Sample records for plethodontid salamander mitochondrial

  1. Characterization of the ecological requirements for three plethodontid salamander species

    Treesearch

    Jessica A. Wooten; William B. Sutton; Thomas K. Pauley

    2010-01-01

    Increased availability of habitat and climate data has facilitated much research concerning the influence of these characteristics on the structure of salamander communities. We aimed to outline environmental requirements influencing the distribution of three sympatric plethodontid salamander species, including Plethodon cinereus, Desmognathus ochrophaeus...

  2. Plethodontid salamander response to Silvilcultural Practices in Missouri Ozark forests

    Treesearch

    Laura A. Herbeck; David R. Larsen

    1999-01-01

    There is little information on the effects of tree harvest on salamander populations in the midwestern United States. We present data on plethodontid salamander densities in replicated stands of three forest age classes in the southeastern Ozarks of Missouri. Forest age classes consisted of regeneration-cut sites

  3. Detection of an enigmatic plethodontid Salamander using Environmental DNA

    USGS Publications Warehouse

    Pierson, Todd W.; Mckee, Anna; Spear, Stephen F.; Maerz, John C.; Camp, Carlos D.; Glenn, Travis C.

    2016-01-01

    The isolation and identification of environmental DNA (eDNA) offers a non-invasive and efficient method for the detection of rare and secretive aquatic wildlife, and it is being widely integrated into inventory and monitoring efforts. The Patch-Nosed Salamander (Urspelerpes brucei) is a tiny, recently discovered species of plethodontid salamander known only from headwater streams in a small region of Georgia and South Carolina. Here, we present results of a quantitative PCR-based eDNA assay capable of detecting Urspelerpes in more than 75% of 33 samples from five confirmed streams. We deployed the method at 31 additional streams and located three previously undocumented populations of Urspelerpes. We compare the results of our eDNA assay with our attempt to use aquatic leaf litterbags for the rapid detection of Urspelerpes and demonstrate the relative efficacy of the eDNA assay. We suggest that eDNA offers great potential for use in detecting other aquatic and semi-aquatic plethodontid salamanders.

  4. Rapid diversification and dispersal during periods of global warming by plethodontid salamanders

    PubMed Central

    Vieites, David R.; Min, Mi-Sook; Wake, David B.

    2007-01-01

    A phylogeny and timescale derived from analyses of multilocus nuclear DNA sequences for Holarctic genera of plethodontid salamanders reveal them to be an old radiation whose common ancestor diverged from sister taxa in the late Jurassic and underwent rapid diversification during the late Cretaceous. A North American origin of plethodontids was followed by a continental-wide diversification, not necessarily centered only in the Appalachian region. The colonization of Eurasia by plethodontids most likely occurred once, by dispersal during the late Cretaceous. Subsequent diversification in Asia led to the origin of Hydromantes and Karsenia, with the former then dispersing both to Europe and back to North America. Salamanders underwent rapid episodes of diversification and dispersal that coincided with major global warming events during the late Cretaceous and again during the Paleocene–Eocene thermal optimum. The major clades of plethodontids were established during these episodes, contemporaneously with similar phenomena in angiosperms, arthropods, birds, and mammals. Periods of global warming may have promoted diversification and both inter- and transcontinental dispersal in northern hemisphere salamanders by making available terrain that shortened dispersal routes and offered new opportunities for adaptive and vicariant evolution. PMID:18077422

  5. Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Rachel Lockridge; Macey, J. Robert; Jaekel, Martin

    2004-08-01

    The evolutionary history of the largest salamander family (Plethodontidae) is characterized by extreme morphological homoplasy. Analysis of the mechanisms generating such homoplasy requires an independent, molecular phylogeny. To this end, we sequenced 24 complete mitochondrial genomes (22 plethodontids and two outgroup taxa), added data for three species from GenBank, and performed partitioned and unpartitioned Bayesian, ML, and MP phylogenetic analyses. We explored four dataset partitioning strategies to account for evolutionary process heterogeneity among genes and codon positions, all of which yielded increased model likelihoods and decreased numbers of supported nodes in the topologies (PP > 0.95) relative to the unpartitionedmore » analysis. Our phylogenetic analyses yielded congruent trees that contrast with the traditional morphology-based taxonomy; the monophyly of three out of four major groups is rejected. Reanalysis of current hypotheses in light of these new evolutionary relationships suggests that (1) a larval life history stage re-evolved from a direct-developing ancestor multiple times, (2) there is no phylogenetic support for the ''Out of Appalachia'' hypothesis of plethodontid origins, and (3) novel scenarios must be reconstructed for the convergent evolution of projectile tongues, reduction in toe number, and specialization for defensive tail loss. Some of these novel scenarios imply morphological transformation series that proceed in the opposite direction than was previously thought. In addition, they suggest surprising evolutionary lability in traits previously interpreted to be conservative.« less

  6. Evaluating multi-level models to test occupancy state responses of Plethodontid salamanders

    USGS Publications Warehouse

    Kroll, Andrew J.; Garcia, Tiffany S.; Jones, Jay E.; Dugger, Catherine; Murden, Blake; Johnson, Josh; Peerman, Summer; Brintz, Ben; Rochelle, Michael

    2015-01-01

    Plethodontid salamanders are diverse and widely distributed taxa and play critical roles in ecosystem processes. Due to salamander use of structurally complex habitats, and because only a portion of a population is available for sampling, evaluation of sampling designs and estimators is critical to provide strong inference about Plethodontid ecology and responses to conservation and management activities. We conducted a simulation study to evaluate the effectiveness of multi-scale and hierarchical single-scale occupancy models in the context of a Before-After Control-Impact (BACI) experimental design with multiple levels of sampling. Also, we fit the hierarchical single-scale model to empirical data collected for Oregon slender and Ensatina salamanders across two years on 66 forest stands in the Cascade Range, Oregon, USA. All models were fit within a Bayesian framework. Estimator precision in both models improved with increasing numbers of primary and secondary sampling units, underscoring the potential gains accrued when adding secondary sampling units. Both models showed evidence of estimator bias at low detection probabilities and low sample sizes; this problem was particularly acute for the multi-scale model. Our results suggested that sufficient sample sizes at both the primary and secondary sampling levels could ameliorate this issue. Empirical data indicated Oregon slender salamander occupancy was associated strongly with the amount of coarse woody debris (posterior mean = 0.74; SD = 0.24); Ensatina occupancy was not associated with amount of coarse woody debris (posterior mean = -0.01; SD = 0.29). Our simulation results indicate that either model is suitable for use in an experimental study of Plethodontid salamanders provided that sample sizes are sufficiently large. However, hierarchical single-scale and multi-scale models describe different processes and estimate different parameters. As a result, we recommend careful consideration of study questions

  7. A case for using Plethodontid salamanders for monitoring biodiversity and ecosystem integrity of North American forests

    USGS Publications Warehouse

    Welsh, H.H.; Droege, S.

    2001-01-01

    Terrestrial salamanders of the family P!ethodontidae have unique attributes that make them excellent indicators of biodiversity and ecosystem integrity in forested habitats. Their longevity, small territory size, site fidelity, sensitivity to natural and anthropogenic perturbations, tendency to occur in high densities, and low sampling costs mean that counts of plethodontid salamanders provide numerous advantages over counts of other North American forest organisms for indicating environmental change. Furthermore, they are tightly linked physiologically to microclimatic and successional processes that influence the distribution and abundance of numerous other hydrophilic but difficult-to-study forest-dwelling plants and animals. Ecosystem processes such as moisture cycling, food-web dynamics, and succession, with their related structural and microclimatic variability, all affect forest biodiversity and have been shown to affect salamander populations as well. We determined the variability associated with sampling for plethodontid salamanders by estimating the coefficient of variation (CV) from available time-series data. The median coefficient of variation indicated that variation in counts of individuals among studies was much lower in plethodonticis (27%) than in lepidoptera (93%), passerine birds (57%), small mammals (69%), or other amphibians (37-46%), which means plethodontid salamanders provide an important statistical advantage over other species for monitoring long-term forest health.

  8. Effect of acute low body temperature on predatory behavior and prey-capture efficiency in a plethodontid salamander.

    PubMed

    Marvin, Glenn A; Davis, Kayla; Dawson, Jacob

    2016-05-01

    The low-temperature limit for feeding in some salamander species (Desmognathus, Plethodontidae) has been inferred from field studies of seasonal variation in salamander activity and gut contents, which could not determine whether feeding is more dependent on environmental conditions influencing salamander foraging behavior or prey availability and movement. We performed two controlled laboratory experiments to examine the effect of short-term (acute) low body temperature on predatory behavior and prey-capture efficiency in a semiaquatic plethodontid salamander (Desmognathus conanti). In the first experiment, we quantified variation in the feeding responses of cold salamanders (at 1, 3, 5 and 7°C) to a video recording of a walking, warm (15°C) cricket to determine the lower thermal limit for predatory behavior, independent of any temperature effect on movement of prey. Experimental-group salamanders exhibited vigorous feeding responses at 5 and 7°C, large variation in feeding responses both among and within individuals (over time) at 3°C, and little to no feeding response at 1°C. Feeding responses at both 1 and 3°C were significantly less than at each higher temperature, whereas responses of control-group individuals at 15°C did not vary over time. In the second experiment, we quantified feeding by cold salamanders (at 3, 5, 7 and 11°C) on live, warm crickets to examine thermal effects on prey-capture ability. The mean feeding response to live crickets was significantly less at 3°C than at higher temperatures; however, 50% of salamanders captured and ingested prey with high efficiency at this temperature. We conclude that many individuals stalk and capture prey at very low temperatures (down to 3°C). Our results support a growing body of data that indicate many plethodontid salamanders feed at temperatures only a few degrees above freezing. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. How Metamorphosis Is Different in Plethodontids: Larval Life History Perspectives on Life-Cycle Evolution

    PubMed Central

    Beachy, Christopher K.; Ryan, Travis J.; Bonett, Ronald M.

    2017-01-01

    Plethodontid salamanders exhibit biphasic, larval form paedomorphic, and direct developing life cycles. This diversity of developmental strategies exceeds that of any other family of terrestrial vertebrate. Here we compare patterns of larval development among the three divergent lineages of biphasic plethodontids and other salamanders. We discuss how patterns of life-cycle evolution and larval ecology might have produced a wide array of larval life histories. Compared with many other salamanders, most larval plethodontids have relatively slow growth rates and sometimes exceptionally long larval periods (up to 60 mo). Recent phylogenetic analyses of life-cycle evolution indicate that ancestral plethodontids were likely direct developers. If true, then biphasic and paedomorphic lineages might have been independently derived through different developmental mechanisms. Furthermore, biphasic plethodontids largely colonized stream habitats, which tend to have lower productivity than seasonally ephemeral ponds. Consistent with this, plethodontid larvae grow very slowly, and metamorphic timing does not appear to be strongly affected by growth history. On the basis of this, we speculate that feeding schedules and stress hormones might play a comparatively reduced role in governing the timing of metamorphosis of stream-dwelling salamanders, particularly plethodontids. PMID:29269959

  10. Sixty-Five Million Years of Change in Temperature and Topography Explain Evolutionary History in Eastern North American Plethodontid Salamanders.

    PubMed

    Barnes, Richard; Clark, Adam Thomas

    2017-07-01

    For many taxa and systems, species richness peaks at midelevations. One potential explanation for this pattern is that large-scale changes in climate and geography have, over evolutionary time, selected for traits that are favored under conditions found in contemporary midelevation regions. To test this hypothesis, we use records of historical temperature and topographic changes over the past 65 Myr to construct a general simulation model of plethodontid salamander evolution in eastern North America. We then explore possible mechanisms constraining species to midelevation bands by using the model to predict plethodontid evolutionary history and contemporary geographic distributions. Our results show that models that incorporate both temperature and topographic changes are better able to predict these patterns, suggesting that both processes may have played an important role in driving plethodontid evolution in the region. Additionally, our model (whose annotated source code is included as a supplement) represents a proof of concept to encourage future work that takes advantage of recent advances in computing power to combine models of ecology, evolution, and earth history to better explain the abundance and distribution of species over time.

  11. LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders

    PubMed Central

    Sun, Cheng; Shepard, Donald B.; Chong, Rebecca A.; López Arriaza, José; Hall, Kathryn; Castoe, Todd A.; Feschotte, Cédric; Pollock, David D.; Mueller, Rachel Lockridge

    2012-01-01

    Among vertebrates, most of the largest genomes are found within the salamanders, a clade of amphibians that includes 613 species. Salamander genome sizes range from ∼14 to ∼120 Gb. Because genome size is correlated with nucleus and cell sizes, as well as other traits, morphological evolution in salamanders has been profoundly affected by genomic gigantism. However, the molecular mechanisms driving genomic expansion in this clade remain largely unknown. Here, we present the first comparative analysis of transposable element (TE) content in salamanders. Using high-throughput sequencing, we generated genomic shotgun data for six species from the Plethodontidae, the largest family of salamanders. We then developed a pipeline to mine TE sequences from shotgun data in taxa with limited genomic resources, such as salamanders. Our summaries of overall TE abundance and diversity for each species demonstrate that TEs make up a substantial portion of salamander genomes, and that all of the major known types of TEs are represented in salamanders. The most abundant TE superfamilies found in the genomes of our six focal species are similar, despite substantial variation in genome size. However, our results demonstrate a major difference between salamanders and other vertebrates: salamander genomes contain much larger amounts of long terminal repeat (LTR) retrotransposons, primarily Ty3/gypsy elements. Thus, the extreme increase in genome size that occurred in salamanders was likely accompanied by a shift in TE landscape. These results suggest that increased proliferation of LTR retrotransposons was a major molecular mechanism contributing to genomic expansion in salamanders. PMID:22200636

  12. Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics.

    PubMed

    Peterman, W E; Semlitsch, R D

    2014-10-01

    Many patterns observed in ecology, such as species richness, life history variation, habitat use, and distribution, have physiological underpinnings. For many ectothermic organisms, temperature relationships shape these patterns, but for terrestrial amphibians, water balance may supersede temperature as the most critical physiologically limiting factor. Many amphibian species have little resistance to water loss, which restricts them to moist microhabitats, and may significantly affect foraging, dispersal, and courtship. Using plaster models as surrogates for terrestrial plethodontid salamanders (Plethodon albagula), we measured water loss under ecologically relevant field conditions to estimate the duration of surface activity time across the landscape. Surface activity time was significantly affected by topography, solar exposure, canopy cover, maximum air temperature, and time since rain. Spatially, surface activity times were highest in ravine habitats and lowest on ridges. Surface activity time was a significant predictor of salamander abundance, as well as a predictor of successful recruitment; the probability of a juvenile salamander occupying an area with high surface activity time was two times greater than an area with limited predicted surface activity. Our results suggest that survival, recruitment, or both are demographic processes that are affected by water loss and the ability of salamanders to be surface-active. Results from our study extend our understanding of plethodontid salamander ecology, emphasize the limitations imposed by their unique physiology, and highlight the importance of water loss to spatial population dynamics. These findings are timely for understanding the effects that fluctuating temperature and moisture conditions predicted for future climates will have on plethodontid salamanders.

  13. Comparing population size estimators for plethodontid salamanders

    USGS Publications Warehouse

    Bailey, L.L.; Simons, T.R.; Pollock, K.H.

    2004-01-01

    Despite concern over amphibian declines, few studies estimate absolute abundances because of logistic and economic constraints and previously poor estimator performance. Two estimation approaches recommended for amphibian studies are mark-recapture and depletion (or removal) sampling. We compared abundance estimation via various mark-recapture and depletion methods, using data from a three-year study of terrestrial salamanders in Great Smoky Mountains National Park. Our results indicate that short-term closed-population, robust design, and depletion methods estimate surface population of salamanders (i.e., those near the surface and available for capture during a given sampling occasion). In longer duration studies, temporary emigration violates assumptions of both open- and closed-population mark-recapture estimation models. However, if the temporary emigration is completely random, these models should yield unbiased estimates of the total population (superpopulation) of salamanders in the sampled area. We recommend using Pollock's robust design in mark-recapture studies because of its flexibility to incorporate variation in capture probabilities and to estimate temporary emigration probabilities.

  14. Projected loss of a salamander diversity hotspot as a consequence of projected global climate change

    Treesearch

    Joseph R. Milanovich; William E. Peterman; Nathan P. Nibbelink; John C. Maerz

    2010-01-01

    Background: Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation....

  15. Experimental infection of native north Carolina salamanders with Batrachochytrium dendrobatidis.

    PubMed

    Chinnadurai, Sathya K; Cooper, David; Dombrowski, Daniel S; Poore, Matthew F; Levy, Michael G

    2009-07-01

    Chytridiomycosis is an often fatal fungal disease of amphibians caused by Batrachochytrium dendrobatidis. This disease has been implicated in the worldwide decline of many anuran species, but studies of chytridiomycosis in wild salamanders are limited. Between August 2006 and December 2006, we tested wild amphibians in North Carolina, USA (n=212) by polymerase chain reaction (PCR). We identified three PCR-positive animals: one Rana clamitans and two Plethodontid salamanders. We experimentally infected two species of native North Carolina Plethodontid salamanders, the slimy salamander (Plethodon glutinosus) and the Blue Ridge Mountain dusky salamander (Desmognathus orestes) with 1,000,000 zoospores of B. dendrobatidis per animal. Susceptibility was species dependent; all slimy salamanders developed clinical signs of chytridiomycosis, and one died, whereas dusky salamanders remained unaffected. In a second experiment, we challenged naïve slimy salamanders with either 10,000 or 100,000 motile zoospores per animal. Clinical signs consistent with chytridiomycosis were not observed at either dose or in uninfected controls during the 45 days of this experiment. All animals inoculated with B. dendrobatidis in both experiments, regardless of dose, tested positive by PCR. Our study indicates that slimy salamanders are more susceptible to clinical chytridiomycosis than dusky salamanders, and in a laboratory setting, a dose greater than 100,000 zoospores per animal is required to induce clinical disease. This study also indicates that PCR is a very sensitive tool for detecting B. dendrobatidis infection, even in animals that are clinically unaffected, thus positive results should be interpreted with caution.

  16. Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes.

    PubMed

    Samuels, Amy K; Weisrock, David W; Smith, Jeramiah J; France, Katherine J; Walker, John A; Putta, Srikrishna; Voss, S Randal

    2005-04-11

    We report on a study that extended mitochondrial transcript information from a recent EST project to obtain complete mitochondrial genome sequence for 5 tiger salamander complex species (Ambystoma mexicanum, A. t. tigrinum, A. andersoni, A. californiense, and A. dumerilii). We describe, for the first time, aspects of mitochondrial transcription in a representative amphibian, and then use complete mitochondrial sequence data to examine salamander phylogeny at both deep and shallow levels of evolutionary divergence. The available mitochondrial ESTs for A. mexicanum (N=2481) and A. t. tigrinum (N=1205) provided 92% and 87% coverage of the mitochondrial genome, respectively. Complete mitochondrial sequences for all species were rapidly obtained by using long distance PCR and DNA sequencing. A number of genome structural characteristics (base pair length, base composition, gene number, gene boundaries, codon usage) were highly similar among all species and to other distantly related salamanders. Overall, mitochondrial transcription in Ambystoma approximated the pattern observed in other vertebrates. We inferred from the mapping of ESTs onto mtDNA that transcription occurs from both heavy and light strand promoters and continues around the entire length of the mtDNA, followed by post-transcriptional processing. However, the observation of many short transcripts corresponding to rRNA genes indicates that transcription may often terminate prematurely to bias transcription of rRNA genes; indeed an rRNA transcription termination signal sequence was observed immediately following the 16S rRNA gene. Phylogenetic analyses of salamander family relationships consistently grouped Ambystomatidae in a clade containing Cryptobranchidae and Hynobiidae, to the exclusion of Salamandridae. This robust result suggests a novel alternative hypothesis because previous studies have consistently identified Ambystomatidae and Salamandridae as closely related taxa. Phylogenetic analyses of tiger

  17. Variable infection of stream salamanders in the southern Appalachians by the trematode Metagonimoides oregonensis (family: Heterophyidae)

    Treesearch

    Jennie A. Wyderko; Ernest F. Benfield; John C. Maerz; Kristen C. Cecala; Lisa K. Belden

    2015-01-01

    Many factors contribute to parasites varying in host specificity and distribution among potential hosts. Metagonimoides oregonensis is a digenetic trematode that uses stream-dwelling plethodontid salamanders as second intermediate hosts in the Eastern US. We completed a field survey to identify which stream salamander species, at a regional level, are most...

  18. Estimating occurrence and detection probabilities for stream-breeding salamanders in the Gulf Coastal Plain

    USGS Publications Warehouse

    Lamb, Jennifer Y.; Waddle, J. Hardin; Qualls, Carl P.

    2017-01-01

    Large gaps exist in our knowledge of the ecology of stream-breeding plethodontid salamanders in the Gulf Coastal Plain. Data describing where these salamanders are likely to occur along environmental gradients, as well as their likelihood of detection, are important for the prevention and management of amphibian declines. We used presence/absence data from leaf litter bag surveys and a hierarchical Bayesian multispecies single-season occupancy model to estimate the occurrence of five species of plethodontids across reaches in headwater streams in the Gulf Coastal Plain. Average detection probabilities were high (range = 0.432–0.942) and unaffected by sampling covariates specific to the use of litter bags (i.e., bag submergence, sampling season, in-stream cover). Estimates of occurrence probabilities differed substantially between species (range = 0.092–0.703) and were influenced by the size of the upstream drainage area and by the maximum proportion of the reach that dried. The effects of these two factors were not equivalent across species. Our results demonstrate that hierarchical multispecies models successfully estimate occurrence parameters for both rare and common stream-breeding plethodontids. The resulting models clarify how species are distributed within stream networks, and they provide baseline values that will be useful in evaluating the conservation statuses of plethodontid species within lotic systems in the Gulf Coastal Plain.

  19. Projected loss of a salamander diversity hotspot as a consequence of projected global climate change.

    PubMed

    Milanovich, Joseph R; Peterman, William E; Nibbelink, Nathan P; Maerz, John C

    2010-08-16

    Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms. We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO(2) scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species. While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did not differ significantly between global circulation models. CO(2) emissions scenario and model threshold had small effects on projected habitat loss by 2020, but did not affect longer-term projections. Results of this study indicate that choice of model threshold and CO(2) emissions scenario affect short-term projected shifts in climatic distributions of species; however, these factors and choice of global circulation model have

  20. Determining sex and life stage of Del Norte salamanders from external cues

    Treesearch

    Lisa Ollivier; Hartwell H. Welsh Jr

    2003-01-01

    Life stage determination for many western plethodontids often requires dissection of the specimen. Availability of reliable external measures that could be applied under field conditions would enhance future studies of the genus Plethodon. We examined preserved specimens of the Del Norte Salamander, Plethodon elongatus, taken from...

  1. Effects of host species and environment on the skin microbiome of Plethodontid salamanders

    USGS Publications Warehouse

    Muletz-Wolz, Carly R.; Yarwood, Stephanie A.; Grant, Evan H. Campbell; Fleischer, Robert C.; Lips, Karen R.

    2018-01-01

    The amphibian skin microbiome is recognized for its role in defence against pathogens, including the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd). Yet, we have little understanding of evolutionary and ecological processes that structure these communities, especially for salamanders and closely related species. We investigated patterns in the distribution of bacterial communities on Plethodon salamander skin across host species and environments.Quantifying salamander skin microbiome structure contributes to our understanding of how host-associated bacteria are distributed across the landscape, among host species, and their putative relationship with disease.We characterized skin microbiome structure (alpha-diversity, beta-diversity and bacterial operational taxonomic unit [OTU] abundances) using 16S rRNA gene sequencing for co-occurring Plethodon salamander species (35 Plethodon cinereus, 17 Plethodon glutinosus, 10 Plethodon cylindraceus) at three localities to differentiate the effects of host species from environmental factors on the microbiome. We sampled the microbiome of P. cinereus along an elevational gradient (n = 50, 700–1,000 m a.s.l.) at one locality to determine whether elevation predicts microbiome structure. Finally, we quantified prevalence and abundance of putatively anti-Bd bacteria to determine if Bd-inhibitory bacteria are dominant microbiome members.Co-occurring salamanders had similar microbiome structure, but among sites salamanders had dissimilar microbiome structure for beta-diversity and abundance of 28 bacterial OTUs. We found that alpha-diversity increased with elevation, beta-diversity and the abundance of 17 bacterial OTUs changed with elevation (16 OTUs decreasing, 1 OTU increasing). We detected 11 putatively anti-Bd bacterial OTUs that were present on 90% of salamanders and made up an average relative abundance of 83% (SD ± 8.5) per salamander. All salamanders tested negative for Bd.We conclude that

  2. Streambed microstructure predicts evolution of development and life history mode in the plethodontid salamander Eurycea tynerensis

    PubMed Central

    Bonett, Ronald M; Chippindale, Paul T

    2006-01-01

    Background Habitat variation strongly influences the evolution of developmentally flexible traits, and may drive speciation and diversification. The plethodontid salamander Eurycea tynerensis is endemic to the geologically diverse Ozark Plateau of south-central North America, and comprises both strictly aquatic paedomorphic populations (achieving reproductive maturity while remaining in the larval form) and more terrestrial metamorphic populations. The switch between developmental modes has occurred many times, but populations typically exhibit a single life history mode. This unique system offers an opportunity to study the specific ecological circumstances under which alternate developmental and life history modes evolve. We use phylogenetic independent contrasts to test for relationships between a key microhabitat feature (streambed sediment) and this major life history polymorphism. Results We find streambed microstructure (sediment particle size, type and degree of sorting) to be highly correlated with life-history mode. Eurycea tynerensis is paedomorphic in streams containing large chert gravel, but metamorphoses in nearby streams containing poorly sorted, clastic material such as sandstone or siltstone. Conclusion Deposits of large chert gravel create loosely associated streambeds, which provide access to subsurface water during dry summer months. Conversely, streambeds composed of more densely packed sandstone and siltstone sediments leave no subterranean refuge when surface water dries, presumably necessitating metamorphosis and use of terrestrial habitats. This represents a clear example of the relationship between microhabitat structure and evolution of a major developmental and life history trait, and has broad implications for the role of localized ecological conditions on larger-scale evolutionary processes. PMID:16512919

  3. Newly discovered populations of salamanders from Siskiyou County California represent a species distinct from Plethodon Stormi.

    Treesearch

    Louise S. Mead; David R. Clayton; Richard S. Nauman; Deanna H. Olson; Michael E. Pfrender

    2005-01-01

    Plethodon stormi and Plethodon elongatus are two closely related species of plethodontid salamanders that are restricted to the Klamath Province of northwestern California and southwestern Oregon. Discovery of three localities south of the Klamath River, in the Scott River drainage, not assignable to either P....

  4. Phylogenetic analysis of Common Garter Snake (Thamnophis sirtalis) stomach contents detects cryptic range of a secretive salamander (Ensatina eschscholtzii oregonensis) Herpetological Conservation and Biology 5(3):395–402

    Treesearch

    Sean B. Reilly; Andrew D Gottsho; Justin M. Garwood; Bryan Jennings

    2010-01-01

    Given the current global amphibian decline, it is crucial to obtain accurate and current information regarding species distributions. Secretive amphibians such as plethodontid salamanders can be difficult to detect in many cases, especially in remote, high elevation areas. We used molecular phylogenetic analyses to identify three partially digested salamanders palped...

  5. The trophic role of a forest salamander: impacts on invertebrates, leaf litter retention, and the humification process

    Treesearch

    M. L. Best; H. H. Welsh

    2014-01-01

    Woodland (Plethodontid) salamanders are the most abundant vertebrates in North American forests, functioning as predators on invertebrates and prey for higher trophic levels. We investigated the role of Ensatina (Ensatina eschscholtzii) in regulating invertebrate numbers and leaf litter retention in a northern California forest. Our objective was...

  6. Woodland salamanders as metrics of forest ecosystem recovery: a case study from California’s redwoods

    Treesearch

    Hart Welsh; Garth Hodgson

    2013-01-01

    Woodland (Plethodontid) salamanders occur in huge numbers in healthy forests in North America where the abundances of many species vary along successional gradients. Their high numbers and trophic role as predators on shredder and decomposer arthropods influence nutrient and carbon pathways at the leaf litter/soil interface. Their extreme niche conservatism and low...

  7. Survey for the Pathogenic Chytrid Fungus Batrachochytrium dendrobatidis in Southwestern North Carolina Salamander Populations

    Treesearch

    S. Keitzer; Reuben Goforth; Allan Pessier; April Johnson

    2011-01-01

    Batrachochytrium dendrobatidis is a fungal pathogen responsible for a potentially fatal disease of amphibians. We conducted a survey for B. dendrobatidis in the Appalachian Mountains of southwestern North Carolina, USA, from 10 June to 23 July 23 2009. Ventral skin swabs were collected from plethodontid salamanders (n=278) and real-time PCR was performed to test for...

  8. Proximate contributions to adult body size in two species of Dusky Salamanders (Plethodontidae: Desmognathus)

    Treesearch

    Richard Bruce

    2010-01-01

    I used skeletochronological data to evaluate the contributions of propagule size, larval/juvenile growth, and age at first reproduction to differences in adult body size in two species of plethodontid salamanders of the genus Desmognathus. The traits in question were evaluated in populations of the larger D. quadramaculatus and smaller D. monticola in the southern Blue...

  9. Ballistic tongue projection in a miniaturized salamander.

    PubMed

    Deban, Stephen M; Bloom, Segall V

    2018-05-20

    Miniaturization of body size is often accompanied by peculiarities in morphology that can have functional consequences. We examined the feeding behavior and morphology of the miniaturized plethodontid salamander Thorius, one of the smallest vertebrates, to determine if its performance and biomechanics differ from those of its larger relatives. High-speed imaging and dynamics analysis of feeding at a range of temperatures show that tongue projection in Thorius macdougalli is ballistic and achieves accelerations of up to 600 G with low thermal sensitivity, indicating that tongue projection is powered by an elastic-recoil mechanism. Preceding ballistic projection is an unusual preparatory phase of tongue protrusion, which, like tongue retraction, shows lower performance and higher thermal sensitivity that are indicative of movement being powered directly by muscle shortening. The variability of tongue-projection kinematics and dynamics is comparable to larger ballistic-tongued plethodontids and reveals that Thorius is capable of modulating its tongue movements in response to prey distance. Morphological examination revealed that T. macdougalli possesses a reduced number of myofibers in the tongue muscles, a large projector muscle mass relative to tongue mass, and an unusual folding of the tongue skeleton, compared with larger relatives. Nonetheless, T. macdougalli retains the elaborated collagen aponeuroses in the projector muscle that store elastic energy and a tongue skeleton that is free of direct myofiber insertion, two features that appear to be essential for ballistic tongue projection in salamanders. © 2018 Wiley Periodicals, Inc.

  10. Conflicting patterns of genetic structure produced by nuclear and mitochondrial markers in the Oregon Slender Salamander (Batrachoseps wrighti): implications for conservation efforts and species management

    USGS Publications Warehouse

    Miller, Mark; Haig, Susan M.; Wagner, R.S.

    2005-01-01

    Endemic to Oregon in the northwestern US, the Oregon slender salamander (Batrachoseps wrighti) is a terrestrial plethodontid found associated with late successional mesic forests. Consequently, forest management practices such as timber harvesting may impact their persistence. Therefore, to infer possible future effects of these practices on population structure and differentiation, we used mitochondrial DNA sequences (cytochrome b) and RAPD markers to analyze 22 populations across their range. Phylogenetic analyses of sequence data (774 bp) revealed two historical lineages corresponding to northern and southern-distributed populations. Relationships among haplotypes and haplotype diversity within lineages suggested that the northern region may have more recently been colonized compared to the southern region. In contrast to the mitochondrial data, analyses of 46 RAPD loci suggested an overall pattern of isolation-by-distance in the set of populations examined and no particularly strong clustering of populations based on genetic distances. We propose two non-exclusive hypotheses to account for discrepancies between mitochondrial and nuclear data sets. First, our data may reflect an overall ancestral pattern of isolation-by-distance that has subsequently been influenced by vicariance. Alternately, our analyses may suggest that male-mediated gene flow and female philopatry are important contributors to the pattern of genetic diversity. We discuss the importance of distinguishing between these two hypotheses for the purposes of identifying conservation units and note that, regardless of the relative contribution of each mechanism towards the observed pattern of diversity, protection of habitat will likely prove critical for the long-term persistence of this species.

  11. Dramatic declines in neotropical salamander populations are an important part of the global amphibian crisis

    PubMed Central

    Rovito, Sean M.; Parra-Olea, Gabriela; Vásquez-Almazán, Carlos R.; Papenfuss, Theodore J.; Wake, David B.

    2009-01-01

    We document major declines of many species of salamanders at several sites in Central America and Mexico, with emphasis on the San Marcos region of Guatemala, one of the best studied and most diverse salamander communities in the Neotropics. Profound declines of several formerly abundant species, including 2 apparent extinctions, are revealed. Terrestrial microhabitat specialists at mid- to high elevations have declined more than microhabitat generalists. These terrestrial microhabitat specialists have largely disappeared from multiple sites in western Guatemala, including in well-protected areas, suggesting that the phenomenon cannot be explained solely by localized habitat destruction. Major declines in southern Mexican plethodontid salamanders occurred in the late 1970s to early 1980s, concurrent with or preceding many reported frog declines. The species in decline comprise several major evolutionary lineages of tropical salamanders, underscoring that significant portions of the phylogenetic diversity of Neotropical salamanders are at risk. Our results highlight the urgent need to document and understand Neotropical salamander declines as part of the larger effort to conserve global amphibian diversity. PMID:19204286

  12. Effects of nitrogenous wastes on survival of the Barton Springs salamander (Eurycea sosorum).

    PubMed

    Crow, Justin C; Ostrand, Kenneth G; Forstner, Michael R J; Catalano, Matthew; Tomasso, Joseph R

    2017-11-01

    The objective of our study was to determine the acute toxicity of 3 common aquatic nitrogenous toxicants to the federally endangered Barton Springs salamander (Eurycea sosorum). Based on our findings, the 96-h median lethal concentrations (96-h LC50) for un-ionized ammonia-N, nitrite-N, and nitrate-N to E. sosorum are 2.0 ± 0.32, 31.7 ± 4.02, and 968.5 ± 150.6 mg/L, respectively. These results establish a benchmark for the tolerance of plethodontid salamanders to these toxicants and indicate that current water quality criteria are adequate for their protection. Environ Toxicol Chem 2017;36:3003-3007. © 2017 SETAC. © 2017 SETAC.

  13. Decline of disjunct green salamander (Aneides aeneus) populations in the southern appalachians

    USGS Publications Warehouse

    Corser, J.D.

    2001-01-01

    Coincident with other amphibians around the world Aneides aeneus, a terrestrial plethodontid salamander, suffered a population collapse in a disjunct portion of its range in the mid-late 1970s. Long-term monitoring of seven historical green salamander populations throughout the 1990s showed a 98% decline in relative abundance since 1970. Three out of six populations first discovered in 1991 also crashed in 1996-1997. The synchronized suddenness of the declines, their region-wide impact, and effects on both small and larger populations, suggest the role of a novel agent of mortality beginning in the mid-late 1970s. Acting alone, but more likely in concert, habitat loss, overcollecting, epidemic disease and climate change could account for this region-wide decline.

  14. Fluctuations in a metapopulation of nesting four-toed salamanders, Hemidactylium scutatum, in the Great Smoky Mountains National Park, USA, 1999-2003

    USGS Publications Warehouse

    Corser, J.D.; Dodd, C.K.

    2004-01-01

    We tested two predictions associated with the hypothesis that certain populations of pond-breeding amphibians are structured into metapopulations using minimum relative abundance estimates of nesting four-toed salamanders (Hemidactylium scutatum Schlegel) from 11 different ponds in the Great Smoky Mountains National Park. Coefficients of variation (CV) for counts at individual ponds ranged from 0.25 to 1.26, and the overall mean CV at all 11 ponds was 0.34. Many pairs of ponds had negative correlations in abundance from 1999-2003, whereas others had various degrees of positive correlation (mean r = 0.29). Thus, nesting population size fluctuated semi-independently among the ponds from year to year, inferring the existence of inter-pond dispersal. The mean number of nesting females at a pond was negatively, but non-significantly, correlated (r = -0.27; P = 0.40; 10 d.f.) to the pond's isolation. Owing to physiological constraints on plethodontid salamander energetics, precipitation during the nesting season (February and March) appeared to play an important role (r = 0.78; P = 0.12; 4 d.f.) in the number of nesting females we observed. Unlike some other plethodontid salamander populations in more fragmented southern Appalachian forest ecosystems, this (meta)population within Great Smoky Mountains National Park does not appear to be declining.

  15. Survey for the pathogenic chytrid fungus Batrachochytrium dendrobatidis in southwestern North Carolina salamander populations.

    PubMed

    Keitzer, S Conor; Goforth, Reuben; Pessier, Allan P; Johnson, April J

    2011-04-01

    Batrachochytrium dendrobatidis is a fungal pathogen responsible for a potentially fatal disease of amphibians. We conducted a survey for B. dendrobatidis in the Appalachian Mountains of southwestern North Carolina, USA, from 10 June to 23 July 23 2009. Ventral skin swabs were collected from plethodontid salamanders (n=278) and real-time PCR was performed to test for the presence of B. dendrobatidis. We found no evidence of B. dendrobatidis, suggesting that B. dendrobatidis is absent or present in such low levels that it was undetected. If B. dendrobatidis was present at the time of our sampling, this survey supports evidence of low prevalence of B. dendrobatidis in North American headwater stream salamander populations.

  16. A new species of dusky salamander (Amphibia: Plethodontidae: Desmognathus) from the Eastern Gulf Coastal Plain of the United States and a redescription of D. auriculatus

    PubMed

    Means, D Bruce; Lamb, Jennifer Y; Bernardo, Joseph

    2017-05-10

    The Coastal Plain of the southeastern U. S. is one of the planet's top biodiversity hotspots and yet many taxa have not been adequately studied. The plethodontid salamander, Desmognathus auriculatus, was originally thought to occur from east Texas to Virginia, a range spanning dozens of interfluves and large river systems. Beamer and Lamb (2008) found five independent mitochondrial lineages of what has been called D. auriculatus in the Atlantic Coastal Plain, but did not examine the extensive distribution of D. auriculatus in the Gulf Coastal Plain. We present morphological and molecular genetic data distinguishing two evolutionarily independent and distantly related lineages that are currently subsumed under the taxon D. auriculatus in the eastern Gulf Coastal Plain. We describe one of these as a new species, Desmognathus valentinei sp. nov., and assign the second one to D. auriculatus which we formally redescribe.

  17. The dynamic evolutionary history of genome size in North American woodland salamanders.

    PubMed

    Newman, Catherine E; Gregory, T Ryan; Austin, Christopher C

    2017-04-01

    The genus Plethodon is the most species-rich salamander genus in North America, and nearly half of its species face an uncertain future. It is also one of the most diverse families in terms of genome sizes, which range from 1C = 18.2 to 69.3 pg, or 5-20 times larger than the human genome. Large genome size in salamanders results in part from accumulation of transposable elements and is associated with various developmental and physiological traits. However, genome sizes have been reported for only 25% of the species of Plethodon (14 of 55). We collected genome size data for Plethodon serratus to supplement an ongoing phylogeographic study, reconstructed the evolutionary history of genome size in Plethodontidae, and inferred probable genome sizes for the 41 species missing empirical data. Results revealed multiple genome size changes in Plethodon: genomes of western Plethodon increased, whereas genomes of eastern Plethodon decreased, followed by additional decreases or subsequent increases. The estimated genome size of P. serratus was 21 pg. New understanding of variation in genome size evolution, along with genome size inferences for previously unstudied taxa, provide a foundation for future studies on the biology of plethodontid salamanders.

  18. Salamander abundance along road edges and within abandoned logging roads in Appalachian forests.

    PubMed

    Semlitsch, Raymond D; Ryan, Travis J; Hamed, Kevin; Chatfield, Matt; Drehman, Bethany; Pekarek, Nicole; Spath, Mike; Watland, Angie

    2007-02-01

    Roads may be one of the most common disturbances in otherwise continuous forested habitat in the southern Appalachian Mountains. Despite their obvious presence on the landscape, there is limited data on the ecological effects along a road edge or the size of the "road-effect zone." We sampled salamanders at current and abandoned road sites within the Nantahala National Forest, North Carolina (U.S.A.) to determine the road-effect zone for an assemblage of woodland salamanders. Salamander abundance near the road was reduced significantly, and salamanders along the edges were predominantly large individuals. These results indicate that the road-effect zone for these salamanders extended 35 m on either side of the relatively narrow, low-use forest roads along which we sampled. Furthermore, salamander abundance was significantly lower on old, abandoned logging roads compared with the adjacent upslope sites. These results indicate that forest roads and abandoned logging roads have negative effects on forest-dependent species such as plethodontid salamanders. Our results may apply to other protected forests in the southern Appalachians and may exemplify a problem created by current and past land use activities in all forested regions, especially those related to road building for natural-resource extraction. Our results show that the effect of roads reached well beyond their boundary and that abandonment or the decommissioning of roads did not reverse detrimental ecological effects; rather, our results indicate that management decisions have significant repercussions for generations to come. Furthermore, the quantity of suitable forested habitat in the protected areas we studied was significantly reduced: between 28.6% and 36.9% of the area was affected by roads. Management and policy decisions must use current and historical data on land use to understand cumulative impacts on forest-dependent species and to fully protect biodiversity on national lands.

  19. Potential reduction in terrestrial salamander ranges associated with Marcellus shale development

    USGS Publications Warehouse

    Brand, Adrianne B,; Wiewel, Amber N. M.; Grant, Evan H. Campbell

    2014-01-01

    Natural gas production from the Marcellus shale is rapidly increasing in the northeastern United States. Most of the endemic terrestrial salamander species in the region are classified as ‘globally secure’ by the IUCN, primarily because much of their ranges include state- and federally protected lands, which have been presumed to be free from habitat loss. However, the proposed and ongoing development of the Marcellus gas resources may result in significant range restrictions for these and other terrestrial forest salamanders. To begin to address the gaps in our knowledge of the direct impacts of shale gas development, we developed occurrence models for five species of terrestrial plethodontid salamanders found largely within the Marcellus shale play. We predicted future Marcellus shale development under several scenarios. Under scenarios of 10,000, 20,000, and 50,000 new gas wells, we predict 4%, 8%, and 20% forest loss, respectively, within the play. Predictions of habitat loss vary among species, but in general, Plethodon electromorphus and Plethodonwehrlei are predicted to lose the greatest proportion of forested habitat within their ranges if future Marcellus development is based on characteristics of the shale play. If development is based on current well locations,Plethodonrichmondi is predicted to lose the greatest proportion of habitat. Models showed high uncertainty in species’ ranges and emphasize the need for distribution data collected by widespread and repeated, randomized surveys.

  20. Conservation genetics of extremely isolated urban populations of the northern dusky salamander (Desmognathus fuscus) in New York City

    PubMed Central

    Zak, Yana; Pehek, Ellen

    2013-01-01

    Urbanization is a major cause of amphibian decline. Stream-dwelling plethodontid salamanders are particularly susceptible to urbanization due to declining water quality and hydrological changes, but few studies have examined these taxa in cities. The northern dusky salamander (Desmognathus fuscus) was once common in the New York City metropolitan area, but has substantially declined throughout the region in recent decades. We used five tetranucleotide microsatellite loci to examine population differentiation, genetic variation, and bottlenecks among five remnant urban populations of dusky salamanders in NYC. These genetic measures provide information on isolation, prevalence of inbreeding, long-term prospects for population persistence, and potential for evolutionary responses to future environmental change. All populations were genetically differentiated from each other, and the most isolated populations in Manhattan have maintained very little genetic variation (i.e. <20% heterozygosity). A majority of the populations also exhibited evidence of genetic bottlenecks. These findings contrast with published estimates of high genetic variation within and lack of structure between populations of other desmognathine salamanders sampled over similar or larger spatial scales. Declines in genetic variation likely resulted from population extirpations and the degradation of stream and terrestrial paths for dispersal in NYC. Loss of genetic variability in populations isolated by human development may be an underappreciated cause and/or consequence of the decline of this species in urbanized areas of the northeast USA. PMID:23646283

  1. Effects of biotic and abiotic factors on the distribution and abundance of larval two-lined salamanders (Eurycea bislineata) across spatial scales.

    PubMed

    Barr, Garrett E; Babbitt, Kimberly J

    2002-10-01

    We sampled eight streams in the White Mountain National Forest, New Hampshire, throughout their elevational reach for larval salamanders and predatory fish to examine the effects of abiotic factors and predation on the distribution and abundance of larval salamanders. Eurycea bislineata (two-lined salamander) and Salvelinus fontinalis (brook trout) abundance varied among and within streams. Eurycea bislineata showed a negative association with S. fontinalis across spatial scales (micro-scale, among quadrats; meso-scale, among pool/riffle pairs; macro-scale, among streams). At the smallest scale, the average density of larval E. bislineata was greatest in microhabitats with relatively high boulder cover and low sand and bare rock cover only in the presence of S. fontinalis; no such relationship was observed in the absence of S. fontinalis. In a mesocosm experiment, larval salamander survival was higher in enclosures containing cobbles than enclosures containing a gravel mix, illustrating the advantage of coarse substrates with interstitial spaces that are inaccessible to predatory fish. At the meso-scale, E. bislineata larvae were less abundant in stream sections with S. fontinalis than those without. Among streams, those with many S. fontinalis had fewer E. bislineata. Of the abiotic parameters measured, water temperature and pH were positively related to E. bislineata presence, and elevation, water temperature, pH, canopy cover, and gradient were positively related to E. bislineata abundance. Larval Plethodontid salamanders can reach high densities and appear to have strong interactions with stream biota, thus their functional role in stream communities deserves further attention.

  2. Variation in mating systems of salamanders: mate guarding or territoriality?

    PubMed

    Deitloff, Jennifer; Alcorn, Michael A; Graham, Sean P

    2014-07-01

    Two of the most common mating tactics in vertebrates are mate guarding and territoriality, yet much of the research on these strategies has focused on mating systems in birds, despite novel insights gained from studying less traditional systems. North American stream salamanders that comprise the Eurycea bislineata complex represent an excellent nontraditional system for comparing mating strategies because these species exhibit a continuum of male morphologies, diverse habitat associations, and various potential mating strategies. We studied two species within this complex that exhibit the extremes of this continuum, Eurycea aquatica (robust morph) and Eurycea cirrigera (slender morph). The larger head in males of E. aquatica is due to larger musculature around the jaw and may be associated with aggressive behavior. Therefore, we hypothesized that the robust morphology exhibited by males of E. aquatica provides benefits during either territorial defense or mate defense and that males of E. cirrigera would not exhibit aggression in either scenario. We found that neither species exhibited aggressive behavior to defend a territory. However, in the presence of a female, males of E. aquatica were significantly more aggressive toward intruding males than were males of E. cirrigera. Therefore, mate-guarding behavior occurs in E. aquatica, and the enlarged head of males likely aids in deterring rivals. This is the first demonstration of mate-guarding behavior in a plethodontid, the most speciose family of salamanders. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Evolution of Gigantism in Amphiumid Salamanders

    PubMed Central

    Bonett, Ronald M.; Chippindale, Paul T.; Moler, Paul E.; Van Devender, R. Wayne; Wake, David B.

    2009-01-01

    The Amphiumidae contains three species of elongate, permanently aquatic salamanders with four diminutive limbs that append one, two, or three toes. Two of the species, Amphiuma means and A. tridactylum, are among the largest salamanders in the world, reaching lengths of more than one meter, whereas the third species (A. pholeter), extinct amphiumids, and closely related salamander families are relatively small. Amphiuma means and A. tridactylum are widespread species and live in a wide range of lowland aquatic habitats on the Coastal Plain of the southeastern United States, whereas A. pholeter is restricted to very specialized organic muck habitats and is syntopic with A. means. Here we present analyses of sequences of mitochondrial and nuclear loci from across the distribution of the three taxa to assess lineage diversity, relationships, and relative timing of divergence in amphiumid salamanders. In addition we analyze the evolution of gigantism in the clade. Our analyses indicate three lineages that have diverged since the late Miocene, that correspond to the three currently recognized species, but the two gigantic species are not each other's closest relatives. Given that the most closely related salamander families and fossil amphiumids from the Upper Cretaceous and Paleocene are relatively small, our results suggest at least two extreme changes in body size within the Amphuimidae. Gigantic body size either evolved once as the ancestral condition of modern amphiumas, with a subsequent strong size reduction in A. pholeter, or gigantism independently evolved twice in the modern species, A. means and A. tridactylum. These patterns are concordant with differences in habitat breadth and range size among lineages, and have implications for reproductive isolation and diversification of amphiumid salamanders. PMID:19461997

  4. Concurrent speciation in the eastern woodland salamanders (Genus Plethodon):DNA sequences of the complete albumin nuclear and partialmitochondrial 12s genes

    USGS Publications Warehouse

    Highton, Richard; Hastings, Amy Picard; Palmer, Catherine; Watts, Richard; Hass, Carla A.; Culver, Melanie; Arnold, Stevan

    2012-01-01

    Salamanders of the North American plethodontid genus Plethodon are important model organisms in a variety of studies that depend on a phylogenetic framework (e.g., chemical communication, ecological competition, life histories, hybridization, and speciation), and consequently their systematics has been intensively investigated over several decades. Nevertheless, we lack a synthesis of relationships among the species. In the analyses reported here we use new DNA sequence data from the complete nuclear albumin gene (1818 bp) and the 12s mitochondrial gene (355 bp), as well as published data for four other genes (Wiens et al., 2006), up to a total of 6989 bp, to infer relationships. We relate these results to past systematic work based on morphology, allozymes, and DNA sequences. Although basal relationships show a strong consensus across studies, many terminal relationships remain in flux despite substantial sequencing and other molecular and morphological studies. This systematic instability appears to be a consequence of contemporaneous bursts of speciation in the late Miocene and Pliocene, yielding many closely related extant species in each of the four eastern species groups. Therefore we conclude that many relationships are likely to remain poorly resolved in the face of additional sequencing efforts. On the other hand, the current classification of the 45 eastern species into four species groups is supported. The Plethodon cinereus group (10 species) is the sister group to the clade comprising the other three groups, but these latter groups (Plethodon glutinosus [28 species], Plethodon welleri [5 species], and Plethodon wehrlei [2 species]) probably diverged from each other at approximately the same time.

  5. The Chinese giant salamander exemplifies the hidden extinction of cryptic species.

    PubMed

    Yan, Fang; Lü, Jingcai; Zhang, Baolin; Yuan, Zhiyong; Zhao, Haipeng; Huang, Song; Wei, Gang; Mi, Xue; Zou, Dahu; Xu, Wei; Chen, Shu; Wang, Jie; Xie, Feng; Wu, Minyao; Xiao, Hanbin; Liang, Zhiqiang; Jin, Jieqiong; Wu, Shifang; Xu, CunShuan; Tapley, Benjamin; Turvey, Samuel T; Papenfuss, Theodore J; Cunningham, Andrew A; Murphy, Robert W; Zhang, Yaping; Che, Jing

    2018-05-21

    Overexploitation, habitat destruction, human-driven climate change and disease spread are resulting in the extinction of innumerable species, with amphibians being hit harder than most other groups [1]. Few species of amphibians are widespread, and those that are often represent complexes of multiple cryptic species. This is especially true for range-restricted salamanders [2]. Here, we used the widespread and critically endangered Chinese giant salamander (Andrias davidianus) to show how genetically uninformed management efforts can negatively affect species conservation. We find that this salamander consists of at least five species-level lineages. However, the extensive recent translocation of individuals between farms, where the vast majority of extant salamanders now live, has resulted in genetic homogenization. Mitochondrial DNA (mtDNA) haplotypes from northern China now predominate in farms. Unfortunately, hybrid offspring are being released back into the wild under well-intentioned, but misguided, conservation management. Our findings emphasize the necessity of genetic assessments for seemingly well-known, widespread species in conservation initiatives. Species serve as the primary unit for protection and management in conservation actions [3], so determining the taxonomic status of threatened species is a major concern, especially for amphibians. The level of threat to amphibians may be underestimated, and existing conservation strategies may be inadvertently harmful if conducted without genetic assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Biodiversity of Costa Rican salamanders: Implications of high levels of genetic differentiation and phylogeographic structure for species formation

    PubMed Central

    García-París, Mario; Good, David A.; Parra-Olea, Gabriela; Wake, David B.

    2000-01-01

    Although salamanders are characteristic amphibians in Holarctic temperate habitats, in tropical regions they have diversified evolutionarily only in tropical America. An adaptive radiation centered in Middle America occurred late in the history of a single clade, the supergenus Bolitoglossa (Plethodontidae), and large numbers of species now occur in diverse habitats. Sublineages within this clade decrease in number from the northern to southern parts of Middle America, and in Costa Rica, there are but three. Despite this phylogenetic constraint, Costa Rica has many species; the number of salamander species on one local elevational transect in the Cordillera de Talamanca may be the largest for any such transect in the world. Extraordinary variation in sequences of the mitochondrial gene cytochrome b within a clade of the genus Bolitoglossa in Costa Rica reveals strong phylogeographic structure within a single species, Bolitoglossa pesrubra. Allozymic variation in 19 proteins reveals a pattern largely concordant with the mitochondrial DNA phylogeography. More species exist than are currently recognized. Diversification occurs in restricted geographic areas and involves sharp geographic and elevational differentiation and zonation. In their degree of genetic differentiation at a local scale, these species of the deep tropics exceed the known variation of extratropical salamanders, which also differ in being less restricted in elevational range. Salamanders display “tropicality” in that although speciose, they are usually local in distribution and rare. They display strong ecological and physiological differentiation that may contribute importantly to morphological divergence and species formation. PMID:10677512

  7. Early Miocene origin and cryptic diversification of South American salamanders

    PubMed Central

    2013-01-01

    Background The currently recognized species richness of South American salamanders is surprisingly low compared to North and Central America. In part, this low richness may be due to the salamanders being a recent arrival to South America. Additionally, the number of South American salamander species may be underestimated because of cryptic diversity. The aims of our present study were to infer evolutionary relationships, lineage diversity, and timing of divergence of the South American Bolitoglossa using mitochondrial and nuclear sequence data from specimens primarily from localities in the Andes and upper Amazon Basin. We also estimated time of colonization of South America to test whether it is consistent with arrival via the Panamanian Isthmus, or land bridge connection, at its traditionally assumed age of 3 million years. Results Divergence time estimates suggest that Bolitoglossa arrived in South America from Central America by at least the Early Miocene, ca. 23.6 MYA (95% HPD 15.9-30.3 MYA), and subsequently diversified. South American salamanders of the genus Bolitoglossa show strong phylogeographic structure at fine geographic scales and deep divergences at the mitochondrial gene cytochrome b (Cytb) and high diversity at the nuclear recombination activating gene-1 (Rag1). Species often contain multiple genetically divergent lineages that are occasionally geographically overlapping. Single specimens from two southeastern localities in Ecuador are sister to the equatoriana-peruviana clade and genetically distinct from all other species investigated to date. Another single exemplar from the Andes of northwestern Ecuador is highly divergent from all other specimens and is sister to all newly studied samples. Nevertheless, all sampled species of South American Bolitoglossa are members of a single clade that is one of several constituting the subgenus Eladinea, one of seven subgenera in this large genus. Conclusions The ancestors of South American salamanders

  8. Phylogeography of Sardinian cave salamanders (genus Hydromantes) is mainly determined by geomorphology.

    PubMed

    Chiari, Ylenia; van der Meijden, Arie; Mucedda, Mauro; Lourenço, João M; Hochkirch, Axel; Veith, Michael

    2012-01-01

    Detecting the factors that determine the interruption of gene flow between populations is key to understanding how speciation occurs. In this context, caves are an excellent system for studying processes of colonization, differentiation and speciation, since they represent discrete geographical units often with known geological histories. Here, we asked whether discontinuous calcareous areas and cave systems represent major barriers to gene flow within and among the five species of Sardinian cave salamanders (genus Hydromantes) and whether intraspecific genetic structure parallels geographic distance within and among caves. We generated mitochondrial cytochrome b gene sequences from 184 individuals representing 48 populations, and used a Bayesian phylogeographic approach to infer possible areas of cladogenesis for these species and reconstruct historical and current dispersal routes among distinct populations. Our results show deep genetic divergence within and among all Sardinian cave salamander species, which can mostly be attributed to the effects of mountains and discontinuities in major calcareous areas and cave systems acting as barriers to gene flow. While these salamander species can also occur outside caves, our results indicate that there is a very poor dispersal of these species between separate cave systems.

  9. Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders.

    PubMed

    Ziemba, Julie L; Hickerson, Cari-Ann M; Anthony, Carl D

    2016-01-01

    Asian pheretimoid earthworms (e.g. Amynthas and Metaphire spp.) are invading North American forests and consuming the vital detrital layer that forest floor biota [including the keystone species Plethodon cinereus (Eastern Red-backed Salamander)], rely on for protection, food, and habitat. Plethodon cinereus population declines have been associated with leaf litter loss following the invasion of several exotic earthworm species, but there have been few studies on the specific interactions between pheretimoid earthworms and P. cinereus. Since some species of large and active pheretimoids spatially overlap with salamanders beneath natural cover objects and in detritus, they may distinctively compound the negative consequences of earthworm-mediated resource degradation by physically disturbing important salamander activities (foraging, mating, and egg brooding). We predicted that earthworms would exclude salamanders from high quality microhabitat, reduce foraging efficiency, and negatively affect salamander fitness. In laboratory trials, salamanders used lower quality microhabitat and consumed fewer flies in the presence of earthworms. In a natural field experiment, conducted on salamander populations from "non-invaded" and "pheretimoid invaded" sites in Ohio, salamanders and earthworms shared cover objects ~60% less than expected. Earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female salamander abundance. There was no effect of pheretimoid invasion on salamander body condition. Juvenile and non-resident male salamanders do not hold stable territories centered beneath cover objects such as rocks or logs, which results in reduced access to prey, greater risk of desiccation, and dispersal pressure. Habitat degradation and physical exclusion of salamanders from cover objects may hinder juvenile and male salamander performance, ultimately reducing recruitment and salamander abundance following Asian

  10. Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders

    PubMed Central

    Ziemba, Julie L.

    2016-01-01

    Asian pheretimoid earthworms (e.g. Amynthas and Metaphire spp.) are invading North American forests and consuming the vital detrital layer that forest floor biota [including the keystone species Plethodon cinereus (Eastern Red-backed Salamander)], rely on for protection, food, and habitat. Plethodon cinereus population declines have been associated with leaf litter loss following the invasion of several exotic earthworm species, but there have been few studies on the specific interactions between pheretimoid earthworms and P. cinereus. Since some species of large and active pheretimoids spatially overlap with salamanders beneath natural cover objects and in detritus, they may distinctively compound the negative consequences of earthworm-mediated resource degradation by physically disturbing important salamander activities (foraging, mating, and egg brooding). We predicted that earthworms would exclude salamanders from high quality microhabitat, reduce foraging efficiency, and negatively affect salamander fitness. In laboratory trials, salamanders used lower quality microhabitat and consumed fewer flies in the presence of earthworms. In a natural field experiment, conducted on salamander populations from “non-invaded” and “pheretimoid invaded” sites in Ohio, salamanders and earthworms shared cover objects ~60% less than expected. Earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female salamander abundance. There was no effect of pheretimoid invasion on salamander body condition. Juvenile and non-resident male salamanders do not hold stable territories centered beneath cover objects such as rocks or logs, which results in reduced access to prey, greater risk of desiccation, and dispersal pressure. Habitat degradation and physical exclusion of salamanders from cover objects may hinder juvenile and male salamander performance, ultimately reducing recruitment and salamander abundance

  11. How reliable are amphibian population metrics? A response to Kroll et al.

    Treesearch

    Hartwell H. Welsh; Karen L. Pope; Clara A. Wheeler

    2009-01-01

    Kroll et al. [Kroll, A.J., Runge, J.P., MacCracken, J.G., 2009. Unreliable amphibian population metrics may obfuscate more than they reveal. Biological Conservation] criticized our recent advocacy for combining readily attainable metrics of population status to gain insight about relationships between terrestrial plethodontid salamanders and forest succession [Welsh,...

  12. Northwestern salamanders Ambystoma gracile in mountain lakes: record oviposition depths among salamanders

    USGS Publications Warehouse

    Hoffman, R.; Pearl, C.A.; Larson, G.L.; Samora, B.

    2012-01-01

    Oviposition timing, behaviors, and microhabitats of ambystomatid salamanders vary considerably (Egan and Paton 2004; Figiel and Semlitsch 1995; Howard and Wallace 1985; Mac-Cracken 2007). Regardless of species, however, females typically oviposit using sites conducive to embryo development and survival. For example, the results of an experiment by Figiel and Semlitsch (1995) on Ambystoma opacum (Marbled Salamander) oviposition indicated that females actively selected sites that were under grass clumps in wet versus dry treatments, and surmised that environmental conditions such as humidity, moisture, and temperature contributed to their results. Other factors associated with ambystomatid oviposition and embryo survival include water temperature (Anderson 1972; Brown 1976), dissolved oxygen concentration (Petranka et al. 1982; Sacerdote and King 2009), oviposition depth (Dougherty et al. 2005; Egan and Paton 2004), and oviposition attachment structures such as woody vegetation (McCracken 2007; Nussbaum et al. 1983). Resetarits (1996), in creating a model of oviposition site selection for anuran amphibians, hypothesized that oviparous organisms were also capable of modifying oviposition behavior and site selection to accommodate varying habitat conditions and to minimize potential negative effects of environmental stressors. Kats and Sih (1992), investigating the oviposition of Ambystoma barbouri (Streamside Salamander) in pools of a Kentucky stream, found that females preferred pools without predatory Lepomis cyanellus (Green Sunfish), and that the number of egg masses present in a pool historically containing fish increased significantly the year after fish had been extirpated from the pool. Palen et al. (2005) determined that Ambystoma gracile (Northwestern Salamander) and Ambystoma macrodactylum (Longtoed Salamander) eggs were deposited either at increased depth or in full shaded habitats, respectively, as water transperancy to UV-B radiation increased.

  13. Conservation assessment for the Siskiyou Mountains salamander and Scott Bar salamander in northern California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinikour, W. S.; LaGory, K. E.; Adduci, J. J.

    2006-10-20

    The purpose of this conservation assessment is to summarize existing knowledge regarding the biology and ecology of the Siskiyou Mountains salamander and Scott Bar salamander, identify threats to the two species, and identify conservation considerations to aid federal management for persistence of the species. The conservation assessment will serve as the basis for a conservation strategy for the species.

  14. A new species of Bolitoglossa (Amphibia, Caudata) from the Sierra de Juárez, Oaxaca, Mexico

    PubMed Central

    Rovito, Sean M.; Parra-Olea, Gabriela; Lee, Dana; Wake, David B.

    2012-01-01

    Abstract We describe a new species of Bolitoglossa (Nanotriton) from the Sierra de Juárez and Sierra Mixe of Oaxaca, Mexico. Bolitoglossa chinanteca sp. n. is distinguished from the three other species in the subgenus Nanotriton by its more robust body, by having substantial numbers of maxillary teeth and differences in relative head width, foot width, and limb length. The new species occurs in sympatry with Bolitoglossa (Nanotriton) rufescens at the type locality. The description of another species of salamander from the Sierra de Juárez is noteworthy, given the already high plethodontid salamander species richness of the region. PMID:22577313

  15. Effects of timber harvests and silvicultural edges on terrestrial salamanders.

    PubMed

    MacNeil, Jami E; Williams, Rod N

    2014-01-01

    Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (<20 m). Small harvests (<4 ha) and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years

  16. Effects of Timber Harvests and Silvicultural Edges on Terrestrial Salamanders

    PubMed Central

    MacNeil, Jami E.; Williams, Rod N.

