Science.gov

Sample records for pleurodeles waltl urodele

  1. The urodele amphibian Pleurodeles waltl has a diverse repertoire of immunoglobulin heavy chains with polyreactive and species-specific features.

    PubMed

    Fonte, Coralie; Gruez, Arnaud; Ghislin, Stéphanie; Frippiat, Jean-Pol

    2015-12-01

    Urodele amphibians are an interesting model because although they possess the cardinal elements of the vertebrate immune system, their immune response is apparently subdued. This phenomenon, sometimes regarded as a state of immunodeficiency, has been attributed by some authors to limited antibody diversity. We reinvestigated this issue in Pleurodeles waltl, a metamorphosing urodele, and noted that upsilon transcripts of its IgY repertoire were as diverse as alpha transcripts of the mammalian IgA repertoire. Mu transcripts encoding the IgM repertoire were less diverse, but could confer more plasticity. Both isotypes present potential polyreactive features that may confer urodele antibodies with the ability to bind to a variety of antigens. Finally, we observed additional cysteines in CDR1 and 2 of the IGHV5 and IGHV6 domains, some of which specific to urodeles, that could allow the establishment of a disulfide bond between these CDRs. Together, these data suggest that urodele antibody diversity is not as low as previously thought. PMID:26277106

  2. Effects of microgravity on the larval development, metamorphosis and reproduction of the urodele amphibian Pleurodeles waltl.

    PubMed

    Dournon, C; Durand, D; Tankosic, C; Membre, H; Gualandris-Parisot, L; Bautz, A

    2001-06-01

    The FERTILE experiment was twice performed onboard the Mir space station during the Cassiopée and Pégase French space missions. The goal was to analyze the effects of microgravity on fertilization and embryonic development, and then on further development on the ground in the amphibian Pleurodeles waltl. The present paper reports development that occurred in the laboratory after landing. Recovered on the ground at the hatching stage, young larvae reared at room temperature underwent metamorphosis and became adults without obvious abnormalities. Of particular interest was the rearing temperature that induced a delayed metamorphosis for animals from the Cassiopée space mission, but not for animals from the Pégase mission. The rate of development and the morphology were analogous in these animals and in ground controls reared in a similar annual period. Analysis of offspring was performed using these animals. Males born in space were first mated with control ground-born females and then with females born in space. The mating gave progeny that developed normally. Depending on the methods used and on the limits of the analyses, the results clearly demonstrated that animals born in space were able to live and reproduce after return to the ground.

  3. Pleurodeles waltl, amphibian, Urodele, is a suitable biological model for embryological and physiological space experiments on a vertebrate

    NASA Astrophysics Data System (ADS)

    Gualandris-Parisot, L.; Husson, D.; Foulquier, F.; Kan, P.; Davet, J.; Aimar, C.; Dournon, C.; Duprat, A. M.

    2001-01-01

    Pleurodeles waltl (amphibian, Urodele) is an appropriate biological model for space experiments on a vertebrate. One reason for interest in this animal concerns the study of the effects of absence of gravity on embryonic development. First, after mating (on Earth) the females retain live, functional sperm in their cloacum for up to 5 months, allowing normal in vivo fertilisation after hormonal stimulation. Second, their development is slow, which allows analyses of all the key stages of ontogenesis from the oocyte to swimming tailbud embryos or larvae. We have performed detailed studies and analyses of the effects of weightlessness on amphibian Pleurodeles embryos, fertilised and allowed to develop until the swimming larvae stage. These experiments were performed in space during three missions on the MIR-station: FERTILE I, FERTILE II and NEUROGENESIS respectively in 1996, 1998 and 1999. We show that in microgravity abnormalities appeared at specific stages of development compared to 1g-centrifuge control embryos and 1g-ground control embryos. In this report we describe abnormalities occurring in the central nervous system. These modifications occur during the neurulation process (delay in the closure of the neural tube and failure of closure of this tube in the cephalic area) and at the early tailbud stage (microcephaly observed in 40% of the microgravity-embryos). However, if acephalic and microcephalic embryos are not taken into account, these abnormalities did not disturb further morphological, biochemical and functional development and the embryos were able to regulate and a majority of normal hatching and swimming larvae were obtained in weightlessness with a developmental time-course equivalent to that of 1g-centrifuge control embryos (on the MIR station) and 1g-ground control embryos.

  4. Pleurodeles waltl, amphibian, Urodele, is a suitable biological model for embryological and physiological space experiments on a vertebrate.

    PubMed

    Gualandris-Parisot, L; Husson, D; Foulquier, F; Kan, P; Davet, J; Aimar, C; Dournon, C; Duprat, A M

    2001-01-01

    Pleurodeles waltl (amphibian, Urodele) is an appropriate biological model for space experiments on a vertebrate. One reason for interest in this animal concerns the study of the effects of absence of gravity on embryonic development. First, after mating (on Earth) the females retain live, functional sperm in their cloacum for up to 5 months, allowing normal in vivo fertilisation after hormonal stimulation. Second, their development is slow, which allows analyses of all the key stages of ontogenesis from the oocyte to swimming tailbud embryos or larvae. We have performed detailed studies and analyses of the effects of weightlessness on amphibian Pleurodeles embryos, fertilised and allowed to develop until the swimming larvae stage. These experiments were performed in space during three missions on the MIR-station: FERTILE I, FERTILE II and NEUROGENESIS respectively in 1996, 1998 and 1999. We show that in microgravity abnormalities appeared at specific stages of development compared to 1g-centrifuge control embryos and 1g-ground control embryos. In this report we describe abnormalities occurring in the central nervous system. These modifications occur during the neurulation process (delay in the closure of the neural tube and failure of closure of this tube in the cephalic area) and at the early tailbud stage (microcephaly observed in 40% of the microgravity-embryos). However, if acephalic and microcephalic embryos are not taken into account, these abnormalities did not disturb further morphological, biochemical and functional development and the embryos were able to regulate and a majority of normal hatching and swimming larvae were obtained in weightlessness with a developmental time-course equivalent to that of 1g-centrifuge control embryos (on the MIR station) and 1g-ground control embryos. PMID:11799990

  5. Effects of a long-term spaceflight on immunoglobulin heavy chains of the urodele amphibian Pleurodeles waltl.

    PubMed

    Boxio, Rachel; Dournon, Christian; Frippiat, Jean-Pol

    2005-03-01

    A variety of immune parameters are modified during and after a spaceflight. The effects of spaceflights on cellular immunity are well documented; however, little is known about the effects of these flights on humoral immunity. During the Genesis space experiment, two adult Pleurodeles waltl (urodele amphibian) stayed 5 mo onboard Mir and were subjected to oral immunization. Animals were killed 10 days after their return to earth. IgM and IgY heavy-chain transcripts in their spleens were quantified by Northern blotting. The use of the different VH families (coding for antibody heavy-chain variable domains) in IgM heavy chain transcripts was also analyzed. Results were compared with those obtained with ground control animals and animals reared in classical conditions in our animal facilities. We observed that, 10 days after the return on earth, the level of IgM heavy-chain transcription was normal but the level of IgY heavy-chain transcription was at least three times higher than in control animals. We also observed that the use of the different VH families in IgM heavy-chain transcripts was modified by the flight. These data suggest that the spaceflight affected the antibody response against the antigens contained in the food.

  6. Pleurodeles waltl (urodele amphibian) humoral immunity changes after a space flight

    NASA Astrophysics Data System (ADS)

    Frippiat, J.-P.; Dournon, C.

    Previous studies reported important immunological changes after a space flight. However, most of these studies were focused on cellular immunity. To better understand what could be the effects of a space flight on the humoral immunity, we have analyzed the immunoglobulin heavy chain repertoire of adult P. waltl reared 1) on earth in classical conditions, 2) on board the MIR space station during five months (Perseus mission), and 3) on earth in the same conditions than those found on board MIR. P. walt was chosen for this study because this animal requires only limited care, thereby facilitating the work of the crew, and also because it was successfully used in previous missions. A prerequisite to this work was the knowledge of the number of immunoglobulin (Ig) isotypes, VH families, JH, and DH segments used by this amphibian. Once we had these data, we were able to analyze the level of transcription of Ig heavy chains, and the usage of the VH families in the three kinds of samples cited above. Our data revealed a strong increase in the level of IgY (IgG analogue), but not of IgM, heavy chain transcription in animals reared on board MIR. We also noted a profound change in the usage of the different VH families. A prolonged stay in space could therefore affect quantitatively and qualitatively the antibody production. Further studies will be necessary to evaluate the functional importance of these observations, and the time required to come back to a normal situation once back on earth. Finally, our experiments demonstrate that P. waltl is a useful model to study some of the physiological changes observed after a space flight.

  7. Husbandry of Spanish ribbed newts (Pleurodeles waltl).

    PubMed

    Joven, Alberto; Kirkham, Matthew; Simon, András

    2015-01-01

    Research on urodele amphibians, such as newts, is constantly contributing to our understanding of fundamental biological processes. In the present chapter, we present detailed husbandry protocols for the Spanish ribbed newt (Pleurodeles waltl ). We describe the main phases of their life cycle, with emphasis on the progressive development of sensory, motor, and integration systems, which lead to the acquisition of specific stereotyped (and conditioned) behaviors. The methods are outlined to manage housing, feeding, handling, captive breeding, health monitoring, and euthanasia in this species under laboratory conditions. With minor changes, these protocols can also be applied to other species of urodele amphibians commonly used in laboratory research.

  8. Detection of mutagenicity in drinking water using a micronucleus test in newt larvae (Pleurodeles waltl).

    PubMed

    Jaylet, A; Gauthier, L; Fernandez, M

    1987-05-01

    We have previously described a micronucleus test using erythrocytes from larvae of the urodele amphibians Pleurodeles waltl (pleurodele) and Ambystoma mexicanum (axolotl). The test is based on a comparison of the levels of micronucleated erythrocytes in blood smears from larvae reared in water containing a clastogen, with the levels from larvae reared in purified water. Using larvae from the pleurodele, we have employed this test to evaluate mutagenic activity in drinking water. Groups of larvae were reared in tap water, while control groups were reared in tap water which had been filtered over sand and active carbon to remove micropollutants. Seven separate tests carried out between October 1985 and May 1986 all gave positive results of varying degree depending on the time of year. This test is therefore able to detect clastogens in normal drinking water. It could be used for quality control of drinking water during the various stages in the treatment of raw water without any requirement for prior extraction or concentration of micropollutants.

  9. Globuli ossei in the long limb bones of Pleurodeles waltl (Amphibia, Urodela, Salamandridae).

    PubMed

    Quilhac, Alexandra; de Ricqlès, Armand; Lamrous, Hayat; Zylberberg, Louise

    2014-11-01

    To date, little is known about the structure of the cells and the fibrillar matrix of the globuli ossei, globular structures showing histochemical properties of an osseous tissue, sometimes found in the resorption front of the hypertrophied cartilage in many tetrapods, and easily observed in the long bones of the Urodele Pleurodeles waltl. Here, we present the results obtained from the appendicular long bones of metamorphosed juveniles and subadults using histological and histochemical methods and transmission electron microscopy. The distal part of the cone-shaped cartilage contains a heterogeneous cell population composed of the typical "light" hypertrophic chondrocytes and scarce "dark" hypertrophic chondrocytes. The "dark" chondrocytes display ultrastructural characteristics suggesting that they probably undergo degeneration through chondroptosis. However, in the hypertrophic, calcified cartilage close to the erosion front by the marrow, several noninvaded chondrocytic lacunae retained cells that do not show any morphological characteristics of degeneration and that cannot be identified as regular chondrocytes or osteocytes. These modified chondrocytes that have lost their regular morphology, appear to be active in the terminal cartilage and synthesize collagen fibrils of a peculiar diameter intermediate between the Type I collagen found in bone and the Type II collagen characteristic of cartilage. It is suggested that the local occurrence of globuli ossei is linked to a low rate of longitudinal growth as is the case in the long bones of postmetamorphic urodeles. PMID:24895174

  10. Globuli ossei in the long limb bones of Pleurodeles waltl (Amphibia, Urodela, Salamandridae).

    PubMed

    Quilhac, Alexandra; de Ricqlès, Armand; Lamrous, Hayat; Zylberberg, Louise

    2014-11-01

    To date, little is known about the structure of the cells and the fibrillar matrix of the globuli ossei, globular structures showing histochemical properties of an osseous tissue, sometimes found in the resorption front of the hypertrophied cartilage in many tetrapods, and easily observed in the long bones of the Urodele Pleurodeles waltl. Here, we present the results obtained from the appendicular long bones of metamorphosed juveniles and subadults using histological and histochemical methods and transmission electron microscopy. The distal part of the cone-shaped cartilage contains a heterogeneous cell population composed of the typical "light" hypertrophic chondrocytes and scarce "dark" hypertrophic chondrocytes. The "dark" chondrocytes display ultrastructural characteristics suggesting that they probably undergo degeneration through chondroptosis. However, in the hypertrophic, calcified cartilage close to the erosion front by the marrow, several noninvaded chondrocytic lacunae retained cells that do not show any morphological characteristics of degeneration and that cannot be identified as regular chondrocytes or osteocytes. These modified chondrocytes that have lost their regular morphology, appear to be active in the terminal cartilage and synthesize collagen fibrils of a peculiar diameter intermediate between the Type I collagen found in bone and the Type II collagen characteristic of cartilage. It is suggested that the local occurrence of globuli ossei is linked to a low rate of longitudinal growth as is the case in the long bones of postmetamorphic urodeles.

  11. Glycan composition of follicle (Sertoli) cells of the amphibian Pleurodeles waltl. A lectin histochemical study

    PubMed Central

    SÁEZ, FRANCISCO JOSÉ; MADRID, JUAN FRANCISCO; ALONSO, EDURNE; HERNÁNDEZ, FRANCISCO

    2001-01-01

    The glycan composition of the N- and O-linked oligosaccharides of the follicle (Sertoli) cells of the urodele amphibian Pleurodeles waltl testis were identified by lectin histochemistry, performed alone or in combination with enzymatic and chemical deglycosylation methods. The follicle cells were shown to contain: (1) Fuc, Galβ(1,4)GlcNAc, GalNAc and Neu5Acα(2,3)Galβ(1,4)GlcNAc in both N- and O-linked oligosaccharides; (2) Man in N-linked glycans; and (3) Galβ(1,3)GalNAc in O-linked sugar chains. The follicle cells at the pre- and postmeiotic stages showed some differences in the UEA-I-positive Fuc characterisation, suggesting differences in the glycan composition. In addition, the sequence Neu5Acα(2,6)Gal/GalNAc was shown in the follicle cells only after spermiation, in the sperm-empty lobules of the developing glandular tissue. These results suggest that the follicle cells modify their glycoprotein content, probably for the performance of new roles, as the spermatogenetic cells develop. Thus the follicle cells surrounding male germ cells at different spermatogenetic stages would contain different glycoproteins involved in specific roles during male germ cell proliferation and maturation. PMID:11465860

  12. Spaceflight-associated changes in immunoglobulin VH gene expression in the amphibian Pleurodeles waltl.

    PubMed

    Bascove, Matthieu; Huin-Schohn, Cécile; Guéguinou, Nathan; Tschirhart, Eric; Frippiat, Jean-Pol

    2009-05-01

    Understanding why the immune system is depressed during spaceflight is of obvious importance for future human deep-space missions, such as the foreseen missions to Mars. However, little is known about the effects of these flights on humoral immunity. We previously immunized adult Pleurodeles waltl (urodele amphibian) onboard the Mir space station and showed that heavy-chain variable (VH) domains of specific IgM antibodies are encoded by genes belonging to the VHII and VHVI families. We have now determined how these animals use their individual VHII and VHVI genes by screening IgM heavy-chain cDNA libraries and by quantifying IgM heavy-chain transcripts encoded by these genes. Results were compared with those obtained using control animals immunized on Earth under the same conditions as onboard Mir. Our experiments revealed an increase in the expression of IgM heavy-chain mRNAs encoded by the VHII and VHVI.C genes and a strong decrease in the expression of IgM heavy-chain mRNAs encoded by the VHVI.A and VHVI.B genes in spaceflight animals. Consequently, different heavy-chain mRNAs are expressed by spaceflight animals, demonstrating that this environment affects the humoral response. These observations may be due to a change in B-cell selection under spaceflight conditions.

  13. [Identification of the Gene Encoding Nucleostemin in the Eye Tissues of Pleurodeles waltl].

    PubMed

    Markitantova, Y V; Avdonin, P P; Grigoryan, E N

    2015-01-01

    Nucleotide sequences were identified in the eye tissues (lens, retina, and retinal pigment epithelium) of the adult newt Pleurodeles waltl by the polymerase chain reaction with primers for the Ns gene. Sequencing showed that these nucleotide sequences belong to the Ns gene of the newt P. walt, which encodes the nucleolar protein nucleostemin. Structural analysis revealed a high homology of Ns nucleotide sequences of P. walt! with those of newts. Cynops pyrrhogaster and Notophthalmus viridescens. The expression of the Ns gene of P. walt, identified in the specialized eye cells of adult newts of the studied species, indicates that these differentiated cells retain some of the molecular characteristics inherent to the undifferentiated cells. PMID:26638232

  14. Morphological variations in a tooth family through ontogeny in Pleurodeles waltl (Lissamphibia, Caudata).

    PubMed

    Davit-Béal, Tiphaine; Allizard, Françoise; Sire, Jean-Yves

    2006-09-01

    Most nonmammalian species replace their teeth continuously (so-called polyphyodonty), which allows morphological and structural modifications to occur during ontogeny. We have chosen Pleurodeles waltl, a salamander easy to rear in the laboratory, as a model species to establish the morphological foundations necessary for future molecular approaches aiming to understand not only molecular processes involved in tooth development and replacement, but also their changes, notably during metamorphosis, that might usefully inform studies of modifications of tooth morphology during evolution. In order to determine when (in which developmental stage) and how (progressively or suddenly) tooth modifications take place during ontogeny, we concentrated our observations on a single tooth family, located at position I, closest to the symphysis on the left lower jaw. We monitored the development and replacement of the six first teeth in a large growth series ranging from 10-day-old embryos (tooth I1) to adult specimens (tooth I6), using light (LM), scanning (SEM), and transmission electron (TEM) microscopy. A timetable of the developmental and functional period is provided for the six teeth, and tooth development is compared in larvae and young adults. In P. waltl the first functional tooth is not replaced when the second generation tooth forms, in contrast to what occurs for the later generation teeth, leading to the presence of two functional teeth in a single position during the first 2 months of life. Larval tooth I1 shows dramatically different features when compared to adult tooth I6: a dividing zone has appeared between the dentin cone and the pedicel; the pulp cavity has enlarged, allowing accommodation of large blood vessels; the odontoblasts are well organized along the dentin surface; tubules have appeared in the dentin; and teeth have become bicuspidate. Most of these modifications take place progressively from one tooth generation to the next, but the change from

  15. Analysis of Cell Proliferation in Newt (Pleurodeles waltl) Tissue Regeneration during Spaceflight in Foton M-2

    NASA Technical Reports Server (NTRS)

    Almeida, E. A. C.; Roden, C.; Phillips, J. A.; Yusuf, R.; Globus, R. K.; Searby, N.; Vercoutere, W.; Morey-Holton, E.; Tairbekov, M.; Grigoryan, N.; Domaratskaya, E.; Poplinskaya, V.; Mitashov, V.

    2006-01-01

    Terrestrial organisms exposed to microgravity during spaceflight expe rience musculoskeletal degeneration. It is still not understood if lo nger-term exposures to microgravity induce degeneration in other tiss ues, and if these effects are also observed in neutrally buoyant aqu atic organisms that may be pre-adapted to mechanical unloading. The " Regeneration" experiment conducted collaboratively between Russian an d US scientists for 16 days in the Russian Foton M-2 spaceflight soug ht to test the hypothesis that microgravity alters the proliferation of cells in regenerating tail tissue of the newt Pleurodeles waltl. Our initial results indicate that we successfUlly delivered the proli feration marker 5-bromo-2'-deoxy Uridine (BrdU) during spaceflight, and that it was incorporated in the nuclei of cells in regenerating tis sues. Cells in spaceflight tail regenerates proliferated at a slight ly slower rate and were more undifferentiated than those in ground sy nchronous controls. In addition, the size of regenerating tails from spaceflight was smaller than synchronous controls. However, onboard temperature recordings show that the temperature in spaceflight was a bout 2 C lower than ground synchronous controls, possibly explaining the observed differences. Additional post-facto ground controls at ma tched temperatures will correctly determine the effects of spaceflig ht on regenerative cell proliferation in the newt.

  16. Development of the Roll-Induced Vestibuloocular Reflex in the Absence of Vestibular Experience in Salamander Tadpoles (Pleurodeles Waltl)

    NASA Astrophysics Data System (ADS)

    Horn, Eberhard R.; Gabriel, Martin; Frippiat, Jean-Pol

    2008-06-01

    The macula organ of the labyrinth is stimulated by body roll or translatory movements. Due to its slow development, the salamander Pleurodeles waltl is an excellent model to study the impact of microgravity on the development of the roll-induced vestibuloocular reflex (rVOR) in the absence of any macular stimulation. The experiment was performed during the Soyuz mission TMA8 (return flight TMA7) in 2006 as part of the experiment AMPHIBODY. It was supplemented by a 3g-hypergravity experiment. It was shown, that microgravity retards the over-all development of Pleurodeles tadpoles but not specifically functional development of the vestibular system; normalization took place within 3 to 4 weeks after landing. Hypergravity accelerated rVOR development in the long-term frame.

  17. Molecular cloning and expression analysis of Pleurodeles waltl complement component C3 under normal physiological conditions and environmental stresses.

    PubMed

    Guéguinou, Nathan; Huin-Schohn, Cécile; Ouzren-Zarhloul, Nassima; Ghislin, Stéphanie; Frippiat, Jean-Pol

    2014-10-01

    C3 is a component of the complement system that plays a central role in immunity, development and tissue regeneration. In this study, we isolated the C3 cDNA of the Iberian ribbed newt Pleurodeles waltl. This cDNA encodes a 1637 amino acid protein with an estimated molecular mass of 212.5 kDa. The deduced amino acid sequence showed that P. waltl C3 contains all the conserved domains known to be critical for C3 function. Quantitative real-time PCR (qRT-PCR) demonstrated that under normal physiological conditions, P. waltl C3 mRNA is expressed early during development because it is likely required for neurulation. Then, its expression increased as the immune system developed. In adults, the liver is the richest source of C3, though other tissues can also contribute. Further analysis of C3 expression demonstrated that C3 transcription increased when P. waltl larvae were exposed to pH or temperature stress, suggesting that environmental modifications might affect this animal's defenses against pathogens.

  18. The Pleurodele, an animal model for space biology studies

    NASA Astrophysics Data System (ADS)

    Gualandris, L.; Grinfeld, S.; Foulquier, F.; Kan, P.; Duprat, A. M.

    Pleurodeles waltl, an Urodele amphibian is proposed as a model for space biology studies. Our laboratory is developing three types of experiments in space using this animal: 1) in vivo fertilization and development (``FERTILE'' project); 2) influence of microgravity and space radiation on the organization and preservation of spacialized structures in the neurons and muscle cells (in vitro; ``CELIMENE'' PROJECT); 3) influence of microgravity on tissue regeneration (muscle, bone, epidermis and spinal cord).

  19. Comparative evaluation of genotoxicity of captan in amphibian larvae (Xenopus laevis and Pleurodeles waltl) using the comet assay and the micronucleus test.

    PubMed

    Mouchet, F; Gauthier, L; Mailhes, C; Ferrier, V; Devaux, A

    2006-06-01

    Captan (N-trichloromethylthio-4-cyclohexene-1,2-dicarboximide) is a fungicide used to inhibit the growth of many types of fungi on plants used as foodstuffs. The toxic and genotoxic potentials of captan were evaluated with the micronucleus test (MNT; AFNOR,2000) and the comet assay (CA) using amphibian larvae (Xenopus laevis and Pleurodeles waltl). Acute toxicity results showed that captan was toxic (1) to Xenopus larvae exposed to from 2 mg/L to 125 or 62.5 microg/L, depending on the nature of the water [reconstituted water containing mineral salts or mineral water (MW; Volvic, Danone, France)] and (2) to Pleurodeles exposed to from 2 mg/L to 125 microg/L in both types of water. The MNT results obtained in MW showed that captan (62.5 microg/L) was genotoxic to Xenopus but not genotoxic to Pleurodeles at all concentrations tested. CA established that the genotoxicity of captan to Xenopus and Pleurodeles larvae depended on the concentration, the exposure times, and the comet parameters (tail DNA, TEM, OTM, and TL). The CA and MNT results were compared for their ability to detect DNA damage at the concentrations of captan and the exposure times applied. CA showed captan to be genotoxic from the first day of exposure. In amphibians, CA appears to be a sensitive and suitable method for detecting genotoxicity such as that caused by captan.

  20. Carbohydrate moieties of the interstitial and glandular tissues of the amphibian Pleurodeles waltl testis shown by lectin histochemistry

    PubMed Central

    SÁEZ, FRANCISCO JOSÉ; MADRID, JUAN FRANCISCO; APARICIO, RAQUEL; HERNÁNDEZ, FRANCISCO; ALONSO, EDURNE

    2001-01-01

    The amphibian testis is a useful model because of its zonal organisation in lobules, distributed along the cephalocaudal axis, each containing a unique germ cell type. Sperm empty lobules form the so-called glandular tissue at the posterior region of the gonad. Androgen production is limited to the cells of the interstitial tissue surrounding lobules with spermatozoa bundles and to the cells of the glandular tissue. In this work, we have studied the distribution of terminal carbohydrate moieties of N- and O-linked oligosaccharides in the interstitial and glandular tissue of the Pleurodeles waltl testis, by means of 14 lectins combined with chemical and enzymatic deglycosylation pretreatment. Some differences in glycan composition between the interstitial and the glandular tissue have been detected. Thus in both tissues, N-linked oligosaccharides contained mannose, Gal(β1,4)GlcNAc, and Neu5Ac(α2,3)Gal(β1,4)GlcNAc, while O-linked oligosaccharides contained Con A-positive mannose, Gal(β1,3)GalNAc, Gal(β1,4)GlcNAc, Neu5Ac(α2,3)Gal(β1,4)GlcNAc, and WGA-positive GlcNAc. Fucose was also detected in both tissues. However, GlcNAc on N-linked oligosaccharides and GalNAc and Neu5Ac(α2,6)Gal/GalNAc on both N- and O-linked oligosaccharides were found only in the interstitial tissue. As glandular tissue cells arise from the innermost cells of interstitial tissue that surround lobules, the differences in the glycan composition of interstitial and glandular tissue shown in this work may be related to the start of androgen synthesis when steroid hormone (SH)-secreting cells develop. PMID:11215767

  1. Analysis of the hematopoietic tissue in Pleurodeles waltl newts exposed to 2 g hypergravity

    NASA Astrophysics Data System (ADS)

    Domaratskaya, Elena; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Dvorochkin, Natalya; Yousuf, Rukhsana; Almeida, Eduardo; Butorina, Nina N.

    2012-07-01

    Gravity is an important factor in creating biologically-relevant mechanical loads, and in spaceflight living organisms encounter both microgravity as well as hypergravity conditions. Here we studied the influence of hypergravity on the hematopoietic tissue of P. waltl newts in parallel with tissue regeneration experiments of the newt lens and tail. At day 9 post-surgery one group of newts was subjected to centrifugation at 2 g (2G, 12 days), while another was kept at 1 g. In addition, a basal control in wet mats, at 1g, (BC, 1G), and an aquarium control, neutrally buoyant, (AC, low G), were also performed. Differential blood counts and histological analysis of the spleen and liver were carried out in experimental and control groups of animals. At day 21 post-surgery in all groups (AC, 1G, and 2G), the number of neutrophils in the blood was significantly lower than in BC indicating a decrease in the inflammation induced by surgery. The 2G group however, showed numbers of neutrophils significantly higher than AC (neutrally buoyant) animals. This result suggests that post-operative inflammation can persist longer at 2 g that under unloaded aquarium conditions. In contrast we did not observe any significant differences in lymphocyte numbers between any experimental and control groups. Histological examination of the liver and spleen also did not show any significant morphological alterations due to hypergravity. These results indicate that 12 day exposure to hypergravity at 2 g, had only partial influence on newt hematopoiesis, possibly extending the duration of surgery-related inflammatory responses. Data obtained with newts in our previous experiments on Foton-M2 and Foton-M3 flights in microgravity also showed only slight effect on blood cells. Furthermore microgravity also did not cause any morphological changes in the hematopoietic and lymphoid tissues, and did not impair the proliferative capacity of newt hematopoietic cells. In sum these results indicate the

  2. Peptidase-1 expression in some organs of the salamander Pleurodeles waltl submitted to a 12-day space flight

    NASA Astrophysics Data System (ADS)

    Bautz, A.; Rudolf, E.; Mitashov, V.; Dournon, C.

    In Pleurodeles, the peptidase-1 is a sex-linked enzyme encoded by two codominant genes (Pep-1A and Pep-1B) located on the Z and W sex chromosomes. The sexual genotype can be determined by the electrophoretic pattern of the peptidase from erythrocytes. A_AW_B genotypic females characterized by 3 electrophoretic bands AA, AB and BB were embarked on Cosmos 2229. The pattern in ovary, muscles and gut issued from the embarked or synchrone females displayed the 3 characteristic bands. In heart and kidney, the bands AA and BB were revealed, while the band BB appeared very fainly. The specific enzymatic activity in the same organs was compared. Except for the kidney, no statistical significant difference was observed between flight and synchrone samples. This enzyme can be efficiently used as sexual genotypic marker of Pleurodeles experimentally submitted to the effects of space environment.

  3. Micronuclei in red blood cells of the newt Pleurodeles waltl after treatment with benzo(a)pyrene: dependence on dose, length of exposure, posttreatment time, and uptake of the drug

    SciTech Connect

    Grinfeld, S.; Jaylet, A.; Siboulet, R.; Deparis, P.; Chouroulinkov, I.

    1986-01-01

    Aquatic larvae of the newt Pleurodeles waltl were exposed to different concentrations of benzo(a)pyrene (BaP) for various lengths of time. Frequencies of micronuclei in circulating erythrocytes were determined at different times after termination of the treatment. The incidence of micronuclei in larvae kept for 8 days in BaP-containing water displayed a marked increase with dose up to 0.075 ppm and a more gradual one with higher doses, reaching 158 per 1000 at 0.75 ppm. The lowest dose at which a significant increase could be discerned was 0.01 ppm. Short periods of exposure, less than 2 days, did not result in a marked increase in micronuclei. Uptake and release was studied with tritiated BaP. Larvae concentrated BaP rapidly, attaining maximal levels after 12 hr. Radioactive larvae placed in regularly renewed noncontaminated water lost 99% of the label after 100 hr. It is concluded that pleurodele larvae are a promising model for the detection of genotoxic activity in the aquatic environment.

