturbation effects, such as gene expression changes. Those effects will be observed in combination when the pathway components are perturbed. Extant approaches focus either on the reconstruction of pathway structure or on resolving how the pathway components control the downstream effects. Results: Here, we propose a linear effects model, which can be applied to solve both these problems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of learning the pathway structure as well as estimation of the individual contributions of pathway components to the perturbation effects. The practical utility of our approach is illustrated by an application to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces cerevisiae. Availability and Implementation: lem is available as a R package at http://www.mimuw.edu.pl/∼szczurek/lem. Contact: szczurek@mimuw.edu.pl; niko.beerenwinkel@bsse.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307630

  11. Effects of core perturbations on the structure of the sun

    NASA Technical Reports Server (NTRS)

    Sweigart, A. V.

    1983-01-01

    The effects of perturbing the inner part of the solar core where the hydrogen abundance has been partially depleted by nuclear burning are investigated. Small regions are mixed within the core and the evolution of the resulting luminosity and radius perturbations is followed. The sensitivity of the solar luminosity and radius to mixing events of different sizes and at different locations in the core is determined and several relationships between the luminosity and radius perturbations are examined to see if the value of one of these perturbations can be inferred from a measurement of the other. It is found that any core perturbation which alters the hydrostatic structures will immediately affect the solar luminosity and radius. The behavior of these perturbations depends on the location of the mixing event within the core. Mixing events cannot produce the decrease in the solar radius without leading to a homogeneous evolution of the solar core and/or to a prohibitively large change in the solar luminosity.

  12. Finite field-dependent symmetries in perturbative quantum gravity

    SciTech Connect

    Upadhyay, Sudhaker

    2014-01-15

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also.

  13. Mechanical perturbation of the wrist during one-handed catching.

    PubMed

    Button, C; Davids, K; Bennett, S J; Taylor, M A

    2000-09-01

    In the present study, the co-ordination of grasp and transport components of one-handed catching was examined following mechanical perturbations applied to the wrist. Six skilled catchers (mean age = 27.5 years) performed 64 trials in which tennis balls were projected at approximately 8 ms-1. The trial blocks consisted of 10 non-perturbed trials (NPTs) (baseline), and a block of 54 trials of which 20 trials were perturbed. The perturbation was in the form of a resistive force (12 N) applied via a piece of cord attached to a mechanical brake. In baseline trials participants reached maximal wrist velocity closer to the time of hand-ball contact (237 ms +/- 68) than in the perturbed (309 ms +/- 61) condition. Furthermore the wrist velocity profile of five out of six participants exhibited a double peak immediately after a perturbation. However, aperture variables such as the relative moment of final hand closure (approximately 70% of overall movement time) were not typically affected. The stability of grasp and transport coupling for one-handed catching was shown to vary from trial to trial. Skilled performers exploited redundant degrees of freedom in the motor system when faced with a sudden, unexpected change in task constraints. PMID:11057000

  14. Modularity and the spread of perturbations in complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Kolchinsky, Artemy; Gates, Alexander J.; Rocha, Luis M.

    2015-12-01

    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

  15. Dynamic meandering in response to upstream perturbations and floodplain formation

    NASA Astrophysics Data System (ADS)

    Schuurman, F.; Shimizu, Y.; Iwasaki, T.; Kleinhans, M. G.

    2016-01-01

    River meandering results from spatially alternating bank erosion and bar growth. Recent flume experiments and theory suggest that a continuous inflow perturbation is a requirement for sustained meandering. Furthermore, flume experiments suggest that bar-floodplain conversion is an additional requirement. Here, we tested the effects of continuous inflow perturbation and bar-floodplain conversion on meander migration using three numerical morphodynamic models: a 1D-model, and two 2D-models with one of them using adaptive moving grid. We focused on the interaction between bars and bends that leads to meander initiation, and the effect of different methods to model bank erosion and floodplain accretion processes on meander migration. The results showed that inflow perturbations have large effects on meander dynamics of high-sinuosity channels, with strong excitation when the inflow is periodically perturbed. In contrast, inflow perturbations have rather small effect in low-sinuosity channels. Steady alternate bars alone are insufficient to cause high-sinuosity meandering. For high-sinuosity meandering, bar-floodplain conversion is required that prevents chute-cutoffs and enhances flow asymmetry, whilst meandering with chute-cutoffs requires merely weak floodplain formation, and braiding occurs without floodplain formation. Thus, this study demonstrated that both dynamic upstream inflow perturbation and bar-floodplain conversion are required for sustained high-sinuosity meandering.