    2014-01-01

    Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (<20 m). Small harvests (<4 ha) and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years

  17. Phylogenetic relationships of the endangered Shenandoah salamander (Plethodon shenandoah) and other salamanders of the Plethodon cinereus group (Caudata : Plethodontidae)

    USGS Publications Warehouse

    Sites, J.W.; Morando, M.; Highton, R.; Huber, F.; Jung, R.E.

    2004-01-01

    The Shenandoah salamander (Plethodon shenandoah), known from isolated talus slopes on three of the highest mountains in Shenandoah National Park, is listed as state-endangered in Virginia and federally endangered under the U.S. Endangered Species Act. A 1999 paper by G. R. Thurow described P. shenandoah-like salamanders from three localities further south in the Blue Ridge Physiographic Province, which, if confirmed, would represent a range extension for P. shenandoah of approximately 90 km from its nearest known locality. Samples collected from two of these three localities were included in a molecular phylogenetic study of the known populations of P. shenandoah, and all other recognized species in the Plethodon cinereus group, using a 792 bp region of the mitochondrial cytochrome-b gene. Phylogenetic estimates were based on Bayesian, maximum likelihood, and maximum parsimony methods and topologies examined for placement of the new P. shenandoah-like samples relative to all others. All topologies recovered all haplotypes of the P. shenandoah-like animals nested within P. cinereus, and a statistical comparison of the best likelihood tree topology with one with an enforced (Thurow + Shenandoah P. shenandoah) clade revealed that the unconstrained tree had a significantly lower -In L score (P < 0.05, using the Shimodaira-Hasegawa test) than the constraint tree. This result and other anecdotal information give us no solid reason to consider the Thurow report valid. The current recovery program for P. shenandoah should remain focused on populations in Shenandoah National Park.

  18. Stream salamanders as indicators of stream quality in Maryland, USA

    USGS Publications Warehouse

    Southerland, M.T.; Jung, R.E.; Baxter, D.P.; Chellman, I.C.; Mercurio, G.; Volstad, J.H.

    2004-01-01

    Biological indicators are critical to the protection of small, headwater streams and the ecological values they provide. Maryland and other state monitoring programs have determined that fish indicators are ineffective in small streams, where stream salamanders may replace fish as top predators. Because of their life history, physiology, abundance, and ubiquity, stream salamanders are likely representative of biological integrity in these streams. The goal of this study was to determine whether stream salamanders are effective indicators of ecological conditions across biogeographic regions and gradients of human disturbance. During the summers of 2001 and 2002, we intensively surveyed for stream salamanders at 76 stream sites located west of the Maryland Coastal Plain, sites also monitored by the Maryland Biological Stream Survey (MBSS) and City of Gaithersburg. We found 1,584 stream salamanders, including all eight species known in Maryland, using two 15 ? 2 m transects and two 4 m2 quadrats that spanned both stream bank and channel. We performed removal sampling on transects to estimate salamander species detection probabilities, which ranged from 0.67-0.85. Stepwise regressions identified 15 of 52 non-salamander variables, representing water quality, physical habitat, land use, and biological conditions, which best predicted salamander metrics. Indicator development involved (1) identifying reference (non-degraded) and degraded sites (using percent forest, shading, riparian buffer width, aesthetic rating, and benthic macroinvertebrate and fish indices of biotic integrity); (2) testing 12 candidate salamander metrics (representing species richness and composition, abundance, species tolerance, and reproductive function) for their ability to distinguish reference from degraded sites; and (3) combining metrics into an index that effectively discriminated sites according to known stream conditions. Final indices for Highlands, Piedmont, and Non-Coastal Plain

  19. Reproductive biology of Ambystoma salamanders in the southeastern United States

    USGS Publications Warehouse

    Glorioso, Brad M.; Waddle, J. Hardin; Hefner, J. M.

    2015-01-01

    Reproductive aspects of Ambystoma salamanders were investigated at sites in Louisiana (2010–12) and Mississippi (2013). Three species occurred at the Louisiana site, Spotted Salamander (A. maculatum), Marbled Salamander (A. opacum), and Mole Salamander (A. talpoideum), whereas only Spotted Salamanders were studied at the Mississippi site. A total of 162 and 71 egg masses of Spotted Salamanders were examined at the Louisiana and Mississippi sites, respectively. Significantly more Spotted Salamander eggs per egg mass were observed at the Mississippi site (x̄ = 78.2) than the Louisiana site (x̄ = 53.8; P < 0.001). The mean snout–vent length of female Spotted Salamanders at the Mississippi site (82.9 mm) was significantly larger than the Louisiana site (76.1 mm; P < 0.001). Opaque Spotted Salamander egg masses were not found at the Mississippi site, but accounted for 11% of examined egg masses at the Louisiana site. The mean number of eggs per egg mass at the Louisiana site did not differ between opaque (47.3) and clear (54.6) egg masses (P = 0.21). A total of 47 egg masses of the Mole Salamander were examined, with a mean number of 6.7 embryos per mass. Twenty-three individual nests of the Marbled Salamander were found either under or in decaying logs in the dry pond basins. There was no difference between the mean numbers of eggs per mass of attended nests (93.0) versus those that were discovered unattended (86.6; P = 0.67). Females tended to place their nests at intermediate heights within the pond basin.

  20. Terrestrial salamander abundance on reclaimed mountaintop removal mines

    USGS Publications Warehouse

    Wood, Petra Bohall; Williams, Jennifer M.

    2013-01-01

    Mountaintop removal mining, a large-scale disturbance affecting vegetation, soil structure, and topography, converts landscapes from mature forests to extensive grassland and shrubland habitats. We sampled salamanders using drift-fence arrays and coverboard transects on and near mountaintop removal mines in southern West Virginia, USA, during 2000–2002. We compared terrestrial salamander relative abundance and species richness of un-mined, intact forest with habitats on reclaimed mountaintop removal mines (reclaimed grassland, reclaimed shrubland, and fragmented forest). Salamanders within forests increased in relative abundance with increasing distance from reclaimed mine edge. Reclaimed grassland and shrubland habitats had lower relative abundance and species richness than forests. Characteristics of reclaimed habitats that likely contributed to lower salamander abundance included poor soils (dry, compacted, little organic matter, high rock content), reduced vertical structure of vegetation and little tree cover, and low litter and woody debris cover. Past research has shown that salamander populations reduced by clearcutting may rebound in 15–24 years. Time since disturbance was 7–28 years in reclaimed habitats on our study areas and salamander populations had not reached levels found in adjacent mature forests.

  1. Salamander occupancy in headwater stream networks

    USGS Publications Warehouse

    Grant, E.H.C.; Green, L.E.; Lowe, W.H.

    2009-01-01

    1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.

  2. Homing orientation in salamanders: A mechanism involving chemical cues

    NASA Technical Reports Server (NTRS)

    Madison, D. M.

    1972-01-01

    A detailed description is given of experiments made to determine the senses and chemical cues used by salamanders for homing orientation. Sensory impairment and cue manipulative techniques were used in the investigation. All experiments were carried out at night. Results show that sense impaired animals did not home as readily as those who were blind but retained their sensory mechanism. This fact suggests that the olfactory mechanism is necessary for homing in the salamander. It was determined that after the impaired salamander regenerated its sensory mechanism it too returned home. It was concluded that homing ability in salamanders is direction independent, distant dependent, and vision independent.

  3. Bromeliad Selection by Two Salamander Species in a Harsh Environment

    PubMed Central

    Ruano-Fajardo, Gustavo; Rovito, Sean M.; Ladle, Richard J.

    2014-01-01

    Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optimal habitats. Association between bromeliad traits and salamanders has not been studied at a fine scale, despite the intimate association of many salamander species with bromeliads. Here, we identify microhabitat characteristics of epiphytic bromeliads used by two species of the Bolitoglossa morio group (B. morio and B. pacaya) in forest disturbed by volcanic activity in Guatemala. Specifically, we measured multiple variables for bromeliads (height and position in tree, phytotelma water temperature and pH, canopy cover, phytotelma size, leaf size, and tree diameter at breast height), as well as salamander size. We employed a DNA barcoding approach to identify salamanders. We found that B. morio and B. pacaya occurred in microsympatry in bromeliads and that phytotelmata size and temperature of bromeliad microhabitat were the most important factors associated with the presence of salamanders. Moreover, phytotelmata with higher pH contained larger salamanders, suggesting that larger salamanders or aggregated individuals might modify pH. These results show that bromeliad selection is nonrandom with respect to microhabitat characteristics, and provide insight into the relationship between salamanders and this unique arboreal environment. PMID:24892414

  4. Amphibian populations in the terrestrial environment: Is there evidence of declines of terrestrial forest amphibians in northwestern California?

    USGS Publications Warehouse

    Welsh, H.H.; Fellers, G.M.; Lind, A.J.

    2007-01-01

    Amphibian declines have been documented worldwide; however the vast majority are species associated with aquatic habitats. Information on the status and trends of terrestrial amphibians is almost entirely lacking. Here we use data collected across a 12-yr period (sampling from 1984-86 and from 1993-95) to address the question of whether evidence exists for declines among terrestrial amphibians in northwestern California forests. The majority of amphibians, both species and relative numbers, in these forests are direct-developing salamanders of the family Plethodontidae. We examined amphibian richness and evenness, and the relative abundances of the four most common species of plethodontid salamanders. We examined evidence of differences between years in two ecological provinces (coastal and interior) and across young, mature, and late seral forests and with reference to a moisture gradient from xeric to hydric within late seral forests. We found evidence of declines in species richness across years on late seral mesic stands and in the coastal ecological province, but these differences appeared to be caused by differences in the detection of rarer species, rather than evidence of an overall pattern. We also found differences among specific years in numbers of individuals of the most abundant species, Ensatina eschscholtzii, but these differences also failed to reflect a consistent pattern of declines between the two decadal sample periods. Results showing differences in richness, evenness, and relative abundances along both the seral and moisture continua were consistent with previous research. Overall, we found no compelling evidence of a downward trend in terrestrial plethodontid salamanders. We believe that continued monitoring of terrestrial salamander populations is important to understanding mechanisms of population declines in amphibian species. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  5. Impact of valley fills on streamside salamanders in southern West Virginia

    USGS Publications Warehouse

    Wood, Petra Bohall; Williams, Jennifer M.

    2013-01-01

    Valley fills associated with mountaintop-removal mining bury stream headwaters and affect water quality and ecological function of reaches below fills. We quantified relative abundance of streamside salamanders in southern West Virginia during 2002 in three streams below valley fills (VFS) and in three reference streams (RS). We surveyed 36 10- × 2-m stream transects, once in summer and fall, paired by order and structure. Of 2,343 salamanders captured, 66.7% were from RS. Total salamanders (adults plus larvae) were more abundant in RS than VFS for first-order and second-order reaches. Adult salamanders had greater abundance in first-order reaches of RS than VFS. Larval salamanders were more abundant in second-order reaches of RS than VFS. No stream width or mesohabitat variables differed between VFS and RS. Only two cover variables differed. Silt cover, greater in VFS than RS first-order reaches, is a likely contributor to reduced abundance of salamanders in VFS. Second-order RS had more boulder cover than second-order VFS, which may have contributed to the higher total and larval salamander abundance in RS. Water chemistry assessments of our VFS and RS reported elevated levels of metal and ion concentrations in VFS, which can depress macroinvertebrate populations and likely affect salamander abundance. Valley fills appear to have significant negative effects on stream salamander abundance due to alterations in habitat structure, water quality and chemistry, and macroinvertebrate communities in streams below fills.

  6. Salamander Saver

    ERIC Educational Resources Information Center

    Ilseman, Kelly; Hoffmann, Kristine

    2016-01-01

    On a spring morning in Maine, traps made of nets rise above vernal pools in a small wetland, ready to collect salamanders. The traps were designed by groups of rural and urban high school students from Maine and Massachusetts participating in the University of Maine Upward Bound Math Science Program (UBMS) at the university campus in Orono, Maine.…

  7. Predicting variation in microhabitat utilization of terrestrial salamanders

    Treesearch

    Katherine M. O' Donnell; Frank R. Thompson; Raymond D. Semlitsch

    2014-01-01

    Understanding patterns of microhabitat use among terrestrial salamanders is important for predicting their responses to natural and anthropogenic disturbances. The dependence of terrestrial salamanders on cutaneous respiration limits their spatial distribution to moist, humid areas. Although many studies have shown negative effects of canopy removal on terrestrial...

  8. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    PubMed

    Wilburn, Damien B; Bowen, Kathleen E; Doty, Kari A; Arumugam, Sengodagounder; Lane, Andrew N; Feldhoff, Pamela W; Feldhoff, Richard C

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique

  9. Science Review for the Scott Bar Salamander (Plethodon asupak) and the Siskiyou Mountains Salamander (P. stormi): Biology, Taxonomy, Habitat, and Detection Probabilities/Occupancy

    USGS Publications Warehouse

    DeGross, Douglas J.; Bury, R. Bruce

    2007-01-01

    The Plethodon elongatus Complex in the Klamath-Siskiyou Ecoregion of southern Oregon and northern California includes three species: the Del Norte salamander, Plethodon elongatus; the Siskiyou Mountains salamander, P. stormi; and the Scott Bar salamander, P. asupak. This review aims to summarize the current literature and information available on select topics for P. stormi and P. asupak. These are both terrestrial salamanders belonging to the Family Plethodontidae, which contains more species and has a wider geographic distribution than any other family of salamanders (Wake 1966, 2006; Pough 1989). The genera of this family have greatly diversified ecologically across North America, Central America, northern South America, Sardinia, southeastern France and northwestern Italy, and have recently been discovered on the Korean peninsula (Min et al. 2005). The genus Plethodon is found exclusively in North America and is split into three distinct clades, based upon morphology and phylogenetics (Highton and Larson 1979): eastern small Plethodon, eastern large Plethodon, and the western Plethodon. The western Plethodon are the greatest representation of Plethodontidae in the Pacific Northwest, with 8 species. The two species with the most restricted ranges of these regional congeners are the Siskiyou Mountains and Scott Bar salamanders. These salamanders occupy the interior of the Klamath-Siskiyou Ecoregion which straddles the California and Oregon state lines, between Siskiyou County (CA) and Jackson and Josephine Counties (OR). The relatively recent discovery of P. asupak (Mead et al. 2005) and the limited range of both species have created an environment of uncertain conservation status for these species. This review will focus on four central topics of concern for land and resource managers: Biology; Taxonomy; Habitat; and Detection Probabilities/Occupancy.

  10. Native salamanders and introduced fish: Changing the nature of mountain lakes and ponds

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.

    2003-01-01

    During the last century, many fishless mountain lakes and ponds in the Pacific Northwest were stocked with non-native fish, such as brook trout, for recreational purposes. These introduced fish replaced long-toed and northwestern salamander larvae as the top aquatic vertebrate predator by preying on salamander larvae. This predatory interaction has been shown to reduce the abundances of larval salamander populations. We conducted studies in two national parks to assess the abundances of salamander larvae in lakes with and without introduced fish. These studies suggest that the two salamander species were affected quite differently by the presence of introduced fish because of different life-history traits and different distributions of salamanders and fish within each park.

  11. Local and landscape scale factors influencing edge effects on woodland salamanders.

    PubMed

    Moseley, Kurtis R; Ford, W Mark; Edwards, John W

    2009-04-01

    We examined local and landscape-scale variable influence on the depth and magnitude of edge effects on woodland salamanders in mature mixed mesophytic and northern hardwood forest adjacent to natural gas well sites maintained as wildlife openings. We surveyed woodland salamander occurrence from June-August 2006 at 33 gas well sites in the Monongahela National Forest, West Virginia. We used an information-theoretic approach to test nine a priori models explaining landscape-scale effects on woodland salamander capture proportion within 20 m of field edge. Salamander capture proportion was greater within 0-60 m than 61-100 m of field edges. Similarly, available coarse woody debris proportion was greater within 0-60 m than 61-100 m of field edge. Our ASPECT model, that incorporated the single variable aspect, received the strongest support for explaining landscape-scale effects on salamander capture proportion within 20 m of opening edge. The ASPECT model indicated that fewer salamanders occurred within 20 m of opening edges on drier, hotter southwestern aspects than in moister, cooler northeastern aspects. Our results suggest that forest habitat adjacent to maintained edges and with sufficient cover still can provide suitable habitat for woodland salamander species in central Appalachian mixed mesophytic and northern hardwood forests. Additionally, our modeling results support the contention that edge effects are more severe on southwesterly aspects. These results underscore the importance of distinguishing among different edge types as well as placing survey locations within a landscape context when investigating edge impacts on woodland salamanders.

  12. Tiger salamanders' (Ambystoma tigrinum) response learning and usage of visual cues.

    PubMed

    Kundey, Shannon M A; Millar, Roberto; McPherson, Justin; Gonzalez, Maya; Fitz, Aleyna; Allen, Chadbourne

    2016-05-01

    We explored tiger salamanders' (Ambystoma tigrinum) learning to execute a response within a maze as proximal visual cue conditions varied. In Experiment 1, salamanders learned to turn consistently in a T-maze for reinforcement before the maze was rotated. All learned the initial task and executed the trained turn during test, suggesting that they learned to demonstrate the reinforced response during training and continued to perform it during test. In a second experiment utilizing a similar procedure, two visual cues were placed consistently at the maze junction. Salamanders were reinforced for turning towards one cue. Cue placement was reversed during test. All learned the initial task, but executed the trained turn rather than turning towards the visual cue during test, evidencing response learning. In Experiment 3, we investigated whether a compound visual cue could control salamanders' behaviour when it was the only cue predictive of reinforcement in a cross-maze by varying start position and cue placement. All learned to turn in the direction indicated by the compound visual cue, indicating that visual cues can come to control their behaviour. Following training, testing revealed that salamanders attended to stimuli foreground over background features. Overall, these results suggest that salamanders learn to execute responses over learning to use visual cues but can use visual cues if required. Our success with this paradigm offers the potential in future studies to explore salamanders' cognition further, as well as to shed light on how features of the tiger salamanders' life history (e.g. hibernation and metamorphosis) impact cognition.

  13. Detection of Batrachochytrium dendrobatidis in endemic salamander species from central Texas.

    PubMed

    Gaertner, James P; Forstner, Michael R J; O'Donnell, Lisa; Hahn, Dittmar

    2009-03-01

    A nested PCR protocol was used to analyze five endemic salamander species from Central Texas for the presence of the emerging pathogen, chytrid fungus (Batrachochytrium dendrobatidis). Chytrid fungus was detected from samples of each of the five species sampled: with low abundance, in the Texas salamander (Eurycea neotenes) (1 positive out of 16 individuals tested; 1/16), the Blanco River Springs salamander (E. pterophila) (1/20), the threatened San Marcos salamander (E. nana) (1/17), and the endangered Barton Springs salamander (E. sosorum) (1/7); much higher abundance was obtained for the Jollyville Plateau salamander (E. tonkawae) (6/14), which has recently been petitioned for addition to the USA endangered species list. With one exception, sequences of PCR products were identical to the 5.8S rRNA gene, and nearly so for the flanking internal transcribed spacer (ITS) regions of B. dendrobatidis which confirmed the detection of chytrid fungus, and thus demonstrated the presence of this pathogen in populations of endangered species in Central Texas. These confirmations were obtained from nonconsumptive tail clippings which confirms the applicability of historically collected samples from other studies in the examination of the fungus across time.

  14. Diagnostic and molecular evaluation of three iridovirus-associated salamander mortality events

    USGS Publications Warehouse

    Docherty, D.E.; Meteyer, C.U.; Wang, Jingyuan; Mao, J.; Case, S.T.; Chinchar, V.G.

    2003-01-01

    In 1998 viruses were isolated from tiger salamander larvae (Ambystoma tigrinum diaboli and A. tigrinum melanostictum) involved in North Dakota and Utah (USA) mortality events and spotted salamander (A. maculatum) larvae in a third event in Maine (USA). Although sympatric caudates and anurans were present at all three sites only ambystomid larvae appeared to be affected. Mortality at the North Dakota site was in the thousands while at the Utah and Maine sites mortality was in the hundreds. Sick larvae were lethargic and slow moving. They swam in circles with obvious buoyancy problems and were unable to remain upright. On the ventral surface, near the gills and hind limbs, red spots or swollen areas were noted. Necropsy findings included: hemorrhages and ulceration of the skin, subcutaneous and intramuscular edema, swollen and pale livers with multifocal hemorrhage, and distended fluid-filled intestines with areas of hemorrhage. Light microscopy revealed intracytoplasmic inclusions, suggestive of a viral infection, in a variety of organs. Electron microscopy of ultra thin sections of the same tissues revealed iridovirus-like particles within the inclusions. These viruses were isolated from a variety of organs, indicating a systemic infection. Representative viral isolates from the three mortality events were characterized using molecular assays. Characterization confirmed that the viral isolates were iridoviruses and that the two tiger salamander isolates were similar and could be distinguished from the spotted salamander isolate. The spotted salamander isolate was similar to frog virus 3, the type species of the genus Ranavirus, while the tiger salamander isolates were not. These data indicate that different species of salamanders can become infected and die in association with different iridoviruses. Challenge assays are required to determine the fish and amphibian host range of these isolates and to assess the susceptibility of tiger and spotted salamanders to

  15. Plethodon cinereus (Redback Salamander) predation

    USGS Publications Warehouse

    Jung, R.E.; Ward, W.L.; Kings, C.O.; Weir, L.A.

    2000-01-01

    In 1999 at the Patuxent Research Refuge, we observed a large rove beetle (Staphylinus maculosus) consuming an eviscerated redback salamander (Plethodon cinereus) underneath a coverboard. Rove beetles typically eat invertebrates.

  16. A new moss salamander, genus Nototriton (Caudata: Plethodontidae), from the Cordillera de Talamanca, in the Costa Rica-Panama border region.

    PubMed

    Arias, Erick; Kubicki, Brian

    2018-01-07

    A new salamander belonging to the genus Nototriton, subgenus Nototriton, is described from the Caribbean slopes of the southeastern Cordillera de Talamanca in Costa Rica, within Parque Internacional La Amistad, at an elevation ca. 1500 m a.s.l. This new taxon is distinguished from its congeners by its morphological characteristics and by its differentiation in DNA sequences of the 16S rRNA, cytochrome oxidase subunit I (COI), and cytochrome b mitochondrial genes. This new species represents the southernmost extension known for the genus Nototriton.

  17. Evaluation of terrestrial and streamside salamander monitoring techniques at Shenandoah National Park

    USGS Publications Warehouse

    Jung, R.E.; Droege, S.; Sauer, J.R.; Landy, R.B.

    2000-01-01

    In response to concerns about amphibian declines, a study evaluating and validating amphibian monitoring techniques was initiated in Shenandoah and Big Bend National Parks in the spring of 1998. We evaluate precision, bias, and efficiency of several sampling methods for terrestrial and streamside salamanders in Shenandoah National Park and assess salamander abundance in relation to environmental variables, notably soil and water pH. Terrestrial salamanders, primarily redback salamanders (Plethodon cinereus), were sampled by searching under cover objects during the day in square plots (10 to 35 m2). We compared population indices (mean daily and total counts) with adjusted population estimates from capture-recapture. Analyses suggested that the proportion of salamanders detected (p) during sampling varied among plots, necessitating the use of adjusted population estimates. However, adjusted population estimates were less precise than population indices, and may not be efficient in relating salamander populations to environmental variables. In future sampling, strategic use of capture-recapture to verify consistency of p's among sites may be a reasonable compromise between the possibility of bias in estimation of population size and deficiencies due to inefficiency associated with the estimation of p. The streamside two-lined salamander (Eurycea bislineata) was surveyed using four methods: leaf litter refugia bags, 1 m2 quadrats, 50 x 1 m visual encounter transects, and electric shocking. Comparison of survey methods at nine streams revealed congruent patterns of abundance among sites, suggesting that relative bias among the methods is similar, and that choice of survey method should be based on precision and logistical efficiency. Redback and two-lined salamander abundance were not significantly related to soil or water pH, respectively.

  18. Stream water temperature limits occupancy of salamanders in mid-Atlantic protected areas

    USGS Publications Warehouse

    Grant, Evan H. Campbell; Wiewel, Amber N. M.; Rice, Karen C.

    2014-01-01

    Stream ecosystems are particularly sensitive to urbanization, and tolerance of water-quality parameters is likely important to population persistence of stream salamanders. Forecasted climate and landscape changes may lead to significant changes in stream flow, chemical composition, and temperatures in coming decades. Protected areas where landscape alterations are minimized will therefore become increasingly important for salamander populations. We surveyed 29 streams at three national parks in the highly urbanized greater metropolitan area of Washington, DC. We investigated relationships among water-quality variables and occupancy of three species of stream salamanders (Desmognathus fuscus, Eurycea bislineata, and Pseudotriton ruber). With the use of a set of site-occupancy models, and accounting for imperfect detection, we found that stream-water temperature limits salamander occupancy. There was substantial uncertainty about the effects of the other water-quality variables, although both specific conductance (SC) and pH were included in competitive models. Our estimates of occupancy suggest that temperature, SC, and pH have some importance in structuring stream salamander distribution.

  19. Woodland salamander responses to a shelterwood harvest-prescribed burn silvicultural treatment within Appalachian mixed-oak forests

    USGS Publications Warehouse

    Ford, W. Mark; Mahoney, Kathleen R.; Russell, Kevin R.; Rodrigue, Jane L.; Riddle, Jason D.; Schuler, Thomas M.; Adams, Mary Beth

    2015-01-01

    Forest management practices that mimic natural canopy disturbances, including prescribed fire and timber harvests, may reduce competition and facilitate establishment of favorable vegetative species within various ecosystems. Fire suppression in the central Appalachian region for almost a century has contributed to a transition from oak-dominated to more mesophytic, fire-intolerant forest communities. Prescribed fire coupled with timber removal is currently implemented to aid in oak regeneration and establishment but responses of woodland salamanders to this complex silvicultural system is poorly documented. The purpose of our research was to determine how woodland salamanders respond to shelterwood harvests following successive burns in a central Appalachian mixed-oak forest. Woodland salamanders were surveyed using coverboard arrays in May, July, and August–September 2011 and 2012. Surveys were conducted within fenced shelterwood-burn (prescribed fires, shelterwood harvest, and fencing to prevent white-tailed deer [Odocoileus virginianus] herbivory), shelterwood-burn (prescribed fires and shelterwood harvest), and control plots. Relative abundance was modeled in relation to habitat variables measured within treatments for mountain dusky salamanders (Desmognathus ochrophaeus), slimy salamanders (Plethodon glutinosus), and eastern red-backed salamanders (Plethodon cinereus). Mountain dusky salamander relative abundance was positively associated with canopy cover and there were significantly more individuals within controls than either shelterwood-burn or fenced shelterwood-burn treatments. Conversely, habitat variables associated with slimy salamanders and eastern red-backed salamanders did not differ among treatments. Salamander age-class structure within controls did not differ from shelterwood-burn or fenced shelterwood-burn treatments for any species. Overall, the woodland salamander assemblage remained relatively intact throughout the shelterwoodburn

  20. A new model of the spinal locomotor networks of a salamander and its properties.

    PubMed

    Liu, Qiang; Yang, Huizhen; Zhang, Jinxue; Wang, Jingzhuo

    2018-05-22

    A salamander is an ideal animal for studying the spinal locomotor network mechanism of vertebrates from an evolutionary perspective since it represents the transition from an aquatic to a terrestrial animal. However, little is known about the spinal locomotor network of a salamander. A spinal locomotor network model is a useful tool for exploring the working mechanism of the spinal networks of salamanders. A new spinal locomotor network model for a salamander is built for a three-dimensional (3D) biomechanical model of the salamander using a novel locomotion-controlled neural network model. Based on recent experimental data on the spinal circuitry and observational results of gaits of vertebrates, we assume that different interneuron sets recruited for mediating the frequency of spinal circuits are also related to the generation of different gaits. The spinal locomotor networks of salamanders are divided into low-frequency networks for walking and high-frequency networks for swimming. Additionally, a new topological structure between the body networks and limb networks is built, which only uses the body networks to coordinate the motion of limbs. There are no direct synaptic connections among limb networks. These techniques differ from existing salamander spinal locomotor network models. A simulation is performed and analyzed to validate the properties of the new spinal locomotor networks of salamanders. The simulation results show that the new spinal locomotor networks can generate a forward walking gait, a backward walking gait, a swimming gait, and a turning gait during swimming and walking. These gaits can be switched smoothly by changing external inputs from the brainstem. These properties are consistent with those of a real salamander. However, it is still difficult for the new spinal locomotor networks to generate highly efficient turning during walking, 3D swimming, nonrhythmic movements, and so on. New experimental data are required for further validation.

  1. Reintroduction and Post-Release Survival of a Living Fossil: The Chinese Giant Salamander

    PubMed Central

    Zhang, Lu; Jiang, Wei; Wang, Qi-Jun; Zhao, Hu; Zhang, Hong-Xing; Marcec, Ruth M.; Willard, Scott T.; Kouba, Andrew J.

    2016-01-01

    Captive rearing and reintroduction / translocation are increasingly used as tools to supplement wild populations of threatened species. Reintroducing captive-reared Chinese giant salamanders may help to augment the declining wild populations and conserve this critically endangered amphibian. We released 31 captive-reared juvenile giant salamanders implanted with VHF radio transmitters at the Heihe River (n = 15) and the Donghe River (n = 16) in the Qinling Mountains of central China. Salamanders were monitored every day for survival from April 28th 2013 to September 3rd 2014. We attempted to recapture all living individuals by the end of the study, measured their body mass and total body length, and checked for abnormalities and presence of external parasites. Two salamanders at the Heihe River and 10 animals at the Donghe River survived through the project timeline. Nine salamanders were confirmed dead, while the status of the other 10 animals was undetermined. The annual survival rate of giant salamanders at the Donghe River (0.702) was 1.7-fold higher than that at the Heihe River (0.405). Survival increased as individuals were held longer following surgery, whereas body mass did not have a significant impact on survival rate. All salamanders recaptured from the Donghe River (n = 8) increased in mass (0.50 ± 0.13 kg) and length (5.5 ± 1.5 cm) after approximately 11 months in the wild, and they were only 7% lighter than wild animals of the same length (mean residual = -0.033 ± 0.025). Our results indicate that captive-reared Chinese giant salamanders can survive in the wild one year after release and adequate surgical recovery time is extremely important to post-release survival. Future projects may reintroduce older juveniles to achieve better survival and longer monitoring duration. PMID:27258650

  2. Seasonality and microhabitat selection in a forest-dwelling salamander

    NASA Astrophysics Data System (ADS)

    Basile, Marco; Romano, Antonio; Costa, Andrea; Posillico, Mario; Scinti Roger, Daniele; Crisci, Aldo; Raimondi, Ranieri; Altea, Tiziana; Garfì, Vittorio; Santopuoli, Giovanni; Marchetti, Marco; Salvidio, Sebastiano; De Cinti, Bruno; Matteucci, Giorgio

    2017-10-01

    Many small terrestrial vertebrates exhibit limited spatial movement and are considerably exposed to changes in local environmental variables. Among such vertebrates, amphibians at present experience a dramatic decline due to their limited resilience to environmental change. Since the local survival and abundance of amphibians is intrinsically related to the availability of shelters, conservation plans need to take microhabitat requirements into account. In order to gain insight into the terrestrial ecology of the spectacled salamander Salamandrina perspicillata and to identify appropriate forest management strategies, we investigated the salamander's seasonal variability in habitat use of trees as shelters in relation to tree features (size, buttresses, basal holes) and environmental variables in a beech forest in Italy. We used the occupancy approach to assess tree suitability on a non-conventional spatial scale. Our approach provides fine-grained parameters of microhabitat suitability and elucidates many aspects of the salamander's terrestrial ecology . Occupancy changed with the annual life cycle and was higher in autumn than in spring, when females were found closer to the stream in the study area. Salamanders showed a seasonal pattern regarding the trees they occupied and a clear preference for trees with a larger diameter and more burrows. With respect to forest management, we suggest maintaining a suitable number of trees with a trunk diameter exceeding 30 cm. A practice of selective logging along the banks of streams could help maintain an adequate quantity of the appropriate microhabitat. Furthermore, in areas with a presence of salamanders, a good forest management plan requires leaving an adequate buffer zone around streams, which should be wider in autumn than in spring.

  3. 77 FR 36287 - Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander, Calaveras...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ...-FXES11120800000F2-123-F2] Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander... animal, the threatened Central California Distinct Population Segment of the California tiger salamander (tiger salamander). The applicant would implement a conservation program to minimize and mitigate the...

  4. Using passive integrated transponder (PIT) systems for terrestrial detection of blue-spotted salamanders (Ambystoma laterale) in situ

    USGS Publications Warehouse

    Ryan, Kevin J.; Zydlewski, Joseph D.; Calhoun, Aram J.K.

    2014-01-01

    Pure-diploid Blue-spotted Salamanders (Ambystoma laterale) are the smallest members of the family Ambystomatidae which makes tracking with radio-transmitters difficult because of small battery capacity. Passive integrated transponder (PIT) tags provide another tracking approach for small fossorial animals such as salamanders. We evaluated the use of portable PIT tag readers (PIT packs) to detect PIT tag-implanted pure-diploid Blue-spotted Salamanders in situ. We also examined the detection probability of salamanders with PIT tags held in enclosures in wetland and terrestrial habitats, as well as the underground detection range of PIT packs by scanning for buried tags not implanted into salamanders. Of the 532 PIT tagged salamanders, we detected 6.84% at least once during scanning surveys. We scanned systematically within a 13.37 ha area surrounding a salamander breeding pool on 34 occasions (~119 hours of survey time) and detected PIT tags 74 times. We detected 55% of PITs in tagged salamanders and 45%were expelled tags. We were able to reliably detect buried PIT tags from 1–22cm below the ground surface. Because nearly half the locations represented expelled tags, our data suggest this technique is inappropriate for future studies of pure-diploid Blue-spotted Salamanders, although it may be suitable for polyploid Blue-spotted Salamanders and other ambystomatid species, which are larger in size and may exhibit higher tag retention rates. It may also be prudent to conduct long-term tag retention studies in captivity before tagging and releasing salamanders for in situ study, and to double-mark individuals.

  5. At random meetings to the creation of new species of Salamander

    NASA Astrophysics Data System (ADS)

    Brillant, Marie-Pierre

    2013-04-01

    The pupils in final year of high school (15-18 years old) study the notion "species" and the creation of new species in various ways. Having studied genetic admixtures, this activity allows the pupils to build a scenario explaining the creation of a new species of Salamander in southern California from an ancestral population existing in northern Oregon. They can observe, on Google Earth, various populations of Salamander of the genus Ensatina. Salamanders of the genus Ensatina live in California around the Joaquin and Sacramento dry valleys. In this software, the pupils get information about the salamanders' environment and photographs of individuals and environments. During a migratory movement toward new territories to be colonized, these salamanders meet an inhospitable environment that they can not occupy. This population then splits up into two migratory branches, east and west, each overcoming the obstacles in different ways. The two groups gradually colonized southern territories but they avoided the too dry and hot San Joaquin plains. The two main branches of the original population gradually move away from each other, and genetic exchanges between them decrease over time. Eventually, we can find various populations of Salamander on both sides of the valleys, since the salamanders occupied new territories and diversified along the way. Among mutations that randomly occur, only those mutations that are best adapted in the origin were conserved in the genetic heritage of every population. When the individuals stemming from different western populations met, they were interfertile and give fertile hybrids, which was verified in the laboratory. Likewise, when individuals of the different eastern subspecies met accidentally, fertile hybrids also could arise from these crossings. The pupils can observe what happens in the overlap of various populations : interfertility or not. They also have geological, geographical and climatic information about the San Joaquin

  6. Leaf litter bags as an index to populations of northern two-lined salamanders (Eurycea bislineata)

    USGS Publications Warehouse

    Chalmers, R.J.; Droege, S.

    2002-01-01

    Concern about recent amphibian declines has led to research on amphibian populations, but few statistically tested, standardized methods of counting amphibians exist. We tested whether counts of northern two-lined salamander larvae (Eurycea bislineata) sheltered in leaf litter bags--a relatively new, easily replicable survey technique--had a linear correlation to total number of larvae. Using experimental enclosures placed in streams, we compared number of salamanders found in artificial habitat (leaf litter bags) with total number of salamanders in each enclosure. Low numbers of the animals were found in leaf litter bags, and the relative amount of variation in the index (number of animals in leaf litter bags compared to total number of animals in stream enclosures) was high. The index of salamanders in leaf litter bags was not significantly related to total number of salamanders in enclosures for two-thirds of the replicates or with pooled replicates (P= 0.066). Consequently, we cannot recommend using leaf litter bags to index populations of northern two-lined salamanders.

  7. A nondestructive technique to monitor the relative abundance of terrestrial salamanders

    Treesearch

    Richard M. DeGraaf; Mariko Yamasaki

    1992-01-01

    Salamanders are abundant vertebrates in many forest ecosystems, and their annual biomass production can be important in forest food webs (Pough et al. 1987). Population densities of eastern redback salamanders (Plethodon cinereus) can exceed 2 individuals/m2 in deciduous forests of the United States (Heatwole 1962, Jaeger 1980...

  8. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders

    PubMed Central

    Martel, A.; Beukema, W.; Fisher, M. C.; Farrer, R. A.; Schmidt, B. R.; Tobler, U.; Goka, K.; Lips, K. R.; Muletz, C.; Zamudio, K. R.; Bosch, J.; Lötters, S.; Wombwell, E.; Garner, T.W. J.; Cunningham, A. A.; Spitzen-van der Sluijs, A.; Salvidio, S.; Ducatelle, R.; Nishikawa, K.; Nguyen, T. T.; Kolby, J. E.; Van Bocxlaer, I.; Bossuyt, F.; Pasmans, F.

    2018-01-01

    Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines in populations of European fire salamanders. Here, we screened more than 5000 amphibians from across four continents and combined experimental assessment of pathogenicity with phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. Results show that B. salamandrivorans is restricted to, but highly pathogenic for, salamanders and newts (Urodela). The pathogen likely originated and remained in coexistence with a clade of salamander hosts for millions of years in Asia. As a result of globalization and lack of biosecurity, it has recently been introduced into naïve European amphibian populations, where it is currently causing biodiversity loss. PMID:25359973

  9. Effects of microhabitat and land use on stream salamander abundance in the southwest Virginia coalfields

    USGS Publications Warehouse

    Sweeten, Sara E.; Ford, W. Mark

    2015-01-01

    Large-scale land uses such as residential wastewater discharge and coal mining practices, particularly surface coal extraction and associated valley fills, are of particular ecological concern in central Appalachia. Identification and quantification of both alterations across scales are a necessary first-step to mitigate negative consequences to biota. In central Appalachian headwater streams absent of fish, salamanders are the dominant, most abundant vertebrate predator providing a significant intermediate trophic role. Stream salamander species are considered to be sensitive to aquatic stressors and environmental alterations, and past research has shown linkages among microhabitat parameters, large-scale land use such as urbanization and logging with salamander abundances. However, little is known about these linkages in the coalfields of central Appalachia. In the summer of 2013, we visited 70 sites (sampled three times each) in the southwest Virginia coalfields to survey salamanders and quantify stream and riparian microhabitat parameters. Using an information-theoretic framework we compared the effects of microhabitat and large-scale land use on salamander abundances. Our findings indicate that dusky salamander (Desmognathus spp.) abundances are more correlated to microhabitat parameters such as canopy cover than to subwatershed land uses. Brook salamander (Eurycea spp.) abundances show strong negative associations to the suspended sediments and stream substrate embeddedness. Neither Desmognathus spp. nor Eurycea spp. abundances were influenced by water conductivity. These suggest protection or restoration of riparian habitats and erosion control is an important conservation component for maintaining stream salamanders in the mined landscapes of central Appalachia.

  10. Cannibalistic-morph Tiger Salamanders in unexpected ecological contexts

    USGS Publications Warehouse

    McLean, Kyle I.; Stockwell, Craig A.; Mushet, David M.

    2016-01-01

    Barred tiger salamanders [Ambystoma mavortium (Baird, 1850)] exhibit two trophic morphologies; a typical and a cannibalistic morph. Cannibalistic morphs, distinguished by enlarged vomerine teeth, wide heads, slender bodies, and cannibalistic tendencies, are often found where conspecifics occur at high density. During 2012 and 2013, 162 North Dakota wetlands and lakes were sampled for salamanders. Fifty-one contained A. mavortium populations; four of these contained cannibalistic morph individuals. Two populations with cannibalistic morphs occurred at sites with high abundances of conspecifics. However, the other two populations occurred at sites with unexpectedly low conspecific but high fathead minnow [Pimephales promelas (Rafinesque, 1820)] abundances. Further, no typical morphs were observed in either of these later two populations, contrasting with earlier research suggesting cannibalistic morphs only occur at low frequencies in salamander populations. Another anomaly of all four populations was the occurrence of cannibalistic morphs in permanent water sites, suggesting their presence was due to factors other than faster growth allowing them to occupy ephemeral habitats. Therefore, our findings suggest environmental factors inducing the cannibalistic morphism may be more complex than previously thought.

  11. Overwintered Bullfrog tadpoles negatively affect Salamanders and Anurans in native amphibian communities

    USGS Publications Warehouse

    Boone, M.D.; Little, E.E.; Semlitsch, R.D.

    2004-01-01

    We examined the interactive effects of overwintered Bullfrog (Rana catesbeiana) tadpoles and pond hydroperiod on a community of larval amphibians in outdoor mesocosms including American Toads (Bufo americanus), Southern Leopard Frogs (Rana sphenocephala), and Spotted Salamanders (Ambystoma maculatum) - species within the native range of Bullfrogs. Spotted Salamanders and Southern Leopard Frogs were negatively influenced by the presence of overwintered Bullfrogs. Spotted Salamanders had shorter larval periods and slightly smaller masses at metamorphosis, and Southern Leopard Frogs had smaller masses at metamorphosis when reared with Bullfrogs than without. Presence of overwintered Bullfrogs, however, did not significantly affect American Toads. Longer pond hydroperiods resulted in greater survival, greater size at metamorphosis, longer larval periods, and later time until emergence of the first metamorphs for Southern Leopard Frog tadpoles and Spotted Salamander larvae. Our study demonstrated that overwintered Bullfrog tadpoles can respond to changing pond hydroperiods and can negatively impact metamorphosis of native amphibians.

  12. Influence of headwater site conditions and riparian buffers on terrestrial salamander response to forest thinning.

    Treesearch

    D.E. Rundio; D.H. Olson

    2007-01-01

    We examined the effect of forest thinning and riparian buffers along headwater streams on terrestrial salamanders at two sites in western Oregon. Salamander numbers were reduced postthinning at one site with lower down-wood volume. Terrestrial salamander distributions along stream-to-upslope transects suggest benefits of one and two site-potential tree-height stream...

  13. Mechanics of lung ventilation in a post-metamorphic salamander, Ambystoma Tigrinum.

    PubMed

    Simons, R S; Bennett, W O; Brainerd, E L

    2000-03-01

    The mechanics of lung ventilation in frogs and aquatic salamanders has been well characterized, whereas lung ventilation in terrestrial-phase (post-metamorphic) salamanders has received little attention. We used electromyography (EMG), X-ray videography, standard videography and buccal and body cavity pressure measurements to characterize the ventilation mechanics of adult (post-metamorphic) tiger salamanders (Ambystoma tigrinum). Three results emerged: (i) under terrestrial conditions or when floating at the surface of the water, adult A. tigrinum breathed through their nares using a two-stroke buccal pump; (ii) in addition to this narial two-stroke pump, adult tiger salamanders also gulped air in through their mouths using a modified two-stroke buccal pump when in an aquatic environment; and (iii) exhalation in adult tiger salamanders is active during aquatic gulping breaths, whereas exhalation appears to be passive during terrestrial breathing at rest. Active exhalation in aquatic breaths is indicated by an increase in body cavity pressure during exhalation and associated EMG activity in the lateral hypaxial musculature, particularly the M. transversus abdominis. In terrestrial breathing, no EMG activity in the lateral hypaxial muscles is generally present, and body cavity pressure decreases during exhalation. In aquatic breaths, tidal volume is larger than in terrestrial breaths, and breathing frequency is much lower (approximately 1 breath 10 min(-)(1 )versus 4-6 breaths min(-)(1)). The use of hypaxial muscles to power active exhalation in the aquatic environment may result from the need for more complete exhalation and larger tidal volumes when breathing infrequently. This hypothesis is supported by previous findings that terrestrial frogs ventilate their lungs with small tidal volumes and exhale passively, whereas aquatic frogs and salamanders use large tidal volumes and and exhale actively.

  14. Ambystoma maculatum (spotted salamander). Reproduction

    USGS Publications Warehouse

    Glorioso, Brad M.; Waddle, Hardin; Hefner, Jeromi

    2012-01-01

    The Spotted Salamander is a wide-ranging salamander of the eastern United States that typically breeds in winter or early spring in ephemeral pools in lowland forests. Ambystoma maculatum is known to deposit 2-4 egg masses per year, each containing 1-250 eggs. As part of ongoing research into the ecology and reproductive biology of Spotted Salamanders in the Kisatchie District of Kisatchie National Forest in Natchitoches Parish, Louisiana, USA, we have been counting the number of embryos per egg mass. We captured seven female A. maculatum in a small pool, six of which were still gravid. We took standard measurements, including SVL, and then implanted a Passive Integrated Transponder (PIT tag) into each adult female as was the protocol. About an hour after processing these animals we marked new A. maculatum egg masses found in the same small pool using PVC pin flags pushed carefully through the outer jelly. We did not have enough time to process them that evening, and it was not until a few days later that we photographed those masses. We discovered that one of the masses contained a PIT tag in the outer jelly that corresponded to one of the six gravid females that were marked that same evening. To our knowledge, this is the first report of PIT tags being the means, albeit coincidentally, by which a particular egg mass of Ambystoma maculatum has been assigned to a particular female. For our purposes, losing the PIT tag from the adult female is counter to the goals of our study of this population, and we will no longer be implanting PIT tags into gravid females.

  15. Antifungal Bacteria on Woodland Salamander Skin Exhibit High Taxonomic Diversity and Geographic Variability

    PubMed Central

    DiRenzo, Graziella V.; Yarwood, Stephanie A.; Campbell Grant, Evan H.; Fleischer, Robert C.; Lips, Karen R.

    2017-01-01

    ABSTRACT Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis. Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis. Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis. Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a

  16. Antifungal Bacteria on Woodland Salamander Skin Exhibit High Taxonomic Diversity and Geographic Variability.

    PubMed

    Muletz-Wolz, Carly R; DiRenzo, Graziella V; Yarwood, Stephanie A; Campbell Grant, Evan H; Fleischer, Robert C; Lips, Karen R

    2017-05-01

    Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis Yet there has been no systematic survey of anti- B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti- B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus , 15 P. glutinosus , 9 P. cylindraceus ) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti- B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti- B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti- B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti- B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti- B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis Anti- B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a

  17. Estimation of stream salamander (Plethodontidae, Desmognathinae and Plethodontinae) populations in Shenandoah National Park, Virginia, USA

    USGS Publications Warehouse

    Jung, R.E.; Royle, J. Andrew; Sauer, J.R.; Addison, C.; Rau, R.D.; Shirk, J.L.; Whissel, J.C.

    2005-01-01

    Stream salamanders in the family Plethodontidae constitute a large biomass in and near headwater streams in the eastern United States and are promising indicators of stream ecosystem health. Many studies of stream salamanders have relied on population indices based on counts rather than population estimates based on techniques such as capture-recapture and removal. Application of estimation procedures allows the calculation of detection probabilities (the proportion of total animals present that are detected during a survey) and their associated sampling error, and may be essential for determining salamander population sizes and trends. In 1999, we conducted capture-recapture and removal population estimation methods for Desmognathus salamanders at six streams in Shenandoah National Park, Virginia, USA. Removal sampling appeared more efficient and detection probabilities from removal data were higher than those from capture-recapture. During 2001-2004, we used removal estimation at eight streams in the park to assess the usefulness of this technique for long-term monitoring of stream salamanders. Removal detection probabilities ranged from 0.39 to 0.96 for Desmognathus, 0.27 to 0.89 for Eurycea and 0.27 to 0.75 for northern spring (Gyrinophilus porphyriticus) and northern red (Pseudotriton ruber) salamanders across stream transects. Detection probabilities did not differ across years for Desmognathus and Eurycea, but did differ among streams for Desmognathus. Population estimates of Desmognathus decreased between 2001-2002 and 2003-2004 which may be related to changes in stream flow conditions. Removal-based procedures may be a feasible approach for population estimation of salamanders, but field methods should be designed to meet the assumptions of the sampling procedures. New approaches to estimating stream salamander populations are discussed.

  18. Design tradeoffs in long-term research for stream salamanders

    USGS Publications Warehouse

    Brand, Adrianne B,; Grant, Evan H. Campbell

    2017-01-01

    Long-term research programs can benefit from early and periodic evaluation of their ability to meet stated objectives. In particular, consideration of the spatial allocation of effort is key. We sampled 4 species of stream salamanders intensively for 2 years (2010–2011) in the Chesapeake and Ohio Canal National Historical Park, Maryland, USA to evaluate alternative distributions of sampling locations within stream networks, and then evaluated via simulation the ability of multiple survey designs to detect declines in occupancy and to estimate dynamic parameters (colonization, extinction) over 5 years for 2 species. We expected that fine-scale microhabitat variables (e.g., cobble, detritus) would be the strongest determinants of occupancy for each of the 4 species; however, we found greater support for all species for models including variables describing position within the stream network, stream size, or stream microhabitat. A monitoring design focused on headwater sections had greater power to detect changes in occupancy and the dynamic parameters in each of 3 scenarios for the dusky salamander (Desmognathus fuscus) and red salamander (Pseudotriton ruber). Results for transect length were more variable, but across all species and scenarios, 25-m transects are most suitable as a balance between maximizing detection probability and describing colonization and extinction. These results inform sampling design and provide a general framework for setting appropriate goals, effort, and duration in the initial planning stages of research programs on stream salamanders in the eastern United States.

  19. Genetic drift and mutational hazard in the evolution of salamander genomic gigantism.

    PubMed

    Mohlhenrich, Erik Roger; Mueller, Rachel Lockridge

    2016-12-01

    Salamanders have the largest nuclear genomes among tetrapods and, excepting lungfishes, among vertebrates as a whole. Lynch and Conery (2003) have proposed the mutational-hazard hypothesis to explain variation in genome size and complexity. Under this hypothesis, noncoding DNA imposes a selective cost by increasing the target for degenerative mutations (i.e., the mutational hazard). Expansion of noncoding DNA, and thus genome size, is driven by increased levels of genetic drift and/or decreased mutation rates; the former determines the efficiency with which purifying selection can remove excess DNA, whereas the latter determines the level of mutational hazard. Here, we test the hypothesis that salamanders have experienced stronger long-term, persistent genetic drift than frogs, a related clade with more typically sized vertebrate genomes. To test this hypothesis, we compared dN/dS and Kr/Kc values of protein-coding genes between these clades. Our results do not support this hypothesis; we find that salamanders have not experienced stronger genetic drift than frogs. Additionally, we find evidence consistent with a lower nucleotide substitution rate in salamanders. This result, along with previous work showing lower rates of small deletion and ectopic recombination in salamanders, suggests that a lower mutational hazard may contribute to genomic gigantism in this clade. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  20. Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation

    USGS Publications Warehouse

    Walker, Donald M.; Leys, Jacob E.; Dunham, Kelly E.; Oliver, Joshua C.; Schiller, Emily E.; Stephenson, Kelsey S.; Kimrey, John T.; Wooten, Jessica; Rogers, Mark W.

    2017-01-01

    Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine-scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild-caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small-bodied wild terrestrial salamander populations.

  1. Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation.

    PubMed

    Walker, Donald M; Leys, Jacob E; Dunham, Kelly E; Oliver, Joshua C; Schiller, Emily E; Stephenson, Kelsey S; Kimrey, John T; Wooten, Jessica; Rogers, Mark W

    2017-11-01

    Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine-scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild-caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small-bodied wild terrestrial salamander populations. © 2017 John Wiley & Sons Ltd.

  2. 76 FR 44036 - Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander, AT&T Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...] Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander, AT&T Portable Generator... Federally listed animal, the California tiger salamander. The applicant would implement a conservation... permanently convert 1.24 acres of upland grassland habitat for the California tiger salamander into a new...

  3. Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States

    USGS Publications Warehouse

    Bank, M.S.; Loftin, C.S.; Jung, R.E.

    2005-01-01

    Mercury (Hg) bioaccumulation in salamanders has received little attention despite widespread Hg contamination of aquatic ecosystems and worldwide amphibian declines. Here we report concentrations of methyl Hg (MeHg) and total Hg in larval northern two-lined salamanders (Eurycea bislineata bislineata) collected from streams in Acadia National Park (ANP), Maine, and Bear Brook Watershed, Maine (BBWM; a paired, gauged watershed treated with bimonthly applications (25 kg/ha/yr) of ammonium sulfate [(NH4)(2)SO4]) since 1989), and Shenandoah National Park (SNP), Virginia. MeHg comprised 73-97% of total Hg in the larval salamander composite samples from ANP. At BBWM we detected significantly higher total Hg levels in larvae from the (NH4)(2)SO4 treatment watershed. At ANP total Hg concentrations in salamander larvae were significantly higher from streams in unburned watersheds in contrast with larval samples collected from streams located in watersheds burned by the 1947 Bar Harbor fire. Additionally, total Hg levels were significantly higher in salamander larvae collected at ANP in contrast with SNP. Our results suggest that watershed-scale attributes including. re history, whole-catchment (NH4)(2)SO4 additions, wetland extent, and forest cover type influence mercury bioaccumulation in salamanders inhabiting lotic environments. We also discuss the use of this species as an indicator of Hg bioaccumulation in stream ecosystems.

  4. Do silvicultural practices to restore oaks affect salamanders in the short term?

    Treesearch

    Amy L. Raybuck; Christopher E. Moorman; Sarah R. Fritts; Cathryn H. Greenberg; Christopher S. Deperno; Dean M. Simon; Gordon S. Warburton

    2015-01-01

    Salamanders are an important ecological component of eastern hardwood forests and may be affected by natural or silvicultural disturbances that alter habitat structure and associated microclimate. From May to August in 2008 (pre- treatment) and 2011 (post-treatment), we evaluated the response of salamanders to three silvicultural practices designed to promote oak...

  5. Plethodontid salamander distributions in managed forest headwaters in western Oregon

    Treesearch

    Deanna H. Olson; Matthew R. Kluber

    2014-01-01

    We examined terrestrial amphibians in managed headwater forest stands in western Oregon from 1998 to 2009. We assessed: (1) temporal and spatial patterns of species capture rates, and movement patterns with distance from streams and forest management treatments of alternative riparian buffer widths and upland thinning; (2) species survival and recapture probabilities;...

  6. Predicted changes in climatic niche and climate refugia of conservation priority salamander species in the northeastern United States

    USGS Publications Warehouse

    Sutton, William B.; Barrett, Kyle; Moody, Allison T.; Loftin, Cynthia S.; deMaynadier, Phillip G.; Nanjappa, Priya

    2015-01-01

    Global climate change represents one of the most extensive and pervasive threats to wildlife populations. Amphibians, specifically salamanders, are particularly susceptible to the effects of changing climates due to their restrictive physiological requirements and low vagility; however, little is known about which landscapes and species are vulnerable to climate change. Our study objectives included, (1) evaluating species-specific predictions (based on 2050 climate projections) and vulnerabilities to climate change and (2) using collective species responses to identify areas of climate refugia for conservation priority salamanders in the northeastern United States. All evaluated salamander species were projected to lose a portion of their climatic niche. Averaged projected losses ranged from 3%–100% for individual species, with the Cow Knob Salamander (Plethodon punctatus), Cheat Mountain Salamander (Plethodon nettingi), Shenandoah Mountain Salamander (Plethodon virginia), Mabee’s Salamander (Ambystoma mabeei), and Streamside Salamander (Ambystoma barbouri) predicted to lose at least 97% of their landscape-scale climatic niche. The Western Allegheny Plateau was predicted to lose the greatest salamander climate refugia richness (i.e., number of species with a climatically-suitable niche in a landscape patch), whereas the Central Appalachians provided refugia for the greatest number of species during current and projected climate scenarios. Our results can be used to identify species and landscapes that are likely to be further affected by climate change and potentially resilient habitats that will provide consistent climatic conditions in the face of environmental change.

  7. The Abundance of Salamanders in Forest Stands with Different Histories of Disturbance

    Treesearch

    F. Harvey Pough; Donald H. Rhodes; Andres Collazo

    1987-01-01

    Because of the importance of salamanders in forest food chains, the effects of forest management practices on populations of these animals warrant consideration. We compared the numbers and activity patterns of salamanders in areas of a deciduous forest in central New York State that had been cut selectively for firewood, or c1earcut, or planted with conifers. Numbers...

  8. Apparent predation by Gray Jays, Perisoreus canadensis, on Long-toed Salamanders, Ambystoma macrodactylum, in the Oregon Cascade Range

    USGS Publications Warehouse

    Murray, M.P.; Pearl, C.A.; Bury, R.B.

    2005-01-01

    We report observations of Gray Jays (Perisoreus canadensis) appearing to consume larval Long-toed Salamanders (Ambystoma macrodactylum) in a drying subalpine pond in Oregon, USA. Corvids are known to prey upon a variety of anuran amphibians, but to our knowledge, this is the first report of predation by any corvid on aquatic salamanders. Long-toed Salamanders appear palatable to Gray Jays, and may provide a food resource to Gray Jays when salamander larvae are concentrated in drying temporary ponds.

  9. Effects of edge contrast on redback salamander distribution in even-aged northern hardwoods

    Treesearch

    Richard M. DeGraaf; Mariko Yamasaki

    2002-01-01

    Terrestrial salamanders are sensitive to forest disturbance associated with even-aged management. We studied the distribution of redback salamanders (Plethodon cinereus) for 4 yr at edges between even-aged northern hardwood stands along three replicate transects in each of three edge contrast types: regeneration/mature, sapling/mature, and...

  10. Long-term partial cutting impacts on Desmognathus salamander abundance in West Virginia headwater streams

    Treesearch

    Kurtis R. Moseley; W. Mark Ford; Thomas M. Schuler

    2008-01-01

    To understand long-term impacts of partial cutting practices on stream-dwelling salamanders in the central Appalachians, we examined pooled abundance of Desmognathus fuscus and D. monticola salamanders (hereafter Desmognathus) in headwater streams located within long-term silvicultural research compartments on...

  11. Anatomy, function, and evolution of jaw and hyobranchial muscles in cryptobranchoid salamander larvae.

    PubMed

    Kleinteich, Thomas; Herzen, Julia; Beckmann, Felix; Matsui, Masafumi; Haas, Alexander

    2014-02-01

    Larval salamanders (Lissamphibia: Caudata) are known to be effective suction feeders in their aquatic environments, although they will eventually transform into terrestrial tongue feeding adults during metamorphosis. Early tetrapods may have had a similar biphasic life cycle and this makes larval salamanders a particularly interesting model to study the anatomy, function, development, and evolution of the feeding apparatus in terrestrial vertebrates. Here, we provide a description of the muscles that are involved in the feeding strike in salamander larvae of the Hynobiidae and compare them to larvae of the paedomorphic Cryptobranchidae. We provide a functional and evolutionary interpretation for the observed muscle characters. The cranial muscles in larvae from species of the Hynobiidae and Cryptobranchidae are generally very similar. Most notable are the differences in the presence of the m. hyomandibularis, a muscle that connects the hyobranchial apparatus with the lower jaw. We found this muscle only in Onychodactylus japonicus (Hynobiidae) but not in other hynobiid or cryptobranchid salamanders. Interestingly, the m. hyomandibularis in O. japonicus originates from the ceratobranchial I and not the ceratohyal, and thus exhibits what was previously assumed to be the derived condition. Finally, we applied a biomechanical model to simulate suction feeding in larval salamanders. We provide evidence that a flattened shape of the hyobranchial apparatus in its resting position is beneficial for a fast and successful suction feeding strike. Copyright © 2013 Wiley Periodicals, Inc.

  12. Larval long-toed salamanders incur nonconsumptive effects in the presence of nonnative trout

    USGS Publications Warehouse

    Kenison, Erin K.; Litt, Andrea R.; Pilliod, David S.; McMahon, Thomas E.

    2016-01-01

    Predators can influence prey directly through consumption or indirectly through nonconsumptive effects (NCEs) by altering prey behavior, morphology, and life history. We investigated whether predator-avoidance behaviors by larval long-toed salamanders (Ambystoma macrodactylum) in lakes with nonnative trout result in NCEs on morphology and development. Field studies in lakes with and without trout were corroborated by experimental enclosures, where prey were exposed only to visual and chemical cues of predators. We found that salamanders in lakes with trout were consistently smaller than in lakes without trout: 38% lower weight, 24% shorter body length, and 29% shorter tail length. Similarly, salamanders in protective enclosures grew 2.9 times slower when exposed to visual and olfactory trout cues than when no trout cues were present. Salamanders in trout-free lakes and enclosures were 22.7 times and 1.48 times, respectively, more likely to metamorphose during the summer season than those exposed to trout in lakes and/or their cues. Observed changes in larval growth rate and development likely resulted from a facultative response to predator-avoidance behavior and demonstrate NCEs occurred even when predation risk was only perceived. Reduced body size and growth, as well as delayed metamorphosis, could have ecological consequences for salamander populations existing with fish if those effects carry-over into lower recruitment, survival, and fecundity.

  13. Decadal changes in phenology of peak abundance patterns of woodland pond salamanders in northern Wisconsin

    USGS Publications Warehouse

    Donner, Deahn M.; Ribic, Christine; Beck, Albert J.; Higgins, Dale; Eklund, Dan; Reinecke, Susan

    2015-01-01

    Woodland ponds are important landscape features that help sustain populations of amphibians that require this aquatic habitat for successful reproduction. Species abundance patterns often reflect site-specific differences in hydrology, physical characteristics, and surrounding vegetation. Large-scale processes such as changing land cover and environmental conditions are other potential drivers influencing amphibian populations in the Upper Midwest, but little information exists on the combined effects of these factors. We used Blue-spotted (Ambystoma laterale Hallowell) and Spotted Salamander (A. maculatum Shaw) monitoring data collected at the same woodland ponds thirteen years apart to determine if changing environmental conditions and vegetation cover in surrounding landscapes influenced salamander movement phenology and abundance. Four woodland ponds in northern Wisconsin were sampled for salamanders in April 1992-1994 and 2005-2007. While Blue-spotted Salamanders were more abundant than Spotted Salamanders in all ponds, there was no change in the numbers of either species over the years. However, peak numbers of Blue-spotted Salamanders occurred 11.7 days earlier (range: 9-14 days) in the 2000s compared to the 1990s; Spotted Salamanders occurred 9.5 days earlier (range: 3 - 13 days). Air and water temperatures (April 13- 24) increased, on average, 4.8°C and 3.7°C, respectively, between the decades regardless of pond. There were no discernible changes in canopy openness in surrounding forests between decades that would have warmed the water sooner (i.e., more light penetration). Our finding that salamander breeding phenology can vary by roughly 10 days in Wisconsin contributes to growing evidence that amphibian populations have responded to changing climate conditions by shifting life-cycle events. Managers can use this information to adjust monitoring programs and forest management activities in the surrounding landscape to avoid vulnerable amphibian

  14. Aneides ferreus (clouded salamander): arboreal activity

    Treesearch

    William W. Price; Clinton P. Landon; Eric D. Forsman

    2010-01-01

    Aneides ferreus (clouded salamander) inhabits the forests of western Oregon and extreme northwestern California. Although thought to be primarily terrestrial, A. ferreus has occasionally been found as high as 60 m up in trees and two recent reports suggest that it may be more arboreal than previously believed. However, it is...

  15. On the ecological role of salamanders

    Treesearch

    Robert D. Davic; Hartwell H. Welsh Jr.