  4. Studies on hemopoietic tissue of ribbed newt, Pleurodeles waltl after the flight on board Russian satellite "Foton- M2" in 2005

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E.; Payushina, O.; Butorina, N.; Nikonova, T.; Grigoryan, E.; Mitashov, V.; Almeida, E.; Tairbekov, M.; Khrushchov, N.

    The effect of 16-day spaceflight aboard the Foton-M2 satellite on the hematopoietic tissue of P waltl newts was studied in flown intact animals F-int and in animals used in experiments on tail and lens regeneration under spaceflight conditions F-reg In addition to the flown animals studies were performed on synchronous and aquarial controls in the case of non-operated animals and on synchronous and basal controls in the case of operated newts The main hematopoietic organs of urodelian species are the liver spleen and peripheral blood Therefore we determined differential blood counts estimated the weight of the liver and the content of its hematopoietic cells and histologically assessed spleen and liver in the above experimental groups and the corresponding control groups of animals No significant differences between these groups were revealed with respect to the structure of hematopoietic zones of the liver the content of hematopoietic cells in the liver and spleen morphology However liver weight in newts of the F-reg group was significantly greater than in the F-int group In the peripheral blood neutrophils eosinophils basophils lymphocytes and monocytes were found Lymphocytes L and neutrophils N prevailed accounting for about 50 and 38 of white blood cells respectively Among neutrophils cells differing in the degree of maturity were distinguished myelocytes M metamyelocytes Mm band B and segmented forms S For each group of animals we determined the ratio of maturing M Mm B to mature S

  5. Co-operative Bmp- and Fgf-signaling inputs convert skin wound healing to limb formation in urodele amphibians.

    PubMed

    Makanae, Aki; Mitogawa, Kazumasa; Satoh, Akira

    2014-12-01

    Urodele amphibians have remarkable organ regeneration capability, and their limb regeneration capability has been investigated as a representative phenomenon. In the early 19th century, nerves were reported to be an essential tissue for the successful induction of limb regeneration. Nerve substances that function in the induction of limb regeneration responses have long been sought. A new experimental system called the accessory limb model (ALM) has been established to identify the nerve factors. Skin wounding in urodele amphibians results in skin wound healing but never in limb induction. However, nerve deviation to the wounded skin induces limb formation in ALM. Thus, nerves can be considered to have the ability to transform skin wound healing to limb formation. In the present study, co-operative Bmp and Fgf application, instead of nerve deviation, to wounded skin transformed skin wound healing to limb formation in two urodele amphibians, axolotl (Ambystoma mexicanum) and newt (Pleurodeles waltl). Our findings demonstrate that defined factors can induce homeotic transformation in postembryonic bodies of urodele amphibians. The combination of Bmp and Fgf(s) may contribute to the development of novel treatments for organ regeneration.

  6. Co-operative Bmp- and Fgf-signaling inputs convert skin wound healing to limb formation in urodele amphibians.

    PubMed

    Makanae, Aki; Mitogawa, Kazumasa; Satoh, Akira

    2014-12-01

    Urodele amphibians have remarkable organ regeneration capability, and their limb regeneration capability has been investigated as a representative phenomenon. In the early 19th century, nerves were reported to be an essential tissue for the successful induction of limb regeneration. Nerve substances that function in the induction of limb regeneration responses have long been sought. A new experimental system called the accessory limb model (ALM) has been established to identify the nerve factors. Skin wounding in urodele amphibians results in skin wound healing but never in limb induction. However, nerve deviation to the wounded skin induces limb formation in ALM. Thus, nerves can be considered to have the ability to transform skin wound healing to limb formation. In the present study, co-operative Bmp and Fgf application, instead of nerve deviation, to wounded skin transformed skin wound healing to limb formation in two urodele amphibians, axolotl (Ambystoma mexicanum) and newt (Pleurodeles waltl). Our findings demonstrate that defined factors can induce homeotic transformation in postembryonic bodies of urodele amphibians. The combination of Bmp and Fgf(s) may contribute to the development of novel treatments for organ regeneration. PMID:25286122

  7. Cooperative inputs of Bmp and Fgf signaling induce tail regeneration in urodele amphibians.

    PubMed

    Makanae, Aki; Mitogawa, Kazumasa; Satoh, Akira

    2016-02-01

    Urodele amphibians have remarkable organ regeneration ability. They can regenerate not only limbs but also a tail throughout their life. It has been demonstrated that the regeneration of some organs are governed by the presence of neural tissues. For instance, limb regeneration cannot be induced without nerves. Thus, identifying the nerve factors has been the primary focus in amphibian organ regeneration research. Recently, substitute molecules for nerves in limb regeneration, Bmp and Fgfs, were identified. Cooperative inputs of Bmp and Fgfs can induce limb regeneration in the absence of nerves. In the present study, we investigated whether similar or same regeneration mechanisms control another neural tissue governed organ regeneration, i.e., tail regeneration, in Ambystoma mexicanum. Neural tissues in a tail, which is the spinal cord, could transform wound healing responses into organ regeneration responses, similar to nerves in limb regeneration. Furthermore, the identified regeneration inducer Fgf2+Fgf8+Bmp7 showed similar inductive effects. However, further analysis revealed that the blastema cells induced by Fgf2+Fgf8+Bmp7 could participate in the regeneration of several tissues, but could not organize a patterned tail. Regeneration inductive ability of Fgf2+Fgf8+Bmp7 was confirmed in another urodele, Pleurodeles waltl. These results suggest that the organ regeneration ability in urodele amphibians is controlled by a common mechanism.

  8. Cooperative inputs of Bmp and Fgf signaling induce tail regeneration in urodele amphibians.

    PubMed

    Makanae, Aki; Mitogawa, Kazumasa; Satoh, Akira

    2016-02-01

    Urodele amphibians have remarkable organ regeneration ability. They can regenerate not only limbs but also a tail throughout their life. It has been demonstrated that the regeneration of some organs are governed by the presence of neural tissues. For instance, limb regeneration cannot be induced without nerves. Thus, identifying the nerve factors has been the primary focus in amphibian organ regeneration research. Recently, substitute molecules for nerves in limb regeneration, Bmp and Fgfs, were identified. Cooperative inputs of Bmp and Fgfs can induce limb regeneration in the absence of nerves. In the present study, we investigated whether similar or same regeneration mechanisms control another neural tissue governed organ regeneration, i.e., tail regeneration, in Ambystoma mexicanum. Neural tissues in a tail, which is the spinal cord, could transform wound healing responses into organ regeneration responses, similar to nerves in limb regeneration. Furthermore, the identified regeneration inducer Fgf2+Fgf8+Bmp7 showed similar inductive effects. However, further analysis revealed that the blastema cells induced by Fgf2+Fgf8+Bmp7 could participate in the regeneration of several tissues, but could not organize a patterned tail. Regeneration inductive ability of Fgf2+Fgf8+Bmp7 was confirmed in another urodele, Pleurodeles waltl. These results suggest that the organ regeneration ability in urodele amphibians is controlled by a common mechanism. PMID:26703427

  9. Influence of longitudinal whole animal clinorotation on lens, tail, and limb regeneration in urodeles

    NASA Astrophysics Data System (ADS)

    Anton, H. J.; Grigoryan, E. N.; Mitashov, V. I.

    Two species of newts (Urodela) and two types of clinostats for fast clinorotation (60 rpm) were used to investigate the influence of simulated weightlessness on regeneration and to compare results obtained with data from spaceflight experiments. Seven or fourteen days of weightlessness in Russian biosatellites caused acceleration of lens and limb regeneration by an increase in cell proliferation, differentiation, and rate of morphogenesis in comparison with ground controls. After a comparable time of clinorotation the results obtained with Triturus vulgaris using a horizontal clinostat were similar to those found in spaceflight. In contrast, in Pleurodeles waltl using both horizontal and radial clinostats the results were contradictionary compared to Triturus. We speculate that different levels of gravity or/and species specific thresholds for gravitational sensitivity could be responsible for these contradictionary results.

  10. Fate of the grafted ovaries from female salamander Pleurodeles waltl embarked on the cosmos 2229 flight

    NASA Astrophysics Data System (ADS)

    Bautz, A.; Houillon, Ch.; Aimar, C.; Mitashov, V.; Dournon, C.

    The flight procedure of ``Experience Triton'' on Cosmos 2229 made necessary to sacrifice the embarked females just after landing. In order to detect genetic abnormalities in the progeny of these adult females, we have performed a surgical procedure based on the transplantation of an ovarian piece on a recipient animal. One year later, as observed after laparotomy, the grafted ovaries exhibit oogonies and some growing oocytes. In present time, out of 10 castrated and grafted adult females only one is still alive bearing a large grafted ovary. Out of 5 castred and grafted juvenile males, three are still alive, two of them exhibit a developping grafted ovary. The grafted animals will be ready for mating within a few months. Therefore, it will soon be possible to study the progeny of animals that have been submitted to space conditions.

  11. [The properties of precipitation reactions between secretion products in the oviduct of pleurodeles: identification of a lectin].

    PubMed

    Jégo, P; Chesnel, A; Lerivray, H; Le Tallec, H

    1983-01-01

    The properties of two precipitation reactions occurring between secretory products from the oviduct of Pleurodeles waltl have been studied. It has been demonstrated that a lectin is involved in one of the reactions. This lectin precipitated glycogen and starch and required calcium; the most potent saccharide inhibitors were 2-amino-2-deoxy-D-glucose and D-glucose, respectively. The other reaction was related to glycoproteins (probably sulfated glycoproteins) that contained sulphur. The properties of this reaction were not the same as purely ionic interactions; basic protein-acidic polysaccharide interactions have been compared. A lectin was probably implicated but this could not be demonstrated because no saccharide inhibitor was found. There are several similitudes between this reaction and the lectin-galactoside reaction which occurs in the reaction between cortical granule content and egg jellies in anurans.

  12. Muscle development and differentiation in the urodele Ambystoma mexicanum.

    PubMed

    Banfi, Serena; Monti, Laura; Acquati, Francesco; Tettamanti, Gianluca; de Eguileor, Magda; Grimaldi, Annalisa

    2012-05-01

    Muscle differentiation has been widely described in zebrafish and Xenopus, but nothing is known about this process in amphibian urodeles. Both anatomical features and locomotor activity in urodeles are known to show intermediate features between fish and anurans. Therefore, a better understanding of myogenesis in urodeles could be useful to clarify the evolutionary changes that led to the formation of skeletal muscle in the trunk of land vertebrates. We report here a detailed morphological and molecular investigation on several embryonic stages of Ambystoma mexicanum and show that the first differentiating muscle fibers are the slow ones, originating from a myoblast population initially localized close to the notochord that forms a superficial layer on the somitic surface afterwards. Subsequently, fast fibers differentiation ensues. We also identified and cloned A. mexicanum Myf5 as a muscle-specific transcriptional factor likely involved in urodele muscle differentiation.

  13. Muscle development and differentiation in the urodele Ambystoma mexicanum.

    PubMed

    Banfi, Serena; Monti, Laura; Acquati, Francesco; Tettamanti, Gianluca; de Eguileor, Magda; Grimaldi, Annalisa

    2012-05-01

    Muscle differentiation has been widely described in zebrafish and Xenopus, but nothing is known about this process in amphibian urodeles. Both anatomical features and locomotor activity in urodeles are known to show intermediate features between fish and anurans. Therefore, a better understanding of myogenesis in urodeles could be useful to clarify the evolutionary changes that led to the formation of skeletal muscle in the trunk of land vertebrates. We report here a detailed morphological and molecular investigation on several embryonic stages of Ambystoma mexicanum and show that the first differentiating muscle fibers are the slow ones, originating from a myoblast population initially localized close to the notochord that forms a superficial layer on the somitic surface afterwards. Subsequently, fast fibers differentiation ensues. We also identified and cloned A. mexicanum Myf5 as a muscle-specific transcriptional factor likely involved in urodele muscle differentiation. PMID:22519643

  14. Transcription activator-like effector nucleases efficiently disrupt the target gene in Iberian ribbed newts (Pleurodeles waltl), an experimental model animal for regeneration.

    PubMed

    Hayashi, Toshinori; Sakamoto, Kousuke; Sakuma, Tetsushi; Yokotani, Naoki; Inoue, Takeshi; Kawaguchi, Eri; Agata, Kiyokazu; Yamamoto, Takashi; Takeuchi, Takashi

    2014-01-01

    Regeneration of a lost tissue in an animal is an important issue. Although regenerative studies have a history of research spanning more than a century, the gene functions underlying regulation of the regeneration are mostly unclear. Analysis of knockout animals is a very powerful tool with which to elucidate gene function. Recently, transcription activator-like effector nucleases (TALENs) have been developed as an effective technique for genome editing. This technique enables gene targeting in amphibians such as newts that were previously impossible. Here we show that newts microinjected with TALEN mRNAs designed for targeting the tyrosinase gene in single-cell stage embryos revealed an albino phenotype. Sequence analysis revealed that the tyrosinase genes were effectively disrupted in these albino newts. Moreover, precise genome alteration was achieved using TALENs and single strand oligodeoxyribonucleotides. Our results suggest that TALENs are powerful tools for genome editing for regenerative research in newts.

  15. [Presumed role of the gravity in the establishment of the symmetrization in amphibian embryos. Response provided by the biological experimentation in space].

    PubMed

    Bautz, Alain

    2002-01-01

    During the early embryonic development of the amphibian, several events are presumed to be dependent on the ground gravity (egg rotation of equilibrium, formation of the grey crescent, symmetrization, cleavage). Will development occur normally in the absence of the gravity? The experience FERTILE had led to obtain in weightlessness, onboard the space station Mir, the natural fertilization and the embryonic development of the salamander Pleurodeles waltl, an amphibian urodele. All the embryos developed in microgravity acquired normal bilateral symmetry. The egg rotation that occurs on earth after fertilization is clearly not necessary in urodeles to determine the position of symmetrical plan. The results obtained in P. waltl are in accordance with those observed earlier in the anuran Xenopus laevis and the fish Oryzias latipes.

  16. On the presence of nucleus ruber in the urodele Salamandra salamandra and the caecilian Ichthyophis kohtaoensis.

    PubMed

    Naujoks-Manteuffel, C; Manteuffel, G; Himstedt, W

    1988-01-01

    The presence of nucleus ruber in urodeles and caecilians (amphibia) was investigated. For that purpose, horseradish peroxidase was applied to the rostral spinal cord, the medulla oblongata at various levels and the dorsolateral funiculus. Whereas Salamandra salamandra possesses a rubrospinal tract, it is absent in the limbless caecilian Ichthyophis kohtaoensis. PMID:3382518

  17. Effects of β radiation on amphibian embryos (Pleurodeles waltlii) and capacities of regulation during development

    NASA Astrophysics Data System (ADS)

    Gallien, Cl. L.; Lenfant-Guyot, M.; Labrousse, J. P.

    The eukariotic cells of complex organisms possessing abundant and sophisticated genetic information, advanced metabolism and very diversified structures are particularly sensitive to the effects of radiation. One may note, however, that all cells of an organism which has been totally radiated may not be affected in the same way; this leaves room, particularly in embryonic organisms during development, for fairly broad possibilities of regulation. We have undertaken analysis of one aspect of these phenomena on a particularly favorable biological model: the embryo of the salamander Pleurodeles waltlii.

  18. [Antigen-antibody type precipitation reactions between secretory products of different regions of the oviduct of Pleurodeles waltlii Michah].

    PubMed

    Jego, P; Abalain, J H; Wroblewski, H

    1976-02-23

    "Antigen-antibody" like reactions between products of secretion of different parts of the Pleurodeles waltlii Michah's oviduct have been observed using the usual immunodiffusion methods. The possible physiological importance of such reactions in egg-jelly formation and in the phenomena associated with the fecondation (particularly capacitation) is discussed.

  19. Evidence of light-dependent magnetic compass orientation in urodele amphibian larvae.

    PubMed

    Diego-Rasilla, Francisco J; Luengo, Rosa M; Phillips, John B

    2015-09-01

    Experiments were conducted to investigate whether larval palmate newts undertake orientation toward or away from the home shoreline (y-axis orientation) using the geomagnetic field to steer the most direct route, and if they accomplish this task through a light-dependent magnetoreception mechanism similar to that found in anuran tadpoles and adult newts. Larval palmate newts trained and then tested under full-spectrum light showed bimodal magnetic compass orientation that coincided with the magnetic direction of the trained y-axis. In contrast, larvae trained under long-wavelength (≥500nm) light and then tested under full-spectrum light displayed bimodal orientation perpendicular to the trained y-axis direction. These results offer evidence for the use of magnetic compass cues in orienting urodele amphibian larvae, and provide additional support for the light-dependent magnetoreception mechanism since they are in complete agreement with earlier studies showing that the observed 90° shift in the direction of magnetic compass orientation under long-wavelength light (≥500nm) is due to a direct effect of light on the underlying magnetoreception mechanism. This study is the first to provide evidence of a light-dependent magnetic compass in larval urodeles. PMID:25981491

  20. A conserved mechanism for vertebrate mesoderm specification in urodele amphibians and mammals.

    PubMed

    Swiers, Gemma; Chen, Yi-Hsien; Johnson, Andrew D; Loose, Matthew

    2010-07-01

    Understanding how mesoderm is specified during development is a fundamental issue in biology, and it has been studied intensively in embryos from Xenopus. The gene regulatory network (GRN) for Xenopus is surprisingly complex and is not conserved in vertebrates, including mammals, which have single copies of the key genes Nodal and Mix. Why the Xenopus GRN should express multiple copies of Nodal and Mix genes is not known. To understand how these expanded gene families evolved, we investigated mesoderm specification in embryos from axolotls, representing urodele amphibians, since urodele embryology is basal to amphibians and was conserved during the evolution of amniotes, including mammals. We show that single copies of Nodal and Mix are required for mesoderm specification in axolotl embryos, suggesting the ancestral vertebrate state. Furthermore, we uncovered a novel genetic interaction in which Mix induces Brachyury expression, standing in contrast to the relationship of these molecules in Xenopus. However, we demonstrate that this functional relationship is conserved in mammals by showing that it is involved in the production of mesoderm from mouse embryonic stem cells. From our results, we produced an ancestral mesoderm (m)GRN, which we suggest is conserved in vertebrates. The results are discussed within the context of a theory in which the evolution of mechanisms governing early somatic development is constrained by the ancestral germ line-soma relationship, in which germ cells are produced by epigenesis.

  1. Evidence of light-dependent magnetic compass orientation in urodele amphibian larvae.

    PubMed

    Diego-Rasilla, Francisco J; Luengo, Rosa M; Phillips, John B

    2015-09-01

    Experiments were conducted to investigate whether larval palmate newts undertake orientation toward or away from the home shoreline (y-axis orientation) using the geomagnetic field to steer the most direct route, and if they accomplish this task through a light-dependent magnetoreception mechanism similar to that found in anuran tadpoles and adult newts. Larval palmate newts trained and then tested under full-spectrum light showed bimodal magnetic compass orientation that coincided with the magnetic direction of the trained y-axis. In contrast, larvae trained under long-wavelength (≥500nm) light and then tested under full-spectrum light displayed bimodal orientation perpendicular to the trained y-axis direction. These results offer evidence for the use of magnetic compass cues in orienting urodele amphibian larvae, and provide additional support for the light-dependent magnetoreception mechanism since they are in complete agreement with earlier studies showing that the observed 90° shift in the direction of magnetic compass orientation under long-wavelength light (≥500nm) is due to a direct effect of light on the underlying magnetoreception mechanism. This study is the first to provide evidence of a light-dependent magnetic compass in larval urodeles.

  2. Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii.

    PubMed

    Chevallier, Stéphanie; Landry, Marc; Nagy, Frédéric; Cabelguen, Jean-Marie

    2004-10-01

    Electromyographic (EMG) analysis was used to provide an assessment of the recovery of locomotion in spinal-transected adult salamanders (Pleurodeles waltlii). EMG recordings were performed during swimming and overground stepping in the same animal before and at various times (up to 500 days) after a mid-trunk spinalization. Two-three weeks after spinalization, locomotor EMG activity was limited to the forelimbs and the body rostral to the transection. Thereafter, there was a return of the locomotor EMG activity at progressively more caudal levels below the transection. The animals reached stable locomotor patterns 3-4 months post-transection. Several locomotor parameters (cycle duration, burst duration, burst proportion, intersegmental phase lag, interlimb coupling) measured at various recovery times after spinalization were compared with those in intact animals. These comparisons revealed transient and long-term alterations in the locomotor parameters both above and below the transection site. These alterations were much more pronounced for swimming than for stepping and revealed differences in adaptive plasticity between the two locomotor networks. Recovered locomotor activity was immediately abolished by retransection at the site of the original spinalization, suggesting that the spinal cord caudal to the transection was reinnervated by descending brain and/or propriospinal axons, and that this regeneration contributed to the restoration of locomotor activity. Anatomical studies conducted in parallel further demonstrated that some of the regenerated axons came from glutamatergic and serotoninergic immunoreactive cells within the reticular formation.

  3. Axolotl Nanog activity in mouse embryonic stem cells demonstrates that ground state pluripotency is conserved from urodele amphibians to mammals.

    PubMed

    Dixon, James E; Allegrucci, Cinzia; Redwood, Catherine; Kump, Kevin; Bian, Yuhong; Chatfield, Jodie; Chen, Yi-Hsien; Sottile, Virginie; Voss, S Randal; Alberio, Ramiro; Johnson, Andrew D

    2010-09-01

    Cells in the pluripotent ground state can give rise to somatic cells and germ cells, and the acquisition of pluripotency is dependent on the expression of Nanog. Pluripotency is conserved in the primitive ectoderm of embryos from mammals and urodele amphibians, and here we report the isolation of a Nanog ortholog from axolotls (axNanog). axNanog does not contain a tryptophan repeat domain and is expressed as a monomer in the axolotl animal cap. The monomeric form is sufficient to regulate pluripotency in mouse embryonic stem cells, but axNanog dimers are required to rescue LIF-independent self-renewal. Our results show that protein interactions mediated by Nanog dimerization promote proliferation. More importantly, they demonstrate that the mechanisms governing pluripotency are conserved from urodele amphibians to mammals.

  4. Re-regeneration of lower jaws and the dental lamina in adult urodeles.

    PubMed

    Graver, H T

    1978-09-01

    Transverse amputations were carried out through one-third fully regenerated jaw segments and through normal tissue of the mandible on the same and opposite sides of the jaw in adults of Notophthalmus viridescens. Collectively the results suggest that, in adult urodeles, the mandible and the dental lamina can be replaced in an identical manner more than one time. Although the major histological events are the same in jaw regeneration and re-regeneration, regrowth is more rapid in re-regeneration. It appears that recently differentiated tissues of the regenerate have a higher capacity for regeneration than normal tissues amputated for the first time. Re-regeneration of the jaw occurs by growth of the original regenerate cartilage which has undergone reorganization. In re-regeneration, the skeletal elements exhibit no polarity and regrowth occurs in both directions, while the dental lamina possesses an anterior-posterior polarity and can regrow in an anterior direction only. Information concerning the mechanisms involved in the regenerative events remain to be determined.

  5. Neural crest potential for tooth development in a urodele amphibian: developmental and evolutionary significance.

    PubMed

    Graveson, A C; Smith, M M; Hall, B K

    1997-08-01

    Tooth development in urodele amphibians occurs from a restricted region of anterior cranial neural crest. An in vitro culture system was used to test the odontogenic potential of more caudal regions of neural crest, including an "intermediate region" of neural folds which has never previously been tested for either fate or potential. Explants of different axial levels of neural crest with stomodaeal ectoderm and endoderm demonstrated that odontogenic potential extends not only further caudally than the axial level fated to produce teeth, but also beyond that with potential to produce cartilage. Our results show that chondrogenic potential is found only within the most rostral portion of the intermediate region, but that odontogenic potential extends to its most caudal limit. This separation of skeletogenic cell lineages in the neural crest necessitates a reevaluation of the designations of "cranial" and "trunk" and a reconsideration of the evolutionary implications of developmentally distinct crest-derived mesenchyme populations. The proposal that odontogenic potential extends into the trunk neural crest may be explained as conserved from a phylogenetically older, more extensive skeletogenic ability which produced the exoskeleton of more basal vertebrates. PMID:9245509

  6. Neurogenesis and growth factors expression after complete spinal cord transection in Pleurodeles waltlii

    PubMed Central

    Zaky, Amira Z.; Moftah, Marie Z.

    2015-01-01

    Following spinal lesion, connections between the supra-spinal centers and spinal neuronal networks can be disturbed, which causes the deterioration or even the complete absence of sublesional locomotor activity. In mammals, possibilities of locomotion restoration are much reduced since descending tracts either have very poor regenerative ability or do not regenerate at all. However, in lower vertebrates, there is spontaneous locomotion recuperation after complete spinal cord transection at the mid-trunk level. This phenomenon depends on a translesional descending axon re-growth originating from the brainstem. On the other hand, cellular and molecular mechanisms underlying spinal cord regeneration and in parallel, locomotion restoration of the animal, are not well known. Fibroblast growth factor 2 (FGF-2) plays an important role in different processes such as neural induction, neuronal progenitor proliferation and their differentiation. Studies had shown an over expression of this growth factor after tail amputation. Nestin, a protein specific for intermediate filaments, is considered an early marker for neuronal precursors. It has been recently shown that its expression increases after tail transection in urodeles. Using this marker and western blots, our results show that the number of FGF-2 and FGFR2 mRNAs increases and is correlated with an increase in neurogenesis especially in the central canal lining cells immediately after lesion. This study also confirms that spinal cord re-growth through the lesion site initially follows a rostrocaudal direction. In addition to its role known in neuronal differentiation, FGF-2 could be implicated in the differentiation of ependymal cells into neuronal progenitors. PMID:25628538

  7. Molecular genetic system for regenerative studies using newts.

    PubMed

    Hayashi, Toshinori; Yokotani, Naoki; Tane, Shoji; Matsumoto, Akira; Myouga, Ayumi; Okamoto, Mitsumasa; Takeuchi, Takashi

    2013-02-01

    Urodele newts have the remarkable capability of organ regeneration, and have been used as a unique experimental model for more than a century. However, the mechanisms underlying regulation of the regeneration are not well understood, and gene functions in particular remain largely unknown. To elucidate gene function in regeneration, molecular genetic analyses are very powerful. In particular, it is important to establish transgenic or knockout (mutant) lines, and systematically cross these lines to study the functions of the genes. In fact, such systems have been developed for other vertebrate models. However, there is currently no experimental model system using molecular genetics for newt regenerative research due to difficulties with respect to breeding newts in the laboratory. Here, we show that the Iberian ribbed newt (Pleurodeles waltl) has outstanding properties as a laboratory newt. We developed conditions under which we can obtain a sufficient number and quality of eggs throughout the year, and shortened the period required for sexual maturation from 18 months to 6 months. In addition, P. waltl newts are known for their ability, like other newts, to regenerate various tissues. We revealed that their ability to regenerate various organs is equivalent to that of Japanese common newts. We also developed a method for efficient transgenesis. These studies demonstrate that P. waltl newts are a suitable model animal for analysis of regeneration using molecular genetics. Establishment of this experimental model will enable us to perform comparable studies using these newts and other vertebrate models.

  8. Cold-induced changes in amphibian oocytes

    SciTech Connect

    Angelier, N.; Moreau, N.A.; N'Da, E.A.; Lautredou, N.F. )

    1989-08-01

    Female Pleurodeles waltl newts (Amphibia, urodele), usually raised at 20 degrees C, were submitted to low temperatures; oocytes responded to this cold stress by drastic changes both in lampbrush chromosome structure and in protein pattern. Preexisting lateral loops of lampbrush chromosomes were reduced in size and number, while cold-induced loops which were tremendously developed, occurred on defined bivalents of the oocyte at constant, reproducible sites. A comparison of protein patterns in control and stressed oocytes showed two main differences: in stressed oocytes, overall protein synthesis was reduced, except for a set of polypeptides, the cold-stress proteins; second, there was a striking inversion of the relative amount of beta- and gamma-actin found in the oocyte nucleus before and after cold stress. Whereas beta-actin was the predominant form in control oocytes, gamma-actin became the major form in stressed oocytes.

  9. Urodele limb and tail regeneration in early biological thought: an essay on scientific controversy and social change.

    PubMed

    Dinsmore, C E

    1996-08-01

    Lazzaro Spallanzani (1729-1799) announced his discoveries of salamander tail and limb regeneration to Charles Bonnet (1729-1793) in the 1760's. The phenomenon soon became embroiled with the ongoing epigenesis/preformation controversy over the fundamental nature of generation. The concept of animal regeneration as a process linked to reproduction had emerged in 1740 with Abraham Trembley's (1710-1783) demonstration that a bisected hydra gives rise to two new, completely formed individuals. The discovery of urodele appendage regeneration revealed for the first time that a quadruped could regenerate and restore complex form, lizard tail regenerates having been recognized as only substitute structures. Moreover, regeneration of a quadruped appendage became problematic because it was not supposed to be possible and because it conflicted with prevailing opinion about the nature of higher organisms. Why animal regeneration in general engendered conflict transcends biological concerns and touches on personal philosophical commitments. Preformation had been adopted into orthodox theology as a validation of predestination and of the hierarchical structuring of man's relationships to nature and within society. Epigenetic interpretations of regeneration represented challenges to certain aspects of the extant social and political fabric in their extrapolation to ideas of what constituted natural order. Urodele regeneration as an integral part of the epigenesis/preformation debate therefore constituted a formative component of eighteenth century thought in a period of social and intellectual revolution.

  10. Calbindin-D28k and calretinin expression in the forebrain of anuran and urodele amphibians: further support for newly identified subdivisions.

    PubMed

    Morona, Ruth; González, Agustin

    2008-11-10

    A general pattern of organization of the forebrain shared by amphibians, mainly anurans, and amniotes has been proposed considering the relative topography of the territories, their connectivity, and their neurochemistry. These criteria were needed because the amphibians possess limited cell migration from the ventricle that precludes a parcellation into circumscribed nuclei. In the present study we have tested the identity of most newly described forebrain territories in anurans and urodeles with regard to their content in calbindin-D28k (CB) and calretinin (CR). By means of immunohistochemistry, these proteins were demonstrated to be particularly abundant and specifically distributed in the amphibian forebrain and were extremely useful markers for delineating nuclear boundaries otherwise indistinguishable. In the telencephalon, labeled cells in the pallium allowed the identification of particular regions with marked differences between anurans and urodeles, whereas the subpallium showed more conservative patterns of distribution. In particular, the components of the amygdaloid complex and the basal ganglia were distinctly labeled. The distribution in the nonevaginated secondary prosencephalon and diencephalon showed abundant common features between anurans and urodeles, highlighted using the prosomeric model for the comparison. In the pretectum, thalamus, and prethalamus of urodeles, the CB and CR staining was particularly suitable for the identification of diverse structures within the simple periventricular gray layer. However, the analysis across species also revealed a considerable degree of heterogeneity, even within comparatively well-defined neuronal populations. Therefore, the content of a particular calcium binding protein in a neuronal group is not a fully reliable criterion for considering homologies.