  16. Intersegmental coupling and recovery from perturbations in freely running cockroaches

    PubMed Central

    Couzin-Fuchs, Einat; Kiemel, Tim; Gal, Omer; Ayali, Amir; Holmes, Philip

    2015-01-01

    Cockroaches are remarkably stable runners, exhibiting rapid recovery from external perturbations. To uncover the mechanisms behind this important behavioral trait, we recorded leg kinematics of freely running animals in both undisturbed and perturbed trials. Functional coupling underlying inter-leg coordination was monitored before and during localized perturbations, which were applied to single legs via magnetic impulses. The resulting transient effects on all legs and the recovery times to normal pre-perturbation kinematics were studied. We estimated coupling architecture and strength by fitting experimental data to a six-leg-unit phase oscillator model. Using maximum-likelihood techniques, we found that a network with nearest-neighbor inter-leg coupling best fitted the data and that, although coupling strengths vary among preparations, the overall inputs entering each leg are approximately balanced and consistent. Simulations of models with different coupling strengths encountering perturbations suggest that the coupling schemes estimated from our experiments allow animals relatively fast and uniform recoveries from perturbations. PMID:25609786

  17. Non-supersymmetric infrared perturbations to the warped deformed conifold

    NASA Astrophysics Data System (ADS)

    McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske

    2011-01-01

    We analyze properties of non-supersymmetric, isometry-preserving perturbations to the infrared region of the warped deformed conifold, i.e. the Klebanov-Strassler solution. We discuss both perturbations that "squash" the geometry, so that the internal space is no longer conformally Calabi-Yau, and perturbations that do not squash the geometry. Among the perturbations that we discuss is the solution that describes the linearized near-tip backreaction of a smeared collection of D3¯-branes positioned in the deep infrared. Such a configuration is a candidate gravity dual of a non-supersymmetric state in a large-rank cascading gauge theory. Although D3¯-branes do not directly couple to the 3-form flux, we argue that, due to the presence of the background imaginary self-dual flux, D3¯-branes in the Klebanov-Strassler geometry necessarily produce singular non-imaginary self-dual flux. Moreover, since conformally Calabi-Yau geometries cannot be supported by non-imaginary self-dual flux, the D3¯-branes squash the geometry as our explicit solution shows. We also briefly discuss supersymmetry-breaking perturbations at large radii and the effect of the non-supersymmetric perturbations on the gravitino mass.

  18. A hybrid perturbation-Galerkin technique for partial differential equations

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Anderson, Carl M.

    1990-01-01

    A two-step hybrid perturbation-Galerkin technique for improving the usefulness of perturbation solutions to partial differential equations which contain a parameter is presented and discussed. In the first step of the method, the leading terms in the asymptotic expansion(s) of the solution about one or more values of the perturbation parameter are obtained using standard perturbation methods. In the second step, the perturbation functions obtained in the first step are used as trial functions in a Bubnov-Galerkin approximation. This semi-analytical, semi-numerical hybrid technique appears to overcome some of the drawbacks of the perturbation and Galerkin methods when they are applied by themselves, while combining some of the good features of each. The technique is illustrated first by a simple example. It is then applied to the problem of determining the flow of a slightly compressible fluid past a circular cylinder and to the problem of determining the shape of a free surface due to a sink above the surface. Solutions obtained by the hybrid method are compared with other approximate solutions, and its possible application to certain problems associated with domain decomposition is discussed.

  19. Nonperturbative Quantum Physics from Low-Order Perturbation Theory.

    PubMed

    Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K

    2015-10-01

    The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.