    2004-01-01

    Salamanders are cryptic and, though largely unrecognized as such, extremely abundant vertebrates in a variety of primarily forest and grassland environments, where they regulate food webs and contribute to ecosystem resilience-resistance (= stability) in several ways: (a) As mid-level vertebrate predators, they provide direct and indirect biotic control of species...

  16. Antifungal bacteria on woodland salamander skin exhibit high taxonomic diversity and geographic variability

    USGS Publications Warehouse

    Muletz-Wolz, Carly R.; DiRenzo, Graziella V.; Yarwood, Stephanie A.; Grant, Evan H. Campbell; Fleischer, Robert C.; Lips, Karen R.

    2017-01-01

    Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis. Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis. Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis. Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective

  17. Survey of Pathogenic Chytrid Fungi (Batrachochytrium dendrobatidis and B. salamandrivorans) in Salamanders from Three Mountain Ranges in Europe and the Americas.

    PubMed

    Parrott, Joshua Curtis; Shepack, Alexander; Burkart, David; LaBumbard, Brandon; Scimè, Patrick; Baruch, Ethan; Catenazzi, Alessandro

    2017-06-01

    Batrachochytrium salamandrivorans (Bsal) is a virulent fungal pathogen that infects salamanders. It is implicated in the recent collapse of several populations of fire salamanders in Europe. This pathogen seems much like that of its sister species, Batrachochytrium dendrobatidis (Bd), the agent responsible for anuran extinctions and extirpations worldwide, and is considered to be an emerging global threat to salamander communities. Bsal thrives at temperatures found in many mountainous regions rich in salamander species; because of this, we have screened specimens of salamanders representing 17 species inhabiting mountain ranges in three continents: The Smoky Mountains, the Swiss Alps, and the Peruvian Andes. We screened 509 salamanders, with 192 representing New World salamanders that were never tested for Bsal previously. Bsal was not detected, and Bd was mostly present at low prevalence except for one site in the Andes.

  18. Multiple drivers, scales, and interactions influence southern Appalachian stream salamander occupancy

    USGS Publications Warehouse

    Cecala, Kristen K.; Maerz, John C.; Halstead, Brian J.; Frisch, John R.; Gragson, Ted L.; Hepinstall-Cymerman, Jeffrey; Leigh, David S.; Jackson, C. Rhett; Peterson, James T.; Pringle, Catherine M.

    2018-01-01

    Understanding how factors that vary in spatial scale relate to population abundance is vital to forecasting species responses to environmental change. Stream and river ecosystems are inherently hierarchical, potentially resulting in organismal responses to fine‐scale changes in patch characteristics that are conditional on the watershed context. Here, we address how populations of two salamander species are affected by interactions among hierarchical processes operating at different scales within a rapidly changing landscape of the southern Appalachian Mountains. We modeled reach‐level occupancy of larval and adult black‐bellied salamanders (Desmognathus quadramaculatus) and larval Blue Ridge two‐lined salamanders (Eurycea wilderae) as a function of 17 different terrestrial and aquatic predictor variables that varied in spatial extent. We found that salamander occurrence varied widely among streams within fully forested catchments, but also exhibited species‐specific responses to changes in local conditions. While D. quadramaculatus declined predictably in relation to losses in forest cover, larval occupancy exhibited the strongest negative response to forest loss as well as decreases in elevation. Conversely, occupancy of E. wilderae was unassociated with watershed conditions, only responding negatively to higher proportions of fast‐flowing stream habitat types. Evaluation of hierarchical relationships demonstrated that most fine‐scale variables were closely correlated with broad watershed‐scale variables, suggesting that local reach‐scale factors have relatively smaller effects within the context of the larger landscape. Our results imply that effective management of southern Appalachian stream salamanders must first focus on the larger scale condition of watersheds before management of local‐scale conditions should proceed. Our findings confirm the results of some studies while refuting the results of others, which may indicate that

  19. Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander.

    PubMed

    Tissier, Jérémy; Rage, Jean-Claude; Laurin, Michel

    2017-01-01

    Fossils are almost always represented by hard tissues but we present here the exceptional case of a three-dimensionally preserved specimen that was 'mummified' (likely between 40 and 34 million years ago) in a terrestrial karstic environment. This fossil is the incomplete body of a salamander, Phosphotriton sigei , whose skeleton and external morphology are well preserved, as revealed by phase-contrast synchrotron X-ray microtomography. In addition, internal structures composed of soft tissues preserved in three dimensions are now identified: a lung, the spinal cord, a lumbosacral plexus, the digestive tract, muscles and urogenital organs that may be cloacal glands. These are among the oldest known cases of three-dimensional preservation of these organs in vertebrates and shed light on the ecology of this salamander. Indeed, the digestive tract contains remains of a frog, which represents the only known case of an extinct salamander that fed on a frog, an extremely rare type of predation in extant salamanders. These new data improve our scarce knowledge on soft tissue anatomy of early urodeles and should prove useful for future biologists and palaeontologists working on urodele evolutionary biology. We also suggest that the presence of bat guano and carcasses represented a close source of phosphorus, favouring preservation of soft tissues. Bone microanatomy indicates that P. sigei was likely amphibious or terrestrial, and was probably not neotenic.

  20. Effects of hatching time for larval ambystomatid salamanders

    USGS Publications Warehouse

    Boone, M.D.; Scott, D.E.; Niewiarowski, P.H.

    2002-01-01

    In aquatic communities, the phenology of breeding may influence species interactions. In the early-breeding marbled salamander, Ambystoma opacum, timing of pond filling may determine whether interactions among larvae are competitive or predatory. The objectives of our studies were to determine how time of egg hatching affected size, larval period, and survival to metamorphosis in A. opacum, and if early-hatching in A. opacum influenced the competitive and predator-prey relationships with smaller larvae of the mole salamander, Ambystoma talpoideum. Salamander larvae were reared from hatching through metamorphosis in large, outdoor enclosures located in a natural temporary pond in Aiken County, South Carolina, in two experiments. In study 1, we reared early- and late-hatching A. opacum larvae separately from hatching through metamorphosis. In study 2, we examined how early- versus late-hatching A. opacum affected a syntopic species, A. talpoideum. In general, early-hatching A. opacum were larger and older at metamorphosis, had greater survival, and left the pond earlier than late-hatching larvae. Ambystoma talpoideum reared in the presence of early-hatching A. opacum had lower survival than in controls, suggesting that A. opacum may predate upon A. talpoideum when they gain a growth advantage over later-hatching larvae. Our studies demonstrate that time of pond filling and phenology of breeding may influence population dynamics and alter the nature of relationships that develop among species.

  1. Diet of the Del Norte Salamander (Plethodon elongatus): Differences by age, gender, and season.

    Treesearch

    Clara A. Wheeler; Nancy E. Karraker; Hartwell H. Welsh; Lisa M. Ollivier

    2007-01-01

    Terrestrial salamanders are integral components of forest ecosystems and the examination of their feeding habits may provide useful information regarding various ecosystem processes. We studied the diet of the Del Norte Salamander (Plethodon elongatus) and assessed diet differences between age classes, genders, and seasons. The stomachs of 309...

  2. Response of two terrestrial salamander species to spring burning in the Sierra Nevada, California

    Treesearch

    Karen E. Bagne; Kathryn L. Purcell

    2009-01-01

    Terrestrial salamanders may be vulnerable to prescribed fire applications due to their moist, permeable skin and limited mobility. We present data collected on terrestrial salamander populations in a ponderosa pine-dominated forest in the Sierra Nevada where fire was applied in the spring. Two species, Sierra ensatina (Ensatina eschscholtzi platensis...

  3. Climate-mediated competition in a high-elevation salamander community

    USGS Publications Warehouse

    Dallalio, Eric A.; Brand, Adrianne B,; Grant, Evan H. Campbell

    2017-01-01

    The distribution of the federally endangered Shenandoah Salamander (Plethodon shenandoah) is presumed to be limited by competition with the Red-backed Salamander (Plethodon cinereus). In particular, the current distribution of P. shenandoah is understood to be restricted to warmer and drier habitats because of interspecific interactions. These habitats may be particularly sensitive to climate change, though the influence of competition may also be affected by temperature and relative humidity. We investigated the response of P. shenandoah to competition with P. cinereus under four climate scenarios in 3-dimensional mesocosms. The results suggest that, although climate change may alleviate competitive pressure from P. cinereus, warmer temperatures may also significantly influence the persistence of the species across its known range.

  4. Role of habitat complexity in predator-prey dynamics between an introduced fish and larval Long-toed Salamanders (Ambystoma macrodactylum)

    USGS Publications Warehouse

    Kenison, Erin K; Litt, Andrea R.; Pilliod, David S.; McMahon, Tom E

    2016-01-01

    Predation by nonnative fishes has reduced abundance and increased extinction risk for amphibian populations worldwide. Although rare, fish and palatable amphibians have been observed to coexist where aquatic vegetation and structural complexity provide suitable refugia. We examined whether larval long-toed salamanders (Ambystoma macrodactylum Baird, 1849) increased use of vegetation cover in lakes with trout and whether adding vegetation structure could reduce predation risk and nonconsumptive effects (NCEs), such as reductions in body size and delayed metamorphosis. We compared use of vegetation cover by larval salamanders in lakes with and without trout and conducted a field experiment to investigate the influence of added vegetation structure on salamander body morphology and life history. The probability of catching salamanders in traps in lakes with trout was positively correlated with the proportion of submerged vegetation and surface cover. Growth rates of salamanders in enclosures with trout cues decreased as much as 85% and the probability of metamorphosis decreased by 56%. We did not find evidence that adding vegetation reduced NCEs in experimental enclosures, but salamanders in lakes with trout utilized more highly-vegetated areas which suggests that adding vegetation structure at the scale of the whole lake may facilitate coexistence between salamanders and introduced trout.

  5. Habitat relationships of eastern red-backed salamanders (Plethodon cinereus) in Appalachian agroforestry and grazing systems

    Treesearch

    Breanna L. Riedel; Kevin R. Russell; W. Mark Ford; Katherine P. O' Neill; Harry W. Godwin

    2008-01-01

    Woodland salamander responses to either traditional grazing or silvopasture systems are virtually unknown. An information-theoretic modelling approach was used to evaluate responses of red-backed salamanders (Plethodon cinereus) to silvopasture and meadow conversions in southern West Virginia. Searches of area-constrained plots and artificial...

  6. Long bone histology of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan

    PubMed Central

    Skutschas, Pavel; Stein, Koen

    2015-01-01

    Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and ‘salamander A’) has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions. PMID:25682890

  7. Long bone histology of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan.

    PubMed

    Skutschas, Pavel; Stein, Koen

    2015-04-01

    Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and 'salamander A') has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions. © 2015 Anatomical Society.

  8. Using a GIS model to assess terrestrial salamander response to alternative forest management plans

    Treesearch

    Eric J. Gustafson; Nathan L. Murphy; Thomas R. Crow

    2001-01-01

    A GIS model predicting the spatial distribution of terrestrial salamander abundance based on topography and forest age was developed using parameters derived from the literature. The model was tested by sampling salamander abundance across the full range of site conditions used in the model. A regression of the predictions of our GIS model against these sample data...

  9. Microarray analysis of a salamander hopeful monster reveals transcriptional signatures of paedomorphic brain development

    PubMed Central

    2010-01-01

    Background The Mexican axolotl (Ambystoma mexicanum) is considered a hopeful monster because it exhibits an adaptive and derived mode of development - paedomorphosis - that has evolved rapidly and independently among tiger salamanders. Unlike related tiger salamanders that undergo metamorphosis, axolotls retain larval morphological traits into adulthood and thus present an adult body plan that differs dramatically from the ancestral (metamorphic) form. The basis of paedomorphic development was investigated by comparing temporal patterns of gene transcription between axolotl and tiger salamander larvae (Ambystoma tigrinum tigrinum) that typically undergo a metamorphosis. Results Transcript abundances from whole brain and pituitary were estimated via microarray analysis on four different days post hatching (42, 56, 70, 84 dph) and regression modeling was used to independently identify genes that were differentially expressed as a function of time in both species. Collectively, more differentially expressed genes (DEGs) were identified as unique to the axolotl (n = 76) and tiger salamander (n = 292) than were identified as shared (n = 108). All but two of the shared DEGs exhibited the same temporal pattern of expression and the unique genes tended to show greater changes later in the larval period when tiger salamander larvae were undergoing anatomical metamorphosis. A second, complementary analysis that directly compared the expression of 1320 genes between the species identified 409 genes that differed as a function of species or the interaction between time and species. Of these 409 DEGs, 84% exhibited higher abundances in tiger salamander larvae at all sampling times. Conclusions Many of the unique tiger salamander transcriptional responses are probably associated with metamorphic biological processes. However, the axolotl also showed unique patterns of transcription early in development. In particular, the axolotl showed a genome-wide reduction in mRNA abundance

  10. Ecological separation in a polymorphic terrestrial salamander.

    PubMed

    Anthony, Carl D; Venesky, Matthew D; Hickerson, Cari-Ann M

    2008-07-01

    1. When studying speciation, researchers commonly examine reproductive isolation in recently diverged populations. Polymorphic species provide an opportunity to examine the role of reproductive isolation in populations that may be in the process of divergence. 2. We examined a polymorphic population of Plethodon cinereus (red-backed salamanders) for evidence of sympatric ecological separation by colour morphology. Recent studies have correlated temperature and climate with colour morphology in this species, but no studies have looked at differences in diet or mate choice between colour morphs. We used artificial cover objects to assess salamander diet, mating preference and surface activity over a 2-year period at a field site in north-eastern Ohio. 3. We detected differences in diet between two colour morphs, striped and unstriped. The diets of striped individuals were significantly more diverse and were made up of more profitable prey than the diets of unstriped salamanders. 4. Opposite sex pairs were made up of individuals of the same colour morph and striped males were found more often with larger females than were unstriped males. 5. We corroborate findings of earlier studies suggesting that the unstriped form is adapted to warmer conditions. Unstriped individuals were the first to withdraw from the forest floor as temperatures fell in the late fall. We found no evidence that the colour morphs responded differently to abiotic factors such as soil moisture and relative humidity, and responses to surface temperatures were also equivocal. 6. We conclude that the two colour morphs exhibit some degree of ecological separation and tend to mate assortatively, but are unlikely to be undergoing divergence given the observed frequency of intermorph pairings.

  11. Relative abundance and species richness of terrestrial salamanders on hardwood ecosystem experiment sites before harvesting

    Treesearch

    Jami E. MacNeil; Rod N. Williams

    2013-01-01

    Terrestrial salamanders are ideal indicators of forest ecosystem integrity due to their abundance, their role in nutrient cycling, and their sensitivity to environmental change. To understand better how terrestrial salamanders are affected by forest management practices, we monitored species diversity and abundance before implementation of timber harvests within the...

  12. Short-Term Response of Jordan's Salamander to a Shelterwood Timber Harvest in Western North Carolina

    Treesearch

    Chad E. Bartman; Kathleen C. Parker; Joshua Laerm; Timothy S. McCay

    2001-01-01

    The effects of shelterwood cutting on the abundance of Jordan's salamander (Plethodon jordani) in western North Carolina were examined during 1997 and 1998. Terrestrial salamander assemblages were sampled before, immediately after, and one year after timber harvest on control and treatment plots to estimate abundance. We also surveyed...

  13. The influence of red-backed salamanders (Plethodon cinereus) on nutrient cycling in Appalachian hardwood forests

    Treesearch

    Eric B. Sucre; Jessica A. Homyack; Thomas R. Fox; Carola A. Haas

    2010-01-01

    The use of amphibians as biological indicators of ecosystem health has received considerable attention because of the increasing importance placed upon maintaining biodiversity in forested ecosystems. In this study, we imposed three different eastern red-backed salamander (Plethodon cinereus) treatments: 1) low (n = 4; added 0 salamanders to each...

  14. Survival of spotted salamander eggs in temporary woodland ponds of coastal Maryland

    USGS Publications Warehouse

    Albers, P.H.; Prouty, R.M.

    1987-01-01

    Temporary ponds on the Atlantic Coastal Plain in maryland were characterized according to water chemistry, rain input, phytoplankton, zooplankton and use by the spotted salamander Ambystoma maculatum during March-October 1983-1984. Neither the number of egg masses per unit of pond surface (abundance) nor the survival of spotted salamander embryos was significantly correlated (P>0.05) with pond pH. Rainfall during May-July significantly increased the hydrogen ion concentration of 5 of 11 ponds evaluated for the impact of rainfall during the previous 48h and the previous week. Survival of egg masses transferred among eight ponds with pH3.66-4.45 and one pond with pH5.18 was significantly reduced (Psalamander. At the present time, pond longevity, water temperature and possibly, oxygen content, seem more important to spotted salamander reproduction than chemical changes caused by annual acidic deposition.

  15. Persistence and extirpation in invaded landscapes: patch characteristics and connectivity determine effects of non-native predatory fish on native salamanders

    USGS Publications Warehouse

    Pilliod, David S.; Arkle, Robert S.; Maxell, Bryce A.

    2012-01-01

    Studies have demonstrated negative effects of non-native, predatory fishes on native amphibians, yet it is still unclear why some amphibian populations persist, while others are extirpated, following fish invasion. We examined this question by developing habitat-based occupancy models for the long-toed salamander (Ambystoma macrodactylum) and nonnative fish using survey data from 1,749 water bodies across 470 catchments in the Northern Rocky Mountains, USA. We first modeled the habitat associations of salamanders at 468 fishless water bodies in 154 catchments where non-native fish were historically, and are currently, absent from the entire catchment. Wethen applied this habitat model to the complete data set to predict the probability of salamander occupancy in each water body, removing any effect of fish presence. Finally, we compared field-observed occurrences of salamanders and fish to modeled probability of salamander occupancy. Suitability models indicated that fish and salamanders had similar habitat preferences, possibly resulting in extirpations of salamander populations from entire catchments where suitable habitats were limiting. Salamanders coexisted with non-native fish in some catchments by using marginal quality, isolated (no inlet or outlet) habitats that remained fishless. They rarely coexisted with fish within individual water bodies and only where habitat quality was highest. Connectivity of water bodies via streams resulted in increased probability of fish invasion and consequently reduced probability of salamander occupancy.These results could be used to identify and prioritize catchments and water bodies where control measures would be most effective at restoring amphibian populations. Our approach could be useful as a framework for improved investigations into questions of persistence and extirpation of native species when non-native species have already become established.

  16. Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches.

    PubMed

    Rodríguez, Ariel; Burgon, James D; Lyra, Mariana; Irisarri, Iker; Baurain, Denis; Blaustein, Leon; Göçmen, Bayram; Künzel, Sven; Mable, Barbara K; Nolte, Arne W; Veith, Michael; Steinfartz, Sebastian; Elmer, Kathryn R; Philippe, Hervé; Vences, Miguel

    2017-10-01

    The rise of high-throughput sequencing techniques provides the unprecedented opportunity to analyse controversial phylogenetic relationships in great depth, but also introduces a risk of being misinterpreted by high node support values influenced by unevenly distributed missing data or unrealistic model assumptions. Here, we use three largely independent phylogenomic data sets to reconstruct the controversial phylogeny of true salamanders of the genus Salamandra, a group of amphibians providing an intriguing model to study the evolution of aposematism and viviparity. For all six species of the genus Salamandra, and two outgroup species from its sister genus Lyciasalamandra, we used RNA sequencing (RNAseq) and restriction site associated DNA sequencing (RADseq) to obtain data for: (1) 3070 nuclear protein-coding genes from RNAseq; (2) 7440 loci obtained by RADseq; and (3) full mitochondrial genomes. The RNAseq and RADseq data sets retrieved fully congruent topologies when each of them was analyzed in a concatenation approach, with high support for: (1) S. infraimmaculata being sister group to all other Salamandra species; (2) S. algira being sister to S. salamandra; (3) these two species being the sister group to a clade containing S. atra, S. corsica and S. lanzai; and (4) the alpine species S. atra and S. lanzai being sister taxa. The phylogeny inferred from the mitochondrial genome sequences differed from these results, most notably by strongly supporting a clade containing S. atra and S. corsica as sister taxa. A different placement of S. corsica was also retrieved when analysing the RNAseq and RADseq data under species tree approaches. Closer examination of gene trees derived from RNAseq revealed that only a low number of them supported each of the alternative placements of S. atra. Furthermore, gene jackknife support for the S. atra - S. lanzai node stabilized only with very large concatenated data sets. The phylogeny of true salamanders thus provides a

  17. A new species of salamander (Caudata: Plethodontidae, Bolitoglossa) from Sierra Nevada de Mérida, Venezuela.

    PubMed

    García-Gutiérrez, Javier; Escalona, Moisés; Mora, Andrés; Díaz De Pascual, Amelia; Fermin, Gustavo

    2013-01-01

    In this article, a new species of salamander of the genus Bolitoglossa (Eladinea) from the cloud forest near La Mucuy in Sierra Nevada de Mérida, Venezuelan Andes, is described. Bolitoglossa mucuyensis sp. nov. differs from all Venezuelan salamanders, except B. orestes, by a larger SVL/TL ratio, and from La Culata salamander B. orestes by a reduced webbing extension of the front and hind limbs. Additionally, B. mucuyensis sp. nov. and B. orestes diverge 3.12% in terms of the nucleotide sequence of the 16S rRNA gene, as previously reported, and in 8.1% for the cytb gene as shown in this study.

  18. Informing recovery in a human-transformed landscape: Drought-mediated coexistence alters population trends of an imperiled salamander and invasive predators

    USGS Publications Warehouse

    Hossack, Blake R.; Honeycutt, Richard; Sigafus, Brent H.; Muths, Erin L.; Crawford, Catherine L.; Jones, Thomas R.; Sorensen, Jeff A.; Rorabaugh, James C.; Chambert, Thierry

    2017-01-01

    Understanding the additive or interactive threats of habitat transformation and invasive species is critical for conservation, especially where climate change is expected to increase the severity or frequency of drought. In the arid southwestern USA, this combination of stressors has caused widespread declines of native aquatic and semi-aquatic species. Achieving resilience to drought and other effects of climate change may depend upon continued management, so understanding the combined effects of stressors is important. We used Bayesian hierarchical models fitted with 10-years of pond-based monitoring surveys for the federally-endangered Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi) and invasive predators (fishes and American Bullfrogs, Lithobates catesbeianus) that threaten native species. We estimated trends in occupancy of salamanders and invasive predators while accounting for hydrological dynamics of ponds, then used a two-species interaction model to directly estimate how invasive predators affected salamander occupancy. We also tested a conceptual model that predicted that drought, by limiting the distribution of invasive predators, could ultimately benefit native species. Even though occupancy of invasive predators was stationary and their presence in a pond reduced the probability of salamander presence by 23%, occupancy of Sonoran Tiger Salamanders increased, annually, by 2.2%. Occupancy of salamanders and invasive predators both declined dramatically following the 5th consecutive year of drought. Salamander occupancy recovered quickly after return to non-drought conditions, while occupancy of invasive predators remained suppressed. Models that incorporated three time-lagged periods (1 to 4 years) of local moisture conditions confirmed that salamanders and invasive predators responded differently to drought, reflecting how life-history strategies shape responses to disturbances. The positive 10-year trend in salamander occupancy and their

  19. Coexistence in streams: Do source-sink dynamics allow salamanders to persist with fish predators?

    USGS Publications Warehouse

    Sepulveda, A.J.; Lowe, W.H.

    2011-01-01

    Theory suggests that source-sink dynamics can allow coexistence of intraguild predators and prey, but empirical evidence for this coexistence mechanism is limited. We used capture-mark-recapture, genetic methods, and stable isotopes to test whether source-sink dynamics promote coexistence between stream fishes, the intraguild predator, and stream salamanders (Dicamptodon aterrimus), the intraguild prey. Salamander populations from upstream reaches without fish were predicted to maintain or supplement sink populations in downstream reaches with fish. We found instead that downstream reaches with fish were not sinks even though fish consumed salamander larvae-apparent survival, recruitment, and population growth rate did not differ between upstream and downstream reaches. There was also no difference between upstream and downstream reaches in net emigration. We did find that D. aterrimus moved frequently along streams, but believe that this is a response to seasonal habitat changes rather than intraguild predation. Our study provides empirical evidence that local-scale mechanisms are more important than dispersal dynamics to coexistence of streams salamanders and fish. More broadly, it shows the value of empirical data on dispersal and gene flow for distinguishing between local and spatial mechanisms of coexistence. ?? 2011 Springer-Verlag.

  20. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change.

    PubMed

    Markle, Tricia M; Kozak, Kenneth H

    2018-05-01

    Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further

  1. Better than fish on land? Hearing across metamorphosis in salamanders.

    PubMed

    Christensen, Christian Bech; Lauridsen, Henrik; Christensen-Dalsgaard, Jakob; Pedersen, Michael; Madsen, Peter Teglberg

    2015-03-07

    Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early 'lepospondyl' microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Evolutionary history of a complex adaptation: Tetrodotoxin resistance in salamanders

    PubMed Central

    Hanifin, Charles T.; Gilly, William F.

    2017-01-01

    Understanding the processes that generate novel adaptive phenotypes is central to evolutionary biology. We used comparative analyses to reveal the history of tetrodotoxin (TTX) resistance in TTX-bearing salamanders. Resistance to TTX is a critical component of the ability to use TTX defensively but the origin of the TTX-bearing phenotype is unclear. Skeletal muscle of TTX-bearing salamanders (modern newts, family: Salamandridae) is unaffected by TTX at doses far in excess of those that block action potentials in muscle and nerve of other vertebrates. Skeletal muscle of non-TTX-bearing salamandrids is also resistant to TTX but at lower levels. Skeletal muscle TTX resistance in the Salamandridae results from the expression of TTX-resistant variants of the voltage-gated sodium channel NaV 1.4 (SCN4a). We identified four substitutions in the coding region of salSCN4a that are likely responsible for the TTX resistance measured in TTX-bearing salamanders and variation at one of these sites likely explains variation in TTX resistance among other lineages. Our results suggest that exaptation has played a role in the evolution of the TTX-bearing phenotype and provide empirical evidence that complex physiological adaptations can arise through the accumulation of beneficial mutations in the coding region of conserved proteins. PMID:25346116

  3. Comparative and developmental patterns of amphibious auditory function in salamanders.

    PubMed

    Zeyl, Jeffrey N; Johnston, Carol E

    2016-12-01

    Early amphibious tetrapods may have detected aquatic sound pressure using sound-induced lung vibrations, but their lack of tympanic middle ears would have restricted aerial sensitivity. Sharing these characteristics, salamanders could be models for the carryover of auditory function across an aquatic-terrestrial boundary without tympanic middle ears. We measured amphibious auditory evoked potential audiograms in five phylogenetically and ecologically distinct salamanders (Amphiuma means, Notophthalmus viridescens, Ambystoma talpoideum, Eurycea spp., and Plethodon glutinosus) and tested whether metamorphosis and terrestrial niche were linked to aerial sensitivity. Threshold differences between media varied between species. A. means' relative aerial sensitivity was greatest at 100 Hz and decreased with increasing frequency. In contrast, all other salamanders retained greater sensitivity up to 500 Hz, and in A. talpoideum and Eurycea, relative sensitivity at 500 Hz was higher than at 100 Hz. Aerial thresholds of terrestrial P. glutinosus above 200 Hz were similar to A. talpoideum and Eurycea, but lower than N. viridescens and A. means. Metamorphosis did not affect aerial sensitivity in N. viridescens or A. talpoideum. These results fail to support a hypothesis of terrestrial hearing specialization across ontogeny or phylogeny. We discuss methodological limitations to our amphibious comparisons and factors affecting variation in amphibious performance.

  4. Significance of pre-Quaternary climate change for montane species diversity: insights from Asian salamanders (Salamandridae: Pachytriton).

    PubMed

    Wu, Yunke; Wang, Yuezhao; Jiang, Ke; Hanken, James

    2013-01-01

    Despite extensive focus on the genetic legacy of Pleistocene glaciation, impacts of earlier climatic change on biodiversity are poorly understood. Because amphibians are highly sensitive to variations in precipitation and temperature, we use a genus of Chinese montane salamanders (Salamandridae: Pachytriton) to study paleoclimatic change in East Asia, which experienced intensification of its monsoon circulation in the late Miocene associated with subsequent Pliocene warming. Using both nuclear and mitochondrial DNA sequences, we reconstruct the species tree under a coalescent model and demonstrate that all major lineages originated before the Quaternary. Initial speciation within the genus occurred after the summer monsoon entered a stage of substantial intensification. Heavy summer precipitation established temporary water connectivity through overflows between adjacent stream systems, which may facilitate geographic range expansion by aquatic species such as Pachytriton. Species were formed in allopatry likely through vicariant isolation during or after range expansion. To evaluate the influence of Pliocene warming on these cold-adapted salamanders, we construct a novel temperature buffer-zone model, which suggests widespread physiological stress or even extinction during the warming period. A significant deceleration of species accumulation rate is consistent with Pliocene range contraction, which affected P. granulosus and P. archospotus the most because they lack large temperature buffer zones. In contrast, demographic growth occurred in species for which refugia persist. The buffer-zone model reveals the Huangshan Mountain as a potential climatic refugium, which is similar to that found for other East Asian organisms. Our approach can incorporate future climatic data to evaluate the potential impact of ongoing global warming on montane species (particularly amphibians) and to predict possible population declines. Copyright © 2012 Elsevier Inc. All rights

  5. Abundances of northwestern salamander larvae in montane lakes with and without fish, Mount Rainier National Park, Washington

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.

    2002-01-01

    In Mount Rainier National Park, the northwestern salamander usually inhabits relatively large and deep lakes and ponds (average size = 0.3 ha; average depth > 2 m) that contain flocculent, organic bottom sediments and abundant coarse wood. Prior to 1970, salmonids were introduced into many of the park's lakes and ponds that were typical habitat of the northwestern salamander. The objective of this study was to compare, in lakes and ponds with suitable habitat characteristics for northwestern salamanders, the observed abundances of larvae in takes and ponds with and without these introduced salmonids. Day surveys of 61 lakes were conducted between 1993 and 1999. Fish were limited to takes and ponds deeper than 2 in. For the 48 lakes and ponds deeper than 2 in (i.e., 25 fishless lakes and 23 fish lakes), the mean and median observed abundances of northwestern salamander larvae in fishless lakes and ponds was significantly greater than the mean and median observed abundances of larvae in lakes and ponds with fish. Northwestern salamander larvae were not observed in 11 fish lakes. These lakes were similar in median elevation, surface area, and maximum depth to the fishless lakes. The 12 fish lakes with observed larvae were significantly lower in median elevation, larger in median surface area, and deeper in median maximum depth than the fishless lakes. Low to null observed abundances of northwestern salamander larvae in lakes and ponds with fish were attributed to a combination of fish predation of larvae and changes in larval behavior.

  6. Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest.

    PubMed

    Steinfartz, Sebastian; Weitere, Markus; Tautz, Diethard

    2007-11-01

    Mechanisms and processes of ecologically driven adaptive speciation are best studied in natural situations where the splitting process is still occurring, i.e. before complete reproductive isolation is achieved. Here, we present a case of an early stage of adaptive differentiation under sympatric conditions in the fire salamander, Salamandra salamandra, that allows inferring the underlying processes for the split. Larvae of S. salamandra normally mature in small streams until metamorphosis, but in an old, continuous forest area near Bonn (the Kottenforst), we found salamander larvae not only in small streams but also in shallow ponds, which are ecologically very different from small streams. Common-environment experiments with larvae from both habitat types reveal specific adaptations to these different ecological conditions. Mitochondrial and microsatellite analyses show that the two ecologically differentiated groups also show signs of genetic differentiation. A parallel analysis of animals from a neighbouring much larger forest area (the Eifel), in which larvae mature only in streams, shows no signs of genetic differentiation, indicating that gene flow between ecologically similar types can occur over large distances. Hence, geographical factors cannot explain the differential larval habitat adaptations in the Kottenforst, in particular since adult life and mating of S. salamandra is strictly terrestrial and not associated with larval habitats. We propose therefore that the evolution of these adaptations was coupled with the evolution of cues for assortative mating which would be in line with models of sympatric speciation that suggest a co-evolution of habitat adaptations and associated mating signals.

  7. Effects of microhabitat and large-scale land use on stream salamander occupancy in the coalfields of Central Appalachia

    USGS Publications Warehouse

    Sweeten, Sara E.; Ford, W. Mark

    2016-01-01

    Large-scale coal mining practices, particularly surface coal extraction and associated valley fills as well as residential wastewater discharge, are of ecological concern for aquatic systems in central Appalachia. Identifying and quantifying alterations to ecosystems along a gradient of spatial scales is a necessary first-step to aid in mitigation of negative consequences to aquatic biota. In central Appalachian headwater streams, apart from fish, salamanders are the most abundant vertebrate predator that provide a significant intermediate trophic role linking aquatic and terrestrial food webs. Stream salamander species are considered to be sensitive to aquatic stressors and environmental alterations, as past research has shown linkages among microhabitat parameters, large-scale land use such as urbanization and logging, and salamander abundances. However, there is little information examining these relationships between environmental conditions and salamander occupancy in the coalfields of central Appalachia. In the summer of 2013, 70 sites (sampled two to three times each) in the southwest Virginia coalfields were visited to collect salamanders and quantify stream and riparian microhabitat parameters. Using an information-theoretic framework, effects of microhabitat and large-scale land use on stream salamander occupancy were compared. The findings indicate that Desmognathus spp. occupancy rates are more correlated to microhabitat parameters such as canopy cover than to large-scale land uses. However, Eurycea spp. occupancy rates had a strong association with large-scale land uses, particularly recent mining and forest cover within the watershed. These findings suggest that protection of riparian habitats is an important consideration for maintaining aquatic systems in central Appalachia. If this is not possible, restoration riparian areas should follow guidelines using quick-growing tree species that are native to Appalachian riparian areas. These types of trees

  8. A Salamander Tale: Effective Exhibits and Attitude Change

    ERIC Educational Resources Information Center

    Rollins, Jeffrey; Watson, Sunnie Lee

    2017-01-01

    Little information exists regarding intention behind the design and development of Extension outreach and educational exhibits. An evaluation of response to the exhibit "A Salamander Tale" indicates that the methods used to develop the exhibit resulted in an effective way to present information to an adult audience. Survey questions were…

  9. Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders.

    PubMed

    Frahry, Matthew Blake; Sun, Cheng; Chong, Rebecca A; Mueller, Rachel Lockridge

    2015-02-01

    Across the tree of life, species vary dramatically in nuclear genome size. Mutations that add or remove sequences from genomes-insertions or deletions, or indels-are the ultimate source of this variation. Differences in the tempo and mode of insertion and deletion across taxa have been proposed to contribute to evolutionary diversity in genome size. Among vertebrates, most of the largest genomes are found within the salamanders, an amphibian clade with genome sizes ranging from ~14 to ~120 Gb. Salamander genomes have been shown to experience slower rates of DNA loss through small (i.e., <30 bp) deletions than do other vertebrate genomes. However, no studies have addressed DNA loss from salamander genomes resulting from larger deletions. Here, we focus on one type of large deletion-ectopic-recombination-mediated removal of LTR retrotransposon sequences. In ectopic recombination, double-strand breaks are repaired using a "wrong" (i.e., ectopic, or non-allelic) template sequence-typically another locus of similar sequence. When breaks occur within the LTR portions of LTR retrotransposons, ectopic-recombination-mediated repair can produce deletions that remove the internal transposon sequence and the equivalent of one of the two LTR sequences. These deletions leave a signature in the genome-a solo LTR sequence. We compared levels of solo LTRs in the genomes of four salamander species with levels present in five vertebrates with smaller genomes. Our results demonstrate that salamanders have low levels of solo LTRs, suggesting that ectopic-recombination-mediated deletion of LTR retrotransposons occurs more slowly than in other vertebrates with smaller genomes.

  10. Woodland salamander and small mammal responses to alternative silvicultural practices in the Southern Appalachians of North Carolina

    Treesearch

    W. Mark Ford; Michael A. Menzel; Timothy S. McCay; Jonathan W. Gassett; Joshua Laerm

    2000-01-01

    The effects of 2 years post-treatment of group selection and 2-aged timber harvests on woodland salamanders and mammals were assessed on stands in high elevation, southern Appalachian northern red oak (Quercus rubra)-flame azalea (Rhododendron calendulaceum) communities, in the Nantahala National Forest. We collected 4 salamander...

  11. Deep divergences and extensive phylogeographic structure in a clade of lowland tropical salamanders.

    PubMed

    Rovito, Sean M; Parra-Olea, Gabriela; Vásquez-Almazán, Carlos R; Luna-Reyes, Roberto; Wake, David B

    2012-12-29

    The complex geological history of Mesoamerica provides the opportunity to study the impact of multiple biogeographic barriers on population differentiation. We examine phylogeographic patterns in a clade of lowland salamanders (Bolitoglossa subgenus Nanotriton) using two mitochondrial genes and one nuclear gene. We use several phylogeographic analyses to infer the history of this clade and test hypotheses regarding the geographic origin of species and location of genetic breaks within species. We compare our results to those for other taxa to determine if historical events impacted different species in a similar manner. Deep genetic divergence between species indicates that they are relatively old, and two of the three widespread species show strong phylogeographic structure. Comparison of mtDNA and nuclear gene trees shows no evidence of hybridization or introgression between species. Isolated populations of Bolitoglossa rufescens from Los Tuxtlas region constitute a separate lineage based on molecular data and morphology, and divergence between Los Tuxtlas and other areas appears to predate the arrival of B. rufescens in other areas west of the Isthmus of Tehuantepec. The Isthmus appears responsible for Pliocene vicariance within B. rufescens, as has been shown for other taxa. The Motagua-Polochic fault system does not appear to have caused population vicariance, unlike in other systems. Species of Nanotriton have responded to some major geological events in the same manner as other taxa, particularly in the case of the Isthmus of Tehuantepec. The deep divergence of the Los Tuxtlas populations of B. rufescens from other populations highlights the contribution of this volcanic system to patterns of regional endemism, and morphological differences observed in the Los Tuxtlas populations suggests that they may represent an undescribed species of Bolitoglossa. The absence of phylogeographic structure in B. nympha, in contrast to the other widespread species in the

  12. Strategies for modeling habitat relationships of uncommon species: An example using the Siskiyou Mountains salamander (Plethodon stormi).

    Treesearch

    Hartwell H. Welsh; Howard Stauffer; David R. Clayton; Lisa M. Ollivier

    2007-01-01

    We analyzed environmental relationships of the Siskiyou Mountains salamander, comparing attributes at the landscape, macro- and micro-environmental scales, and the three scales combined, to determine which attributes best predicted salamander presence. Separate analyses were conducted for sites on the north and south sides of the Siskiyou Mountains which basically...

  13. Reproductive biology of the Del Norte salamander (Plethodon elongatus).

    Treesearch

    Clara A. Wheeler; Hartwell H. Welsh Jr.; Lisa M. Ollivier

    2013-01-01

    We examined seasonal reproductive patterns of the Del Norte Salamander, Plethodon elongatus, in mixed conifer and hardwood forests of northwestern California and southwestern Oregon. Seasonal size differences in reproductive structures suggested that maximum spermatogenic activity occurred during the late summer, with spermatozoa transfer to the...

  14. Overview of the status of the Cheat Mountain salamander

    Treesearch

    Thomas K. Pauley

    2010-01-01

    Plethodon nettingi, the Cheat Mountain salamander, is endemic to the high elevations of the Allegheny Mountains in eastern West Virginia. In 1938, N.B. Green named the species from specimens collected at Barton Knob, Randolph County, in honor of his friend and colleague Graham Netting.

  15. Mercury Speciation and Trophic Magnification Slopes in Giant Salamander Larvae from the Pacific Northwest, USA

    NASA Astrophysics Data System (ADS)

    Bank, M. S.; Crocker, J.; Wachtl, J.; Kleeman, P.; Fellers, G.; Currens, C.; Hothem, R.; Madej, M. A.

    2014-12-01

    Mercury (Hg) contamination of stream salamanders in the Pacific Northwest region of the United States has received little attention. Here we report total Hg (HgT) and methyl mercury (MeHg) concentrations in larval giant salamanders (Dicamptodon spp.) and surface water from forested and chaparral lotic ecosystems distributed along a latitudinal gradient throughout Northern California and Washington. To test hypotheses related to potential effects from mining land-use activities, salamander larvae were also sampled from a reference site at Whiskeytown National Recreation Area, California, and at a nearby, upstream site (Shasta county) on Bureau of Land Management land where Hg contamination from gold mining activities has been documented. HgT concentrations in whole body larvae ranged from 4.6 to 74.5 ng/g wet wt. and percent MeHg ranged from 67% to 86%. Both HgT and MeHg larval tissue concentrations were significantly higher at the mining site in comparison to measured background levels (P < 0.001). We conclude that salamander larvae in remote stream ecosystems, where Hg sources were dominated by atmospheric deposition, were generally low in HgT and MeHg and, in comparison, watersheds with a legacy of land-use practices (i.e., mining operations) had approximately 4.5 - 5.5 times the level of HgT bioaccumulation. Moreover, trophic magnification slopes were highest in the Shasta county region where mining was present. These findings suggest that mining activities increase HgT and MeHg exposure to salamander larvae in the region and may present a threat to other higher trophically positioned organisms, and their associated food webs.

  16. Biogeography and body size shuffling of aquatic salamander communities on a shifting refuge

    PubMed Central

    Bonett, Ronald M.; Trujano-Alvarez, Ana Lilia; Williams, Michael J.; Timpe, Elizabeth K.

    2013-01-01

    Freshwater habitats of coastal plains are refugia for many divergent vertebrate lineages, yet these environments are highly vulnerable to sea-level fluctuations, which suggest that resident communities have endured dynamic histories. Using the fossil record and a multi-locus nuclear phylogeny, we examine divergence times, biogeography, body size evolution and patterns of community assembly of aquatic salamanders from North American coastal plains since the Late Cretaceous. At least five salamander families occurred on the extensive Western Interior Coastal Plain (WICP), which existed from the Late Cretaceous through the Eocene. Four of these families subsequently colonized the emergent Southeastern Coastal Plain (SECP) by the Early Oligocene to Late Miocene. Three families ultimately survived and underwent extensive body size evolution in situ on the SECP. This included at least two major size reversals in recent taxa that are convergent with confamilial WICP ancestors. Dynamics of the coastal plain, major lineage extinctions and frequent extreme changes in body size have resulted in significant shuffling of the size structure of aquatic salamander communities on this shifting refuge since the Cretaceous. PMID:23466988

  17. Multimodal communication, mismatched messages and the effects of turbidity on the antipredator behavior of the Barton Springs salamander, Eurycea sosorum.

    PubMed

    Zabierek, Kristina C; Gabor, Caitlin R

    2016-09-01

    Prey may use multiple sensory channels to detect predators, whose cues may differ in altered sensory environments, such as turbid conditions. Depending on the environment, prey may use cues in an additive/complementary manner or in a compensatory manner. First, to determine whether the purely aquatic Barton Springs salamander, Eurycea sosorum, show an antipredator response to visual cues, we examined their activity when exposed to either visual cues of a predatory fish (Lepomis cyanellus) or a non-predatory fish (Etheostoma lepidum). Salamanders decreased activity in response to predator visual cues only. Then, we examined the antipredator response of these salamanders to all matched and mismatched combinations of chemical and visual cues of the same predatory and non-predatory fish in clear and low turbidity conditions. Salamanders decreased activity in response to predator chemical cues matched with predator visual cues or mismatched with non-predator visual cues. Salamanders also increased latency to first move to predator chemical cues mismatched with non-predator visual cues. Salamanders decreased activity and increased latency to first move more in clear as opposed to turbid conditions in all treatment combinations. Our results indicate that salamanders under all conditions and treatments preferentially rely on chemical cues to determine antipredator behavior, although visual cues are potentially utilized in conjunction for latency to first move. Our results also have potential conservation implications, as decreased antipredator behavior was seen in turbid conditions. These results reveal complexity of antipredator behavior in response to multiple cues under different environmental conditions, which is especially important when considering endangered species. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Reproductive allometry in three species of Dusky Salamanders

    Treesearch

    Richard C. Bruce

    2014-01-01

    Desmognathus comprises 21 currently recognized species of salamanders in eastern North America. Assemblages of 3–6 species occur in the Appalachian Mountains, wherein the larger species are more aquatic and the smaller more terrestrial. Adaptive divergence along the habitat gradient from stream to forest involves variation in such life-history traits as age and size at...

  19. Acid precipitation and reproductive success of Ambystoma salamanders

    Treesearch

    F. Harvey Pough; Richard E. Wilson

    1976-01-01

    The two species of mole salamander that occur in the Ithaca, New York, region (Ambystoma maculatum and A. jeffersonianum) breed in temporary ponds that are formed by accumulation of melted snow and spring rains. Water in many of these pools during the breeding season is acid; pH values as low as 3.5 have been measured. In...

  20. Impacts of a gape limited Brook Trout, Salvelinus fontinalis, on larval Northwestern salamander, Ambystoma gracile, growth: A field enclosure experiment

    USGS Publications Warehouse

    Currens, C.R.; Liss, W.J.; Hoffman, R.L.

    2007-01-01

    The formation of amphibian population structure is directly affected by predation. Although aquatic predators have been shown to have direct negative effects on larval salamanders in laboratory and field experiments, the potential impacts of gape-limited fish on larval salamander growth has been largely underexplored. We designed an enclosure experiment conducted in situ to quantify the effects of gape-limited Brook Trout (Salvelinus fontinalis) on larval Northwestern Salamander (Ambystoma gracile) growth. We specifically tested whether the presence of fish too small to consume larvae had a negative effect on larval growth. The results of this study indicate that the presence of a gape-limited S. fontinalis can have a negative effect on growth of larval A. gracile salamanders. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  1. Spatial and seasonal variation in the ecological significance of nutrient recycling by larval salamanders in Appalachian headwater streams

    Treesearch

    S. Conor Keitzer; Reuben R. Goforth

    2013-01-01

    Salamanders are abundant consumers in many temperate streams and may be important recyclers of biologically essential nutrients, but their ecological role is poorly understood. The ecological significance of nutrient recycling by salamanders may vary spatially and seasonally because of their potentially patchy distribution in streams and the dynamic nature of stream...

  2. Life-history perspective of adaptive radiation in desmognathine salamanders

    Treesearch

    Richard C. Bruce

    1996-01-01

    This study investigates interspecific variation in age at first reproduction, fecundity, and body size in multispecies assemblages of desmognathine salamanders. The hypotheses tested are that interspecific differences in body size among desmognathines stem proximately from variation in age at first reproduction and that variation in the latter trait is positively...

  3. Stream salamander species richness and abundance in relation to environmental factors in Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Campbell Grant, Evan H.; Jung, Robin E.; Rice, Karen C.

    2005-01-01

    Stream salamanders are sensitive to acid mine drainage and may be sensitive to acidification and low acid neutralizing capacity (ANC) of a watershed. Streams in Shenandoah National Park, Virginia, are subject to episodic acidification from precipitation events. We surveyed 25 m by 2 m transects located on the stream bank adjacent to the water channel in Shenandoah National Park for salamanders using a stratified random sampling design based on elevation, aspect and bedrock geology. We investigated the relationships of four species (Eurycea bislineata, Desmognathus fuscus, D. monticola and Gyrinophilus porphyriticus) to habitat and water quality variables. We did not find overwhelming evidence that stream salamanders are affected by the acid-base status of streams in Shenandoah National Park. Desmognathus fuscus and D. monticola abundance was greater both in streams that had a higher potential to neutralize acidification, and in higher elevation (>700 m) streams. Neither abundance of E. bislineata nor species richness were related to any of the habitat variables. Our sampling method preferentially detected the adult age class of the study species and did not allow us to estimate population sizes. We suggest that continued monitoring of stream salamander populations in SNP will determine the effects of stream acidification on these taxa.

  4. Abundance of western red-backed salamanders (Plethodon vehiculum) in the Washington Coast Range after headwater stream-buffer manipulation

    Treesearch

    Randall J. Wilk; Jeffrey D. Ricklefs; Martin G. Raphael

    2014-01-01

    We evaluated the effect of forest riparian alternative tree buffer designs on Western Red-backed Salamanders (Plethodon vehiculum) along headwater stream banks in managed forests of the Washington Coast Range. We used pit trap live removals in early autumn to estimate relative abundances of surface-active salamanders before and after 3 levels of riparian buffer...

  5. Resource partitioning in two stream salamanders, Dicamptodon tenebrosus and Rhyacotriton cascadae, from the Oregon Cascade Mountains

    USGS Publications Warehouse

    Cudmore, Wynn W.; Bury, R. Bruce

    2014-01-01

    We investigated the potential for resource partitioning between the Coastal giant salamander (Dicamptodon tenebrosus) and the Cascade torrent salamander (Rhyacotriton cascadae) by examining their diet and microhabitats in forest streams. Larval D. tenebrosus and R. cascadae fed primarily upon aquatic insect larvae. We found similar foods in larval and adult R. cascadae and combined these results. Dicamptodon larvae consumed ephemeropteran, plecopteran, and trichopteran larvae in about equal amounts whereas R. cascadae ate more trichopteran and less ephemeropteran larvae than D. tenebrosus. Diet of all R. cascadae overlapped more with smaller than larger sized D. tenebrosus larvae. Comparisons of diets with available foods indicated R. cascadae is more selective or more gape-limited in its feeding habits than D. tenebrosus larvae. The two salamanders differed in use of microhabitats in creeks, which may contribute to their diet differences.

  6. Taxonomic revision of the moss salamander Nototriton barbouri (Schmidt (Caudata: Plethodontidae), with description of two new species from the Cordillera Nombre de Dios, Honduras.

    PubMed

    Townsend, Josiah H

    2016-11-24

    Moss salamanders (genus Nototriton) are represented in northern Central America by nine putative species: N. barbouri, N. brodiei, N. lignicola, N. limnospectator, N. mime, N. picucha, N. saslaya, N. stuarti, and N. tomamorum. I estimate the phylogenetic relationships for these species based on data from three mitochondrial gene fragments (16S, cytochrome b, and COI), and compare morphological variation among putative taxa. As evidenced here and in previous studies, the taxon N. barbouri is paraphyletic with respect to populations from the Cordillera Nombre de Dios in northern Honduras. I restrict this taxon to populations from the Sierra de Sulaco in central Yoro, Honduras, and describe two new species from the Cordillera Nombre de Dios.

  7. Plethodon cinerius (eastern red-backed salamander) movement

    USGS Publications Warehouse

    Sterrett, Sean; Brand, Adrianne B,; Fields, William R.; Katz, Rachel A.; Grant, Evan H. Campbell

    2015-01-01

    Lungless salamanders (family Plethodontidae) are relatively sedentary and are presumed to have limited dispersal ability (Marsh et al. 2004. Ecology 85:3396–3405). Site fidelity in Plethodontidae is high, and individuals displaced 90 m return to home territories (Kleeberger and Werner 1982. Copeia 1982:409–415). Individuals defend territories (Jaeger et al. 1982. Anim. Behav. 30:490–496) and female home ranges have been estimated to be 24.34 m2 (Kleeberger and Werner 1982, op. cit.). Females may seek out suitable subsurface habitat to oviposit eggs, yet little is known about their maximum movement distances (Petranka 1998. Salamanders of the United States and Canada. Smithsonian Institution Press, Washington. 587 pp.).On 18 September 2014, a female P. cinereus (lead back morphotype; SVL = 44.68 mm; 0.89 g) was found under a coverboard during a standard sampling event and uniquely marked using visual implant elastomer at the S.O. Conte Anadromous Fish Research Center, Massachusetts, USA (42.59280°N, 72.58070°W, datum WGS84; elev. 74 m). This individual was subsequently recaptured at ~1500 h on 8 October 2014 under a coverboard within 3 m of the original capture location and then again ~1430 h on 16 October 2014 under a log, within the same forest patch, though in a 50 x 150 m area adjacent to the original study area. Because we found the marked salamander while collecting multiple individuals for a laboratory study, the exact recapture location of the marked individual is not known. However, the distance between the 8 October capture location and the nearest edge of the 16 October search area (i.e. 50 x 150 m) was 143 m, indicating a minimum movement distance. As far as we are aware, this is the longest recorded movement for P. cinereus by more than 53 m (Kleeberger and Werner 1982, op. cit.). This finding followed a rain event of 1.63 cm within 24 h and the second largest sustained rain event during October. The movement we observed may have been due to

  8. Propulsive forces of mudskipper fins and salamander limbs during terrestrial locomotion: implications for the invasion of land.

    PubMed

    Kawano, Sandy M; Blob, Richard W

    2013-08-01

    The invasion of land was a pivotal event in vertebrate evolution that was associated with major appendicular modifications. Although fossils indicate that the evolution of fundamentally limb-like appendages likely occurred in aquatic environments, the functional consequences of using early digited limbs, rather than fins, for terrestrial propulsion have had little empirical investigation. Paleontological and experimental analyses both have led to the proposal of an early origin of "hind limb-driven" locomotion among tetrapods or their ancestors. However, the retention of a pectoral appendage that had already developed terrestrial adaptations has been proposed for some taxa, and few data are available from extant functional models that can provide a foundation for evaluating the relative contributions of pectoral and pelvic appendages to terrestrial support among early stem tetrapods. To examine these aspects of vertebrate locomotor evolution during the invasion of land, we measured three-dimensional ground reaction forces (GRFs) produced by isolated pectoral fins of mudskipper fishes (Periophthalmus barbarus) during terrestrial crutching, and compared these to isolated walking footfalls by the forelimbs and hind limbs of tiger salamanders (Ambystoma tigrinum), a species with subequally-sized limbs that facilitate comparisons to early tetrapods. Pectoral appendages of salamanders and mudskippers exhibited numerous differences in GRFs. Compared with salamander forelimbs, isolated fins of mudskippers bear lower vertical magnitudes of GRFs (as a proportion of body weight), and had GRFs that were oriented more medially. Comparing the salamanders' forelimbs and hind limbs, although the peak net GRF occurs later in stance for the forelimb, both limbs experience nearly identical mediolateral and vertical components of GRF, suggesting comparable contributions to support. Thus, forelimbs could also have played a significant locomotor role among basal tetrapods that had limbs

  9. Effects of structural complexity enhancement on eastern red-backed salamander (Plethodon cinereus) populations in northern hardwood forests

    USGS Publications Warehouse

    McKenny, H.C.; Keeton, W.S.; Donovan, T.M.

    2006-01-01

    Managing for stand structural complexity in northern hardwood forests has been proposed as a method for promoting microhabitat characteristics important to eastern red-backed salamanders (Plethodon cinereus). We evaluated the effects of alternate, structure-based silvicultural systems on red-backed salamander populations at two research sites in northwestern Vermont. Treatments included two uneven-aged approaches (single-tree selection and group-selection) and one unconventional approach, termed "structural complexity enhancement" (SCE), that promotes development of late-successional structure, including elevated levels of coarse woody debris (CWD). Treatments were applied to 2 ha units and were replicated two to four times depending on treatment. We surveyed red-backed salamanders with a natural cover search method of transects nested within vegetation plots 1 year after logging. Abundance estimates corrected for detection probability were calculated from survey data with a binomial mixture model. Abundance estimates differed between study areas and were influenced by forest structural characteristics. Model selection was conducted using Akaike Information Criteria, corrected for over-dispersed data and small sample size (QAICc). We found no difference in abundance as a response to treatment as a whole, suggesting that all of the uneven-aged silvicultural systems evaluated can maintain salamander populations after harvest. However, abundance was tied to specific structural habitat attributes associated with study plots within treatments. The most parsimonious model of habitat covariates included site, relative density of overstory trees, and density of more-decayed and less-decayed downed CWD. Abundance responded positively to the density of downed, well-decayed CWD and negatively to the density of poorly decayed CWD and to overstory relative density. CWD volume was not a strong predictor of salamander abundance. We conclude that structural complexity enhancement

  10. The effects of used motor oil, silt, and the water mold Saprolegnia parasitica on the growth and survival of mole salamanders (genus Ambystoma).

    PubMed

    Lefcort, H; Hancock, K A; Maur, K M; Rostal, D C

    1997-05-01

    Amphibians appear to be declining worldwide. One cause of their decline may be used crankcase oil which leaks from motor vehicles and washes into ponds. Once in ponds, the oil may either be directly toxic to amphibians, or may indirectly affect them by disrupting food chains. The effects of oil may also be compounded by naturally occurring materials in the water column such as silt. Silt may interfere with respiration across gill surfaces. This study examined the effects of oil and silt on the growth and metamorphosis of larval mole salamanders, Ambystoma opacum and A. tigrinum tigrinum. In Experiment One it examined ponds with and without silty water and oil pollution to determine their suitability as habitats for salamander larvae. In Experiment Two it studied the effects of low levels of oil combined with silt on animals raised in the laboratory and fed prey items not raised in oil. In Experiment Three, it explored the effects of oil at an ecosystem level by raising the salamanders in the field in plastic micromesocosms that mimicked small ponds. Finally, in Experiment Four, in the laboratory, it examined the short-term survival of salamanders in high concentrations of oil. This study found that ponds containing oil and silt produce salamanders of reduced size and weight. Furthermore, while salamanders are relatively robust to the short term effects of large concentrations of used motor oil, oil has deleterious effects on the community and therefore exerts an indirect negative effect on salamanders. In the mi- cro-mesocosms containing oil, salamanders were smaller and weighed less than animals not raised in oil. Furthermore, silt results in reduced growth, earlier metamorphosis, and increased susceptibility to the water mold Saprolegnia parasitica.

  11. Efficacy of riparian buffers in mitigating local populations declines and the effects of even-aged timber harvest on larval salamanders

    Treesearch

    William E Peterman; Raymond D. Semlitch

    2009-01-01

    Headwater streams are an important and prevalent feature of the eastern North American landscape.These streams provide a wealth of ecosystem services and support tremendous biological diversity, which is predominated by salamanders in the Appalachian region. Salamanders are ubiquitous throughout the region, contributing a significant...

  12. Distribution of the Sonora Tiger Salamander (Ambystoma mavortium stebbinsi) in Mexico

    USGS Publications Warehouse

    Hossack, Blake R.; Muths, Erin L.; Rorabaugh, James C.; Lemos Espinal, Julio A.; Sigafus, Brent H.; Chambert, Thierry A.; Carreon Arroyo, Gerardo; Hurtado Felix, David; Toyos Martinez, Daniel; Jones, Thomas R.

    2016-01-01

    The Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi Lowe, 1954) was listed as federally endangered in the USA in 1997 (USFWS 1997). In the USA, the distribution of A. mavortium stebbinsi is limited to the San Rafael Valley (approximately 567 km2), between the Sierra San Antonio (called the Patagonia Mountains in Arizona) and Huachuca Mountains, and south of the Canelo Hills, Arizona (Fig. 1). The USA listing was triggered by loss of natural wetland habitats, threats from invasive predators, frequent die-offs from disease, introgression with the introduced Barred Tiger Salamander (A. mavortium mavortium), and small range and number of breeding sites that increases susceptibility to stochastic events (USFWS 1997). Small population sizes and limited gene flow have caused inbreeding, which may further reduce population viability and the potential for recovery (Jones et al. 1988; Storfer et al. 2014). 

  13. Deep divergences and extensive phylogeographic structure in a clade of lowland tropical salamanders

    PubMed Central

    2012-01-01

    Background The complex geological history of Mesoamerica provides the opportunity to study the impact of multiple biogeographic barriers on population differentiation. We examine phylogeographic patterns in a clade of lowland salamanders (Bolitoglossa subgenus Nanotriton) using two mitochondrial genes and one nuclear gene. We use several phylogeographic analyses to infer the history of this clade and test hypotheses regarding the geographic origin of species and location of genetic breaks within species. We compare our results to those for other taxa to determine if historical events impacted different species in a similar manner. Results Deep genetic divergence between species indicates that they are relatively old, and two of the three widespread species show strong phylogeographic structure. Comparison of mtDNA and nuclear gene trees shows no evidence of hybridization or introgression between species. Isolated populations of Bolitoglossa rufescens from Los Tuxtlas region constitute a separate lineage based on molecular data and morphology, and divergence between Los Tuxtlas and other areas appears to predate the arrival of B. rufescens in other areas west of the Isthmus of Tehuantepec. The Isthmus appears responsible for Pliocene vicariance within B. rufescens, as has been shown for other taxa. The Motagua-Polochic fault system does not appear to have caused population vicariance, unlike in other systems. Conclusions Species of Nanotriton have responded to some major geological events in the same manner as other taxa, particularly in the case of the Isthmus of Tehuantepec. The deep divergence of the Los Tuxtlas populations of B. rufescens from other populations highlights the contribution of this volcanic system to patterns of regional endemism, and morphological differences observed in the Los Tuxtlas populations suggests that they may represent an undescribed species of Bolitoglossa. The absence of phylogeographic structure in B. nympha, in contrast to the

  14. In search of critically endangered species: the current situation of two tiny salamander species in the Neotropical mountains of Mexico.

    PubMed

    Sandoval-Comte, Adriana; Pineda, Eduardo; Aguilar-López, José L

    2012-01-01

    Worldwide, one in every three species of amphibian is endangered, 39 species have gone extinct in the last 500 years and another 130 species are suspected to have gone extinct in recent decades. Of the amphibians, salamanders have the highest portion of their species in one of the risk categories, even higher than the frogs. To date there have been few studies that have used recent field data to examine the status of populations of endangered salamanders. In this study we evaluate the current situation of two tiny salamanders, Parvimolge townsendi and Thorius pennatulus, both of which are distributed at intermediate elevations in the mountains of the northern Neotropics and are considered to be critically endangered; the first has been proposed as possibly extinct. By carrying out exhaustive surveys in both historical and potentially suitable sites for these two species, we evaluated their abundance and the characteristics of their habitats, and we estimated their potential geographic distribution. We visited 22 sites, investing 672 person-hours of sampling effort in the surveys, and found 201 P. townsendi salamanders in 11 sites and only 13 T. pennatulus salamanders in 5 sites. Both species were preferentially found in cloud forest fragments that were well conserved or only moderately transformed, and some of the salamanders were found in shade coffee plantations. The potential distribution area of both species is markedly fragmented and we estimate that it has decreased by more than 48%. The results of this study highlight the importance of carrying out exhaustive, systematic field surveys to obtain accurate information about the current situation of critically endangered species, and help us better understand the crisis that amphibians are facing worldwide.

  15. Influence of observers and stream flow on northern two-lined salamander (Eurycea bislineata bislineata) relative abundance estimates in Acadia and Shenandoah National Parks, USA

    USGS Publications Warehouse

    Crocker, J.B.; Bank, M.S.; Loftin, C.S.; Jung Brown, R.E.

    2007-01-01

    We investigated effects of observers and stream flow on Northern Two-Lined Salamander (Eurycea bislineata bislineata) counts in streams in Acadia (ANP) and Shenandoah National Parks (SNP). We counted salamanders in 22 ANP streams during high flow (May to June 2002) and during low flow (July 2002). We also counted salamanders in SNP in nine streams during high flow (summer 2003) and 11 streams during low flow (summers 2001?02, 2004). In 2002, we used a modified cover-controlled active search method with a first and second observer. In succession, observers turned over 100 rocks along five 1-m belt transects across the streambed. The difference between observers in total salamander counts was not significant. We counted fewer E. b. bislineata during high flow conditions, confirming that detection of this species is reduced during high flow periods and that assessment of stream salamander relative abundance is likely more reliable during low or base flow conditions.

  16. Size-Mediated Tradeoffs in Life-History Traits in Dusky Salamanders

    Treesearch

    Richard C. Bruce

    2013-01-01

    Among salamanders of the genus Desmognathus, the larger species tend to be more aquatic and the smaller more terrestrial. I studied life histories in assemblages of Desmognathus in the southern Blue Ridge Mountains of North Carolina at sites in the Cowee and southern Nantahala Mountains. Traits evaluated included mortality/survival...

  17. Spatial data for Eurycea salamander habitats associated With three aquifers in south-central Texas

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Reece, Brian D.