  11. Decrease in antibody somatic hypermutation frequency under extreme, extended spaceflight conditions.

    PubMed

    Bascove, Matthieu; Guéguinou, Nathan; Schaerlinger, Bérénice; Gauquelin-Koch, Guillemette; Frippiat, Jean-Pol

    2011-09-01

    Somatic hypermutation diversifies antibody binding sites by introducing point mutations in the variable domains of rearranged immunoglobulin genes. In this study, we analyzed somatic hypermutation in variable heavy-chain (VH) domains of specific IgM antibodies of the urodele amphibian Pleurodeles waltl, immunized either on Earth or onboard the Mir space station. To detect somatic hypermutation, we aligned the variable domains of IgM heavy-chain transcripts with the corresponding VH gene. We also quantified NF-κB and activation-induced cytidine deaminase transcripts. Results were compared with those obtained using control animals immunized on Earth. Our data show that, as in most species of ectotherms, somatic hypermutation in P. waltl exhibits a mutational bias toward G and C bases. Furthermore, we show for the first time that somatic hypermutation occurs in space following immunization but at a lower frequency. This decrease is not due to a decrease in food intake or of the B-cell receptor/antigen interaction or to the absence of the germinal center-associated nuclear protein. It likely results from the combination of several spaceflight-associated changes, such as the severe reduction in T-cell activation, important perturbations of the cytoskeleton, and changes in the distribution of lymphocyte subpopulations and adhesion molecule expression.

  12. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study.

    PubMed

    Kawasumi-Kita, Aiko; Hayashi, Toshinori; Kobayashi, Takuya; Nagayama, Chikashi; Hayashi, Shinichi; Kamei, Yasuhiro; Morishita, Yoshihiro; Takeuchi, Takashi; Tamura, Koji; Yokoyama, Hitoshi

    2015-12-01

    Urodele amphibians (newts and salamanders) and anuran amphibians (frogs) are excellent research models to reveal mechanisms of three-dimensional organ regeneration since they have exceptionally high regenerative capacity among tetrapods. However, the difficulty in manipulating gene expression in cells in a spatially restricted manner has so far hindered elucidation of the molecular mechanisms of organ regeneration in amphibians. Recently, local heat shock by laser irradiation has enabled local gene induction even at the single-cell level in teleost fishes, nematodes, fruit flies and plants. In this study, local heat shock was made with infrared laser irradiation (IR-LEGO) by using a gene expression inducible system in transgenic animals containing a heat shock promoter, and gene expression was successfully induced only in the target region of two amphibian species, Xenopus laevis and Pleurodeles waltl (a newt), at postembryonic stages. Furthermore, we induced spatially restricted but wider gene expression in Xenopus laevis tadpoles and froglets by applying local heat shock by a temperature-controlled metal probe (temperature stimulator). The local gene manipulation systems, the IR-LEGO and the temperature stimulator, enable us to do a rigorous cell lineage trace with the combination of the Cre-LoxP system as well as to analyze gene function in a target region or cells with less off-target effects in the study of amphibian regeneration.

  13. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study.

    PubMed

    Kawasumi-Kita, Aiko; Hayashi, Toshinori; Kobayashi, Takuya; Nagayama, Chikashi; Hayashi, Shinichi; Kamei, Yasuhiro; Morishita, Yoshihiro; Takeuchi, Takashi; Tamura, Koji; Yokoyama, Hitoshi

    2015-12-01

    Urodele amphibians (newts and salamanders) and anuran amphibians (frogs) are excellent research models to reveal mechanisms of three-dimensional organ regeneration since they have exceptionally high regenerative capacity among tetrapods. However, the difficulty in manipulating gene expression in cells in a spatially restricted manner has so far hindered elucidation of the molecular mechanisms of organ regeneration in amphibians. Recently, local heat shock by laser irradiation has enabled local gene induction even at the single-cell level in teleost fishes, nematodes, fruit flies and plants. In this study, local heat shock was made with infrared laser irradiation (IR-LEGO) by using a gene expression inducible system in transgenic animals containing a heat shock promoter, and gene expression was successfully induced only in the target region of two amphibian species, Xenopus laevis and Pleurodeles waltl (a newt), at postembryonic stages. Furthermore, we induced spatially restricted but wider gene expression in Xenopus laevis tadpoles and froglets by applying local heat shock by a temperature-controlled metal probe (temperature stimulator). The local gene manipulation systems, the IR-LEGO and the temperature stimulator, enable us to do a rigorous cell lineage trace with the combination of the Cre-LoxP system as well as to analyze gene function in a target region or cells with less off-target effects in the study of amphibian regeneration. PMID:26510480

  14. Microgravity effects on neural retina regeneration in the newt

    NASA Astrophysics Data System (ADS)

    Grigoryan, E. N.; Anton, H. J.; Mitashov, V. I.

    Data on forelimb and eye lens regenerationin in urodeles under spaceflight conditions (SFC) have been obtained in our previous studies. Today, evidence is available that SFC stimulate regeneration in experimental animals rather than inhibit it. The results of control on-ground experiments with simulated microgravity suggest that the stimulatory effect of SFC is due largely to weightlessness. An original experimental model is proposed, which is convenient for comprehensively analyzing neural regeneration under SFC. The initial results described here concern regeneration of neural retina in Pleurodeles waltl newts exposed to microgravity simulated in radial clinostat. After clinorotation for seven days (until postoperation day 16), a positive effect of altered gravity on structural restoration of detached neural retina was confirmed by a number of criteria. Specifically, an increased number of Müllerian glial cells, an increased relative volume of the plexiform layers, reduced cell death, advanced redifferentiation of retinal pigment epithelium, and extended areas of neural retina reattachment were detected in experimental newts. Moreover, cell proliferation in the inner nuclear layer of neural retina increased as compared with control. Thus, low gravity appears to intensify natural cytological and molecular mechanisms of neural retina regeneration in lower vertebrates.

  15. Microgravity can activate signals urging cells to S-phase entry during tissue and organ regeneration in Urodele amphibians exposed to real and simulated microgravity

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Anton, H.-J.; Mitashov, V.

    Regenerative response following local injury or tissue removal in urodele amphibians is dependent on cell cycle entry of cells sources for regeneration in the remaining tissue. In a number of our experiments performed aboard biosatellites in orbital flights and fast rotated clinostat we found enhanced proliferative activity and, as a result, regeneration quicker than that in controls. In each investigated case an activity of cell proliferation evaluated by 3H-thymidine radioautography and BrdU assay at the early stages of lens, retina, forelimb and tail regeneration in newts was about 1,2-1,7 fold higher both under conditions of real and physiological weightlessness as compared with controls. Faster S-phase entry under conditions of micro- g was demonstrated by cycling multipotent cells as well as by differentiated postmitotic cells both participated in regeneration. Important, that cycling cells outside areas of regeneration were also found as displayed faster cellular growth. In our papers (1,2,3,4) we offered some hypothesis that could explain mechanisms of low g stimulating effect upon cell growth in regeneration in Urodela. In particular, changes in expression of some growth factors and their receptors, as well as the synthesis of specific range of generalized stress proteins (AGSPs) were proposed. However, in fact, molecular mechanisms of micro- g effect upon cell proliferation are mediated by changes on organismic level induced by micro- g environment. Some of them which are able to trigger off signaling changes on the cellular level that, in turn, evoke cells to grow faster would be represented in our report. 1. Mitashov V. et al. Adv. Space Res. 1996. 17 (6/7): 241-255 2. Anton H.-J. et al. Adv. Space Res. 1996. 17 (6/7): 55-65 3. Grigoryan E. et al. Adv. Space Res. 1998. 22 (2): 293-301 4. Grigoryan E. et al. Adv. Space Res. 2002. 30 (4): 757-764

  16. [Biologically Active Peptides of King Crab Hepatopancreas].

    PubMed

    Bogdanov, V V; Berezin, B B; Il'ina, A P; Yamskova, V P; Yamskov, I A

    2015-01-01

    Substances of a peptide nature isolated from the hepatopancreas of the king crab Paralithodes camtschaticus exhibited physicochemical properties and membranotropic and specific activities similar to those of membranotropic homeostatic tissue-specific bioregulators previously found in different mammalian and plant tissues. Their biological effect on vertebrate tissues was demonstrated on a model of roller organotypic cultivation of Pleurodeles waltl newt liver tissue. PMID:26353409

  17. Mutagenesis in Newts: Protocol for Iberian Ribbed Newts.

    PubMed

    Hayashi, Toshinori; Takeuchi, Takashi

    2016-01-01

    Newts have the remarkable capability of organ/tissue regeneration, and have been used as a unique experimental model for regenerative biology. The Iberian ribbed newt (Pleurodeles waltl) is suitable as a model animal. We have established methods for artificial insemination and efficient transgenesis using P. waltl newts. In addition to the transgenic technique, development of TALENs enables targeting mutagenesis in the newts. We have reported that TALENs efficiently disrupted targeted genes in newt embryos. In this chapter, we introduce a protocol for TALEN-mediated gene targeting in Iberian ribbed newts. PMID:26443218

  18. Mutagenesis in Newts: Protocol for Iberian Ribbed Newts.

    PubMed

    Hayashi, Toshinori; Takeuchi, Takashi

    2016-01-01

    Newts have the remarkable capability of organ/tissue regeneration, and have been used as a unique experimental model for regenerative biology. The Iberian ribbed newt (Pleurodeles waltl) is suitable as a model animal. We have established methods for artificial insemination and efficient transgenesis using P. waltl newts. In addition to the transgenic technique, development of TALENs enables targeting mutagenesis in the newts. We have reported that TALENs efficiently disrupted targeted genes in newt embryos. In this chapter, we introduce a protocol for TALEN-mediated gene targeting in Iberian ribbed newts.

  19. [Study of a new group of bioregulators isolated from the greater plantain (Plantago major L.)].

    PubMed

    Krasnov, M S; Iamskova, V P; Margasiuk, D V; Kulikova, O G; Il'ina, A P; Rybakova, E Iu; Iamslov, I A

    2011-01-01

    Proteins with physicochemical properties and biological activity similar to those of membrano-tropic homeostatic tissue-specific bioregulators that had been found earlier in various animal tissues were discovered in leaves of the common plantain (Plantago major L.). To study the specific activity of these plant proteins, we developed an experimental model for organotypic roller cultivation of newt (Pleurodeles waltl) skin tissue in vitro. We showed that the plant proteins of interest exert the wound-healing effect, which is characteristic of this plant, on the skin of vertebrates both in vitro and in vivo. PMID:22808737

  20. [Study of a new group of bioregulators isolated from the greater plantain (Plantago major L.)].

    PubMed

    Krasnov, M S; Iamskova, V P; Margasiuk, D V; Kulikova, O G; Il'ina, A P; Rybakova, E Iu; Iamslov, I A

    2011-01-01

    Proteins with physicochemical properties and biological activity similar to those of membrano-tropic homeostatic tissue-specific bioregulators that had been found earlier in various animal tissues were discovered in leaves of the common plantain (Plantago major L.). To study the specific activity of these plant proteins, we developed an experimental model for organotypic roller cultivation of newt (Pleurodeles waltl) skin tissue in vitro. We showed that the plant proteins of interest exert the wound-healing effect, which is characteristic of this plant, on the skin of vertebrates both in vitro and in vivo.

  1. Amphibian tail regeneration in space: effect on the pigmentation of the blastema

    NASA Astrophysics Data System (ADS)

    Grinfeld, S.; Foulquier, F.; Mitashov, V.; Bruchlinskaia, N.; Duprat, A. M.

    In Urodele amphibians, the tail regenerates after section. This regeneration, including tissues as different as bone (vertebrae), muscle, epidermis and central nervous system (spinal cord), was studied in adult Pleurodeles sent aboard the russian satellite Bion 10 and compared with tail regeneration in synchronous controls. Spinal cord, muscle and cartilage regeneration occurred in space animals as in synchronous controls. One of the most important differences between the two groups was the pigmentation of the blastemas: it was shown in laboratory, to be not due to a difference in light intensity.

  2. Gravity changes during animal development affect IgM heavy-chain transcription and probably lymphopoiesis.

    PubMed

    Huin-Schohn, Cécile; Guéguinou, Nathan; Schenten, Véronique; Bascove, Matthieu; Koch, Guillemette Gauquelin; Baatout, Sarah; Tschirhart, Eric; Frippiat, Jean-Pol

    2013-01-01

    Our previous research demonstrated that spaceflight conditions affect antibody production in response to an antigenic stimulation in adult amphibians. Here, we investigated whether antibody synthesis is affected when animal development occurs onboard a space station. To answer this question, embryos of the Iberian ribbed newt, Pleurodeles waltl, were sent to the International Space Station (ISS) before the initiation of immunoglobulin heavy-chain expression. Thus, antibody synthesis began in space. On landing, we determined the effects of spaceflight on P. waltl development and IgM heavy-chain transcription. Results were compared with those obtained using embryos that developed on Earth. We find that IgM heavy-chain transcription is doubled at landing and that spaceflight does not affect P. waltl development and does not induce inflammation. We also recreated the environmental modifications encountered by the embryos during their development onboard the ISS. This strategy allowed us to demonstrate that gravity change is the factor responsible for antibody heavy-chain transcription modifications that are associated with NF-κB mRNA level variations. Taken together, and given that the larvae were not immunized, these data suggest a modification of lymphopoiesis when gravity changes occur during ontogeny.

  3. [Precipitation reactions between secretory products in amphibian oviducts].

    PubMed

    Jégo, P; Chesnel, A; Joly, J

    1983-01-01

    The existence of precipitin reactions between some molecules in egg jellies (oviduct secretions) of tailed amphibians (Amphibia caudata) has been demonstrated by double diffusion on agarose plates. These reactions do not exist in frogs and toads (Amphibia salientia). One precipitin reaction was related to compounds with a common molecular site of interaction for all A. caudata: all cross-species reactions were possible; a common antigenic rate has been shown. Another precipitin reaction, positively demonstrated in Pleurodeles waltl, probably exists in other A. caudata. The putative influence of these reactions on egg jelly-spermatozoon interactions has been discussed. An homology between these intra-egg jelly reactions and cortical granule content-egg jelly reactions in A. salientia has been suggested.

  4. Differential RNA-binding activity of the hnRNP G protein correlated with the sex genotype in the amphibian oocyte

    PubMed Central

    Kanhoush, Rasha; Praseuth, Danièle; Perrin, Caroline; Chardard, Dominique; Vinh, Joëlle; Penrad-Mobayed, May

    2011-01-01

    A proteomic approach has enabled the identification of an orthologue of the splicing factor hnRNP G in the amphibians Xenopus tropicalis, Ambystoma mexicanum, Notophthalmus viridescens and Pleurodeles walt, which shows a specific RNA-binding affinity similar to that of the human hnRN G protein. Three isoforms of this protein with a differential binding affinity for a specific RNA probe were identified in the P. walt oocyte. In situ hybridization to lampbrush chromosomes of P. waltl revealed the presence of a family of hnRNP G genes, which were mapped on the Z and W chromosomes and one autosome. This indicates that the isoforms identified in this study are possibly encoded by a gene family linked to the evolution of sex chromosomes similarly to the hnRNP G/RBMX gene family in mammals. PMID:21278421

  5. Comparative genotoxicity of halogenated acetic acids found in drinking water.

    PubMed

    Giller, S; Le Curieux, F; Erb, F; Marzin, D

    1997-09-01

    Three short-term assays (SOS chromotest, Ames fluctuation test and newt micronucleus test) were performed to detect the genotoxic activity of organohalides, compounds likely to be found in chlorinated and/or ozonated drinking water: monochloro-, dichloro- and trichloroacetic acids and monobromo-, dibromo- and tribromoacetic acids. With the SOS chromotest, only three of the chemicals studied (dichloroacetic acid, dibromo- and tribromoacetic acids) were found to induce primary DNA damage in Escherichia coli PQ 37. In the Ames fluctuation test, all the compounds except monochloroacetic acid showed mutagenic activity in Salmonella typhimurium strain TA100. In these two in vitro tests, a good correlation between increasing number of substituents and decreasing mutagenicity was observed. Namely, the toxicity of brominated and chlorinated acetic acids decreased when the number of substituents increased. The newt micronucleus test detected a weak clastogenic effect on the peripheral blood erythrocytes of Pleurodeles waltl larvae for trichloroacetic acid only.

  6. Study of the genotoxic activity of six halogenated acetonitriles, using the SOS chromotest, the Ames-fluctuation test and the newt micronucleus test.

    PubMed

    Le Curieux, F; Giller, S; Gauthier, L; Erb, F; Marzin, D

    1995-02-01

    Three short-term assays (the SOS chromotest, the Ames-fluctuation test and the newt micronucleus test) were carried out to evaluate the genotoxicity of six halogenated acetonitriles identified in chlorinated waters (monochloro-, dichloro-, trichloro-, monobromo-, dibromo- and bromochloroacetonitrile). With the SOS chromotest, three of the chemicals studied (dichloro-, dibromo- and bromochloroacetonitrile) were found to induce primary DNA damage in Escherichia coli PQ37. In the Ames-fluctuation test, all the compounds except dibromoacetonitrile showed mutagenic activity on Salmonella typhimurium strain TA100. The newt micronucleus assay detected a clastogenic effect on the peripheral blood erythrocytes of Pleurodeles waltl larvae for all the six haloacetonitriles studied. Moreover, two structure-activity relationships were noted: (1) the genotoxic activity of haloacetonitriles containing bromine substituents appeared higher than the corresponding chlorinated acetonitriles and (2) the clastogenic activity of the chlorinated acetonitriles increased with the number of chlorine substituents.

  7. [Peptide-containing fraction from a culture medium of Fusarium sambucinum: composition and biological effects].

    PubMed

    Bogdanov, V V; Fatkulina, É F; Berezin, B B; Il'ina, A P; Iamskova, V P; Iamskov, I A

    2014-01-01

    The culture fluid of the fungus Fusarium sambucinum was investigated for the presence of new peptide-containing bioregulators, previously identified in various mammalian and plant tissues. A fraction containing peptides with molecular weights from 1000 to 2000 Da, which exhibited specific membranotropic activity and a number of physical and chemical properties characteristic of this group of bioregulators, was obtained. The effects of this fraction on the model roller organotypic cultivation of liver tissue of the Pleurodeles waltl newt in vitro were investigated for the first time. This fraction caused the additional activation of pigmented liver cells of newt (analogues to Kupffer cells of the liver of mammals) and provided the maintenance of cell-cell adhesive interactions in tissues. The results show that a new group of peptide bioregulators was present in the culture medium of the fungus F. sambucinum.

  8. [Photoreceptors and visual pigments in three species of newts].

    PubMed

    Koremiak, D A; Govardovskiĭ, V I

    2013-01-01

    Photoreceptor complement and retinal visual pigments in three newt (Caudata, Salamandridae, Pleurodelinae) species (Pleurodeles waltl, Lissotriton (Triturus) vulgaris and Cynops orientalis) were studied by light mucroscopy and microspectrophotometry. Retinas of all three species contain "red" (rhodopsin/porphyropsin) rods, large and small single cones, and double cones. Large single cones and both components of double cones contain red-sensitive (presumably LWS) visual pigment whose absorbance spectrum peaks between 593 and 611 nm. Small single cones are either blue- (SWS2, maximum absorbance between 470 and 489 nm) or UV-sensitive (SWS1, maximum absorbance between 340 and 359 nm). Chromophore composition of visual pigments (A1 vs. A2) was assessed both from template fitting of absorption spectra and by the method of selective bleaching. All pigments contained a mixture of A1 (11-cis retinal) and A2 (11-cis-3,4-dehydroretinal) chromophore in the proportion depending on the species and cell type. In all cases, A2 was dominant. However, in C. orientalis rods the fraction of A1 could reach 45%, while in P. waltl and L. vulgaris cones it did not exceed 5%. Remarkably, the absorbance of the newt blue-sensitive visual pigment was shifted by up to 45 nm toward the longer wavelength, as compared with all other amphibian SWS2-pigments. We found no "green" rods typical of retinas of Anura and some Caudata (ambystomas) in the three newt species studied. PMID:24459859

  9. [Photoreceptors and visual pigments in three species of newts].

    PubMed

    Koremiak, D A; Govardovskiĭ, V I

    2013-01-01

    Photoreceptor complement and retinal visual pigments in three newt (Caudata, Salamandridae, Pleurodelinae) species (Pleurodeles waltl, Lissotriton (Triturus) vulgaris and Cynops orientalis) were studied by light mucroscopy and microspectrophotometry. Retinas of all three species contain "red" (rhodopsin/porphyropsin) rods, large and small single cones, and double cones. Large single cones and both components of double cones contain red-sensitive (presumably LWS) visual pigment whose absorbance spectrum peaks between 593 and 611 nm. Small single cones are either blue- (SWS2, maximum absorbance between 470 and 489 nm) or UV-sensitive (SWS1, maximum absorbance between 340 and 359 nm). Chromophore composition of visual pigments (A1 vs. A2) was assessed both from template fitting of absorption spectra and by the method of selective bleaching. All pigments contained a mixture of A1 (11-cis retinal) and A2 (11-cis-3,4-dehydroretinal) chromophore in the proportion depending on the species and cell type. In all cases, A2 was dominant. However, in C. orientalis rods the fraction of A1 could reach 45%, while in P. waltl and L. vulgaris cones it did not exceed 5%. Remarkably, the absorbance of the newt blue-sensitive visual pigment was shifted by up to 45 nm toward the longer wavelength, as compared with all other amphibian SWS2-pigments. We found no "green" rods typical of retinas of Anura and some Caudata (ambystomas) in the three newt species studied.

  10. Toxicity of CeO2 nanoparticles at different trophic levels--effects on diatoms, chironomids and amphibians.

    PubMed

    Bour, Agathe; Mouchet, Florence; Verneuil, Laurent; Evariste, Lauris; Silvestre, Jérôme; Pinelli, Eric; Gauthier, Laury

    2015-02-01

    The aim of the present work is to provide wider information on the toxicity of cerium dioxide nanoparticles (CeO2 NPs) in aquatic environments, by studying the toxicity of two types of CeO2 NPs for four species (diatoms Nitzschia palea, the sediment-dwelling invertebrate Chironomus riparius, and the amphibian larvae Xenopus laevis and Pleurodeles waltl.). The two types of CeO2 NPs have different intrinsic properties: some of them are small citrate-coated spheres (2-5 nm), and the others are larger uncoated plates (20-60 nm). Acute toxicity (mortality at 48 or 96 h, depending on the test-organism) was assessed for the four species, from 0.1 to 100 mg L(-1) of NPs. Sub-lethal effects were assessed on chironomids exposed between 0.01 and 1 mg L(-1) of NPs. Mortality, growth inhibition and genotoxic effects were evaluated on amphibian larvae from 0.1 to 10 mg L(-1). Results reveal that no acute toxicity occurs on any species after short exposures, even at the highest concentrations. Mortality (35%) is observed on Xenopus larvae after 12d of exposure at the highest concentration of one type of NPs. No significant effects were observed on chironomids during chronic exposure. Xenopus larvae growth was inhibited from 1 mg L(-1) of both NPs while growth inhibition is observed on Pleurodeles only at the highest concentration of one type of NPs. No genotoxicity was observed on Xenopus but Pleurodeles exhibited dose-dependent genotoxic effects when exposed to one type of NPs. Observed differences in toxicity are discussed focusing on the studied compartment, routes of exposure, species and NPs.

  11. Design of specific hardware to obtain embryos and maintain adult urodele amphibians aboard a space station

    NASA Astrophysics Data System (ADS)

    Husson, D.; Chaput, D.; Bautz, A.; Davet, J.; Durand, D.; Dournon, C.; Duprat, A. M.; Gualandris-Parisot, L.

    The study of the influence of weightlessness on fertilization and embryonic development of a vertebrate is of importance in the understanding of basic embryogenesis and in the preparation of the future exploration of space. Accordingly, specific hardware was designed to perform experiments on board the MIR space station with an amphibian vertebrate model, taking into account the biological requirements and the multiple constraints of a longterm space mission. This paper describes the biological uses and presents the technological specifications of the device developed under CNES management. The hardware was adapted to and is compatible with biological requirements as confirmed by three experiments performed in space on board the orbital MIR station.

  12. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum).

    PubMed

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-01-01

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution.

  13. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum)

    PubMed Central

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-01-01

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution. PMID:26842386

  14. T-cell-specific membrane antigens in the Mexican axolotl (urodele amphibian).

    PubMed

    Kerfourn, F; Guillet, F; Charlemagne, J; Tournefier, A

    1992-01-01

    Comparative analysis of SDS-PAGE patterns of axolotl spleen cells membrane detergent lysates showed important discrepancies between control and thymectomized animals. Among these, a 38-kD protein band, which appeared as a major protein in controls, was not or poorly expressed after thymectomy. A rabbit antiserum (L12) raised against the 38-kD eluted band labeled in indirect immunofluorescence 80-86% of thymocytes and 40-46% of mIg- lymphoid cells in the spleen. The anti-38-kD antibodies stained in Western blotting two antigenically related polypeptides of 38- and 36-kD on splenocyte membrane lysates. Two-dimensional NEPHGE-PAGE analysis indicated that the anti-38-kD antibodies reacted in the spleen with several gathered spots in the 7.8-8.2 pI range, corresponding to 38-36-kD microheterogeneous polypeptides. Most of these spots are not further expressed in thymectomized animals. These results support evidence that the 38-kD surface antigens can be considered as specific surface markers of the axolotl thymus-derived lymphocytes. PMID:1627952

  15. Design of specific hardware to obtain embryos and maintain adult urodele amphibians aboard a space station.

    PubMed

    Husson, D; Chaput, D; Bautz, A; Davet, J; Durand, D; Dournon, C; Duprat, A M; Gualandris-Parisot, L

    2001-01-01

    The study of the influence of weightlessness on fertilization and embryonic development of a vertebrate is of importance in the understanding of basic embryogenesis and in the preparation of the future exploration of space. Accordingly, specific hardware was designed to perform experiments on board the MIR space station with an amphibian vertebrate model, taking into account the biological requirements and the multiple constraints of a long-term mission. This paper describes the biological uses and presents the technological specifications of the device developed under CNES management. The hardware was adapted to and is compatible with biological requirements as confirmed by three experiments performed in space on board the orbital MIR station.

  16. Evidence against luminal one-for-one Cl -HCO3 exchange in urodele small intestine

    SciTech Connect

    White, J.F.

    1986-08-01

    The ratio of Cl absorbed to HCO3 secreted by the in vitro small intestine of Amphiuma was measured using TWCl and titration. The aim was to estimate the stoichiometry and thereby elucidate the underlying transport mechanisms. For every mole of HCO3 secreted 1.8 mol of Cl underwent net absorption. Indirect measures of net Cl absorption and HCO3 secretion were validated. Several known and putative Cl transport inhibitors were examined for their ability to inhibit the anion transport events. Disulfonic stilbenes (DIDS) and the diuretics piretanide and furosemide inhibited the Cl absorptive flux (J/sub m s/sup Cl/) and simultaneously the HCO3 secretory flux (J/sup HCO3 /). The diuretics acetazolamide and bumetanide also reduced J/sup HCO3 and J/sub m s/sup Cl/, although the latter effect was not statistically significant. The ratio of inhibition, J/sub m s/sup Cl// J/sup HCO3 /, varied from 1.2 to 1.8 for the different inhibitors. The presence of Cl -HCO3 exchange at the serosal membrane was deduced from 1) the reduction of J/sub m s/sup Cl/ and J/sup HCO3 / by serosally added stilbenes, 2) the reduction of Cl absorption when serosal Cl was replaced, 3) inhibition of the secretory-to-mucosal Cl flux by serosal stilbenes, and 4) enhancement of J/sup HCO3 when serosal medium HCO3 was elevated. The observations are not consistent with one-for-one exchange of Cl for HCO3 at the mucosal membrane. The observed coupling ratio is compatible with a one-for-one exchange of Cl for HCO3 at the serosal membrane.

  17. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum).

    PubMed

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-01-01

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution. PMID:26842386

  18. Exotic Fish in Exotic Plantations: A Multi-Scale Approach to Understand Amphibian Occurrence in the Mediterranean Region.

    PubMed

    Cruz, Joana; Sarmento, Pedro; Carretero, Miguel A; White, Piran C L

    2015-01-01

    Globally, amphibian populations are threatened by a diverse range of factors including habitat destruction and alteration. Forestry practices have been linked with low diversity and abundance of amphibians. The effect of exotic Eucalyptus spp. plantations on amphibian communities has been studied in a number of biodiversity hotspots, but little is known of its impact in the Mediterranean region. Here, we identify the environmental factors influencing the presence of six species of amphibians (the Caudata Pleurodeles waltl, Salamandra salamandra, Lissotriton boscai, Triturus marmoratus and the anurans Pelobates cultripes and Hyla arborea/meridionalis) occupying 88 ponds. The study was conducted in a Mediterranean landscape dominated by eucalypt plantations alternated with traditional use (agricultural, montados and native forest) at three different scales: local (pond), intermediate (400 metres radius buffer) and broad (1000 metres radius buffer). Using the Akaike Information Criterion for small samples (AICc), we selected the top-ranked models for estimating the probability of occurrence of each species at each spatial scale separately and across all three spatial scales, using a combination of covariates from the different magnitudes. Models with a combination of covariates at the different spatial scales had a stronger support than those at individual scales. The presence of predatory fish in a pond had a strong effect on Caudata presence. Permanent ponds were selected by Hyla arborea/meridionalis over temporary ponds. Species occurrence was not increased by a higher density of streams, but the density of ponds impacted negatively on Lissotriton boscai. The proximity of ponds occupied by their conspecifics had a positive effect on the occurrence of Lissotriton boscai and Pleurodeles waltl. Eucalypt plantations had a negative effect on the occurrence of the newt Lissotriton boscai and anurans Hyla arborea/meridionalis, but had a positive effect on the presence of

  19. Exotic Fish in Exotic Plantations: A Multi-Scale Approach to Understand Amphibian Occurrence in the Mediterranean Region

    PubMed Central

    Cruz, Joana; Sarmento, Pedro; Carretero, Miguel A.; White, Piran C. L.