  20. Unusual Low-frequency Magnetic Perturbations in TFTR

    SciTech Connect

    H. Takahashi; E.D. Fredrickson; M.S. Chance

    2001-02-12

    Low-frequency magnetic perturbations (less than or equal to 30 kHz) observed in the Tokamak Fusion Test Reactor (TFTR) tokamak do not always conform to expectations from Magneto-Hydro-Dynamic (MHD) modes. The discrepancy between observations and expectations arises from the existence of three classes of magnetic perturbations in TFTR: (1) 'Edge Originated Magnetic Perturbations' (EOMP's), (2) 'Kink-like Modes' (KLM's), and (3) Tearing Modes (TM's). The EOMP class has unusual magnetic phenomenon including up/down asymmetry in poloidal intensity variation that MHD modes alone cannot generate. The contributions of MHD modes in plasma edge regions are too small to explain the magnitude of observed EOMP perturbations. At least two-thirds, possibly nearly all, of magnetic perturbations in a typical EOMP originate from sources other than MHD modes. An EOMP has a unity toroidal harmonic number and a poloidal harmonic number close to a discharge's edge q-value. It produces little temperature fluctuations, except possibly in edge regions. The KLM class produces temperature fluctuations, mostly confined within the q=1 surface with an ideal-mode-like structure, but generates little external magnetic perturbations. The TM class conforms generally to expectations from MHD modes. We propose that current flowing in the Scrape-off-layer (SOL) plasma is a possible origin of EOMP's.

  1. Simulated Climate Sensitivity Uncertainty: Control Climate Bias vs. Perturbed Physics

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2013-12-01

    In this talk I address the relationship between climate model biases in the control climate and the simulated climate sensitivity. On the basis of a globally resolved energy balance (GREB) model a number of perturbed physics ensembles are discussed. It is illustrated that the uncertainties in the simulated climate sensitivity can be conceptually split into two parts: a direct effect of the perturbed physics on the climate sensitivity independent of the control mean climate and an indirect effect of the perturbed physics by changing the control mean climate, which in turn changes the climate sensitivity, as the climate sensitivity itself is depending on the control climate. It is shown that the two effects are opposing each other. Biases in the control climate are negatively correlated with the climate sensitivity (colder climates have large sensitivities) and perturbed physics are in average positively correlated with the climate sensitivity (perturbed parameters that lead to warmer control climates lead to larger climate sensitivities). In the GREB model the biases in the control climate are more important effect for the regional climate sensitivity uncertainties, but on the global mean climate sensitivity both, the biases in the control climate and the perturbed physics are equally important.

  2. Runaway electron drift orbits in magnetostatic perturbed fields

    NASA Astrophysics Data System (ADS)

    Papp, G.; Drevlak, M.; Fülöp, T.; Helander, P.

    2011-04-01

    Disruptions in large tokamaks can lead to the generation of a relativistic runaway electron beam that may cause serious damage to the first wall. To mitigate the disruption and suppress the runaway beam the application of resonant magnetic perturbations has been suggested. In this work we investigate the effect of resonant magnetic perturbations on the confinement of runaway electrons by simulating their drift orbits in magnetostatic perturbed fields and calculating the orbit losses for various initial energies and magnetic perturbation magnitudes. In the simulations we use a TEXTOR-like configuration and solve the relativistic, gyro-averaged drift equations for the runaway electrons including synchrotron radiation and collisions. The results indicate that runaway electrons are well confined in the core of the device, but the onset time of runaway losses closer to the edge is dependent on the magnetic perturbation level and thereby can affect the maximum runaway current. However, the runaway current damping rate is not sensitive to the magnetic perturbation level, in agreement with experimental observations.

  3. Computer assisted expansion of 1/Delta series with Newton iteration. [for Jovian satellite perturbation

    NASA Technical Reports Server (NTRS)

    Chao, C. C.; Broucke, R. A.

    1976-01-01

    The Newton iteration method has been widely applied to the solution of various equations such as Kepler's equation. In this study it is used in planetary and satellite theory as a general procedure for Fourier series inversion. The method is used for the construction of the 1/Delta series either in literal form or in numerical form with small eccentricities and inclinations substituted in advance. This usually results in very compact series. With the Newton iteration procedure and a computerized series manipulation technique, the Fourier series of 1/Delta of the mutual perturbations among most natural satellites can be easily constructed.

  4. Modeling a Nanocantilever-Based Biosensor Using a Stochastically Perturbed Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Snyder, Patrick; Joshi, Amitabh; Serna, Juan D.