    2006-01-01

    Eurycea salamander taxa comprise 12 known species that inhabit springs and caves in south-central Texas. Many of these are threatened or endangered species, and some are found only at one location. A number of the neotenic salamanders might be at risk from habitat loss associated with declines in ground-water levels. Eurycea salamander habitats are associated with three aquifers in south-central Texas: (1) the Edwards-Trinity (Plateau) aquifer, (2) the Edwards (Balcones Fault Zone) aquifer, and (3) the Trinity aquifer. The Edwards (Balcones fault zone) aquifer is commonly separated into three segments: from southwest to northeast, the San Antonio segment, the Barton Springs segment, and the northern segment. The Trinity aquifer south of the Colorado River can be divided into three permeable zones, the upper, middle, and lower zone. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, developed this report (geodatabase) to aggregate the spatial data necessary to assess the potential effects of ground-water declines on known Eurycea habitat locations in south-central Texas. The geodatabase provides information about spring habitats, spring flow, cave habitats, aquifers, and projected water levels.

  18. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats

    NASA Astrophysics Data System (ADS)

    Salvidio, Sebastiano; Palumbi, Giulia; Romano, Antonio; Costa, Andrea

    2017-04-01

    Recent studies suggest that many organisms actively colonize the subterranean environment to avoid climatic stress, exploit new ecological opportunities and reduce competition and predation. Terrestrial salamanders are known to colonize the more stable subterranean habitats mainly to escape external climatic extremes, while the role of predation avoidance remains untested. To better understand the importance of predation, we used clay models of the cave salamander Speleomantes strinatii to compare the predation occurring in woodland and subterranean habitats. Models were positioned in three forests and in three caves in NW Italy. One-hundred eighty-four models were retrieved from the field and 59 (32%) were attacked by predators. Models were attacked on their head more often than expected by chance and, therefore, were perceived by predators as real prey items. In the woodlands, clay models showed a four-time higher probability of being attacked in comparison to caves, suggesting a different level of potential predation risk in these surface habitats. These findings are one of the first experimental evidences that, in terrestrial ecosystems, predation avoidance may contribute to the salamander underground colonization process.

  19. Dose rate estimation of the Tohoku hynobiid salamander, Hynobius lichenatus, in Fukushima.

    PubMed

    Fuma, Shoichi; Ihara, Sadao; Kawaguchi, Isao; Ishikawa, Takahiro; Watanabe, Yoshito; Kubota, Yoshihisa; Sato, Youji; Takahashi, Hiroyuki; Aono, Tatsuo; Ishii, Nobuyoshi; Soeda, Haruhi; Matsui, Kumi; Une, Yumi; Minamiya, Yukio; Yoshida, Satoshi

    2015-05-01

    The radiological risks to the Tohoku hynobiid salamanders (class Amphibia), Hynobius lichenatus due to the Fukushima Dai-ichi Nuclear Power Plant accident were assessed in Fukushima Prefecture, including evacuation areas. Aquatic egg clutches (n = 1 for each sampling date and site; n = 4 in total), overwintering larvae (n = 1-5 for each sampling date and site; n = 17 in total), and terrestrial juveniles or adults (n = 1 or 3 for each sampling date and site; n = 12 in total) of H. lichenatus were collected from the end of April 2011 to April 2013. Environmental media such as litter (n = 1-5 for each sampling date and site; n = 30 in total), soil (n = 1-8 for each sampling date and site; n = 31 in total), water (n = 1 for each sampling date and site; n = 17 in total), and sediment (n = 1 for each sampling date and site; n = 17 in total) were also collected. Activity concentrations of (134)Cs + (137)Cs were 1.9-2800, 0.13-320, and 0.51-220 kBq (dry kg) (-1) in the litter, soil, and sediment samples, respectively, and were 0.31-220 and <0.29-40 kBq (wet kg)(-1) in the adult and larval salamanders, respectively. External and internal absorbed dose rates to H. lichenatus were calculated from these activity concentration data, using the ERICA Assessment Tool methodology. External dose rates were also measured in situ with glass dosimeters. There was agreement within a factor of 2 between the calculated and measured external dose rates. In the most severely contaminated habitat of this salamander, a northern part of Abukuma Mountains, the highest total dose rates were estimated to be 50 and 15 μGy h(-1) for the adults and overwintering larvae, respectively. Growth and survival of H. lichenatus was not affected at a dose rate of up to 490 μGy h(-1) in the previous laboratory chronic gamma-irradiation experiment, and thus growth and survival of this salamander would not be affected, even in the most severely contaminated habitat in Fukushima Prefecture. However, further

  20. The effect of waist twisting on walking speed of an amphibious salamander like robot

    NASA Astrophysics Data System (ADS)

    Yin, Xin-Yan; Jia, Li-Chao; Wang, Chen; Xie, Guang-Ming

    2016-06-01

    Amphibious salamanders often swing their waist to coordinate quadruped walking in order to improve their crawling speed. A robot with a swing waist joint, like an amphibious salamander, is used to mimic this locomotion. A control method is designed to allow the robot to maintain the rotational speed of its legs continuous and avoid impact between its legs and the ground. An analytical expression is established between the amplitude of the waist joint and the step length. Further, an optimization amplitude is obtained corresponding to the maximum stride. The simulation results based on automatic dynamic analysis of mechanical systems (ADAMS) and physical experiments verify the rationality and validity of this expression.

  1. Mechanics of lung ventilation in a large aquatic salamander, siren lacertina

    PubMed

    Brainerd; j

    1998-06-01

    Lung ventilation in Siren lacertina was studied using X-ray video, measurements of body cavity pressure and electromyography of hypaxial muscles. S. lacertina utilizes a two-stroke buccal pump in which mixing of expired and inspired gas is minimized by partial expansion of the buccal cavity during exhalation and then full expansion after exhalation is complete. Mixing is further reduced by the use of one or two accessory inspirations after the first, mixed-gas cycle. Exhalation occurs in two phases: a passive phase in which hydrostatic pressure and possibly lung elasticity force air out of the lungs, and an active phase in which contraction of the transverse abdominis (TA) muscle increases body cavity pressure and forces most of the remaining air out. In electromyograms of the lateral hypaxial musculature, the TA became active 200-400 ms before the rise in body cavity pressure, and activity ceased at peak pressure. The TA was not active during inspiration, and no consistent activity during breathing was noted in the external oblique, internal oblique and rectus abdominis muscles. The finding that the TA is the primary expiratory muscle in S. lacertina agrees with findings in a previous study of another salamander, Necturus maculosus. Together, these results indicate that the use of the TA for exhalation is a primitive character for salamanders and support the hypothesis that the breathing mechanism of salamanders represents an intermediate step in evolution between a buccal pump, in which only head muscles are used for ventilation, and an aspiration pump, in which axial muscles are used for both exhalation and inhalation.

  2. Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus)

    PubMed Central

    Loudon, Andrew H; Woodhams, Douglas C; Parfrey, Laura Wegener; Archer, Holly; Knight, Rob; McKenzie, Valerie; Harris, Reid N

    2014-01-01

    Beneficial cutaneous bacteria on amphibians can protect against the lethal disease chytridiomycosis, which has devastated many amphibian species and is caused by the fungus Batrachochytrium dendrobatidis. We describe the diversity of bacteria on red-backed salamanders (Plethodon cinereus) in the wild and the stability of these communities through time in captivity using culture-independent Illumina 16S rRNA gene sequencing. After field sampling, salamanders were housed with soil from the field or sterile media. The captive conditions led to different trajectories of bacterial communities. Eight OTUs present on >90% of salamanders in the field, through time, and in both treatments were defined as the core community, suggesting that some bacteria are closely associated with the host and are independent of an environmental reservoir. One of these taxa, a Pseudomonas sp., was previously cultured from amphibians and found to be antifungal. As all host-associated bacteria were found in the soil reservoir, environmental microbes strongly influence host–microbial diversity and likely regulate the core community. Using PICRUSt, an exploratory bioinformatics tool to predict gene functions, we found that core skin bacteria provided similar gene functions to the entire community. We suggest that future experiments focus on testing whether core bacteria on salamander skin contribute to the observed resistance to chytridiomycosis in this species even under hygenic captive conditions. For disease-susceptible hosts, providing an environmental reservoir with defensive bacteria in captive-rearing programs may improve outcomes by increasing bacterial diversity on threatened amphibians or increasing the likelihood that defensive bacteria are available for colonization. PMID:24335825

  3. Elevation, aspect, and cove size effects on southern Appalachian salamanders

    Treesearch

    W. Mark Ford; Michael A. Menzel; Richard H. Odom

    2002-01-01

    Using museum collection records and variables computed by digital terrain modeling in a geographic information system, we examined the relationship of elevation, aspect, and "cove" patch size to the presence or absence of 7 common woodland salamanders in mature cove hardwood and northern hardwood forests in the southern Appalachians of Georgia, North Carolina...

  4. Metals, Parasites, and Environmental Conditions Affecting Breeding Populations of Spotted Salamanders (Ambystoma maculatum) in Northern Arkansas, USA.

    PubMed

    DeMali, Heather M; Trauth, Stanley E; Bouldin, Jennifer L

    2016-06-01

    The spotted salamander (Ambystoma maculatum) is indigenous to northern Arkansas, and several breeding sites are known to exist in the region. Spotted salamanders (n = 17) were collected and examined for parasites and only three females harbored nematodes (Physaloptera spp.). Chronic aquatic bioassays were conducted using water collected from eight breeding ponds during different hydroperiod events. No lethal or sublethal effects were measured in Ceriodaphnia dubia; however, decreased growth and survival were seen in Pimephales promelas. Aqueous, sediment, and salamander hepatic samples were analyzed for As, Cd, Cu, Pb, and Ni. Metal analysis revealed possible increased metal exposure following precipitation, with greatest metal concentrations measured in sediment samples. Hepatic metal concentrations were similar in parasitized and non-parasitized individuals, and greatest Pb concentrations were measured following normal precipitation events. Determining environmental stressors of amphibians, especially during their breeding and subsequent larval life stage, is imperative to improve species conservation.

  5. Conservation genetics of the endangered Shenandoah salamander (Plethodon shenandoah, Plethodontidae)

    USGS Publications Warehouse

    Carpenter, D.W.; Jung, R.E.; Sites, J.W.

    2001-01-01

    The Shenandoah salamander (Plethodon shenandoah) is restricted to three isolated talus outcrops in Shenandoah National Park, VA, USA and has one of the smallest ranges of any tetrapod vertebrate. This species was listed as endangered under the US Endangered Species Act in 1989 over concern that direct competition with the red-backed salamander (Plethodon cinereus), successional habitat changes, and human impacts may cause its decline and possible extinction. We address two issues herein: (1) whether extensive introgression (through long-term hybridization) is present between the two species and threatens the survival of P. shenandoah, and (2) the level of population structure within P. shenandoah. We provide evidence from mtDNA haplotypes that shows no genetic differentiation among the three isolates of P. shenandoah, suggesting that their fragmentation is a geologically recent event, and/or that the isolates are still connected by occasional gene flow. There is also no evidence for extensive introgression of alleles in either direction between P. cinereus and P. shenandoah, which suggests that P. shenandoah may not be in danger of being genetically swamped out through hybridization with P. cinereus.

  6. Hybridization during altitudinal range shifts: nuclear introgression leads to extensive cyto-nuclear discordance in the fire salamander.

    PubMed

    Pereira, Ricardo J; Martínez-Solano, Iñigo; Buckley, David

    2016-04-01

    Ecological models predict that, in the face of climate change, taxa occupying steep altitudinal gradients will shift their distributions, leading to the contraction or extinction of the high-elevation (cold-adapted) taxa. However, hybridization between ecomorphologically divergent taxa commonly occurs in nature and may lead to alternative evolutionary outcomes, such as genetic merger or gene flow at specific genes. We evaluate this hypothesis by studying patterns of divergence and gene flow across three replicate contact zones between high- and low-elevation ecomorphs of the fire salamander (Salamandra salamandra) that have experienced altitudinal range shifts over the current postglacial period. Strong population structure with high genetic divergence in mitochondrial DNA suggests that vicariant evolution has occurred over several glacial-interglacial cycles and that it has led to cryptic differentiation within ecomorphs. In current parapatric boundaries, we do not find evidence for local extinction and replacement upon postglacial expansion. Instead, parapatric taxa recurrently show discordance between mitochondrial and nuclear markers, suggesting nuclear-mediated gene flow across contact zones. Isolation with migration models support this hypothesis by showing significant gene flow across all five parapatric boundaries. Together, our results suggest that, while some genomic regions, such as the mitochondria, may follow morphologic species traits and retreat to isolated mountain tops, other genomic regions, such as nuclear markers, may flow across parapatric boundaries, sometimes leading to a complete genetic merger. We show that despite high ecologic and morphologic divergence over prolonged periods of time, hybridization allows for evolutionary outcomes alternative to extinction and replacement of taxa in response to climate change. © 2016 John Wiley & Sons Ltd.

  7. Evidence of a new niche for a North American salamander: Aneides vagrans residing in the canopy of old-growth redwood forest

    Treesearch

    James C. Spickler; Stephen C. Sillett; Sharyn B. Marks; Hartwell H. Welsh Jr.

    2006-01-01

    We investigated habitat use and movements of the wandering salamander, Aneides vagrans, in an old-growth forest canopy. We conducted a mark-recapture study of salamanders in the crowns of five large redwoods (Sequoia sempervirens) in Prairie Creek Redwoods State Park, California. This represented a first attempt to document the...

  8. Physical condition, sex, and age-class of eastern red-backed salamanders (Plethodon cinereus) in forested and open habitats of West Virginia, USA

    Treesearch

    Breanna L. Riedel; Kevin R. Russell; W. Mark Ford

    2012-01-01

    Nonforested habitats such as open fields and pastures have been considered unsuitable for desiccation-prone woodland salamanders such as the Eastern Red-backed Salamander (Plethodon cinereus). Recent research has suggested that Plethodon cinereus may not only disperse across but also reside within open habitats including fields,...

  9. Plethodontid salamander population ecology in managed forest headwaters in the Oregon coast range

    Treesearch

    Matthew R. Kluber; Deanna H. Olson

    2013-01-01

    We examined temporal and spatial patterns of terrestrial amphibian species abundances and individual movements in western Oregon managed headwater forest stands using artifi cial cover object (ACO) arrays. Using mark-recapture methods, we estimated the eff ects of species and seasonality on apparent survival rates and recapture probabilities. We captured, marked, and...

  10. Near infrared reflectance spectroscopy studies of Chinese giant salamanders in aquaculture production

    USDA-ARS?s Scientific Manuscript database

    NIR spectra were collected at three surface locations for Chinese giant salamanders to ascertain whether spectral signatures could be separated by anatomical, presumably physiologically-based, locations. The first location was the smooth area immediately above the cloaca on the animal’s abdomen, whi...

  11. Woodland salamander response to two prescribed fires in the central Appalachians

    Treesearch

    W. Mark Ford; Jane L. Rodrigue; Ella L. Rowan; Steven B. Castleberry; Thomas M. Schuler

    2010-01-01

    Using coverboard arrays, we monitored woodland salamanders on the Fernow Experimental Forest in the central Appalachian Mountains, West Virginia, USA prior to and following two prescribed fires in mixed oak (Quercus spp.) forest stands. Treatments were burn plots on upper slopes or lower slopes fenced to prevent white-tailed deer (Odocoileus...

  12. Embryo Development inside Female Salamander (Ambystoma jeffersonianum-laterale) Prior to Egg Laying

    PubMed Central

    Charney, Noah D.; Castorino, John J.; Dobro, Megan J.; Steely, Sarah L.

    2014-01-01

    The length of embryo retention prior to oviposition is a critical evolutionary trait. In all oviparous salamanders, which include the vast majority of species in the order, fertilization is thought to occur at the time of egg laying. Embryos then enter the first cleavage stage several hours after being deposited. This pattern holds for previously studied individuals in the Ambystoma jeffersonianum-laterale complex. Here, we document an instance in which a female Ambystoma jeffersonianum-laterale was carrying embryos internally that had already reached stage 10 of development. Development likely began several days prior to the start of migration to the breeding pond. This is the first such record for any egg-laying salamander, and suggests a degree of plasticity in the timing of fertilization and development not previously recognized. Further work is needed to ascertain the prevalence, mechanics, and evolutionary significance of this phenomenon. PMID:24651275

  13. SPATIALLY AUTOCORRELATED DEMOGRAPHY AND INTERPOND MIGRATION IN THE CALIFORNIA TIGER SALAMANDER (AMBYSTOME CALIFORNIENSE)

    EPA Science Inventory

    We investigated the metapopulation structure of the California tiger salamander (Ambystoma californiense) using a combination of indirect and direct methods to evaluate two key requirements of modern metapopulation models: 1) that patches support somewhat independent populations ...

  14. Oviposition site of the southern torrent salamander (Rhyacotriton variegatus) in northwestern California

    Treesearch

    Nancy E. Karraker; Lisa M. Ollivier; Garth R. Hodgson

    2005-01-01

    Oviposition sites and reproductive ecology of the southern-torrent salamander (Rhyacotriton variegatus) remain poorly documented. This species oviposits in cryptic locations making the detection of eggs difficult. Here we describe the discovery of 1 clutch of eggs of R. variegatus from northern California, which further expands our...

  15. Interactive effects of temperature and glyphosate on the behavior of blue ridge two-lined salamanders (Eurycea wilderae).

    PubMed

    Gandhi, Jaina S; Cecala, Kristen K

    2016-09-01

    The objective of the present study was to evaluate the potential interactive effects of stream temperatures and environmentally relevant glyphosate-based herbicide concentrations on movement and antipredator behaviors of larval Eurycea wilderae (Blue Ridge two-lined salamander). Larval salamanders were exposed to 1 of 4 environmentally relevant glyphosate concentrations (0.00 µg acid equivalent [a.e.]/L, 0.73 µg a.e./L, 1.46 µg a.e./L, and 2.92 µg a.e./L) at either ambient (12 °C) or elevated (23 °C) water temperature. Behaviors observed included the exploration of a novel habitat, use of refuge, habitat selection relative to a potential predator, and burst movement distance. In the absence of glyphosate, temperature consistently affected movement and refuge-use behavior, with individuals moving longer distances more frequently and using refuge less at warm temperatures; however, when glyphosate was added, the authors observed inconsistent effects of temperature that may have resulted from differential toxicity at various temperatures. Larval salamanders made shorter, more frequent movements and demonstrated reduced burst distance at higher glyphosate concentrations. The authors also found that lower glyphosate concentrations sometimes had stronger effects than higher concentrations (i.e., nonmonotonic dose responses), suggesting that standard safety tests conducted only at higher glyphosate concentrations might overlook important sublethal effects on salamander behavior. These data demonstrate that sublethal effects of glyphosate-based herbicides on natural behaviors of amphibians can occur with short-term exposure to environmentally relevant concentrations. Environ Toxicol Chem 2016;35:2297-2303. © 2016 SETAC. © 2016 SETAC.

  16. Landscape influences on dispersal behaviour: a theoretical model and empirical test using the fire salamander, Salamandra infraimmaculata.

    PubMed

    Kershenbaum, Arik; Blank, Lior; Sinai, Iftach; Merilä, Juha; Blaustein, Leon; Templeton, Alan R

    2014-06-01

    When populations reside within a heterogeneous landscape, isolation by distance may not be a good predictor of genetic divergence if dispersal behaviour and therefore gene flow depend on landscape features. Commonly used approaches linking landscape features to gene flow include the least cost path (LCP), random walk (RW), and isolation by resistance (IBR) models. However, none of these models is likely to be the most appropriate for all species and in all environments. We compared the performance of LCP, RW and IBR models of dispersal with the aid of simulations conducted on artificially generated landscapes. We also applied each model to empirical data on the landscape genetics of the endangered fire salamander, Salamandra infraimmaculata, in northern Israel, where conservation planning requires an understanding of the dispersal corridors. Our simulations demonstrate that wide dispersal corridors of the low-cost environment facilitate dispersal in the IBR model, but inhibit dispersal in the RW model. In our empirical study, IBR explained the genetic divergence better than the LCP and RW models (partial Mantel correlation 0.413 for IBR, compared to 0.212 for LCP, and 0.340 for RW). Overall dispersal cost in salamanders was also well predicted by landscape feature slope steepness (76%), and elevation (24%). We conclude that fire salamander dispersal is well characterised by IBR predictions. Together with our simulation findings, these results indicate that wide dispersal corridors facilitate, rather than hinder, salamander dispersal. Comparison of genetic data to dispersal model outputs can be a useful technique in inferring dispersal behaviour from population genetic data.

  17. 3D Bite Modeling and Feeding Mechanics of the Largest Living Amphibian, the Chinese Giant Salamander Andrias davidianus (Amphibia:Urodela)

    PubMed Central

    Fortuny, Josep; Marcé-Nogué, Jordi; Heiss, Egon; Sanchez, Montserrat; Gil, Lluis; Galobart, Àngel

    2015-01-01

    Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and their “conservative” morphology, cryptobranchids may be useful models to reconstruct the feeding ecology and biomechanics of different members of early tetrapods and amphibians, with similar osteological and myological constraints. PMID:25853557

  18. Larval salamanders and channel geomorphology are indicators of hydrologic permanence in forested headwater streams

    EPA Science Inventory

    Regulatory agencies need rapid indicators of hydrologic permanence for jurisdictional determinations of headwater streams. Our study objective was to assess the utility of larval salamander presence and assemblage structure and habitat variables for determining stream permanence ...

  19. Sensitivity of two salamander (Ambystoma) species to ultraviolet radiation

    USGS Publications Warehouse

    Calfee, R.D.; Bridges, C.M.; Little, E.E.

    2006-01-01

    Increased ultraviolet-B (UV-B) radiation reaching the Earth's surface has been implicated in amphibian declines. Recent studies have shown that many amphibian species have differences in sensitivity depending on developmental stage. Embryos and larvae of Ambystoma maculatum (Spotted Salamander) and larvae of Ambystoma talpoideum (Mole Salamander) were exposed to five simulated UV-B treatments in controlled laboratory experiments to determine the relative sensitivity of different lifestages. Hatching success of the embryos exceeded 95% in all treatments; however, the larvae of both species exhibited greater sensitivity to UV-B exposure. Older larvae of A. maculatum that were not exposed to UV-B as embryos were more sensitive than larvae that had hatched during exposure to UV-B. Growth of surviving larvae of A. maculatum was significantly reduced as UV-B intensity increased, whereas growth of A. talpoideum was unaffected. These results were compared to ambient UV-B conditions in natural environments. It appears that the embryo stage is relatively unaffected by UV-B levels observed in natural habitats, probably because of protection from vegetation, organic matter in the water column, oviposition depth, and egg jelly. The larval stage of these species may be at greater risk, particularly if there is an increase in UV-B radiation exposure caused by increases in water clarity and/or decreases in dissolved organic carbon.

  20. An integrative approach to phylogeography: investigating the effects of ancient seaways, climate, and historical geology on multi-locus phylogeographic boundaries of the Arboreal Salamander (Aneides lugubris).

    PubMed

    Reilly, Sean B; Corl, Ammon; Wake, David B

    2015-11-04

    Phylogeography is an important tool that can be used to reveal cryptic biodiversity and to better understand the processes that promote lineage diversification. We studied the phylogeographic history of the Arboreal Salamander (Aneides lugubris), a wide-ranging species endemic to the California floristic province. We used multi-locus data to reconstruct the evolutionary history of A. lugubris and to discover the geographic location of major genetic breaks within the species. We also used species distribution modeling and comparative phylogeography to better understand the environmental factors that have shaped the genetic history of A. lugubris. We found six major mitochondrial clades in A. lugubris. Nuclear loci supported the existence of at least three genetically distinct groups, corresponding to populations north of the San Francisco Bay and in the Sierra Nevada, in the Santa Cruz Mountains, and in the central coast and southern California. All of the genetic breaks in mitochondrial and nuclear loci corresponded to regions where historical barriers to dispersal have been observed in other species. Geologic or water barriers likely were the most important factors restricting gene flow among clades. Climatic unsuitability during glacial maximum may have contributed to the isolation of the mitochondrial clades in the central coast and southern California. A projection of our species distribution model to a future scenario with a moderate amount of climate change suggests that most of the range of A. lugubris will remain climatically suitable, but climatic conditions in the Sierra Nevada and low elevation areas in Southern California are likely to deteriorate. Aneides lugubris contains substantial cryptic genetic diversity as a result of historical isolation of populations. At least two (and perhaps three) evolutionarily significant units in A. lugubris merit protection; all six mitochondrial clades should be considered as management units within the species.

  1. Macrohabitat models of occurrence for the threatened Cheat Mountain salamander, Plethodon nettingi

    Treesearch

    Lester O. Dillard; Kevin R. Russell; W. Mark Ford

    2008-01-01

    The federally threatened Cheat Mountain salamander (Plethodon nettingi; hereafter CMS) is known to occur at approximately 70 small, scattered sites in the Allegheny Mountains of eastern West Virginia. We used a comparative modeling approach to explain the landscape-level distribution and habitat relationships of CMS in relation to a suite of biotic...

  2. Telocytes in pancreas of the Chinese giant salamander (Andrias davidianus).

    PubMed

    Zhang, Hui; Yu, Pengcheng; Zhong, Shengwei; Ge, Tingting; Peng, Shasha; Guo, Xiaoquan; Zhou, Zuohong

    2016-11-01

    Telocytes (TCs), novel interstitial cells, have been identified in various organs of many mammals. However, information about TCs of lower animals remains rare. Herein, pancreatic TCs of the Chinese giant salamanders (Andrias davidianus) were identified by CD34 immunohistochemistry (IHC) and transmission electron microscopy (TEM). The IHC micrographs revealed CD34 + TCs with long telopodes (Tps) that were located in the interstitium of the pancreas. CD34 + TCs/Tps were frequently observed between exocrine acinar cells and were close to blood vessels. The TEM micrographs also showed the existence of TCs in the interstitium of the pancreas. TCs had distinctive ultrastructural features, such as one to three very long and thin Tps with podoms and podomers, caveolae, dichotomous branching, neighbouring exosomes and vesicles. The Tps and exosomes were found in close proximity to exocrine acinar cells and α cells. It is suggested that TCs may play a role in the regeneration of acinar cells and α cells. In conclusion, our results demonstrated the presence of TCs in the pancreas of the Chinese giant salamander. This finding will assist us in a better understanding of TCs functions in the amphibian pancreas. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus.

    PubMed

    Brucker, Robert M; Harris, Reid N; Schwantes, Christian R; Gallaher, Thomas N; Flaherty, Devon C; Lam, Brianna A; Minbiole, Kevin P C

    2008-11-01

    Disease has spurred declines in global amphibian populations. In particular, the fungal pathogen Batrachochytrium dendrobatidis has decimated amphibian diversity in some areas unaffected by habitat loss. However, there is little evidence to explain how some amphibian species persist despite infection or even clear the pathogen beyond detection. One hypothesis is that certain bacterial symbionts on the skin of amphibians inhibit the growth of the pathogen. An antifungal strain of Janthinobacterium lividum, isolated from the skin of the red-backed salamander Plethodon cinereus, produces antifungal metabolites at concentrations lethal to B. dendrobatidis. Antifungal metabolites were identified by using reversed phase high performance liquid chromatography, high resolution mass spectrometry, nuclear magnetic resonance, and UV-Vis spectroscopy and tested for efficacy of inhibiting the pathogen. Two metabolites, indole-3-carboxaldehyde and violacein, inhibited the pathogen's growth at relatively low concentrations (68.9 and 1.82 microM, respectively). Analysis of fresh salamander skin confirmed the presence of J. lividum and its metabolites on the skin of host salamanders in concentrations high enough to hinder or kill the pathogen (51 and 207 microM, respectively). These results support the hypothesis that cutaneous, mutualistic bacteria play a role in amphibian resistance to fungal disease. Exploitation of this biological process may provide long-term resistance to B. dendrobatidis for vulnerable amphibians and serve as a model for managing future emerging diseases in wildlife populations.

  4. Tissue regeneration in dentistry: Can salamanders provide insight?

    PubMed

    Sader, F; Denis, J-F; Roy, S

    2018-05-01

    The ability to regenerate damaged tissues would be of tremendous benefit for medicine and dentistry. Unfortunately, humans are unable to regenerate tissues such as teeth and fingers or to repair injured spinal cord. With an aging population, health problems are more prominent and dentistry is no exception as loss of bone tissue in the orofacial sphere from periodontal disease is on the rise. Humans can repair oral soft tissues exceptionally well; however, hard tissues, such as bone and teeth, are devoid of the ability to repair well or at all. Fortunately, Mother Nature has solved nearly every problem that we would like to solve for our own benefit and tissue regeneration is no exception. By studying animals that can regenerate, like Axolotls (Mexican salamander), we hope to find ways to stimulate regeneration in humans. We will discuss the role of the transforming growth factor beta cytokines as they are central to wound healing in humans and regeneration in Axolotls. We will also compare wound healing in humans (skin and oral mucosa) to Axolotl skin wound healing and limb regeneration. Finally, we will address the problem of bone regeneration and present results in salamanders which indicate that in order to regenerate bone you need to recruit non-bone cells. Fundamental research, such as the work being performed in animals that can regenerate, offers insight to help understand why some treatments are successful while others fail when it comes to specific tissues such as bones. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Using the Eastern Hellbender Salamander in a High School Genetics & Ecological Conservation Activity

    ERIC Educational Resources Information Center

    Chudyk, Sarah; McMillan, Amy; Lange, Catherine

    2014-01-01

    This article contains an original 5E lesson plan developed from conservation genetics research on the giant North American hellbender salamander, Cryptobranchus alleganiensis alleganiensis. The lesson plan provides background information on the hellbender, reviews basic genetics, and exposes students to the scientific process that is used during…

  6. Salamander chytrid fungus (Batrachochytrium salamandrivorans) in the United States—Developing research, monitoring, and management strategies

    USGS Publications Warehouse

    Grant, Evan H. Campbell; Muths, Erin L.; Katz, Rachel A.; Canessa, Stefano; Adams, Michael J.; Ballard, Jennifer R.; Berger, Lee; Briggs, Cheryl J.; Coleman, Jeremy; Gray, Matthew J.; Harris, M. Camille; Harris, Reid N.; Hossack, Blake R.; Huyvaert, Kathryn P.; Kolby, Jonathan E.; Lips, Karen R.; Lovich, Robert E.; McCallum, Hamish I.; Mendelson, Joseph R.; Nanjappa, Priya; Olson, Deanna H.; Powers, Jenny G.; Richgels, Katherine L. D.; Russell, Robin E.; Schmidt, Benedikt R.; Spitzen-van der Sluijs, Annemarieke; Watry, Mary Kay; Woodhams, Douglas C.; White, C. LeAnn

    2016-01-20

    The recently (2013) identified pathogenic chytrid fungus, Batrachochytrium salamandrivorans (Bsal), poses a severe threat to the distribution and abundance of salamanders within the United States and Europe. Development of a response strategy for the potential, and likely, invasion of Bsal into the United States is crucial to protect global salamander biodiversity. A formal working group, led by Amphibian Research and Monitoring Initiative (ARMI) scientists from the U.S. Geological Survey (USGS) Patuxent Wildlife Research Center, Fort Collins Science Center, and Forest and Rangeland Ecosystem Science Center, was held at the USGS Powell Center for Analysis and Synthesis in Fort Collins, Colorado, United States from June 23 to June 25, 2015, to identify crucial Bsal research and monitoring needs that could inform conservation and management strategies for salamanders in the United States. Key findings of the workshop included the following: (1) the introduction of Bsal into the United States is highly probable, if not inevitable, thus requiring development of immediate short-term and long-term intervention strategies to prevent Bsal establishment and biodiversity decline; (2) management actions targeted towards pathogen containment may be ineffective in reducing the long-term spread of Bsal throughout the United States; and (3) early detection of Bsal through surveillance at key amphibian import locations, among high-risk wild populations, and through analysis of archived samples is necessary for developing management responses. Top research priorities during the preinvasion stage included the following: (1) deployment of qualified diagnostic methods for Bsal and establishment of standardized laboratory practices, (2) assessment of susceptibility for amphibian hosts (including anurans), and (3) development and evaluation of short- and long-term pathogen intervention and management strategies. Several outcomes were achieved during the workshop, including development

  7. Proteinaceous Pheromone Homologs Identified from the Cloacal Gland Transcriptome of a Male Axolotl, Ambystoma mexicanum.

    PubMed

    Hall, Kevin W; Eisthen, Heather L; Williams, Barry L

    2016-01-01

    Pheromones play an important role in modifying vertebrate behavior, especially during courtship and mating. Courtship behavior in urodele amphibians often includes female exposure to secretions from the cloacal gland, as well as other scent glands. The first vertebrate proteinaceous pheromone discovered, the decapeptide sodefrin, is a female attracting pheromone secreted by the cloacal gland of male Cynops pyrrhogaster. Other proteinaceous pheromones in salamanders have been shown to elicit responses from females towards conspecific males. The presence and levels of expression of proteinaceous pheromones have not been identified in the family Ambystomatidae, which includes several important research models. The objective of this research was therefore to identify putative proteinaceous pheromones from male axolotls, Ambystoma mexicanum, as well as their relative expression levels. The results indicate that axolotls possess two different forms of sodefrin precursor-like factor (alpha and beta), as well as a putative ortholog of plethodontid modulating factor. The beta form of sodefrin precursor-like factor was amongst the most highly expressed transcripts within the cloacal gland. The ortholog of plethodontid modulating factor was expressed at a level equivalent to the beta sodefrin precursor-like factor. The results are from a single male axolotl; therefore, we are unable to assess how representative our results may be. Nevertheless, the presence of these highly expressed proteinaceous pheromones suggests that male axolotls use multiple chemical cues to attract female conspecifics. Behavioral assays would indicate whether the putative protein pheromones elicit courtship activity from female axolotls.

  8. Proteinaceous Pheromone Homologs Identified from the Cloacal Gland Transcriptome of a Male Axolotl, Ambystoma mexicanum

    PubMed Central

    Hall, Kevin W.; Eisthen, Heather L.; Williams, Barry L.

    2016-01-01

    Pheromones play an important role in modifying vertebrate behavior, especially during courtship and mating. Courtship behavior in urodele amphibians often includes female exposure to secretions from the cloacal gland, as well as other scent glands. The first vertebrate proteinaceous pheromone discovered, the decapeptide sodefrin, is a female attracting pheromone secreted by the cloacal gland of male Cynops pyrrhogaster. Other proteinaceous pheromones in salamanders have been shown to elicit responses from females towards conspecific males. The presence and levels of expression of proteinaceous pheromones have not been identified in the family Ambystomatidae, which includes several important research models. The objective of this research was therefore to identify putative proteinaceous pheromones from male axolotls, Ambystoma mexicanum, as well as their relative expression levels. The results indicate that axolotls possess two different forms of sodefrin precursor-like factor (alpha and beta), as well as a putative ortholog of plethodontid modulating factor. The beta form of sodefrin precursor-like factor was amongst the most highly expressed transcripts within the cloacal gland. The ortholog of plethodontid modulating factor was expressed at a level equivalent to the beta sodefrin precursor-like factor. The results are from a single male axolotl; therefore, we are unable to assess how representative our results may be. Nevertheless, the presence of these highly expressed proteinaceous pheromones suggests that male axolotls use multiple chemical cues to attract female conspecifics. Behavioral assays would indicate whether the putative protein pheromones elicit courtship activity from female axolotls. PMID:26885665

  9. Stand age and habitat influences on salamanders in Appalachian cove hardwood forests

    Treesearch

    W. Mark Ford; Brian R. Chapman; Michael A. Menzel; Richard H. Odom

    2002-01-01

    We surveyed cove hardwood stands aged 15, 25, 50, and ≥85 years following clearcutting in the southern Appalachian Mountains of northern Georgia to assess the effects of stand age and stand habitat characteristics on salamander communities using drift-fence array and pitfall methodologies from May 1994 to April 1995. Over a 60,060 pitfall trapnight effort, we...

  10. A new hynobiid-like salamander (Amphibia, Urodela) from Inner Mongolia, China, provides a rare case study of developmental features in an Early Cretaceous fossil urodele

    PubMed Central

    Jia, Jia

    2016-01-01

    A new fossil salamander, Nuominerpeton aquilonaris (gen. et sp. nov.), is named and described based on specimens from the Lower Cretaceous Guanghua Formation of Inner Mongolia, China. The new discovery documents a far northern occurrence of Early Cretaceous salamanders in China, extending the geographic distribution for the Mesozoic fossil record of the group from the Jehol area (40th–45th parallel north) to near the 49th parallel north. The new salamander is characterized by having the orbitosphenoid semicircular in shape; coracoid plate of the scapulocoracoid greatly expanded with a convex ventral and posterior border; ossification of two centralia in carpus and tarsus; and first digit being about half the length of the second digit in both manus and pes. The new salamander appears to be closely related to hynobiids, although this inferred relationship awaits confirmation by research in progress by us on a morphological and molecular combined analysis of cryptobranchoid relationships. Comparison of adult with larval and postmetamorphic juvenile specimens provides insights into developmental patterns of cranial and postcranial skeletons in this fossil species, especially resorption of the palatine and anterior portions of the palatopterygoid in the palate and the coronoid in the mandible during metamorphosis, and postmetamorphic ossification of the mesopodium in both manus and pes. Thus, this study provides a rare case study of developmental features in a Mesozoic salamander. PMID:27761316

  11. The Dynamics of Two Hybrid Zones in Appalachian Salamanders of the Genus Plethodon

    Treesearch

    Nelson G. Hairston; R. Haven Wiley; Charles K. Smith; Kenneth A. Kneidel

    1992-01-01

    Two zones of intergradation between populations of Plethodon have been studied for 18 and 20 years, respectively. The data consist of systematic scores of colors, made at least twice annually. Near Heintooga Overlook in the Balsam Mountains (Great Smoky Mountains National Park), the salamanders' cheeks are gray. Proceeding north toward the...

  12. Microarray analysis identifies keratin loci as sensitive biomarkers for thyroid hormone disruption in the salamander Ambystoma mexicanum.

    PubMed

    Page, Robert B; Monaghan, James R; Samuels, Amy K; Smith, Jeramiah J; Beachy, Christopher K; Voss, S Randal

    2007-02-01

    Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a >2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma.

  13. Using counts to simultaneously estimate abundance and detection probabilities in a salamander community

    USGS Publications Warehouse

    Dodd, C.K.; Dorazio, R.M.

    2004-01-01

    A critical variable in both ecological and conservation field studies is determining how many individuals of a species are present within a defined sampling area. Labor intensive techniques such as capture-mark-recapture and removal sampling may provide estimates of abundance, but there are many logistical constraints to their widespread application. Many studies on terrestrial and aquatic salamanders use counts as an index of abundance, assuming that detection remains constant while sampling. If this constancy is violated, determination of detection probabilities is critical to the accurate estimation of abundance. Recently, a model was developed that provides a statistical approach that allows abundance and detection to be estimated simultaneously from spatially and temporally replicated counts. We adapted this model to estimate these parameters for salamanders sampled over a six vear period in area-constrained plots in Great Smoky Mountains National Park. Estimates of salamander abundance varied among years, but annual changes in abundance did not vary uniformly among species. Except for one species, abundance estimates were not correlated with site covariates (elevation/soil and water pH, conductivity, air and water temperature). The uncertainty in the estimates was so large as to make correlations ineffectual in predicting which covariates might influence abundance. Detection probabilities also varied among species and sometimes among years for the six species examined. We found such a high degree of variation in our counts and in estimates of detection among species, sites, and years as to cast doubt upon the appropriateness of using count data to monitor population trends using a small number of area-constrained survey plots. Still, the model provided reasonable estimates of abundance that could make it useful in estimating population size from count surveys.

  14. Bottom-up limitation of a stream salamander in a detritus-based food web

    Treesearch

    Brent R. Johnson; J. Bruce Wallace

    2005-01-01

    The indirect effects that resources can have on higher trophic levels remain poorly understood for detritus-based ecosystems. Our objective was to examine effects of long-term terrestrial litter exclusion on a larval salamander, Eurycea wilderae, in a detritus-based stream. After 4 years of exclusion treatment, we conducted a mark-recapture study and...

  15. Prescribed fire and timber harvest effects on terrestrial salamander abundance, detectability, and microhabitat use

    Treesearch

    Katherine M. O' Donnell; Frank R. Thompson; Raymond D. Semlitsch

    2015-01-01

    Prescribed fire and timber harvest are anthropogenic disturbances that modify resource availability and ecosystem structure, and can affect wildlife both directly and indirectly. Terrestrial salamanders are effective indicators of forest health due to their high abundance and sensitivity to microclimatic conditions. Given their ecological importance, it is critical to...

  16. Branch length estimation and divergence dating: estimates of error in Bayesian and maximum likelihood frameworks.

    PubMed

    Schwartz, Rachel S; Mueller, Rachel L

    2010-01-11

    Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of

  17. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.

    PubMed

    Feder, M E

    1986-03-01

    To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.

  18. Mitochondrial Dynamics in Mitochondrial Diseases

    PubMed Central

    Suárez-Rivero, Juan M.; Villanueva-Paz, Marina; de la Cruz-Ojeda, Patricia; de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; de Lavera, Isabel; Álvarez-Córdoba, Mónica; Luzón-Hidalgo, Raquel; Sánchez-Alcázar, José A.

    2016-01-01

    Mitochondria are very versatile organelles in continuous fusion and fission processes in response to various cellular signals. Mitochondrial dynamics, including mitochondrial fission/fusion, movements and turnover, are essential for the mitochondrial network quality control. Alterations in mitochondrial dynamics can cause neuropathies such as Charcot-Marie-Tooth disease in which mitochondrial fusion and transport are impaired, or dominant optic atrophy which is caused by a reduced mitochondrial fusion. On the other hand, mitochondrial dysfunction in primary mitochondrial diseases promotes reactive oxygen species production that impairs its own function and dynamics, causing a continuous vicious cycle that aggravates the pathological phenotype. Mitochondrial dynamics provides a new way to understand the pathophysiology of mitochondrial disorders and other diseases related to mitochondria dysfunction such as diabetes, heart failure, or Hungtinton’s disease. The knowledge about mitochondrial dynamics also offers new therapeutics targets in mitochondrial diseases. PMID:28933354

  19. Coordinated Body Bending Improves Performance of a Salamander-like Robot

    NASA Astrophysics Data System (ADS)

    Ozkan Aydin, Yasemin; Chong, Baxi; Gong, Chaohui; Rieser, Jennifer M.; Choset, Howie; Goldman, Daniel I.

    Analyzing body morphology and limb-body coordination in animals that can both swim and walk is important to understand the evolutionary transition from an aquatic to a terrestrial environment. Based on previous salamander experiments (a modern analog to early tetrapods and performed by Hutchinson's group at RVC in the UK) we built a robophysical model of a salamander and tested its performance on yielding granular media (GM) of poppy seeds. Our servo-driven robot (405 g, 38 cm long) has four limbs, a flexible body, and an active tail. Each limb has two servo motors to control up/down and fore/aft positions of limb. A joint in the middle of the body controls horizontal bending. We assessed performance of the robot by changing the body bending limit from 0°to 90°and measured body displacement and power consumption over a few limb cycles at 0°and 10°sandy slope. We fixed the angle of the legs according to body to test the effect of body bending directly. On GM, step length increased from 0 to 9.5 cm at 0° and 0 to 7 cm at 10°slope while the average power consumption increased 50 % . A geometric mechanics model revealed that on level GM body bending was most beneficial when phase offset 180°from leg movements; increasing the maximum body angular bend from 45°to 90° led to step length increases of up to 90 % .

  20. Application of the Gompertz function in studies of growth in dusky salamanders (Plethodontidae: Desmognathus )

    Treesearch

    Richard C. Bruce

    2016-01-01

    Gompertz growth functions were fitted to skeletochronological data sets of three species of desmognathine salamanders from an assemblage (Wolf Creek) in the Cowee Mountains of southwestern North Carolina. The results were compared to earlier evaluations of growth in desmognathines from a nearby assemblage (Coweeta) in the Nantahala Mountains. In two of the species,...

  1. Geographic variation, genetic structure, and conservation unit designation in the Larch Mountain salamander (Plethodon larselli).

    Treesearch

    R. Steven Wagner; Mark P. Miller; Charles M. Crisafulli; Susan M. Haig

    2005-01-01

    The Larch Mountain salamander (Plethodon larselli Burns, 1954) is an endemic species in the Pacific northwestern United States facing threats related to habitat destruction. To facilitate development of conservation strategies, we used DNA sequences and RAPDs (random amplified polymorphic DNA) to examine differences among populations of this...

  2. What Do Owls, Salamanders, Flycatchers and Cuckoos Have In Common?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrave, Maria A.

    This is an article from the Los Alamos Living magazine. Los Alamos National Laboratory sits on a beautiful and unique landscape that provides important protected habitat to many species, including a few that are federally-listed as threatened or endangered. These species are the Jemez Mountains Salamander, the Mexican Spotted Owl, the Southwestern Willow Flycatcher, the Yellow-billed Cuckoo, and the New Mexico Meadow Jumping Mouse. Part of the job of the Laboratory's wildlife biologists is to survey for these species each year and determine what actions need to be taken if they are found.

  3. Molecular phylogenetic reconstruction of the endemic Asian salamander family Hynobiidae (Amphibia, Caudata).

    PubMed

    Weisrock, David W; Macey, J Robert; Matsui, Masafumi; Mulcahy, Daniel G; Papenfuss, Theodore J

    2013-01-01

    The salamander family Hynobiidae contains over 50 species and has been the subject of a number of molecular phylogenetic investigations aimed at reconstructing branches across the entire family. In general, studies using the greatest amount of sequence data have used reduced taxon sampling, while the study with the greatest taxon sampling has used a limited sequence data set. Here, we provide insights into the phylogenetic history of the Hynobiidae using both dense taxon sampling and a large mitochondrial DNA sequence data set. We report exclusive new mitochondrial DNA data of 2566 aligned bases (with 151 excluded sites, of included sites 1157 are variable with 957 parsimony informative). This is sampled from two genic regions encoding a 12S-16S region (the 3' end of 12S rRNA, tRNA(VAI), and the 5' end of 16S rRNA), and a ND2-COI region (ND2, tRNA(Trp), tRNA(Ala), tRNA(Asn), the origin for light strand replication--O(L), tRNA(Cys), tRNAT(Tyr), and the 5' end of COI). Analyses using parsimony, Bayesian, and maximum likelihood optimality criteria produce similar phylogenetic trees, with discordant branches generally receiving low levels of branch support. Monophyly of the Hynobiidae is strongly supported across all analyses, as is the sister relationship and deep divergence between the genus Onychodactylus with all remaining hynobiids. Within this latter grouping our phylogenetic results identify six clades that are relatively divergent from one another, but for which there is minimal support for their phylogenetic placement. This includes the genus Batrachuperus, the genus Hynobius, the genus Pachyhynobius, the genus Salamandrella, a clade containing the genera Ranodon and Paradactylodon, and a clade containing the genera Liua and Pseudohynobius. This latter clade receives low bootstrap support in the parsimony analysis, but is consistent across all three analytical methods. Our results also clarify a number of well-supported relationships within the larger

  4. Early gene expression during natural spinal cord regeneration in the salamander Ambystoma mexicanum.

    PubMed

    Monaghan, James R; Walker, John A; Page, Robert B; Putta, Srikrishna; Beachy, Christopher K; Voss, S Randal

    2007-04-01

    In contrast to mammals, salamanders have a remarkable ability to regenerate their spinal cord and recover full movement and function after tail amputation. To identify genes that may be associated with this greater regenerative ability, we designed an oligonucleotide microarray and profiled early gene expression during natural spinal cord regeneration in Ambystoma mexicanum. We sampled tissue at five early time points after tail amputation and identified genes that registered significant changes in mRNA abundance during the first 7 days of regeneration. A list of 1036 statistically significant genes was identified. Additional statistical and fold change criteria were applied to identify a smaller list of 360 genes that were used to describe predominant expression patterns and gene functions. Our results show that a diverse injury response is activated in concert with extracellular matrix remodeling mechanisms during the early acute phase of natural spinal cord regeneration. We also report gene expression similarities and differences between our study and studies that have profiled gene expression after spinal cord injury in rat. Our study illustrates the utility of a salamander model for identifying genes and gene functions that may enhance regenerative ability in mammals.

  5. Factors Affecting Salamander Density and Distribution within Four Forest Types in Southern Appalachian Mountains

    Treesearch

    Craig A. Harper; David C. Guynn

    1999-01-01

    We used a terrestrial vacuum to sample known area plots in order to obtain density estimates of salamanders and their primary prey, invertebrates of the forest floor. We sampled leaf litter and measured various vegetative and topographic parameters within four forest types (oak-pine, oak-hickory, mixed mesophytic and northern hardwoods) and three age classes (0-12,13-...

  6. Life history plasticity does not confer resilience to environmental change in the mole salamander (Ambystoma talpoideum)

    USGS Publications Warehouse

    Courtney L. Davis,; David A.W. Miller,; Walls, Susan; Barichivich, William J.; Riley, Jeffrey W.; Brown, Mary E.

    2017-01-01

    Plasticity in life history strategies can be advantageous for species that occupy spatially or temporally variable environments. We examined how phenotypic plasticity influences responses of the mole salamander, Ambystoma talpoideum, to disturbance events at the St. Marks National Wildlife Refuge (SMNWR), FL, USA from 2009 to 2014. We observed periods of extensive drought early in the study, in contrast to high rainfall and expansive flooding events in later years. Flooding facilitated colonization of predatory fishes to isolated wetlands across the refuge. We employed multistate occupancy models to determine how this natural experiment influenced the occurrence of aquatic larvae and paedomorphic adults and what implications this may have for the population. We found that, in terms of occurrence, responses to environmental variation differed between larvae and paedomorphs, but plasticity (i.e. the ability to metamorphose rather than remain in aquatic environment) was not sufficient to buffer populations from declining as a result of environmental perturbations. Drought and fish presence negatively influenced occurrence dynamics of larval and paedomorphic mole salamanders and, consequently, contributed to observed short-term declines of this species. Overall occurrence of larval salamanders decreased from 0.611 in 2009 to 0.075 in 2014 and paedomorph occurrence decreased from 0.311 in 2009 to 0.121 in 2014. Although variation in selection pressures has likely maintained this polyphenism previously, our results suggest that continued changes in environmental variability and the persistence of fish in isolated wetlands could lead to a loss of paedomorphosis in the SMNWR population and, ultimately, impact regional persistence in the future.

  7. Toxicological responses of red-backed salamander (Plethodon cinereus) exposed to aged and amended soils containing lead.

    PubMed

    Bazar, Matthew A; Quinn, Michael J; Mozzachio, Kristie; Bleiler, John A; Archer, Christine R; Phillips, Carlton T; Johnson, Mark S

    2010-05-01

    The use of lead in military and civilian small arms projectiles is widely acknowledged to have resulted in high soil lead concentrations at many small arms ranges. These ranges are often adjacent to wildlife habitat or have become habitat when no longer used. To assess the potential toxicity of lead to terrestrial amphibians in contaminated areas, we exposed 100 red-backed salamanders (Plethodon cinereus) to either a control soil or one of four soil treatments amended with lead acetate for 28 days. Analytical mean soil concentrations were 14 (control), 553, 1700, 4700, and 9167 mg Pb/kg soil dry weight. An additional 60 salamanders were also exposed for 28 days to one of six field-collected soil samples from a small arms range and a skeet range. The field soil concentrations ranged from 11 (background) to 16,967 mg Pb/kg soil dry weight. Food consisted of uncontaminated flightless Drosophila melanogaster. Salamander survival was reduced in amended soil treatments of 4700 and 9167 mg/kg by 15% and 80%, respectively. Inappetence was observed at 4700 and 9167 mg/kg and growth decreased in the 9167 mg/kg treatment. Total white blood cells decreased 32% at 4700 mg/kg compared to controls and were 22% lower in the 9167 mg/kg treatment. In contrast, survival was 100% for all field-collected soils with no hematological effects. At 16,967 mg/kg there was evidence of soil avoidance and decreased growth. These data suggest marked differences in toxicity and bioavailability of the lead-amended soil in contrast to the field-collected soil containing lead.

  8. Can the eastern red-backed salamander (Plethodon cinereus) persist in an acidified landscape?

    USGS Publications Warehouse

    Bondi, Cheryl A; Beier, Colin M.; Ducey, Peter K; Lawrence, Gregory B.; Bailey, Scott W.

    2016-01-01

    Hardwood forests of eastern North America have experienced decades of acidic deposition, leading to soil acidification where base cation supply was insufficient to neutralize acid inputs. Negative impacts of soil acidity on amphibians include disrupted embryonic development, lower growth rates, and habitat loss. However, some amphibians exhibit intraspecific variation in acid tolerance, suggesting the potential for local adaptation in areas where soils are naturally acidic. The eastern red-backed salamander (Plethodon cinereus) is a highly abundant top predator of the northern hardwood forest floor. Early research found that P. cinereus was sensitive to acidic soils, avoiding substrates with pH < 3.8 and experiencing decreased growth rates in acidic habitats. However, recent studies have documented P. cinereus populations in lower pH conditions than previously observed, suggesting some populations may persist in acidic conditions. Here, we evaluated relationships between organic horizon soil pH and P. cinereus abundance, adult health (body size and condition), and microhabitat selection, based on surveys of 34 hardwood forests in northeastern United States that encompass a regional soil pH gradient. We found no associations between soil pH and P. cinereus abundance or health, and observed that this salamander used substrates with pH similar to that available, suggesting that pH does not mediate their fine-scale distributions. The strongest negative predictor of P. cinereus abundance was the presence of dusky salamanders (Desmognathus spp.), which were most abundant in the western Adirondacks. Our results indicate that P. cinereus occupies a wider range of soil pH than has been previously thought, which has implications for their functional role in forest food webs and nutrient cycles in acid-impaired ecosystems. Tolerance of P. cinereus for more acidic habitats, including anthropogenically acidified forests, may be due to local adaptation in

  9. Iteroparity in the variable environment of the salamander Ambystoma tigrinum

    USGS Publications Warehouse

    Church, D.R.; Bailey, L.L.; Wilbur, H.M.; Kendall, W.L.; Hines, J.E.

    2007-01-01

    Simultaneous estimation of survival, reproduction, and movement is essential to understanding how species maximize lifetime reproduction in environments that vary across space and time. We conducted a four-year, capture–recapture study of three populations of eastern tiger salamanders (Ambystoma tigrinum tigrinum) and used multistate mark–recapture statistical methods to estimate the manner in which movement, survival, and breeding probabilities vary under different environmental conditions across years and among populations and habitats. We inferred how individuals may mitigate risks of mortality and reproductive failure by deferring breeding or by moving among populations. Movement probabilities among populations were extremely low despite high spatiotemporal variation in reproductive success and survival, suggesting possible costs to movements among breeding ponds. Breeding probabilities varied between wet and dry years and according to whether or not breeding was attempted in the previous year. Estimates of survival in the nonbreeding, forest habitat varied among populations but were consistent across time. Survival in breeding ponds was generally high in years with average or high precipitation, except for males in an especially ephemeral pond. A drought year incurred severe survival costs in all ponds to animals that attempted breeding. Female salamanders appear to defer these episodic survival costs of breeding by choosing not to breed in years when the risk of adult mortality is high. Using stochastic simulations of survival and breeding under historical climate conditions, we found that an interaction between breeding probabilities and mortality limits the probability of multiple breeding attempts differently between the sexes and among populations.

  10. Stoichiometry of a semi-aquatic plethodontid salamander: Intraspecific variation due to location, size and diet

    EPA Science Inventory

    Ecological stoichiometry provides a framework to investigate an organism's relationship to nutrient cycles. An organism's stoichiometry is thought to constrain its contribution to nutrient cycles (recycling or storage), and to limit its growth and reproduction. Factors that influ...

  11. Cutaneous mastocytomas in the neotenic caudate amphibians Ambystoma mexicanum (axolotl) and Ambystoma tigrinun (tiger salamander)

    USGS Publications Warehouse

    Harshbarger, J.C.; Chang, S.C.; DeLanney, L.E.; Rose, F.L.; Green, D.E.

    1999-01-01

    Spontaneous mastocytomas studied in 18 axolotls (Ambystoma mexicanum) and six tiger salamanders (Ambystoma tigrinum) were gray-white, uni- to multilobular cutaneous protrusions from 2mm to 2cm in diameter. Tumors were moderately cellular unencapsulated masses that usually infiltrated the dermis and hypodermis with the destruction of intervening tissues. Some tumors were invading superficial bundles of the underlying skeletal muscle. Tumors consisted of mitotically active cells derived from a single lineage but showing a range of differentiation. Immature cells had nearly smooth to lightly cleft or folded basophilic nuclei bordered by a band of cytoplasm with few cytoplasmic processes and containing a few small uniform eccentric granules. Mature cells had basophilic nuclei with deep clefts or folds and abundant eosinophilic cytoplasm with multiple long intertwining cytoplasmic extensions packed with metachromatic granules. The axolotls were old individuals from an inbred laboratory colony. The tiger salamanders were wild animals from a single polluted pond. They could have been old and inbred. Both groups were neotenic. These are the first mastocytomas discovered in cold-blooded animals.

  12. Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders.

    PubMed

    Fitzpatrick, Benjamin M; Johnson, Jarrett R; Kump, D Kevin; Shaffer, H Bradley; Smith, Jeramiah J; Voss, S Randal

    2009-07-24

    Hybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders. At three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1) showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2's. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects. While most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to maintain.

  13. Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders

    PubMed Central

    Fitzpatrick, Benjamin M; Johnson, Jarrett R; Kump, D Kevin; Shaffer, H Bradley; Smith, Jeramiah J; Voss, S Randal

    2009-01-01

    Background Hybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders. Results At three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1) showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2's. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects. Conclusion While most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to maintain. PMID:19630983

  14. Structured decision making as a conservation tool for recovery planning of two endangered salamanders

    USGS Publications Warehouse

    O'Donnell, Katherine; Messerman, Arianne F; Barichivich, William J.; Semlitsch, Raymond D.; Gorman, Thomas A.; Mitchell, Harold G; Allan, Nathan; Fenolio, Dante B.; Green, Adam; Johnson, Fred A.; Keever, Allison; Mandica, Mark; Martin, Julien; Mott, Jana; Peacock, Terry; Reinman, Joseph; Romañach, Stephanie; Titus, Greg; McGowan, Conor P.; Walls, Susan

    2017-01-01

    At least one-third of all amphibian species face the threat of extinction, and current amphibian extinction rates are four orders of magnitude greater than background rates. Preventing extirpation often requires both ex situ (i.e., conservation breeding programs) and in situ strategies (i.e., protecting natural habitats). Flatwoods salamanders (Ambystoma bishopi and A. cingulatum) are protected under the U.S. Endangered Species Act. The two species have decreased from 476 historical locations to 63 recently extant locations (86.8% loss). We suggest that recovery efforts are needed to increase populations and prevent extinction, but uncertainty regarding optimal actions in both ex situ and in situ realms hinders recovery planning. We used structured decision making (SDM) to address key uncertainties regarding both captive breeding and habitat restoration, and we developed short-, medium-, and long-term goals to achieve recovery objectives. By promoting a transparent, logical approach, SDM has proven vital to recovery plan development for flatwoods salamanders. The SDM approach has clear advantages over other previous approaches to recovery efforts, and we suggest that it should be considered for other complex decisions regarding endangered species.

  15. The role of climate in the dynamics of a hybrid zone in Appalachian salamanders

    USGS Publications Warehouse

    Walls, Susan

    2009-01-01

    I examined the potential influence of climate change on the dynamics of a previously studied hybrid zone between a pair of terrestrial salamanders at the Coweeta Hydrologic Laboratory, U.S. Forest Service, in the Nantahala Mountains of North Carolina, USA. A 16-year study led by Nelson G. Hairston, Sr. revealed that Plethodon teyahalee and Plethodon shermani hybridized at intermediate elevations, forming a cline between 'pure' parental P. teyahalee at lower elevations and 'pure' parental P. shermani at higher elevations. From 1974 to 1990 the proportion of salamanders at the higher elevation scored as 'pure' P. shermani declined significantly, indicating that the hybrid zone was spreading upward. To date there have been no rigorous tests of hypotheses for the movement of this hybrid zone. Using temperature and precipitation data from Coweeta, I re-analyzed Hairston's data to examine whether the observed elevational shift was correlated with variation in either air temperature or precipitation from the same time period. For temperature, my analysis tracked the results of the original study: the proportion of 'pure' P. shermani at the higher elevation declined significantly with increasing mean annual temperature, whereas the proportion of 'pure' P. teyahalee at lower elevations did not. There was no discernable relationship between proportions of 'pure' individuals of either species with variation in precipitation. From 1974 to 1990, low-elevation air temperatures at the Coweeta Laboratory ranged from annual means of 11.8 to 14.2 °C, compared with a 55-year average (1936-1990) of 12.6 °C. My re-analyses indicate that the upward spread of the hybrid zone is correlated with increasing air temperatures, but not precipitation, and provide an empirical test of a hypothesis for one factor that may have influenced this movement. My results aid in understanding the potential impact that climate change may have on the ecology and evolution of terrestrial salamanders in

  16. Breeding biology of the spotted salamander Ambystoma maculatum (Shaw) in acidic temporary ponds at Cape Cod, USA

    USGS Publications Warehouse

    Portnoy, J.W.

    1990-01-01

    The relationship between water chemistry and breeding success of spotted salamanders Ambystoma maculatum (Shaw) was examined in temporary woodland ponds on outer Cape Cod, Massachusetts in 1985 and 1986. Most pond waters were dilute (3median coductivity = 57 umhos cm-1 (1 umhos cm-1 = 0?1 mSm-1)), acidic (median pH = 4?82), and highly colored (median = 140 Pt-Co units). Most acidity was due to abundant organic acids. Salamander survival to hatching was over 80% at 8 of 12 ponds monitored. Complete mortality, preceded by gross abnormalities, was observed only among embryos in the most acidic spawning pond (pH 4?3-4?5) in both years. Embryo transfers between ponds and laboratory studies indicated that reduced survival was due to the interaction of low pH with high tannin-lignin concentration. The use of amphibian embryonic survival to indicate acid rain effects is complicated by multiple habitat parameters and should only be attempted in conjunction with long-term population monitoring.

  17. Decision analysis for habitat conservation of an endangered, range-limited salamander

    USGS Publications Warehouse

    Robinson, Orin J.; McGowan, Conor P.; Apodaca, J.J.

    2016-01-01

    Many species of conservation concern are habitat limited and often a major focus of management for these species is habitat acquisition and/or restoration. Deciding the location of habitat restoration or acquisition to best benefit a protected species can be a complicated subject with competing management objectives, ecological uncertainties and stochasticity. Structured decision making (SDM) could be a useful approach for explicitly incorporating those complexities while still working toward species conservation and/or recovery. We applied an SDM approach to Red Hills salamander Phaeognathus hubrichti habitat conservation decision making. Phaeognathus hubrichti is a severely range-limited endemic species in south central Alabama and has highly specific habitat requirements. Many known populations live on private lands and the primary mode of habitat protection is habitat conservation planning, but such plans are non-binding and not permanent. Working with stakeholders, we developed an objectives hierarchy linking land acquisition or protection actions to fundamental objectives. We built a model to assess and compare the quality of the habitat in the known range of P. hubrichti. Our model evaluated key habitat attributes of 5814 pixels of 1 km2 each and ranked the pixels from best to worst with respect to P. hubrichti habitat requirements. Our results are a spatially explicit valuation of each pixel, with respect to its probable benefit to P. hubrichti populations. The results of this effort will be used to rank pixels from most to least beneficial, then identify land owners in the most useful areas for salamanders who are willing to sell or enter into a permanent easement agreement.