    2015-01-01

    Globally, amphibian populations are threatened by a diverse range of factors including habitat destruction and alteration. Forestry practices have been linked with low diversity and abundance of amphibians. The effect of exotic Eucalyptus spp. plantations on amphibian communities has been studied in a number of biodiversity hotspots, but little is known of its impact in the Mediterranean region. Here, we identify the environmental factors influencing the presence of six species of amphibians (the Caudata Pleurodeles waltl, Salamandra salamandra, Lissotriton boscai, Triturus marmoratus and the anurans Pelobates cultripes and Hyla arborea/meridionalis) occupying 88 ponds. The study was conducted in a Mediterranean landscape dominated by eucalypt plantations alternated with traditional use (agricultural, montados and native forest) at three different scales: local (pond), intermediate (400 metres radius buffer) and broad (1000 metres radius buffer). Using the Akaike Information Criterion for small samples (AICc), we selected the top-ranked models for estimating the probability of occurrence of each species at each spatial scale separately and across all three spatial scales, using a combination of covariates from the different magnitudes. Models with a combination of covariates at the different spatial scales had a stronger support than those at individual scales. The presence of predatory fish in a pond had a strong effect on Caudata presence. Permanent ponds were selected by Hyla arborea/meridionalis over temporary ponds. Species occurrence was not increased by a higher density of streams, but the density of ponds impacted negatively on Lissotriton boscai. The proximity of ponds occupied by their conspecifics had a positive effect on the occurrence of Lissotriton boscai and Pleurodeles waltl. Eucalypt plantations had a negative effect on the occurrence of the newt Lissotriton boscai and anurans Hyla arborea/meridionalis, but had a positive effect on the presence of

  20. Male Courtship Pheromones Induce Cloacal Gaping in Female Newts (Salamandridae).

    PubMed

    Janssenswillen, Sunita; Bossuyt, Franky

    2016-01-01

    Pheromones are an important component of sexual communication in courting salamanders, but the number of species in which their use has been demonstrated with behavioral evidence remains limited. Here we developed a behavioral assay for demonstrating courtship pheromone use in the aquatically courting Iberian ribbed newt Pleurodeles waltl. By performing an in-depth study of the courtship behavior, we show that females invariably open their cloaca (cloacal gaping) before engaging in pinwheel behavior, the circling movement that is the prelude to spermatophore uptake. In contrast, cloacal gaping was not observed in failed courtships, where females escaped or displayed thanatosis. Since gaping mainly occurred during male amplexus and cloacal imposition, which is the obvious period of pheromone transfer, we next investigated whether male courtship water (i.e., water holding courtship pheromones) alone was able to induce this reaction in females. These tests showed that courtship water induced cloacal gaping significantly more than water, even in the absence of a male. Cloacal gaping thus provides a simple and robust test for demonstrating courtship pheromone use in the Iberian ribbed newt. Since opening the cloaca is an essential prerequisite for spermatophore pick-up in all internally fertilizing salamanders, we hypothesize that variations on this assay will also be useful in several other species. PMID:26771882

  1. Review of the systematics, distribution, biogeography and natural history of Moroccan amphibians.

    PubMed

    Beukema, Wouter; De Pous, Philip; Donaire-Barroso, David; Boaerts, Sergé; Garcia-Porta, Joan; Escoriza, Daniel; Arribas, Oscar J; El Mouden, El Hassan; Carranza, Salvador

    2013-01-01

    The amphibian fauna of the Kingdom of Morocco was traditionally regarded as poor and closely related to its European counterpart. However, an increase in research during the last decades revealed a considerable degree of endemism amongst Moroccan amphibians, as well as phenotypic and genotypic inter- and intraspecific divergence. Despite this increase in knowledge, a comprehensible overview is lacking while several systematic issues have remained unresolved. We herein present a contemporary overview of the distribution, taxonomy and biogeography of Moroccan amphibians. Fourteen fieldtrips were made by the authors and colleagues between 2000 and 2012, which produced a total of 292 new distribution records. Furthermore, based on the results of the present work, we (i) review the systematics of the genus Salamandra in Morocco, including the description of a new subspecies from the Rif- and Middle Atlas Mountains, Salamandra algira splendens ssp. nov.; (ii) present data on intraspecific morphological variability of Pelobates varaldiiand Pleurodeles waltl in Morocco; (iii) attempt to resolve the phylogenetic position of Bufo brongersmai and erect a new genus for this species, Barbarophryne gen. nov.; (iv) summarize and assess the availability of tadpole-specific characteristics and bioacoustical data, and (v) summarize natural history data.

  2. NUDC expression during amphibian development.

    PubMed

    Moreau, N; Aumais, J P; Prudhomme, C; Morris, S M; Yu-Lee, L Y

    2001-10-01

    To identify gene products important for gastrulation in the amphibian Pleurodeles waltl, a screen for regional differences in new protein expression at the early gastrula stage was performed. A 45 kDa protein whose synthesis was specific for progenitor endodermal cells was identified. Microsequencing and cDNA cloning showed that P45 is highly homologous to rat NUDC, a protein suggested to play a role in nuclear migration. Although PNUDC can be detected in all regions of the embryo, its de novo synthesis is tightly regulated spatially and temporally throughout oogenesis and embryonic development. New PNUDC synthesis in the progenitor endodermal cells depends on induction by the mesodermal cells in the gastrula. During development, PNUDC is localized in the egg cortical cytoplasm, at the cleavage furrow during the first embryonic division, around the nuclei and cortical regions of bottle cells in the gastrula, and at the basal region of polarized tissues in the developing embryo. These results show for the first time the expression and compartmentalization of PNUDC at distinct stages during amphibian development. PMID:11732844

  3. [Morphogenetic changes during newt tail regeneration under changed gravity conditions].

    PubMed

    Radugina, E A; Grigorian, É N

    2012-01-01

    Gravity-dependent shape alterations in newt tail regenerates are described, which were previously noticed in experiments onboard satellites Foton M2, M3 and in corresponding laboratory controls. Laboratory conditions were developed that allow reproducing this phenomenon persistently in the adult newts Pleurodeles waltl (Michahelles, 1830). The newts kept in an aquarium (in partial weightlessness) after 1/3 tail amputation developed normal lanceolate regenerates, while those that stayed on a moist mat (exposed to greater gravity than in aquarium) developed curved tail regenerates. Dynamics of the shape alterations were described using computer morphometric analysis. The curve was shown to develop at stage III of regeneration and to be caused by bending of the developing axial structures: the ependymal tube and the cartilage rode. Cellular processes were described that accompany the tail shape changes, such as cell migration and formation of dense aggregates. Unequal proliferation throughout the wound epidermis and blastema was revealed using BrdU assay. Proliferation increased within dorsal and apical regions of the regenerates in the newts kept on the mat cell compared with the aquarian animals. PMID:23136735

  4. Spaceflight Effects on the Hematopoietic Tissue of Ribbed Newts

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E. I.; Almeida, E. A. C.; Butorina, N. N.; Nikonova, T. M.; Grigoryan, E. N.; Poplinskaya, V. A.

    2008-06-01

    The newts Pleurodeles waltl flown on Foton-M2 for 12 days were used for studying the effects of spaceflight on hematopoiesis in lower vertebrates. Prior to the flight, all the animals underwent to removal their lenses and tail tips for regeneration studies. No significant differences in blood cell contents were detected between flight and control animals. Morphological examination of hematopoietic areas of the liver in both groups also showed no significant differences. Experiments with BrdU incorporation revealed labeled cells in the hemopoietic area of the liver as well as in blood. The blood cell composition of newts flown on Foton-M3 was similar to that in intact (nonoperated) newts used in Bion-11 and Foton-M2 experiments. The lack of blood changes in newts during the current experiments distinguishes them from mammals flown in space (rats and mice), which developed significant changes in both blood cell counts, stem and committed cells in the blood-forming tissues.

  5. Urodelean amphibians in studies on microgravity: effects upon organ and tissue regeneration

    NASA Astrophysics Data System (ADS)

    Grigoryan, E. N.; Mitashov, V. I.; Anton, H. J.

    Results obtained from nine experiments performed onboard Russian biosatellites have shown that microgravity promotes tissue regeneration in the newt, Pleurodeles waltl. The effect has been reproduced in all flights and on a clinostat as well for eye tissues (lens and retina), limbs and tail. The effect was demonstrated in 1.5- to 2 -fold increase in cell proliferation in the early stages of regeneration in space flight. Animals "flown" intact and operated after flight regenerated faster than control ones and showed long-lasting micro-"g" effect. The most recent experiment flew aboard the Bion-11 biosatellite. This test was performed for study on microgravity effect on neural retina regeneration after optic nerve lesioning in the newt. Obtained results confirmed our previous information about intensification of regenerative processes in detached neural retina in urodela exposed to simulated weightlessness (Grigoryan et al., 1998). In particular, we found the increase and activation of cell populations participating in neural retina restoration and maintenance of retinal structure. Our findings suggest that promoting effect of microgravity upon regeneration could be influenced by several factors, largely influenced by a response of the whole organism to changed gravity vector. We hypothesized the synthesis of the specific range of stress proteins induced by micro-"g" and their regulative role in cell proliferation. Such a hypothesis for the existence of "altered gravity stress proteins" is discussed.

  6. Male Courtship Pheromones Induce Cloacal Gaping in Female Newts (Salamandridae)

    PubMed Central

    Janssenswillen, Sunita; Bossuyt, Franky

    2016-01-01

    Pheromones are an important component of sexual communication in courting salamanders, but the number of species in which their use has been demonstrated with behavioral evidence remains limited. Here we developed a behavioral assay for demonstrating courtship pheromone use in the aquatically courting Iberian ribbed newt Pleurodeles waltl. By performing an in-depth study of the courtship behavior, we show that females invariably open their cloaca (cloacal gaping) before engaging in pinwheel behavior, the circling movement that is the prelude to spermatophore uptake. In contrast, cloacal gaping was not observed in failed courtships, where females escaped or displayed thanatosis. Since gaping mainly occurred during male amplexus and cloacal imposition, which is the obvious period of pheromone transfer, we next investigated whether male courtship water (i.e., water holding courtship pheromones) alone was able to induce this reaction in females. These tests showed that courtship water induced cloacal gaping significantly more than water, even in the absence of a male. Cloacal gaping thus provides a simple and robust test for demonstrating courtship pheromone use in the Iberian ribbed newt. Since opening the cloaca is an essential prerequisite for spermatophore pick-up in all internally fertilizing salamanders, we hypothesize that variations on this assay will also be useful in several other species. PMID:26771882

  7. Male Courtship Pheromones Induce Cloacal Gaping in Female Newts (Salamandridae).

    PubMed

    Janssenswillen, Sunita; Bossuyt, Franky

    2016-01-01

    Pheromones are an important component of sexual communication in courting salamanders, but the number of species in which their use has been demonstrated with behavioral evidence remains limited. Here we developed a behavioral assay for demonstrating courtship pheromone use in the aquatically courting Iberian ribbed newt Pleurodeles waltl. By performing an in-depth study of the courtship behavior, we show that females invariably open their cloaca (cloacal gaping) before engaging in pinwheel behavior, the circling movement that is the prelude to spermatophore uptake. In contrast, cloacal gaping was not observed in failed courtships, where females escaped or displayed thanatosis. Since gaping mainly occurred during male amplexus and cloacal imposition, which is the obvious period of pheromone transfer, we next investigated whether male courtship water (i.e., water holding courtship pheromones) alone was able to induce this reaction in females. These tests showed that courtship water induced cloacal gaping significantly more than water, even in the absence of a male. Cloacal gaping thus provides a simple and robust test for demonstrating courtship pheromone use in the Iberian ribbed newt. Since opening the cloaca is an essential prerequisite for spermatophore pick-up in all internally fertilizing salamanders, we hypothesize that variations on this assay will also be useful in several other species.

  8. Study of the genotoxic activity of five chlorinated propanones using the SOS chromotest, the Ames-fluctuation test and the newt micronucleus test.

    PubMed

    Le Curieux, F; Marzin, D; Erb, F

    1994-11-01

    Three short-term assays (the SOS chromotest, the Ames-fluctuation test and the newt micronucleus test) were carried out to evaluate the genotoxicity of five chlorinated propanones identified in several chlorinated waters (monochloropropanone, 1,1-dichloropropanone, 1,3-dichloropropanone, 1,1,1-trichloropropanone and 1,1,3-trichloropropanone). In the SOS chromotest, all the compounds except monochloropropanone were found to induce primary DNA damage in Escherichia coli. With the fluctuation test, all five chloropropanones showed mutagenic activity on Salmonella typhimurium strain TA100. The newt micronucleus assay detected a clastogenic effect on the peripheral blood erythrocytes of Pleurodeles waltl larvae only for 1,3-dichloropropanone and 1,1,3-trichloropropanone. Moreover, two structure-activity relationships are noticeable: (1) chloropropanones with chlorine substituents on both carbon positions (1,3-DCP and 1,1,3-TCP) are by far more genotoxic than chloropropanones substituted only on one carbon position (1,1-DCP and 1,1,1-TCP); (2) the increase of the number of chlorine substituents decreases the mutagenic activity (fluctuation test) of the chlorinated propanones studied.

  9. Urodelean amphibians in studies on microgravity: effects upon organ and tissue regeneration.

    PubMed

    Grigoryan, E N; Mitashov, V I; Anton, H J

    2002-01-01

    Results obtained from nine experiments performed onboard Russian biosatellites have shown that microgravity promotes tissue regeneration in the newt, Pleurodeles waltl. The effect has been reproduced in all flights and on a clinostat as well for eye tissues (lens and retina), limbs and tail. The effect was demonstrated in 1.5- to 2-fold increase in cell proliferation in the early stages of regeneration in space flight. Animals "flown" intact and operated after flight regenerated faster than control ones and showed long-lasting micro-"g" effect. The most recent experiment flew aboard the Bion-11 biosatellite. This test was performed for study on microgravity effect on neural retina regeneration after optic nerve lesioning in the newt. Obtained results confirmed our previous information about intensification of regenerative processes in detached neural retina in urodela exposed to simulated weightlessness (Grigoryan et al., 1998). In particular, we found the increase and activation of cell populations participating in neural retina restoration and maintenance of retinal structure. Our findings suggest that promoting effect of microgravity upon regeneration could be influenced by several factors, largely influenced by a response of the whole organism to changed gravity vector. We hypothesized the synthesis of the specific range of stress proteins induced by micro-"g" and their regulative role in cell proliferation. Such a hypothesis for the existence of "altered gravity stress proteins" is discussed.

  10. [Morphogenetic changes during newt tail regeneration under changed gravity conditions].

    PubMed

    Radugina, E A; Grigorian, É N

    2012-01-01

    Gravity-dependent shape alterations in newt tail regenerates are described, which were previously noticed in experiments onboard satellites Foton M2, M3 and in corresponding laboratory controls. Laboratory conditions were developed that allow reproducing this phenomenon persistently in the adult newts Pleurodeles waltl (Michahelles, 1830). The newts kept in an aquarium (in partial weightlessness) after 1/3 tail amputation developed normal lanceolate regenerates, while those that stayed on a moist mat (exposed to greater gravity than in aquarium) developed curved tail regenerates. Dynamics of the shape alterations were described using computer morphometric analysis. The curve was shown to develop at stage III of regeneration and to be caused by bending of the developing axial structures: the ependymal tube and the cartilage rode. Cellular processes were described that accompany the tail shape changes, such as cell migration and formation of dense aggregates. Unequal proliferation throughout the wound epidermis and blastema was revealed using BrdU assay. Proliferation increased within dorsal and apical regions of the regenerates in the newts kept on the mat cell compared with the aquarian animals.

  11. Regeneration of eye tissues is modulated by altered levels of gravity at 1g, 2g, and in microgravity during spaceflight

    NASA Astrophysics Data System (ADS)

    Grigoryan, Eleonora; Almeida, Eduardo; Mitashov, Victor

    The pursuit of human space exploration requires detailed knowledge of microgravity-related changes in fundamental biological processes, and their effects on health. Normal regeneration of organs and tissues is one such fundamental process that allows maintenance of vitality and function of living organisms. Animal models of tissue regeneration include the newt (Pleurodeles waltl, Urodela) eye, which has been extensively used by our team in Russian Bion and Foton microgravity experiments since 1985, and in recent NASA 2.5 meter diameter centrifuge hypergravity experiments. In total, these experiments allow us to draw several broad conclusions: Newt lens regeneration is significantly altered in microgravity and hypergravity relative to 1g controls. Lenses formed in microgravity are larger and more developed than those regenerated in 1g controls; Microgravity alterations of lens regeneration can persist after spaceflight, and continue to affect repeated removal and regeneration of the lens after return to 1g; Microgravity increases the numbers of early stage regenerative proliferating BrdU-labeled cells in dorsal iris progenitors and in the lens regenerate. Regeneration under hypergravity conditions at 2g inhibits lens regeneration, and often causes retinal detachment. Molecular mechanisms regulating lens regeneration rate include FGF2 signaling, (a key pathway for eye tissue development and regeneration), and an expression of stress-related proteins - HSPs. In conclusion, regeneration of lens and other eye tissues in the newt is sensitive to, and regulated by the level of gravity mechanotransduction and developmental signaling pathways, with microgravity favoring stem cell progenitor proliferation, and gravity at 1g promoting terminal differentiation, while hypergravity at 2g often causes damage of delicate regenerating tissues.

  12. Development of the Gecko (Pachydactylus turneri) Animal Model during Foton M-2 to Study Comparative Effects of Microgravity in Terrestrial and Aquatic Organisms

    NASA Technical Reports Server (NTRS)

    Almeida, E. A.; Roden, C.; Phillips, J. A.; Globus, R. K.; Searby, N.; Vercoutere, W.; Morey-Holton, E.; Gulimova, V.; Saveliev, S.; Tairbekov, M.; Iwaniec, U. T.; McNamra, A. J.; Turner, R. T.

    2006-01-01

    Terrestrial organisms exposed to microgravity during spaceflight experience degeneration in bone, muscle, and possibly other tissues that require gravity-mediated mechanical stimulation for normal regenerative growth. In the Gecko experiment aboard Foton M-2, we flew for the first time, five terrestrial Pachydactylus turneri specimens to develop a model of microgravity effects comparable to the newt Pleurodeles waltl, a well-established model organism for spaceflight. These lower vertebrate species have similar body plans and size, are poikilothermic, have tissue regenerative ability, and are adapted to moderate periods of fasting. Furthermore the gecko (Pachydactylus) can also survive prolonged periods without water. In pre-flight control experiments and after a 16-day Foton M-2 spaceflight without food or water, the geckos were recovered and showed no apparent negative health effects. However, detailed analysis of bone mass and architecture by micro Computed Tomography { pCT), showed that both synchronous control and spaceflight animals lost significant amounts of cancellous bone in the distal femur and humerus relative to basal controls. In addition, cell cycle analysis of 30h post-flight liver tissue reveals a shift of DNA content from G2 and S to G1, both in spaceflight and synchronous controls. Together, these results suggest that housing conditions alone induce rapid catabolism of cancellous bone and reduced normal tissue regeneration. Further use of the gecko Puchydactylus turneri as a spaceflight model requires modification of housing conditions, possibly by including water and food, or changing other factors such as eliminating housing stresses to obtain stable bone structure and tissue regeneration during spaceflight experiments.

  13. Blood and clonogenic hemopoietic cells of newts after the space flight

    NASA Astrophysics Data System (ADS)

    Michurina, T. V.; Domaratskaya, E. I.; Nikonova, T. M.; Khrushchov, N. G.

    Ribbed newts were used for studying the effect of space flight on board of the biosatellite (Cosmos-2229) on blood and clonogenic hemopoietic cells. In blood of newts of the flight group, the relative proportion of neutrophils increased, whereas that of lymphocytes and eosinophils decreased. Space flight did not result in loss of the ability of newt blood cells to incorporate H^3-thymidine. Analysis of clonogenic hemopoietic cells was performed using the method of hemopoietic colony formation on cellulose acetate membranes implanted into the peritoneal cavity of irradiated newts. To analyze reconstitution of hemopoiesis after irradiation donor hemopoietic cells from flight or control newts were transplanted into irradiated newts whose hemopoietic organs were investigated. The newt can be considered an adequate model for studying hemopoiesis under the conditions of the space flight. Previous studies on rats subjected to 5- to 19-day space flights revealed a decrease in the number of clonogenic cells in their hemopoietic organs accompanied by specific changes in the precursor cell compartment and in blood /1,2/. Hence, it was interesting to analyze blood and hemopoietic tissue of lower vertebrates after a space flight and to compare the response to it of animals belonging to different taxonomic groups. We analyzed blood and clonogenic hemopoietic cells of ribbed newts, Pleurodeles waltl (age one year, weight 20-28 g) subjected to a 12-day space flight on board of a Cosmos-2229 biosatellite. The same animals were used in studies on limb and lens regeneration. The results were compared with those obtained with control groups of newts: (1) basic control, operated newts sacrificed on the day of biosatellite launching (BC); (2) synchronous control, operated newts kept in the laboratory under simulated space flight conditions (SC); and (3) intact newts (IC).

  14. Morphogenetic changes occurring in the regenerating newt tail under changed gravity conditions

    NASA Astrophysics Data System (ADS)

    Radugina, Elena A.; Grigoryan, Eleonora N.; Dvorochkin, Natasha; Almeida, Eduardo

    2012-07-01

    It is widely accepted that gravity greatly affects animal physiology, development, and alters gene expression. Recently it became apparent that it can also affect tissue morphogenesis. In our work, we developed special laboratory conditions that allow us to produce the gravity-dependent alterations in tail regenerates of the newt Pleurodeles waltl. We examined the dynamic morphogenetic changes during 50-day tail regeneration using computer morphometric analysis. Changes that we observed under these conditions were comparable with those found earlier in our spaceflight experiments. The newts kept in aquarium deep water (low g) after 1/3 tail amputation developed normal lanceolate regenerates. In contrast, the animals that stayed on the moist mat (1g) developed tail regenerates curved ventrally, with tips almost touching the mat. The similar results were obtained with a 12-day centrifugation at 2g. The study of the regenerate morphology in low g, 1g, and 2g animal groups allowed us to determine the stage at which the morphological changes in regenerates become apparent, and to detect the main morphological events associated with the development of tail curve, such as bending of ependymal tube and reorientation of the forming cartilage. We describe cellular processes foregoing observed tissue morphogenetic changes, such as cell migration, condensation in cell population, and unequal proliferation in different areas of epidermis and blastema. Cell proliferation in epidermis and blastema of tails regenerated under the conditions of different gravitational load was evaluated by BrdU assay. In 1g newts, cell proliferation increased within the dorso-apical region of the regenerates compared with that in low g group. These results provide us with a valuable insight into the regenerative tissue homostasis that involves cell division, cell death, and migration in the newt regenerating tail. In addition, these findings could provide us with better understanding of the

  15. Pigment patterns of larval salamanders (Ambystomatidae, Salamandridae): the role of the lateral line sensory system and the evolution of pattern-forming mechanisms.

    PubMed

    Parichy, D M

    1996-05-01

    In many species of salamanders, pigment cells derived from the neural crest give rise to a horizontal stripe pattern in hatchling larvae. A defining element of these horizontal stripe patterns is a region over the middle of the myotomes that is relatively free of melanophores. This study shows that formation of a "melanophore-free region" and horizontal stripe pattern in Ambystoma tigrinum tigrinum (family Ambystomatidae) correlates with the development of the trunk lateral line sensory system. Moreover, prevention of lateral line development results in greater densities of melanophores in the middle of the flank, essentially eliminating the melanophore-free region in this taxon. A phylogenetic survey also revealed that ablation of the lateral lines has qualitatively similar effects on melanophores in seven of eight additional taxa (Ambystomatidae: A. barbouri, A. maculatum, A. talpoideum; Salamandridae: Notophthalmus viridescens, Pleurodeles waltl, Taricha granulosa, T. rivularis). In Taricha torosa, however, a superficially similar melanophore-free region forms prior to lateral line development, and ablation of the lateral lines does not perturb the horizontal stripe pattern. Finally, heterospecific grafting experiments demonstrated that T. torosa lateral lines are competent to generate a melanophore-free region, and T. torosa melanophores are competent to respond to cues associated with the lateral lines. These results indicate that lateral line-dependent pattern-forming mechanisms are common and probably ancestral within the families Ambystomatidae and Salamandridae and suggest that these ancestral mechanisms have been retained in T. torosa as redundant, lateral line-dependent mechanisms for stripe formation have evolved. PMID:8626032

  16. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion.

    PubMed

    Karakasiliotis, K; Thandiackal, R; Melo, K; Horvat, T; Mahabadi, N K; Tsitkov, S; Cabelguen, J M; Ijspeert, A J

    2016-06-01

    Robots are increasingly used as scientific tools to investigate animal locomotion. However, designing a robot that properly emulates the kinematic and dynamic properties of an animal is difficult because of the complexity of musculoskeletal systems and the limitations of current robotics technology. Here, we propose a design process that combines high-speed cineradiography, optimization, dynamic scaling, three-dimensional printing, high-end servomotors and a tailored dry-suit to construct Pleurobot: a salamander-like robot that closely mimics its biological counterpart, Pleurodeles waltl Our previous robots helped us test and confirm hypotheses on the interaction between the locomotor neuronal networks of the limbs and the spine to generate basic swimming and walking gaits. With Pleurobot, we demonstrate a design process that will enable studies of richer motor skills in salamanders. In particular, we are interested in how these richer motor skills can be obtained by extending our spinal cord models with the addition of more descending pathways and more detailed limb central pattern generator networks. Pleurobot is a dynamically scaled amphibious salamander robot with a large number of actuated degrees of freedom (DOFs: 27 in total). Because of our design process, the robot can capture most of the animal's DOFs and range of motion, especially at the limbs. We demonstrate the robot's abilities by imposing raw kinematic data, extracted from X-ray videos, to the robot's joints for basic locomotor behaviours in water and on land. The robot closely matches the behaviour of the animal in terms of relative forward speeds and lateral displacements. Ground reaction forces during walking also resemble those of the animal. Based on our results, we anticipate that future studies on richer motor skills in salamanders will highly benefit from Pleurobot's design. PMID:27358276

  17. A transcriptome for the study of early processes of retinal regeneration in the adult newt, Cynops pyrrhogaster.

    PubMed

    Nakamura, Kenta; Islam, Md Rafiqul; Takayanagi, Miyako; Yasumuro, Hirofumi; Inami, Wataru; Kunahong, Ailidana; Casco-Robles, Roman M; Toyama, Fubito; Chiba, Chikafumi

    2014-01-01

    Retinal regeneration in the adult newt is a useful system to uncover essential mechanisms underlying the regeneration of body parts of this animal as well as to find clues to treat retinal disorders such as proliferative vitreoretinopathy. Here, to facilitate the study of early processes of retinal regeneration, we provide a de novo assembly transcriptome and inferred proteome of the Japanese fire bellied newt (Cynops pyrrhogaster), which was obtained from eyeball samples of day 0-14 after surgical removal of the lens and neural retina. This transcriptome (237,120 in silico transcripts) contains most information of cDNAs/ESTs which has been reported in newts (C. pyrrhogaster, Pleurodeles waltl and Notophthalmus viridescence) thus far. On the other hand, de novo assembly transcriptomes reported lately for N. viridescence only covered 16-31% of this transcriptome, suggesting that most constituents of this transcriptome are specific to the regenerating eye tissues of C. pyrrhogaster. A total of 87,102 in silico transcripts of this transcriptome were functionally annotated. Coding sequence prediction in combination with functional annotation revealed that 76,968 in silico transcripts encode protein/peptides recorded in public databases so far, whereas 17,316 might be unique. qPCR and Sanger sequencing demonstrated that this transcriptome contains much information pertaining to genes that are regulated in association with cell reprogramming, cell-cycle re-entry/proliferation, and tissue patterning in an early phase of retinal regeneration. This data also provides important insight for further investigations addressing cellular mechanisms and molecular networks underlying retinal regeneration as well as differences between retinal regeneration and disorders. This transcriptome can be applied to ensuing comprehensive gene screening steps, providing candidate genes, regardless of whether annotated or unique, to uncover essential mechanisms underlying early processes of

  18. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion.

    PubMed

    Karakasiliotis, K; Thandiackal, R; Melo, K; Horvat, T; Mahabadi, N K; Tsitkov, S; Cabelguen, J M; Ijspeert, A J

    2016-06-01

    Robots are increasingly used as scientific tools to investigate animal locomotion. However, designing a robot that properly emulates the kinematic and dynamic properties of an animal is difficult because of the complexity of musculoskeletal systems and the limitations of current robotics technology. Here, we propose a design process that combines high-speed cineradiography, optimization, dynamic scaling, three-dimensional printing, high-end servomotors and a tailored dry-suit to construct Pleurobot: a salamander-like robot that closely mimics its biological counterpart, Pleurodeles waltl Our previous robots helped us test and confirm hypotheses on the interaction between the locomotor neuronal networks of the limbs and the spine to generate basic swimming and walking gaits. With Pleurobot, we demonstrate a design process that will enable studies of richer motor skills in salamanders. In particular, we are interested in how these richer motor skills can be obtained by extending our spinal cord models with the addition of more descending pathways and more detailed limb central pattern generator networks. Pleurobot is a dynamically scaled amphibious salamander robot with a large number of actuated degrees of freedom (DOFs: 27 in total). Because of our design process, the robot can capture most of the animal's DOFs and range of motion, especially at the limbs. We demonstrate the robot's abilities by imposing raw kinematic data, extracted from X-ray videos, to the robot's joints for basic locomotor behaviours in water and on land. The robot closely matches the behaviour of the animal in terms of relative forward speeds and lateral displacements. Ground reaction forces during walking also resemble those of the animal. Based on our results, we anticipate that future studies on richer motor skills in salamanders will highly benefit from Pleurobot's design.

  19. A new hynobiid-like salamander (Amphibia, Urodela) from Inner Mongolia, China, provides a rare case study of developmental features in an Early Cretaceous fossil urodele

    PubMed Central

    Jia, Jia

    2016-01-01

    A new fossil salamander, Nuominerpeton aquilonaris (gen. et sp. nov.), is named and described based on specimens from the Lower Cretaceous Guanghua Formation of Inner Mongolia, China. The new discovery documents a far northern occurrence of Early Cretaceous salamanders in China, extending the geographic distribution for the Mesozoic fossil record of the group from the Jehol area (40th–45th parallel north) to near the 49th parallel north. The new salamander is characterized by having the orbitosphenoid semicircular in shape; coracoid plate of the scapulocoracoid greatly expanded with a convex ventral and posterior border; ossification of two centralia in carpus and tarsus; and first digit being about half the length of the second digit in both manus and pes. The new salamander appears to be closely related to hynobiids, although this inferred relationship awaits confirmation by research in progress by us on a morphological and molecular combined analysis of cryptobranchoid relationships. Comparison of adult with larval and postmetamorphic juvenile specimens provides insights into developmental patterns of cranial and postcranial skeletons in this fossil species, especially resorption of the palatine and anterior portions of the palatopterygoid in the palate and the coronoid in the mandible during metamorphosis, and postmetamorphic ossification of the mesopodium in both manus and pes. Thus, this study provides a rare case study of developmental features in a Mesozoic salamander. PMID:27761316

  20. Micropuncture study of the renal responses of the urodele amphibian Necturus maculosus to injections of arginine vasotocin and an anti-aldosterone compound.