    2014-05-01

    Nanoscale biosensors are devices designed to detect analytes by combining biological components and physicochemical detectors. A well-known design of these sensors involves the implementation of nanocantilevers. These microscopic diving boards are coated with binding probes that have an affinity for a particular amino acid, enzyme or protein in living organisms. When these probes attract target particles, such as biomolecules, the binding of these particles changes the vibrating frequency of the cantilever. This process is random in nature and produces fluctuations in the frequency and damping of the cantilever. In this paper, we studied the effect of these fluctuations using a stochastically perturbed, classical harmonic oscillator.

  5. Effective interaction in the Rayleigh–Schrödinger perturbation theory

    SciTech Connect

    Takayanagi, Kazuo

    2014-11-15

    We present a unified description of the effective interaction v in the Rayleigh–Schrödinger perturbation theory. First, we generalize the well-known bracketing expression for the energy shift ΔE in a one-dimensional model space to express the effective interaction v in a multi-dimensional model space. Second, we show that the generalized bracketing representation has a natural graphic expression in terms of folded diagrams. The present work thus gives a unified understanding of the effective interaction (i) in one- and multi-dimensional model spaces and (ii) in algebraic (bracketing) and graphic (folded diagram) representations.

  6. Even- and Odd-Parity Charmed Meson Masses in Heavy Hadron Chiral Perturbation Theory

    SciTech Connect

    Thomas Mehen; Roxanne Springer

    2005-03-01

    We derive mass formulae for the ground state, J{sup P} = 0{sup -} and 1{sup -}, and first excited even-parity, J{sup P} = 0{sup +} and 1{sup +}, charmed mesons including one loop chiral corrections and {Omicron}(1/m{sub c}) counterterms in heavy hadron chiral perturbation theory. We show a variety of fits to the current data. We find that certain parameter relations in the parity doubling model are not renormalized at one loop, providing a natural explanation for the equality of the hyperfine splittings of ground state and excited doublets.

  7. The large coefficient problem; can we make sense out of QCD perturbation theory

    SciTech Connect

    West, G.B.

    1989-01-01

    There is the possibility of an impending crisis looming on the horizon for QCD. The problem is that in many processes, large coefficients arise in the perturbation series expansion leading to serious uncertainties concerning its predictive power. Until recently most of the examples of such a phenomenon occurred in the calculation of decay rates. These were, by and large, either ignored or dismissed using possible scheme-dependence arguments as a way out. However, more recently a calculation of the 3-loop contribution to the total e{sup +}e{sup -} annihilation cross-section was performed which gave an enormous coefficient of the order of 50 times that of the 2-loop term. If correct, this would imply that the 3-loop contribution actually exceeds that of the 2-loop Thus, from a conservative viewpoint, the validity of the perturbation series expansion as an estimate for the total e{sup +}e{sup -} cross-section is called into question. Since this process has played a key role in the development and understanding of QCD and since, in many ways, it is one of the cleanest methods for extracting {alpha}{sub s} the problem can no longer be avoided. Furthermore, there is no reason to doubt that this problem should occur in all physical processes. Coming to grips with it is, of course, not only important for testing QCD but also for extracting fundamental quantities such as {alpha}{sub s}. Clearly one needs to understand the nature and origin of such large coefficients before one can confidently continue to use perturbative estimates. The purpose of this talk is to focus on these problems. I shall first review the experimental situation with some examples illustrating the problem. I shall then discuss various general components and properties of perturbation theory before attempting to give a possible resolution of the problem. 18 refs., 5 figs.

  8. Toward physical cosmology: focus on inhomogeneous geometry and its non-perturbative effects

    NASA Astrophysics Data System (ADS)

    Buchert, Thomas

    2011-08-01

    We outline the key steps toward the construction of a physical, fully relativistic cosmology. The influence of inhomogeneities on the effective evolution history of the Universe is encoded in backreaction terms and expressed through spatially averaged geometrical invariants. These are absent and potential candidates for the missing dark sources in the standard model. Since they can be interpreted as energies of an emerging scalar field (the morphon), we are in a position to propose a strategy of how phenomenological scalar field models for dark energy, dark matter and inflation, that are usually added as fundamental sources to a homogeneous-geometry (FLRW) cosmology, can be potentially traced back to the inhomogeneous geometrical properties of space and its embedding into spacetime. We lay down a line of arguments that is—thus far only qualitatively—conclusive, and we address open problems of quantitative nature, related to the interpretation of observations. We discuss within a covariant framework (i) the foliation problem and invariant definitions of backreaction effects; (ii) the background problem and the notion of an effective cosmology; (iii) generalizations of the cosmological principle and generalizations of the cosmological equations; (iv) dark energies as energies of an effective scalar field; (v) the global gravitational instability of the standard model and basins of attraction for effective states; (vi) multiscale cosmological models and volume acceleration; (vii) effective metrics and strategies for effective distance measurements on the light cone, including observational predictions; (viii) examples of non-perturbative models, including explicit backreaction models for the LTB solution, extrapolations of the relativistic Lagrangian perturbation theory and scalar metric inhomogeneities. The role of scalar metric perturbations is critically examined and embedded into the non-perturbative framework.