  18. Level of UV-B radiation influences the effects of glyphosate-based herbicide on the spotted salamander.

    PubMed

    Levis, Nicholas A; Johnson, Jarrett R

    2015-07-01

    Glyphosate-based herbicides are the number one pesticide in the United States and are used commonly around the world. Understanding the affects of glyphosate-based herbicides on non-target wildlife, for example amphibians, is critical for evaluation of regulations pertaining to the use of such herbicides. Additionally, it is important to understand how variation in biotic and abiotic environmental conditions, such as UV-B light regime, could potentially affect how glyphosate-based herbicides interact with non-target species. This study used artificial pond mesocosms to identify the effects of generic glyphosate-based herbicide (GLY-4 Plus) on mortality, cellular immune response, body size, and morphological plasticity of larvae of the spotted salamander (Ambystoma maculatum) under conditions that reflect moderate (UV(M)) and low (UV(L)) UV-B light regimes. Survival within a given UV-B level was unaffected by herbicide presence or absence. However, when herbicide was present, survival varied between UV-B levels with higher survival in UV(M) conditions. Herbicide presence in the UV(M) treatments also decreased body size and reduced cellular immune response. In the UV(L) treatments, the presence of herbicide increased body size and affected tail morphology. Finally, in the absence of herbicide, body size and cellular immune response were higher in UV(M) treatments compared to UV(L) treatments. Thus, the effects of herbicide on salamander fitness were dependent on UV-B level. As anthropogenic habitat modifications continue to alter landscapes that contain amphibian breeding ponds, salamanders may increasingly find themselves in locations with reduced canopy cover and increased levels of UV light. Our findings suggest that the probability of surviving exposure to the glyphosate-based herbicide used in this study may be elevated in more open canopy ponds, but the effects on other components of fitness may be varied and unexpected.

  19. Sensitive species of snakes, frogs, and salamanders in southern California conifer forest areas: status and management

    Treesearch

    Glenn R. Stewart; Mark R. Jennings; Robert H. Jr. Goodman

    2005-01-01

    At least 35 species of amphibians and reptiles occur regularly in the conifer forest areas of southern California. Twelve of them have some or all of their populations identified as experiencing some degree of threat. Among the snakes, frogs, and salamanders that we believe need particular attention are the southern rubber boa (Charina bottae umbratica...

  20. Metagonimoides oregonensis (Heterophyidae: Digenea) infection in Pleurocerid snails and Desmognathus quadramaculatus salamander larvae in Southern Appalachian streams.

    PubMed

    Belden, Lisa K; Peterman, William E; Smith, Stephen A; Brooks, Lauren R; Benfield, E F; Black, Wesley P; Yang, Zhaomin; Wojdak, Jeremy M

    2012-08-01

    Metagonimoides oregonensis (Heterophyidae) is a little-known digenetic trematode that uses raccoons and possibly mink as definitive hosts, and stream snails and amphibians as intermediate hosts. Some variation in the life cycle and adult morphology in western and eastern populations has been previously noted. In the southern Appalachians, Pleurocera snails and stream salamanders, e.g., Desmognathus spp., are used as intermediate hosts in the life cycle. We completed a series of studies in this system examining some aspects of larval trematode morphology and first and second intermediate host use. Molecular sequencing of the 28S rDNA of cercariae in our survey placed them clearly within the heterophyid family. However, light and scanning electron microscopy revealed both lateral and dorso-ventral finfolds on the cercariae in our region, whereas original descriptions of M. oregonensis cercariae from the west coast indicate only a dorso-ventral finfold, so further work on the systematics of this group may be warranted. A survey of first intermediate host, Pleurocera proxima, from 7 streams in the region identified only M. oregonensis, virgulate-type cercariae, and cotylomicrocercous-type cercariae in the streams, with M. oregonensis having the highest prevalence, and the only type present that use amphibians as second intermediate hosts. Based on clearing and staining of 6 Desmognathus quadramaculatus salamander larvae, we found that individual salamanders could have over 600 metacercariae, which form between muscle fibers throughout the body. Histological observations suggest that the metacercariae do not cause excessive tissue damage or inflammation, and likely persist through metamorphosis, thereby transmitting potentially large numbers of worms to definitive host raccoons foraging along streams.

  1. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum.

    PubMed

    Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal

    2017-01-31

    The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.

  2. Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses

    PubMed Central

    Fenolio, Danté B; Graening, G.O; Collier, Bret A; Stout, Jim F

    2005-01-01

    During a two year population ecology study in a cave environment, 15 Eurycea (=Typhlotriton) spelaea were observed ingesting bat guano. Furthermore, E. spelaea capture numbers increased significantly during the time that grey bats (Myotis grisescens) deposited fresh guano. We investigated the hypothesis that this behaviour was not incidental to the capture of invertebrate prey, but a diet switch to an energy-rich detritus in an oligotrophic environment. Stable isotope assays determined that guano may be assimilated into salamander muscle tissue, and nutritional analyses revealed that guano is a comparable food source to potential invertebrate prey items. This is the first report of coprophagy in a salamander and in any amphibian for reasons other than intestinal inoculation. Because many temperate subterranean environments are often energy poor and this limitation is thought to select for increased diet breadth, we predict that coprophagy may be common in subterranean vertebrates where it is not currently recognized. PMID:16615210

  3. Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses.

    PubMed

    Fenolio, Danté B; Graening, G O; Collier, Bret A; Stout, Jim F

    2006-02-22

    During a two year population ecology study in a cave environment, 15 Eurycea (= Typhlotriton) spelaea were observed ingesting bat guano. Furthermore, E. spelaea capture numbers increased significantly during the time that grey bats (Myotis grisescens) deposited fresh guano. We investigated the hypothesis that this behaviour was not incidental to the capture of invertebrate prey, but a diet switch to an energy-rich detritus in an oligotrophic environment. Stable isotope assays determined that guano may be assimilated into salamander muscle tissue, and nutritional analyses revealed that guano is a comparable food source to potential invertebrate prey items. This is the first report of coprophagy in a salamander and in any amphibian for reasons other than intestinal inoculation. Because many temperate subterranean environments are often energy poor and this limitation is thought to select for increased diet breadth, we predict that coprophagy may be common in subterranean vertebrates where it is not currently recognized.

  4. From biomedicine to natural history research: EST resources for ambystomatid salamanders

    PubMed Central

    Putta, Srikrishna; Smith, Jeramiah J; Walker, John A; Rondet, Mathieu; Weisrock, David W; Monaghan, James; Samuels, Amy K; Kump, Kevin; King, David C; Maness, Nicholas J; Habermann, Bianca; Tanaka, Elly; Bryant, Susan V; Gardiner, David M; Parichy, David M; Voss, S Randal

    2004-01-01

    Background Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum) and Eastern tiger salamander (A. tigrinum tigrinum), species with deep and diverse research histories. Results Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human – Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. Conclusions Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research. PMID:15310388

  5. Validation of a stream and riparian habitat assessment protocol using stream salamanders in the southwest Virginia coalfields

    USGS Publications Warehouse

    Sweeten, Sara E.; Ford, W. Mark

    2016-01-01

    Within the central Appalachia Coalfields, the aquatic impacts of large-scale land uses, such as surface mining, are of particular ecological concern. Identification and quantification of land use impacts to aquatic ecosystems are a necessary first step to aid in mitigation of negative consequences to biota. However, quantifying physical environmental quality such as stream and riparian habitat often can be quite difficult, particularly when there is time or fiscal limitations. As such, standard protocols such as the U.S. EPA’s Stream Habitat Rapid Bioassessment Protocol have been established to be cost- and time-effective. This protocol estimates ten different stream and riparian conditions on a scale of 0 to 20. Unfortunately, using estimations can be problematic because of large potential variation in the scoring depending on differences in training, experience, and opinion of the personnel doing the estimations. In order to help negate these biases and provide a simplified process, the U.S. Army Corps of Engineers (USACE) developed a functional assessment for streams that measures 11 stream and riparian variables along with watershed land use to calculate three different scores, a hydrology score, biogeochemical score, and habitat score. In our study, we examined the correlation of stream salamander presence and abundance to the three USACE scores. In the summer of 2013, we visited 70 sites in the southwest Virginia Coalfields multiple times to collect salamanders and quantify stream and riparian microhabitat parameters. Using occupancy and abundance analyses, we found strong relationships among three Desmognathus spp. and the USACE Habitat FCI score. Accordingly, the Habitat FCI score provides a reasonable assessment of physical instream and riparian conditions that may serve as a surrogate for understanding the community composition and integrity of aquatic salamander in the region.

  6. Mitochondrial Aging: Is There a Mitochondrial Clock?

    PubMed

    Zorov, Dmitry B; Popkov, Vasily A; Zorova, Ljubava D; Vorobjev, Ivan A; Pevzner, Irina B; Silachev, Denis N; Zorov, Savva D; Jankauskas, Stanislovas S; Babenko, Valentina A; Plotnikov, Egor Y

    2017-09-01

    Fragmentation (fission) of mitochondria, occurring in response to oxidative challenge, leads to heterogeneity in the mitochondrial population. It is assumed that fission provides a way to segregate mitochondrial content between the "young" and "old" phenotype, with the formation of mitochondrial "garbage," which later will be disposed. Fidelity of this process is the basis of mitochondrial homeostasis, which is disrupted in pathological conditions and aging. The asymmetry of the mitochondrial fission is similar to that of their evolutionary ancestors, bacteria, which also undergo an aging process. It is assumed that mitochondrial markers of aging are recognized by the mitochondrial quality control system, preventing the accumulation of dysfunctional mitochondria, which normally are subjected to disposal. Possibly, oncocytoma, with its abnormal proliferation of mitochondria occupying the entire cytoplasm, represents the case when segregation of damaged mitochondria is impaired during mitochondrial division. It is plausible that mitochondria contain a "clock" which counts the degree of mitochondrial senescence as the extent of flagging (by ubiquitination) of damaged mitochondria. Mitochondrial aging captures the essence of the systemic aging which must be analyzed. We assume that the mitochondrial aging mechanism is similar to the mechanism of aging of the immune system which we discuss in detail. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Response of stream-breeding salamander larvae to sediment deposition in southern Appalachian (U.S.A.) headwater streams

    Treesearch

    S. Conner Keitzer; Reuben Goforth

    2012-01-01

    Summary 1. Increased fine sediment deposition is a prevalent threat to stream biodiversity and has been shown to impact stream-breeding salamanders negatively. However, their complex life histories make it difficult to determine which stage is affected. 2. We conducted field experiments from 26 August to 11 September 2010 and 11 October to 11...

  8. Spatial genetic structure and regional demography in the southern torrent salamander: Implications for conservation and management

    USGS Publications Warehouse

    Miller, Mark P.; Haig, Susan M.; Wagner, R.S.

    2006-01-01

    The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act due to lack of information regarding population fragmentation and gene flow. Found in small-order streams associated with late-successional coniferous forests of the US Pacific Northwest, threats to their persistence include disturbance related to timber harvest activities. We conducted a study of genetic diversity throughout this species' range to 1) identify major phylogenetic lineages and phylogeographic barriers and 2) elucidate regional patterns of population genetic and spatial phylogeographic structure. Cytochrome b sequence variation was examined for 189 individuals from 72 localities. We identified 3 major lineages corresponding to nonoverlapping geographic regions: a northern California clade, a central Oregon clade, and a northern Oregon clade. The Yaquina River may be a phylogeographic barrier between the northern Oregon and central Oregon clades, whereas the Smith River in northern California appears to correspond to the discontinuity between the central Oregon and northern California clades. Spatial analyses of genetic variation within regions encompassing major clades indicated that the extent of genetic structure is comparable among regions. We discuss our results in the context of conservation efforts for Southern torrent salamanders.

  9. Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion

    PubMed Central

    Reilly, Stephen M; McElroy, Eric J; Andrew Odum, R; Hornyak, Valerie A

    2006-01-01

    The lumbering locomotor behaviours of tuataras and salamanders are the best examples of quadrupedal locomotion of early terrestrial vertebrates. We show they use the same walking (out-of-phase) and running (in-phase) patterns of external mechanical energy fluctuations of the centre-of-mass known in fast moving (cursorial) animals. Thus, walking and running centre-of-mass mechanics have been a feature of tetrapods since quadrupedal locomotion emerged over 400 million years ago. When walking, these sprawling animals save external mechanical energy with the same pendular effectiveness observed in cursorial animals. However, unlike cursorial animals (that change footfall patterns and mechanics with speed), tuataras and salamanders use only diagonal couplet gaits and indifferently change from walking to running mechanics with no significant change in total mechanical energy. Thus, the change from walking to running is not related to speed and the advantage of walking versus running is unclear. Furthermore, lumbering mechanics in primitive tetrapods is reflected in having total mechanical energy driven by potential energy (rather than kinetic energy as in cursorial animals) and relative centre-of-mass displacements an order of magnitude greater than cursorial animals. Thus, large vertical displacements associated with lumbering locomotion in primitive tetrapods may preclude their ability to increase speed. PMID:16777753

  10. Phylogeography and spatial genetic structure of the Southern torrent salamander: Implications for conservation and management

    USGS Publications Warehouse

    Miller, M.P.; Haig, S.M.; Wagner, R.S.

    2006-01-01

    The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act due to lack of information regarding population fragmentation and gene flow. Found in small-order streams associated with late-successional coniferous forests of the US Pacific Northwest, threats to their persistence include disturbance related to timber harvest activities. We conducted a study of genetic diversity throughout this species' range to 1) identify major phylogenetic lineages and phylogeographic barriers and 2) elucidate regional patterns of population genetic and spatial phylogeographic structure. Cytochrome b sequence variation was examined for 189 individuals from 72 localities. We identified 3 major lineages corresponding to nonoverlapping geographic regions: a northern California clade, a central Oregon clade, and a northern Oregon clade. The Yaquina River may be a phylogeographic barrier between the northern Oregon and central Oregon clades, whereas the Smith River in northern California appears to correspond to the discontinuity between the central Oregon and northern California clades. Spatial analyses of genetic variation within regions encompassing major clades indicated that the extent of genetic structure is comparable among regions. We discuss our results in the context of conservation efforts for Southern torrent salamanders. ?? The American Genetic Association. 2006. All rights reserved.

  11. Molecular evidence for the early history of living amphibians.

    PubMed

    Feller, A E; Hedges, S B

    1998-06-01

    The evolutionary relationships of the three orders of living amphibians (lissamphibians) has been difficult to resolve, partly because of their specialized morphologies. Traditionally, frogs and salamanders are considered to be closest relatives, and all three orders are thought to have arisen in the Paleozoic (>250 myr). Here, we present evidence from the DNA sequences of four mitochondrial genes (2.7 kilobases) that challenges the conventional hypothesis and supports a salamander-caecilian relationship. This, in light of the fossil record and distribution of the families, suggests a more recent (Mesozoic) origin for salamanders and caecilians directly linked to the initial breakup of the supercontinent Pangaea. We propose that this single geologic event isolated salamanders and archaeobatrachian frogs on the northern continents (Laurasia) and the caecilians and neobatrachian frogs on the southern continents (Gondwana). Among the neobatrachian frog families, molecular evidence supports a South American clade and an African clade, inferred here to be the result of mid-Cretaceous vicariance. Copyright 1998 Academic Press.

  12. Growth, survival, longevity, and population size of the Big Mouth Cave salamander (Gyrinophilus palleucus necturoides) from the type locality in Grundy County, Tennessee, USA

    USGS Publications Warehouse

    Niemiller, Matthew L.; Glorioso, Brad M.; Fenolio, Dante B.; Reynolds, R. Graham; Taylor, Steven J.; Miller, Brian T.

    2016-01-01

    Salamander species that live entirely in subterranean habitats have evolved adaptations that allow them to cope with perpetual darkness and limited energy resources. We conducted a 26-month mark–recapture study to better understand the individual growth and demography of a population of the Big Mouth Cave Salamander (Gyrinophilus palleucus necturoides). We employed a growth model to estimate growth rates, age at sexual maturity, and longevity, and an open population model to estimate population size, density, detectability, and survival rates. Furthermore, we examined cover use and evidence of potential predation. Individuals probably reach sexual maturity in 3–5 years and live at least nine years. Survival rates were generally high (>75%) but declined during the study. More than 30% of captured salamanders had regenerating tails or tail damage, which presumably represent predation attempts by conspecifics or crayfishes. Most salamanders (>90%) were found under cover (e.g., rocks, trash, decaying plant material). Based on 11 surveys during the study, population size estimates ranged from 21 to 104 individuals in the ca. 710 m2 study area. Previous surveys indicated that this population experienced a significant decline from the early 1970s through the 1990s, perhaps related to silvicultural and agricultural practices. However, our data suggest that this population has either recovered or stabilized during the past 20 years. Differences in relative abundance between early surveys and our survey could be associated with differences in survey methods or sampling conditions rather than an increase in population size. Regardless, our study demonstrates that this population is larger than previously thought and is in no immediate risk of extirpation, though it does appear to exhibit higher rates of predation than expected for a species believed to be an apex predator of subterranean food webs.

  13. Morphological variation in salamanders and their potential response to climate change.

    PubMed

    Ficetola, Gentile Francesco; Colleoni, Emiliano; Renaud, Julien; Scali, Stefano; Padoa-Schioppa, Emilio; Thuiller, Wilfried

    2016-06-01

    Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here, we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species. First, we show that in old-world salamanders, NTV variation is strongly related to changes in body size. Secondly, using 22 salamander species as a case study, we found support for relationships between the spatial variation in selected bioclimatic variables and NTV for most of species. For 44% of species, precipitation and aridity were the predominant drivers of geographical variation of the NTV. Temperature features were dominant for 31% of species, while for 19% temperature and precipitation played a comparable role. This two-step analysis demonstrates that ectothermic vertebrates may evolve in response to climate change by modifying the number of thoracic vertebrae. These findings allow to develop scenarios for potential morphological evolution under future climate change and to identify areas and species in which the most marked evolutionary responses are expected. Resistance to climate change estimated from species distribution models was positively related to present-day species morphological response, suggesting that the ability of morphological evolution may play a role for species' persistence under climate change. The possibility that present-day capacity for local adaptation might help the resistance response to climate change can be integrated into analyses of the impact of global changes and should also be considered when planning management actions favouring

  14. Calibrating abundance indices with population size estimators of red back salamanders (Plethodon cinereus) in a New England forest

    PubMed Central

    Ellison, Aaron M.; Jackson, Scott

    2015-01-01

    Herpetologists and conservation biologists frequently use convenient and cost-effective, but less accurate, abundance indices (e.g., number of individuals collected under artificial cover boards or during natural objects surveys) in lieu of more accurate, but costly and destructive, population size estimators to detect and monitor size, state, and trends of amphibian populations. Although there are advantages and disadvantages to each approach, reliable use of abundance indices requires that they be calibrated with accurate population estimators. Such calibrations, however, are rare. The red back salamander, Plethodon cinereus, is an ecologically useful indicator species of forest dynamics, and accurate calibration of indices of salamander abundance could increase the reliability of abundance indices used in monitoring programs. We calibrated abundance indices derived from surveys of P. cinereus under artificial cover boards or natural objects with a more accurate estimator of their population size in a New England forest. Average densities/m2 and capture probabilities of P. cinereus under natural objects or cover boards in independent, replicate sites at the Harvard Forest (Petersham, Massachusetts, USA) were similar in stands dominated by Tsuga canadensis (eastern hemlock) and deciduous hardwood species (predominantly Quercus rubra [red oak] and Acer rubrum [red maple]). The abundance index based on salamanders surveyed under natural objects was significantly associated with density estimates of P. cinereus derived from depletion (removal) surveys, but underestimated true density by 50%. In contrast, the abundance index based on cover-board surveys overestimated true density by a factor of 8 and the association between the cover-board index and the density estimates was not statistically significant. We conclude that when calibrated and used appropriately, some abundance indices may provide cost-effective and reliable measures of P. cinereus abundance that could

  15. Associations of the Van Dyke's salamander (Plethodon vandykei) with geomorphic conditions in headwall seeps of the Cascade Range, Washington State.

    Treesearch

    A.P. McIntyre; R.A. Schmitz; C.M. Crisafulli

    2006-01-01

    We explored the association between Van Dyke's salamander (Plethodon vandykei) and hydrologic condition, geomorphology, and vegetation structure in headwall seeps in the Cascade Range of Washington State. We modeled occurrence of P. vandykei at three site scales: between seeps, within seeps, and between microhabitat sites...

  16. Role of mitochondrial permeability transition pores in mitochondrial autophagy.

    PubMed

    Rodriguez-Enriquez, Sara; He, Lihua; Lemasters, John J

    2004-12-01

    During autophagy, cells rid themselves of damaged and superfluous mitochondria, as well as other organelles. This activation of mitochondrial turnover could be the result of changes in the physiological state of mitochondria. Confocal microscopy and fluorescence techniques indicate that onset of mitochondrial permeability transition is one such change. The mitochondrial permeability transition is a reversible phenomenon whereby the mitochondrial inner membrane becomes freely permeable to solutes of less than 1500 Da. At onset of the mitochondrial permeability transition, mitochondria depolarize, uncouple, and undergo large amplitude swelling due to opening of permeability transition pores, which may form by aggregation of damaged, misfolded membrane proteins. When injurious cellular stresses occur, cells may protect themselves using autophagy to remove damaged mitochondria and mutated mitochondrial DNA. Ca(2+) overloading, reactive oxygen and nitrogen species, decreased mitochondrial membrane potential, and oxidation of pyridine nucleotides and glutathione all promote mitochondrial damage and onset of the mitochondrial permeability transition. The mitochondrial permeability transition is also associated with necrosis and apoptosis after a variety of stimuli. This review emphasizes the role of the mitochondrial permeability transition as a key event in mitochondrial autophagy.

  17. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    PubMed

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Tongue and taste organ development in the ontogeny of direct-developing salamander Plethodon cinereus (Lissamphibia: Plethodontidae).

    PubMed

    Budzik, Karolina A; Żuwała, Krystyna; Kerney, Ryan

    2016-07-01

    The latest research on direct developing caecilian and anuran species indicate presence of only one generation of taste organs during their ontogeny. This is distinct from indirect developing batrachians studied thus far, which possess taste buds in larvae and anatomically distinct taste discs in metamorphs. This study is a description of the tongue and taste organ morphology and development in direct developing salamander Plethodon cinereus (Plethodontidae) using histology and electron microscopy techniques. The results reveal two distinct stages tongue morphology (primary and secondary), similar to metamorphic urodeles, although only one stage of taste organ morphology. Taste disc sensory zones emerge on the surface of the oropharyngeal epithelium by the end of embryonic development, which coincides with maturation of the soft tongue. Taste organs occur in the epithelium of the tongue pad (where they are situated on the dermal papillae), the palate and the inner surface of the mandible and the maxilla. Plethodon cinereus embryos only possess taste disc type taste organs. Similar to the direct developing anuran Eleutherodactylus coqui (Eleutherodactylidae), these salamanders do not recapitulate larval taste bud morphology as an embryo. The lack of taste bud formation is probably a broadly distributed feature characteristic to direct developing batrachians. J. Morphol. 277:906-915, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Using stable isotopes to test for trophic niche partitioning: a case study with stream salamanders and fish

    USGS Publications Warehouse

    Sepulveda, Adam; Lowe, Winsor H.; Marra, Peter P.

    2012-01-01

    5. Although we did not identify mechanisms that facilitate salamander and fish coexistence, our empirical data and use of novel approaches to describe the trophic niche did yield important insights on the role of predator–prey interactions and cannibalism as alternative coexistence mechanisms. In addition, we found that 95% kernel estimators are a simple and robust method to describe population-level measure of trophic structure.

  20. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks.

    PubMed

    Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H

    2010-03-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.

  1. Mitochondrial vasculopathy

    PubMed Central

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2016-01-01

    Mitochondrial disorders (MIDs) are usually multisystem disorders (mitochondrial multiorgan disorder syndrome) either on from onset or starting at a point during the disease course. Most frequently affected tissues are those with a high oxygen demand such as the central nervous system, the muscle, endocrine glands, or the myocardium. Recently, it has been shown that rarely also the arteries may be affected (mitochondrial arteriopathy). This review focuses on the type, diagnosis, and treatment of mitochondrial vasculopathy in MID patients. A literature search using appropriate search terms was carried out. Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy. Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy, migraine-like headache, stroke-like episodes, or peripheral retinopathy. Mitochondrial macroangiopathy manifests as atherosclerosis, ectasia of arteries, aneurysm formation, dissection, or spontaneous rupture of arteries. The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes. Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes. Mitochondrial vasculopathy exists and manifests as micro- or macroangiopathy. Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications. PMID:27231520

  2. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy

    PubMed Central

    Vincent, Amy E.; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M.; McFarland, Robert; Gorman, Grainne S.; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  3. Mitochondrial myopathies.

    PubMed

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  4. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    PubMed

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  5. Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration

    PubMed Central

    Zhu, Wei; Kuo, Dwight; Nathanson, Jason; Satoh, Akira; Pao, Gerald M.; Yeo, Gene W.; Bryant, Susan V.; Voss, S. Randal; Gardiner, David M.; Hunter, Tony

    2012-01-01

    Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mammals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of salamander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. In addition, higher genomic LINE-1 content was also detected in the limb regenerate when compared to that before amputation indicating that LINE-1 retrotransposition is indeed active during regeneration. Active LINE-1 retrotransposition has been suggested to have a potentially deleterious impact on genomic integrity. Silencing of activated LINE-1 by small RNAs has been reported to be part of the machinery aiming to maintain genomic integrity. Indeed, we were able to identify putative LINE-1-related piRNAs in the limb blastema. Transposable element-related piRNAs have been identified frequently in the germline in other organisms. Thus, we present here a scenario in which a unique germline-like state is established during axolotl limb regeneration, and the re-activation of LINE-1 may serve as a marker for cellular dedifferentiation in the early-stage of limb regeneration. PMID:22913491

  6. Responses of the woodland salamander Ensatina eschscholtzii to commercial thinning by helicopter in late-seral Douglas-fir forest in northwest California

    Treesearch

    Hartwell Welsh; Jeff Waters; Garth Hodgson; Ted Weller; Cynthia Zabel

    2015-01-01

    We examined responses of the woodland salamander Ensatina (Ensatina eschscholtzii) to commercial thinning by helicopter in late-seral Douglas-fir forest in northwestern California, USA, using a before-after control-impact (BACI) design. We employed passive pitfall traps on eight (four each treatment and control) 100 trap grids over eight years (...

  7. Chloride equilibrium potential in salamander cones

    PubMed Central

    Thoreson, Wallace B; Bryson, Eric J

    2004-01-01

    Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl) was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca)) and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca). PMID:15579212

  8. Developing landscape habitat models for rare amphibians with small geographic ranges: a case study of Siskiyou Mountains salamanders in the western USA

    Treesearch

    Nobuya Suzuki; Deanna H. Olson; Edward C. Reilly

    2007-01-01

    To advance the development of conservation planning for rare species with small geographic ranges, we determined habitat associations of Siskiyou Mountains salamanders (Plethodon stormi) and developed habitat suitability models at fine (10 ha), medium (40 ha), and broad (202 ha) spatial scales using available geographic information systems data and...

  9. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    PubMed

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  10. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake

    PubMed Central

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-01-01

    Mitochondrial calcium ([Ca2+]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca2+]m uptake upon SK channel activation as detected by time lapse mitochondrial Ca2+ measurements with the Ca2+-binding mitochondria-targeted aequorin and FRET-based [Ca2+]m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca2+]m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death. PMID:28282037

  11. Mitochondrial peptides modulate mitochondrial function during cellular senescence.

    PubMed

    Kim, Su-Jeong; Mehta, Hemal H; Wan, Junxiang; Kuehnemann, Chisaka; Chen, Jingcheng; Hu, Ji-Fan; Hoffman, Andrew R; Cohen, Pinchas

    2018-06-10

    Cellular senescence is a complex cell fate response that is thought to underlie several age-related pathologies. Despite a loss of proliferative potential, senescent cells are metabolically active and produce energy-consuming effectors, including senescence-associated secretory phenotypes (SASPs). Mitochondria play crucial roles in energy production and cellular signaling, but the key features of mitochondrial physiology and particularly of mitochondria-derived peptides (MDPs), remain underexplored in senescence responses. Here, we used primary human fibroblasts made senescent by replicative exhaustion, doxorubicin or hydrogen peroxide treatment, and examined the number of mitochondria and the levels of mitochondrial respiration, mitochondrial DNA methylation and the mitochondria-encoded peptides humanin, MOTS-c, SHLP2 and SHLP6. Senescent cells showed increased numbers of mitochondria and higher levels of mitochondrial respiration, variable changes in mitochondrial DNA methylation, and elevated levels of humanin and MOTS-c. Humanin and MOTS-c administration modestly increased mitochondrial respiration and selected components of the SASP in doxorubicin-induced senescent cells partially via JAK pathway. Targeting metabolism in senescence cells is an important strategy to reduce SASP production for eliminating the deleterious effects of senescence. These results provide insight into the role of MDPs in mitochondrial energetics and the production of SASP components by senescent cells.

  12. Mechanical vibrations from tadpoles' flapping tails transform salamander's carnivorous morphology.

    PubMed

    Michimae, Hirofumi; Nishimura, Kinya; Wakahara, Masami

    2005-03-22

    Some prey or predator organisms exhibit striking rapid morphological plastic changes with distinct morphology under the condition of predator or prey presence. Remote chemicals propagating from the inducing agents are the prevalent induction cues for most examples of induction of distinct morphs. Sonic and visual cues, as well as chemical cues, are known as triggers for induction of behavioural plasticity. Here we show that hydraulic vibration originating from flapping tails of anuran tadpoles is a key cue in relation to induction of a distinct carnivorous morphology, a broad-headed morph, in larval salamander Hynobius retardatus, which is able to efficiently capture and handle prey. This result was further supported by the fact that simple mechanical vibrations of tail-like vinyl fins were able to induce the morph without any biological cues. Induction of the morph triggered by hydraulic vibration provides a novel concept for understanding the proximate mechanisms of induction of morphological changes.

  13. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches.

    PubMed

    Karraker, Nancy E; Gibbs, James P

    2011-03-01

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Using multilevel spatial models to understand salamander site occupancy patterns after wildfire

    USGS Publications Warehouse

    Chelgren, Nathan; Adams, Michael J.; Bailey, Larissa L.; Bury, R. Bruce

    2011-01-01

    Studies of the distribution of elusive forest wildlife have suffered from the confounding of true presence with the uncertainty of detection. Occupancy modeling, which incorporates probabilities of species detection conditional on presence, is an emerging approach for reducing observation bias. However, the current likelihood modeling framework is restrictive for handling unexplained sources of variation in the response that may occur when there are dependence structures such as smaller sampling units that are nested within larger sampling units. We used multilevel Bayesian occupancy modeling to handle dependence structures and to partition sources of variation in occupancy of sites by terrestrial salamanders (family Plethodontidae) within and surrounding an earlier wildfire in western Oregon, USA. Comparison of model fit favored a spatial N-mixture model that accounted for variation in salamander abundance over models that were based on binary detection/non-detection data. Though catch per unit effort was higher in burned areas than unburned, there was strong support that this pattern was due to a higher probability of capture for individuals in burned plots. Within the burn, the odds of capturing an individual given it was present were 2.06 times the odds outside the burn, reflecting reduced complexity of ground cover in the burn. There was weak support that true occupancy was lower within the burned area. While the odds of occupancy in the burn were 0.49 times the odds outside the burn among the five species, the magnitude of variation attributed to the burn was small in comparison to variation attributed to other landscape variables and to unexplained, spatially autocorrelated random variation. While ordinary occupancy models may separate the biological pattern of interest from variation in detection probability when all sources of variation are known, the addition of random effects structures for unexplained sources of variation in occupancy and detection

  15. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.

    PubMed

    Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang

    2015-10-01

    Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.

  16. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    PubMed Central

    Tan, Dun-Xian; Manchester, Lucien C.; Qin, Lilan; Reiter, Russel J.

    2016-01-01

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria. PMID:27999288

  17. Mitochondrial threshold effects.

    PubMed Central

    Rossignol, Rodrigue; Faustin, Benjamin; Rocher, Christophe; Malgat, Monique; Mazat, Jean-Pierre; Letellier, Thierry

    2003-01-01

    The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases. PMID:12467494

  18. Site-level habitat models for the endemic, threatened Cheat Mountain salamander (Plethodon nettingi): the importance of geophysical and biotic attributes for predicting occurrence

    Treesearch

    Lester O. Dillard; Kevin R. Russell; W. Mark Ford

    2008-01-01

    The federally threatened Cheat Mountain salamander (Plethodon nettingi; hereafter CMS) is known to occur in approximately 70 small, scattered populations in the Allegheny Mountains of eastern West Virginia, USA. Current conservation and management efforts on federal, state, and private lands involving CMS largely rely on small scale, largely...

  19. Stabilization of a salamander moving hybrid zone.

    PubMed

    Visser, Michaël; de Leeuw, Maarten; Zuiderwijk, Annie; Arntzen, Jan W

    2017-01-01

    When related species meet upon postglacial range expansion, hybrid zones are frequently formed. Theory predicts that such zones may move over the landscape until equilibrium conditions are reached. One hybrid zone observed to be moving in historical times (1950-1979) is that of the pond-breeding salamanders Triturus cristatus and Triturus marmoratus in western France. We identified the ecological correlates of the species hybrid zone as elevation, forestation, and hedgerows favoring the more terrestrial T. marmoratus and pond density favoring the more aquatic T. cristatus . The past movement of the zone of ca. 30 km over three decades has probably been driven by the drastic postwar reduction of the "bocage" hedgerow landscape, favoring T. cristatus over T. marmoratus . No further hybrid zone movement was observed from 1979 to the present. To explain the changing dynamics of the hybrid zone, we propose that it stalled, either because an equilibrium was found at an altitude of ca. 140 m a.s.l. or due to pond loss and decreased population densities. While we cannot rule out the former explanation, we found support for the latter. Under agricultural intensification, ponds in the study area are lost at an unprecedented rate of 5.5% per year, so that remaining Triturus populations are increasingly isolated, hampering dispersal and further hybrid zone movement.

  20. Multilocus Phylogeography and Species Delimitation in the Cumberland Plateau Salamander, Plethodon kentucki: Incongruence among Data Sets and Methods

    PubMed Central

    Kuchta, Shawn R.; Brown, Ashley D.; Converse, Paul E.; Highton, Richard

    2016-01-01

    Species are a fundamental unit of biodiversity, yet can be challenging to delimit objectively. This is particularly true of species complexes characterized by high levels of population genetic structure, hybridization between genetic groups, isolation by distance, and limited phenotypic variation. Previous work on the Cumberland Plateau Salamander, Plethodon kentucki, suggested that it might constitute a species complex despite occupying a relatively small geographic range. To examine this hypothesis, we sampled 135 individuals from 43 populations, and used four mitochondrial loci and five nuclear loci (5693 base pairs) to quantify phylogeographic structure and probe for cryptic species diversity. Rates of evolution for each locus were inferred using the multidistribute package, and time calibrated gene trees and species trees were inferred using BEAST 2 and *BEAST 2, respectively. Because the parameter space relevant for species delimitation is large and complex, and all methods make simplifying assumptions that may lead them to fail, we conducted an array of analyses. Our assumption was that strongly supported species would be congruent across methods. Putative species were first delimited using a Bayesian implementation of the GMYC model (bGMYC), Geneland, and Brownie. We then validated these species using the genealogical sorting index and BPP. We found substantial phylogeographic diversity using mtDNA, including four divergent clades and an inferred common ancestor at 14.9 myr (95% HPD: 10.8–19.7 myr). By contrast, this diversity was not corroborated by nuclear sequence data, which exhibited low levels of variation and weak phylogeographic structure. Species trees estimated a far younger root than did the mtDNA data, closer to 1.0 myr old. Mutually exclusive putative species were identified by the different approaches. Possible causes of data set discordance, and the problem of species delimitation in complexes with high levels of population structure and

  1. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrialmore » dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.« less

  2. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    PubMed Central

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  3. Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division

    PubMed Central

    Cho, Bongki; Cho, Hyo Min; Jo, Youhwa; Kim, Hee Dae; Song, Myungjae; Moon, Cheil; Kim, Hyongbum; Kim, Kyungjin; Sesaki, Hiromi; Rhyu, Im Joo; Kim, Hyun; Sun, Woong

    2017-01-01

    Mitochondrial division is critical for the maintenance and regulation of mitochondrial function, quality and distribution. This process is controlled by cytosolic actin-based constriction machinery and dynamin-related protein 1 (Drp1) on mitochondrial outer membrane (OMM). Although mitochondrial physiology, including oxidative phosphorylation, is also important for efficient mitochondrial division, morphological alterations of the mitochondrial inner-membrane (IMM) have not been clearly elucidated. Here we report spontaneous and repetitive constriction of mitochondrial inner compartment (CoMIC) associated with subsequent division in neurons. Although CoMIC is potentiated by inhibition of Drp1 and occurs at the potential division spots contacting the endoplasmic reticulum, it appears on IMM independently of OMM. Intra-mitochondrial influx of Ca2+ induces and potentiates CoMIC, and leads to K+-mediated mitochondrial bulging and depolarization. Synergistically, optic atrophy 1 (Opa1) also regulates CoMIC via controlling Mic60-mediated OMM–IMM tethering. Therefore, we propose that CoMIC is a priming event for efficient mitochondrial division. PMID:28598422

  4. The palaeoclimatic significance of Eurasian Giant Salamanders (Cryptobranchidae: Zaissanurus, Andrias) - indications for elevated humidity in Central Asia during global warm periods (Eocene, late Oligocene warming, Miocene Climate Optimum)

    NASA Astrophysics Data System (ADS)

    Vasilyan, Davit; Böhme, Madelaine; Winklhofer, Michael

    2010-05-01

    Cryptobranchids represent a group of large sized (up to 1.8 m) tailed amphibians known since the Middle Jurassic (Gao & Shubin 2003). Two species are living today in eastern Eurasia: Andrias davidianus (China) and A. japonicus (Japan). Cenozoic Eurasian fossil giant salamanders are known with two genera and two or three species from over 30 localities, ranging from the Late Eocene to the Early Pliocene (Böhme & Ilg 2003). The Late Eocene species Zaissanurus beliajevae is restricted to the Central Asian Zaissan Basin (SE-Kazakhstan, 50°N, 85°E), whereas the Late Oligocene to Early Pliocene species Andrias scheuchzeri is distributed from Central Europe to the Zaissan Basin. In the latter basin the species occur during two periods; the latest Oligocene and the late Early to early Middle Miocene (Chkhikvadse 1982). Andrias scheuchzeri is osteological indistinguishable from both recent species, indicating a similar ecology (Westfahl 1958). To investigate the palaeoclimatic significance of giant salamanders we analyzed the climate within the present-day distribution area and at selected fossil localities with independent palaeoclimate record. Our results indicate that fossil and recent Andrias species occur in humid areas where the mean annual precipitation reach over 900 mm (900 - 1.300 mm). As a working hypothesis (assuming a similar ecology of Andrias and Zaissanurus) we interpret occurrences of both fossil Eurasian giant salamanders as indicative for humid palaeoclimatic conditions. Based on this assumption the Late Eocene, the latest Oligocene (late Oligocene warming) and the late Early to early Middle Miocene (Miocene Climatic Optimum) of Central Asia (Zaissan Basin) are periods of elevated humidity, suggesting a direct (positive) relationship between global climate and Central Asian humidity evolution. Böhme M., Ilg A. 2003: fosFARbase, www.wahre-staerke.com/ Chkhikvadze V.M. 1982. On the finding of fossil Cryptobranchidae in the USSR and Mongolia. Vertebrata

  5. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    PubMed Central

    Swerdlow, Russell H.

    2012-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed. PMID:21902672

  6. Assignment of two mitochondrially synthesized polypeptides to human mitochondrial DNA and their use in the study of intracellular mitochondrial interaction.

    PubMed Central

    Oliver, N A; Wallace, D C

    1982-01-01

    Two mitochondrially synthesized marker polypeptides, MV-1 and MV-2, were found in human HeLa and HT1080 cells. These were assigned to the mitochondrial DNA in HeLa-HT1080 cybrids and hybrids by demonstrating their linkage to cytoplasmic genetic markers. These markers include mitochondrial DNA restriction site polymorphisms and resistance to chloramphenicol, an inhibitor of mitochondrial protein synthesis. In the absence of chloramphenicol, the expression of MV-1 and MV-2 in cybrids and hybrids was found to be directly proportional to the ratio of the parental mitochondrial DNAs. In the presence of chloramphenicol, the marker polypeptide linked to the chloramphenicol-sensitive mitochondrial DNA continued to be expressed. This demonstrated that resistant and sensitive mitochondrial DNAs can cooperate within a cell for gene expression and that the CAP-resistant allele was dominant or codominant to sensitive. Such cooperation suggests that mitochondrial DNAs can be exchanged between mitochondria. Images PMID:6955589

  7. Characterization and expression of cyp19a gene in the Chinese giant salamander Andrias davidianus.

    PubMed

    Hu, Qiaomu; Xiao, Hanbing; Tian, HaiFeng; Meng, Yan

    2016-02-01

    We cloned the full length cyp19a of Chinese giant salamander Andrias davidianus, determined its distribution in tissues and developing gonads, and analyzed the CpG methylation pattern of the cyp19a promoter. The results revealed isoforms of 1706 bp (G arom) and 1698 bp (B arom) in length, differing in the 5' flanking region, both encoding 502 amino acids. The G arom gene was observed mainly in the ovary and kidney, with little in other investigated tissues, while B arom expression was high in the brain, ovary, testis, and pituitary, with low or undetected expression in other examined tissues. Total aromatase expression was high in the ovary; moderate in the kidney, brain, testis, and pituitary; and low in the remaining tissues. G arom expression was significantly higher in the ovary than in the testis and gradually decreased with maturation of the salamander. A single injection of methyltestosterone or letrozole resulted in ovarian G arom expression decreasing over a 12-96 h period. A 1366 bp sequence of the cyp19a promoter was cloned and shown to be conserved in selected species. CpG methylation level was negatively correlated with cyp19a expression in the examined tissues and developing ovaries. Five and three CpG methylation sites positively correlated with DNA methylation levels in tissues and developing ovary, suggesting that they play an important role in regulating cyp19a expression. The aromatase gene showed two isoforms with distinct expression patterns, and the promoter methylation level at specific CpG sites was associated with variation in expression profiles of tissues and developing ovaries. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of metamorphosis on the aquatic escape response of the two-lined salamander (Eurycea bislineata).

    PubMed

    Azizi, Emanuel; Landberg, Tobias

    2002-03-01

    Although numerous studies have described the escape kinematics of fishes, little is known about the aquatic escape responses of salamanders. We compare the escape kinematics of larval and adult Eurycea bislineata, the two-lined salamander, to examine the effects of metamorphosis on aquatic escape performance. We hypothesize that shape changes associated with resorption of the larval tail fin at metamorphosis will affect aquatic locomotor performance. Escape responses were recorded using high-speed video, and the effects of life stage and total length on escape kinematics were analyzed statistically using analysis of covariance. Our results show that both larval and adult E. bislineata use a two-stage escape response (similar to the C-starts of fishes) that consists of a preparatory (stage 1) and a propulsive (stage 2) stroke. The duration of both kinematic stages and the distance traveled during stage 2 increased with total length. Both larval and adult E. bislineata had final escape trajectories that were directed away from the stimulus. The main kinematic difference between larvae and adults is that adults exhibit significantly greater maximum curvature during stage 1. Total escape duration and the distance traveled during stage 2 did not differ significantly between larvae and adults. Despite the significantly lower tail aspect ratio of adults, we found no significant decrease in the overall escape performance of adult E. bislineata. Our results suggest that adults may compensate for the decrease in tail aspect ratio by increasing their maximum curvature. These findings do not support the hypothesis that larvae exhibit better locomotor performance than adults as a result of stronger selective pressures on early life stages.

  9. High convergence of olfactory and vomeronasal influence in the telencephalon of the terrestrial salamander Plethodon shermani.

    PubMed

    Roth, F C; Laberge, F

    2011-03-17

    Previous work suggested that the telencephalic pathways of the main olfactory and vomeronasal systems of vertebrates are mostly isolated from each other, with the possible exception of convergence of the two systems into a small part of the olfactory amygdala. We tested the hypothesis of convergence between the main olfactory and vomeronasal systems by investigating the physiology of telencephalic olfactory responses in an in vitro brain preparation of the salamander Plethodon shermani. This animal was chosen because its olfactory and vomeronasal nerves can be separated and stimulated independently. The nerves were stimulated by short current pulses delivered through suction electrodes. Evoked field potentials and intracellular responses were systematically recorded in the telencephalon. The results showed an abundant overlap of olfactory and vomeronasal nerve-evoked field potentials in the ipsilateral lateral telencephalon and the amygdala. Single neurons receiving bimodal main olfactory and vomeronasal input were found in the dorsolateral telencephalon and amygdala. A classification of response latencies suggested that a subset of these neurons received direct input from both the main and accessory olfactory bulbs. Unimodal excitatory main olfactory responses were mostly found in neurons of the caudal telencephalic pole, but were also present in the striato-pallial transition area/lateral pallium region and striatum. Unimodal excitatory vomeronasal responses were found in neurons of the striato-pallial transition area, vomeronasal amygdala, and caudal amygdala. We conclude that the main olfactory and vomeronasal systems are extensively integrated within the salamander telencephalon and probably act in concert to modulate behavior. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Clinical mitochondrial genetics

    PubMed Central

    Chinnery, P.; Howell, N.; Andrews, R.; Turnbull, D.

    1999-01-01

    The last decade has been an age of enlightenment as far as mitochondrial pathology is concerned. Well established nuclear genetic diseases, such as Friedreich's ataxia,12 Wilson disease,3 and autosomal recessive hereditary spastic paraplegia,4 have been shown to have a mitochondrial basis, and we are just starting to unravel the complex nuclear genetic disorders which directly cause mitochondrial dysfunction (table 1). However, in addition to the 3 billion base pair nuclear genome, each human cell typically contains thousands of copies of a small, 16.5 kb circular molecule of double stranded DNA (fig 1). Mitochondrial DNA (mtDNA) accounts for only 1% of the total cellular nucleic acid content. It encodes for 13 polypeptides which are essential for aerobic metabolism and defects of the mitochondrial genome are an important cause of human disease.9293 Since the characterisation of the first pathogenic mtDNA defects in 1988,513 over 50 point mutations and well over 100 rearrangements of the mitochondrial genome have been associated with human disease9495 (http://www.gen.emory.edu/mitomap.html). These disorders form the focus of this article.


Keywords: mitochondrial DNA; mitochondrial disease; heteroplasmy; genetic counselling PMID:10874629

  11. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    PubMed

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  12. Reversible infantile mitochondrial diseases.

    PubMed

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  13. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.

    PubMed

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-11-28

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3'-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.

  14. Mitochondrial modulators in experimental Huntington's disease: reversal of mitochondrial dysfunctions and cognitive deficits.

    PubMed

    Mehrotra, Arpit; Kanwal, Abhinav; Banerjee, Sanjay Kumar; Sandhir, Rajat

    2015-06-01

    Huntington's disease (HD) is a chronic neurodegenerative condition involving impaired mitochondrial functions. The present study evaluates the therapeutic potential of combined administration of mitochondrial modulators: alpha-lipoic acid and acetyl-l-carnitine on mitochondrial dysfunctions in 3-NP-induced HD. Our results reveal 3-NP administration resulted in compromise of mitochondrial functions in terms of: (1) impaired activity of mitochondrial respiratory chain enzymes, altered cytochrome levels, reduced histochemical staining of complex-II and IV, reduced in-gel activity of complex-I to V, and reduced mRNA expression of respiratory chain complexes; (2) enhanced mitochondrial oxidative stress indicated by increased malondialdehyde, protein carbonyls, reactive oxygen species and nitrite levels, along with decreased Mn-superoxide dismutase and catalase activity; (3) mitochondrial structural changes measured by mitochondrial swelling, reduced mitochondrial membrane potential and ultra-structure changes; (4) increased cytosolic cytochrome c levels, caspase-3 and -9 activity along with altered expression of apoptotic proteins (AIF, Bim, Bad, and Bax); and (5) impaired cognitive functions assessed using Morris water maze and Y-maze. Combination of mitochondrial modulators (alpha-lipoic acid + acetyl-l-carnitine) on the other hand ameliorated 3-NP-induced mitochondrial dysfunctions, oxidative stress, histologic alterations, and behavioral deficits, suggesting their therapeutic efficacy in the management of HD. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Mitochondrial medicine for neurodegenerative diseases.

    PubMed

    Du, Heng; Yan, Shirley ShiDu

    2010-05-01

    Mitochondrial dysfunction has been reported in a wide array of neurological disorders ranging from neuromuscular to neurodegenerative diseases. Recent studies on neurodegenerative diseases have revealed that mitochondrial pathology is generally found in inherited or sporadic neurodegenerative diseases and is believed to be involved in the pathophysiological process of these diseases. Commonly seen types of mitochondrial dysfunction in neurodegenerative diseases include excessive free radical generation, lowered ATP production, mitochondrial permeability transition, mitochondrial DNA lesions, perturbed mitochondrial dynamics and apoptosis. Mitochondrial medicine as an emerging therapeutic strategy targeted to mitochondrial dysfunction in neurodegenerative diseases has been proven to be of value, though this area of research is still at in its early stage. In this article, we report on recent progress in the development of several mitochondrial therapies including antioxidants, blockade of mitochondrial permeability transition, and mitochondrial gene therapy as evidence that mitochondrial medicine has promise in the treatment of neurodegenerative diseases. 2010 Elsevier Ltd. All rights reserved.

  16. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor

    PubMed Central

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-01-01

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3′-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF. PMID:25431021

  17. Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders

    PubMed Central

    2013-01-01

    Background Subterranean faunal radiations can result in complex patterns of morphological divergence involving both convergent or parallel phenotypic evolution and cryptic species diversity. Salamanders of the genus Eurycea in central Texas provide a particularly challenging example with respect to phylogeny reconstruction, biogeography and taxonomy. These predominantly aquatic species inhabit karst limestone aquifers and spring outflows, and exhibit a wide range of morphological and genetic variation. We extensively sampled spring and cave populations of six Eurycea species within this group (eastern Blepsimolge clade), to reconstruct their phylogenetic and biogeographic history using mtDNA and examine patterns and origins of cave- and surface-associated morphological variation. Results Genetic divergence is generally low, and many populations share ancestral haplotypes and/or show evidence of introgression. This pattern likely indicates a recent radiation coupled with a complex history of intermittent connections within the aquatic karst system. Cave populations that exhibit the most extreme troglobitic morphologies show no or very low divergence from surface populations and are geographically interspersed among them, suggesting multiple instances of rapid, parallel phenotypic evolution. Morphological variation is diffuse among cave populations; this is in contrast to surface populations, which form a tight cluster in morphospace. Unexpectedly, our analyses reveal two distinct and previously unrecognized morphological groups encompassing multiple species that are not correlated with spring or cave habitat, phylogeny or geography, and may be due to developmental plasticity. Conclusions The evolutionary history of this group of spring- and cave-dwelling salamanders reflects patterns of intermittent isolation and gene flow influenced by complex hydrogeologic dynamics that are characteristic of karst regions. Shallow genetic divergences among several species

  18. Mitochondrial Diseases

    MedlinePlus

    ... disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are ... cells and cause damage. The symptoms of mitochondrial disease can vary. It depends on how many mitochondria ...

  19. A novel mitochondrial carrier protein Mme1 acts as a yeast mitochondrial magnesium exporter.

    PubMed

    Cui, Yixian; Zhao, Shanke; Wang, Juan; Wang, Xudong; Gao, Bingquan; Fan, Qiangwang; Sun, Fei; Zhou, Bing

    2015-03-01

    The homeostasis of magnesium (Mg2+), an abundant divalent cation indispensable for many biological processes including mitochondrial functions, is underexplored. Previously, two mitochondrial Mg2+ importers, Mrs2 and Lpe10, were characterized for mitochondrial Mg2+ uptake. We now show that mitochondrial Mg2+ homeostasis is accurately controlled through the combined effects of previously known importers and a novel exporter, Mme1 (mitochondrial magnesium exporter 1). Mme1 belongs to the mitochondrial carrier family and was isolated for its mutation that is able to suppress the mrs2Δ respiration defect. Deletion of MME1 significantly increased steady-state mitochondrial Mg2+ concentration, while overexpression decreased it. Measurements of Mg2+ exit from proteoliposomes reconstituted with purified Mme1 provided definite evidence for Mme1 as an Mg2+ exporter. Our studies identified, for the first time, a mitochondrial Mg2+ exporter that works together with mitochondrial importers to ensure the precise control of mitochondrial Mg2+ homeostasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    PubMed

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  1. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome

    PubMed Central

    2017-01-01

    Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology. PMID:28680532

  2. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    PubMed

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  3. Thriving in the Cold: Glacial Expansion and Post-Glacial Contraction of a Temperate Terrestrial Salamander (Plethodon serratus)

    PubMed Central

    Newman, Catherine E.; Austin, Christopher C.

    2015-01-01

    The dynamic geologic history of the southeastern United States has played a major role in shaping the geographic distributions of amphibians in the region. In the phylogeographic literature, the predominant pattern of distribution shifts through time of temperate species is one of contraction during glacial maxima and persistence in refugia. However, the diverse biology and ecology of amphibian species suggest that a “one-size-fits-all” model may be inappropriate. Nearly 10% of amphibian species in the region have a current distribution comprised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia identified for other temperate taxa in the literature. Here, we apply genetics and spatially explicit climate analyses to test the hypothesis that the disjunct regions of these species ranges are climatic refugia for species that were more broadly distributed during glacial maxima. We use the salamander Plethodon serratus as a model, as its range consists of four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is comprised of multiple genetic lineages, and the four regions are not reciprocally monophyletic. The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleodistribution modeling results suggest that P. serratus expanded from the Appalachians during the cooler Last Glacial Maximum and has since been restricted to its current disjunct distribution by a warming climate. These data reject the universal applicability of the glacial contraction model to temperate taxa and reiterate the importance of considering the natural history of individual species. PMID:26132077

  4. Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology.

    PubMed

    Kastaniotis, Alexander J; Autio, Kaija J; Kerätär, Juha M; Monteuuis, Geoffray; Mäkelä, Anne M; Nair, Remya R; Pietikäinen, Laura P; Shvetsova, Antonina; Chen, Zhijun; Hiltunen, J Kalervo

    2017-01-01

    Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the "classic" cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Disrupting mitochondrial Ca2+ homeostasis causes tumor-selective TRAIL sensitization through mitochondrial network abnormalities.

    PubMed

    Ohshima, Yohei; Takata, Natsuhiko; Suzuki-Karasaki, Miki; Yoshida, Yukihiro; Tokuhashi, Yasuaki; Suzuki-Karasaki, Yoshihiro

    2017-10-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising anticancer agent with high tumor-selective cytotoxicity. The congenital and acquired resistance of some cancer types including malignant melanoma and osteosarcoma impede the current TRAIL therapy of these cancers. Since fine tuning of the intracellular Ca2+ level is essential for cell function and survival, Ca2+ dynamics could be a promising target for cancer treatment. Recently, we demonstrated that mitochondrial Ca2+ removal increased TRAIL efficacy toward malignant melanoma and osteosarcoma cells. Here we report that mitochondrial Ca2+ overload leads to tumor-selective sensitization to TRAIL cytotoxicity. Treatment with the mitochondrial Na+/Ca2+ exchanger inhibitor CGP-37157 and oxidative phosphorylation inhibitor antimycin A and FCCP resulted in a rapid and persistent mitochondrial Ca2+ rise. These agents also increased TRAIL sensitivity in a tumor-selective manner with a switching from apoptosis to a nonapoptotic cell death. Moreover, we found that mitochondrial Ca2+ overload led to increased mitochondrial fragmentation, while mitochondrial Ca2+ removal resulted in mitochondrial hyperfusion. Regardless of their reciprocal actions on the mitochondrial dynamics, both interventions commonly exacerbated TRAIL-induced mitochondrial network abnormalities. These results expand our previous study and suggest that an appropriate level of mitochondrial Ca2+ is essential for maintaining the mitochondrial dynamics and the survival of these cells. Thus, disturbing mitochondrial Ca2+ homeostasis may serve as a promising approach to overcome the TRAIL resistance of these cancers with minimally compromising the tumor-selectivity.

  6. United Mitochondrial Disease Foundation

    MedlinePlus

    Facebook Twitter Google+ Youtube Vimeo Instagram Email Menu Understanding Mitochondrial Disease What is Mito? What is Mitochondrial Disease? Types of Mitochondrial Disease Possible Symptoms Links to Other ...

  7. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    PubMed

    de Moura, Michelle Barbi; Uppala, Radha; Zhang, Yuxun; Van Houten, Bennett; Goetzman, Eric S

    2014-01-01

    SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  8. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  9. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    Organelle biogenesis is concomitant to organelle inheritance during cell division. It is necessary that organelles double their size and divide to give rise to two identical daughter cells. Mitochondrial biogenesis occurs by growth and division of pre-existing organelles and is temporally coordinated with cell cycle events [1]. However, mitochondrial biogenesis is not only produced in association with cell division. It can be produced in response to an oxidative stimulus, to an increase in the energy requirements of the cells, to exercise training, to electrical stimulation, to hormones, during development, in certain mitochondrial diseases, etc. [2]. Mitochondrial biogenesis is therefore defined as the process via which cells increase their individual mitochondrial mass [3]. Recent discoveries have raised attention to mitochondrial biogenesis as a potential target to treat diseases which up to date do not have an efficient cure. Mitochondria, as the major ROS producer and the major antioxidant producer exert a crucial role within the cell mediating processes such as apoptosis, detoxification, Ca2+ buffering, etc. This pivotal role makes mitochondria a potential target to treat a great variety of diseases. Mitochondrial biogenesis can be pharmacologically manipulated. This issue tries to cover a number of approaches to treat several diseases through triggering mitochondrial biogenesis. It contains recent discoveries in this novel field, focusing on advanced mitochondrial therapies to chronic and degenerative diseases, mitochondrial diseases, lifespan extension, mitohormesis, intracellular signaling, new pharmacological targets and natural therapies. It contributes to the field by covering and gathering the scarcely reported pharmacological approaches in the novel and promising field of mitochondrial biogenesis. There are several diseases that have a mitochondrial origin such as chronic progressive external ophthalmoplegia (CPEO) and the Kearns- Sayre syndrome (KSS

  10. Mitochondrial shaping cuts.

    PubMed

    Escobar-Henriques, Mafalda; Langer, Thomas

    2006-01-01

    A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.

  11. T-cell-restricted intracellular antigen 1 facilitates mitochondrial fragmentation by enhancing the expression of mitochondrial fission factor

    PubMed Central

    Tak, Hyosun; Eun, Jung Woo; Kim, Jihye; Park, So Jung; Kim, Chongtae; Ji, Eunbyul; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Lee, Kyungbun; Kim, Wook; Nam, Suk Woo; Lee, Eun Kyung

    2017-01-01

    Mitochondrial morphology is dynamically regulated by the formation of small fragmented units or interconnected mitochondrial networks, and this dynamic morphological change is a pivotal process in normal mitochondrial function. In the present study, we identified a novel regulator responsible for the regulation of mitochondrial dynamics. An assay using CHANG liver cells stably expressing mitochondrial-targeted yellow fluorescent protein (mtYFP) and a group of siRNAs revealed that T-cell intracellular antigen protein-1 (TIA-1) affects mitochondrial morphology by enhancing mitochondrial fission. The function of TIA-1 in mitochondrial dynamics was investigated through various biological approaches and expression analysis in human specimen. Downregulation of TIA-1-enhanced mitochondrial elongation, whereas ectopic expression of TIA-1 resulted in mitochondria fragmentation. In addition, TIA-1 increased mitochondrial activity, including the rate of ATP synthesis and oxygen consumption. Further, we identified mitochondrial fission factor (MFF) as a direct target of TIA-1, and showed that TIA-1 promotes mitochondrial fragmentation by enhancing MFF translation. TIA-1 null cells had a decreased level of MFF and less mitochondrial Drp1, a critical factor for mitochondrial fragmentation, thereby enhancing mitochondrial elongation. Taken together, our results indicate that TIA-1 is a novel factor that facilitates mitochondrial dynamics by enhancing MFF expression and contributes to mitochondrial dysfunction. PMID:27612012

  12. Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering

    PubMed Central

    Shiba-Fukushima, Kahori; Arano, Taku; Matsumoto, Gen; Inoshita, Tsuyoshi; Yoshida, Shigeharu; Ishihama, Yasushi; Ryu, Kwon-Yul; Nukina, Nobuyuki; Hattori, Nobutaka; Imai, Yuzuru

    2014-01-01

    The kinase PINK1 and the E3 ubiquitin (Ub) ligase Parkin participate in mitochondrial quality control. The phosphorylation of Ser65 in Parkin's ubiquitin-like (UBl) domain by PINK1 stimulates Parkin activation and translocation to damaged mitochondria, which induces mitophagy generating polyUb chain. However, Parkin Ser65 phosphorylation is insufficient for Parkin mitochondrial translocation. Here we report that Ser65 in polyUb chain is also phosphorylated by PINK1, and that phosphorylated polyUb chain on mitochondria tethers Parkin at mitochondria. The expression of Tom70MTS-4xUb SE, which mimics phospho-Ser65 polyUb chains on the mitochondria, activated Parkin E3 activity and its mitochondrial translocation. An E3-dead form of Parkin translocated to mitochondria with reduced membrane potential in the presence of Tom70MTS-4xUb SE, whereas non-phospho-polyUb mutant Tom70MTS-4xUb SA abrogated Parkin translocation. Parkin binds to the phospho-polyUb chain through its RING1-In-Between-RING (IBR) domains, but its RING0-linker is also required for mitochondrial translocation. Moreover, the expression of Tom70MTS-4xUb SE improved mitochondrial degeneration in PINK1-deficient, but not Parkin-deficient, Drosophila. Our study suggests that the phosphorylation of mitochondrial polyUb by PINK1 is implicated in both Parkin activation and mitochondrial translocation, predicting a chain reaction mechanism of mitochondrial phospho-polyUb production by which rapid translocation of Parkin is achieved. PMID:25474007

  13. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com; Felhi, Rahma; Tabebi, Mouna

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes ofmore » complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.« less

  14. Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion

    PubMed Central

    Papanicolaou, Kyriakos N.; Phillippo, Matthew M.