    PubMed

    Garland, H O; Henderson, I W; Brown, J A

    1975-08-01

    1. Necturus maculosus kidney function has been examined using standard clearance techniques and renal tubular micropuncture methodology. 2. Throughout, cyanocobalamin (vitamin B12) has been used to monitor glomerular filtration rate (GFR) and tubular water movements. It was established that this substance was handled by the Necturus kidney in a similar manner to inulin. It can be readily analysed, together with renal electrolytes, by electron microprobe techniques. 3. Profiles of transtubular gradients (TF:P ratios) along the nephron were established for osmolarity, sodium, potassium, calcium and cobalt (of cyanocobalamin). 4. Ureteral urine is always hyposmotic with respect to plasma and the site of dilution of the plasma ultrafiltrate is within the distal segment. 5. Up to 30% of the filtrate is isosmotically reabsorbed along the proximal tubule; the tubular fluid:plasma ratio for osmolarity and sodium is around 1, and the TF:P for cobalt of cyanocobalamin is about 1.4 by the end of this segment. 6. The renal effects of the neurohypophysial hormone arginine vasotocin (AVT) and an aldosterone antagonist (SC14266; Soldactone) have been examined. 7. AVT was consistently antidiuretic causing both a decreased GFR and an enhanced distal tubular reabsorption of water. 8. SC14266 also increased distal tubular reabsorption of water. Such an effect differs from that found in higher vertebrates, and may indicate a "glucocorticoid-type" of renal action for aldosterone in amphibians.

  1. Effects of light on the cytotoxicity and genotoxicity of benzo(a)pyrene and an oil refinery effluent in the newt

    SciTech Connect

    Fernandez, M.; l`Haridon, J.

    1994-12-31

    The genotoxicity and/or toxicity of benzo(a)pyrene (BaP) were evaluated under different lighting conditions in larvae and embryos of the newt Pleurodeles waltl. Visible light alone, UVA alone, or BaP alone had no toxic effects on the larvae. Conversely, toxic effects were observed in animals exposed to BaP + daylight, or BaP + UVA. The genotoxicity of BaP (50 ppb) was halved by its previous exposure to UVA, and was abolished at the lowest concentration (12.5 ppb). In other experiments, the larvae were exposed alternatively to BaP or Irr BaP (18 hours in dark) and UVA (6 hr in water), every day for 8 days. All animals that had accumulated non-irradiated BaP (50 ppb) showed signs of severe toxicity, and 90% died before the end of the test. On the other hand, irradiated BaP (50 ppb) was a 4-fold less toxic and half as genotoxic as non-irradiated BaP. In addition, exposure of the animals to UVA alone for 4 days prior to treatment with BaP did not affect the genotoxicity or toxicity of this hydrocarbon. In the dark, the embryotoxicity of BaP was markedly attenuated by the presence of the jelly coats. Although UVA alone did not affect growth of the embryos, the toxicity of BaP was enhanced by the combined action of the two agents together or in succession (BaP + UVA or BaP then UVA). Larvae were treated with an oil refinery effluent (EF). At 125 ml/l, EF was not found to be genotoxic in the dark. However, in animals exposed to both EF and UVA, there was a progressive increase in level of micronucleated erythrocytes with increasing duration of daily exposure to UVA. Moreover, the genotoxic potential of irradiated EF + UVA was systematically below that of non-irradiated EF + UVA for all durations of exposure to ultraviolet light. Irradiation of this type of effluent might help reduce its harmful effects on aquatic species. Our results also suggest that metabolic activation is not necessary for hydrocarbons to induce toxic effects. 51 refs., 5 tabs., 3 figs.

  2. Newt tail regeneration: a model for gravity-dependent morphogenesis and clues to the molecular mechanisms involved.

    NASA Astrophysics Data System (ADS)

    Radugina, Elena A.; Almeida, Eduardo; Grigoryan, Eleonora

    Gravity alterations are widely recognized to influence living systems. They may cause temporary or permanent effects on physiology and development at different levels, from gene expression to morphogenesis. However, the molecular mechanisms underlying these effects are often unclear, and adequate model systems to study them are required. To address this problem we developed a new experimental model of how gravity affects morphogenesis during tail regeneration in the newt Pleurodeles waltl. The effects of increased gravity on newt tail morphogenesis were first documented in two joint Russian-US NASA spaceflight experiments in the Russian Foton-M2 (2005) and Foton-M3 (2007) missions. In these experiments the shape of newt tail regenerate was found to depend on the gravity level, being dorso-ventrally symmetrical in microgravity and in neutrally-buoyant aquarium controls, versus hook-like and bent downward in 1g controls. These 1g controls were conducted in spaceflight habitats using a water-saturated PVA sponge mat. These results were reproducible in multiple spaceflight, and ground laboratory studies, both in the US at NASA ARC and in Russia at IDB RAS, and were characterized in detail using morphometry and histology approaches. The role of hypergravity in shaping morphogenesis was confirmed at NASA ARC with an experiment in the ISS Testbed 8-foot diameter centrifuge operating at 2g. Animals that experienced two-week centrifugation (the period of time used in the Foton flights) developed the same hook-like regenerates as 1g controls, and morphometric analysis revealed no significant difference between 1g and 2g groups, however both were significantly different from aquarium controls. We hypothesize that exposure to 1g or 2g during tail morphogenesis constitutes excessive loading for newts that are adapted to microgravity-like conditions in their aquatic habitat. Because Heat Shock Proteins (HSPs) are stress-induced molecules that respond to a broad variety of

  3. Expanding Distribution of Lethal Amphibian Fungus Batrachochytrium salamandrivorans in Europe.

    PubMed

    Spitzen-van der Sluijs, Annemarieke; Martel, An; Asselberghs, Johan; Bales, Emma K; Beukema, Wouter; Bletz, Molly C; Dalbeck, Lutz; Goverse, Edo; Kerres, Alexander; Kinet, Thierry; Kirst, Kai; Laudelout, Arnaud; Marin da Fonte, Luis F; Nöllert, Andreas; Ohlhoff, Dagmar; Sabino-Pinto, Joana; Schmidt, Benedikt R; Speybroeck, Jeroen; Spikmans, Frank; Steinfartz, Sebastian; Veith, Michael; Vences, Miguel; Wagner, Norman; Pasmans, Frank; Lötters, Stefan

    2016-07-01

    Emerging fungal diseases can drive amphibian species to local extinction. During 2010-2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity.

  4. Expanding Distribution of Lethal Amphibian Fungus Batrachochytrium salamandrivorans in Europe

    PubMed Central

    Spitzen-van der Sluijs, Annemarieke; Martel, An; Asselberghs, Johan; Bales, Emma K.; Beukema, Wouter; Bletz, Molly C.; Dalbeck, Lutz; Goverse, Edo; Kerres, Alexander; Kinet, Thierry; Kirst, Kai; Laudelout, Arnaud; Marin da Fonte, Luis F.; Nöllert, Andreas; Ohlhoff, Dagmar; Sabino-Pinto, Joana; Schmidt, Benedikt R.; Speybroeck, Jeroen; Spikmans, Frank; Steinfartz, Sebastian; Veith, Michael; Vences, Miguel; Wagner, Norman; Pasmans, Frank

    2016-01-01

    Emerging fungal diseases can drive amphibian species to local extinction. During 2010–2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity. PMID:27070102

  5. Expanding Distribution of Lethal Amphibian Fungus Batrachochytrium salamandrivorans in Europe.

    PubMed

    Spitzen-van der Sluijs, Annemarieke; Martel, An; Asselberghs, Johan; Bales, Emma K; Beukema, Wouter; Bletz, Molly C; Dalbeck, Lutz; Goverse, Edo; Kerres, Alexander; Kinet, Thierry; Kirst, Kai; Laudelout, Arnaud; Marin da Fonte, Luis F; Nöllert, Andreas; Ohlhoff, Dagmar; Sabino-Pinto, Joana; Schmidt, Benedikt R; Speybroeck, Jeroen; Spikmans, Frank; Steinfartz, Sebastian; Veith, Michael; Vences, Miguel; Wagner, Norman; Pasmans, Frank; Lötters, Stefan

    2016-07-01

    Emerging fungal diseases can drive amphibian species to local extinction. During 2010-2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity. PMID:27070102

  6. Amphibians as research models for regenerative medicine

    PubMed Central

    Song, Fengyu; Li, Bingbing

    2010-01-01

    The ability to regenerate bone across a critical size defect would be a marked clinical advance over current methods for dealing with such structural gaps. Here, we briefly review the development of limb bones and the mandible, the regeneration of urodele limbs after amputation, and present evidence that urodele and anuran amphibians represent a valuable research model for the study of segment defect regeneration in both limb bones and mandible. PMID:21197215

  7. Climate patterns as predictors of amphibians species richness and indicators of potential stress

    USGS Publications Warehouse

    Battaglin, W.; Hay, L.; McCabe, G.; Nanjappa, P.; Gallant, A.L.

    2005-01-01

    Amphibians occupy a range of habitats throughout the world, but species richness is greatest in regions with moist, warm climates. We modeled the statistical relations of anuran and urodele species richness with mean annual climate for the conterminous United States, and compared the strength of these relations at national and regional levels. Model variables were calculated for county and subcounty mapping units, and included 40-year (1960-1999) annual mean and mean annual climate statistics, mapping unit average elevation, mapping unit land area, and estimates of anuran and urodele species richness. Climate data were derived from more than 7,500 first-order and cooperative meteorological stations and were interpolated to the mapping units using multiple linear regression models. Anuran and urodele species richness were calculated from the United States Geological Survey's Amphibian Research and Monitoring Initiative (ARMI) National Atlas for Amphibian Distributions. The national multivariate linear regression (MLR) model of anuran species richness had an adjusted coefficient of determination (R2) value of 0.64 and the national MLR model for urodele species richness had an R2 value of 0.45. Stratifying the United States by coarse-resolution ecological regions provided models for anUrans that ranged in R2 values from 0.15 to 0.78. Regional models for urodeles had R2 values. ranging from 0.27 to 0.74. In general, regional models for anurans were more strongly influenced by temperature variables, whereas precipitation variables had a larger influence on urodele models.

  8. Regeneration: The Origin of Cancer or a Possible Cure?

    PubMed Central

    Oviedo, Néstor J.; Beane, Wendy S.

    2009-01-01

    A better understanding of the forces controlling cell growth will be essential for developing effective therapies in regenerative medicine and cancer. Historically, the literature has linked cancer and tissue regeneration—proposing regeneration as both the source of cancer and a method to inhibit tumorigenesis. This review discusses two powerful regeneration models, the vertebrate urodele amphibians and invertebrate planarians, in light of cancer regulation. Urodele limb and eye lens regeneration is described, as well as the planarian’s emergence as a molecular and genetic model system in which recent insights begin to molecularly dissect cancer and regeneration in adult tissues. PMID:19427247

  9. Short historical survey of pattern formation in the endo-mesoderm and the neural anlage in the vertebrates: the role of vertical and planar inductive actions.

    PubMed

    Nieuwkoop, P D

    1997-04-01

    After some introductory remarks about vertical versus horizontal inductive interactions and about planar versus homoiogenetic induction, the author discusses: a) the historical development of the more recently studied endo-mesoderm induction in the Urodeles and in the anuran Xenopus laevis, b) the possible causal relationship between endo-mesoderm induction and the initiation of the gastrulation process, and c) the older history of the regional neural induction as initially studied in the Urodeles and only recently analysed in the anuran Xenopus laevis. The essential vertical interaction in the neural induction process both in urodelian and in anuran amphibians is emphasized.

  10. Microchip implant system used for animal identification in laboratory rabbits, guineapigs, woodchucks and in amphibians.

    PubMed

    Mrozek, M; Fischer, R; Trendelenburg, M; Zillmann, U

    1995-07-01

    Traditional methods for animal identification have a number of drawbacks. We evaluated a new system for individual identification using microchip implants in rabbits, guineapigs, woodchucks (Marmota monax) and amphibians (Xenopus laevis, Pleurodeles waltlii). Implantation procedure and long-term observations are described. Microchip implants proved to be a practicable and reliable system for animal identification without obvious adverse effects. The applicability of electronic animal identification in comparison with common methods and with regard to animal welfare and legal aspects is discussed.

  11. Epimorphic regeneration approach to tissue replacement in adult mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor...

  12. Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle.

    PubMed

    Pajcini, Kostandin V; Corbel, Stephane Y; Sage, Julien; Pomerantz, Jason H; Blau, Helen M

    2010-08-01

    An outstanding biological question is why tissue regeneration in mammals is limited, whereas urodele amphibians and teleost fish regenerate major structures, largely by cell cycle reentry. Upon inactivation of Rb, proliferation of postmitotic urodele skeletal muscle is induced, whereas in mammalian muscle this mechanism does not exist. We postulated that a tumor suppressor present in mammals but absent in regenerative vertebrates, the Ink4a product ARF (alternative reading frame), is a regeneration suppressor. Concomitant inactivation of Arf and Rb led to mammalian muscle cell cycle reentry, loss of differentiation properties, and upregulation of cytokinetic machinery. Single postmitotic myocytes were isolated by laser micro-dissection-catapulting, and transient suppression of Arf and Rb yielded myoblast colonies that retained the ability to differentiate and fuse into myofibers upon transplantation in vivo. These results show that differentiation of mammalian cells is reversed by inactivation of Arf and Rb and support the hypothesis that Arf evolved at the expense of regeneration. PMID:20682446

  13. A model of transcriptional and morphological changes during thyroid hormone-induced metamorphosis of the axolotl

    PubMed Central

    Page, Robert B.; Monaghan, James R.; Walker, John A.; Voss, S. Randal

    2009-01-01

    Anuran (frog) metamorphosis has long-served as a model of how thyroid hormones regulate post-embryonic development in vertebrates. However, comparatively little is known about urodele (salamander) metamorphosis. We conducted a detailed time-course study of induced metamorphosis in the Mexican axolotl (Ambystoma mexicanum) that probed metamorphic changes in morphology and gene expression in the skin. Using morphometrics, quantitative PCR, histology, and in situ hybridization we demonstrate that the development of transcriptional markers is fundamental to the resolution of early metamorphic events in axolotls. We then use linear and piecewise linear models to identify a sequence of morphological and transcriptional changes that define larval to adult remodeling events throughout metamorphosis. In addition, we show that transcriptional biomarkers are expressed in specific larval and adult cell populations of the skin and that temporal changes in these biomarkers correlate with tissue remodeling. We compare our results with other studies of natural and induced metamorphosis in urodeles and highlight what appear to be conserved features between urodele and anuran metamorphosis. PMID:19275901

  14. Purification and molecular cloning of aspartic proteinases from the stomach of adult Japanese fire belly newts, Cynops pyrrhogaster.

    PubMed

    Nagasawa, Tatsuki; Sano, Kaori; Kawaguchi, Mari; Kobayashi, Ken-Ichiro; Yasumasu, Shigeki; Inokuchi, Tomofumi

    2016-04-01

    Six aspartic proteinase precursors, a pro-cathepsin E (ProCatE) and five pepsinogens (Pgs), were purified from the stomach of adult newts (Cynops pyrrhogaster). On sodium dodecylsulfate-polyacrylamide gel electrophoresis, the molecular weights of the Pgs and active enzymes were 37-38 kDa and 31-34 kDa, respectively. The purified ProCatE was a dimer whose subunits were connected by a disulphide bond. cDNA cloning by polymerase chain reaction and subsequent phylogenetic analysis revealed that three of the purified Pgs were classified as PgA and the remaining two were classified as PgBC belonging to C-type Pg. Our results suggest that PgBC is one of the major constituents of acid protease in the urodele stomach. We hypothesize that PgBC is an amphibian-specific Pg that diverged during its evolutional lineage. PgBC was purified and characterized for the first time. The purified urodele pepsin A was completely inhibited by equal molar units of pepstatin A. Conversely, the urodele pepsin BC had low sensitivity to pepstatin A. In acidic condition, the activation rates of newt pepsin A and BC were similar to those of mammalian pepsin A and C1, respectively. Our results suggest that the enzymological characters that distinguish A- and C-type pepsins appear to be conserved in mammals and amphibians. PMID:26711235

  15. Amphibian parathyroids: morphological and functional aspects.

    PubMed

    Srivastav, A K; Das, V K; Das, S; Sasayama, Y; Suzuki, N

    1995-10-01

    Amphibians living partially or totally in a terrestrial environment are the first tetrapods to possess parathyroid glands. Purely aquatic amphibians and amphibian larvae lack these endocrine glands. The parathyroids develop at the time of metamorphosis. The parathyroid glands in caecilians consist of a single cell type, that of urodeles may be composed of basal (supporting) cells and suprabasal (chief) cells, and that of anurans of small and large chief cells. Parathyroid glands of caecilians and anurans lack connective tissue, blood vessels, and nerves. The parathyroid cells become activated in response to decreased blood calcium concentration and undergo changes indicating increased parathyroid hormone secretion. Increased blood calcium concentration suppresses secretory activity. Usually, parathyroidectomy elicits hypocalcemia in most amphibians. Such operations have no effect in lower urodeles. Parathyroid hormone administration provokes hypercalcemia in most amphibians. The parathyroids of caecilians have not been studied in detail. The urodeles and anurans exhibit seasonal changes in the parathyroid glands. These changes may be initiated by environmental stimuli such as light, temperature, or alterations in blood calcium levels caused by natural hibernation.

  16. A model of transcriptional and morphological changes during thyroid hormone-induced metamorphosis of the axolotl.

    PubMed

    Page, Robert B; Monaghan, James R; Walker, John A; Voss, S Randal

    2009-06-01

    Anuran (frog) metamorphosis has long-served as a model of how thyroid hormones regulate post-embryonic development in vertebrates. However, comparatively little is known about urodele (salamander) metamorphosis. We conducted a detailed time-course study of induced metamorphosis in the Mexican axolotl (Ambystoma mexicanum) that probed metamorphic changes in morphology and gene expression in the skin. Using morphometrics, quantitative PCR, histology, and in situ hybridization we demonstrate that the development of transcriptional markers is fundamental to the resolution of early metamorphic events in axolotls. We then use linear and piecewise linear models to identify a sequence of morphological and transcriptional changes that define larval to adult remodeling events throughout metamorphosis. In addition, we show that transcriptional biomarkers are expressed in specific larval and adult cell populations of the skin and that temporal changes in these biomarkers correlate with tissue remodeling. We compare our results with other studies of natural and induced metamorphosis in urodeles and highlight what appear to be conserved features between urodele and anuran metamorphosis.

  17. Amphibian parathyroids: morphological and functional aspects.

    PubMed

    Srivastav, A K; Das, V K; Das, S; Sasayama, Y; Suzuki, N

    1995-10-01

    Amphibians living partially or totally in a terrestrial environment are the first tetrapods to possess parathyroid glands. Purely aquatic amphibians and amphibian larvae lack these endocrine glands. The parathyroids develop at the time of metamorphosis. The parathyroid glands in caecilians consist of a single cell type, that of urodeles may be composed of basal (supporting) cells and suprabasal (chief) cells, and that of anurans of small and large chief cells. Parathyroid glands of caecilians and anurans lack connective tissue, blood vessels, and nerves. The parathyroid cells become activated in response to decreased blood calcium concentration and undergo changes indicating increased parathyroid hormone secretion. Increased blood calcium concentration suppresses secretory activity. Usually, parathyroidectomy elicits hypocalcemia in most amphibians. Such operations have no effect in lower urodeles. Parathyroid hormone administration provokes hypercalcemia in most amphibians. The parathyroids of caecilians have not been studied in detail. The urodeles and anurans exhibit seasonal changes in the parathyroid glands. These changes may be initiated by environmental stimuli such as light, temperature, or alterations in blood calcium levels caused by natural hibernation. PMID:8580512

  18. Expression of complement 3 and complement 5 in newt limb and lens regeneration.

    PubMed

    Kimura, Yuko; Madhavan, Mayur; Call, Mindy K; Santiago, William; Tsonis, Panagiotis A; Lambris, John D; Del Rio-Tsonis, Katia

    2003-03-01

    Some urodele amphibians possess the capacity to regenerate their body parts, including the limbs and the lens of the eye. The molecular pathway(s) involved in urodele regeneration are largely unknown. We have previously suggested that complement may participate in limb regeneration in axolotls. To further define its role in the regenerative process, we have examined the pattern of distribution and spatiotemporal expression of two key components, C3 and C5, during limb and lens regeneration in the newt Notophthalmus viridescens. First, we have cloned newt cDNAs encoding C3 and C5 and have generated Abs specifically recognizing these molecules. Using these newt-specific probes, we have found by in situ hybridization and immunohistochemical analysis that these molecules are expressed during both limb and lens regeneration, but not in the normal limb and lens. The C3 and C5 proteins were expressed in a complementary fashion during limb regeneration, with C3 being expressed mainly in the blastema and C5 exclusively in the wound epithelium. Similarly, during the process of lens regeneration, C3 was detected in the iris and cornea, while C5 was present in the regenerating lens vesicle as well as the cornea. The distinct expression profile of complement proteins in regenerative tissues of the urodele lens and limb supports a nonimmunologic function of complement in tissue regeneration and constitutes the first systematic effort to dissect its involvement in regenerative processes of lower vertebrate species. PMID:12594255

  19. Purification and molecular cloning of aspartic proteinases from the stomach of adult Japanese fire belly newts, Cynops pyrrhogaster.

    PubMed

    Nagasawa, Tatsuki; Sano, Kaori; Kawaguchi, Mari; Kobayashi, Ken-Ichiro; Yasumasu, Shigeki; Inokuchi, Tomofumi

    2016-04-01

    Six aspartic proteinase precursors, a pro-cathepsin E (ProCatE) and five pepsinogens (Pgs), were purified from the stomach of adult newts (Cynops pyrrhogaster). On sodium dodecylsulfate-polyacrylamide gel electrophoresis, the molecular weights of the Pgs and active enzymes were 37-38 kDa and 31-34 kDa, respectively. The purified ProCatE was a dimer whose subunits were connected by a disulphide bond. cDNA cloning by polymerase chain reaction and subsequent phylogenetic analysis revealed that three of the purified Pgs were classified as PgA and the remaining two were classified as PgBC belonging to C-type Pg. Our results suggest that PgBC is one of the major constituents of acid protease in the urodele stomach. We hypothesize that PgBC is an amphibian-specific Pg that diverged during its evolutional lineage. PgBC was purified and characterized for the first time. The purified urodele pepsin A was completely inhibited by equal molar units of pepstatin A. Conversely, the urodele pepsin BC had low sensitivity to pepstatin A. In acidic condition, the activation rates of newt pepsin A and BC were similar to those of mammalian pepsin A and C1, respectively. Our results suggest that the enzymological characters that distinguish A- and C-type pepsins appear to be conserved in mammals and amphibians.

  20. Distribution of somatostatin-like immunoreactivity in the brain of the caecilian Dermophis mexicanus (Amphibia: Gymnophiona): comparative aspects in amphibians.

    PubMed

    López, Jesús M; Moreno, Nerea; Morona, Ruth; Muñoz, Margarita; Domínguez, Laura; González, Agustín

    2007-03-20

    The organization of the somatostatin-like-immunoreactive (SOM-ir) structures in the brain of anuran and urodele amphibians has been well documented, and significant differences were noted between the two amphibian orders. However, comparable data are not available for the third order of amphibians, the gymnophionans (caecilians). In the present study, we analyzed the anatomical distribution of SOM-ir cells and fibers in the brain of the gymnophionan Dermophis mexicanus. In addition, because of its known relationship with catecholamines in other vertebrates, double immunostaining for SOM and tyrosine hydroxylase was used to investigate this situation in the gymnophionan. Abundant SOM-ir cell bodies and fibers were widely distributed throughout the brain. In the telencephalon, pallial and subpallial cells were labeled, being most numerous in the medial pallium and amygdaloid region. Most of the SOM-ir neurons were found in the preoptic area and hypothalamus and showed a clear projection to the median eminence. Less conspicuously, SOM-ir structures were found in the thalamus, tectum, tegmentum, and reticular formation. Both SOM-ir cells and fibers were demonstrated in the spinal cord. The double-immunohistofluorescence technique revealed that catecholaminergic neurons and SOM-ir cells are largely intermingled in many brain regions but form totally separated populations. Many differences were found between the distribution of SOM-ir structures in Dermophis and that in anurans or urodeles. Some features were shared only with anurans, such as the abundant pallial SOM-ir cells, whereas others were common only to urodeles, such as the organization of the hypothalamohypophysial SOM-ir system. In addition, some characteristics were found only in Dermophis, such as the localization of the SOM-ir spinal cells and the lack of colocalization of catecholamines and SOM throughout the brain. Therefore, any conclusions concerning the SOM system in amphibians are incomplete without

  1. Distribution of somatostatin-like immunoreactivity in the brain of the caecilian Dermophis mexicanus (Amphibia: Gymnophiona): comparative aspects in amphibians.

    PubMed

    López, Jesús M; Moreno, Nerea; Morona, Ruth; Muñoz, Margarita; Domínguez, Laura; González, Agustín

    2007-03-20

    The organization of the somatostatin-like-immunoreactive (SOM-ir) structures in the brain of anuran and urodele amphibians has been well documented, and significant differences were noted between the two amphibian orders. However, comparable data are not available for the third order of amphibians, the gymnophionans (caecilians). In the present study, we analyzed the anatomical distribution of SOM-ir cells and fibers in the brain of the gymnophionan Dermophis mexicanus. In addition, because of its known relationship with catecholamines in other vertebrates, double immunostaining for SOM and tyrosine hydroxylase was used to investigate this situation in the gymnophionan. Abundant SOM-ir cell bodies and fibers were widely distributed throughout the brain. In the telencephalon, pallial and subpallial cells were labeled, being most numerous in the medial pallium and amygdaloid region. Most of the SOM-ir neurons were found in the preoptic area and hypothalamus and showed a clear projection to the median eminence. Less conspicuously, SOM-ir structures were found in the thalamus, tectum, tegmentum, and reticular formation. Both SOM-ir cells and fibers were demonstrated in the spinal cord. The double-immunohistofluorescence technique revealed that catecholaminergic neurons and SOM-ir cells are largely intermingled in many brain regions but form totally separated populations. Many differences were found between the distribution of SOM-ir structures in Dermophis and that in anurans or urodeles. Some features were shared only with anurans, such as the abundant pallial SOM-ir cells, whereas others were common only to urodeles, such as the organization of the hypothalamohypophysial SOM-ir system. In addition, some characteristics were found only in Dermophis, such as the localization of the SOM-ir spinal cells and the lack of colocalization of catecholamines and SOM throughout the brain. Therefore, any conclusions concerning the SOM system in amphibians are incomplete without

  2. Tales of regeneration in zebrafish.

    PubMed

    Poss, Kenneth D; Keating, Mark T; Nechiporuk, Alex

    2003-02-01

    Complex tissue regeneration involves exquisitely coordinated proliferation and patterning of adult cells after severe injury or amputation. Certain lower vertebrates such as urodele amphibians and teleost fish have a greater capacity for regeneration than mammals. However, little is known about molecular mechanisms of regeneration, and cellular mechanisms are incompletely defined. To address this deficiency, we and others have focused on the zebrafish model system. Several helpful tools and reagents are available for use with zebrafish, including the potential for genetic approaches to regeneration. Recent studies have shed light on the remarkable ability of zebrafish to regenerate fins. PMID:12557199

  3. Could we also be regenerative superheroes, like salamanders?

    PubMed

    Dall'Agnese, Alessandra; Puri, Pier Lorenzo

    2016-09-01

    Development of methods to reawaken the semi-dormant regenerative potential that lies within adult human tissues would hold promise for the restoration of diseased or damaged organs and tissues. While most of the regeneration potential is suppressed in many vertebrates, including humans, during adult life, urodele amphibians (salamanders) retain their regenerative ability throughout adulthood. Studies in newts and axolotls, two salamander models, have provided significant knowledge about adult limb regeneration. In this review, we present a comparative analysis of salamander and mammalian regeneration and discuss how evolutionarily altered properties of the regenerative environment can be exploited to restore full regenerative potential in the human body. PMID:27338874

  4. Could we also be regenerative superheroes, like salamanders?

    PubMed

    Dall'Agnese, Alessandra; Puri, Pier Lorenzo

    2016-09-01

    Development of methods to reawaken the semi-dormant regenerative potential that lies within adult human tissues would hold promise for the restoration of diseased or damaged organs and tissues. While most of the regeneration potential is suppressed in many vertebrates, including humans, during adult life, urodele amphibians (salamanders) retain their regenerative ability throughout adulthood. Studies in newts and axolotls, two salamander models, have provided significant knowledge about adult limb regeneration. In this review, we present a comparative analysis of salamander and mammalian regeneration and discuss how evolutionarily altered properties of the regenerative environment can be exploited to restore full regenerative potential in the human body.

  5. Cardiovascular physiology and diseases of amphibians.

    PubMed

    Heinz-Taheny, Kathleen M

    2009-01-01

    The class Amphibia includes three orders of amphibians: the anurans (frogs and toads), urodeles (salamanders, axolotls, and newts), and caecilians. The diversity of lifestyles across these three orders has accompanying differences in the cardiovascular anatomy and physiology allowing for adaptations to aquatic or terrestrial habitats, pulmonic or gill respiration, hibernation, and body elongation (in the caecilian). This article provides a review of amphibian cardiovascular anatomy and physiology with discussion of unique species adaptations. In addition, amphibians as cardiovascular animal models and commonly encountered natural diseases are covered.

  6. Ectoderm to mesoderm lineage switching during axolotl tail regeneration.

    PubMed

    Echeverri, Karen; Tanaka, Elly M

    2002-12-01

    Foreign environments may induce adult stem cells to switch lineages and populate multiple tissue types, but whether this mechanism is used for tissue repair remains uncertain. Urodele amphibians can regenerate fully functional, multitissue structures including the limb and tail. To determine whether lineage switching is an integral feature of this regeneration, we followed individual spinal cord cells live during tail regeneration in the axolotl. Spinal cord cells frequently migrate into surrounding tissue to form regenerating muscle and cartilage. Thus, in axolotls, cells switch lineage during a real example of regeneration. PMID:12471259

  7. The telencephalon of Ichthyophis paucisulcus (Amphibia, Gymnophiona (= Caecilia)). A quantitative cytoarchitectonic study.