  9. Radiative Susceptibility of Cloudy Atmospheres to Droplet Number Perturbations: 2. Global analysis from MODIS

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Platnick, Steven

    2008-01-01

    Global distributions of albedo susceptibility for areas covered by liquid clouds are presented for 4 months in 2005. The susceptibility estimates are based on expanded definitions presented in a companion paper and include relative cloud droplet number concentration (CDNC) changes, perturbations in cloud droplet asymmetry parameter and single-scattering albedo, atmospheric/surface effects, and incorporation of the full solar spectrum. The cloud properties (optical thickness and effective radius) used as input in the susceptibility calculations come from MODIS Terra and Aqua Collection 5 gridded data. Geographical distributions of susceptibility corresponding to absolute ( absolute cloud susceptibility ) and relative ( relative cloud susceptibility ) CDNC changes are markedly different indicating that the detailed nature of the cloud microphysical perturbation is important for determining the radiative forcing associated with the first indirect aerosol effect. However, both types of susceptibility exhibit common characteristics such as significant reductions when perturbations in single-scattering properties are omitted, significant increases when atmospheric absorption and surface albedo effects are ignored, and the tendency to decrease with latitude, to be higher over ocean than over land, and to be statistically similar between the morning and afternoon MODIS overpasses. The satellite-based susceptibility analysis helps elucidate the role of present-day cloud and land surface properties in indirect aerosol forcing responses. Our realistic yet moderate CDNC perturbations yield forcings on the order of 1-2 W/sq m for cloud optical property distributions and land surface spectral albedos observed by MODIS. Since susceptibilities can potentially be computed from model fields, these results have practical application in assessing the reasonableness of model-generated estimates of the aerosol indirect radiative forcing.

  10. Semiclassical analysis of perturbed two-electron states in barium

    NASA Astrophysics Data System (ADS)

    Bates, Kenneth A.

    Recent semiclassical studies of atomic spectra allow new insight into their electron dynamics. The semiclassical closed orbit theory demonstrates the influence of classical orbits in atomic photoabsorption spectra, and has been successfully used for one-electron alkali atoms. Atomic states with one highly-excited electron are known as Rydberg states. If an atom has two valence electrons, and the electrons are treated as independent of each other, then the atom will also have states with two excited electrons. The electrons are not actually independent, so these two different configurations will interact in an atom. If some of the "singly-excited" states occur near the energy of a "doubly-excited" state, then the resulting "perturbed states" are shifted from their hydrogenic positions and have several unusual properties not accounted for by closed orbit theory. We report the first use of closed orbit theory to describe the photoabsorption of perturbed two-electron atomic states. The experimental photoabsorption for two series of perturbed states in barium were measured as a function of electric field. A new extension of semiclassical closed orbit theory was found for perturbed states, using an energy-dependent quantum defect to account for the second valence electron. Scaled energy spectroscopy measurements, a successful analysis technique for one-electron atoms, proved unhelpful when studying perturbed barium states. This demonstrated that perturbed atoms have an important electron-electron interaction term in their Hamiltonian with non-alkali scaling. Our photoabsorption calculations for hydrogen, sodium and cesium verified our experimental calibration and our analysis of atomic core effects. We also show the mathematical equivalence of closed orbit theory and quantum defect theory for modeling the photoabsorption of perturbed atomic states in a field-free environment.