    2012-01-01

    Mitofusins (Mfn-1 and Mfn-2) are transmembrane proteins that bind and hydrolyze guanosine 5′-triphosphate to bring about the merging of adjacent mitochondrial membranes. This event is necessary for mitochondrial fusion, a biological process that is critical for organelle function. The broad effects of mitochondrial fusion on cell bioenergetics have been extensively studied, whereas the local effects of mitofusin activity on the structure and integrity of the fusing mitochondrial membranes have received relatively little attention. From the study of fusogenic proteins, theoretical models, and simulations, it has been noted that the fusion of biological membranes is associated with local perturbations on the integrity of the membrane that present in the form of lipidic holes which open on the opposing bilayers. These lipidic holes represent obligate intermediates that make the fusion process thermodynamically more favorable and at the same time induce leakage to the fusing membranes. In this perspectives article we present the relevant evidence selected from a spectrum of membrane fusion/leakage models and attempt to couple this information with observations conducted with cardiac myocytes or mitochondria deficient in Mfn-1 and Mfn-2. More specifically, we argue in favor of a situation whereby mitochondrial fusion in cardiac myocytes is coupled with outer mitochondrial membrane destabilization that is opportunistically employed during the process of mitochondrial permeability transition. We hope that these insights will initiate research on this new hypothesis of mitochondrial permeability transition regulation, a poorly understood mitochondrial function with significant consequences on myocyte survival. PMID:22636681

  15. Nicotinamide Riboside and Mitochondrial Biogenesis

    ClinicalTrials.gov

    2018-03-15

    Mitochondrial Diseases; Mitochondrial Myopathies; Progressive External Ophthalmoplegia; Progressive Ophthalmoplegia; Progressive; Ophthalmoplegia, External; Mitochondria DNA Deletion; MELAS; Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes; Mitochondrial Encephalopathy, Lactic Acidosis and Stroke-Like Episodes (MELAS Syndrome)

  16. Zidovudine Induces Downregulation of Mitochondrial Deoxynucleoside Kinases: Implications for Mitochondrial Toxicity of Antiviral Nucleoside Analogs

    PubMed Central

    Sun, Ren; Eriksson, Staffan

    2014-01-01

    Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial phosphorylation of deoxynucleosides in the synthesis of the DNA precursors required for mitochondrial DNA (mtDNA) replication and are essential for mitochondrial function. Antiviral nucleosides are known to cause toxic mitochondrial side effects. Here, we examined the effects of 3′-azido-2′,3′-dideoxythymidine (AZT) (zidovudine) on mitochondrial TK2 and dGK levels and found that AZT treatment led to downregulation of mitochondrial TK2 and dGK in U2OS cells, whereas cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) levels were not affected. The AZT effects on mitochondrial TK2 and dGK were similar to those of oxidants (e.g., hydrogen peroxide); therefore, we examined the oxidative effects of AZT. We found a modest increase in cellular reactive oxygen species (ROS) levels in the AZT-treated cells. The addition of uridine to AZT-treated cells reduced ROS levels and protein oxidation and prevented the degradation of mitochondrial TK2 and dGK. In organello studies indicated that the degradation of mitochondrial TK2 and dGK is a mitochondrial event. These results suggest that downregulation of mitochondrial TK2 and dGK may lead to decreased mitochondrial DNA precursor pools and eventually mtDNA depletion, which has significant implications for the regulation of mitochondrial nucleotide biosynthesis and for antiviral therapy using nucleoside analogs. PMID:25182642

  17. Habitat utilization, density, and growth of steelhead trout, coho salmon, and Pacific giant salamander in relation to habitat types in a small coastal redwood stream

    Treesearch

    Michael Roy Lau

    1994-01-01

    Abstract - Small Pacific northwestern coastal streams are nurseries for populations of young of the year coho salmon, steelhead trout, and the Pacific giant salamander larvae. Previous field studies suggest that the habitats of the juveniles of these species were similar to one another. Few habitat utilization studies focus on the juvenile stages of these species...

  18. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed themore » expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.« less

  19. The clinical maze of mitochondrial neurology

    PubMed Central

    DiMauro, Salvatore; Schon, Eric A.; Carelli, Valerio; Hirano, Michio

    2014-01-01

    Mitochondrial diseases involve the respiratory chain, which is under the dual control of nuclear and mitochondrial DNA (mtDNA). The complexity of mitochondrial genetics provides one explanation for the clinical heterogeneity of mitochondrial diseases, but our understanding of disease pathogenesis remains limited. Classification of Mendelian mitochondrial encephalomyopathies has been laborious, but whole-exome sequencing studies have revealed unexpected molecular aetiologies for both typical and atypical mitochondrial disease phenotypes. Mendelian mitochondrial defects can affect five components of mitochondrial biology: subunits of respiratory chain complexes (direct hits); mitochondrial assembly proteins; mtDNA translation; phospholipid composition of the inner mitochondrial membrane; or mitochondrial dynamics. A sixth category—defects of mtDNA maintenance—combines features of Mendelian and mitochondrial genetics. Genetic defects in mitochondrial dynamics are especially important in neurology as they cause optic atrophy, hereditary spastic paraplegia, and Charcot–Marie–Tooth disease. Therapy is inadequate and mostly palliative, but promising new avenues are being identified. Here, we review current knowledge on the genetics and pathogenesis of the six categories of mitochondrial disorders outlined above, focusing on their salient clinical manifestations and highlighting novel clinical entities. An outline of diagnostic clues for the various forms of mitochondrial disease, as well as potential therapeutic strategies, is also discussed. PMID:23835535

  20. Evolutionary implications of mitochondrial genetic variation: mitochondrial genetic effects on OXPHOS respiration and mitochondrial quantity change with age and sex in fruit flies.

    PubMed

    Wolff, J N; Pichaud, N; Camus, M F; Côté, G; Blier, P U; Dowling, D K

    2016-04-01

    The ancient acquisition of the mitochondrion into the ancestor of modern-day eukaryotes is thought to have been pivotal in facilitating the evolution of complex life. Mitochondria retain their own diminutive genome, with mitochondrial genes encoding core subunits involved in oxidative phosphorylation. Traditionally, it was assumed that there was little scope for genetic variation to accumulate and be maintained within the mitochondrial genome. However, in the past decade, mitochondrial genetic variation has been routinely tied to the expression of life-history traits such as fertility, development and longevity. To examine whether these broad-scale effects on life-history trait expression might ultimately find their root in mitochondrially mediated effects on core bioenergetic function, we measured the effects of genetic variation across twelve different mitochondrial haplotypes on respiratory capacity and mitochondrial quantity in the fruit fly, Drosophila melanogaster. We used strains of flies that differed only in their mitochondrial haplotype, and tested each sex separately at two different adult ages. Mitochondrial haplotypes affected both respiratory capacity and mitochondrial quantity. However, these effects were highly context-dependent, with the genetic effects contingent on both the sex and the age of the flies. These sex- and age-specific genetic effects are likely to resonate across the entire organismal life-history, providing insights into how mitochondrial genetic variation may contribute to sex-specific trajectories of life-history evolution. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  1. Individual (co)variation in standard metabolic rate, feeding rate, and exploratory behavior in wild-caught semiaquatic salamanders.

    PubMed

    Gifford, Matthew E; Clay, Timothy A; Careau, Vincent

    2014-01-01

    Repeatability is an important concept in evolutionary analyses because it provides information regarding the benefit of repeated measurements and, in most cases, a putative upper limit to heritability estimates. Repeatability (R) of different aspects of energy metabolism and behavior has been demonstrated in a variety of organisms over short and long time intervals. Recent research suggests that consistent individual differences in behavior and energy metabolism might covary. Here we present new data on the repeatability of body mass, standard metabolic rate (SMR), voluntary exploratory behavior, and feeding rate in a semiaquatic salamander and ask whether individual variation in behavioral traits is correlated with individual variation in metabolism on a whole-animal basis and after conditioning on body mass. All measured traits were repeatable, but the repeatability estimates ranged from very high for body mass (R = 0.98), to intermediate for SMR (R = 0.39) and food intake (R = 0.58), to low for exploratory behavior (R = 0.25). Moreover, repeatability estimates for all traits except body mass declined over time (i.e., from 3 to 9 wk), although this pattern could be a consequence of the relatively low sample size used in this study. Despite significant repeatability in all traits, we find little evidence that behaviors are correlated with SMR at the phenotypic and among-individual levels when conditioned on body mass. Specifically, the phenotypic correlations between SMR and exploratory behavior were negative in all trials but significantly so in one trial only. Salamanders in this study showed individual variation in how their exploratory behavior changed across trials (but not body mass, SMR, and feed intake), which might have contributed to observed changing correlations across trials.

  2. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.

    PubMed

    Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu

    2012-07-15

    Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that

  3. Staphylococcus aureus Sepsis Induces Early Renal Mitochondrial DNA Repair and Mitochondrial Biogenesis in Mice

    PubMed Central

    Bartz, Raquel R.; Fu, Ping; Suliman, Hagir B.; Crowley, Stephen D.; MacGarvey, Nancy Chou; Welty-Wolf, Karen; Piantadosi, Claude A.

    2014-01-01

    Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection. PMID:24988481

  4. Sodium-bicarbonate cotransport in retinal Müller (glial) cells of the salamander.

    PubMed

    Newman, E A

    1991-12-01

    An electrogenic Na+/HCO3- cotransport system was studied in freshly dissociated Müller cells of the salamander retina. Cotransporter currents were recorded from isolated cells using the whole-cell, voltage-clamp technique following the block of K+ conductance with external Ba2+ and internal Cs+. At constant pHo, an outward current was evoked when extracellular HCO3- concentration was raised by pressure ejecting a HCO3(-)-buffered solution onto the surface of cells bathed in nominally HCO3(-)-free solution. The HCO3(-)-evoked outward current was reduced to 4.4% of control by 0.5 mM DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonate), to 28.8% of control by 2 mM DNDS (4,4'-dinitrostilbene-2,2'-disulfonate), and to 28.4% of control by 2 mM harmaline. Substitution of choline for Na+ in bath and ejection solutions reduced the response to 1.3% of control. Bicarbonate-evoked currents of normal magnitude were recorded when methane sulfonate was substituted for Cl- in bath, ejection, and intracellular solutions. Similarly, an outward current was evoked when extracellular Na+ concentration was raised in the presence of HCO3-. The Na(+)-evoked response was reduced to 16.2% of control by 2 mM DNDS and was abolished by removal of HCO3- from bath and ejection solutions. Taken together, these results (block by stilbenes and harmaline, HCO3- and Na+ dependence, Cl- independence) indicate that salamander Müller cells possess an electrogenic Na+/HCO3- cotransport system. Na+/HCO3- cotransporter sites were localized primarily at the endfoot region of Müller cells. Ejection of HCO3- onto the endfoot evoked outward currents 10 times larger than currents evoked by ejections onto the opposite (distal) end of the cell. The reversal potential of the cotransporter was determined by DNDS block of cotransport current. In the absence of a transmembrane HCO3- gradient, the reversal potential varied systematically as a function of the transmembrane Na+ gradient. The reversal potential was

  5. Mitochondrial lipids in neurodegeneration.

    PubMed

    Aufschnaiter, Andreas; Kohler, Verena; Diessl, Jutta; Peselj, Carlotta; Carmona-Gutierrez, Didac; Keller, Walter; Büttner, Sabrina

    2017-01-01

    Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.

  6. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  7. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance

    PubMed Central

    Fazakerley, Daniel J; Chaudhuri, Rima; Yang, Pengyi; Maghzal, Ghassan J; Thomas, Kristen C; Krycer, James R; Humphrey, Sean J; Parker, Benjamin L; Fisher-Wellman, Kelsey H; Meoli, Christopher C; Hoffman, Nolan J; Diskin, Ciana; Burchfield, James G; Cowley, Mark J; Kaplan, Warren; Modrusan, Zora; Kolumam, Ganesh; Yang, Jean YH; Chen, Daniel L; Samocha-Bonet, Dorit; Greenfield, Jerry R; Hoehn, Kyle L

    2018-01-01

    Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance. PMID:29402381

  8. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS-mediated cardiomyocyte hypertrophy.

    PubMed

    Tigchelaar, Wardit; Yu, Hongjuan; de Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Silljé, Herman H W

    2015-01-15

    Recently, a locus at the mitochondrial exo/endonuclease EXOG gene, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and hypertrophy in cardiomyocytes. Depletion of EXOG in primary neonatal rat ventricular cardiomyocytes (NRVCs) induced a marked increase in cardiomyocyte hypertrophy. Depletion of EXOG, however, did not result in loss of mitochondrial DNA integrity. Although EXOG depletion did not induce fetal gene expression and common hypertrophy pathways were not activated, a clear increase in ribosomal S6 phosphorylation was observed, which readily explains increased protein synthesis. With the use of a Seahorse flux analyzer, it was shown that the mitochondrial oxidative consumption rate (OCR) was increased 2.4-fold in EXOG-depleted NRVCs. Moreover, ATP-linked OCR was 5.2-fold higher. This increase was not explained by mitochondrial biogenesis or alterations in mitochondrial membrane potential. Western blotting confirmed normal levels of the oxidative phosphorylation (OXPHOS) complexes. The increased OCR was accompanied by a 5.4-fold increase in mitochondrial ROS levels. These increased ROS levels could be normalized with specific mitochondrial ROS scavengers (MitoTEMPO, mnSOD). Remarkably, scavenging of excess ROS strongly attenuated the hypertrophic response. In conclusion, loss of EXOG affects normal mitochondrial function resulting in increased mitochondrial respiration, excess ROS production, and cardiomyocyte hypertrophy. Copyright © 2015 the American Physiological Society.

  9. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbier, Vincent; Lang, Diane; Valois, Sierra

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associatedmore » with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.« less

  10. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    PubMed

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  11. Mitochondrial Dynamics in Diabetes

    PubMed Central

    Galloway, Chad A.; Jhun, Bong Sook; Yu, Tianzheng

    2011-01-01

    Abstract Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emerging evidence suggests that mitochondrial dynamics plays an important role in metabolism–secretion coupling in pancreatic β-cells as well as complications of diabetes. This review describes an overview of mechanistic and functional aspects of mitochondrial fission and fusion, and comments on the recent advances connecting mitochondrial dynamics with diabetes and diabetic complications. Antioxid. Redox Signal. 14, 439–457. PMID:20518704

  12. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage.

    PubMed

    Jiang, Dan; Gao, Fei; Zhang, Yuelin; Wong, David Sai Hung; Li, Qing; Tse, Hung-Fat; Xu, Goufeng; Yu, Zhendong; Lian, Qizhou

    2016-11-10

    Recent studies have demonstrated that mesenchymal stem cells (MSCs) can donate mitochondria to airway epithelial cells and rescue mitochondrial damage in lung injury. We sought to determine whether MSCs could donate mitochondria and protect against oxidative stress-induced mitochondrial dysfunction in the cornea. Co-culturing of MSCs and corneal epithelial cells (CECs) indicated that the efficiency of mitochondrial transfer from MSCs to CECs was enhanced by Rotenone (Rot)-induced oxidative stress. The efficient mitochondrial transfer was associated with increased formation of tunneling nanotubes (TNTs) between MSCs and CECs, tubular connections that allowed direct intercellular communication. Separation of MSCs and CECs by a transwell culture system revealed no mitochiondrial transfer from MSCs to CECs and mitochondrial function was impaired when CECs were exposed to Rot challenge. CECs with or without mitochondrial transfer from MSCs displayed a distinct survival capacity and mitochondrial oxygen consumption rate. Mechanistically, increased filopodia outgrowth in CECs for TNT formation was associated with oxidative inflammation-activated NFκB/TNFαip2 signaling pathways that could be attenuated by reactive oxygen species scavenger N-acetylcysteine (NAC) treatment. Furthermore, MSCs grown on a decellularized porcine corneal scaffold were transplanted onto an alkali-injured eye in a rabbit model. Enhanced corneal wound healing was evident following healthy MSC scaffold transplantation. And transferred mitochondria was detected in corneal epithelium. In conclusion, mitochondrial transfer from MSCs provides novel protection for the cornea against oxidative stress-induced mitochondrial damage. This therapeutic strategy may prove relevant for a broad range of mitochondrial diseases.

  13. Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County Study on Memory Health and Aging.

    PubMed

    Ridge, Perry G; Maxwell, Taylor J; Foutz, Spencer J; Bailey, Matthew H; Corcoran, Christopher D; Tschanz, JoAnn T; Norton, Maria C; Munger, Ronald G; O'Brien, Elizabeth; Kerber, Richard A; Cawthon, Richard M; Kauwe, John S K

    2014-01-01

    The mitochondria are essential organelles and are the location of cellular respiration, which is responsible for the majority of ATP production. Each cell contains multiple mitochondria, and each mitochondrion contains multiple copies of its own circular genome. The ratio of mitochondrial genomes to nuclear genomes is referred to as mitochondrial copy number. Decreases in mitochondrial copy number are known to occur in many tissues as people age, and in certain diseases. The regulation of mitochondrial copy number by nuclear genes has been studied extensively. While mitochondrial variation has been associated with longevity and some of the diseases known to have reduced mitochondrial copy number, the role that the mitochondrial genome itself has in regulating mitochondrial copy number remains poorly understood. We analyzed the complete mitochondrial genomes from 1007 individuals randomly selected from the Cache County Study on Memory Health and Aging utilizing the inferred evolutionary history of the mitochondrial haplotypes present in our dataset to identify sequence variation and mitochondrial haplotypes associated with changes in mitochondrial copy number. Three variants belonging to mitochondrial haplogroups U5A1 and T2 were significantly associated with higher mitochondrial copy number in our dataset. We identified three variants associated with higher mitochondrial copy number and suggest several hypotheses for how these variants influence mitochondrial copy number by interacting with known regulators of mitochondrial copy number. Our results are the first to report sequence variation in the mitochondrial genome that causes changes in mitochondrial copy number. The identification of these variants that increase mtDNA copy number has important implications in understanding the pathological processes that underlie these phenotypes.

  14. N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting.

    PubMed

    Lin, Pei-Hsuan; Lin, Hsien-Yi; Kuo, Cheng-Chin; Yang, Liang-Tung

    2015-06-24

    The epidermis forms a critical barrier that is maintained by orchestrated programs of proliferation, differentiation, and cell death. Gene mutations that disturb this turnover process may cause skin diseases. Human GASDERMIN A (GSDMA) is frequently silenced in gastric cancer cell lines and its overexpression has been reported to induce apoptosis. GSDMA has also been linked with airway hyperresponsiveness in genetic association studies. The function of GSDMA in the skin was deduced by dominant mutations in mouse gasdermin A3 (Gsdma3), which caused skin inflammation and hair loss. However, the mechanism for the autosomal dominance of Gsdma3 mutations and the mode of Gsdma3's action remain unanswered. We demonstrated a novel function of Gsdma3 in modulating mitochondrial oxidative stress. We showed that Gsdma3 is regulated by intramolecular fold-back inhibition, which is disrupted by dominant mutations in the C-terminal domain. The unmasked N-terminal domain of Gsdma3 associates with Hsp90 and is delivered to mitochondrial via mitochondrial importer receptor Tom70, where it interacts with the mitochondrial chaperone Trap1 and causes increased production of mitochondrial reactive oxygen species (ROS), dissipation of mitochondrial membrane potential, and mitochondrial permeability transition (MPT). Overexpression of the C-terminal domain of Gsdma3 as well as pharmacological interventions of mitochondrial translocation, ROS production, and MPT pore opening alleviate the cell death induced by Gsdma3 mutants. Our results indicate that the genetic mutations in the C-terminal domain of Gsdma3 are gain-of-function mutations which unmask the N-terminal functional domain of Gsdma3. Gsdma3 regulates mitochondrial oxidative stress through mitochondrial targeting. Since mitochondrial ROS has been shown to promote epidermal differentiation, we hypothesize that Gsdma3 regulates context-dependent response of keratinocytes to differentiation and cell death signals by impinging on

  15. Powering Up Mitochondrial Functions to Treat Mitochondrial Disease

    DTIC Science & Technology

    2017-10-01

    derived hormone whose serum level correlates positively with the severity of mitochondrial cardiomyopathy (recently published with DOD grant support...o Pei lab has recently discovered that GDF15 is a heart-derived hormone that regulates body growth. Circulating GDF15 level correlates positively...Circulating GDF15 level correlates positively with the severity of mitochondrial cardiomyopathy and can be used as a serum biomarker for our 5

  16. Population genetic structure of critically endangered salamander (Hynobius amjiensis) in China: recommendations for conservation.

    PubMed

    Yang, J; Chen, C S; Chen, S H; Ding, P; Fan, Z Y; Lu, Y W; Yu, L P; Lin, H D

    2016-06-10

    Amji's salamander (Hynobius amjiensis) is a critically endangered species (IUCN Red List), which is endemic to mainland China. In the present study, five haplotypes were genotyped for the mtDNA cyt b gene in 45 specimens from three populations. Relatively low levels of haplotype diversity (h = 0.524) and nucleotide diversity (π = 0.00532) were detected. Analyses of the phylogenic structure of H. amjiensis showed no evidence of major geographic partitions or substantial barriers to historical gene flow throughout the species' range. Two major phylogenetic haplotype groups were revealed, and were estimated to have diverged about 1.262 million years ago. Mismatch distribution analysis, neutrality tests, and Bayesian skyline plots revealed no evidence of dramatic changes in the effective population size. According to the SAMOVA and STRUCTURE analyses, H. amjiensis should be regarded as two different management units.

  17. Pharmacological approaches to restore mitochondrial function

    PubMed Central

    Andreux, Pénélope A.; Houtkooper, Riekelt H.; Auwerx, Johan

    2014-01-01

    Mitochondrial dysfunction is not only a hallmark of rare inherited mitochondrial disorders, but is also implicated in age-related diseases, including those that affect the metabolic and nervous system, such as type 2 diabetes and Parkinson’s disease. Numerous pathways maintain and/or restore proper mitochondrial function, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and the mitochondrial unfolded protein response. New and powerful phenotypic assays in cell-based models, as well as multicellular organisms, have been developed to explore these different aspects of mitochondrial function. Modulating mitochondrial function has therefore emerged as an attractive therapeutic strategy for a range of diseases, which has spurred active drug discovery efforts in this area. PMID:23666487

  18. Relating hybrid advantage and genome replacement in unisexual salamanders.

    PubMed

    Charney, Noah D

    2012-05-01

    Unisexual vertebrates are model systems for understanding the evolution of sex. Many predominantly clonal lineages allow occasional genetic recombination, which may be sufficient to avoid the accumulation of deleterious mutations and parasites. Introgression of paternal DNA into an all-female lineage represents a one-way flow of genetic material. Over many generations, this could result in complete replacement of the unisexual genomes by those of the donor species. The process of genome replacement may be counteracted by contemporary dispersal or by positive selection on hybrid nuclear genomes in ecotones. I present a conceptual model that relates nuclear genome replacement, positive selection on hybrids and biogeography in unisexual systems. I execute an individual-based simulation of the fate of hybrid genotypes in contact with a single host species. I parameterize these models for unisexual salamanders in the Ambystoma genus, for which the frequency of genome replacement has been a source of ongoing debate. I find that, if genome replacement occurs at a rate greater than 1/10,000 in Ambystoma, then there must be compensating positive selection in order to maintain observed levels of hybrid nuclei. Future researchers studying unisexual systems may use this framework as a guide to evaluating the hybrid superiority hypothesis. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.

  19. Rangewide landscape genetics of an endemic Pacific northwestern salamander.

    PubMed

    Trumbo, Daryl R; Spear, Stephen F; Baumsteiger, Jason; Storfer, Andrew

    2013-03-01

    A species' genetic structure often varies in response to ecological and landscape processes that differ throughout the species' geographic range, yet landscape genetics studies are rarely spatially replicated. The Cope's giant salamander (Dicamptodon copei) is a neotenic, dispersal-limited amphibian with a restricted geographic range in the Pacific northwestern USA. We investigated which landscape factors affect D. copei gene flow in three regions spanning the species' range, which vary in climate, landcover and degree of anthropogenic disturbance. Least cost paths and Circuitscape resistance analyses revealed that gene flow patterns vary across the species' range, with unique combinations of landscape variables affecting gene flow in different regions. Populations in the northern coastal portions of the range had relatively high gene flow, largely facilitated by stream and river networks. Near the southeastern edge of the species' range, gene flow was more restricted overall, with relatively less facilitation by streams and more limitation by heat load index and fragmented forest cover. These results suggested that the landscape is more difficult for individuals to disperse through at the southeastern edge of the species' range, with terrestrial habitat desiccation factors becoming more limiting to gene flow. We suggest that caution be used when attempting to extrapolate landscape genetic models and conservation measures from one portion of a species' range to another. © 2013 Blackwell Publishing Ltd.

  20. The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats.

    PubMed

    Fouret, Gilles; Tolika, Evanthia; Lecomte, Jérôme; Bonafos, Béatrice; Aoun, Manar; Murphy, Michael P; Ferreri, Carla; Chatgilialoglu, Chryssostomos; Dubreucq, Eric; Coudray, Charles; Feillet-Coudray, Christine

    2015-10-01

    Cardiolipin (CL), a unique mitochondrial phospholipid, plays a key role in several processes of mitochondrial bioenergetics as well as in mitochondrial membrane stability and dynamics. The present study was designed to determine the effect of MitoQ, a mitochondrial-targeted antioxidant, on the content of liver mitochondrial membrane phospholipids, in particular CL, and its fatty acid composition in obesogenic diet-fed rats. To do this, twenty-four 6week old male Sprague Dawley rats were randomized into three groups of 8 animals and fed for 8weeks with either a control diet, a high fat diet (HF), or a HF diet with MitoQ (HF+MitoQ). Phospholipid classes and fatty acid composition were assayed by chromatographic methods in liver and liver mitochondria. Mitochondrial bioenergetic function was also evaluated. While MitoQ had no or slight effects on total liver fatty acid composition and phospholipid classes and their fatty acid composition, it had major effects on liver mitochondrial phospholipids and mitochondrial function. Indeed, MitoQ both increased CL synthase gene expression and CL content of liver mitochondria and increased 18:2n-6 (linoleic acid) content of mitochondrial phospholipids by comparison to the HF diet. Moreover, mitochondrial CL content was positively correlated to mitochondrial membrane fluidity, membrane potential and respiration, as well as to ATP synthase activity, while it was negatively correlated to mitochondrial ROS production. These findings suggest that MitoQ may decrease pathogenic alterations to CL content and profiles, thereby preserving mitochondrial function and attenuating the development of some of the features of metabolic syndrome in obesogenic diet-fed rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Elastocapillary Instability in Mitochondrial Fission

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  2. Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change

    PubMed Central

    Chandler, Houston C.; Rypel, Andrew L.; Jiao, Yan; Haas, Carola A.; Gorman, Thomas A.

    2016-01-01

    The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi), a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006–2014) of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896–2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis). Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions. PMID:26910245

  3. Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change.

    PubMed

    Chandler, Houston C; Rypel, Andrew L; Jiao, Yan; Haas, Carola A; Gorman, Thomas A

    2016-01-01

    The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi), a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006-2014) of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896-2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis). Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions.

  4. Cloning, expression of, and evidence of positive selection for, the prolactin receptor gene in Chinese giant salamander (Andrias davidianus).

    PubMed

    Hu, Qiaomu; Meng, Yan; Tian, Haifeng; Chen, Songlin; Xiao, Hanbing

    2015-12-01

    Prolactin receptor (PRLR) is a protein associated with reproduction in mammals and with osmoregulation in fish. In this study, the complete length of Chinese giant salamander Andrias davidianus prolactin receptor (AD-prlr) was cloned. Andrias davidianus prlr expression was high in the kidney, pituitary, and ovary and low in other examined tissues. The AD-prlr levels were higher in ovary than in testis, and increased in ovaries with age from 1 to 6 years. To determine effect of exogenous androgen and aromatase inhibitor on AD-prlr expression, methyltestosterone (MT) and letrozole (LE) were injected, resulting in decreased AD-prlr in both brain and ovary, with MT repressing prlr transcription more rapidly than did LE. The molecular evolution of prlr was assessed, and found to have undergone a complex evolution process. The obranch-site test detected four positively selected sites in ancestral lineages prior to the separation of mammals and birds. Fourteen sites underwent positive selection in ancestral lineages of birds and six were positively selected in amphibians. The site model showed that 16, 7, and 30 sites underwent positive selection in extant mammals, amphibians, and birds, respectively. The positively selected sites in amphibians were located outside the transmembrane domain, with four in the extracellular and three in the intracellular domain, indicating that the transmembrane region might be conserved and essential for protein function. Our findings provide a basis for further studies of AD-prlr function and molecular evolution in Chinese giant salamander. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 707-719, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Parallel habitat acclimatization is realized by the expression of different genes in two closely related salamander species (genus Salamandra).

    PubMed

    Goedbloed, D J; Czypionka, T; Altmüller, J; Rodriguez, A; Küpfer, E; Segev, O; Blaustein, L; Templeton, A R; Nolte, A W; Steinfartz, S

    2017-12-01

    The utilization of similar habitats by different species provides an ideal opportunity to identify genes underlying adaptation and acclimatization. Here, we analysed the gene expression of two closely related salamander species: Salamandra salamandra in Central Europe and Salamandra infraimmaculata in the Near East. These species inhabit similar habitat types: 'temporary ponds' and 'permanent streams' during larval development. We developed two species-specific gene expression microarrays, each targeting over 12 000 transcripts, including an overlapping subset of 8331 orthologues. Gene expression was examined for systematic differences between temporary ponds and permanent streams in larvae from both salamander species to establish gene sets and functions associated with these two habitat types. Only 20 orthologues were associated with a habitat in both species, but these orthologues did not show parallel expression patterns across species more than expected by chance. Functional annotation of a set of 106 genes with the highest effect size for a habitat suggested four putative gene function categories associated with a habitat in both species: cell proliferation, neural development, oxygen responses and muscle capacity. Among these high effect size genes was a single orthologue (14-3-3 protein zeta/YWHAZ) that was downregulated in temporary ponds in both species. The emergence of four gene function categories combined with a lack of parallel expression of orthologues (except 14-3-3 protein zeta) suggests that parallel habitat adaptation or acclimatization by larvae from S. salamandra and S. infraimmaculata to temporary ponds and permanent streams is mainly realized by different genes with a converging functionality.

  6. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.

    PubMed

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-03-29

    Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.

  7. A possible explanation for the population size discrepancy in tuna (genus Thunnus) estimated from mitochondrial DNA and microsatellite data.

    PubMed

    Qiu, Fan; Kitchen, Andrew; Beerli, Peter; Miyamoto, Michael M

    2013-02-01

    A recent study using both mitochondrial DNA (mtDNA) and microsatellite data reported on a population size discrepancy in the eastern tiger salamander where the effective population size (N(e)) estimate of the former exceeded that of the latter. That study suggested, among other hypotheses, that homoplasy of microsatellite alleles is responsible for the discrepancy. In this investigation, we report 10 new cases of a similar discrepancy in five species of tuna. These cases derive from our Bayesian inferences using data from Pacific Bluefin Tuna (Thunnus orientalis) and Yellowfin Tuna (Thunnus albacares), as well as from published estimates of genetic diversity for additional populations of Yellowfin Tuna and three other tuna species. Phylogenetic character analyses of inferred genealogies of Pacific Bluefin and Yellowfin Tuna reveal similar reduced levels of mtDNA and microsatellite homoplasy. Thus, the discrepancy between inferred population sizes from mtDNA and microsatellite data in tuna is most likely not an artifact of the chosen mutation models used in the microsatellite analyses, but may reflect behavioral differences between the sexes such as female-biased philopatry and male-biased dispersal. This explanation now warrants critical testing with more local populations of tuna and with other animal and plant groups that have different life histories. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders

    PubMed Central

    Laking, Alexandra E.; Ngo, Hai Ngoc; Pasmans, Frank; Martel, An; Nguyen, Tao Thien

    2017-01-01

    The amphibian chytrid fungi, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), pose a major threat to amphibian biodiversity. Recent evidence suggests Southeast Asia as a potential cradle for both fungi, which likely resulted in widespread host-pathogen co-existence. We sampled 583 salamanders from 8 species across Vietnam in 55 locations for Bsal and Bd, determined scaled mass index as a proxy for fitness and collected environmental data. Bsal was found within 14 of the 55 habitats (2 of which it was detected in 2013), in 5 salamandrid species, with a prevalence of 2.92%. The globalized pandemic lineage of Bd was found within one pond on one species with a prevalence of 0.69%. Combined with a complete lack of correlation between infection and individual body condition and absence of indication of associated disease, this suggests low level pathogen endemism and Bsal and Bd co-existence with Vietnamese salamandrid populations. Bsal was more widespread than Bd, and occurs at temperatures higher than tolerated by the type strain, suggesting a wider thermal niche than currently known. Therefore, this study provides support for the hypothesis that these chytrid fungi may be endemic to Asia and that species within this region may act as a disease reservoir. PMID:28287614

  9. Mitochondrial O-GlcNAc Transferase (mOGT) Regulates Mitochondrial Structure, Function, and Survival in HeLa Cells*

    PubMed Central

    Sacoman, Juliana L.; Dagda, Raul Y.; Burnham-Marusich, Amanda R.; Dagda, Ruben K.; Berninsone, Patricia M.

    2017-01-01

    O-Linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAcylation of target proteins and regulates numerous biological processes. OGT is encoded by a single gene that yields nucleocytosolic and mitochondrial isoforms. To date, the role of the mitochondrial isoform of OGT (mOGT) remains largely unknown. Using high throughput proteomics, we identified 84 candidate mitochondrial glycoproteins, of which 44 are novel. Notably, two of the candidate glycoproteins identified (cytochrome oxidase 2 (COX2) and NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4)) are encoded by mitochondrial DNA. Using siRNA in HeLa cells, we found that reducing endogenous mOGT expression leads to alterations in mitochondrial structure and function, including Drp1-dependent mitochondrial fragmentation, reduction in mitochondrial membrane potential, and a significant loss of mitochondrial content in the absence of mitochondrial ROS. These defects are associated with a compensatory increase in oxidative phosphorylation per mitochondrion. mOGT is also critical for cell survival; siRNA-mediated knockdown of endogenous mOGT protected cells against toxicity mediated by rotenone, a complex I inhibitor. Conversely, reduced expression of both nucleocytoplasmic (ncOGT) and mitochondrial (mOGT) OGT isoforms is associated with increased mitochondrial respiration and elevated glycolysis, suggesting that ncOGT is a negative regulator of cellular bioenergetics. Last, we determined that mOGT is probably involved in the glycosylation of a restricted set of mitochondrial targets. We identified four proteins implicated in mitochondrial biogenesis and metabolism regulation as candidate substrates of mOGT, including leucine-rich PPR-containing protein and mitochondrial aconitate hydratase. Our findings suggest that mOGT is catalytically active in vivo and supports mitochondrial structure, health, and survival, whereas ncOGT predominantly regulates cellular bioenergetics. PMID:28100784

  10. MIDAS/GPP34, a nuclear gene product, regulates total mitochondrial mass in response to mitochondrial dysfunction.

    PubMed

    Nakashima-Kamimura, Naomi; Asoh, Sadamitsu; Ishibashi, Yoshitomo; Mukai, Yuri; Shidara, Yujiro; Oda, Hideaki; Munakata, Kae; Goto, Yu-Ichi; Ohta, Shigeo

    2005-11-15

    To investigate the regulatory system in mitochondrial biogenesis involving crosstalk between the mitochondria and nucleus, we found a factor named MIDAS (mitochondrial DNA absence sensitive factor) whose expression was enhanced by the absence of mitochondrial DNA (mtDNA). In patients with mitochondrial diseases, MIDAS expression was increased only in dysfunctional muscle fibers. A majority of MIDAS localized to mitochondria with a small fraction in the Golgi apparatus in HeLa cells. To investigate the function of MIDAS, we stably transfected HeLa cells with an expression vector carrying MIDAS cDNA or siRNA. Cells expressing the MIDAS protein and the siRNA constitutively showed an increase and decrease in the total mass of mitochondria, respectively, accompanying the regulation of a mitochondria-specific phospholipid, cardiolipin. In contrast, amounts of the mitochondrial DNA, RNA and proteins did not depend upon MIDAS. Thus, MIDAS is involved in the regulation of mitochondrial lipids, leading to increases of total mitochondrial mass in response to mitochondrial dysfunction.

  11. Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease.

    PubMed

    Wang, Jiu-Qiang; Chen, Qian; Wang, Xianhua; Wang, Qiao-Chu; Wang, Yun; Cheng, He-Ping; Guo, Caixia; Sun, Qinmiao; Chen, Quan; Tang, Tie-Shan

    2013-02-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Indications of oxidative stress are apparent in brain tissues from both HD patients and HD mouse models; however, the origin of this oxidant stress remains a mystery. Here, we used a yeast artificial chromosome transgenic mouse model of HD (YAC128) to investigate the potential connections between dysregulation of cytosolic Ca(2+) signaling and mitochondrial oxidative damage in HD cells. We found that YAC128 mouse embryonic fibroblasts exhibit a strikingly higher level of mitochondrial matrix Ca(2+) loading and elevated superoxide generation compared with WT cells, indicating that both mitochondrial Ca(2+) signaling and superoxide generation are dysregulated in HD cells. The excessive mitochondrial oxidant stress is critically dependent on mitochondrial Ca(2+) loading in HD cells, because blocking mitochondrial Ca(2+) uptake abolished elevated superoxide generation. Similar results were obtained using neurons from HD model mice and fibroblast cells from HD patients. More importantly, mitochondrial Ca(2+) loading in HD cells caused a 2-fold higher level of mitochondrial genomic DNA (mtDNA) damage due to the excessive oxidant generation. This study provides strong evidence to support a new causal link between dysregulated mitochondrial Ca(2+) signaling, elevated mitochondrial oxidant stress, and mtDNA damage in HD. Our results also indicate that reducing mitochondrial Ca(2+) uptake could be a therapeutic strategy for HD.

  12. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria.

    PubMed

    Coutinho, Eduarda; Batista, Cátia; Sousa, Fani; Queiroz, João; Costa, Diana

    2017-03-06

    Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.

  13. Mitochondrial functionality in female reproduction.

    PubMed

    Gąsior, Łukasz; Daszkiewicz, Regina; Ogórek, Mateusz; Polański, Zbigniew

    2017-01-04

    In most animal species female germ cells are the source of mitochondrial genome for the whole body of individuals. As a source of mitochondrial DNA for future generations the mitochondria in the female germ line undergo dynamic quantitative and qualitative changes. In addition to maintaining the intact template of mitochondrial genome from one generation to another, mitochondrial role in oocytes is much more complex and pleiotropic. The quality of mitochondria determines the ability of meiotic divisions, fertilization ability, and activation after fertilization or sustaining development of a new embryo. The presence of normal number of functional mitochondria is also crucial for proper implantation and pregnancy maintaining. This article addresses issues of mitochondrial role and function in mammalian oocyte and presents new approaches in studies of mitochondrial function in female germ cells.

  14. Population level differences in thermal sensitivity of energy assimilation in terrestrial salamanders.

    PubMed

    Clay, Timothy A; Gifford, Matthew E

    2017-02-01

    Thermal adaptation predicts that thermal sensitivity of physiological traits should be optimized to thermal conditions most frequently experienced. Furthermore, thermodynamic constraints predict that species with higher thermal optima should have higher performance maxima and narrower performance breadths. We tested these predictions by examining the thermal sensitivity of energy assimilation between populations within two species of terrestrial-lungless salamanders, Plethodon albagula and P. montanus. Within P. albagula, we examined populations that were latitudinally separated by >450km. Within P. montanus, we examined populations that were elevationally separated by >900m. Thermal sensitivity of energy assimilation varied substantially between populations of P. albagula separated latitudinally, but did not vary between populations of P. montanus separated elevationally. Specifically, in P. albagula, the lower latitude population had a higher thermal optimum, higher maximal performance, and narrower performance breadth compared to the higher latitude population. Furthermore, across all individuals as thermal optima increased, performance maxima also increased, providing support for the theory that "hotter is better". Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Wetland and microhabitat use by nesting four-toed salamanders in Maine

    USGS Publications Warehouse

    Chalmers, R.J.; Loftin, C.S.

    2006-01-01

    Little is known of Four-Toed Salamander (Hemidactylium scutatum) habitat use, despite the species' extensive range and elevated conservation status. We investigated species-habitat relationships that predict H. scutatum nesting presence in Maine at wetland and microhabitat scales by comparing microhabitats with and without nests. We created logistic regression models, selected models with AIC, and evaluated models with reserve data. Wetlands with nests were best predicted by shoreline microhabitat of Sphagnum spp., wood substrate, water flow, blue-joint reed grass (Calamagrostis canadensis), meadowsweet (Spiraea alba), steeplebush (Spiraea tomentosa), sensitive fern (Onoclea sensibilis), and absence of sheep laurel (Kalmia angustifolia) or deciduous forest canopy. Within occupied wetlands, shoreline microhabitat where nests occurred was best distinguished from available, unoccupied shoreline microhabitat by steeper shore, greater near-shore and basin water depth, deeper nesting vegetation, presence of moss spp. and winterberry (Ilex verticillata), and a negative association with S. alba, leatherleaf (Chamaedaphne calyculata), and K. angustifolia. These models of wetland and microhabitat use by H. scutatum may assist ecologists and managers in detecting and conserving this species. Copyright 2006 Society for the Study of Amphibians and Reptiles.

  16. Cerebral Mitochondrial Microangiopathy Leads to Leukoencephalopathy in Mitochondrial Neurogastrointestinal Encephalopathy.

    PubMed

    Gramegna, L L; Pisano, A; Testa, C; Manners, D N; D'Angelo, R; Boschetti, E; Giancola, F; Pironi, L; Caporali, L; Capristo, M; Valentino, M L; Plazzi, G; Casali, C; Dotti, M T; Cenacchi, G; Hirano, M; Giordano, C; Parchi, P; Rinaldi, R; De Giorgio, R; Lodi, R; Carelli, V; Tonon, C

    2018-01-18

    Mitochondrial neurogastrointestinal encephalopathy is a rare disorder due to recessive mutations in the thymidine phosphorylase gene, encoding thymidine phosphorylase protein required for mitochondrial DNA replication. Clinical manifestations include gastrointestinal dysmotility and diffuse asymptomatic leukoencephalopathy. This study aimed to elucidate the mechanisms underlying brain leukoencephalopathy in patients with mitochondrial neurogastrointestinal encephalopathy by correlating multimodal neuroradiologic features to postmortem pathology. Seven patients underwent brain MR imaging, including single-voxel proton MR spectroscopy and diffusion imaging. Absolute concentrations of metabolites calculated by acquiring unsuppressed water spectra at multiple TEs, along with diffusion metrics based on the tensor model, were compared with those of healthy controls using unpaired t tests in multiple white matters regions. Brain postmortem histologic, immunohistochemical, and molecular analyses were performed in 1 patient. All patients showed bilateral and nearly symmetric cerebral white matter hyperintensities on T2-weighted images, extending to the cerebellar white matter and brain stem in 4. White matter, N -acetylaspartate, creatine, and choline concentrations were significantly reduced compared with those in controls, with a prominent increase in the radial water diffusivity component. At postmortem examination, severe fibrosis of brain vessel smooth muscle was evident, along with mitochondrial DNA replication depletion in brain and vascular smooth-muscle and endothelial cells, without neuronal loss, myelin damage, or gliosis. Prominent periependymal cytochrome C oxidase deficiency was also observed. Vascular functional and histologic alterations account for leukoencephalopathy in mitochondrial neurogastrointestinal encephalopathy. Thymidine toxicity and mitochondrial DNA replication depletion may induce microangiopathy and blood-brain-barrier dysfunction, leading to

  17. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    PubMed

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  18. Characterization of mitochondrial ferritin in Drosophila.

    PubMed

    Missirlis, Fanis; Holmberg, Sara; Georgieva, Teodora; Dunkov, Boris C; Rouault, Tracey A; Law, John H

    2006-04-11

    Mitochondrial function depends on iron-containing enzymes and proteins, whose maturation requires available iron for biosynthesis of iron-sulfur clusters and heme. Little is known about how mitochondrial iron homeostasis is maintained, although the recent discovery of a mitochondrial ferritin in mammals and plants has uncovered a potential key player in the process. Here, we show that Drosophila melanogaster expresses mitochondrial ferritin from an intron-containing gene. It has high similarity to the mouse and human mitochondrial ferritin sequences and, as in mammals, is expressed mainly in testis. This ferritin contains a putative mitochondrial targeting sequence and an epitope-tagged version localizes to mitochondria in transfected cells. Overexpression of mitochondrial ferritin fails to alter both total-body iron levels and iron that is bound to secretory ferritins. However, the viability of iron-deficient flies is compromised by overexpression of mitochondrial ferritin, suggesting that it may sequester iron at the expense of other important cellular functions. The conservation of mitochondrial ferritin in an insect species underscores the importance of this iron-storage molecule.

  19. Historical dominance of low-severity fire in dry and wet mixed-conifer forest habitats of the endangered terrestrial Jemez Mountains salamander (Plethodon neomexicanus)

    USGS Publications Warehouse

    Margolis, Ellis; Malevich, Steven B.

    2016-01-01

    Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to

  20. Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders.

    PubMed

    Yu, Tao; Zhang, Yinfeng; Li, Pei-Feng

    2017-01-01

    Mitochondrial dynamics play a critical role in cellular responses and physiological process. However, their dysregulation leads to a functional degradation, which results in a diverse array of common disorders, including cardiovascular disease. In this background, the mitochondrial ubiquitin ligase has been attracting substantial research interest in recent years. Mitochondrial ubiquitin ligase is localized in the mitochondrial outer membrane, where it plays an essential role in the regulation of mitochondrial dynamics and apoptosis. In this chapter, we provide a comprehensive overview of the functions of mitochondrial ubiquitin ligases identified hitherto, with a special focus on cardiovascular disorders.

  1. Brain mitochondrial iron accumulates in Huntington's disease, mediates mitochondrial dysfunction, and can be removed pharmacologically.

    PubMed

    Agrawal, Sonal; Fox, Julia; Thyagarajan, Baskaran; Fox, Jonathan H

    2018-05-20

    Mitochondrial bioenergetic dysfunction is involved in neurodegeneration in Huntington's disease (HD). Iron is critical for normal mitochondrial bioenergetics but can also contribute to pathogenic oxidation. The accumulation of iron in the brain occurs in mouse models and in human HD. Yet the role of mitochondria-related iron dysregulation as a contributor to bioenergetic pathophysiology in HD is unclear. We demonstrate here that human HD and mouse model HD (12-week R6/2 and 12-month YAC128) brains accumulated mitochondrial iron and showed increased expression of iron uptake protein mitoferrin 2 and decreased iron-sulfur cluster synthesis protein frataxin. Mitochondria-enriched fractions from mouse HD brains had deficits in membrane potential and oxygen uptake and increased lipid peroxidation. In addition, the membrane-permeable iron-selective chelator deferiprone (1 μM) rescued these effects ex-vivo, whereas hydrophilic iron and copper chelators did not. A 10-day oral deferiprone treatment in 9-week R6/2 HD mice indicated that deferiprone removed mitochondrial iron, restored mitochondrial potentials, decreased lipid peroxidation, and improved motor endurance. Neonatal iron supplementation potentiates neurodegeneration in mouse models of HD by unknown mechanisms. We found that neonatal iron supplementation increased brain mitochondrial iron accumulation and potentiated markers of mitochondrial dysfunction in HD mice. Therefore, bi-directional manipulation of mitochondrial iron can potentiate and protect against markers of mouse HD. Our findings thus demonstrate the significance of iron as a mediator of mitochondrial dysfunction and injury in mouse models of human HD and suggest that targeting the iron-mitochondrial pathway may be protective. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology.

    PubMed

    Malina, Carl; Larsson, Christer; Nielsen, Jens

    2018-08-01

    Mitochondria are dynamic organelles of endosymbiotic origin that are essential components of eukaryal cells. They contain their own genetic machinery, have multicopy genomes and like their bacterial ancestors they consist of two membranes. However, the majority of the ancestral genome has been lost or transferred to the nuclear genome of the host, preserving only a core set of genes involved in oxidative phosphorylation. Mitochondria perform numerous biological tasks ranging from bioenergetics to production of protein co-factors, including heme and iron-sulfur clusters. Due to the importance of mitochondria in many cellular processes, mitochondrial dysfunction is implicated in a wide variety of human disorders. Much of our current knowledge on mitochondrial function and dysfunction comes from studies using Saccharomyces cerevisiae. This yeast has good fermenting capacity, rendering tolerance to mutations that inactivate oxidative phosphorylation and complete loss of mitochondrial DNA. Here, we review yeast mitochondrial metabolism and function with focus on S. cerevisiae and its contribution in understanding mitochondrial biology. We further review how systems biology studies, including mathematical modeling, has allowed gaining new insight into mitochondrial function, and argue that this approach may enable us to gain a holistic view on how mitochondrial function interacts with different cellular processes.

  3. Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage.

    PubMed

    Haendeler, Judith; Dröse, Stefan; Büchner, Nicole; Jakob, Sascha; Altschmied, Joachim; Goy, Christine; Spyridopoulos, Ioakim; Zeiher, Andreas M; Brandt, Ulrich; Dimmeler, Stefanie

    2009-06-01

    The enzyme telomerase and its catalytic subunit the telomerase reverse transcriptase (TERT) are important for maintenance of telomere length in the nucleus. Recent studies provided evidence for a mitochondrial localization of TERT. Therefore, we investigated the exact localization of TERT within the mitochondria and its function. Here, we demonstrate that TERT is localized in the matrix of the mitochondria. TERT binds to mitochondrial DNA at the coding regions for ND1 and ND2. Binding of TERT to mitochondrial DNA protects against ethidium bromide-induced damage. TERT increases overall respiratory chain activity, which is most pronounced at complex I and dependent on the reverse transcriptase activity of the enzyme. Moreover, mitochondrial reactive oxygen species are increased after genetic ablation of TERT by shRNA. Mitochondrially targeted TERT and not wild-type TERT revealed the most prominent protective effect on H(2)O(2)-induced apoptosis. Lung fibroblasts from 6-month-old TERT(-/-) mice (F2 generation) showed increased sensitivity toward UVB radiation and heart mitochondria exhibited significantly reduced respiratory chain activity already under basal conditions, demonstrating the protective function of TERT in vivo. Mitochondrial TERT exerts a novel protective function by binding to mitochondrial DNA, increasing respiratory chain activity and protecting against oxidative stress-induced damage.

  4. Analysis of functional domains of rat mitochondrial Fis1, the mitochondrial fission-stimulating protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jofuku, Akihiro; Ishihara, Naotada; Mihara, Katsuyoshi

    2005-07-29

    In yeast, mitochondrial-fission is regulated by the cytosolic dynamin-like GTPase (Dnm1p) in conjunction with a peripheral protein, Mdv1p, and a C-tail-anchored outer membrane protein, Fis1p. In mammals, a dynamin-related protein (Drp1) and Fis1 are involved in the mitochondrial-fission reaction as Dnm1 and Fis1 orthologues, respectively. The involvement of other component(s), such as the Mdv1 homologue, and the mechanisms regulating mitochondrial-fission remain unclear. Here, we identified rat Fis1 (rFis1) and analyzed its structure-function relationship. Blue-native-polyacrylamide gel electrophoresis revealed that rFis1 formed a {approx}200-kDa complex in the outer mitochondrial membrane. Its expression in HeLa cells promoted extensive mitochondrial fragmentation, and gene knock-downmore » by RNAi induced extension of the mitochondrial networks. Taking advantage of these properties, we analyzed functional domains of rFis1. These experiments revealed that the N-terminal and C-terminal segments are both essential for oligomeric rFis1 interaction, and the middle TPR-like domains regulate proper oligomer assembly. Any mutations that disturb the proper oligomeric assembly compromise mitochondrial division-stimulating activity of rFis1.« less

  5. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    PubMed Central

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID

  6. Mitochondrial Evolution

    PubMed Central

    Gray, Michael W.

    2012-01-01

    Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis—the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell—has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it. PMID:22952398

  7. Structural dynamics of the mitochondrial compartment.

    PubMed

    Thorsness, P E

    1992-09-01

    The metabolic activities of mitochondria have been extensively characterized. However, there is much less known about the morphogenic changes of the mitochondrial compartment during growth, development and aging of the cell and the consequences of those structural changes on cellular metabolism. There is a growing body of evidence for interactions of mitochondria with cytoskeletal components and changes of mitochondrial structure during development and in response to changing environmental conditions. Segregation and recombination of mitochondrial genomes are also processes dependent upon the dynamic nature of the mitochondrial compartment. These regulatory and structural aspects of mitochondrial compartment dynamics will play an important role in the analysis of mitochondrial function and pathology.

  8. Mitochondrial dynamics in Parkinson's disease

    PubMed Central

    Van Laar, Victor S.; Berman, Sarah B.

    2009-01-01

    The unique energy demands of neurons require well-orchestrated distribution and maintenance of mitochondria. Thus, dynamic properties of mitochondria, including fission, fusion, trafficking, biogenesis, and degradation, are critical to all cells, but may be particularly important in neurons. Dysfunction in mitochondrial dynamics has been linked to neuropathies and is increasingly being linked to several neurodegenerative diseases, but the evidence is particularly strong, and continuously accumulating, in Parkinson's disease (PD). The unique characteristics of neurons that degenerate in PD may predispose those neuronal populations to susceptibility to alterations in mitochondrial dynamics. In addition, evidence from PD-related toxins supports that mitochondrial fission, fusion, and transport may be involved in pathogenesis. Furthermore, rapidly increasing evidence suggests that two proteins linked to familial forms of the disease, parkin and PINK1, interact in a common pathway to regulate mitochondrial fission/fusion. Parkin may also play a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Taken together, the current data suggests that mitochondrial dynamics may play a role in PD pathogenesis, and a better understanding of mitochondrial dynamics within the neuron may lead to future therapeutic treatments for PD, potentially aimed at some of the earliest pathogenic events. PMID:19332061

  9. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Tomoyuki; Saotome, Masao, E-mail: msaotome@hama-med.ac.jp; Nobuhara, Mamoru

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}),more » they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  10. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    PubMed

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  11. Resveratrol induces mitochondrial biogenesis in endothelial cells

    PubMed Central

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T.; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-01-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1α, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases. PMID:19429820

  12. Cancer: Mitochondrial Origins.

    PubMed

    Stefano, George B; Kream, Richard M

    2015-12-01

    The primacy of glucose derived from photosynthesis as an existential source of chemical energy across plant and animal phyla is universally accepted as a core principle in the biological sciences. In mammalian cells, initial processing of glucose to triose phosphate intermediates takes place within the cytosolic glycolytic pathway and terminates with temporal transport of reducing equivalents derived from pyruvate metabolism by membrane-associated respiratory complexes in the mitochondrial matrix. The intra-mitochondrial availability of molecular oxygen as the ultimate electron acceptor drives the evolutionary fashioned chemiosmotic production of ATP as a high-efficiency biological process. The mechanistic bases of carcinogenesis have demonstrated profound alteration of normative mitochondrial function, notably dysregulated respiratory processes. Accordingly, the classic Warburg effect functionally links aerobic glycolysis, aberrant production and release of lactate, and metabolic down-regulation of mitochondrial oxidative processes with the carcinogenetic phenotype. We surmise, however, that aerobic fermentation by cancer cells may also represent a developmental re-emergence of an evolutionarily conserved early phenotype, which was "sidelined" with the emergence of mitochondrial oxidative phosphorylation as a primary mechanism for ATP production in normal cells. Regardless of state-dependent physiological status in mixed populations of cancer cells, it has been established that mitochondria are functionally linked to the initiation of cancer and its progression. Biochemical, molecular, and physiological differences in cancer cell mitochondria, notably mtDNA heteroplasmy and allele-specific expression of selected nuclear genes, may represent major focal points for novel targeting and elimination of cancer cells in metastatic disease afflicting human populations. To date, and despite considerable research efforts, the practical realization of advanced mitochondrial

  13. Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress

    PubMed Central

    Dai, Dao-Fu; Hsieh, Edward J.; Liu, Yonggang; Chen, Tony; Beyer, Richard P.; Chin, Michael T.; MacCoss, Michael J.; Rabinovitch, Peter S.

    2012-01-01

    Aims We investigate the role of mitochondrial oxidative stress in mitochondrial proteome remodelling using mouse models of heart failure induced by pressure overload. Methods and results We demonstrate that mice overexpressing catalase targeted to mitochondria (mCAT) attenuate pressure overload-induced heart failure. An improved method of label-free unbiased analysis of the mitochondrial proteome was applied to the mouse model of heart failure induced by transverse aortic constriction (TAC). A total of 425 mitochondrial proteins were compared between wild-type and mCAT mice receiving TAC or sham surgery. The changes in the mitochondrial proteome in heart failure included decreased abundance of proteins involved in fatty acid metabolism, an increased abundance of proteins in glycolysis, apoptosis, mitochondrial unfolded protein response and proteolysis, transcription and translational control, and developmental processes as well as responses to stimuli. Overexpression of mCAT better preserved proteins involved in fatty acid metabolism and attenuated the increases in apoptotic and proteolytic enzymes. Interestingly, gene ontology analysis also showed that monosaccharide metabolic processes and protein folding/proteolysis were only overrepresented in mCAT but not in wild-type mice in response to TAC. Conclusion This is the first study to demonstrate that scavenging mitochondrial reactive oxygen species (ROS) by mCAT not only attenuates most of the mitochondrial proteome changes in heart failure, but also induces a subset of unique alterations. These changes represent processes that are adaptive to the increased work and metabolic requirements of pressure overload, but which are normally inhibited by overproduction of mitochondrial ROS. PMID:22012956

  14. Mitochondrial Function in Allergic Disease.

    PubMed

    Iyer, Divyaanka; Mishra, Navya; Agrawal, Anurag

    2017-05-01

    The connections between allergy, asthma and metabolic syndrome are becoming increasingly clear. Recent research suggests a unifying mitochondrial link between the diverse phenotypes of these interlinked morbidities. The scope of this review is to highlight cellular mechanisms, epidemiology and environmental allergens influencing mitochondrial function and its importance in allergy and asthma. We briefly also consider the potential of mitochondria-targeted therapies in prevention and cure. Recent research has shown allergy, asthma and metabolic syndrome to be linked to mitochondrial dysfunction. Environmental pollutants and allergens are observed to cause mitochondrial dysfunction, primarily by inducing oxidative stress and ROS production. Malfunctioning mitochondria change the bioenergetics of the cell and its metabolic profile to favour systemic inflammation, which drives all three types of morbidities. Given the existing experimental evidence, approaches targeting mitochondria (e.g. antioxidant therapy and mitochondrial replacement) are being conducted in relevant disease models-with some progressing towards clinical trials, making mitochondrial function the focus of translational therapy research in asthma, allergy and linked metabolic syndrome.

  15. Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders

    PubMed Central

    Goldberg, Caren S.; Pilliod, David S.; Arkle, Robert S.; Waits, Lisette P.

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research. PMID:21818382

  16. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    PubMed

    Goldberg, Caren S; Pilliod, David S; Arkle, Robert S; Waits, Lisette P

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  17. Molecular detection of vertebrates in stream water: A demonstration using rocky mountain tailed frogs and Idaho giant salamanders

    USGS Publications Warehouse

    Goldberg, C.S.; Pilliod, D.S.; Arkle, R.S.; Waits, L.P.

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  18. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    PubMed

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  19. Toward the Standardization of Mitochondrial Proteomics: The Italian Mitochondrial Human Proteome Project Initiative.

    PubMed

    Alberio, Tiziana; Pieroni, Luisa; Ronci, Maurizio; Banfi, Cristina; Bongarzone, Italia; Bottoni, Patrizia; Brioschi, Maura; Caterino, Marianna; Chinello, Clizia; Cormio, Antonella; Cozzolino, Flora; Cunsolo, Vincenzo; Fontana, Simona; Garavaglia, Barbara; Giusti, Laura; Greco, Viviana; Lucacchini, Antonio; Maffioli, Elisa; Magni, Fulvio; Monteleone, Francesca; Monti, Maria; Monti, Valentina; Musicco, Clara; Petrosillo, Giuseppe; Porcelli, Vito; Saletti, Rosaria; Scatena, Roberto; Soggiu, Alessio; Tedeschi, Gabriella; Zilocchi, Mara; Roncada, Paola; Urbani, Andrea; Fasano, Mauro

    2017-12-01

    The Mitochondrial Human Proteome Project aims at understanding the function of the mitochondrial proteome and its crosstalk with the proteome of other organelles. Being able to choose a suitable and validated enrichment protocol of functional mitochondria, based on the specific needs of the downstream proteomics analysis, would greatly help the researchers in the field. Mitochondrial fractions from ten model cell lines were prepared using three enrichment protocols and analyzed on seven different LC-MS/MS platforms. All data were processed using neXtProt as reference database. The data are available for the Human Proteome Project purposes through the ProteomeXchange Consortium with the identifier PXD007053. The processed data sets were analyzed using a suite of R routines to perform a statistical analysis and to retrieve subcellular and submitochondrial localizations. Although the overall number of identified total and mitochondrial proteins was not significantly dependent on the enrichment protocol, specific line to line differences were observed. Moreover, the protein lists were mapped to a network representing the functional mitochondrial proteome, encompassing mitochondrial proteins and their first interactors. More than 80% of the identified proteins resulted in nodes of this network but with a different ability in coisolating mitochondria-associated structures for each enrichment protocol/cell line pair.

  20. Pharmacologic Effects on Mitochondrial Function

    ERIC Educational Resources Information Center

    Cohen, Bruce H.

    2010-01-01

    The vast majority of energy necessary for cellular function is produced in mitochondria. Free-radical production and apoptosis are other critical mitochondrial functions. The complex structure, electrochemical properties of the inner mitochondrial membrane (IMM), and genetic control from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) are…

  1. Habitual physical activity in mitochondrial disease.

    PubMed

    Apabhai, Shehnaz; Gorman, Grainne S; Sutton, Laura; Elson, Joanna L; Plötz, Thomas; Turnbull, Douglass M; Trenell, Michael I

    2011-01-01

    Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype. Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI. Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001). 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001) and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001). After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s) = -0.49; 95% CI -0.33, -0.63, P<0.01). There were no systematic differences in physical activity between different genotypes mitochondrial disease. These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  2. Mitochondrial transcription in mammalian cells

    PubMed Central

    Shokolenko, Inna N.; Alexeyev, Mikhail F.

    2017-01-01

    As a consequence of recent discoveries of intimate involvement of mitochondria with key cellular processes, there has been a resurgence of interest in all aspects of mitochondrial biology, including the intricate mechanisms of mitochondrial DNA maintenance and expression. Despite four decades of research, there remains a lot to be learned about the processes that enable transcription of genetic information from mitochondrial DNA to RNA, as well as their regulation. These processes are vitally important, as evidenced by the lethality of inactivating the central components of mitochondrial transcription machinery. Here, we review the current understanding of mitochondrial transcription and its regulation in mammalian cells. We also discuss key theories in the field and highlight controversial subjects and future directions as we see them. PMID:27814650

  3. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome

    PubMed Central

    Dinwiddie, Darrell L.; Smith, Laurie D.; Miller, Neil A.; Atherton, Andrea M.; Farrow, Emily G.; Strenk, Meghan E.; Soden, Sarah E.; Saunders, Carol J.; Kingsmore, Stephen F.

    2015-01-01

    Mitochondrial diseases are notoriously difficult to diagnose due to extreme locus and allelic heterogeneity, with both nuclear and mitochondrial genomes potentially liable. Using exome sequencing we demonstrate the ability to rapidly and cost effectively evaluate both the nuclear and mitochondrial genomes to obtain a molecular diagnosis for four patients with three distinct mitochondrial disorders. One patient was found to have Leigh syndrome due to a mutation in MT-ATP6, two affected siblings were discovered to be compound heterozygous for mutations in the NDUFV1 gene, which causes mitochondrial complex I deficiency, and one patient was found to have coenzyme Q10 deficiency due to compound heterozygous mutations in COQ2. In all cases conventional diagnostic testing failed to identify a molecular diagnosis. We suggest that additional studies should be conducted to evaluate exome sequencing as a primary diagnostic test for mitochondrial diseases, including those due to mtDNA mutations. PMID:23631824

  4. Mitochondrial Glutathione: Regulation and Functions.

    PubMed

    Calabrese, Gaetano; Morgan, Bruce; Riemer, Jan

    2017-11-20

    Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (E GSH ) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H 2 O 2 ), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. We postulate that the application of genetically encoded sensors for glutathione in combination with novel H 2 O 2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.

  5. Genetics of Mitochondrial Disease.

    PubMed

    Saneto, Russell P

    2017-01-01

    Mitochondria are intracellular organelles responsible for adenosine triphosphate production. The strict control of intracellular energy needs require proper mitochondrial functioning. The mitochondria are under dual controls of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial dysfunction can arise from changes in either mtDNA or nDNA genes regulating function. There are an estimated ∼1500 proteins in the mitoproteome, whereas the mtDNA genome has 37 proteins. There are, to date, ∼275 genes shown to give rise to disease. The unique physiology of mitochondrial functioning contributes to diverse gene expression. The onset and range of phenotypic expression of disease is diverse, with onset from neonatal to seventh decade of life. The range of dysfunction is heterogeneous, ranging from single organ to multisystem involvement. The complexity of disease expression has severely limited gene discovery. Combining phenotypes with improvements in gene sequencing strategies are improving the diagnosis process. This chapter focuses on the interplay of the unique physiology and gene discovery in the current knowledge of genetically derived mitochondrial disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Multifunctional Mitochondrial AAA Proteases

    PubMed Central

    Glynn, Steven E.