    PubMed

    Zilles, K; Welsch, U; Schleicher, A

    1981-01-01

    A parcellation of the telencephalon of Ichthyophis paucisulcus (Amphibia, Gymnophiona (= Caecilia) has been performed with a quantitative cytoarchitectonic method. Ten different regions have been delineated and compared with earlier reports on telencephalic regions in anurans, urodeles and caecilians. The most striking difference between the brain of Ichthyophis and other amphibian brains is the high level of morphological differentiation of the accessory olfactory bulb in Ichthyophis and the large extension of this brain region. This feature may be a correlate of the advanced development and the particular structure of Jacobson's organ in this species. PMID:7336818

  8. Cardiovascular physiology and diseases of amphibians.

    PubMed

    Heinz-Taheny, Kathleen M

    2009-01-01

    The class Amphibia includes three orders of amphibians: the anurans (frogs and toads), urodeles (salamanders, axolotls, and newts), and caecilians. The diversity of lifestyles across these three orders has accompanying differences in the cardiovascular anatomy and physiology allowing for adaptations to aquatic or terrestrial habitats, pulmonic or gill respiration, hibernation, and body elongation (in the caecilian). This article provides a review of amphibian cardiovascular anatomy and physiology with discussion of unique species adaptations. In addition, amphibians as cardiovascular animal models and commonly encountered natural diseases are covered. PMID:19131029

  9. Spaceflight Effects on Hemopoiesis of Lower Vertebrates Flown on Foton-M2

    NASA Technical Reports Server (NTRS)

    Domaratskaya, E. I.; Payushina, O. V.; Butorina, M. N.; Nikonova, T. M.; Grigorian, E. N.; Mitashov, V. I.; Tairbekov, M. G.; Almeida, E.; Khrushchov, N. G.

    2006-01-01

    Intact and operated newts Pleumdeles waltl flown on Foton-M2 for 16 days were used to study the effects of spaceflight as well as tail amputation and lensectomy on their hemopoiesis. The flight did not produce noticeable changes in the peripheral blood of nonoperated newts. However, in operated animals, the number of lymphocytes increased whereas that of neutrophils decreased. There were no morphological differences in hemopoietic organs (liver and spleen) between flown non-operated and operated animals or their controls. However, in both non-operated and operated newts the liver weight and the number of hemopoietic cells in it increased. In contrast to nonoperated newts, space-flown mammals typically showed significant changes in blood cell counts. Experiments with BrdU incorporation revealed labeled cells in the hemopoietic area of the liver as well as in blood and spleen. This observation gives evidence that the BrdU label can be used to study proliferation of hemopoietic cells.

  10. The complete mitochondrial genome sequence of Wenxian Knobby Newt Tylototriton wenxianensis (Amphibia: Caudata).

    PubMed

    Han, Fuyao; Jiang, Ye; Zhang, Mingwang

    2016-07-01

    We newly sequenced the mitochondrial genome of Tylototriton wenxianensis. The total length of the T. wenxianensis mitogenome is 16 265 bp, with GenBank accession number KR733683. It consists of 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), and one control region (CR). Most of the genes are encoded on the H-strand, except for eight tRNA and ND6, which are encoded on the L-strand. Our mitogenomic phylogenetic tree showed that the relationships among the genera Tylototriton, Echinotriton, and Pleurodeles were well supported, and which is consistent with the previous molecular phylogeny. PMID:26114322

  11. Constraint and Adaptation in newt Toll-Like Receptor Genes

    PubMed Central

    Babik, Wiesław; Dudek, Katarzyna; Fijarczyk, Anna; Pabijan, Maciej; Stuglik, Michał; Szkotak, Rafał; Zieliński, Piotr

    2015-01-01

    Acute die-offs of amphibian populations worldwide have been linked to the emergence of viral and fungal diseases. Inter and intraspecific immunogenetic differences may influence the outcome of infection. Toll-like receptors (TLRs) are an essential component of innate immunity and also prime acquired defenses. We report the first comprehensive assessment of TLR gene variation for urodele amphibians. The Lissotriton newt TLR repertoire includes representatives of 13 families and is compositionally most similar to that of the anuran Xenopus. Both ancient and recent gene duplications have occurred in urodeles, bringing the total number of TLR genes to at least 21. Purifying selection has predominated the evolution of newt TLRs in both long (∼70 Ma) and medium (∼18 Ma) timescales. However, we find evidence for both purifying and positive selection acting on TLRs in two recently diverged (2–5 Ma) allopatric evolutionary lineages (Lissotriton montandoni and L. vulgaris graecus). Overall, both forms of selection have been stronger in L. v. graecus, while constraint on most TLR genes in L. montandoni appears relaxed. The differences in selection regimes are unlikely to be biased by demographic effects because these were controlled by means of a historical demographic model derived from an independent data set of 62 loci. We infer that TLR genes undergo distinct trajectories of adaptive evolution in closely related amphibian lineages, highlight the potential of TLRs to capture the signatures of different assemblages of pathogenic microorganisms, and suggest differences between lineages in the relative roles of innate and acquired immunity. PMID:25480684

  12. Comparative morphological features of the caecilian inner ear with comments on the evolution of amphibian auditory structures.

    PubMed

    White, J S; Baird, I L

    1982-01-01

    Comparative fine structural studies of amphibian auditory structures in urodeles have been extended to include examination of the papilliform end-organs (amphibian, neglecta and basilar) that variably occur in species selected from three families of caecilians (Gymnophiona). The species investigated were Ichthyophis kohtaoensis (Ichthyophiidae), Dermophis mexicanus (Caeciliidae) and Typhlonectes natans (Typhlonectidae). Ichthyophis is the only form to display all three papillae; both Dermophis and Typhlonectes lack a basilar papilla but all three species show both neglecta and amphibiorum. In these forms, the amphibian papilla contained the most sensory cells with ciliary bundles organized into two proximal and distal groups polarized toward a mid-line papillar axis. The papilla neglecta contained slightly fewer sensory cells and ciliary bundles oriented predominantly posteriorly. In Ichthyophis, the basilar papilla contained the lowest sensory cell counts of any papilla. Here, basilar sensory cilia were unidirectionally polarized away from the saccule. All papillae were overlain by an essentially similar, extracellular tectorial body. When compared to auditory end-organs in the urodeles and anurans, similar conditions in caecilians are suggestive of a common ancestry for the basilar and amphibian papillae; features of the amphibiorum indicate further that it may represent part of a "displaced" papilla neglecta.

  13. Purification and characterization of cholecystokinin from the skin of salamander Tylototriton verrucosus.

    PubMed

    Jiang, Wen-Bin; Hakim, Ma; Luo, Lei; Li, Bo-Wen; Yang, Shi-Long; Song, Yu-Zhu; Lai, Ren; Lu, Qiu-Min

    2015-05-18

    As a group of intestinal hormones and neurotransmitters, cholecystokinins (CCKs) regulate and affect pancreatic enzyme secretion, gastrointestinal motility, pain hypersensitivity, digestion and satiety, and generally contain a DYMGWMDFG sequence at the C-terminus. Many CCKs have been reported in mammals. However, only a few have been reported in amphibians, such as Hyla nigrovittata, Xenopus laevis, and Rana catesbeiana, with none reported in urodele amphibians like newts and salamanders. Here, a CCK called CCK-TV was identified and characterized from the skin of the salamander Tylototriton verrucosus. This CCK contained an amino acid sequence of DYMGWMDF-NH2 as seen in other CCKs. A cDNA encoding the CCK precursor containing 129 amino acid residues was cloned from the cDNA library of T. verrucosus skin. The CCK-TV had the potential to induce the contraction of smooth muscle strips isolated from porcine gallbladder, eliciting contraction at a concentration of 5.0 x 10⁻¹¹ mol/L and inducing maximal contraction at a concentration of 2.0 x 10⁻⁶ mol/L. The EC50 was 13.6 nmol/L. To the best of our knowledge, this is the first report to identify the presence of a CCK in an urodele amphibian. PMID:26018861

  14. FGF and BMP derived from dorsal root ganglia regulate blastema induction in limb regeneration in Ambystoma mexicanum.

    PubMed

    Satoh, Akira; Makanae, Aki; Nishimoto, Yurie; Mitogawa, Kazumasa

    2016-09-01

    Urodele amphibians have a remarkable organ regeneration ability that is regulated by neural inputs. The identification of these neural inputs has been a challenge. Recently, Fibroblast growth factor (Fgf) and Bone morphogenic protein (Bmp) were shown to substitute for nerve functions in limb and tail regeneration in urodele amphibians. However, direct evidence of Fgf and Bmp being secreted from nerve endings and regulating regeneration has not yet been shown. Thus, it remained uncertain whether they were the nerve factors responsible for successful limb regeneration. To gather experimental evidence, the technical difficulties involved in the usage of axolotls had to be overcome. We achieved this by modifying the electroporation method. When Fgf8-AcGFP or Bmp7-AcGFP was electroporated into the axolotl dorsal root ganglia (DRG), GFP signals were detectable in the regenerating limb region. This suggested that Fgf8 and Bmp7 synthesized in neural cells in the DRG were delivered to the limbs through the long axons. Further knockdown experiments with double-stranded RNA interference resulted in impaired limb regeneration ability. These results strongly suggest that Fgf and Bmp are the major neural inputs that control the organ regeneration ability.

  15. Amphibian chytridiomycosis: a review with focus on fungus-host interactions.

    PubMed

    Van Rooij, Pascale; Martel, An; Haesebrouck, Freddy; Pasmans, Frank

    2015-11-25

    Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host's skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.

  16. Stages in follicle cell/oocyte interface during vitellogenesis in caecilians Ichthyophis tricolor and Gegeneophis ramaswamii: a transmission electron-microscopic study.

    PubMed

    Beyo, Reston Saroja; Divya, Lekha; Smita, Mathew; Oommen, Oommen Vilaverthottathil; Akbarsha, Mohammed Abdulkader

    2008-02-01

    We describe the ultrastructural organization of the vitellogenic follicle stages in two caecilian species. Monthly samples of slices of ovary of Ichthyophis tricolor and Gegeneophis ramaswamii from the Western Ghats of India were subjected to transmission electron-microscopic analysis, with special attention to the follicle cell/oocyte interface. In order to maintain uniformity of the stages among the amphibians, all the stages in the caecilian follicles were assigned to stages I-VI, the vitellogenic and post-vitellogenic follicles being assigned to stages III-VI. Stage III commences with the appearance of precursors of vitelline envelope material in the perivitelline space. Stages IV and V have been assigned appropriate substages. During the transition of stage III to stage VI oocytes, a sequential change occurs in the manifestations of follicle cells, perivitelline space, vitelline envelope and oocyte cortex. The vitelline envelope becomes a tough coat through the tunnels of which the macrovilli pass to interdigitate between the microvilli. The oocyte surface forms pinocytic vesicles that develop into coated pits and, later, coated vesicles. Contributions of the oocyte cortex to the vitelline envelope and of the follicle cells to yolk material via synthesis within them are indicated. The follicle cell/oocyte interface of vitellogenic follicles of these two caecilians resembles that in anurans and urodeles, with certain features being unique to caecilians. Thus, this paper throws light on the possible relationships of caecilians to anurans and urodeles with special reference to ovarian follicles.

  17. Purification and characterization of cholecystokinin from the skin of salamander Tylototriton verrucosus.

    PubMed

    Jiang, Wen-Bin; Hakim, Ma; Luo, Lei; Li, Bo-Wen; Yang, Shi-Long; Song, Yu-Zhu; Lai, Ren; Lu, Qiu-Min

    2015-05-18

    As a group of intestinal hormones and neurotransmitters, cholecystokinins (CCKs) regulate and affect pancreatic enzyme secretion, gastrointestinal motility, pain hypersensitivity, digestion and satiety, and generally contain a DYMGWMDFG sequence at the C-terminus. Many CCKs have been reported in mammals. However, only a few have been reported in amphibians, such as Hyla nigrovittata, Xenopus laevis, and Rana catesbeiana, with none reported in urodele amphibians like newts and salamanders. Here, a CCK called CCK-TV was identified and characterized from the skin of the salamander Tylototriton verrucosus. This CCK contained an amino acid sequence of DYMGWMDF-NH2 as seen in other CCKs. A cDNA encoding the CCK precursor containing 129 amino acid residues was cloned from the cDNA library of T. verrucosus skin. The CCK-TV had the potential to induce the contraction of smooth muscle strips isolated from porcine gallbladder, eliciting contraction at a concentration of 5.0 x 10⁻¹¹ mol/L and inducing maximal contraction at a concentration of 2.0 x 10⁻⁶ mol/L. The EC50 was 13.6 nmol/L. To the best of our knowledge, this is the first report to identify the presence of a CCK in an urodele amphibian.

  18. FGF and BMP derived from dorsal root ganglia regulate blastema induction in limb regeneration in Ambystoma mexicanum.

    PubMed

    Satoh, Akira; Makanae, Aki; Nishimoto, Yurie; Mitogawa, Kazumasa

    2016-09-01

    Urodele amphibians have a remarkable organ regeneration ability that is regulated by neural inputs. The identification of these neural inputs has been a challenge. Recently, Fibroblast growth factor (Fgf) and Bone morphogenic protein (Bmp) were shown to substitute for nerve functions in limb and tail regeneration in urodele amphibians. However, direct evidence of Fgf and Bmp being secreted from nerve endings and regulating regeneration has not yet been shown. Thus, it remained uncertain whether they were the nerve factors responsible for successful limb regeneration. To gather experimental evidence, the technical difficulties involved in the usage of axolotls had to be overcome. We achieved this by modifying the electroporation method. When Fgf8-AcGFP or Bmp7-AcGFP was electroporated into the axolotl dorsal root ganglia (DRG), GFP signals were detectable in the regenerating limb region. This suggested that Fgf8 and Bmp7 synthesized in neural cells in the DRG were delivered to the limbs through the long axons. Further knockdown experiments with double-stranded RNA interference resulted in impaired limb regeneration ability. These results strongly suggest that Fgf and Bmp are the major neural inputs that control the organ regeneration ability. PMID:27432514

  19. Late Jurassic salamanders from northern China.

    PubMed

    Gao, K Q; Shubin, N H

    2001-03-29

    With ten extant families, salamanders (urodeles) are one of the three major groups of modern amphibians (lissamphibians). Extant salamanders are often used as a model system to assess fundamental issues of developmental, morphological and biogeographical evolution. Unfortunately, our understanding of these issues has been hampered by the paucity of fossil evidence available to assess the early history of the group. Here we report the discovery of an extraordinary sample of salamander fossils, some with rare soft-tissue impressions, from the Upper Jurassic of China. With over 500 articulated specimens, this assemblage documents the morphological diversity of early urodeles and includes larvae and adults of both neotenic and metamorphosed taxa. Phylogenetic analysis confirms that these salamanders are primitive, and reveals that all basal salamander clades have Asian distributions. This is compelling evidence for an Asian origin of Recent salamanders, as well as for an extensive and early radiation of several major lineages. These discoveries show that the evolution of salamanders has involved phylogenetic and ecological diversification around a body plan that has remained fundamentally stable for over 150 million years. PMID:11279493

  20. [On the classification of the cleavage patterns in amphibian embryos].

    PubMed

    Desnitskiĭ, A G

    2014-01-01

    This paper presents a brief survey and preliminary classification of embryonic cleavage patterns in the class Amphibia. We use published data on 41 anuran and 22 urodele species concerning the character of the third cleavage furrow (latitudinal or longitudinal) and the stage of transition from synchronous to asynchronous blastomere divisions in the animal hemisphere (4-8-celled stage, 8-16-celled stage or later). Based on this, four patterns of amphibian embryonic cleavage are recognized, and an attempt to elucidate the evolutionary relationships among these patterns is undertaken. The so-called "standard" cleavage pattern (the extensive series of synchronous blastomere divisions including latitudinal furrows of the third cleavage) with the typical model species Ambystoma mexicanum and Xenopus laevis seems to be derived and probably originated independently in the orders Anura and Caudata. The ancestral amphibian cleavage pattern seems to be represented by species with longitudinal furrows of the third cleavage and the loss ofsynchrony as early as the 8-celled stage (such as in primitive urodele species from the family Cryptobranchidae). PMID:25720261

  1. Late Jurassic salamanders from northern China.

    PubMed

    Gao, K Q; Shubin, N H

    2001-03-29

    With ten extant families, salamanders (urodeles) are one of the three major groups of modern amphibians (lissamphibians). Extant salamanders are often used as a model system to assess fundamental issues of developmental, morphological and biogeographical evolution. Unfortunately, our understanding of these issues has been hampered by the paucity of fossil evidence available to assess the early history of the group. Here we report the discovery of an extraordinary sample of salamander fossils, some with rare soft-tissue impressions, from the Upper Jurassic of China. With over 500 articulated specimens, this assemblage documents the morphological diversity of early urodeles and includes larvae and adults of both neotenic and metamorphosed taxa. Phylogenetic analysis confirms that these salamanders are primitive, and reveals that all basal salamander clades have Asian distributions. This is compelling evidence for an Asian origin of Recent salamanders, as well as for an extensive and early radiation of several major lineages. These discoveries show that the evolution of salamanders has involved phylogenetic and ecological diversification around a body plan that has remained fundamentally stable for over 150 million years.

  2. Amphibian chytridiomycosis: a review with focus on fungus-host interactions.

    PubMed

    Van Rooij, Pascale; Martel, An; Haesebrouck, Freddy; Pasmans, Frank

    2015-01-01

    Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host's skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit. PMID:26607488

  3. Stages in follicle cell/oocyte interface during vitellogenesis in caecilians Ichthyophis tricolor and Gegeneophis ramaswamii: a transmission electron-microscopic study.

    PubMed

    Beyo, Reston Saroja; Divya, Lekha; Smita, Mathew; Oommen, Oommen Vilaverthottathil; Akbarsha, Mohammed Abdulkader

    2008-02-01

    We describe the ultrastructural organization of the vitellogenic follicle stages in two caecilian species. Monthly samples of slices of ovary of Ichthyophis tricolor and Gegeneophis ramaswamii from the Western Ghats of India were subjected to transmission electron-microscopic analysis, with special attention to the follicle cell/oocyte interface. In order to maintain uniformity of the stages among the amphibians, all the stages in the caecilian follicles were assigned to stages I-VI, the vitellogenic and post-vitellogenic follicles being assigned to stages III-VI. Stage III commences with the appearance of precursors of vitelline envelope material in the perivitelline space. Stages IV and V have been assigned appropriate substages. During the transition of stage III to stage VI oocytes, a sequential change occurs in the manifestations of follicle cells, perivitelline space, vitelline envelope and oocyte cortex. The vitelline envelope becomes a tough coat through the tunnels of which the macrovilli pass to interdigitate between the microvilli. The oocyte surface forms pinocytic vesicles that develop into coated pits and, later, coated vesicles. Contributions of the oocyte cortex to the vitelline envelope and of the follicle cells to yolk material via synthesis within them are indicated. The follicle cell/oocyte interface of vitellogenic follicles of these two caecilians resembles that in anurans and urodeles, with certain features being unique to caecilians. Thus, this paper throws light on the possible relationships of caecilians to anurans and urodeles with special reference to ovarian follicles. PMID:18030494

  4. Comparative morphological features of the caecilian inner ear with comments on the evolution of amphibian auditory structures.

    PubMed

    White, J S; Baird, I L

    1982-01-01

    Comparative fine structural studies of amphibian auditory structures in urodeles have been extended to include examination of the papilliform end-organs (amphibian, neglecta and basilar) that variably occur in species selected from three families of caecilians (Gymnophiona). The species investigated were Ichthyophis kohtaoensis (Ichthyophiidae), Dermophis mexicanus (Caeciliidae) and Typhlonectes natans (Typhlonectidae). Ichthyophis is the only form to display all three papillae; both Dermophis and Typhlonectes lack a basilar papilla but all three species show both neglecta and amphibiorum. In these forms, the amphibian papilla contained the most sensory cells with ciliary bundles organized into two proximal and distal groups polarized toward a mid-line papillar axis. The papilla neglecta contained slightly fewer sensory cells and ciliary bundles oriented predominantly posteriorly. In Ichthyophis, the basilar papilla contained the lowest sensory cell counts of any papilla. Here, basilar sensory cilia were unidirectionally polarized away from the saccule. All papillae were overlain by an essentially similar, extracellular tectorial body. When compared to auditory end-organs in the urodeles and anurans, similar conditions in caecilians are suggestive of a common ancestry for the basilar and amphibian papillae; features of the amphibiorum indicate further that it may represent part of a "displaced" papilla neglecta. PMID:7185152

  5. Developmental plasticity of limb bone microstructural organization in Apateon: histological evidence of paedomorphic conditions in branchiosaurs.

    PubMed

    Sanchez, Sophie; de Ricqlès, Armand; Schoch, Rainer; Steyer, J Sébastien

    2010-01-01

    Apateon, a key genus among Branchiosauridae from the Carboniferous--Permian of Europe, is often considered closely related to salamanders on the basis of developmental similarities, anatomical features, and life history. The current work deals with recognition of heterochronies among three "time-averaged populations" of Apateon based on inference from histological features already studied in extant urodeles. Our study is performed on the long bones of 22 specimens of Apateon pedestris and Apateon caducus. Histological observations show that diaphyseal and epiphyseal ossification patterns of Apateon are similar to those of urodeles. From skeletochronological analysis, the identification of the age of sexual maturity allows us to discriminate juveniles from adults and to confirm the previous hypothesis of a paedomorphic condition based on anatomical data among these species. The current study also suggests a paedomorphic condition of each "population" at the histological level. This heterochrony may have been linked to peculiar ecological conditions such as hypoxic and fresh water environment. Functional reasons may also be invoked to explain differences of ossification between fore- and hindlimbs of the "populations" from Odernheim and Niederkirchen because paleoecological conditions are very different from one locality to another. This study illustrates the role that the acquisition of heterochronic features plays at the microevolutionary scale. PMID:20565542

  6. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts.

    PubMed

    Tanaka, Hibiki Vincent; Ng, Nathaniel Chuen Yin; Yang Yu, Zhan; Casco-Robles, Martin Miguel; Maruo, Fumiaki; Tsonis, Panagiotis A; Chiba, Chikafumi

    2016-01-01

    The newt, a urodele amphibian, is able to repeatedly regenerate its limbs throughout its lifespan, whereas other amphibians deteriorate or lose their ability to regenerate limbs after metamorphosis. It remains to be determined whether such an exceptional ability of the newt is either attributed to a strategy, which controls regeneration in larvae, or on a novel one invented by the newt after metamorphosis. Here we report that the newt switches the cellular mechanism for limb regeneration from a stem/progenitor-based mechanism (larval mode) to a dedifferentiation-based one (adult mode) as it transits beyond metamorphosis. We demonstrate that larval newts use stem/progenitor cells such as satellite cells for new muscle in a regenerated limb, whereas metamorphosed newts recruit muscle fibre cells in the stump for the same purpose. We conclude that the newt has evolved novel strategies to secure its regenerative ability of the limbs after metamorphosis. PMID:27026263

  7. [Amphibians in Spanish popular medicine and the pharmacopoeia of Pliny and Dioscorides].

    PubMed

    Vallejo, José Ramón; González, José Antonio

    2015-12-01

    This article presents a list of medical remedies based on the use of amphibians in Spanish popular medicine and in the classical world. It provides an overview of bibliography relative to folklore studies, ethnographic work and research on social or medical anthropology. It documents a total of 113 remedies and the use of nine species of amphibians, two from the family of caudates (urodeles) and seven anurans. Most of these remedies are based on the popular "preconception" about the influence of amphibians and healing by transmitting an illness to a living creature. The traditional use of certain threatened species is emphasized, an issue to bear in mind in decision-making in the field of conservation biology and environmental education.

  8. Acetazolamide does not disrupt limb regenerate morphogenesis in the salamander, Plethodon cinereus.

    PubMed

    Dinsmore, C E; Maren, T H

    1986-02-01

    Acetazolamide, a potent and highly specific inhibitor of carbonic anhydrase, is teratogenic in mammalian embryos and when administered during early limb development causes unique limb defects in a time- and dose-dependent manner. The regenerating urodele limb is often considered to be a good experimental analog of limb development and, if it employs the same mechanisms of tissue interactions during pattern formation, should be susceptible to teratogens which selectively disrupt developmental limb patterning. This study demonstrates that while carbonic anhydrase inhibition is toxic to the red-backed salamander, Plethodon cinereus, it does not have the same teratogenic effect on limb regeneration as seen in mammalian limb development. Several points are considered as to why the regenerating limb, at least in this salamander species, may not be suitable for studying this class of teratogen.

  9. Neuronal typology of Gallotia galloti optic tectum.

    PubMed

    Morales, M C; Monzón, M; Yanes, C; Diaz, C; Martin, A; Marrero, A

    1989-01-01

    The object of this work has been to show neuronal typology and stratification of the optic tectum in Gallotia galloti adult specimens so as to have a basic model for the neuronal genesis study. As methodology Nissl and Golgi-Stensaas technique were employed. Six strata have been identified that include 14 layers where the neuronal types can be included, poligonals, bipolar, monopolar and stellate types. The stratification of the optic tectum in the 14 layers is corroborated in Reptiles, a fact which is maintained in birds, and is reduced in amphibians, urodels, and fish here the reptil optic tectum presentes an extraordinary importance in the study of the auditive and visual vias in phylogeny. PMID:2471730

  10. Ranavirus infection in a group of wild-caught Lake Urmia newts Neurergus crocatus imported from Iraq into Germany.

    PubMed

    Stöhr, Anke C; Fleck, Jürgen; Mutschmann, Frank; Marschang, Rachel E

    2013-04-11

    High mortality, in association with anorexia and skin ulcerations, occurred in a group of wild-caught Lake Urmia newts Neurergus crocatus, imported from Iraq in 2011. Predominant findings in the pathological examinations consisted of systemic hemorrhages and ulcerative dermatitis. Ranavirus DNA was detected via PCR in 2 of 3 dead animals, and a part of the major capsid protein (MCP) gene was sequenced. The analyzed portion of the MCP gene was 99% identical to the corresponding portion of the frog virus 3 genome. This is the first description of a ranavirus in Lake Urmia newts and in wild-caught amphibians from Iraq, as well as the first description of ranavirus infection in a urodele from the Middle East.

  11. Metacercariae of Clinostomum complanatum (Trematoda: Digenea) in European newts Triturus carnifex and Lissotriton vulgaris (Caudata: Salamandridae).

    PubMed

    Caffara, M; Bruni, G; Paoletti, C; Gustinelli, A; Fioravanti, M L

    2014-09-01

    Adults of Clinostomum spp. are digenetic trematodes found in fish-eating birds, reptiles and occasionally mammals, including humans. Freshwater snails serve as first intermediate hosts and many fish species and amphibians as second intermediate hosts. To date, amphibian hosts of Clinostomum metacercariae include members of urodele and anuran families in North America, but no data are available on infections of European amphibians, including newts. In this study, we characterize infections of Clinostomum complanatum metacercariae in four smooth (Lissotriton vulgaris) and 18 Italian crested newts (Triturus carnifex) from an artificial pond located in a protected area in Tuscany, Italy. Parasites were surgically removed from the infected newts and identified both morphologically and using sequences of a mitochondrial gene, cytochrome c oxidase I, and the ribosomal markers, internal transcribed spacers. This is the first record of C. complanatum in European newts and, more generally, in amphibians in Europe.

  12. The role of stem cells in limb regeneration

    PubMed Central

    Zielins, Elizabeth R.; Ransom, Ryan C.; Leavitt, Tripp E.; Longaker, Michael T.; Wan, Derrick C.

    2016-01-01

    ABSTRACT Limb regeneration is a complex yet fascinating process observed to some extent in many animal species, though seen in its entirety in urodele amphibians. Accomplished by formation of a morphologically uniform intermediate, the blastema, scientists have long attempted to define the cellular constituents that enable regrowth of a functional appendage. Today, we know that the blastema consists of a variety of multipotent progenitor cells originating from a variety of tissues, and which contribute to limb tissue regeneration in a lineage-restricted manner. By continuing to dissect the role of stem cells in limb regeneration, we can hope to one day modulate the human response to limb amputation and facilitate regrowth of a working replacement. PMID:27008101

  13. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts.

    PubMed

    Tanaka, Hibiki Vincent; Ng, Nathaniel Chuen Yin; Yang Yu, Zhan; Casco-Robles, Martin Miguel; Maruo, Fumiaki; Tsonis, Panagiotis A; Chiba, Chikafumi

    2016-03-30

    The newt, a urodele amphibian, is able to repeatedly regenerate its limbs throughout its lifespan, whereas other amphibians deteriorate or lose their ability to regenerate limbs after metamorphosis. It remains to be determined whether such an exceptional ability of the newt is either attributed to a strategy, which controls regeneration in larvae, or on a novel one invented by the newt after metamorphosis. Here we report that the newt switches the cellular mechanism for limb regeneration from a stem/progenitor-based mechanism (larval mode) to a dedifferentiation-based one (adult mode) as it transits beyond metamorphosis. We demonstrate that larval newts use stem/progenitor cells such as satellite cells for new muscle in a regenerated limb, whereas metamorphosed newts recruit muscle fibre cells in the stump for the same purpose. We conclude that the newt has evolved novel strategies to secure its regenerative ability of the limbs after metamorphosis.

  14. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts

    PubMed Central

    Tanaka, Hibiki Vincent; Ng, Nathaniel Chuen Yin; Yang Yu, Zhan; Casco-Robles, Martin Miguel; Maruo, Fumiaki; Tsonis, Panagiotis A.; Chiba, Chikafumi

    2016-01-01

    The newt, a urodele amphibian, is able to repeatedly regenerate its limbs throughout its lifespan, whereas other amphibians deteriorate or lose their ability to regenerate limbs after metamorphosis. It remains to be determined whether such an exceptional ability of the newt is either attributed to a strategy, which controls regeneration in larvae, or on a novel one invented by the newt after metamorphosis. Here we report that the newt switches the cellular mechanism for limb regeneration from a stem/progenitor-based mechanism (larval mode) to a dedifferentiation-based one (adult mode) as it transits beyond metamorphosis. We demonstrate that larval newts use stem/progenitor cells such as satellite cells for new muscle in a regenerated limb, whereas metamorphosed newts recruit muscle fibre cells in the stump for the same purpose. We conclude that the newt has evolved novel strategies to secure its regenerative ability of the limbs after metamorphosis. PMID:27026263

  15. Earliest known crown-group salamanders.

    PubMed

    Gao, Ke-Qin; Shubin, Neil H

    2003-03-27

    Salamanders are a model system for studying the rates and patterns of the evolution of new anatomical structures. Recent discoveries of abundant Late Jurassic and Early Cretaceous salamanders are helping to address these issues. Here we report the discovery of well-preserved Middle Jurassic salamanders from China, which constitutes the earliest known record of crown-group urodeles (living salamanders and their closest relatives). The new specimens are from the volcanic deposits of the Jiulongshan Formation (Bathonian), Inner Mongolia, China, and represent basal members of the Cryptobranchidae, a family that includes the endangered Asian giant salamander (Andrias) and the North American hellbender (Cryptobranchus). These fossils document a Mesozoic record of the Cryptobranchidae, predating the previous record of the group by some 100 million years. This discovery provides evidence to support the hypothesis that the divergence of the Cryptobranchidae from the Hynobiidae had taken place in Asia before the Middle Jurassic period.