  11. Cosmological perturbation theory in 1+1 dimensions

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew; White, Martin

    2016-01-01

    Many recent studies have highlighted certain failures of the standard Eulerian-space cosmological perturbation theory (SPT). Its problems include (1) not capturing large-scale bulk flows [leading to an Script O( 1) error in the 1-loop SPT prediction for the baryon acoustic peak in the correlation function], (2) assuming that the Universe behaves as a pressureless, inviscid fluid, and (3) treating fluctuations on scales that are non-perturbative as if they were. Recent studies have highlighted the successes of perturbation theory in Lagrangian space or theories that solve equations for the effective dynamics of smoothed fields. Both approaches mitigate some or all of the aforementioned issues with SPT. We discuss these physical developments by specializing to the simplified 1D case of gravitationally interacting sheets, which allows us to substantially reduces the analytic overhead and still (as we show) maintain many of the same behaviors as in 3D. In 1D, linear-order Lagrangian perturbation theory ("the Zeldovich approximation") is exact up to shell crossing, and we prove that nth-order Eulerian perturbation theory converges to the Zeldovich approximation as narrow ∞. In no 1D cosmology that we consider (including a CDM-like case and power-law models) do these theories describe accurately the matter power spectrum on any mildly nonlinear scale. We find that theories based on effective equations are much more successful at describing the dynamics. Finally, we discuss many topics that have recently appeared in the perturbation theory literature such as beat coupling, the shift and smearing of the baryon acoustic oscillation feature, and the advantages of Fourier versus configuration space. Our simplified 1D case serves as an intuitive review of these perturbation theory results.

  12. Axial gravitational perturbations of an infinite static line source

    NASA Astrophysics Data System (ADS)

    Gleiser, Reinaldo J.

    2015-03-01

    The Levi-Civita metric, which contains a naked singularity that has been interpreted as an infinite static line source, appears, for instance, as the possible end point in the collapse of cylindrically symmetric objects such as shells of dust. The analysis of its gravitational stability should therefore be relevant in the contexts of the cosmic censorship and hoop conjectures. In this paper we study axial gravitational perturbations of the Levi-Civita metric. The perturbations are restricted to axial symmetry but break the cylindrical symmetry of the background metric. We analyze the gauge issues that arise in setting up the appropriate form of the perturbed metric and show that it is possible to restrict the perturbations to diagonal terms but that this does not fix the gauge completely. We derive and solve the perturbation equations. The solutions contain gauge-trivial parts, and we show how to extract the gauge-nontrivial components. We impose appropriate boundary conditions on the solutions and show that these lead to a boundary value problem that determines the allowed functional forms of the perturbation modes. The associated eigenvalues determine a sort of ‘dispersion relation’ for the frequencies and corresponding ‘wave vector’ components. The central result of this analysis is that the spectrum of allowed frequencies contains one unstable (imaginary frequency) mode for every possible choice of the background metric. The completeness of the mode expansion in relation to the initial value problem and to the gauge problem is discussed in detail, and we show that the perturbations contain an unstable component for generic initial data and therefore that the Levi-Civita space times are gravitationally unstable. We also include, for completeness, a set of approximate eigenvalues and examples of the functional form of the solutions.

  13. Production of scalar and tensor perturbations in inflationary models

    NASA Astrophysics Data System (ADS)

    Turner, Michael S.

    1993-10-01

    Scalar (density) and tensor (gravity-wave) perturbations provide the basis for the fundamental observable consequences of inflation, including CBR anisotropy and the formation of structure in the Universe. These perturbations are nearly scale invariant (Harrison-Zel'dovich spectrum), though a slight deviation from scale invariance (``tilt'') can have significant consequences for both CBR anisotropy and structure formation. In particular, a slightly tilted spectrum of scalar perturbations may improve the agreement of the cold dark matter scenario with the observational data. The amplitude and spectrum of the scalar and tensor perturbations depend upon the shape of the inflationary potential in the small interval where the scalar field responsible for inflation was between about 46 and 54 e-folds before the end of inflation. By expanding the inflationary potential in a Taylor series over this interval we show that the amplitudes of the perturbations and the power-law slopes of their spectra can be expressed in terms of the value of the potential 50 e-folds before the end of inflation, V50, its steepness x50≡mPlV'50/V50, and the rate of change of its steepness, x'50 (a prime denotes a derivative with respect to the scalar field). In addition, the power-law index of the cosmic-scale factor at this time is q50≡[dlnR/dlnt]50~=16π/x250. (Formally, our results for the perturbation amplitudes and spectral indices are accurate to lowest order in the deviation from scale invariance.) In general, the deviation from scale invariance is such to enhance fluctuations on large scales, and is only significant for steep potentials, large x50, or potentials with rapidly changing steepness, large x'50. In the latter case, only the spectrum of scalar perturbations is significantly tilted. Steep potentials are characterized by a large tensor-mode contribution to the quadrupole CBR temperature anisotropy, a similar tilt in both scalar and tensor perturbations, and a slower expansion

  14. Some clouds have a silver lining: paradoxes of anthropogenic perturbations from study cases on long-lived social birds.