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle. PMID:28589125

  7. Multifunctional Mitochondrial AAA Proteases.

    PubMed

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  8. Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia.

    PubMed

    Crouser, Elliott D; Julian, Mark W; Huff, Jennifer E; Joshi, Mandar S; Bauer, John A; Gadd, Martha E; Wewers, Mark D; Pfeiffer, Douglas R

    2004-02-01

    This study was designed to determine the role played by the mitochondrial permeability transition in the pathogenesis of mitochondrial damage and dysfunction in a representative systemic organ during the acute phase of endotoxemia. A well-established, normotensive feline model was employed to determine whether pretreatment with cyclosporine A, a potent inhibitor of the mitochondrial permeability transition, normalizes mitochondrial ultrastructural injury and dysfunction in the liver during acute endotoxemia. The Ohio State University Medical Center research laboratory. Random source, adult, male conditioned cats. Hemodynamic resuscitation and maintenance of acid-base balance and tissue oxygen availability were provided, as needed, to minimize the potentially confounding effects of tissue hypoxia and/or acidosis on the experimental results. Treatment groups received isotonic saline vehicle (control; n = 6), lipopolysaccharide (3.0 mg/kg, intravenously; n = 8), or cyclosporine A (6.0 mg/kg, intravenously; n = 6) or tacrolimus (FK506, 0.1 mg/kg, intravenously; n = 4) followed in 30 mins by lipopolysaccharide (3.0 mg/kg, intravenously). Liver samples were obtained 4 hrs posttreatment, and mitochondrial ultrastructure, function, and cytochrome c, Bax, and ceramide contents were assessed. As expected, significant mitochondrial injury was apparent in the liver 4 hrs after lipopolysaccharide treatment, despite maintenance of regional tissue oxygen availability. Namely, mitochondria demonstrated high-amplitude swelling and exhibited altered respiratory function. Cyclosporine A pretreatment attenuated lipopolysaccharide-induced mitochondrial ultrastructural abnormalities and normalized mitochondrial respiratory control, reflecting protection against inner mitochondrial membrane damage. However, an abnormal permeability of outer mitochondrial membranes to cytochrome c was observed in all lipopolysaccharide-treated groups and was associated with increased mitochondrial

  9. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuzaki, Yukari; Yamada, Yuma; Harashima, Hideyoshi, E-mail: harasima@pharm.hokudai.ac.jp

    2010-06-25

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we providemore » a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.« less

  10. Dynamic tubulation of mitochondria drives mitochondrial network formation.

    PubMed

    Wang, Chong; Du, Wanqing; Su, Qian Peter; Zhu, Mingli; Feng, Peiyuan; Li, Ying; Zhou, Yichen; Mi, Na; Zhu, Yueyao; Jiang, Dong; Zhang, Senyan; Zhang, Zerui; Sun, Yujie; Yu, Li

    2015-10-01

    Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms.

  11. Mangiferin protects mitochondrial function by preserving mitochondrial hexokinase-II in vessel endothelial cells.

    PubMed

    Song, Junna; Li, Yi; Song, Junmei; Hou, Fangjie; Liu, Baolin; Li, Aiying

    2017-07-01

    Hexokinase-II (HK-II) confers protection against cell death and this study was designed to investigate the effect of mangiferin on the regulation of mitochondrial HK-II. In vessel endothelial cells, saturated fatty acid palmitate (PA) stimulation induced HK-II detachment from mitochondria due to cellular acidification. Mangiferin reduced lactate accumulation by improving pyruvate dehydrogenase activity, promoted Akt translocation to HK-II and prevented HK-II detachment from mitochondria. Knockdown of Akt2 diminished the protective effect of mangiferin on mitochondrial HK-II, confirming the role of Akt in the regulation of HK-II. Mangiferin prevented mitochondrial permeability transition pore opening, restored mitochondrial membrane potential and thereby protected cell from apoptosis. In high-fat diet fed mice, oral administration of mangiferin induced Akt phosphorylation, increased HK-II binding to mitochondria and resultantly protected vessel endothelial function, demonstrating its protective effect on endothelial integrity in vivo. This finding provided a novel strategy for the protection of mitochondrial function in the endothelium. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. What Is Mitochondrial Disease?

    MedlinePlus

    ... Review Mitochondrial Structure, Function and Diseases Review Cell Biology of Diagnosis and Treatment of Mitochondrial Diseases Review ... Factories and Much More The conventional teaching in biology and medicine is that mitochondria function only as “ ...

  13. Linking extinction-colonization dynamics to genetic structure in a salamander metapopulation.

    PubMed

    Cosentino, Bradley J; Phillips, Christopher A; Schooley, Robert L; Lowe, Winsor H; Douglas, Marlis R

    2012-04-22

    Theory predicts that founder effects have a primary role in determining metapopulation genetic structure. However, ecological factors that affect extinction-colonization dynamics may also create spatial variation in the strength of genetic drift and migration. We tested the hypothesis that ecological factors underlying extinction-colonization dynamics influenced the genetic structure of a tiger salamander (Ambystoma tigrinum) metapopulation. We used empirical data on metapopulation dynamics to make a priori predictions about the effects of population age and ecological factors on genetic diversity and divergence among 41 populations. Metapopulation dynamics of A. tigrinum depended on wetland area, connectivity and presence of predatory fish. We found that newly colonized populations were more genetically differentiated than established populations, suggesting that founder effects influenced genetic structure. However, ecological drivers of metapopulation dynamics were more important than age in predicting genetic structure. Consistent with demographic predictions from metapopulation theory, genetic diversity and divergence depended on wetland area and connectivity. Divergence was greatest in small, isolated wetlands where genetic diversity was low. Our results show that ecological factors underlying metapopulation dynamics can be key determinants of spatial genetic structure, and that habitat area and isolation may mediate the contributions of drift and migration to divergence and evolution in local populations.

  14. Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes.

    PubMed

    Hao, Weilong; Palmer, Jeffrey D

    2009-09-29

    The mitochondrial genomes of flowering plants possess a promiscuous proclivity for taking up sequences from the chloroplast genome. All characterized chloroplast integrants exist apart from native mitochondrial genes, and only a few, involving chloroplast tRNA genes that have functionally supplanted their mitochondrial counterparts, appear to be of functional consequence. We developed a novel computational approach to search for homologous recombination (gene conversion) in a large number of sequences and applied it to 22 mitochondrial and chloroplast gene pairs, which last shared common ancestry some 2 billion years ago. We found evidence of recurrent conversion of short patches of mitochondrial genes by chloroplast homologs during angiosperm evolution, but no evidence of gene conversion in the opposite direction. All 9 putative conversion events involve the atp1/atpA gene encoding the alpha subunit of ATP synthase, which is unusually well conserved between the 2 organelles and the only shared gene that is widely sequenced across plant mitochondria. Moreover, all conversions were limited to the 2 regions of greatest nucleotide and amino acid conservation of atp1/atpA. These observations probably reflect constraints operating on both the occurrence and fixation of recombination between ancient homologs. These findings indicate that recombination between anciently related sequences is more frequent than previously appreciated and creates functional mitochondrial genes of chimeric origin. These results also have implications for the widespread use of mitochondrial atp1 in phylogeny reconstruction.

  15. Mitochondrial Energy and Redox Signaling in Plants

    PubMed Central

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  16. A review of the biology and conservation of the Cope's giant salamander Dicamptodon copei Nussbaum, 1970 (Amphibia: Caudata: Dicamptodontidae) in the Pacific northwestern region of the USA

    Treesearch

    Alex D. Foster; Deanna H. Olson; Lawrence L.C. Jones

    2015-01-01

    The Cope’s Giant Salamander Dicamptodon copei is a stream dwelling amphibian reliant on cool streams, native to forested areas primarily west of the crest of the Cascade Range in the Pacific Northwest region, USA. Unlike other members of the genus, adult D. copei are most often found in a paedomorphic form, and rarely transforms to a terrestrial stage. As a result,...

  17. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alán, Lukáš, E-mail: lukas.alan@fgu.cas.cz; Špaček

    Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators.more » We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (> 48 h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity. - Highlights: • The mechanism for mitochondrial nucleoid clustering is proposed. • DNA intercalators (Doxorubicin or Ethidium Bromide) prevent

  18. Mitochondrial DNA transmission and confounding mitochondrial influences in cloned cattle and pigs.

    PubMed

    Takeda, Kumiko

    2013-04-01

    Although somatic cell nuclear transfer (SCNT) is a powerful tool for production of cloned animals, SCNT embryos generally have low developmental competency and many abnormalities. The interaction between the donor nucleus and the enucleated ooplasm plays an important role in early embryonic development, but the underlying mechanisms that negatively impact developmental competency remain unclear. Mitochondria have a broad range of critical functions in cellular energy supply, cell signaling, and programmed cell death; thus, affect embryonic and fetal development. This review focuses on mitochondrial considerations influencing SCNT techniques in farm animals. Donor somatic cell mitochondrial DNA (mtDNA) can be transmitted through what has been considered a "bottleneck" in mitochondrial genetics via the SCNT maternal lineage. This indicates that donor somatic cell mitochondria have a role in the reconstructed cytoplasm. However, foreign somatic cell mitochondria may affect the early development of SCNT embryos. Nuclear-mitochondrial interactions in interspecies/intergeneric SCNT (iSCNT) result in severe problems. A major biological selective pressure exists against survival of exogenous mtDNA in iSCNT. Yet, mtDNA differences in SCNT animals did not reflect transfer of proteomic components following proteomic analysis. Further study of nuclear-cytoplasmic interactions is needed to illuminate key developmental characteristics of SCNT animals associated with mitochondrial biology.

  19. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    PubMed

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  20. Mitochondrial Ion Channels in Cancer Transformation

    PubMed Central

    Madamba, Stephen M.; Damri, Kevin N.; Dejean, Laurent M.; Peixoto, Pablo M.

    2015-01-01

    Cancer transformation involves reprograming of mitochondrial function to avert cell death mechanisms, monopolize energy metabolism, accelerate mitotic proliferation, and promote metastasis. Mitochondrial ion channels have emerged as promising therapeutic targets because of their connection to metabolic and apoptotic functions. This mini review discusses how mitochondrial channels may be associated with cancer transformation and expands on the possible involvement of mitochondrial protein import complexes in pathophysiological process. PMID:26090338

  1. Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion

    PubMed Central

    Osman, Christof; Noriega, Thomas R.; Okreglak, Voytek; Fung, Jennifer C.; Walter, Peter

    2015-01-01

    Mitochondrial DNA (mtDNA) is essential for mitochondrial and cellular function. In Saccharomyces cerevisiae, mtDNA is organized in nucleoprotein structures termed nucleoids, which are distributed throughout the mitochondrial network and are faithfully inherited during the cell cycle. How the cell distributes and inherits mtDNA is incompletely understood although an involvement of mitochondrial fission and fusion has been suggested. We developed a LacO-LacI system to noninvasively image mtDNA dynamics in living cells. Using this system, we found that nucleoids are nonrandomly spaced within the mitochondrial network and observed the spatiotemporal events involved in mtDNA inheritance. Surprisingly, cells deficient in mitochondrial fusion and fission distributed and inherited mtDNA normally, pointing to alternative pathways involved in these processes. We identified such a mechanism, where we observed fission-independent, but F-actin–dependent, tip generation that was linked to the positioning of mtDNA to the newly generated tip. Although mitochondrial fusion and fission were dispensable for mtDNA distribution and inheritance, we show through a combination of genetics and next-generation sequencing that their absence leads to an accumulation of mitochondrial genomes harboring deleterious structural variations that cluster at the origins of mtDNA replication, thus revealing crucial roles for mitochondrial fusion and fission in maintaining the integrity of the mitochondrial genome. PMID:25730886

  2. Snf1-related kinase improves cardiac mitochondrial efficiency and decreases mitochondrial uncoupling

    PubMed Central

    Rines, Amy K.; Chang, Hsiang-Chun; Wu, Rongxue; Sato, Tatsuya; Khechaduri, Arineh; Kouzu, Hidemichi; Shapiro, Jason; Shang, Meng; Burke, Michael A.; Abdelwahid, Eltyeb; Jiang, Xinghang; Chen, Chunlei; Rawlings, Tenley A.; Lopaschuk, Gary D.; Schumacker, Paul T.; Abel, E. Dale; Ardehali, Hossein

    2017-01-01

    Ischaemic heart disease limits oxygen and metabolic substrate availability to the heart, resulting in tissue death. Here, we demonstrate that the AMP-activated protein kinase (AMPK)-related protein Snf1-related kinase (SNRK) decreases cardiac metabolic substrate usage and mitochondrial uncoupling, and protects against ischaemia/reperfusion. Hearts from transgenic mice overexpressing SNRK have decreased glucose and palmitate metabolism and oxygen consumption, but maintained power and function. They also exhibit decreased uncoupling protein 3 (UCP3) and mitochondrial uncoupling. Conversely, Snrk knockout mouse hearts have increased glucose and palmitate oxidation and UCP3. SNRK knockdown in cardiac cells decreases mitochondrial efficiency, which is abolished with UCP3 knockdown. We show that Tribbles homologue 3 (Trib3) binds to SNRK, and downregulates UCP3 through PPARα. Finally, SNRK is increased in cardiomyopathy patients, and SNRK reduces infarct size after ischaemia/reperfusion. SNRK also decreases cardiac cell death in a UCP3-dependent manner. Our results suggest that SNRK improves cardiac mitochondrial efficiency and ischaemic protection. PMID:28117339

  3. Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast.

    PubMed

    Hori, Akiko; Yoshida, Minoru; Ling, Feng

    2011-05-01

    Mitochondrial fusion plays an important role in mitochondrial DNA (mtDNA) maintenance, although the underlying mechanisms are unclear. In budding yeast, certain levels of reactive oxygen species (ROS) can promote recombination-mediated mtDNA replication, and mtDNA maintenance depends on the homologous DNA pairing protein Mhr1. Here, we show that the fusion of isolated yeast mitochondria, which can be monitored by the bimolecular fluorescence complementation-derived green fluorescent protein (GFP) fluorescence, increases the mtDNA copy number in a manner dependent on Mhr1. The fusion event, accompanied by the degradation of dissociated electron transport chain complex IV and transient reductions in the complex IV subunits by the inner membrane AAA proteases such as Yme1, increases ROS levels. Analysis of the initial stage of mitochondrial fusion in early log-phase cells produced similar results. Moreover, higher ROS levels in mitochondrial fusion-deficient mutant cells increased the amount of newly synthesized mtDNA, resulting in increases in the mtDNA copy number. In contrast, reducing ROS levels in yme1 null mutant cells significantly decreased the mtDNA copy number, leading to an increase in cells lacking mtDNA. Our results indicate that mitochondrial fusion induces mtDNA synthesis by facilitating ROS-triggered, recombination-mediated replication and thereby prevents the generation of mitochondria lacking DNA. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  4. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system

    PubMed Central

    Gostimskaya, Irina; Grant, Chris M.

    2016-01-01

    Glutathione is an abundant, low-molecular-weight tripeptide whose biological importance is dependent upon its redox-active free sulphydryl moiety. Its role as the main determinant of thiol-redox control has been challenged such that it has been proposed to play a crucial role in iron–sulphur clusters maturation, and only a minor role in thiol redox regulation, predominantly as a back-up system for the cytoplasmic thioredoxin system. Here, we have tested the importance of mitochondrial glutathione in thiol-redox regulation. Glutathione reductase (Glr1) is an oxidoreductase which converts oxidized glutathione to its reduced form. Yeast Glr1 localizes to both the cytosol and mitochondria and we have used a Glr1M1L mutant that is constitutively localized to the cytosol to test the requirement for mitochondrial Glr1. We show that the loss of mitochondrial Glr1 specifically accounts for oxidant sensitivity of a glr1 mutant. Loss of mitochondrial Glr1 does not influence iron–sulphur cluster maturation and we have used targeted roGFP2 fluorescent probes to show that oxidant sensitivity is linked to an altered redox environment. Our data indicate mitochondrial glutathione is crucial for mitochondrial thiol-redox regulation, and the mitochondrial thioredoxin system provides a back-up system, but cannot bear the redox load of the mitochondria on its own. PMID:26898146

  5. Melatonin and human mitochondrial diseases

    PubMed Central

    Sharafati-Chaleshtori, Reza; Shirzad, Hedayatollah; Rafieian-Kopaei, Mahmoud; Soltani, Amin

    2017-01-01

    Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function. PMID:28400824

  6. Mitochondrial Metabolism in Aging Heart

    PubMed Central

    Lesnefsky, Edward J.; Chen, Qun; Hoppel, Charles L.

    2016-01-01

    Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area there is an approximate 50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952

  7. Indirubin-3'-oxime impairs mitochondrial oxidative phosphorylation and prevents mitochondrial permeability transition induction.

    PubMed

    Varela, Ana T; Gomes, Ana P; Simões, Anabela M; Teodoro, João S; Duarte, Filipe V; Rolo, Anabela P; Palmeira, Carlos M

    2008-12-01

    Indirubin, a red colored 3,2'-bisindole isomer, is a component of Indigo naturalis and is an active ingredient used in traditional Chinese medicine for the treatment of chronic diseases. The family of indirubin derivatives, such as indirubin-3'-oxime, has been suggested for various therapeutic indications. However, potential toxic interactions such as indirubin effects on mitochondrial bioenergetics are still unknown. This study evaluated the action of indirubin-3'-oxime on the function of isolated rat liver mitochondria contributing to a better understanding of the biochemical mechanisms underlying the multiple effects of indirubin. Indirubin-3'-oxime incubated with isolated rat liver mitochondria, at concentrations above 10microM, significantly depresses the phosphorylation efficiency of mitochondria as inferred from the decrease in the respiratory control and ADP/O ratios, the perturbations in mitochondrial membrane potential and in the phosphorylative cycle induced by ADP. Furthermore, indirubin-3'-oxime at up to 25microM stimulates the rate of state 4 respiration and inhibits state 3 respiration. The increased lag phase of repolarization was associated with a direct inhibition of the mitochondrial ATPase. Indirubin-3'-oxime significantly inhibited the activity of complex II and IV thus explaining the decreased FCCP-stimulated mitochondrial respiration. Mitochondria pre-incubated with indirubin-3'-oxime exhibits decreased susceptibility to calcium-induced mitochondrial permeability transition. This work shows for the first time multiple effects of indirubin-3'-oxime on mitochondrial bioenergetics thus indicating a potential mechanism for indirubin-3'-oxime effects on cell function.

  8. Mitochondrial medicine: to a new era of gene therapy for mitochondrial DNA mutations.

    PubMed

    Cwerman-Thibault, Hélène; Sahel, José-Alain; Corral-Debrinski, Marisol

    2011-04-01

    Mitochondrial disorders can no longer be ignored in most medical disciplines. Such disorders include specific and widespread organ involvement, with tissue degeneration or tumor formation. Primary or secondary actors, mitochondrial dysfunctions also play a role in the aging process. Despite progresses made in identification of their molecular bases, nearly everything remains to be done as regards therapy. Research dealing with mitochondrial physiology and pathology has >20 years of history around the world. We are involved, as are many other laboratories, in the challenge of finding ways to fight these diseases. However, our main limitation is the scarcety of animal models required for both understanding the molecular mechanisms underlying the diseases and evaluating therapeutic strategies. This is especially true for diseases due to mutations in mitochondrial DNA (mtDNA), since an authentic genetic model of mtDNA mutations is technically a very difficult task due to both the inability of manipulating the mitochondrial genome of living mammalian cells and to its multicopy nature. This has led researchers in the field to consider the prospect of gene therapy approaches that can roughly be divided into three groups: (1) import of wild-type copies or relevant sections of DNA or RNA into mitochondria, (2) manipulation of mitochondrial genetic content, and (3) rescue of a defect by expression of an engineered gene product from the nucleus (allotopic or xenotropic expression). We briefly introduce these concepts and indicate where promising progress has been made in the last decade.

  9. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity.

    PubMed

    Sorrentino, Vincenzo; Romani, Mario; Mouchiroud, Laurent; Beck, John S; Zhang, Hongbo; D'Amico, Davide; Moullan, Norman; Potenza, Francesca; Schmid, Adrien W; Rietsch, Solène; Counts, Scott E; Auwerx, Johan

    2017-12-14

    Alzheimer's disease is a common and devastating disease characterized by aggregation of the amyloid-β peptide. However, we know relatively little about the underlying molecular mechanisms or how to treat patients with Alzheimer's disease. Here we provide bioinformatic and experimental evidence of a conserved mitochondrial stress response signature present in diseases involving amyloid-β proteotoxicity in human, mouse and Caenorhabditis elegans that involves the mitochondrial unfolded protein response and mitophagy pathways. Using a worm model of amyloid-β proteotoxicity, GMC101, we recapitulated mitochondrial features and confirmed that the induction of this mitochondrial stress response was essential for the maintenance of mitochondrial proteostasis and health. Notably, increasing mitochondrial proteostasis by pharmacologically and genetically targeting mitochondrial translation and mitophagy increases the fitness and lifespan of GMC101 worms and reduces amyloid aggregation in cells, worms and in transgenic mouse models of Alzheimer's disease. Our data support the relevance of enhancing mitochondrial proteostasis to delay amyloid-β proteotoxic diseases, such as Alzheimer's disease.

  10. Drosophila mitochondrial topoisomerase III alpha affects the aging process via maintenance of mitochondrial function and genome integrity.

    PubMed

    Tsai, Han-Zen; Lin, Ren-Kuo; Hsieh, Tao-Shih

    2016-04-12

    Mitochondria play important roles in providing metabolic energy and key metabolites for synthesis of cellular building blocks. Mitochondria have additional functions in other cellular processes, including programmed cell death and aging. A previous study revealed Drosophila mitochondrial topoisomerase III alpha (Top3α) contributes to the maintenance of the mitochondrial genome and male germ-line stem cells. However, the involvement of mitochondrial Top3α in the mitochondrion-mediated aging process remains unclear. In this study, the M1L flies, in which Top3α protein lacks the mitochondrial import sequence and is thus present in cell nuclei but not in mitochondria, is used as a model system to examine the role of mitochondrial Top3α in the aging of fruit flies. Here, we reported that M1L flies exhibit mitochondrial defects which affect the aging process. First, we observed that M1L flies have a shorter life span, which was correlated with a significant reduction in the mitochondrial DNA copy number, the mitochondrial membrane potential, and ATP content compared with those of both wildtype and transgene-rescued flies of the same age. Second, we performed a mobility assay and electron microscopic analysis to demonstrate that the locomotion defect and mitophagy of M1L flies were enhanced with age, as compared with the controls. Finally, we showed that the correlation between the mtDNA deletion level and aging in M1L flies resembles what was reported in mammalian systems. The results reported here demonstrate that mitochondrial Top3α ablation results in mitochondrial genome instability and its dysfunction, thereby accelerating the aging process.

  11. Mitochondrial Transfer from Wharton's Jelly Mesenchymal Stem Cell to MERRF Cybrid Reduces Oxidative Stress and Improves Mitochondrial Bioenergetics

    PubMed Central

    Liou, Chia-Wei; Chen, Shang-Der; Wang, Pei-Wen; Chuang, Jiin-Haur; Tiao, Mao-Meng; Hsu, Te-Yao

    2017-01-01

    Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a maternally inherited mitochondrial disease affecting neuromuscular functions. Mt.8344A>G mutation in mitochondrial DNA (mtDNA) is the most common cause of MERRF syndrome and has been linked to an increase in reactive oxygen species (ROS) level and oxidative stress, as well as impaired mitochondrial bioenergetics. Here, we tested whether WJMSC has therapeutic potential for the treatment of MERRF syndrome through the transfer of mitochondria. The MERRF cybrid cells exhibited a high mt.8344A>G mutation ratio, enhanced ROS level and oxidative damage, impaired mitochondrial bioenergetics, defected mitochondria-dependent viability, exhibited an imbalance of mitochondrial dynamics, and are susceptible to apoptotic stress. Coculture experiments revealed that mitochondria were intercellularly conducted from the WJMSC to the MERRF cybrid. Furthermore, WJMSC transferred mitochondria exclusively to cells with defective mitochondria but not to cells with normal mitochondria. MERRF cybrid following WJMSC coculture (MF+WJ) demonstrated improvement of mt.8344A>G mutation ratio, ROS level, oxidative damage, mitochondrial bioenergetics, mitochondria-dependent viability, balance of mitochondrial dynamics, and resistance against apoptotic stress. WJMSC-derived mitochondrial transfer and its therapeutic effect were noted to be blocked by F-actin depolymerizing agent cytochalasin B. Collectively, the WJMSC ability to rescue cells with defective mitochondrial function through donating healthy mitochondria may lead to new insights into the development of more efficient strategies to treat diseases related to mitochondrial dysfunction. PMID:28607632

  12. Sodium-dependent calcium extrusion and sensitivity regulation in retinal cones of the salamander.

    PubMed Central

    Nakatani, K; Yau, K W

    1989-01-01

    1. Membrane current was recorded from an isolated, dark-adapted salamander cone by sucking its inner segment into a tight-fitting glass pipette containing Ringer solution. The outer segment of the cell was exposed to a bath solution that could be changed rapidly. 2. After removing Na+ from the bath Ringer solution for a short period of time in darkness (the 'loading period'), a transient inward current was observed upon restoring it in bright light. A similar but longer-lasting current was observed when Na+ was restored in the light after a large Ca2+ influx was induced through the light-sensitive conductance in darkness. 3. The above transient current was not observed if Li+ or guanidinium was substituted for Na+ in the light, or if Ba2+ was substituted for Ca2+ during the dark loading period. However, a current was observed if Sr2+ was the substituting ion for Ca2+ during loading. These observations suggested that the current was associated with an electrogenic Na+-dependent Ca2+ efflux at the cone outer segment. 4. The saturated amplitude of the exchange current was 12-25 pA with a mean around 16 pA. This is very comparable to that measured in the outer segment of a salamander rod under similar conditions. 5. By comparing a known Ca2+ load in a cone outer segment to the subsequent charge transfer through the exchange, we estimated that the stoichiometry of the exchange was near 3Na+:1Ca2+. 6. With a small Ca2+ load, or in the presence of Cs+ around the inner segment, the final temporal decline of the Na+-Ca2+ exchange current was roughly exponential, with a mean time constant of about 100 ms. This decline is about four times faster than that measured in rods. We interpret the shorter time constant in cones to reflect a faster rate of decline of intracellular free Ca2+ in their outer segments resulting from the exchange activity. 7. In the absence of external Na+, and hence any Na+-dependent Ca2+ efflux, the absolute sensitivity of a cone to a dim flash was

  13. A Mitochondrial Genome of Rhyparochromidae (Hemiptera: Heteroptera) and a Comparative Analysis of Related Mitochondrial Genomes.

    PubMed

    Li, Teng; Yang, Jie; Li, Yinwan; Cui, Ying; Xie, Qiang; Bu, Wenjun; Hillis, David M

    2016-10-19

    The Rhyparochromidae, the largest family of Lygaeoidea, encompasses more than 1,850 described species, but no mitochondrial genome has been sequenced to date. Here we describe the first mitochondrial genome for Rhyparochromidae: a complete mitochondrial genome of Panaorus albomaculatus (Scott, 1874). This mitochondrial genome is comprised of 16,345 bp, and contains the expected 37 genes and control region. The majority of the control region is made up of a large tandem-repeat region, which has a novel pattern not previously observed in other insects. The tandem-repeats region of P. albomaculatus consists of 53 tandem duplications (including one partial repeat), which is the largest number of tandem repeats among all the known insect mitochondrial genomes. Slipped-strand mispairing during replication is likely to have generated this novel pattern of tandem repeats. Comparative analysis of tRNA gene families in sequenced Pentatomomorpha and Lygaeoidea species shows that the pattern of nucleotide conservation is markedly higher on the J-strand. Phylogenetic reconstruction based on mitochondrial genomes suggests that Rhyparochromidae is not the sister group to all the remaining Lygaeoidea, and supports the monophyly of Lygaeoidea.

  14. Mitochondrial uncoupling, ROS generation and cardioprotection.

    PubMed

    Cadenas, Susana

    2018-05-31

    Mitochondrial oxidative phosphorylation is incompletely coupled, since protons translocated to the intermembrane space by specific respiratory complexes of the electron transport chain can return to the mitochondrial matrix independently of the ATP synthase -a process known as proton leak- generating heat instead of ATP. Proton leak across the inner mitochondrial membrane increases the respiration rate and decreases the electrochemical proton gradient (Δp), and is an important mechanism for energy dissipation that accounts for up to 25% of the basal metabolic rate. It is well established that mitochondrial superoxide production is steeply dependent on Δp in isolated mitochondria and, correspondingly, mitochondrial uncoupling has been identified as a cytoprotective strategy under conditions of oxidative stress, including diabetes, drug-resistance in tumor cells, ischemia-reperfusion (IR) injury or aging. Mitochondrial uncoupling proteins (UCPs) are able to lower the efficiency of oxidative phosphorylation and are involved in the control of mitochondrial reactive oxygen species (ROS) production. There is strong evidence that UCP2 and UCP3, the UCP1 homologues expressed in the heart, protect against mitochondrial oxidative damage by reducing the production of ROS. This review first analyzes the relationship between mitochondrial proton leak and ROS generation, and then focuses on the cardioprotective role of chemical uncoupling and uncoupling mediated by UCPs. This includes their protective effects against cardiac IR, a condition known to increase ROS production, and their roles in modulating cardiovascular risk factors such as obesity, diabetes and atherosclerosis. Copyright © 2018. Published by Elsevier B.V.

  15. Aspirin increases mitochondrial fatty acid oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse themore » mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.« less

  16. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice

    PubMed Central

    Zabielski, Piotr; Lanza, Ian R.; Gopala, Srinivas; Holtz Heppelmann, Carrie J.; Bergen, H. Robert; Dasari, Surendra

    2016-01-01

    Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503

  17. A Mitochondrial Mutator System in Maize1[w

    PubMed Central

    Kuzmin, Evgeny V.; Duvick, Donald N.; Newton, Kathleen J.

    2005-01-01

    The P2 line of maize (Zea mays) is characterized by mitochondrial genome destabilization, initiated by recessive nuclear mutations. These alleles alter copy number control of mitochondrial subgenomes and disrupt normal transfer of mitochondrial genomic components to progeny, resulting in differences in mitochondrial DNA profiles among sibling plants and between parents and progeny. The mitochondrial DNA changes are often associated with variably defective phenotypes, reflecting depletion of essential mitochondrial genes. The P2 nuclear genotype can be considered a natural mutagenesis system for maize mitochondria. It dramatically accelerates mitochondrial genomic divergence by increasing low copy-number subgenomes, by rapidly amplifying aberrant recombination products, and by causing the random loss of normal components of the mitochondrial genomes. PMID:15681663

  18. Mutations in FBXL4 Cause Mitochondrial Encephalopathy and a Disorder of Mitochondrial DNA Maintenance

    PubMed Central

    Bonnen, Penelope E.; Yarham, John W.; Besse, Arnaud; Wu, Ping; Faqeih, Eissa A.; Al-Asmari, Ali Mohammad; Saleh, Mohammad A.M.; Eyaid, Wafaa; Hadeel, Alrukban; He, Langping; Smith, Frances; Yau, Shu; Simcox, Eve M.; Miwa, Satomi; Donti, Taraka; Abu-Amero, Khaled K.; Wong, Lee-Jun; Craigen, William J.; Graham, Brett H.; Scott, Kenneth L.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Nuclear genetic disorders causing mitochondrial DNA (mtDNA) depletion are clinically and genetically heterogeneous, and the molecular etiology remains undiagnosed in the majority of cases. Through whole-exome sequencing, we identified recessive nonsense and splicing mutations in FBXL4 segregating in three unrelated consanguineous kindreds in which affected children present with a fatal encephalopathy, lactic acidosis, and severe mtDNA depletion in muscle. We show that FBXL4 is an F-box protein that colocalizes with mitochondria and that loss-of-function and splice mutations in this protein result in a severe respiratory chain deficiency, loss of mitochondrial membrane potential, and a disturbance of the dynamic mitochondrial network and nucleoid distribution in fibroblasts from affected individuals. Expression of the wild-type FBXL4 transcript in cell lines from two subjects fully rescued the levels of mtDNA copy number, leading to a correction of the mitochondrial biochemical deficit. Together our data demonstrate that mutations in FBXL4 are disease causing and establish FBXL4 as a mitochondrial protein with a possible role in maintaining mtDNA integrity and stability. PMID:23993193

  19. Syndromes associated with mitochondrial DNA depletion

    PubMed Central

    2014-01-01

    Mitochondrial dysfunction accounts for a large group of inherited metabolic disorders most of which are due to a dysfunctional mitochondrial respiratory chain (MRC) and, consequently, deficient energy production. MRC function depends on the coordinated expression of both nuclear (nDNA) and mitochondrial (mtDNA) genomes. Thus, mitochondrial diseases can be caused by genetic defects in either the mitochondrial or the nuclear genome, or in the cross-talk between the two. This impaired cross-talk gives rise to so-called nuclear-mitochondrial intergenomic communication disorders, which result in loss or instability of the mitochondrial genome and, in turn, impaired maintenance of qualitative and quantitative mtDNA integrity. In children, most MRC disorders are associated with nuclear gene defects rather than alterations in the mtDNA itself. The mitochondrial DNA depletion syndromes (MDSs) are a clinically heterogeneous group of disorders with an autosomal recessive pattern of transmission that have onset in infancy or early childhood and are characterized by a reduced number of copies of mtDNA in affected tissues and organs. The MDSs can be divided into least four clinical presentations: hepatocerebral, myopathic, encephalomyopathic and neurogastrointestinal. The focus of this review is to offer an overview of these syndromes, listing the clinical phenotypes, together with their relative frequency, mutational spectrum, and possible insights for improving diagnostic strategies. PMID:24708634

  20. Mitochondrial dysfunction and organophosphorus compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karami-Mohajeri, Somayyeh; Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman; Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen frommore » dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.« less

  1. Mitochondrial Dysfunction in Cancer

    PubMed Central

    Boland, Michelle L.; Chourasia, Aparajita H.; Macleod, Kay F.

    2013-01-01

    A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability, and other established aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the significance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis, and spatial dynamics of mitochondria and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knock on effects for cell proliferation and growth. We define major forms of mitochondrial dysfunction and address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment. PMID:24350057

  2. Mitochondrial dysfunction in obesity.

    PubMed

    de Mello, Aline Haas; Costa, Ana Beatriz; Engel, Jéssica Della Giustina; Rezin, Gislaine Tezza

    2018-01-01

    Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The expanding phenotype of mitochondrial myopathy.

    PubMed

    DiMauro, Salvatore; Gurgel-Giannetti, Juliana

    2005-10-01

    Our understanding of mitochondrial diseases (defined restrictively as defects in the mitochondrial respiratory chain) continues to progress apace. In this review we provide an update of information regarding disorders that predominantly or exclusively affect skeletal muscle. Most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency, and mutations in genes that control mitochondrial DNA (mtDNA) abundance and structure such as POLG and TK2. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with altered lipid composition of the inner mitochondrial membrane, but a putative secondary impairment of the respiratory chain remains to be documented. Concerning the 'other genome', the role played by mutations in protein encoding genes of mtDNA in causing isolated myopathies has been confirmed. It has also been confirmed that mutations in tRNA genes of mtDNA can cause predominantly myopathic syndromes and - contrary to conventional wisdom - these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, myalgia, cramps, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  4. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.

    PubMed

    Lopez Sanchez, M I G; Crowston, J G; Mackey, D A; Trounce, I A

    2016-09-01

    Optic neuropathies are an important cause of blindness worldwide. The study of the most common inherited mitochondrial optic neuropathies, Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) has highlighted a fundamental role for mitochondrial function in the survival of the affected neuron-the retinal ganglion cell. A picture is now emerging that links mitochondrial dysfunction to optic nerve disease and other neurodegenerative processes. Insights gained from the peculiar susceptibility of retinal ganglion cells to mitochondrial dysfunction are likely to inform therapeutic development for glaucoma and other common neurodegenerative diseases of aging. Despite it being a fast-evolving field of research, a lack of access to human ocular tissues and limited animal models of mitochondrial disease have prevented direct retinal ganglion cell experimentation and delayed the development of efficient therapeutic strategies to prevent vision loss. Currently, there are no approved treatments for mitochondrial disease, including optic neuropathies caused by primary or secondary mitochondrial dysfunction. Recent advances in eye research have provided important insights into the molecular mechanisms that mediate pathogenesis, and new therapeutic strategies including gene correction approaches are currently being investigated. Here, we review the general principles of mitochondrial biology relevant to retinal ganglion cell function and provide an overview of the major optic neuropathies with mitochondrial involvement, LHON and ADOA, whilst highlighting the emerging link between mitochondrial dysfunction and glaucoma. The pharmacological strategies currently being trialed to improve mitochondrial dysfunction in these optic neuropathies are discussed in addition to emerging therapeutic approaches to preserve retinal ganglion cell function. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Regulation of mitochondrial bioenergetics by the non-canonical roles of mitochondrial dynamics proteins in the heart.

    PubMed

    Wang, Wang; Fernandez-Sanz, Celia; Sheu, Shey-Shing

    2018-05-01

    Recent advancement in mitochondrial research has significantly extended our knowledge on the role and regulation of mitochondria in health and disease. One important breakthrough is the delineation of how mitochondrial morphological changes, termed mitochondrial dynamics, are coupled to the bioenergetics and signaling functions of mitochondria. In general, it is believed that fusion leads to an increased mitochondrial respiration efficiency and resistance to stress-induced dysfunction while fission does the contrary. This concept seems not applicable to adult cardiomyocytes. The mitochondria in adult cardiomyocytes exhibit fragmented morphology (tilted towards fission) and show less networking and movement as compared to other cell types. However, being the most energy-demanding cells, cardiomyocytes in the adult heart possess vast number of mitochondria, high level of energy flow, and abundant mitochondrial dynamics proteins. This apparent discrepancy could be explained by recently identified new functions of the mitochondrial dynamics proteins. These "non-canonical" roles of mitochondrial dynamics proteins range from controlling inter-organelle communication to regulating cell viability and survival under metabolic stresses. Here, we summarize the newly identified non-canonical roles of mitochondrial dynamics proteins. We focus on how these fission and fusion independent roles of dynamics proteins regulate mitochondrial bioenergetics. We also discuss potential molecular mechanisms, unique intracellular location, and the cardiovascular disease relevance of these non-canonical roles of the dynamics proteins. We propose that future studies are warranted to differentiate the canonical and non-canonical roles of dynamics proteins and to identify new approaches for the treatment of heart diseases. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and

  6. The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview.

    PubMed

    Liu, Jiankang

    2008-01-01

    We have identified a group of nutrients that can directly or indirectly protect mitochondria from oxidative damage and improve mitochondrial function and named them "mitochondrial nutrients". The direct protection includes preventing the generation of oxidants, scavenging free radicals or inhibiting oxidant reactivity, and elevating cofactors of defective mitochondrial enzymes with increased Michaelis-Menten constant to stimulate enzyme activity, and also protect enzymes from further oxidation, and the indirect protection includes repairing oxidative damage by enhancing antioxidant defense systems either through activation of phase 2 enzymes or through increase in mitochondrial biogenesis. In this review, we take alpha-lipoic acid (LA) as an example of mitochondrial nutrients by summarizing the protective effects and possible mechanisms of LA and its derivatives on age-associated cognitive and mitochondrial dysfunction of the brain. LA and its derivatives improve the age-associated decline of memory, improve mitochondrial structure and function, inhibit the age-associated increase of oxidative damage, elevate the levels of antioxidants, and restore the activity of key enzymes. In addition, co-administration of LA with other mitochondrial nutrients, such as acetyl-L: -carnitine and coenzyme Q10, appears more effective in improving cognitive dysfunction and reducing oxidative mitochondrial dysfunction. Therefore, administrating mitochondrial nutrients, such as LA and its derivatives in combination with other mitochondrial nutrients to aged people and patients suffering from neurodegenerative diseases, may be an effective strategy for improving mitochondrial and cognitive dysfunction.

  7. Mitochondrial disorders: Challenges in diagnosis & treatment

    PubMed Central

    Khan, Nahid Akhtar; Govindaraj, Periyasamy; Meena, Angamuthu Kannan; Thangaraj, Kumarasamy

    2015-01-01

    Mitochondrial dysfunctions are known to be responsible for a number of heterogenous clinical presentations with multi-systemic involvement. Impaired oxidative phosphorylation leading to a decrease in cellular energy (ATP) production is the most important cause underlying these disorders. Despite significant progress made in the field of mitochondrial medicine during the last two decades, the molecular mechanisms underlying these disorders are not fully understood. Since the identification of first mitochondrial DNA (mtDNA) mutation in 1988, there has been an exponential rise in the identification of mtDNA and nuclear DNA mutations that are responsible for mitochondrial dysfunction and disease. Genetic complexity together with ever widening clinical spectrum associated with mitochondrial dysfunction poses a major challenge in diagnosis and treatment. Effective therapy has remained elusive till date and is mostly efficient in relieving symptoms. In this review, we discuss the important clinical and genetic features of mitochondrials disorders with special emphasis on diagnosis and treatment. PMID:25857492

  8. Indirubin-3'-oxime impairs mitochondrial oxidative phosphorylation and prevents mitochondrial permeability transition induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varela, Ana T.; Gomes, Ana P.; Simoes, Anabela M.

    2008-12-01

    Indirubin, a red colored 3,2'-bisindole isomer, is a component of Indigo naturalis and is an active ingredient used in traditional Chinese medicine for the treatment of chronic diseases. The family of indirubin derivatives, such as indirubin-3'-oxime, has been suggested for various therapeutic indications. However, potential toxic interactions such as indirubin effects on mitochondrial bioenergetics are still unknown. This study evaluated the action of indirubin-3'-oxime on the function of isolated rat liver mitochondria contributing to a better understanding of the biochemical mechanisms underlying the multiple effects of indirubin. Indirubin-3'-oxime incubated with isolated rat liver mitochondria, at concentrations above 10{mu}M, significantly depressesmore » the phosphorylation efficiency of mitochondria as inferred from the decrease in the respiratory control and ADP/O ratios, the perturbations in mitochondrial membrane potential and in the phosphorylative cycle induced by ADP. Furthermore, indirubin-3'-oxime at up to 25{mu}M stimulates the rate of state 4 respiration and inhibits state 3 respiration. The increased lag phase of repolarization was associated with a direct inhibition of the mitochondrial ATPase. Indirubin-3'-oxime significantly inhibited the activity of complex II and IV thus explaining the decreased FCCP-stimulated mitochondrial respiration. Mitochondria pre-incubated with indirubin-3'-oxime exhibits decreased susceptibility to calcium-induced mitochondrial permeability transition. This work shows for the first time multiple effects of indirubin-3'-oxime on mitochondrial bioenergetics thus indicating a potential mechanism for indirubin-3'-oxime effects on cell function.« less

  9. Mitochondrial-nuclear crosstalk, haplotype and copy number variation distinct in muscle fiber type, mitochondrial respiratory and metabolic enzyme activities.

    PubMed

    Liu, Xuan; Trakooljul, Nares; Hadlich, Frieder; Murani, Eduard; Wimmers, Klaus; Ponsuksili, Siriluck

    2017-10-25

    Genes expressed in mitochondria work in concert with those expressed in the nucleus to mediate oxidative phosphorylation (OXPHOS), a process that is relevant for muscle metabolism and meat quality. Mitochondrial genome activity can be efficiently studied and compared in Duroc and Pietrain pigs, which harbor different mitochondrial haplotypes and distinct muscle fiber types, mitochondrial respiratory activities, and fat content. Pietrain pigs homozygous-positive for malignant hyperthermia susceptibility (PiPP) carried only haplotype 8 and showed the lowest absolute mtDNA copy number accompanied by a decrease transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6 and nuclear-encoded subunits NDUFA11 and NDUFB8. In contrast, we found that haplotype 4 of Duroc pigs had significantly higher mitochondrial DNA (mtDNA) copy numbers and an increase transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6. These results suggest that the variation in mitochondrial and nuclear genetic background among these animals has an effect on mitochondrial content and OXPHOS system subunit expression. We observed the co-expression pattern of mitochondrial and nuclear encoded OXPHOS subunits suggesting that the mitochondrial-nuclear crosstalk functionally involves in muscle metabolism. The findings provide valuable information for understanding muscle biology processes and energy metabolism, and may direct use for breeding strategies to improve meat quality and animal health.

  10. Photopigment quenching is Ca2+ dependent and controls response duration in salamander L-cone photoreceptors

    PubMed Central

    2010-01-01

    The time scale of the photoresponse in photoreceptor cells is set by the slowest of the steps that quench the light-induced activity of the phototransduction cascade. In vertebrate photoreceptor cells, this rate-limiting reaction is thought to be either shutoff of catalytic activity in the photopigment or shutoff of the pigment's effector, the transducin-GTP–phosphodiesterase complex. In suction pipette recordings from isolated salamander L-cones, we found that preventing changes in internal [Ca2+] delayed the recovery of the light response and prolonged the dominant time constant for recovery. Evidence that the Ca2+-sensitive step involved the pigment itself was provided by the observation that removal of Cl− from the pigment's anion-binding site accelerated the dominant time constant for response recovery. Collectively, these observations indicate that in L-cones, unlike amphibian rods where the dominant time constant is insensitive to [Ca2+], pigment quenching rate limits recovery and provides an additional mechanism for modulating the cone response during light adaptation. PMID:20231373

  11. Comparative limb bone loading in the humerus and femur of the tiger salamander: testing the 'mixed-chain' hypothesis for skeletal safety factors.

    PubMed

    Kawano, Sandy M; Economy, D Ross; Kennedy, Marian S; Dean, Delphine; Blob, Richard W

    2016-02-01

    Locomotion imposes some of the highest loads upon the skeleton, and diverse bone designs have evolved to withstand these demands. Excessive loads can fatally injure organisms; however, bones have a margin of extra protection, called a 'safety factor' (SF), to accommodate loads that are higher than normal. The extent to which SFs might vary amongst an animal's limb bones is unclear. If the limbs are likened to a chain composed of bones as 'links', then similar SFs might be expected for all limb bones because failure of the system would be determined by the weakest link, and extra protection in other links could waste energetic resources. However, Alexander proposed that a 'mixed-chain' of SFs might be found amongst bones if: (1) their energetic costs differ, (2) some elements face variable demands, or (3) SFs are generally high. To test whether such conditions contribute to diversity in limb bone SFs, we compared the biomechanical properties and locomotor loading of the humerus and femur in the tiger salamander (Ambystoma tigrinum). Despite high SFs in salamanders and similar sizes of the humerus and femur that would suggest similar energetic costs, the humerus had lower bone stresses, higher mechanical hardness and larger SFs. SFs were greatest in the anatomical regions where yield stresses were highest in the humerus and lowest in the femur. Such intraspecific variation between and within bones may relate to their different biomechanical functions, providing insight into the emergence of novel locomotor capabilities during the invasion of land by tetrapods. © 2016. Published by The Company of Biologists Ltd.

  12. Adrenergic Signaling Regulates Mitochondrial Ca2+ Uptake Through Pyk2-Dependent Tyrosine Phosphorylation of the Mitochondrial Ca2+ Uniporter

    PubMed Central

    Jhun, Bong Sook; Xu, Shangcheng; Hurst, Stephen; Raffaello, Anna; Liu, Xiaoyun; Yi, Bing; Zhang, Huiliang; Gross, Polina; Mishra, Jyotsna; Ainbinder, Alina; Kettlewell, Sarah; Smith, Godfrey L.; Dirksen, Robert T.; Wang, Wang; Rizzuto, Rosario

    2014-01-01

    Abstract Aims: Mitochondrial Ca2+ homeostasis is crucial for balancing cell survival and death. The recent discovery of the molecular identity of the mitochondrial Ca2+ uniporter pore (MCU) opens new possibilities for applying genetic approaches to study mitochondrial Ca2+ regulation in various cell types, including cardiac myocytes. Basal tyrosine phosphorylation of MCU was reported from mass spectroscopy of human and mouse tissues, but the signaling pathways that regulate mitochondrial Ca2+ entry through posttranslational modifications of MCU are completely unknown. Therefore, we investigated α1-adrenergic-mediated signal transduction of MCU posttranslational modification and function in cardiac cells. Results: α1-adrenoceptor (α1-AR) signaling translocated activated proline-rich tyrosine kinase 2 (Pyk2) from the cytosol to mitochondrial matrix and accelerates mitochondrial Ca2+ uptake via Pyk2-dependent MCU phosphorylation and tetrametric MCU channel pore formation. Moreover, we found that α1-AR stimulation increases reactive oxygen species production at mitochondria, mitochondrial permeability transition pore activity, and initiates apoptotic signaling via Pyk2-dependent MCU activation and mitochondrial Ca2+ overload. Innovation: Our data indicate that inhibition of α1-AR-Pyk2-MCU signaling represents a potential novel therapeutic target to limit or prevent mitochondrial Ca2+ overload, oxidative stress, mitochondrial injury, and myocardial death during pathophysiological conditions, where chronic adrenergic stimulation is present. Conclusion: The α1-AR-Pyk2-dependent tyrosine phosphorylation of the MCU regulates mitochondrial Ca2+ entry and apoptosis in cardiac cells. Antioxid. Redox Signal. 21, 863–879. PMID:24800979

  13. Mitochondrial oxidative stress in aging and healthspan

    PubMed Central

    2014-01-01

    The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31. PMID:24860647

  14. Exercise training improves vascular mitochondrial function

    PubMed Central

    Park, Song-Young; Rossman, Matthew J.; Gifford, Jayson R.; Bharath, Leena P.; Bauersachs, Johann; Richardson, Russell S.; Abel, E. Dale; Symons, J. David

    2016-01-01

    Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1, isocitrate dehydrogenase (Idh) 2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser1177), and suppressed reactive oxygen species generation (all P < 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function. PMID:26825520

  15. A high-throughput screen for mitochondrial function reveals known and novel mitochondrial toxicants in a library of environmental agents

    PubMed Central

    Datta, Sandipan; Sahdeo, Sunil; Gray, Jennifer A.; Morriseau, Christophe; Hammock, Bruce D.; Cortopassi, Gino

    2016-01-01

    Mitochondrial toxicity is emerging as a major mechanism underlying serious human health consequences. This work performs a high-throughput screen (HTS) of 176 environmental chemicals for mitochondrial toxicity utilizing a previously reported biosensor platform. This established HTS confirmed known mitochondrial toxins and identified novel mitotochondrial uncouplers such as 2, 2′-Methylenebis(4-chlorophenol) and pentachlorophenol. It also identified a mitochondrial ‘structure activity relationship’ (SAR) in the sense that multiple environmental chlorophenols are mitochondrial inhibitors and uncouplers. This study demonstrates proof-of-concept that a mitochondrial HTS assay detects known and novel environmental mitotoxicants, and could be used to quickly evaluate human health risks from mitotoxicants in the environment. PMID:27717841

  16. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN)

    PubMed Central

    Canta, Annalisa; Pozzi, Eleonora; Carozzi, Valentina Alda

    2015-01-01

    The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy. PMID:29056658

  17. Aspirin Increases Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2016-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 hr incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. PMID:27856258

  18. Evolution of gastropod mitochondrial genome arrangements

    PubMed Central

    2008-01-01

    Background Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary comparative analysis requires a robust phylogenetic framework of the group under study, which has been elusive so far for gastropods in spite of the efforts carried out during the last two decades. Here, we report the complete nucleotide sequence of five mitochondrial genomes of gastropods (Pyramidella dolabrata, Ascobulla fragilis, Siphonaria pectinata, Onchidella celtica, and Myosotella myosotis), and we analyze them together with another ten complete mitochondrial genomes of gastropods currently available in molecular databases in order to reconstruct the phylogenetic relationships among the main lineages of gastropods. Results Comparative analyses with other mollusk mitochondrial genomes allowed us to describe molecular features and general trends in the evolution of mitochondrial genome organization in gastropods. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (ME, MP, ML, BI) arrived at a single topology, which was used to reconstruct the evolution of mitochondrial gene rearrangements in the group. Conclusion Four main lineages were identified within gastropods: Caenogastropoda, Vetigastropoda, Patellogastropoda, and Heterobranchia. Caenogastropoda and Vetigastropoda are sister taxa, as well as, Patellogastropoda and Heterobranchia. This result rejects the validity of the derived clade Apogastropoda (Caenogastropoda + Heterobranchia). The position of Patellogastropoda remains unclear likely due to long-branch attraction biases. Within Heterobranchia, the most heterogeneous group of gastropods, neither Euthyneura (because of the inclusion of P. dolabrata) nor Pulmonata

  19. Loss of Mitochondrial Function Impairs Lysosomes.

    PubMed

    Demers-Lamarche, Julie; Guillebaud, Gérald; Tlili, Mouna; Todkar, Kiran; Bélanger, Noémie; Grondin, Martine; Nguyen, Angela P; Michel, Jennifer; Germain, Marc

    2016-05-06

    Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Mitochondrial dynamics in mammalian health and disease.

    PubMed

    Liesa, Marc; Palacín, Manuel; Zorzano, Antonio

    2009-07-01

    The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.

  1. The mitochondrial outer membrane protein hFis1 regulates mitochondrial morphology and fission through self-interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serasinghe, Madhavika N.; Mitochondrial Research and Innovation Group, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Yoon, Yisang

    2008-11-15

    Mitochondrial fission in mammals is mediated by at least two proteins, DLP1/Drp1 and hFis1. DLP1 mediates the scission of mitochondrial membranes through GTP hydrolysis, and hFis1 is a putative DLP1 receptor anchored at the mitochondrial outer membrane by a C-terminal single transmembrane domain. The cytosolic domain of hFis1 contains six {alpha}-helices ({alpha}1-{alpha}6) out of which {alpha}2-{alpha}5 form two tetratricopeptide repeat (TPR) folds. In this study, by using chimeric constructs, we demonstrated that the cytosolic domain contains the necessary information for hFis1 function during mitochondrial fission. By using transient expression of different mutant forms of the hFis1 protein, we found thatmore » hFis1 self-interaction plays an important role in mitochondrial fission. Our results show that deletion of the {alpha}1 helix greatly increased the formation of dimeric and oligomeric forms of hFis1, indicating that {alpha}1 helix functions as a negative regulator of the hFis1 self-interaction. Further mutational approaches revealed that a tyrosine residue in the {alpha}5 helix and the linker between {alpha}3 and {alpha}4 helices participate in hFis1 oligomerization. Mutations causing oligomerization defect greatly reduced the ability to induce not only mitochondrial fragmentation by full-length hFis1 but also the formation of swollen ball-shaped mitochondria caused by {alpha}1-deleted hFis1. Our data suggest that oligomerization of hFis1 in the mitochondrial outer membrane plays a role in mitochondrial fission, potentially through participating in fission factor recruitment.« less

  2. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases

    PubMed Central

    DeBalsi, Karen L.; Hoff, Kirsten E.; Copeland, William C.

    2016-01-01

    As regulators of bioenergetics in the cell and the primary source of endogenous reactive oxygen species (ROS), dysfunctional mitochondria have been implicated for decades in the process of aging and age-related diseases. Mitochondrial DNA (mtDNA) is replicated and repaired by nuclear-encoded mtDNA polymerase γ (Pol γ) and several other associated proteins, which compose the mtDNA replication machinery. Here, we review evidence that errors caused by this replication machinery and failure to repair these mtDNA errors results in mtDNA mutations. Clonal expansion of mtDNA mutations results in mitochondrial dysfunction, such as decreased electron transport chain (ETC) enzyme activity and impaired cellular respiration. We address the literature that mitochondrial dysfunction, in conjunction with altered mitochondrial dynamics, is a major driving force behind aging and age-related diseases. Additionally, interventions to improve mitochondrial function and attenuate the symptoms of aging are examined. PMID:27143693

  3. Vesicle Pool Size at the Salamander Cone Ribbon Synapse

    PubMed Central

    Bartoletti, Theodore M.; Babai, Norbert

    2010-01-01

    Cone light responses are transmitted to postsynaptic neurons by changes in the rate of synaptic vesicle release. Vesicle pool size at the cone synapse constrains the amount of release and can thus shape contrast detection. We measured the number of vesicles in the rapidly releasable and reserve pools at cone ribbon synapses by performing simultaneous whole cell recording from cones and horizontal or off bipolar cells in the salamander retinal slice preparation. We found that properties of spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs) are representative of mEPSCs evoked by depolarizing presynaptic stimulation. Strong, brief depolarization of the cone stimulated release of the entire rapidly releasable pool (RRP) of vesicles. Comparing charge transfer of the EPSC with mEPSC charge transfer, we determined that the fast component of the EPSC reflects release of ∼40 vesicles. Comparing EPSCs with simultaneous presynaptic capacitance measurements, we found that horizontal cell EPSCs constitute 14% of the total number of vesicles released from a cone terminal. Using a fluorescent ribeye-binding peptide, we counted ∼13 ribbons per cone. Together, these results suggest each cone contacts a single horizontal cell at ∼2 ribbons. The size of discrete components in the EPSC amplitude histogram also suggested ∼2 ribbon contacts per cell pair. We therefore conclude there are ∼20 vesicles per ribbon in the RRP, similar to the number of vesicles contacting the plasma membrane at the ribbon base. EPSCs evoked by lengthy depolarization suggest a reserve pool of ∼90 vesicles per ribbon, similar to the number of additional docking sites further up the ribbon. PMID:19923246

  4. Development of pharmacological strategies for mitochondrial disorders

    PubMed Central

    Kanabus, M; Heales, S J; Rahman, S

    2014-01-01

    Mitochondrial diseases are an unusually genetically and phenotypically heterogeneous group of disorders, which are extremely challenging to treat. Currently, apart from supportive therapy, there are no effective treatments for the vast majority of mitochondrial diseases. Huge scientific effort, however, is being put into understanding the mechanisms underlying mitochondrial disease pathology and developing potential treatments. To date, a variety of treatments have been evaluated by randomized clinical trials, but unfortunately, none of these has delivered breakthrough results. Increased understanding of mitochondrial pathways and the development of many animal models, some of which are accurate phenocopies of human diseases, are facilitating the discovery and evaluation of novel prospective treatments. Targeting reactive oxygen species has been a treatment of interest for many years; however, only in recent years has it been possible to direct antioxidant delivery specifically into the mitochondria. Increasing mitochondrial biogenesis, whether by pharmacological approaches, dietary manipulation or exercise therapy, is also currently an active area of research. Modulating mitochondrial dynamics and mitophagy and the mitochondrial membrane lipid milieu have also emerged as possible treatment strategies. Recent technological advances in gene therapy, including allotopic and transkingdom gene expression and mitochondrially targeted transcription activator-like nucleases, have led to promising results in cell and animal models of mitochondrial diseases, but most of these techniques are still far from clinical application. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24116962

  5. Mitochondrial dysfunction in autism.

    PubMed

    Giulivi, Cecilia; Zhang, Yi-Fan; Omanska-Klusek, Alicja; Ross-Inta, Catherine; Wong, Sarah; Hertz-Picciotto, Irva; Tassone, Flora; Pessah, Isaac N

    2010-12-01

    Impaired mitochondrial function may influence processes highly dependent on energy, such as neurodevelopment, and contribute to autism. No studies have evaluated mitochondrial dysfunction and mitochondrial DNA (mtDNA) abnormalities in a well-defined population of children with autism. To evaluate mitochondrial defects in children with autism. Observational study using data collected from patients aged 2 to 5 years who were a subset of children participating in the Childhood Autism Risk From Genes and Environment study in California, which is a population-based, case-control investigation with confirmed autism cases and age-matched, genetically unrelated, typically developing controls, that was launched in 2003 and is still ongoing. Mitochondrial dysfunction and mtDNA abnormalities were evaluated in lymphocytes from 10 children with autism and 10 controls. Oxidative phosphorylation capacity, mtDNA copy number and deletions, mitochondrial rate of hydrogen peroxide production, and plasma lactate and pyruvate. The reduced nicotinamide adenine dinucleotide (NADH) oxidase activity (normalized to citrate synthase activity) in lymphocytic mitochondria from children with autism was significantly lower compared with controls (mean, 4.4 [95% confidence interval {CI}, 2.8-6.0] vs 12 [95% CI, 8-16], respectively; P = .001). The majority of children with autism (6 of 10) had complex I activity below control range values. Higher plasma pyruvate levels were found in children with autism compared with controls (0.23 mM [95% CI, 0.15-0.31 mM] vs 0.08 mM [95% CI, 0.04-0.12 mM], respectively; P = .02). Eight of 10 cases had higher pyruvate levels but only 2 cases had higher lactate levels compared with controls. These results were consistent with the lower pyruvate dehydrogenase activity observed in children with autism compared with controls (1.0 [95% CI, 0.6-1.4] nmol × [min × mg protein](-1) vs 2.3 [95% CI, 1.7-2.9] nmol × [min × mg protein](-1), respectively; P = .01

  6. Pharmacological modulation of mitochondrial calcium homeostasis.

    PubMed

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  7. Atypical mitochondrial fission upon bacterial infection

    PubMed Central

    Stavru, Fabrizia; Palmer, Amy E.; Wang, Chunxin; Youle, Richard J.; Cossart, Pascale

    2013-01-01

    We recently showed that infection by Listeria monocytogenes causes mitochondrial network fragmentation through the secreted pore-forming toxin listeriolysin O (LLO). Here, we examine factors involved in canonical fusion and fission. Strikingly, LLO-induced mitochondrial fragmentation does not require the traditional fission machinery, as Drp1 oligomers are absent from fragmented mitochondria following Listeria infection or LLO treatment, as the dynamin-like protein 1 (Drp1) receptor Mff is rapidly degraded, and as fragmentation proceeds efficiently in cells with impaired Drp1 function. LLO does not cause processing of the fusion protein optic atrophy protein 1 (Opa1), despite inducing a decrease in the mitochondrial membrane potential, suggesting a unique Drp1- and Opa1-independent fission mechanism distinct from that triggered by uncouplers or the apoptosis inducer staurosporine. We show that the ER marks LLO-induced mitochondrial fragmentation sites even in the absence of functional Drp1, demonstrating that the ER activity in regulating mitochondrial fission can be induced by exogenous agents and that the ER appears to regulate fission by a mechanism independent of the canonical mitochondrial fission machinery. PMID:24043775

  8. A metagenomics-based approach to the top-down effect on the detritivore food web: a salamanders influence on fungal communities within a deciduous forest.

    PubMed

    Walker, Donald M; Lawrence, Brandy R; Esterline, Dakota; Graham, Sean P; Edelbrock, Michael A; Wooten, Jessica A

    2014-11-01

    The flow of energy within an ecosystem can be considered either top-down, where predators influence consumers, or bottom-up, where producers influence consumers. Plethodon cinereus (Red-backed Salamander) is a terrestrial keystone predator who feeds on invertebrates within the ecosystem. We investigated the impact of the removal of P. cinereus on the detritivore food web in an upland deciduous forest in northwest Ohio, U.S.A. A total of eight aluminum enclosures, each containing a single P. cinereus under a small log, were constructed in the deciduous forest. On Day 1 of the experiment, four salamanders were evicted from four of the eight enclosures. Organic matter and soil were collected from the center of each enclosure at Day 1 and Day 21. From each sample, DNA was extracted, fungal-specific amplification performed, and 454 pyrosequencing was used to sequence the nuclear ribosomal internal transcribed spacer (ITS2) region and partial ribosomal large subunit (LSU). Changes in overall fungal community composition or species diversity were not statistically significant between treatments. Statistically significant shifts in the most abundant taxonomic groups of fungi were documented in presence but not absence enclosures. We concluded that P. cinereus does not affect the overall composition or diversity of fungal communities, but does have an impact on specific groups of fungi. This study used a metagenomics-based approach to investigate a missing link among a keystone predator, P. cinereus, invertebrates, and fungal communities, all of which are critical in the detritivore food web.