  16. Identification and expression of Helios, a member of the Ikaros family, in the Mexican axolotl: implications for the embryonic origin of lymphocyte progenitors.

    PubMed

    Durand, Charles; Kerfourn, Fabienne; Charlemagne, Jacques; Fellah, Julien S

    2002-06-01

    Transcription factors of the Ikaros gene family are critical for the differentiation of T and B lymphocytes from pluripotent hematopoietic stem cells. To study the first steps of lymphopoiesis in the Mexican axolotl, we have cloned the Helios ortholog in this urodele amphibian species. We demonstrated that the axolotl Helios contains a 144-bp deletion at the 5' end of the activation domain. Helios is expressed in both the thymus and spleen but not in the liver of the pre-adult axolotl. During ontogeny, Helios transcripts are detected from neurula stage, before the apparition of the first Ikaros transcripts and the colonization of lymphoid tissues. Interestingly, Helios and Ikaros mRNA are found predominantly in the ventral blood islands of late tail-bud embryos. These results suggest that in contrast to the Xenopus and amniote embryos where two sites of hematopoiesis have been characterized, the ventral blood islands could be the major site of hematopoiesis in the axolotl. PMID:12115658

  17. Regeneration inducers in limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Makanae, Aki

    2015-08-01

    Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species. PMID:26100345

  18. The role of stem cells in limb regeneration.

    PubMed

    Zielins, Elizabeth R; Ransom, Ryan C; Leavitt, Tripp E; Longaker, Michael T; Wan, Derrick C

    2016-01-01

    Limb regeneration is a complex yet fascinating process observed to some extent in many animal species, though seen in its entirety in urodele amphibians. Accomplished by formation of a morphologically uniform intermediate, the blastema, scientists have long attempted to define the cellular constituents that enable regrowth of a functional appendage. Today, we know that the blastema consists of a variety of multipotent progenitor cells originating from a variety of tissues, and which contribute to limb tissue regeneration in a lineage-restricted manner. By continuing to dissect the role of stem cells in limb regeneration, we can hope to one day modulate the human response to limb amputation and facilitate regrowth of a working replacement. PMID:27008101

  19. Earliest known crown-group salamanders.

    PubMed

    Gao, Ke-Qin; Shubin, Neil H

    2003-03-27

    Salamanders are a model system for studying the rates and patterns of the evolution of new anatomical structures. Recent discoveries of abundant Late Jurassic and Early Cretaceous salamanders are helping to address these issues. Here we report the discovery of well-preserved Middle Jurassic salamanders from China, which constitutes the earliest known record of crown-group urodeles (living salamanders and their closest relatives). The new specimens are from the volcanic deposits of the Jiulongshan Formation (Bathonian), Inner Mongolia, China, and represent basal members of the Cryptobranchidae, a family that includes the endangered Asian giant salamander (Andrias) and the North American hellbender (Cryptobranchus). These fossils document a Mesozoic record of the Cryptobranchidae, predating the previous record of the group by some 100 million years. This discovery provides evidence to support the hypothesis that the divergence of the Cryptobranchidae from the Hynobiidae had taken place in Asia before the Middle Jurassic period. PMID:12660782

  20. Human regeneration: An achievable goal or a dream?

    PubMed

    Ghosh, Sukla

    2016-03-01

    The main objective of regenerative medicine is to replenish cells or tissues or even to restore different body parts that are lost or damaged due to disease, injury and aging. Several avenues have been explored over many decades to address the fascinating problem of regeneration at the cell, tissue and organ levels. Here we discuss some of the primary approaches adopted by researchers in the context of enhancing the regenerating ability of mammals. Natural regeneration can occur in different animal species, and the underlying mechanism is highly relevant to regenerative medicine-based intervention. Significant progress has been achieved in understanding the endogenous regeneration in urodeles and fishes with the hope that they could help to reach our goal of designing future strategies for human regeneration. PMID:26949097

  1. Sperm morphology of salamandrids (Amphibia, Urodela): implications for phylogeny and fertilization biology.

    PubMed

    Selmi, M G; Brizzi, R; Bigliardi, E

    1997-12-01

    Mature spermatozoa belonging to four salamander species, Salamandrina terdigitata, Triturus alpestris, Triturus carnifex and Triturus vulgaris, have been investigated by electron microscopy. The sperm ultrastructure of these species was compared with that of previously examined urodeles (36 species and 20 genera) and with that of anurans and caecilians. Many phylogenetic considerations may be inferred as a consequence of comparative spermatology. Urodela appears to be a monophyletic order characterized by three sperm synapomorphies: the acrosomal barb, nuclear ridge and marginal filament. Cryptobranchoidea are confirmed to form a monophyletic suborder having two synapomorphic characters: absence of mitochondria in the tail, and cylindrical shape of the tail axial rod. Within the family Salamandridae, sperm morphology confirms the phylogenetic distance between Salamandrina and Triturus, as already pointed out on the basis of molecular and morphological characters. The very complex ultrastructure of spermatozoa confirms a previous opinion that internal fertilization is the ancestral condition of the Amphibia. PMID:18627832

  2. Facultative stem cells in liver and pancreas: fact and fancy.

    PubMed

    Yanger, Kilangsungla; Stanger, Ben Z

    2011-03-01

    Tissue turnover is a regular feature of higher eukaryotes, either as part of normal wear and tear (homeostasis) or in response to injury (regeneration). Cell replacement is achieved either through replication of existing cells or differentiation from a self-renewing pool of stem cells. The major distinction regards cellular potential, because stem cells by definition have a capacity to differentiate, while replication implies that cells adopt a single fate under physiologic conditions. A hybrid model, the facultative stem cell (FSC) model, posits that tissues contain cells that normally exhibit unipotency but have the capacity to function as stem cells upon injury. The FSC paradigm is well established in urodele amphibians, but the nature and role of FSCs in mammals is less defined. Here, we review the evidence for FSCs in two mammalian organs, the liver and the pancreas, and discuss alternative models that could account for regeneration in these organs.

  3. A Novel Cysteine Knot Protein for Enhancing Sperm Motility That Might Facilitate the Evolution of Internal Fertilization in Amphibians

    PubMed Central

    Yokoe, Misato; Takayama-Watanabe, Eriko; Saito, Yoko; Kutsuzawa, Megumi; Fujita, Kosuke; Ochi, Haruki; Nakauchi, Yuni; Watanabe, Akihiko

    2016-01-01

    Internal fertilization ensures successful reproduction of tetrapod vertebrates on land, although how this mode of reproduction evolved is unknown. Here, we identified a novel gene encoding sperm motility-initiating substance (SMIS), a key protein for the internal fertilization of the urodele Cynops pyrrhogaster by Edman degradation of an isolated protein and subsequent reverse transcription polymerase chain reaction. The SMIS gene encoded a 150 amino-acid sequence including the cysteine knot (CK) motif. No gene with substantial similarity to the SMIS was in the data bank of any model organisms. An active site of the SMIS was in the C-terminal region of the 2nd loop of CK motif. A synthetic peptide including the active site sequence bound to the midpiece and initiated/enhanced the circular motion of C. pyrrhogaster sperm, which allows penetration of the egg jelly specialized for the internal fertilization of this species. The synthetic peptide bound to whole sperm of Rhacophorus arboreus and enhanced the rotary motion, which is adapted to propel the sperm through egg coat matrix specialized for arboreal reproduction, while it bound to the tip of head and tail of Bufo japonicus sperm, and enhanced the vibratory motion, which is suited to sperm penetration through the egg jelly specialized for the reproduction of that species in freshwater. The polyclonal antibody against the active site of the SMIS specifically bound to egg coat matrix of R. arboreus. These findings suggest that diversification of amphibian reproductive modes accompanies the specialization of egg coat and the adaptation of sperm motility to penetrate the specialized egg coat, and SMIS acts as the sperm motility enhancer of anurans and urodeles that might facilitate to adaptively optimize sperm motility for allowing the establishment of internal fertilization. PMID:27579691

  4. Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry.

    PubMed

    López, Jesús M; Morona, Ruth; Moreno, Nerea; Domínguez, Laura; González, Agustín

    2007-09-25

    The existence of propriospinal cholinergic pathways and the origin of supraspinal cholinergic descending projections have been investigated in anuran and urodele amphibians. Retrograde tract tracing techniques with dextran amines injected in the spinal cord at different levels were combined with immunohistochemistry for choline acetyltransferase (ChAT). The analysis of the brachial, thoracic and lumbar spinal cord demonstrated that doubly labeled cells were present only close to the injection site. Thus, the participation of the spinal cholinergic cells in distant intersegmental connections is not present, or is very limited, in amphibians. In anurans, tracer applications to the brachial cord revealed cholinergic cells of origin of spinal projections located in four distinct brain nuclei. The most rostrally located cells were found bilaterally in the preoptic area, among the magnocellular cells. In the ipsilateral isthmic region, the laterodorsal tegmental nucleus also showed doubly labeled cells. Throughout the brainstem, abundant codistribution was observed but actual coexistence of the tracer and ChAT was only found in the nucleus of the solitary tract and the inferior reticular nucleus. In the case of the urodele, abundant codistribution between retrogradely labeled cells and ChAT-positive neurons in zones like the suprachiasmatic nucleus, the isthmic region and the rhombencephalic reticular formation was observed, but the only doubly labeled cells were the Mauthner neurons. The present results in amphibians contrast with previous data in mammals in which is striking the presence of a widespread intrinsic cholinergic innervation of the spinal cord and the virtual absence of cholinergic projections descending from the brainstem.

  5. Collection of gametes from live axolotl, Ambystoma mexicanum, and standardization of in vitro fertilization.

    PubMed

    Mansour, N; Lahnsteiner, F; Patzner, R A

    2011-01-15

    This study established the first protocol for collection of gametes from live axolotl, Ambystoma mexicanum, by gentle abdominal massage and in vitro fertilization. To stimulate spermiation and ovulation, human chorionic gonadotrophin (hCG) and Ovopel pellets, which are commercially used to stimulate spawning in fish, were tested. The hCG was more effective than Ovopel pellets and yielded a higher semen volume in the injected males and a shorter response time in the females. Collected semen by this method was already motile and fertile. Fertile eggs could be collected in 3-4 successive collection times after the female has started the typical spawning behaviour. The fertilization condition that yielded the highest hatching rate was mixing semen with eggs before the addition of a fertilization saline solution (20 mmol/l NaCl, 1 mmol/l KCl, 1 mmol/l Mg(2)SO(4), 1 mmol Ca(2)Cl, 3 mmol NaHCO(3), 10 mmol/l Tris, pH 8.5 - Osmolality = 65 mosmol/kg). When the pH of the fertilization solution was increased to ≥ 10, the hatching rate was significantly increased. The use of fertilization solutions with osmolalities of ≥ 150 and ≥ 182 were accompanied with a significant decrease in hatching rates and the appearance of deformed larvae, respectively. In conclusion, a reliable protocol for gamete collection from live axolotl is established as a laboratory model of in vitro fertilization for urodele amphibians. This protocol may be transferable to endangered urodeles.

  6. Immunocytochemical characterisation of ensheathing glia in the olfactory and vomeronasal systems of Ambystoma mexicanum (Caudata: Ambystomatidae).

    PubMed

    Lazzari, Maurizio; Bettini, Simone; Franceschini, Valeria

    2016-03-01

    The olfactory and vomeronasal systems of vertebrates are characterised by neurogenesis occurring throughout life. The regenerative ability of olfactory receptor neurons relies on specific glial cells, the olfactory and vomeronasal axon-surrounding cells. Numerous studies have examined mammalian olfactory ensheathing cells which are considered potential candidates for spinal cord injury repair using cell-based therapy. With regard to non-mammalian vertebrates, limited information is available on these glial cells in fish, and there is no information on them in terrestrial anamniotes, the amphibians. In the present research, we studied the immunocytochemical characteristics of axon-surrounding cells in Ambystoma mexicanum. Urodeles have relatively simple olfactory and vomeronasal systems, and represent a good model for studying ensheathing cells in extant representatives of basal tetrapods. Sections from the decalcified heads of A. mexicanum were immunocytochemically processed for the detection of proteins used in research on mammalian olfactory-ensheathing cells. S100, GFAP and NCAM were clearly observed. p75NTR, Gal-1 and PSA-NCAM showed weak staining. No vimentin immunopositivity was observed. The corresponding areas of the olfactory and vomeronasal pathways displayed the same staining characteristics, with the exception of Gal-1, p75NTR and PSA-NCAM in the mucosae. The degree of marker expression was not uniform throughout the sensory pathways. In contrast to fish, both olfactory and vomeronasal nerves displayed uniform staining intensity. This study showed that some markers for mammalian and fish-ensheathing glia are also applicable in urodeles. The olfactory systems of vertebrates show similarities, and also clear dissimilarities. Further investigations are required to ascertain the functional significance of these regional and interspecific differences.

  7. Homology of the cranial vault in birds: new insights based on embryonic fate-mapping and character analysis

    NASA Astrophysics Data System (ADS)

    Maddin, Hillary C.; Piekarski, Nadine; Sefton, Elizabeth M.; Hanken, James

    2016-08-01

    Bones of the cranial vault appear to be highly conserved among tetrapod vertebrates. Moreover, bones identified with the same name are assumed to be evolutionarily homologous. However, recent developmental studies reveal a key difference in the embryonic origin of cranial vault bones between representatives of two amniote lineages, mammals and birds, thereby challenging this view. In the mouse, the frontal is derived from cranial neural crest (CNC) but the parietal is derived from mesoderm, placing the CNC-mesoderm boundary at the suture between these bones. In the chicken, this boundary is located within the frontal. This difference and related data have led several recent authors to suggest that bones of the avian cranial vault are misidentified and should be renamed. To elucidate this apparent conflict, we fate-mapped CNC and mesoderm in axolotl to reveal the contributions of these two embryonic cell populations to the cranial vault in a urodele amphibian. The CNC-mesoderm boundary in axolotl is located between the frontal and parietal bones, as in the mouse but unlike the chicken. If, however, the avian frontal is regarded instead as a fused frontal and parietal (i.e. frontoparietal) and the parietal as a postparietal, then the cranial vault of birds becomes developmentally and topologically congruent with those of urodeles and mammals. This alternative hypothesis of cranial vault homology is also phylogenetically consistent with data from the tetrapod fossil record, where frontal, parietal and postparietal bones are present in stem lineages of all extant taxa, including birds. It further implies that a postparietal may be present in most non-avian archosaurs, but fused to the parietal or supraoccipital as in many extant mammals.

  8. ADAR-related activation of adenosine-to-inosine RNA editing during regeneration.

    PubMed

    Witman, Nevin M; Behm, Mikaela; Ohman, Marie; Morrison, Jamie I

    2013-08-15

    Urodele amphibians possess an amazing regenerative capacity that requires the activation of cellular plasticity in differentiated cells and progenitor/stem cells. Many aspects of regeneration in Urodele amphibians recapitulate development, making it unlikely that gene regulatory pathways which are essential for development are mutually exclusive from those necessary for regeneration. One such post-transcriptional gene regulatory pathway, which has been previously shown to be essential for functional metazoan development, is RNA editing. RNA editing catalyses discrete nucleotide changes in RNA transcripts, creating a molecular diversity that could create an enticing connection to the activated cellular plasticity found in newts during regeneration. To assess whether RNA editing occurs during regeneration, we demonstrated that GABRA3 and ADAR2 mRNA transcripts are edited in uninjured and regenerating tissues. Full open-reading frame sequences for ADAR1 and ADAR2, two enzymes responsible for adenosine-to-inosine RNA editing, were cloned from newt brain cDNA and exhibited a strong resemblance to ADAR (adenosine deaminase, RNA-specific) enzymes discovered in mammals. We demonstrated that ADAR1 and ADAR2 mRNA expression levels are differentially expressed during different phases of regeneration in multiple tissues, whereas protein expression levels remain unaltered. In addition, we have characterized a fascinating nucleocytoplasmic shuttling of ADAR1 in a variety of different cell types during regeneration, which could provide a mechanism for controlling RNA editing, without altering translational output of the editing enzyme. The link between RNA editing and regeneration provides further insights into how lower organisms, such as the newt, can activate essential molecular pathways via the discrete alteration of RNA sequences. PMID:23534823

  9. A Novel Cysteine Knot Protein for Enhancing Sperm Motility That Might Facilitate the Evolution of Internal Fertilization in Amphibians.

    PubMed

    Yokoe, Misato; Takayama-Watanabe, Eriko; Saito, Yoko; Kutsuzawa, Megumi; Fujita, Kosuke; Ochi, Haruki; Nakauchi, Yuni; Watanabe, Akihiko

    2016-01-01

    Internal fertilization ensures successful reproduction of tetrapod vertebrates on land, although how this mode of reproduction evolved is unknown. Here, we identified a novel gene encoding sperm motility-initiating substance (SMIS), a key protein for the internal fertilization of the urodele Cynops pyrrhogaster by Edman degradation of an isolated protein and subsequent reverse transcription polymerase chain reaction. The SMIS gene encoded a 150 amino-acid sequence including the cysteine knot (CK) motif. No gene with substantial similarity to the SMIS was in the data bank of any model organisms. An active site of the SMIS was in the C-terminal region of the 2nd loop of CK motif. A synthetic peptide including the active site sequence bound to the midpiece and initiated/enhanced the circular motion of C. pyrrhogaster sperm, which allows penetration of the egg jelly specialized for the internal fertilization of this species. The synthetic peptide bound to whole sperm of Rhacophorus arboreus and enhanced the rotary motion, which is adapted to propel the sperm through egg coat matrix specialized for arboreal reproduction, while it bound to the tip of head and tail of Bufo japonicus sperm, and enhanced the vibratory motion, which is suited to sperm penetration through the egg jelly specialized for the reproduction of that species in freshwater. The polyclonal antibody against the active site of the SMIS specifically bound to egg coat matrix of R. arboreus. These findings suggest that diversification of amphibian reproductive modes accompanies the specialization of egg coat and the adaptation of sperm motility to penetrate the specialized egg coat, and SMIS acts as the sperm motility enhancer of anurans and urodeles that might facilitate to adaptively optimize sperm motility for allowing the establishment of internal fertilization. PMID:27579691

  10. Immunocytochemical characterisation of ensheathing glia in the olfactory and vomeronasal systems of Ambystoma mexicanum (Caudata: Ambystomatidae).

    PubMed

    Lazzari, Maurizio; Bettini, Simone; Franceschini, Valeria

    2016-03-01

    The olfactory and vomeronasal systems of vertebrates are characterised by neurogenesis occurring throughout life. The regenerative ability of olfactory receptor neurons relies on specific glial cells, the olfactory and vomeronasal axon-surrounding cells. Numerous studies have examined mammalian olfactory ensheathing cells which are considered potential candidates for spinal cord injury repair using cell-based therapy. With regard to non-mammalian vertebrates, limited information is available on these glial cells in fish, and there is no information on them in terrestrial anamniotes, the amphibians. In the present research, we studied the immunocytochemical characteristics of axon-surrounding cells in Ambystoma mexicanum. Urodeles have relatively simple olfactory and vomeronasal systems, and represent a good model for studying ensheathing cells in extant representatives of basal tetrapods. Sections from the decalcified heads of A. mexicanum were immunocytochemically processed for the detection of proteins used in research on mammalian olfactory-ensheathing cells. S100, GFAP and NCAM were clearly observed. p75NTR, Gal-1 and PSA-NCAM showed weak staining. No vimentin immunopositivity was observed. The corresponding areas of the olfactory and vomeronasal pathways displayed the same staining characteristics, with the exception of Gal-1, p75NTR and PSA-NCAM in the mucosae. The degree of marker expression was not uniform throughout the sensory pathways. In contrast to fish, both olfactory and vomeronasal nerves displayed uniform staining intensity. This study showed that some markers for mammalian and fish-ensheathing glia are also applicable in urodeles. The olfactory systems of vertebrates show similarities, and also clear dissimilarities. Further investigations are required to ascertain the functional significance of these regional and interspecific differences. PMID:25433448

  11. Regulation of the Wilms' tumor gene during spermatogenesis.

    PubMed

    Del Rio-Tsonis, K; Covarrubias, L; Kent, J; Hastie, N D; Tsonis, P A

    1996-12-01

    Spermatogenesis is the process by which male germ cells develop and mature, a pathway that includes a transition from a mitotic to a meiotic cell cycle. Throughout this pathway, the germ cells are in close contact with their nurturing cells, the Sertoli cells. Sertoli-germ cell interactions are difficult to study in mammals due to the complex cellular organization of their seminiferous tubules. The urodele amphibian testis, however, provides a unique system to study the process of germ cell maturation; it is organized in a gradient-like cystic structure, in which synchronized germ cells can be found within the same cyst. The Wilms' tumor gene (WT1) has been shown to be an essential gene for the formation of the gonads in mice, and it has been implicated in a variety of differentiation processes. The WT1 gene is thus a good candidate for the study of the differentiation processes involved in the maturation of the male germ cells. By using a probe for the urodele WT1 homologue in in situ hybridization studies, as well as an antibody against the WT1 protein in immunohistochemistry studies, we determined that WT1 gene expression in Sertoli cells depends on the stage of maturation of the associated germ cell. Thus, WT1 mRNA was detected only in Sertoli cells of cysts that contained early spermatogonia. No mRNA expression was observed in cysts containing late spermatogonia, germ cells undergoing meiosis, or germ cells going through spermiogenesis. Immunohistochemistry studies confirmed that WT1 protein was strongly expressed in Sertoli cells associated with early spermatogonia but not in late ones. The protein was also found in Sertoli cells associated with germ cells that undergo the subsequent stages of meiosis and spermiogenesis. These results suggest that WT1 could be involved in the regulation by Sertoli cells of germ cell maturation and possibly in the progression from a mitotic to a meiotic cell cycle. PMID:8950512

  12. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls.

    PubMed

    Lévesque, Mathieu; Gatien, Samuel; Finnson, Kenneth; Desmeules, Sophie; Villiard, Eric; Pilote, Mireille; Philip, Anie; Roy, Stéphane

    2007-01-01

    Axolotls (urodele amphibians) have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-beta). In the present study, the full length sequence of the axolotl TGF-beta1 cDNA was isolated. The spatio-temporal expression pattern of TGF-beta1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-beta signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-beta type I receptor, SB-431542, we show that TGF-beta signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-beta signaling are down-regulated. These data directly implicate TGF-beta signaling in the

  13. Insect infestation of stored oats in Florida and field evaluation of a device for counting insects electronically.

    PubMed

    Arbogast, R T; Kendra, P E; Weaver, D K; Shuman, D

    2000-06-01

    Automated methods of monitoring stored grain for insect pests will contribute to early detection and aid in management of pest problems. An insect population infesting stored oats at a seed processing plant in north-central Florida was studied to test a device for counting insects electronically (Electronic Grain Probe Insect Counter, EGPIC), and to characterize the storage environment. The device counts insects as they fall through an infrared beam incorporated into a modified grain probe (pitfall) trap and transmits the counts to a computer for accumulation and storage. Eight traps were inserted into the surface of the grain bulk, and the insects trapped were identified and counted manually at weekly intervals. Grain temperature and moisture content also were recorded for each trap location. Manual and automatic counts were compared to estimate error in the EGPIC system. Both over- and undercounting occurred, and errors ranged from -79.4 to 82.4%. The mean absolute value of error (+/- SE) was 31.7% (+/- 4.3). At least 31 species, or higher taxa, were detected, but the psocid Liposcelis entomophila (Enderlein) and the foreign grain beetle, Ahasverus advena (Waltl), accounted for 88% of the captured insects. Species diversity, phenology, and spatial distribution are presented, as well as temporal and spatial distribution of grain temperature and moisture content. The data sets generated will find application in population modeling and development of integrated pest management systems for stored grain.

  14. The complete mitochondrial genome sequence of Tylototriton taliangensis (Amphibia: Caudata).

    PubMed

    Jiang, Ye; Li, Ziyuan; Liu, Jiabin; Li, Yan; Ni, Qingyong; Yao, Yongfang; Xu, Huailiang; Li, Ying; Zhang, Mingwang

    2016-07-01

    Tylototriton taliangensis was listed as a Near Threatened amphibian in IUCN red list. In this study, we sequenced the complete mitochondrial (mt) genome of this species (GenBank: KP979646) and found it contains 16,265 base pairs, which encode 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA) and 1 control region (CR). We also found that almost all PCGs and tRNA genes are located on the H-strand, except for ND6 subunit gene and eight tRNA genes, which were distributed on the L-strand. The PCGs used "ATG" and "GTG" as the start codon, while used four types of stop codons. Almost all tRNA genes were folded into typical cloverleaf secondary structures. The L-strand replication origin (OL) and a non-coding region were also found. The new mitogenomic phylogenetic tree confirms the reciprocally monophyly of the genus Tylototriton, Echinotriton and Pleurodeles with high bootstrap value. The present study will provide information for future studies on the conservation genetics and phylogeny of this species and its relatives. PMID:26024138

  15. The complete mitochondrial genome sequence of Red knobby newt Tylototriton shanjing (Amphibia: Caudata).

    PubMed

    Jiang, Ye; Yang, Mingxian; Han, Fuyao; Li, Yan; Ni, Qingyong; Yao, Yongfang; Xu, Huailiang; Li, Ying; Zhang, Mingwang

    2016-07-01

    The complete mitogenome of Tylototriton shanjing is 16,661 bp in length with GenBank accession number KR154461, which contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA), and 1 control region (CR). The overall base composition of this mitogenome is biased toward AT content at 59.45%. Most of the PCGs and tRNA genes are located on the H-strand, except for ND6 subunit gene and eight tRNA genes, which were distributed on the L-strand. The PCGs used "ATG" and "GTG" as the start codons, while "TAA", "TAG", "AGA", and "T-" are used as stop codons. Almost all tRNA genes were folded into typical cloverleaf secondary structures. The T. shanjing genome had two tandem repeat sequences in the cob-noncoding region. The mitogenomic phylogenetic analyses shows that the genera Echinotriton and Tylototriton were clustered into a strong supported monophyletic clade, which is a sister clade to the genus Pleurodeles, this confirms the previous phylogenetic results. PMID:26065853

  16. Flexibility of the axial central pattern generator network for locomotion in the salamander.

    PubMed

    Ryczko, D; Knüsel, J; Crespi, A; Lamarque, S; Mathou, A; Ijspeert, A J; Cabelguen, J M

    2015-03-15

    In tetrapods, limb and axial movements are coordinated during locomotion. It is well established that inter- and intralimb coordination show considerable variations during ongoing locomotion. Much less is known about the flexibility of the axial musculoskeletal system during locomotion and the neural mechanisms involved. Here we examined this issue in the salamander Pleurodeles waltlii, which is capable of locomotion in both aquatic and terrestrial environments. Kinematics of the trunk and electromyograms from the mid-trunk epaxial myotomes were recorded during four locomotor behaviors in freely moving animals. A similar approach was used during rhythmic struggling movements since this would give some insight into the flexibility of the axial motor system. Our results show that each of the forms of locomotion and the struggling behavior is characterized by a distinct combination of mid-trunk motor patterns and cycle durations. Using in vitro electrophysiological recordings in isolated spinal cords, we observed that the spinal networks activated with bath-applied N-methyl-d-aspartate could generate these axial motor patterns. In these isolated spinal cord preparations, the limb motor nerve activities were coordinated with each mid-trunk motor pattern. Furthermore, isolated mid-trunk spinal cords and hemicords could generate the mid-trunk motor patterns. This indicates that each side of the cord comprises a network able to generate coordinated axial motor activity. The roles of descending and sensory inputs in the behavior-related changes in axial motor coordination are discussed.

  17. Experiment aboard Russian satellite "Foton M2" in 2005: new approaches for study on stimulating effect of space flight on cell proliferation and regeneration in Urodela

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Almeida, E.; Domaratskaya, E.; Tairbekov, M.; Aleinikova, K.; Mitashov, V.

    A study on space flight effect upon processes of regeneration is due to the necessity to know their characteristics in animals and human exposed to space and earth conditions shortly after flight Several experiments on the newts performed earlier aboard Russian biosatellites showed that the rate of organ and tissue regeneration in space was greater than that on the ground Space flight effect stimulating regeneration was enduring and apparent not only just after flight but long time later as well This observation found support in studies simulated physiological weightlessness by means of fast-rotating clinostat It was shown also that the higher rate of regeneration was associated with enhanced cell proliferation For instance we found that the number of cells in S-phase in regenerating tissues was significantly greater in space-flown animals than in the ground controls However it was unclear whether cell proliferation stimulation was induced by micro- g per se or by conditions of hyper- g during launching and re-adaptation on the earth Molecular mechanisms underlying the change also remained obscure These issues were addressed by the joint Russian-USA experiment Regeneration performed on Foton-M2 in 2005 In 16- day flight we used two well-known models of regeneration lens regeneration after lensectomy and tail regeneration after amputation in adult newts Pleurodeles walt Urodela In order to evaluate cell proliferative activity in time limits of microgravity influence the original method for in-flight delivering DNA precursor BrdU

  18. From lamprey to salamander: an exploratory modeling study on the architecture of the spinal locomotor networks in the salamander.

    PubMed

    Bicanski, Andrej; Ryczko, Dimitri; Cabelguen, Jean-Marie; Ijspeert, Auke Jan

    2013-10-01

    The evolutionary transition from water to land required new locomotor modes and corresponding adjustments of the spinal "central pattern generators" for locomotion. Salamanders resemble the first terrestrial tetrapods and represent a key animal for the study of these changes. Based on recent physiological data from salamanders, and previous work on the swimming, limbless lamprey, we present a model of the basic oscillatory network in the salamander spinal cord, the spinal segment. Model neurons are of the Hodgkin-Huxley type. Spinal hemisegments contain sparsely connected excitatory and inhibitory neuron populations, and are coupled to a contralateral hemisegment. The model yields a large range of experimental findings, especially the NMDA-induced oscillations observed in isolated axial hemisegments and segments of the salamander Pleurodeles waltlii. The model reproduces most of the effects of the blockade of AMPA synapses, glycinergic synapses, calcium-activated potassium current, persistent sodium current, and [Formula: see text]-current. Driving segments with a population of brainstem neurons yields fast oscillations in the in vivo swimming frequency range. A minimal modification to the conductances involved in burst-termination yields the slower stepping frequency range. Slow oscillators can impose their frequency on fast oscillators, as is likely the case during gait transitions from swimming to stepping. Our study shows that a lamprey-like network can potentially serve as a building block of axial and limb oscillators for swimming and stepping in salamanders.