    PubMed

    Oro, Daniel; Jiménez, Juan; Curcó, Antoni

    2012-01-01

    In recent centuries and above all over the last few decades, human activities have generated perturbations (from mild to very severe or catastrophes) that, when added to those of natural origin, constitute a global threat to biodiversity. Predicting the effects of anthropogenic perturbations on species and communities is a great scientific challenge given the complexity of ecosystems and the need for detailed population data from both before and after the perturbations. Here we present three cases of well-documented anthropogenic severe perturbations (different forms of habitat loss and deterioration influencing fertility and survival) that have affected three species of birds (a raptor, a scavenger and a waterbird) for which we possess long-term population time series. We tested whether the perturbations caused serious population decline or whether the study species were resilient, that is, its population dynamics were relatively unaffected. Two of the species did decline, although to a relatively small extent with no shift to a state of lower population numbers. Subsequently, these populations recovered rapidly and numbers reached similar levels to before the perturbations. Strikingly, in the third species a strong breakpoint took place towards greater population sizes, probably due to the colonization of new areas by recruits that were queuing at the destroyed habitat. Even though it is difficult to draw patterns of resilience from only three cases, the study species were all long-lived, social species with excellent dispersal and colonization abilities, capable of skipping reproduction and undergoing a phase of significant long-term population increase. The search for such patterns is crucial for optimizing the limited resources allocated to conservation and for predicting the future impact of planned anthropogenic activities on ecosystems.

  15. Some Clouds Have a Silver Lining: Paradoxes of Anthropogenic Perturbations from Study Cases on Long-Lived Social Birds

    PubMed Central

    Oro, Daniel; Jiménez, Juan; Curcó, Antoni

    2012-01-01

    In recent centuries and above all over the last few decades, human activities have generated perturbations (from mild to very severe or catastrophes) that, when added to those of natural origin, constitute a global threat to biodiversity. Predicting the effects of anthropogenic perturbations on species and communities is a great scientific challenge given the complexity of ecosystems and the need for detailed population data from both before and after the perturbations. Here we present three cases of well-documented anthropogenic severe perturbations (different forms of habitat loss and deterioration influencing fertility and survival) that have affected three species of birds (a raptor, a scavenger and a waterbird) for which we possess long-term population time series. We tested whether the perturbations caused serious population decline or whether the study species were resilient, that is, its population dynamics were relatively unaffected. Two of the species did decline, although to a relatively small extent with no shift to a state of lower population numbers. Subsequently, these populations recovered rapidly and numbers reached similar levels to before the perturbations. Strikingly, in the third species a strong breakpoint took place towards greater population sizes, probably due to the colonization of new areas by recruits that were queuing at the destroyed habitat. Even though it is difficult to draw patterns of resilience from only three cases, the study species were all long-lived, social species with excellent dispersal and colonization abilities, capable of skipping reproduction and undergoing a phase of significant long-term population increase. The search for such patterns is crucial for optimizing the limited resources allocated to conservation and for predicting the future impact of planned anthropogenic activities on ecosystems. PMID:22936988

  16. Numerical Analysis of Orbital Perturbation Effects on Inclined Geosynchronous SAR.

    PubMed

    Dong, Xichao; Hu, Cheng; Long, Teng; Li, Yuanhao

    2016-01-01

    The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit perturbations, leading to orbit drifts and variations. The influences behave very differently from those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing. Simulations of the point target imaging are performed to validate the aforementioned analysis. In the GEO SAR with an inclination of 53° and an argument of perigee of 90°, the Doppler parameters and the integration time are different and dependent on the geometry configurations. Thus, the influences are varying at different orbit positions: at the equator, the first-order phase errors should be mainly considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at other positions, first-order and second-order exist simultaneously. PMID:27598168

  17. Step Prediction During Perturbed Standing Using Center Of Pressure Measurements

    PubMed Central

    Tortolero, Xavier; Masani, Kei; Popovic, Milos R.