  9. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchissio, Maria Julia; Francés, Daniel Eleazar Antonio; Carnovale, Cristina Ester

    Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H{sub 2}O{sub 2} across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H{sub 2}O{sub 2} release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72 h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p < 0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H{sub 2}O{sub 2} release, assessedmore » by Amplex Red, was reduced by about 45% (p < 0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+ 120%, p < 0.05) and loss of mitochondrial membrane potential (− 80%, p < 0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H{sub 2}O{sub 2} release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death. -- Highlights: ► Aquaporin-8 is expressed in mitochondria of human hepatoma HepG2 cells. ► Aquaporin-8 knockdown impairs mitochondrial H{sub 2}O{sub 2} release and increases ROS.

  10. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobashigawa, Shinko, E-mail: kobashin@nagasaki-u.ac.jp; Suzuki, Keiji; Yamashita, Shunichi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{submore » 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.« less

  11. Non-additive effects of intra- and interspecific competition between two larval salamanders.

    PubMed

    Anderson, Thomas L; Whiteman, Howard H

    2015-05-01

    Assessment of the relative strengths of intra- and interspecific competition has increased in recent years and is critical to understanding the importance of competition. Yet, whether intra- and interspecific competition can have non-additive effects has rarely been tested. The resulting fitness consequences of such non-additive interactions are important to provide the context necessary to advance our understanding of competition theory. We compared the strength of additive and non-additive intra- and interspecific competition by manipulating densities of a pair of larval salamanders (Ambystoma talpoideum and A. maculatum) in experimental mesocosms within a response surface design. Intraspecific density had the strongest effect on the strength of competition for both species, and few observed comparisons indicated interspecific competition was an important factor in predicting body size, growth or larval period length of either species. Non-additive effects of intra- and interspecific competition influenced some response variables, including size and mass at metamorphosis in A. maculatum, but at a reduced strength compared to intraspecific effects alone. Intraspecific competition was thus the dominant biotic interaction, but non-additive effects also impact the outcome of competition in these species, validating the importance of testing for and incorporating non-additive density effects into competition models. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  12. Adaptation to changes in higher-order stimulus statistics in the salamander retina.

    PubMed

    Tkačik, Gašper; Ghosh, Anandamohan; Schneidman, Elad; Segev, Ronen

    2014-01-01

    Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.

  13. Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression.

    PubMed

    Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2017-08-01

    Mitochondria have their own gene expression system that is independent of the nuclear system, and control cellular functions in cooperation with the nucleus. While a number of useful technologies for achieving nuclear transgene expression have been reported, only a few have focused on mitochondria. In this study, we validated the utility of an artificial mitochondrial DNA vector with a virus promoter on mitochondrial transgene expression. We designed and constructed pCMV-mtLuc (CGG) that contains a CMV promotor derived from Cytomegalovirus and an artificial mitochondrial genome with a NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. Nluc luciferase activity measurements showed that the pCMV-mtLuc (CGG) efficiently produced the Nluc luciferase protein in human HeLa cells. Moreover, we optimized the mitochondrial transfection of pCMV-mtLuc (CGG) using a MITO-Porter system, a liposome-based carrier for mitochondrial delivery via membrane fusion. As a result, we found that transfection of pCMV-mtLuc (CGG) by MITO-Porter modified with the KALA peptide (cationic amphipathic cell-penetrating peptide) showed a high mitochondrial transgene expression. The developed mitochondrial transgene expression system represents a potentially useful tool for the fields of nanoscience and nanotechnology for controlling the intracellular microenvironment via the regulation of mitochondrial function and promises to open additional innovative research fields of study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mitochondrial recombination increases with age in Podospora anserina.

    PubMed

    van Diepeningen, Anne D; Goedbloed, Daniël J; Slakhorst, S Marijke; Koopmanschap, A Bertha; Maas, Marc F P M; Hoekstra, Rolf F; Debets, Alfons J M

    2010-05-01

    With uniparental inheritance of mitochondria, there seems little reason for homologous recombination in mitochondria, but the machinery for mitochondrial recombination is quite well-conserved in many eukaryote species. In fungi and yeasts heteroplasmons may be formed when strains fuse and transfer of organelles takes place, making it possible to study mitochondrial recombination when introduced mitochondria contain different markers. A survey of wild-type isolates from a local population of the filamentous fungus Podospora anserina for the presence of seven optional mitochondrial introns indicated that mitochondrial recombination does take place in nature. Moreover the recombination frequency appeared to be correlated with age: the more rapidly ageing fraction of the population had a significantly lower linkage disequilibrium indicating more recombination. Direct confrontation experiments with heterokaryon incompatible strains with different mitochondrial markers at different (relative) age confirmed that mitochondrial recombination increases with age. We propose that with increasing mitochondrial damage over time, mitochondrial recombination - even within a homoplasmic population of mitochondria - is a mechanism that may restore mitochondrial function. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function.

    PubMed

    Lin, Hung-Yu; Liou, Chia-Wei; Chen, Shang-Der; Hsu, Te-Yao; Chuang, Jiin-Haur; Wang, Pei-Wen; Huang, Sheng-Teng; Tiao, Mao-Meng; Chen, Jin-Bor; Lin, Tsu-Kung; Chuang, Yao-Chung

    2015-05-01

    Adult mesenchymal stem cell (MSC)-conducted mitochondrial transfer has been recently shown to rescue cellular bioenergetics and prevent cell death caused by mitochondrial dysfunction. Wharton's jelly-derived MSCs (WJMSCs) harvested from postpartum umbilical cords are an accessible and abundant source of stem cells. This study aimed to determine the capability of WJMSCs to transfer their own mitochondria and rescue impaired oxidative phosphorylation (OXPHOS) and bioenergetics caused by mitochondrial DNA defects. To do this, WJMSCs were co-cultured with mitochondrial DNA (mtDNA)-depleted ρ(0) cells and the recapture of mitochondrial function was evaluated. WJMSCs were shown to be capable of transferring their own mitochondria into ρ(0) cells and underwent interorganellar mixture within these cells. Permissive culture media (BrdU-containing and pyruvate- and uridine-free) sieved out a survival cell population from the co-cultured WJMSCs (BrdU-sensitive) and ρ(0) cells (pyruvate/uridine-free). The survival cells had mtDNA identical to that of WJMSCs, whereas they expressed cellular markers identical to that of ρ(0) cells. Importantly, these ρ(0)-plus -WJMSC-mtDNA (ρ(+W)) cells recovered the expression of mtDNA-encoded proteins and exhibited functional oxygen consumption and respiratory control, as well as the activity of electron transport chain (ETC) complexes I, II, III and IV. In addition, ETC complex V-inhibitor-sensitive ATP production and metabolic shifting were also recovered. Furthermore, cellular behaviors including attachment-free proliferation, aerobic viability and OXPHOS-reliant cellular motility were also regained after mitochondrial transfer by WJMSCs. The therapeutic effect of WJMSCs-derived mitochondrial transfer was able to stably sustain for at least 45 passages. In conclusion, this study suggests that WJMSCs may serve as a potential therapeutic strategy for diseases linked to mitochondrial dysfunction through the donation of healthy

  16. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease.

    PubMed

    Boczonadi, Veronika; King, Martin S; Smith, Anthony C; Olahova, Monika; Bansagi, Boglarka; Roos, Andreas; Eyassu, Filmon; Borchers, Christoph; Ramesh, Venkateswaran; Lochmüller, Hanns; Polvikoski, Tuomo; Whittaker, Roger G; Pyle, Angela; Griffin, Helen; Taylor, Robert W; Chinnery, Patrick F; Robinson, Alan J; Kunji, Edmund R S; Horvath, Rita

    2018-03-08

    PurposeTo understand the role of the mitochondrial oxodicarboxylate carrier (SLC25A21) in the development of spinal muscular atrophy-like disease.MethodsWe identified a novel pathogenic variant in a patient by whole-exome sequencing. The pathogenicity of the mutation was studied by transport assays, computer modeling, followed by targeted metabolic testing and in vitro studies in human fibroblasts and neurons.ResultsThe patient carries a homozygous pathogenic variant c.695A>G; p.(Lys232Arg) in the SLC25A21 gene, encoding the mitochondrial oxodicarboxylate carrier, and developed spinal muscular atrophy and mitochondrial myopathy. Transport assays show that the mutation renders SLC25A21 dysfunctional and 2-oxoadipate cannot be imported into the mitochondrial matrix. Computer models of central metabolism predicted that impaired transport of oxodicarboxylate disrupts the pathways of lysine and tryptophan degradation, and causes accumulation of 2-oxoadipate, pipecolic acid, and quinolinic acid, which was confirmed in the patient's urine by targeted metabolomics. Exposure to 2-oxoadipate and quinolinic acid decreased the level of mitochondrial complexes in neuronal cells (SH-SY5Y) and induced apoptosis.ConclusionMitochondrial oxodicarboxylate carrier deficiency leads to mitochondrial dysfunction and the accumulation of oxoadipate and quinolinic acid, which in turn cause toxicity in spinal motor neurons leading to spinal muscular atrophy-like disease.GENETICS in MEDICINE advance online publication, 8 March 2018; doi:10.1038/gim.2017.251.

  17. Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth.

    PubMed

    Jeng, Jaan-Yeh; Yeh, Tien-Shun; Lee, Jing-Wen; Lin, Shyh-Hsiang; Fong, Tsorng-Han; Hsieh, Rong-Hong

    2008-02-01

    To examine whether a reduction in the mtDNA level will compromise mitochondrial biogenesis and mitochondrial function, we created a cell model with depleted mtDNA. Stable transfection of small interfering (si)RNA of mitochondrial transcription factor A (Tfam) was used to interfere with Tfam gene expression. Selected stable clones showed 60-95% reduction in Tfam gene expression and 50-90% reduction in cytochrome b (Cyt b) gene expression. Tfam gene knockdown clones also showed decreased mtDNA-encoded cytochrome c oxidase subunit I (COX I) protein expression. However, no significant differences in protein expression were observed in nuclear DNA (nDNA)-encoded mitochondrial respiratory enzyme subunits. The cell morphology changed from a rhombus-like to a spindle-like form as determined in clones with decreased expressions of Tfam, mtRNA, and mitochondrial proteins. The mitochondrial respiratory enzyme activities and ATP production in such clones were significantly lower. The proportions of mtDNA mutations including 8-hydroxy-2'-deoxyguanosine (8-OHdG), a 4,977-bp deletion, and a 3,243-point mutation were also examined in these clones. No obvious increase in mtDNA mutations was observed in mitochondrial dysfunctional cell clones. The mitochondrial respiratory activity and ATP production ability recovered in cells with increased mtDNA levels after removal of the specific siRNA treatment. These experimental results provide direct evidence to substantiate that downregulation of mtDNA copy number and expression may compromise mitochondrial function and subsequent cell growth and morphology. (c) 2007 Wiley-Liss, Inc.

  18. Lower Intrinsic ADP-Stimulated Mitochondrial Respiration Underlies In Vivo Mitochondrial Dysfunction in Muscle of Male Type 2 Diabetic Patients

    PubMed Central

    Phielix, Esther; Schrauwen-Hinderling, Vera B.; Mensink, Marco; Lenaers, Ellen; Meex, Ruth; Hoeks, Joris; Kooi, Marianne Eline; Moonen-Kornips, Esther; Sels, Jean-Pierre; Hesselink, Matthijs K.C.; Schrauwen, Patrick

    2008-01-01

    OBJECTIVE—A lower in vivo mitochondrial function has been reported in both type 2 diabetic patients and first-degree relatives of type 2 diabetic patients. The nature of this reduction is unknown. Here, we tested the hypothesis that a lower intrinsic mitochondrial respiratory capacity may underlie lower in vivo mitochondrial function observed in diabetic patients. RESEARCH DESIGN AND METHODS—Ten overweight diabetic patients, 12 first-degree relatives, and 16 control subjects, all men, matched for age and BMI, participated in this study. Insulin sensitivity was measured with a hyperinsulinemic-euglycemic clamp. Ex vivo intrinsic mitochondrial respiratory capacity was determined in permeabilized skinned muscle fibers using high-resolution respirometry and normalized for mitochondrial content. In vivo mitochondrial function was determined by measuring phosphocreatine recovery half-time after exercise using 31P-magnetic resonance spectroscopy. RESULTS—Insulin-stimulated glucose disposal was lower in diabetic patients compared with control subjects (11.2 ± 2.8 vs. 28.9 ± 3.7 μmol · kg−1 fat-free mass · min−1, respectively; P = 0.003), with intermediate values for first-degree relatives (22.1 ± 3.4 μmol · kg−1 fat-free mass · min−1). In vivo mitochondrial function was 25% lower in diabetic patients (P = 0.034) and 23% lower in first-degree relatives, but the latter did not reach statistical significance (P = 0.08). Interestingly, ADP-stimulated basal respiration was 35% lower in diabetic patients (P = 0.031), and fluoro-carbonyl cyanide phenylhydrazone–driven maximal mitochondrial respiratory capacity was 31% lower in diabetic patients (P = 0.05) compared with control subjects with intermediate values for first-degree relatives. CONCLUSIONS—A reduced basal ADP-stimulated and maximal mitochondrial respiratory capacity underlies the reduction in in vivo mitochondrial function, independent of mitochondrial content. A reduced capacity at both the

  19. The cyclophilin D/Drp1 axis regulates mitochondrial fission contributing to oxidative stress-induced mitochondrial dysfunctions in SH-SY5Y cells.

    PubMed

    Xiao, Anqi; Gan, Xueqi; Chen, Ruiqi; Ren, Yanming; Yu, Haiyang; You, Chao

    2017-01-29

    Oxidative stress plays a central role in the pathogenesis of various neurodegenerative diseases. Increasing evidences have demonstrated that structural abnormalities in mitochondria are involved in oxidative stress related nerve cell damage. And Drp1 plays a critical role in mitochondrial dynamic imbalance insulted by oxidative stress-derived mitochondria. However, the status of mitochondrial fusion and fission pathway and its relationship with mitochondrial properties such as mitochondrial membrane permeability transition pore (mPTP) have not been fully elucidated. Here, we demonstrated for the first time the role of Cyclophilin D (CypD), a crucial component for mPTP formation, in the regulation of mitochondrial dynamics in oxidative stress treated nerve cell. We observed that CypD-mediated phosphorylation of Drp1 and subsequently augmented Drp1 recruitment to mitochondria and shifts mitochondrial dynamics toward excessive fission, which contributes to the mitochondrial structural and functional dysfunctions in oxidative stress-treated nerve cells. CypD depletion or over expression accompanies mitochondrial dynamics/functions recovery or aggravation separately. We also demonstrated first time the link between the CypD to mitochondrial dynamics. Our data offer new insights into the mechanism of mitochondrial dynamics which contribute to the mitochondrial dysfunctions, specifically the role of CypD in Drp1-mediated mitochondrial fission. The protective effect of CsA, or other molecules affecting the function of CypD hold promise as a potential novel therapeutic strategy for governing oxidative stress pathology via mitochondrial pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Sleep disorders associated with primary mitochondrial diseases.

    PubMed

    Ramezani, Ryan J; Stacpoole, Peter W

    2014-11-15

    Primary mitochondrial diseases are caused by heritable or spontaneous mutations in nuclear DNA or mitochondrial DNA. Such pathological mutations are relatively common in humans and may lead to neurological and neuromuscular complication that could compromise normal sleep behavior. To gain insight into the potential impact of primary mitochondrial disease and sleep pathology, we reviewed the relevant English language literature in which abnormal sleep was reported in association with a mitochondrial disease. We examined publication reported in Web of Science and PubMed from February 1976 through January 2014, and identified 54 patients with a proven or suspected primary mitochondrial disorder who were evaluated for sleep disturbances. Both nuclear DNA and mitochondrial DNA mutations were associated with abnormal sleep patterns. Most subjects who underwent polysomnography had central sleep apnea, and only 5 patients had obstructive sleep apnea. Twenty-four patients showed decreased ventilatory drive in response to hypoxia and/ or hyperapnea that was not considered due to weakness of the intrinsic muscles of respiration. Sleep pathology may be an underreported complication of primary mitochondrial diseases. The probable underlying mechanism is cellular energy failure causing both central neurological and peripheral neuromuscular degenerative changes that commonly present as central sleep apnea and poor ventilatory response to hyperapnea. Increased recognition of the genetics and clinical manifestations of mitochondrial diseases by sleep researchers and clinicians is important in the evaluation and treatment of all patients with sleep disturbances. Prospective population-based studies are required to determine the true prevalence of mitochondrial energy failure in subjects with sleep disorders, and conversely, of individuals with primary mitochondrial diseases and sleep pathology. © 2014 American Academy of Sleep Medicine.

  1. Fiber-type differences in muscle mitochondrial profiles.

    PubMed

    Leary, S C; Lyons, C N; Rosenberger, A G; Ballantyne, J S; Stillman, J; Moyes, C D

    2003-10-01

    Although striated muscles differ in mitochondrial content, the extent of fiber-type specific mitochondrial specializations is not well known. To address this issue, we compared mitochondrial structural and functional properties in red muscle (RM), white muscle (WM), and cardiac muscle of rainbow trout. Overall preservation of the basic relationships between oxidative phosphorylation complexes among fiber types was confirmed by kinetic analyses, immunoblotting of native holoproteins, and spectroscopic measurements of cytochrome content. Fiber-type differences in mitochondrial properties were apparent when parameters were expressed per milligram mitochondrial protein. However, the differences diminished when expressed relative to cytochrome oxidase (COX), possibly a more meaningful denominator than mitochondrial protein. Expressed relative to COX, there were no differences in oxidative phosphorylation enzyme activities, pyruvate-based respiratory rates, H2O2 production, or state 4 proton leak respiration. These data suggest most mitochondrial qualitative properties are conserved across fiber types. However, there remained modest differences ( approximately 50%) in stoichiometries of selected enzymes of the Krebs cycle, beta-oxidation, and antioxidant enzymes. There were clear differences in membrane fluidity (RM > cardiac, WM) and proton conductance (H+/min/mV/U COX: WM > RM > cardiac). The pronounced differences in mitochondrial content between fiber types could be attributed to a combination of differences in myonuclear domain and modest effects on the expression of nuclear- and mitochondrially encoded respiratory genes. Collectively, these studies suggest constitutive pathways that transcend fiber types are primarily responsible for determining most quantitative and qualitative properties of mitochondria.

  2. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload.

    PubMed

    Hong, Quan; Qi, Ka; Feng, Zhe; Huang, Zhiyong; Cui, Shaoyuan; Wang, Liyuan; Fu, Bo; Ding, Rui; Yang, Jurong; Chen, Xiangmei; Wu, Di

    2012-05-01

    Uric acid (UA) has proven to be a causal agent in endothelial dysfunction in which ROS production plays an important role. Calcium overload in mitochondria can promote the mitochondrial production of ROS. We hypothesize that calcium transduction in mitochondria contributes to UA-induced endothelial dysfunction. We first demonstrated that high concentrations of UA cause endothelial dysfunction, marked by a reduction in eNOS protein expression and NO release in vitro. We further found that a high concentration of UA increased levels of [Ca2+]mito, total intracellular ROS, H2O2, and mitochondrial O2·-, and Δψmito but not the [Ca2+]cyt level. When the mitochondrial calcium channels NCXmito and MCU were blocked by CGP-37157 and Ru360, respectively, the UA-induced increases in the levels of [Ca2+]mito and total intracellular ROS were significantly reduced. Mitochondrial levels of O2·- and Δψmito were reduced by inhibition of NCXmito but not of MCU. Moreover, inhibition of NCXmito, but not of MCU, blocked the UA-induced reductions in eNOS protein expression and NO release. The increased generation of mitochondrial O2·- induced by a high concentration of UA is triggered by mitochondrial calcium overload and ultimately leads to endothelial dysfunction. In this process, the activation of NCXmito is the major cause of the influx of calcium into mitochondria. Our results provide a new pathophysiological mechanism for UA-induced endothelial dysfunction and may offer a new therapeutic target for clinicians. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    PubMed Central

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte

  4. Mitochondrial Disorders of DNA Polymerase γ Dysfunction

    PubMed Central

    Zhang, Linsheng; Chan, Sherine S. L.; Wolff, Daynna J.

    2011-01-01

    Context Primary mitochondrial dysfunction is one of the most common causes of inherited disorders predominantly involving the neuromuscular system. Advances in the molecular study of mitochondrial DNA have changed our vision and our approach to primary mitochondrial disorders. Many of the mitochondrial disorders are caused by mutations in nuclear genes and are inherited in an autosomal recessive pattern. Among the autosomal inherited mitochondrial disorders, those related to DNA polymerase γ dysfunction are the most common and the best studied. Understanding the molecular mechanisms and being familiar with the recent advances in laboratory diagnosis of this group of mitochondrial disorders are essential for pathologists to interpret abnormal histopathology and laboratory results and to suggest further studies for a definitive diagnosis. Objectives To help pathologists better understand the common clinical syndromes originating from mutations in DNA polymerase γ and its associated proteins and use the stepwise approach of clinical, laboratory, and pathologic diagnosis of these syndromes. Data Sources Review of pertinent published literature and relevant Internet databases. Conclusions Mitochondrial disorders are now better recognized with the development of molecular tests for clinical diagnosis. A cooperative effort among primary physicians, diagnostic pathologists, geneticists, and molecular biologists with expertise in mitochondrial disorders is required to reach a definitive diagnosis. PMID:21732785

  5. Parkin suppresses Drp1-independent mitochondrial division.

    PubMed

    Roy, Madhuparna; Itoh, Kie; Iijima, Miho; Sesaki, Hiromi

    2016-07-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson's disease-associated protein-parkin, which biochemically and genetically interacts with Drp1-in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The cyclophilin D/Drp1 axis regulates mitochondrial fission contributing to oxidative stress-induced mitochondrial dysfunctions in SH-SY5Y cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Anqi; Gan, Xueqi; Chen, Ruiqi

    Oxidative stress plays a central role in the pathogenesis of various neurodegenerative diseases. Increasing evidences have demonstrated that structural abnormalities in mitochondria are involved in oxidative stress related nerve cell damage. And Drp1 plays a critical role in mitochondrial dynamic imbalance insulted by oxidative stress-derived mitochondria. However, the status of mitochondrial fusion and fission pathway and its relationship with mitochondrial properties such as mitochondrial membrane permeability transition pore (mPTP) have not been fully elucidated. Here, we demonstrated for the first time the role of Cyclophilin D (CypD), a crucial component for mPTP formation, in the regulation of mitochondrial dynamics inmore » oxidative stress treated nerve cell. We observed that CypD-mediated phosphorylation of Drp1 and subsequently augmented Drp1 recruitment to mitochondria and shifts mitochondrial dynamics toward excessive fission, which contributes to the mitochondrial structural and functional dysfunctions in oxidative stress-treated nerve cells. CypD depletion or over expression accompanies mitochondrial dynamics/functions recovery or aggravation separately. We also demonstrated first time the link between the CypD to mitochondrial dynamics. Our data offer new insights into the mechanism of mitochondrial dynamics which contribute to the mitochondrial dysfunctions, specifically the role of CypD in Drp1-mediated mitochondrial fission. The protective effect of CsA, or other molecules affecting the function of CypD hold promise as a potential novel therapeutic strategy for governing oxidative stress pathology via mitochondrial pathways. - Highlights: • Demonstrated first time the link between the mPTP to mitochondrial dynamics. • The role of Cyclophilin D in the regulation of Drp1-mediated mitochondrial fission. • CsA as a potential target for governing oxidative stress related neuropathology.« less

  7. CaMKII determines mitochondrial stress responses in heart

    PubMed Central

    Joiner, Mei-ling A.; Koval, Olha M.; Jingdong, Li; He, B. Julie; Allamargot, Chantal; Gao, Zhan; Luczak, Elizabeth D.; Hall, Duane D.; Fink, Brian D.; Chen, Biyi; Yang, Jinying; Moore, Steven A.; Scholz, Thomas D.; Strack, Stefan; Mohler, Peter J.; Sivitz, William I.; Song, Long-Sheng; Anderson, Mark E.

    2012-01-01

    Myocardial cell death is initiated by excessive mitochondrial Ca2+ entry, causing Ca2+ overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (ΔΨm)1,2. However, the signaling pathways that control mitochondrial Ca2+ entry through the inner membrane mitochondrial Ca2+ uniporter (MCU)3–5 are not known. The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is activated in ischemia reperfusion (I/R), myocardial infarction (MI) and neurohumoral injury, common causes of myocardial death and heart failure, suggesting CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (IMCU). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A (CsA), an mPTP antagonist with clinical efficacy in I/R injury6, equivalently prevent mPTP opening, ΔΨm deterioration and diminish mitochondrial disruption and programmed cell death in response to I/R injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition are resistant to I/R injury, MI and neurohumoral injury, suggesting pathological actions of CaMKII are substantially mediated by increasing IMCU. Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca2+ entry and suggest mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure dysfunction in response to common experimental forms of pathophysiological stress. PMID:23051746

  8. Concise Review: Heteroplasmic Mitochondrial DNA Mutations and Mitochondrial Diseases: Toward iPSC-Based Disease Modeling, Drug Discovery, and Regenerative Therapeutics.

    PubMed

    Hatakeyama, Hideyuki; Goto, Yu-Ichi

    2016-04-01

    Mitochondria contain multiple copies of their own genome (mitochondrial DNA; mtDNA). Once mitochondria are damaged by mutant mtDNA, mitochondrial dysfunction is strongly induced, followed by symptomatic appearance of mitochondrial diseases. Major genetic causes of mitochondrial diseases are defects in mtDNA, and the others are defects of mitochondria-associating genes that are encoded in nuclear DNA (nDNA). Numerous pathogenic mutations responsible for various types of mitochondrial diseases have been identified in mtDNA; however, it remains uncertain why mitochondrial diseases present a wide variety of clinical spectrum even among patients carrying the same mtDNA mutations (e.g., variations in age of onset, in affected tissues and organs, or in disease progression and phenotypic severity). Disease-relevant induced pluripotent stem cells (iPSCs) derived from mitochondrial disease patients have therefore opened new avenues for understanding the definitive genotype-phenotype relationship of affected tissues and organs in various types of mitochondrial diseases triggered by mtDNA mutations. In this concise review, we briefly summarize several recent approaches using patient-derived iPSCs and their derivatives carrying various mtDNA mutations for applications in human mitochondrial disease modeling, drug discovery, and future regenerative therapeutics. © 2016 AlphaMed Press.

  9. Mitochondrial Agents for Bipolar Disorder.

    PubMed

    Pereira, Círia; Chavarria, Victor; Vian, João; Ashton, Melanie Maree; Berk, Michael; Marx, Wolfgang; Dean, Olivia May

    2018-03-27

    Bipolar disorder is a chronic and often debilitating illness. Current treatment options (both pharmaco- and psychotherapy) have shown efficacy, but for many leave a shortfall in recovery. Advances in the understanding of the pathophysiology of bipolar disorder suggest that interventions that target mitochondrial dysfunction may provide a therapeutic benefit. This review explores the current and growing theoretical rationale as well as existing preclinical and clinical data for those therapies aiming to target the mitochondrion in bipolar disorder. A Clinicaltrials.gov and ANZCTR search was conducted for complete and ongoing trials on mitochondrial agents used in psychiatric disorders. A PubMed search was also conducted for literature published between January 1981 and July 2017. Systematic reviews, randomized controlled trials, observational studies, case series, and animal studies with an emphasis on agents affecting mitochondrial function and its role in bipolar disorder were included. The search was augmented by manually searching the references of key papers and related literature. The results were presented as a narrative review. Mitochondrial agents offer new horizons in mood disorder treatment. While some negative effects have been reported, most compounds are overall well tolerated and have generally benign side-effect profiles. The study of neuroinflammation, neurodegeneration, and mitochondrial function has contributed the understanding of bipolar disorder's pathophysiology. Agents targeting these pathways could be a potential therapeutic strategy. Future directions include identification of novel candidate mitochondrial modulators as well as rigorous and well-powered clinical trials.

  10. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    NASA Astrophysics Data System (ADS)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi

    2012-08-01

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  11. Complete mitochondrial genome of the aluminum-tolerant fungus Rhodotorula taiwanensis RS1 and comparative analysis of Basidiomycota mitochondrial genomes

    PubMed Central

    Zhao, Xue Qiang; Aizawa, Tomoko; Schneider, Jessica; Wang, Chao; Shen, Ren Fang; Sunairi, Michio

    2013-01-01

    The complete mitochondrial genome of Rhodotorula taiwanensis RS1, an aluminum-tolerant Basidiomycota fungus, was determined and compared with the known mitochondrial genomes of 12 Basidiomycota species. The mitochondrial genome of R. taiwanensis RS1 is a circular DNA molecule of 40,392 bp and encodes the typical 15 mitochondrial proteins, 23 tRNAs, and small and large rRNAs as well as 10 intronic open reading frames. These genes are apparently transcribed in two directions and do not show syntenies in gene order with other investigated Basidiomycota species. The average G+C content (41%) of the mitochondrial genome of R. taiwanensis RS1 is the highest among the Basidiomycota species. Two introns were detected in the sequence of the atp9 gene of R. taiwanensis RS1, but not in that of other Basidiomycota species. Rhodotorula taiwanensis is the first species of the genus Rhodotorula whose full mitochondrial genome has been sequenced; and the data presented here supply valuable information for understanding the evolution of fungal mitochondrial genomes and researching the mechanism of aluminum tolerance in microorganisms. PMID:23427135

  12. Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina

    PubMed Central

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2013-01-01

    Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (<100 ms) to cones evoked exocytosis followed by rapid endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726

  13. Mechanisms of Mitochondrial Dysfunction in Autism

    DTIC Science & Technology

    2012-07-01

    area code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Mechanisms of Mitochondrial Dysfunction in Autism Dr. John Shoffner...before we will be able to draw meaningful conclusions from this study. Autism , functional MRI, mitochondria, mitochondrial disease 15 Table of Contents...mitochondrial defects in autism are not known, it is hypothesized that significant numbers of individuals with autism and autistic spectrum disorders

  14. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury.

    PubMed

    Jia, Zhi-Qiang; Li, San-Qiang; Qiao, Wei-Qiang; Xu, Wen-Zhong; Xing, Jian-Wu; Liu, Jian-Tao; Song, Hui; Gao, Zhong-Yang; Xing, Bing-Wen; He, Xi-Jing

    2018-05-04

    Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na + -K + -ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease.

    PubMed

    Kim, Jinho; Moody, Jennifer P; Edgerly, Christina K; Bordiuk, Olivia L; Cormier, Kerry; Smith, Karen; Beal, M Flint; Ferrante, Robert J

    2010-10-15

    Although a direct causative pathway from the gene mutation to the selective neostriatal neurodegeneration remains unclear in Huntington's disease (HD), one putative pathological mechanism reported to play a prominent role in the pathogenesis of this neurological disorder is mitochondrial dysfunction. We examined mitochondria in preferentially vulnerable striatal calbindin-positive neurons in moderate-to-severe grade HD patients, using antisera against mitochondrial markers of COX2, SOD2 and cytochrome c. Combined calbindin and mitochondrial marker immunofluorescence showed a significant and progressive grade-dependent reduction in the number of mitochondria in spiny striatal neurons, with marked alteration in size. Consistent with mitochondrial loss, there was a reduction in COX2 protein levels using western analysis that corresponded with disease severity. In addition, both mitochondrial transcription factor A, a regulator of mtDNA, and peroxisome proliferator-activated receptor-co-activator gamma-1 alpha, a key transcriptional regulator of energy metabolism and mitochondrial biogenesis, were also significantly reduced with increasing disease severity. Abnormalities in mitochondrial dynamics were observed, showing a significant increase in the fission protein Drp1 and a reduction in the expression of the fusion protein mitofusin 1. Lastly, mitochondrial PCR array profiling in HD caudate nucleus specimens showed increased mRNA expression of proteins involved in mitochondrial localization, membrane translocation and polarization and transport that paralleled mitochondrial derangement. These findings reveal that there are both mitochondrial loss and altered mitochondrial morphogenesis with increased mitochondrial fission and reduced fusion in HD. These findings provide further evidence that mitochondrial dysfunction plays a critical role in the pathogenesis of HD.

  16. Lipoic acid metabolism and mitochondrial redox regulation.

    PubMed

    Solmonson, Ashley D; DeBerardinis, Ralph J

    2017-11-30

    Lipoic acid is an essential cofactor for mitochondrial metabolism and is synthesized de novo using intermediates from mitochondrial fatty acid synthesis type II, S-adenosylmethionine and iron-sulfur clusters. This cofactor is required for catalysis by multiple mitochondrial 2-ketoacid dehydrogenase complexes, including pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and branched-chain ketoacid dehydrogenase. Lipoic acid also plays a critical role in stabilizing and regulating these multi-enzyme complexes.  Many of these dehydrogenases are regulated by reactive oxygen species, mediated through the disulfide bond of the prosthetic lipoyl moiety.  Collectively, its functions explain why lipoic acid is required for cell growth, mitochondrial activity and coordination of fuel metabolism. Lipoic acid is an essential cofactor for mitochondrial metabolism and is synthesized de novo using intermediates from mitochondrial fatty acid synthesis type II, S-adenosylmethionine and iron-sulfur clusters. This cofactor is required for catalysis by multiple mitochondrial 2-ketoacid dehydrogenase complexes, including pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and branched-chain ketoacid dehydrogenase. Lipoic acid also plays a critical role in stabilizing and regulating these multi-enzyme complexes.  Many of these dehydrogenases are regulated by reactive oxygen species, mediated through the disulfide bond of the prosthetic lipoyl moiety.  Collectively, its functions explain why lipoic acid is required for cell growth, mitochondrial activity and coordination of fuel metabolism. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  17. Extracellular H+ fluxes from tiger salamander Müller (glial) cells measured using self-referencing H+-selective microelectrodes.

    PubMed

    Kreitzer, Matthew A; Swygart, David; Osborn, Meredith; Skinner, Blair; Heer, Chad; Kaufman, Ryan; Williams, Bethany; Shepherd, Lexi; Caringal, Hannah; Gongwer, Michael; Tchernookova, Boriana K; Malchow, Robert P

    2017-12-01

    Self-referencing H + -selective electrodes were used to measure extracellular H + fluxes from Müller (glial) cells isolated from the tiger salamander retina. A novel chamber enabled stable recordings using H + -selective microelectrodes in a self-referencing format using bicarbonate-based buffer solutions. A small basal H + flux was observed from the end foot region of quiescent cells bathed in 24 mM bicarbonate-based solutions, and increasing extracellular potassium induced a dose-dependent increase in H + flux. Barium at 6 mM also increased H + flux. Potassium-induced extracellular acidifications were abolished when bicarbonate was replaced by 1 mM HEPES. The carbonic anhydrase antagonist benzolamide potentiated the potassium-induced extracellular acidification, while 300 μM DIDS, 300 μM SITS, and 30 μM S0859 significantly reduced the response. Potassium-induced extracellular acidifications persisted in solutions lacking extracellular calcium, although potassium-induced changes in intracellular calcium monitored with Oregon Green were abolished. Exchange of external sodium with choline also eliminated the potassium-induced extracellular acidification. Removal of extracellular sodium by itself induced a transient alkalinization, and replacement of sodium induced a transient acidification, both of which were blocked by 300 μM DIDS. Recordings at the apical portion of the cell showed smaller potassium-induced extracellular H + fluxes, and removal of the end foot region further decreased the H + flux, suggesting that the end foot was the major source of acidifications. These studies demonstrate that self-referencing H + -selective electrodes can be used to monitor H + fluxes from retinal Müller cells in bicarbonate-based solutions and confirm the presence of a sodium-coupled bicarbonate transporter, the activity of which is largely restricted to the end foot of the cell. NEW & NOTEWORTHY The present study uses self-referencing H + -selective electrodes for the

  18. Mitochondrial DNA: impacting central and peripheral nervous systems

    PubMed Central

    Carelli, Valerio

    2014-01-01

    Because of their high-energy metabolism, neurons are highly dependent on mitochondria, which generate cellular ATP through oxidative phosphorylation. The mitochondrial genome encodes for critical components of the oxidative phosphorylation pathway machinery, and therefore mutations in mitochondrial DNA (mtDNA) cause energy production defects that frequently have severe neurological manifestations. Here, we review the principles of mitochondrial genetics and focus on prototypical mitochondrial diseases to illustrate how primary defects in mtDNA or secondary defects in mtDNA due to nuclear genome mutations can cause prominent neurological and multisystem features. In addition, we discuss the pathophysiological mechanisms underlying mitochondrial diseases, the cellular mechanisms that protect mitochondrial integrity, and the prospects for therapy. PMID:25521375

  19. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health☆☆☆

    PubMed Central

    Kotiadis, Vassilios N.; Duchen, Michael R.; Osellame, Laura D.

    2014-01-01

    Background The maintenance of cell metabolism and homeostasis is a fundamental characteristic of living organisms. In eukaryotes, mitochondria are the cornerstone of these life supporting processes, playing leading roles in a host of core cellular functions, including energy transduction, metabolic and calcium signalling, and supporting roles in a number of biosynthetic pathways. The possession of a discrete mitochondrial genome dictates that the maintenance of mitochondrial ‘fitness’ requires quality control mechanisms which involve close communication with the nucleus. Scope of review This review explores the synergistic mechanisms that control mitochondrial quality and function and ensure cellular bioenergetic homeostasis. These include antioxidant defence mechanisms that protect against oxidative damage caused by reactive oxygen species, while regulating signals transduced through such free radicals. Protein homeostasis controls import, folding, and degradation of proteins underpinned by mechanisms that regulate bioenergetic capacity through the mitochondrial unfolded protein response. Autophagic machinery is recruited for mitochondrial turnover through the process of mitophagy. Mitochondria also communicate with the nucleus to exact specific transcriptional responses through retrograde signalling pathways. Major conclusions The outcome of mitochondrial quality control is not only reliant on the efficient operation of the core homeostatic mechanisms but also in the effective interaction of mitochondria with other cellular components, namely the nucleus. General significance Understanding mitochondrial quality control and the interactions between the organelle and the nucleus will be crucial in developing therapies for the plethora of diseases in which the pathophysiology is determined by mitochondrial dysfunction. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. PMID:24211250

  20. Mitochondrial disorders and epilepsy.

    PubMed

    Desguerre, I; Hully, M; Rio, M; Nabbout, R

    2014-05-01

    Mitochondrial respiratory chain defects (RCD) often exhibit multiorgan involvement, affecting mainly tissues with high-energy requirements such as the brain. Epilepsy is frequent during the evolution of mitochondrial disorders (30%) with different presentation in childhood and adulthood in term of type of epilepsy, of efficacy of treatment and also in term of prognosis. Mitochondrial disorders can begin at any age but the diseases with early onset during childhood have generally severe or fatal outcome in few years. Four age-related epileptic phenotypes could be identified in infancy: infantile spasms, refractory or recurrent status epilepticus, epilepsia partialis continua and myoclonic epilepsy. Except for infantile spasms, epilepsy is difficult to control in most cases (95%). In pediatric patients, mitochondrial epilepsy is more frequent due to mutations in nDNA-located than mtDNA-located genes and vice versa in adults. Ketogenic diet could be an interesting alternative treatment in case of recurrent status epilepticus or pharmacoresistant epilepsy. Epileptic seizures increase the energy requirements of the metabolically already compromised neurons establishing a vicious cycle resulting in worsening energy failure and neuronal death. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Laminar shear stress promotes mitochondrial homeostasis in endothelial cells.

    PubMed

    Wu, Li-Hong; Chang, Hao-Chun; Ting, Pei-Ching; Wang, Danny L

    2018-06-01

    Vascular endothelial cells (ECs) are constantly subjected to flow-induced shear stress that is crucial for endothelial functions. Laminar shear stress (LSS) exerts atheroprotection to ECs. Mitochondrial homeostasis is essential for cellular survival. However, the effects of LSS on mitochondrial homeostasis in ECs remain unclear. Mitochondrial homeostasis in ECs exposed to LSS was examined. Cultured human umbilical vein ECs were subjected to LSS (12 dynes/cm 2 ) generated by a parallel-plate flow chamber system. ECs subjected to LSS demonstrated an increment of mitochondria in tubular form coupled with the increase of fusion proteins (Mfn2, OPA1) and the decrease of fission protein (Fis1). An increase of both long- and short- OPA1 along with a higher protease YME1L level were observed. LSS triggered a rapid phosphorylation on S637 but a decrease on S616 of fission-controlled protein Drp1. Consistently, Drp1 translocation to mitochondria was decreased in sheared ECs, suggesting that LSS promotes mitochondrial fusion. Enhanced mitochondrial biogenesis in sheared ECs was shown by the increase of mitochondrial mass and its regulatory proeins (PGC1α, TFAM, Nrf1). LSS enhances the expression of mitochondrial antioxidant enzymes and improves mitochondrial functions indicated by the increase of mitochondrial membrane potential (ΔΨm) and ATP generation. TNFα treatment decreased mitochondrial tubular network and its functions in ECs. LSS mitigated TNFα-induced mitochondrial impairments in ECs. Our results clearly indicate that LSS promotes mitochondrial homeostasis and attenuates inflammation-induced mitochondrial impairments in ECs. Our results provide novel insights into the manner of mitochondrial dynamics and functions modulated by LSS that contribute to endothelial integrity. © 2017 Wiley Periodicals, Inc.

  2. Mdivi-1, mitochondrial fission inhibitor, impairs developmental competence and mitochondrial function of embryos and cells in pigs

    PubMed Central

    YEON, Ji-Yeong; MIN, Sung-Hun; PARK, Hyo-Jin; KIM, Jin-Woo; LEE, Yong-Hee; PARK, Soo-Yong; JEONG, Pil-Soo; PARK, Humdai; LEE, Dong-Seok; KIM, Sun-Uk; CHANG, Kyu-Tae; KOO, Deog-Bon

    2014-01-01

    Mitochondria are highly dynamic organelles that undergo constant fusion/fission as well as activities orchestrated by large dynamin-related GTPases. These dynamic mitochondrial processes influence mitochondrial morphology, size and function. Therefore, this study was conducted to evaluate the effects of mitochondrial fission inhibitor, mdivi-1, on developmental competence and mitochondrial function of porcine embryos and primary cells. Presumptive porcine embryos were cultured in PZM-3 medium supplemented with mdivi-1 (0, 10 and 50 μM) for 6 days. Porcine fibroblast cells were cultured in growth medium with mdivi-1 (0 and 50 μM) for 2 days. Our results showed that the rate of blastocyst production and cell growth in the mdivi-1 (50 μM) treated group was lower than that of the control group (P < 0.05). Moreover, loss of mitochondrial membrane potential in the mdivi-1 (50 μM) treated group was increased relative to the control group (P < 0.05). Subsequent evaluation revealed that the intracellular levels of reactive oxygen species (ROS) and the apoptotic index were increased by mdivi-1 (50 μM) treatment (P < 0.05). Finally, the expression of mitochondrial fission-related protein (Drp 1) was lower in the embryos and cells in the mdivi-1-treated group than the control group. Taken together, these results indicate that mdivi-1 treatment may inhibit developmental competence and mitochondrial function in porcine embryos and primary cells. PMID:25501014

  3. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    PubMed

    Warren, Emily Booth; Aicher, Aidan Edward; Fessel, Joshua Patrick; Konradi, Christine

    2017-01-01

    Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  4. Mitochondrial Division Inhibitor 1 (mdivi-1) Protects Neurons against Excitotoxicity through the Modulation of Mitochondrial Function and Intracellular Ca2+ Signaling.

    PubMed

    Ruiz, Asier; Alberdi, Elena; Matute, Carlos

    2018-01-01

    Excessive dynamin related protein 1 (Drp1)-triggered mitochondrial fission contributes to apoptosis under pathological conditions and therefore it has emerged as a promising therapeutic target. Mitochondrial division inhibitor 1 (mdivi-1) inhibits Drp1-dependent mitochondrial fission and is neuroprotective in several models of brain ischemia and neurodegeneration. However, mdivi-1 also modulates mitochondrial function and oxidative stress independently of Drp1, and consequently the mechanisms through which it protects against neuronal injury are more complex than previously foreseen. In this study, we have analyzed the effects of mdivi-1 on mitochondrial dynamics, Ca 2+ signaling, mitochondrial bioenergetics and cell viability during neuronal excitotoxicity in vitro . Time-lapse fluorescence microscopy revealed that mdivi-1 blocked NMDA-induced mitochondrial fission but not that triggered by sustained AMPA receptor activation, showing that mdivi-1 inhibits excitotoxic mitochondrial fragmentation in a source specific manner. Similarly, mdivi-1 strongly reduced NMDA-triggered necrotic-like neuronal death and, to a lesser extent, AMPA-induced toxicity. Interestingly, neuroprotection provided by mdivi-1 against NMDA, but not AMPA, correlated with a reduction in cytosolic Ca 2+ ([Ca 2+ ] cyt ) overload and calpain activation indicating additional cytoprotective mechanisms. Indeed, mdivi-1 depolarized mitochondrial membrane and depleted ER Ca 2+ content, leading to attenuation of mitochondrial [Ca 2+ ] increase and enhancement of the integrated stress response (ISR) during NMDA receptor activation. Finally, lentiviral knockdown of Drp1 did not rescue NMDA-induced mitochondrial fission and toxicity, indicating that neuroprotective activity of mdivi-1 is Drp1-independent. Together, these results suggest that mdivi-1 induces a Drp1-independent protective phenotype that prevents predominantly NMDA receptor-mediated excitotoxicity through the modulation of mitochondrial

  5. Complete mitochondrial genome of the aluminum-tolerant fungus Rhodotorula taiwanensis RS1 and comparative analysis of Basidiomycota mitochondrial genomes.

    PubMed

    Zhao, Xue Qiang; Aizawa, Tomoko; Schneider, Jessica; Wang, Chao; Shen, Ren Fang; Sunairi, Michio

    2013-04-01

    The complete mitochondrial genome of Rhodotorula taiwanensis RS1, an aluminum-tolerant Basidiomycota fungus, was determined and compared with the known mitochondrial genomes of 12 Basidiomycota species. The mitochondrial genome of R. taiwanensis RS1 is a circular DNA molecule of 40,392 bp and encodes the typical 15 mitochondrial proteins, 23 tRNAs, and small and large rRNAs as well as 10 intronic open reading frames. These genes are apparently transcribed in two directions and do not show syntenies in gene order with other investigated Basidiomycota species. The average G+C content (41%) of the mitochondrial genome of R. taiwanensis RS1 is the highest among the Basidiomycota species. Two introns were detected in the sequence of the atp9 gene of R. taiwanensis RS1, but not in that of other Basidiomycota species. Rhodotorula taiwanensis is the first species of the genus Rhodotorula whose full mitochondrial genome has been sequenced; and the data presented here supply valuable information for understanding the evolution of fungal mitochondrial genomes and researching the mechanism of aluminum tolerance in microorganisms. © 2013 The Authors. Published by Blackwell Publishing Ltd.

  6. Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells.

    PubMed

    Matsushima, Yuichi; Adán, Cristina; Garesse, Rafael; Kaguni, Laurie S

    2005-04-29

    We report the cloning and molecular analysis of Drosophila mitochondrial transcription factor (d-mtTF) B1. An RNA interference (RNAi) construct was designed that reduces expression of d-mtTFB1 to 5% of its normal level in Schneider cells. In striking contrast with our previous study on d-mtTFB2, we found that RNAi knock-down of d-mtTFB1 does not change the abundance of specific mitochondrial RNA transcripts, nor does it affect the copy number of mitochondrial DNA. In a corollary manner, overexpression of d-mtTFB1 did not increase either the abundance of mitochondrial RNA transcripts or mitochondrial DNA copy number. Our data suggest that, unlike d-mtTFB2, d-mtTFB1 does not have a critical role in either transcription or regulation of the copy number of mitochondrial DNA. Instead, because we found that RNAi knockdown of d-mtTFB1 reduces mitochondrial protein synthesis, we propose that it serves its primary role in modulating translation. Our work represents the first study to document the role of mtTFB1 in vivo and establishes clearly functional differences between mtTFB1 and mtTFB2.

  7. Analysis of regional brain mitochondrial bioenergetics and susceptibility to mitochondrial inhibition utilizing a microplate based system

    PubMed Central

    Sauerbeck, Andrew; Pandya, Jignesh; Singh, Indrapal; Bittman, Kevin; Readnower, Ryan; Bing, Guoying; Sullivan, Patrick

    2012-01-01

    The analysis of mitochondrial bioenergetic function typically has required 50–100 μg of protein per sample and at least 15 min per run when utilizing a Clark-type oxygen electrode. In the present work we describe a method utilizing the Seahorse Biosciences XF24 Flux Analyzer for measuring mitochondrial oxygen consumption simultaneously from multiple samples and utilizing only 5 μg of protein per sample. Utilizing this method we have investigated whether regionally based differences exist in mitochondria isolated from the cortex, striatum, hippocampus, and cerebellum. Analysis of basal mitochondrial bioenergetics revealed that minimal differences exist between the cortex, striatum, and hippocampus. However, the cerebellum exhibited significantly slower basal rates of Complex I and Complex II dependent oxygen consumption (p < 0.05). Mitochondrial inhibitors affected enzyme activity proportionally across all samples tested and only small differences existed in the effect of inhibitors on oxygen consumption. Investigation of the effect of rotenone administration on Complex I dependent oxygen consumption revealed that exposure to 10 pM rotenone led to a clear time dependent decrease in oxygen consumption beginning 12 min after administration (p < 0.05). These studies show that the utilization of this microplate based method for analysis of mitochondrial bioenergetics is effective at quantifying oxygen consumption simultaneously from multiple samples. Additionally, these studies indicate that minimal regional differences exist in mitochondria isolated from the cortex, striatum, or hippocampus. Furthermore, utilization of the mitochondrial inhibitors suggests that previous work indicating regionally specific deficits following systemic mitochondrial toxin exposure may not be the result of differences in the individual mitochondria from the affected regions. PMID:21402103

  8. Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin.

    PubMed

    Paradies, Giuseppe; Paradies, Valeria; Ruggiero, Francesca M; Petrosillo, Giuseppe

    2017-11-01

    Aging is a biological process characterized by progressive decline in physiological functions, increased oxidative stress, reduced capacity to respond to stresses, and increased risk of contracting age-associated disorders. Mitochondria are referred to as the powerhouse of the cell through their role in the oxidative phosphorylation to generate ATP. These organelles contribute to the aging process, mainly through impairment of electron transport chain activity, opening of the mitochondrial permeability transition pore and increased oxidative stress. These events lead to damage to proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid of the inner mitochondrial membrane, plays a pivotal role in several mitochondrial bioenergetic processes as well as in mitochondrial-dependent steps of apoptosis and in mitochondrial membrane stability and dynamics. Cardiolipin alterations are associated with mitochondrial bienergetics decline in multiple tissues in a variety of physiopathological conditions, as well as in the aging process. Melatonin, the major product of the pineal gland, is considered an effective protector of mitochondrial bioenergetic function. Melatonin preserves mitochondrial function by preventing cardiolipin oxidation and this may explain, at least in part, the protective role of this compound in mitochondrial physiopathology and aging. Here, mechanisms through which melatonin exerts its protective role against mitochondrial dysfunction associated with aging and age-associated disorders are discussed.

  9. Mitochondrial-targeted drug and DNA delivery.

    PubMed

    Weissig, Volkmar

    2003-01-01

    The field of mitochondrial research is currently among the fastest growing disciplines in biomedicine. Approximately 12,000 articles on mitochondria have been published since the beginning of the new millennium. What brings mitochondria into the limelight of the scientific community? Since the end of the 1980s, a series of key discoveries has been made that have rekindled the scientific interest in this long-known cell organelle. It has become increasingly evident that mitochondrial dysfunction contributes to a variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Moreover, since the middle of the 1990s, mitochondria, the "power houses" of the cell, have also become accepted as the cells' "arsenal," reflecting their increasingly acknowledged key role during apoptosis. Based on these recent developments in mitochondrial research, increased pharmacological and pharmaceutical efforts have lead to the emergence of mitochondrial medicine" as a new field of biomedical research. Targeting of biologically active molecules to mitochondria in living cells will open avenues for manipulating mitochondrial functions, which may result in the selective protection, repair, or eradication of cells. This review gives a comprehensive overview of current strategies of mitochondrial targeting and their possible therapeutic applications.

  10. Historical Perspective on Mitochondrial Medicine

    PubMed Central

    DiMauro, Salvatore; Garone, Caterina

    2010-01-01

    In this review, we trace the origins and follow the development of mitochondrial medicine from the pre-molecular era (1962-1988) based on clinical clues, muscle morphology, and biochemistry into the molecular era that started in 1988 and is still advancing at a brisk pace. We have tried to stress conceptual advances, such as endosymbiosis, uniparental inheritance, intergenomic signaling and its defects, and mitochondrial dynamics. We hope that this historical review also provides an update on mitochondrial medicine, although we fully realize that the speed of progress in this area makes any such endeavor akin to writing on water. PMID:20818724

  11. Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload.

    PubMed

    Crestanello, Juan A; Doliba, Nicolai M; Babsky, Andriy M; Doliba, Natalia M; Niibori, Koki; Whitman, Glenn J R; Osbakken, Mary D

    2002-04-01

    Ca(2+) overload leads to mitochondrial uncoupling, decreased ATP synthesis, and myocardial dysfunction. Pharmacologically opening of mitochondrial K(ATP) channels decreases mitochondrial Ca(2+) uptake, improving mitochondrial function during Ca(2+) overload. Ischemic preconditioning (IPC), by activating mitochondrial K(ATP) channels, may attenuate mitochondrial Ca(2+) overload and improve mitochondrial function during reperfusion. The purpose of these experiments was to study the effect of IPC (1) on mitochondrial function and (2) on mitochondrial tolerance to experimental Ca(2+) overload. Rat hearts (n = 6/group) were subjected to (a) 30 min of equilibration, 25 min of ischemia, and 30 min of reperfusion (Control) or (b) two 5-min episodes of ischemic preconditioning, 25 min of ischemia, and 30 min of reperfusion (IPC). Developed pressure (DP) was measured. Heart mitochondria were isolated at end-Equilibration (end-EQ) and at end-Reperfusion (end-RP). Mitochondrial respiratory function (state 2, oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI, state 3/state 4); rate of oxidative phosphorylation (ADP/Deltat), and ADP:O ratio) was measured with polarography using alpha-ketoglutarate as a substrate in the presence of different Ca(2+) concentrations (0 to 5 x 10(-7) M) to simulate Ca(2+) overload. IPC improved DP at end-RP. IPC did not improve preischemic mitochondrial respiratory function or preischemic mitochondrial response to Ca(2+) loading. IPC improved state 3, ADP/Deltat, and RCI during RP. Low Ca(2+) levels (0.5 and 1 x 10(-7) M) stimulated mitochondrial function in both groups predominantly in IPC. The Control group showed evidence of mitochondrial uncoupling at lower Ca(2+) concentrations (1 x 10(-7) M). IPC preserved state 3 at high Ca(2+) concentrations. The cardioprotective effect of IPC results, in part, from

  12. Adaptations Required for Mitochondrial Import following Mitochondrial to Nucleus Gene Transfer of Ribosomal Protein S101[w

    PubMed Central

    Murcha, Monika W.; Rudhe, Charlotta; Elhafez, Dina; Adams, Keith L.; Daley, Daniel O.; Whelan, James

    2005-01-01

    The minimal requirements to support protein import into mitochondria were investigated in the context of the phenomenon of ongoing gene transfer from the mitochondrion to the nucleus in plants. Ribosomal protein 10 of the small subunit is encoded in the mitochondrion in soybean and many other angiosperms, whereas in several other species it is nuclear encoded and thus must be imported into the mitochondrial matrix to function. When encoded by the nuclear genome, it has adopted different strategies for mitochondrial targeting and import. In lettuce (Lactuca sativa) and carrot (Daucus carota), Rps10 independently gained different N-terminal extensions from other genes, following transfer to the nucleus. (The designation of Rps10 follows the following convention. The gene is indicated in italics. If encoded in the mitochondrion, it is rps10; if encoded in the nucleus, it is Rps10.) Here, we show that the N-terminal extensions of Rps10 in lettuce and carrot are both essential for mitochondrial import. In maize (Zea mays), Rps10 has not acquired an extension upon transfer but can be readily imported into mitochondria. Deletion analysis located the mitochondrial targeting region to the first 20 amino acids. Using site directed mutagenesis, we changed residues in the first 20 amino acids of the mitochondrial encoded soybean (Glycine max) rps10 to the corresponding amino acids in the nuclear encoded maize Rps10 until import was achieved. Changes were required that altered charge, hydrophobicity, predicted ability to form an amphiphatic α-helix, and generation of a binding motif for the outer mitochondrial membrane receptor, translocase of the outer membrane 20. In addition to defining the changes required to achieve mitochondrial localization, the results demonstrate that even proteins that do not present barriers to import can require substantial changes to acquire a mitochondrial targeting signal. PMID:16040655

  13. Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii.

    PubMed

    Chevallier, Stéphanie; Landry, Marc; Nagy, Frédéric; Cabelguen, Jean-Marie

    2004-10-01

    Electromyographic (EMG) analysis was used to provide an assessment of the recovery of locomotion in spinal-transected adult salamanders (Pleurodeles waltlii). EMG recordings were performed during swimming and overground stepping in the same animal before and at various times (up to 500 days) after a mid-trunk spinalization. Two-three weeks after spinalization, locomotor EMG activity was limited to the forelimbs and the body rostral to the transection. Thereafter, there was a return of the locomotor EMG activity at progressively more caudal levels below the transection. The animals reached stable locomotor patterns 3-4 months post-transection. Several locomotor parameters (cycle duration, burst duration, burst proportion, intersegmental phase lag, interlimb coupling) measured at various recovery times after spinalization were compared with those in intact animals. These comparisons revealed transient and long-term alterations in the locomotor parameters both above and below the transection site. These alterations were much more pronounced for swimming than for stepping and revealed differences in adaptive plasticity between the two locomotor networks. Recovered locomotor activity was immediately abolished by retransection at the site of the original spinalization, suggesting that the spinal cord caudal to the transection was reinnervated by descending brain and/or propriospinal axons, and that this regeneration contributed to the restoration of locomotor activity. Anatomical studies conducted in parallel further demonstrated that some of the regenerated axons came from glutamatergic and serotoninergic immunoreactive cells within the reticular formation.

  14. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction.

    PubMed

    Resseguie, Emily A; Staversky, Rhonda J; Brookes, Paul S; O'Reilly, Michael A

    2015-08-01

    High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Large mitochondrial DNA deletion in an infant with addison disease.

    PubMed

    Duran, Gloria P; Martinez-Aguayo, A; Poggi, H; Lagos, M; Gutierrez, D; Harris, P R

    2012-01-01

    Mitochondrial diseases are a group of disorders caused by mutations in nuclear DNA or mitochondrial DNA, usually involving multiple organ systems. Primary adrenal insufficiency due to mitochondrial disease is extremely infrequent and has been reported in association with mitochondrial DNA deletion syndromes such as Kearns-Sayre syndrome. To report a 3-year-old boy with Addison disease, congenital glaucoma, chronic pancreatitis, and mitochondrial myopathy due to large mitochondrial DNA deletion. Molecular analysis of mitochondrial DNA samples obtained from peripheral blood, oral mucosa, and muscle tissue. A novel large mitochondrial DNA deletion of 7,372bp was identified involving almost all genes on the big arch of mtDNA. This case reaffirms the association of adrenal insufficiency and mitochondrial DNA deletions and presents new evidence that glaucoma is another manifestation of mitochondrial diseases. Due to the genetic and clinical heterogeneity of mitochondrial disorders, molecular analysis is crucial to confirm diagnosis and to allow accurate genetic counseling.

  16. MicroRNA as biomarkers of mitochondrial toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgart, Bethany R., E-mail: bethany.baumgart@bms

    Mitochondrial toxicity can be difficult to detect as most cells can tolerate reduced activity as long as minimal capacity for function is maintained. However, once minimal capacity is lost, apoptosis or necrosis occurs quickly. Identification of more sensitive, early markers of mitochondrial toxicity was the objective of this work. Rotenone, a mitochondrial complex I inhibitor, and 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, were administered daily to male Sprague–Dawley rats at subcutaneous doses of 0.1 or 0.3 mg/kg/day and intraperitoneal doses of 5 or 10 mg/kg/day, respectively, for 1 week. Samples of kidney, skeletal muscle (quadriceps femoris), and serummore » were collected for analysis of mitochondrial DNA (mtDNA) copy number and microRNA (miRNA) expression patterns. MtDNA was significantly decreased with administration of rotenone at 0.3 mg/kg/day and 3-NP at 5 and 10 mg/kg/day in the quadriceps femoris and with 3-NP at 10 mg/kg/day in the kidney. Additionally, rotenone and 3-NP treatment produced changes to miRNA expression that were similar in direction (i.e. upregulation, downregulation) to those previously linked to mitochondrial functions, such as mitochondrial damage and biogenesis (miR-122, miR-202-3p); regulation of ATP synthesis, abolished oxidative phosphorylation, and loss of membrane potential due to increased reactive oxygen species (ROS) production (miR-338-5p, miR-546, miR-34c); and mitochondrial DNA damage and depletion (miR-546). These results suggest that miRNAs may be sensitive biomarkers for early detection of mitochondrial toxicity. - Highlights: • MtDNA decreased after treatment with respiratory chain inhibitors rotenone and 3-NP. • Decrease in mtDNA is generally dose-related and indicative of mitochondrial toxicity. • Altered miRNA has reported roles in regulating mitochondrial function. • Induction of miR-338-5p in kidney and serum suggests potential as renal biomarker. • Induction of miR-122

  17. Defects in Mitochondrial Fatty Acid Synthesis Result in Failure of Multiple Aspects of Mitochondrial Biogenesis in Saccharomyces cerevisiae

    PubMed Central

    Kursu, V. A. Samuli; Pietikäinen, Laura P.; Fontanesi, Flavia; Aaltonen, Mari J.; Suomi, Fumi; Nair, Remya Raghavan; Schonauer, Melissa S.; Dieckmann, Carol L.; Barrientos, Antoni; Hiltunen, J. Kalervo; Kastaniotis, Alexander J.

    2014-01-01

    Summary Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild heme deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a coordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell. PMID:24102902

  18. Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae.

    PubMed

    Kursu, V A Samuli; Pietikäinen, Laura P; Fontanesi, Flavia; Aaltonen, Mari J; Suomi, Fumi; Raghavan Nair, Remya; Schonauer, Melissa S; Dieckmann, Carol L; Barrientos, Antoni; Hiltunen, J Kalervo; Kastaniotis, Alexander J

    2013-11-01

    Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild haem deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a co-ordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell. © 2013 John Wiley & Sons Ltd.

  19. Oxidative stress negatively affects human sperm mitochondrial respiration.

    PubMed

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Mitochondrial network complexity emerges from fission/fusion dynamics.

    PubMed

    Zamponi, Nahuel; Zamponi, Emiliano; Cannas, Sergio A; Billoni, Orlando V; Helguera, Pablo R; Chialvo, Dante R

    2018-01-10

    Mitochondrial networks exhibit a variety of complex behaviors, including coordinated cell-wide oscillations of energy states as well as a phase transition (depolarization) in response to oxidative stress. Since functional and structural properties are often interwinded, here we characterized the structure of mitochondrial networks in mouse embryonic fibroblasts using network tools and percolation theory. Subsequently we perturbed the system either by promoting the fusion of mitochondrial segments or by inducing mitochondrial fission. Quantitative analysis of mitochondrial clusters revealed that structural parameters of healthy mitochondria laid in between the extremes of highly fragmented and completely fusioned networks. We confirmed our results by contrasting our empirical findings with the predictions of a recently described computational model of mitochondrial network emergence based on fission-fusion kinetics. Altogether these results offer not only an objective methodology to parametrize the complexity of this organelle but also support the idea that mitochondrial networks behave as critical systems and undergo structural phase transitions.