    2007-01-01

    The development of a sensor that can measure balance during quiet standing and predict stepping response in the event of perturbation has many clinically relevant applications, including closed-loop control of a neuroprothesis for standing. This study investigated the feasibility of an algorithm that can predict in real-time when an able-bodied individual who is quietly standing will have to make a step to compensate for an external perturbation. Anterior and posterior perturbations were performed on 16 able-bodied subjects using a pulley system with a dropped weight. A linear relationship was found between the peak center of pressure (COP) velocity and the peak COP displacement caused by the perturbation. This result suggests that one can predict when a person will have to make a step based on COP velocity measurements alone. Another important feature of this finding is that the peak COP velocity occurs considerably before the peak COP displacement. As a result, one can predict if a subject will have to make a step in response to a perturbation sufficiently ahead of the time when the subject is actually forced to make the step. The proposed instability detection algorithm will be implemented in a sensor system using insole sheets in shoes with miniturized pressure sensors by which the COPv can be continuously measured. The sensor system will be integrated in a closed-loop feedback system with a neuroprosthesis for standing in the near future.

  18. Numerical Analysis of Orbital Perturbation Effects on Inclined Geosynchronous SAR

    PubMed Central

    Dong, Xichao; Hu, Cheng; Long, Teng; Li, Yuanhao

    2016-01-01

    The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit perturbations, leading to orbit drifts and variations. The influences behave very differently from those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing. Simulations of the point target imaging are performed to validate the aforementioned analysis. In the GEO SAR with an inclination of 53° and an argument of perigee of 90°, the Doppler parameters and the integration time are different and dependent on the geometry configurations. Thus, the influences are varying at different orbit positions: at the equator, the first-order phase errors should be mainly considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at other positions, first-order and second-order exist simultaneously. PMID:27598168

  19. Renormalization group optimized perturbation theory at finite temperatures

    NASA Astrophysics Data System (ADS)

    Kneur, Jean-Loïc; Pinto, Marcus B.

    2015-12-01

    A recently developed variant of the so-called optimized perturbation theory (OPT), making it perturbatively consistent with renormalization group (RG) properties, RGOPT, was shown to drastically improve its convergence for zero temperature theories. Here the RGOPT adapted to finite temperature is illustrated with a detailed evaluation of the two-loop pressure for the thermal scalar λ ϕ4 field theory. We show that already at the simple one-loop level this quantity is exactly scale-invariant by construction and turns out to qualitatively reproduce, with a rather simple procedure, results from more sophisticated resummation methods at two-loop order, such as the two-particle irreducible approach typically. This lowest order also reproduces the exact large-N results of the O (N ) model. Although very close in spirit, our RGOPT method and corresponding results differ drastically from similar variational approaches, such as the screened perturbation theory or its QCD-version, the (resummed) hard thermal loop perturbation theory. The latter approaches exhibit a sensibly degrading scale dependence at higher orders, which we identify as a consequence of missing RG invariance. In contrast RGOPT gives a considerably reduced scale dependence at two-loop level, even for relatively large coupling values √{λ /24 }˜O (1 ), making results much more stable as compared with standard perturbation theory, with expected similar properties for thermal QCD.

  20. Non-linear characteristics of Rayleigh-Taylor instable perturbations

    NASA Astrophysics Data System (ADS)

    Fan, Zhengfeng; Luo, Jisheng

    2008-04-01

    The direct numerical simulation method is adopted to study the non-linear characteristics of Rayleigh-Taylor instable perturbations at the ablation front of a 200 μm planar CH ablation target. In the simulation, the classical electrical thermal conductivity is included, and NND difference scheme is used. The linear growth rates obtained from the simulation agree with the Takabe formula. The amplitude distribution of the density perturbation at the ablation front is obtained for the linear growth case. The non-linear characteristics of Rayleigh-Taylor instable perturbations are analyzed and the numerical results show that the amplitude distributions of the compulsive harmonics are very different from that of the fundamental perturbation. The characteristics of the amplitude distributions of the harmonics and their fast growth explain why spikes occur at the ablation front. The numerical results also show that non-linear effects have relations with the phase differences of double mode initial perturbations, and different phase differences lead to varied spikes.