  19. The Apoptotic Function Analysis of p53, Apaf1, Caspase3 and Caspase7 during the Spermatogenesis of the Chinese Fire-Bellied Newt Cynops orientalis

    PubMed Central

    Wang, Li-Ya; Hu, Yan-Jun; Tan, Fu-Qing; Zhou, Hong; Shao, Jian-Zhong; Yang, Wan-Xi

    2012-01-01

    Background Spontaneous and stress-induced germ cell apoptosis during spermatogenesis of multicellular organisms have been investigated broadly in mammals. Spermatogenetic process in urodele amphibians was essentially like that in mammals in spite of morphological differences; however, the mechanism of germ cell apoptosis in urodele amphibians remains unknown. The Chinese fire-belly newt, Cynops orientalis, was an excellent organism for studying germ cell apoptosis due to its sensitiveness to temperature, strong endurance of starvation, and sensitive skin to heavy metal exposure. Methodology/Principal Findings TUNEL result showed that spontaneous germ cell apoptosis took place in normal newt, and severe stress-induced apoptosis occurred to spermatids and sperm in response to heat shock (40°C 2 h), cold exposure(4°C 12 h), cadmium exposure(Cd 36 h), and starvation stress. Quantitative reverse transcription polymerase chain reactions (qRT-PCR) showed that gene expression of Caspase3 or Caspase7 was obviously elevated after stress treatment. Apaf1 was not altered at its gene expression level, and p53 was significantly decreased after various stress treatment. Caspase assay demonstrated that Caspase-3, -8,-9 enzyme activities in newt testis were significantly elevated after heat shock (40°C 2 h), cold exposure(4°C 12 h), and cadmium exposure(Cd 36 h), while Caspase3 and Caspase8 activities were increased with Caspase9 significantly decreased after starvation treatment. Conclusions/Significance Severe germ cell apoptosis triggered by heat shock, cold exposure, and cadmium exposure was Caspase3 dependent, which probably involved both extrinsic and intrinsic pathways. Apaf1 may be involved in this process without elevating its gene expression. But starvation-induced germ cell apoptosis was likely mainly through extrinsic pathway. p53 was probably not responsible for stress-induced germ cell apoptosis in newt testis. The intriguing high occurrence of spermatid and sperm

  20. Bis-(5'-guanosyl) tetraphosphatase in rat tissues.

    PubMed Central

    Cameselle, J C; Costas, M J; Sillero, M A; Sillero, A

    1982-01-01

    The occurrence and distribution of bis-(5'-guanosyl) tetraphosphatase activity towards dinucleoside tetraphosphates between the 27 000 g supernatant and sedimented fraction were studied in liver, kidney, brain, muscle and intestinal mucosa from rat. The p1p4-bis-(5'-guanosyl) tetraphosphate-hydrolysing activities found in total homogenates were 0.77, 1.44, 0.39, 0.36 and 2.14 units (mumol/min)/g respectively. The activities found in the 27000 g-sedimented fractions were 74, 49, 11, 4 and 96% of those present in the homogenates respectively. The properties of the soluble enzymes were investigated. All of them have low Km values for p1p4-bis-(5'-guanosyl) tetraphosphate (from 2 to 50 microM), are competitively inhibited by guanosine 5'-tetraphosphate with K1 values from 10 to 160 nM, have molecular weights of about 21 000, require Mg2+ or Mn2+ and are inhibited by Ca2+. These properties show that bis-(5'-guanosyl) tetraphosphatase (EC 3.6.1.17), an enzyme previously characterized in Artemia salina and rat liver [Warner & Finamore (1965) Biochemistry 4, 1568-1575; Vallejo, Sillero & Sillero (1974) Biochim, Biophys. Acta 358, 117-125; Lobatón, Vallejo, Sillero & Sillero (1975) Eur. J. Biochem. 50, 495-501], is present in all the rat tissues examined. The inhibition of the enzyme by Ca2+ could be related to the effect of p1p4-bis-(5'-adenosyl) tetraphosphate as a trigger of DNA synthesis [Grummt, Waltl, Jantzen, Hamprecht, Huebscher & Kuenzle (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 6081-6085]. PMID:6282267

  1. Fictive rhythmic motor patterns produced by the tail spinal cord in salamanders.

    PubMed

    Charrier, V; Cabelguen, J-M

    2013-01-01

    Most investigations into the role of the body axis in vertebrate locomotion have focused on the trunk, although in most tetrapods, the tail also plays an active role. In salamanders, the tail contributes to propulsion during swimming and to dynamic balance and maneuverability during terrestrial locomotion. The aim of the present study was to obtain information concerning the neural mechanisms that produce tail muscle contractions during locomotion in the salamander Pleurodeles waltlii. We recorded the ventral root activities in in vitro spinal cord preparations in which locomotor-like activity was induced via bath application of N-methyl-d-aspartate (20μM) and d-serine (10μM). Recordings showed that the tail spinal cord is capable of producing propagated waves of motor activity that alternate between the left and right sides. Lesion experiments further revealed that the tail rhythmogenic network is composed of a double chain of identical hemisegmental oscillators. Finally, using spinal cord preparations bathed in a chamber partitioned into two pools, we revealed efficient short-distance coupling between the trunk and tail networks. Together, our results demonstrate the existence of a pattern generator for rhythmic tail movements in the salamander and show that the global architecture of the tail network is similar to that previously proposed for the mid-trunk locomotor network in the salamander. Our findings further support the view that salamanders can control their trunk and tail independently during stepping movements. The relevance of our results in relation to the generation of tail muscle contractions in freely moving salamanders is discussed.

  2. A molecular assessment of phylogenetic relationships and lineage accumulation rates within the family Salamandridae (Amphibia, Caudata).

    PubMed

    Weisrock, David W; Papenfuss, Theodore J; Macey, J Robert; Litvinchuk, Spartak N; Polymeni, Rosa; Ugurtas, Ismail H; Zhao, Ermi; Jowkar, Houman; Larson, Allan

    2006-11-01

    We examine phylogenetic relationships among salamanders of the family Salamandridae using approximately 2700 bases of new mtDNA sequence data (the tRNALeu, ND1, tRNAIle, tRNAGln, tRNAMet, ND2, tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr, and COI genes and the origin for light-strand replication) collected from 96 individuals representing 61 of the 66 recognized salamandrid species and outgroups. Phylogenetic analyses using maximum parsimony and Bayesian analysis are performed on the new data alone and combined with previously reported sequences from other parts of the mitochondrial genome. The basal phylogenetic split is a polytomy of lineages ancestral to (1) the Italian newt Salamandrina terdigitata, (2) a strongly supported clade comprising the "true" salamanders (genera Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), and (3) a strongly supported clade comprising all newts except S. terdigitata. Strongly supported clades within the true salamanders include monophyly of each genus and grouping Chioglossa and Mertensiella as the sister taxon to a clade comprising Lyciasalamandra and Salamandra. Among newts, genera Echinotriton, Pleurodeles, and Tylototriton form a strongly supported clade whose sister taxon comprises the genera Calotriton, Cynops, Euproctus, Neurergus, Notophthalmus, Pachytriton, Paramesotriton, Taricha, and Triturus. Our results strongly support monophyly of all polytypic newt genera except Paramesotriton and Triturus, which appear paraphyletic, and Calotriton, for which only one of the two species is sampled. Other well-supported clades within newts include (1) Asian genera Cynops, Pachytriton, and Paramesotriton, (2) North American genera Notophthalmus and Taricha, (3) the Triturus vulgaris species group, and (4) the Triturus cristatus species group; some additional groupings appear strong in Bayesian but not parsimony analyses. Rates of lineage accumulation through time are evaluated using this nearly comprehensive sampling of

  3. Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes.

    PubMed

    Zhang, Peng; Papenfuss, Theodore J; Wake, Marvalee H; Qu, Lianghu; Wake, David B

    2008-11-01

    Phylogenetic relationships of members of the salamander family Salamandridae were examined using complete mitochondrial genomes collected from 42 species representing all 20 salamandrid genera and five outgroup taxa. Weighted maximum parsimony, partitioned maximum likelihood, and partitioned Bayesian approaches all produce an identical, well-resolved phylogeny; most branches are strongly supported with greater than 90% bootstrap values and 1.0 Bayesian posterior probabilities. Our results support recent taxonomic changes in finding the traditional genera Mertensiella, Euproctus, and Triturus to be non-monophyletic species assemblages. We successfully resolved the current polytomy at the base of the salamandrid tree: the Italian newt genus Salamandrina is sister to all remaining salamandrids. Beyond Salamandrina, a clade comprising all remaining newts is separated from a clade containing the true salamanders. Among these newts, the branching orders of well-supported clades are: primitive newts (Echinotriton, Pleurodeles, and Tylototriton), New World newts (Notophthalmus-Taricha), Corsica-Sardinia newts (Euproctus), and modern European newts (Calotriton, Lissotriton, Mesotriton, Neurergus, Ommatotriton, and Triturus) plus modern Asian newts (Cynops, Pachytriton, and Paramesotriton).Two alternative sets of calibration points and two Bayesian dating methods (BEAST and MultiDivTime) were used to estimate timescales for salamandrid evolution. The estimation difference by dating methods is slight and we propose two sets of timescales based on different calibration choices. The two timescales suggest that the initial diversification of extant salamandrids took place in Europe about 97 or 69Ma. North American salamandrids were derived from their European ancestors by dispersal through North Atlantic Land Bridges in the Late Cretaceous ( approximately 69Ma) or Middle Eocene ( approximately 43Ma). Ancestors of Asian salamandrids most probably dispersed to the eastern Asia

  4. A Bayesian approach on molecules and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts.

    PubMed

    Steinfartz, Sebastian; Vicario, Saverio; Arntzen, J W; Caccone, Adalgisa

    2007-03-15

    The monophyly of European newts of the genus Triturus within the family Salamandridae has for decades rested on presumably homologous behavioral and morphological characters. Molecular data challenge this hypothesis, but the phylogenetic position of Triturus within the Salamandridae has not yet been convincingly resolved. We addressed this issue and the temporal divergence of Triturus within the Salamandridae with novel Bayesian approaches applied to DNA sequence data from three mitochondrial genes (12S, 16S and cytb). We included 38 salamandrid species comprising all 13 recognized species of Triturus and 16 out of 17 salamandrid genera. A clade comprising all the "Newts" can be separated from the "True Salamanders" and Salamandrina clades. Within the "Newts" well-supported clades are: Tylototriton-Pleurodeles, the "New World Newts" (Notophthalmus-Taricha), and the "Modern Eurasian Newts" (Cynops, Pachytriton, Paramesotriton=together the "Modern Asian Newts", Calotriton, Euproctus, Neurergus and Triturus species). We found that Triturus is a non-monophyletic species assemblage, which includes four groups that are themselves monophyletic: (i) the "Large-Bodied Triturus" (six species), (ii) the "Small-Bodied Triturus" (five species), (iii) T. alpestris and (iv) T. vittatus. We estimated that the last common ancestor of Triturus existed around 64 million years ago (mya) while the root of the Salamandridae dates back to 95 mya. This was estimated using a fossil-based molecular dating approach and an explicit framework to select calibration points that least underestimated their corresponding nodes. Using the molecular phylogeny we mapped the evolution of life history and courtship traits in Triturus and found that several Triturus-specific courtship traits evolved independently.

  5. [The comparative characteristics of crystalline lens and limb regeneration in newts operated on before and after the completion of an orbital space flight].

    PubMed

    Tuchkova, S Ia; Brushlinskaia, N V; Grigorian, E N; Mitashov, V I

    1994-01-01

    It has been already established that a tendency towards synchronization and acceleration of the forelimb and lens regeneration is observed in Pleurodeles waltlii under the effect of space flight factors. Here we present the results obtained after 16-day space flight of two groups of newts. In animals of group I forelimbs were amputated and lenses were removed 14 and 7 days before the space flight, respectively. Intact animals of group II were operated on the day of the sputnik landing. Regenerates of the flight and corresponding control animals were fixed at the same time after the operation. For evaluation of the regeneration rate morphological criteria were used: morphological stages of regeneration were compared in the experiment and the control. For quantitative assay of the regeneration rate we determined the index of nuclei labelled with 3H-thymidine in the blastema and lens rudiment cells and used morphometry of the lens regenerates. Acceleration of forelimb and lens regeneration was observed in both groups of animals. In group II more than two-fold increase of the index of labelled nuclei was found in the blastema cells at the comparable stages of development. The size of lens regenerates in flight groups I and II exceeded reliably those in the control animals. The results obtained suggest a prolonged effect of the space flight factors on forelimb and lens regeneration. Under the conditions of space flight the lens regenerates reached more advanced stages of regeneration, as compared with the control animals operated after the space flight. These results also suggest acceleration of regeneration in lower vertebrates. PMID:7858470

  6. Testicular structure and germ cells morphology in salamanders

    PubMed Central

    Uribe, Mari Carmen; Mejía-Roa, Víctor

    2014-01-01

    Testes of salamanders or urodeles are paired elongated organs that are attached to the dorsal wall of the body by a mesorchium. The testes are composed of one or several lobes. Each lobe is morphologically and functionally a similar testicular unit. The lobes of the testis are joined by cords covered by a single peritoneal epithelium and subjacent connective tissue. The cords contain spermatogonia. Spermatogonia associate with Sertoli cells to form spermatocysts or cysts. The spermatogenic cells in a cyst undergo their development through spermatogenesis synchronously. The distribution of cysts displays the cephalo-caudal gradient in respect to the stage of spermatogenesis. The formation of cysts at cephalic end of the testis causes their migration along the lobules to the caudal end. Consequently, the disposition in cephalo-caudal regions of spermatogenesis can be observed in longitudinal sections of the testis. The germ cells are spermatogonia, diploid cells with mitotic activity; primary and second spermatocytes characterized by meiotic divisions that develop haploid spermatids; during spermiogenesis the spermatids differentiate to spermatozoa. During spermiation the cysts open and spermatozoa leave the testicular lobules. After spermiation occurs the development of Leydig cells into glandular tissue. This glandular tissue regressed at the end of the reproductive cycle. PMID:26413406

  7. Proteinaceous Pheromone Homologs Identified from the Cloacal Gland Transcriptome of a Male Axolotl, Ambystoma mexicanum.

    PubMed

    Hall, Kevin W; Eisthen, Heather L; Williams, Barry L

    2016-01-01

    Pheromones play an important role in modifying vertebrate behavior, especially during courtship and mating. Courtship behavior in urodele amphibians often includes female exposure to secretions from the cloacal gland, as well as other scent glands. The first vertebrate proteinaceous pheromone discovered, the decapeptide sodefrin, is a female attracting pheromone secreted by the cloacal gland of male Cynops pyrrhogaster. Other proteinaceous pheromones in salamanders have been shown to elicit responses from females towards conspecific males. The presence and levels of expression of proteinaceous pheromones have not been identified in the family Ambystomatidae, which includes several important research models. The objective of this research was therefore to identify putative proteinaceous pheromones from male axolotls, Ambystoma mexicanum, as well as their relative expression levels. The results indicate that axolotls possess two different forms of sodefrin precursor-like factor (alpha and beta), as well as a putative ortholog of plethodontid modulating factor. The beta form of sodefrin precursor-like factor was amongst the most highly expressed transcripts within the cloacal gland. The ortholog of plethodontid modulating factor was expressed at a level equivalent to the beta sodefrin precursor-like factor. The results are from a single male axolotl; therefore, we are unable to assess how representative our results may be. Nevertheless, the presence of these highly expressed proteinaceous pheromones suggests that male axolotls use multiple chemical cues to attract female conspecifics. Behavioral assays would indicate whether the putative protein pheromones elicit courtship activity from female axolotls. PMID:26885665

  8. Identification and localization of neurohypophysial peptides in the brain of a caecilian amphibian, Typhlonectes natans (Amphibia: Gymnophiona).

    PubMed

    Hilscher-Conklin, C; Conlon, J M; Boyd, S K

    1998-05-01

    The amphibian order Gymnophiona contains more than 150 different species of caecilians. The characterization and distribution of neurohypophysial peptides, however, has not been described for any member of this order. By using high-performance liquid chromatography, radioimmunoassay, and mass spectrometry, we identified the peptide arginine vasotocin (AVT) in brain and pituitary extracts from the caecilian Typhlonectes natans. By using immunocytochemistry, we found five populations of AVT-immunoreactive (AVT-ir) cells in the brain of T. natans. AVT-ir cell bodies were located in the preoptic area, amygdala pars medialis, ventral thalamus, dorsal hypothalamic nucleus, and nucleus of the solitary tract. AVT-ir fibers and terminal fields were widespread. We also identified a mesotocin-like peptide. The distribution of this peptide in the brain of T. natans was more restricted than the distribution of AVT. Mesotocin-like-immunoreactive cell bodies were located almost exclusively in the preoptic area, with only a few other cells located in the amygdala pars medialis. This caecilian species, therefore, possesses neurohypophysial peptides that are similar in their structure and distribution to the peptides found in anuran and urodele amphibian orders.

  9. Evolution of the red nucleus and rubrospinal tract.

    PubMed

    ten Donkelaar, H J

    1988-01-01

    A red nucleus, defined by its relative position in the tegmentum mesencephali, its contralateral rubrospinal or rubrobulbar projections and by crossed cerebellar afferents, is found in terrestrial vertebrates and certain rays. A crossed rubrospinal tract occurs in anurans, limbed urodeles and reptiles, birds and mammals, but is apparently absent in boid snakes, caecilians and sharks. A distinct rubrospinal tract is found in certain rays which use their enlarged pectoral fins for locomotion. A crossed tegmentospinal tract, possibly a rubrospinal tract, is found in lungfishes. Although evidence was presented for a rubrospinal tract in more advanced snakes, the available experimental data in lower vertebrates suggest that the presence of a rubrospinal tract is related to the presence of limbs or limb-like structures. In the connectivity of the red nucleus in terrestrial vertebrates, 'levels' of complexity can be distinguished, paralleled by the development of the cerebellum. These 'grades of organization' are probably related to the type of motor performance the particular terrestrial vertebrates are capable of.

  10. Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, Dermophis mexicanus (Amphibia: Gymnophiona).

    PubMed

    González, Agustín; López, Jesús M; Sánchez-Camacho, Cristina; Marín, Oscar

    2002-07-01

    The organization of the cholinergic system in the brain of anuran and urodele amphibians was recently studied, and significant differences were noted between both amphibian orders. However, comparable data are not available for the third order of amphibians, the limbless gymnophionans (caecilians). To further assess general and derived features of the cholinergic system in amphibians, we have investigated the distribution of choline acetyltransferase immunoreactive (ChAT-ir) cell bodies and fibers in the brain of the gymnophionan Dermophis mexicanus. This distribution showed particular features of gymnophionans such as the existence of a particularly large cholinergic population in the striatum, the presence of ChAT-ir cells in the mesencephalic tectum, and the organization of the cranial nerve motor nuclei. These peculiarities probably reflect major adaptations of gymnophionans to a fossorial habit. Comparison of our results with those in other vertebrates, including a segmental approach to correlate cell populations across species, shows that the general pattern of organization of cholinergic systems in vertebrates can be modified in certain species in response to adaptative processes that lead to morphological and behavioral modifications of members of a given class of vertebrates, as shown for gymnophionans.

  11. Comparative immunohistochemical analysis of the distribution of orexins (hypocretins) in the brain of amphibians.

    PubMed

    López, Jesús M; Domínguez, Laura; Moreno, Nerea; González, Agustín

    2009-05-01

    The orexins (hypocretins) are peptides found primarily in neurons of the hypothalamus of all vertebrates. Many differences were reported about the precise location of orexin containing cells and their projections throughout the brain in different species. However, there are few direct cross-species comparisons. Previous studies in anuran amphibians have also reported notable species differences. We examined and directly compared the distribution of orexinergic neurons and fibers within the brains of representatives of the three amphibian orders, anurans, urodeles and gymnophionans. Simultaneous detection of orexins and tyrosine hydroxylase was used to assess the precise location of the orexins in the brain and to evaluate the possible influence of the orexin system on the catecholaminergic cell groups. Although some differences were noted, a common pattern for the distribution of orexins in amphibians was observed. In all species, most immunoreactive neurons were observed in the suprachiasmatic nucleus, whereas the cells in the preoptic area and the tuberal region were more variable. Orexin immunoreactive fibers in the brain of all species included abundant fibers throughout the preoptic area and hypothalamus, whereas moderate amounts of fibers were present in the pallium, striatum, septum, thalamus, optic tectum, torus semicircularis, rhombencephalon and spinal cord. The use of double immunohistochemistry in amphibians revealed orexinergic innervation in dopaminergic and noradrenergic cell groups, such as the midbrain tegmentum, locus coeruleus and nucleus of the solitary tract, as was previously reported in mammals.

  12. Cardiac performance correlates of relative heart ventricle mass in amphibians.

    PubMed

    Kluthe, Gregory J; Hillman, Stanley S

    2013-08-01

    This study used an in situ heart preparation to analyze the power output and stroke work of spontaneously beating hearts of four anurans (Rhinella marina, Lithobates catesbeianus, Xenopus laevis, Pyxicephalus edulis) and three urodeles (Necturus maculosus, Ambystoma tigrinum, Amphiuma tridactylum) that span a representative range of relative ventricle mass (RVM) found in amphibians. Previous research has documented that RVM correlates with dehydration tolerance and maximal aerobic capacity in amphibians. The power output (mW g(-1) ventricle mass) and stroke work (mJ g(-1) ventricle muscle mass) were independent of RVM and were indistinguishable from previously published results for fish and reptiles. RVM was significantly correlated with maximum power output (P max, mW kg(-1) body mass), stroke volume, cardiac output, afterload pressure (P O) at P max, and preload pressure (P I) at P max. P I at P max and P O at P max also correlated very closely with each other. The increases in both P I and P O at maximal power outputs in large hearts suggest that concomitant increases in blood volume and/or increased modulation of vascular compliance either anatomically or via sympathetic tone on the venous vasculature would be necessary to achieve P max in vivo. Hypotheses for variation in RVM and its concomitant increased P max in amphibians are developed.

  13. Proteinaceous Pheromone Homologs Identified from the Cloacal Gland Transcriptome of a Male Axolotl, Ambystoma mexicanum.

    PubMed

    Hall, Kevin W; Eisthen, Heather L; Williams, Barry L

    2016-01-01

    Pheromones play an important role in modifying vertebrate behavior, especially during courtship and mating. Courtship behavior in urodele amphibians often includes female exposure to secretions from the cloacal gland, as well as other scent glands. The first vertebrate proteinaceous pheromone discovered, the decapeptide sodefrin, is a female attracting pheromone secreted by the cloacal gland of male Cynops pyrrhogaster. Other proteinaceous pheromones in salamanders have been shown to elicit responses from females towards conspecific males. The presence and levels of expression of proteinaceous pheromones have not been identified in the family Ambystomatidae, which includes several important research models. The objective of this research was therefore to identify putative proteinaceous pheromones from male axolotls, Ambystoma mexicanum, as well as their relative expression levels. The results indicate that axolotls possess two different forms of sodefrin precursor-like factor (alpha and beta), as well as a putative ortholog of plethodontid modulating factor. The beta form of sodefrin precursor-like factor was amongst the most highly expressed transcripts within the cloacal gland. The ortholog of plethodontid modulating factor was expressed at a level equivalent to the beta sodefrin precursor-like factor. The results are from a single male axolotl; therefore, we are unable to assess how representative our results may be. Nevertheless, the presence of these highly expressed proteinaceous pheromones suggests that male axolotls use multiple chemical cues to attract female conspecifics. Behavioral assays would indicate whether the putative protein pheromones elicit courtship activity from female axolotls.

  14. Cranial muscle development in the model organism ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny.

    PubMed

    Ziermann, Janine M; Diogo, Rui

    2013-07-01

    There is still confusion about the homology of several cranial muscles in salamanders with those of other vertebrates. This is true, in part, because of the fact that many muscles present in early ontogeny of amphibians disappear during development and specifically during metamorphosis. Resolving this confusion is important for the understanding of the comparative and evolutionary morphology of vertebrates and tetrapods because amphibians are the phylogenetically most plesiomorphic tetrapods, concerning for example their myology, and include two often used model organisms, Xenopus laevis (anuran) and Ambystoma mexicanum (urodele). Here we provide the first detailed report of the cranial muscle development in axolotl from early ontogenetic stages to the adult stage. We describe different and complementary types of general muscle morphogenetic gradients in the head: from anterior to posterior, from lateral to medial, and from origin to insertion. Furthermore, even during the development of neotenic salamanders such as axolotls, various larval muscles become indistinct, contradicting the commonly accepted view that during ontogeny the tendency is mostly toward the differentiation of muscles. We provide an updated comparison between these muscles and the muscles of other vertebrates, a discussion of the homologies and evolution, and show that the order in which the muscles appear during axolotl ontogeny is in general similar to their appearance in phylogeny (e.g. differentiation of adductor mandibulae muscles from one anlage to four muscles), with only a few remarkable exceptions, as for example the dilatator laryngis that appears evolutionary later but in the development before the intermandibularis.

  15. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Phan, Anne Q; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V; Gardiner, David M

    2015-08-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position-specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position-specific, developmental-stage-specific, and heparan sulfate-dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals.

  16. Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation.

    PubMed

    Cano-Martínez, Agustina; Vargas-González, Alvaro; Guarner-Lans, Verónica; Prado-Zayago, Esteban; León-Oleda, Martha; Nieto-Lima, Betzabé

    2010-01-01

    "In the present study we evaluated the effect of partial ventricular amputation (PVA) in the heart of the adult urodele amphibian (Ambystoma mexicanum) in vivo on spontaneous heart contractile activity recorded in vitro in association to the structural recovery at one, five, 30 and 90 days after injury. One day after PVA, ventricular-tension (VT) (16 ± 3%), atrium-tension (AT) (46 ± 4%) and heart rate (HR) (58+10%) resulted lower in comparison to control hearts. On days five, 30 and 90 after damage, values achieved a 61 ± 5, 93 ± 3, and 98 ± 5% (VT), 60 ± 4, 96 ± 3 and 99 ± 5% (AT) and 74 ± 5, 84 ± 10 and 95 ± 10% (HR) of the control values, respectively. Associated to contractile activity recovery we corroborated a gradual tissue restoration by cardiomyocyte proliferation. Our results represent the first quantitative evidence about the recovery of heart of A. mexicanum restores its functional capacity concomitantly to the structural recovery of the myocardium by proliferation of cardiomyocytes after PVA. These properties make the heart of A. mexicanum a potential model to study the mechanisms underlying heart regeneration in adult vertebrates in vivo.

  17. Mapping hematopoiesis in a fully regenerative vertebrate: the axolotl.

    PubMed

    Lopez, David; Lin, Li; Monaghan, James R; Cogle, Christopher R; Bova, Frank J; Maden, Malcolm; Scott, Edward W

    2014-08-21

    Hematopoietic stem cell (HSC)-derived cells are involved in wound healing responses throughout the body. Unfortunately for mammals, wound repair typically results in scarring and nonfunctional reparation. Among vertebrates, none display such an extensive ability for adult regeneration as urodele amphibians, including 1 of the more popular models: the axolotl. However, a lack of knowledge of axolotl hematopoiesis hinders the use of this animal for the study of hematopoietic cells in scar-free wound healing and tissue regeneration. We used white and cytomegalovirus:green fluorescent protein(+) transgenic white axolotl strains to map sites of hematopoiesis and develop hematopoietic cell transplant methodology. We also established a fluorescence-activated cell sorter enrichment technique for major blood lineages and colony-forming unit assays for hematopoietic progenitors. The liver and spleen are both active sites of hematopoiesis in adult axolotls and contain transplantable HSCs capable of long-term multilineage blood reconstitution. As in zebrafish, use of the white axolotl mutant allows direct visualization of homing, engraftment, and hematopoiesis in real time. Donor-derived hematopoiesis occurred for >2 years in recipients generating stable hematopoietic chimeras. Organ segregation, made possible by embryonic microsurgeries wherein halves of 2 differently colored embryos were joined, indicate that the spleen is the definitive site of adult hematopoiesis.

  18. Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin.

    PubMed

    Ferris, Donald R; Satoh, Akira; Mandefro, Berhan; Cummings, Gillian M; Gardiner, David M; Rugg, Elizabeth L

    2010-10-01

    Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re-epithelialization of the wound area is rapid (typically <11 h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration.

  19. Conservation of position-specific gene expression in axolotl limb skin.

    PubMed

    Satoh, Akira; Makanae, Aki

    2014-01-01

    Urodele amphibians can regenerate their limbs after amputation. After amputation, undifferentiated cells appear on the amputation plane and form regeneration blastema. A limb blastema recreates a complete replica of the original limb. It is well known that disturbance of the location of limb tissues prior to amputation perturbs limb patterning, suggesting that different intact limb tissues carry different location information despite their identical appearance. The cause of such differences in intact tissues remains unknown. In this study, we found that Lmx1b, Tbx2, and Tbx3 genes, which are expressed in developing limb in a region specific manner, remained detectable in a mature axolotl limb. Furthermore, those position-specific gene expression patterns were conserved in mature limbs. Treatment with retinoic acid (RA), which is known to have ventralizing activity, changed Lmx1b expression in intact dorsal skin and dorsal character to ventral, indicating that conserved Lmx1b expression was due to the dorsal character and not leaky gene expression. Furthermore, we found that such conserved gene expression was rewritable in regeneration blastemas. These results suggest that axolotl limb cells can recognize their locations and maintain limbness via conserved expression profiles of developmental genes.

  20. The yeast two hybrid system in a screen for proteins interacting with axolotl (Ambystoma mexicanum) Msx1 during early limb regeneration.

    PubMed

    Abuqarn, Mehtap; Allmeling, Christina; Amshoff, Inga; Menger, Bjoern; Nasser, Inas; Vogt, Peter M; Reimers, Kerstin

    2011-07-01

    Urodele amphibians are exceptional in their ability to regenerate complex body structures such as limbs. Limb regeneration depends on a process called dedifferentiation. Under an inductive wound epidermis terminally differentiated cells transform to pluripotent progenitor cells that coordinately proliferate and eventually redifferentiate to form the new appendage. Recent studies have developed molecular models integrating a set of genes that might have important functions in the control of regenerative cellular plasticity. Among them is Msx1, which induced dedifferentiation in mammalian myotubes in vitro. Herein, we screened for interaction partners of axolotl Msx1 using a yeast two hybrid system. A two hybrid cDNA library of 5-day-old wound epidermis and underlying tissue containing more than 2×10⁶ cDNAs was constructed and used in the screen. 34 resulting cDNA clones were isolated and sequenced. We then compared sequences of the isolated clones to annotated EST contigs of the Salamander EST database (BLASTn) to identify presumptive orthologs. We subsequently searched all no-hit clone sequences against non redundant NCBI sequence databases using BLASTx. It is the first time, that the yeast two hybrid system was adapted to the axolotl animal model and successfully used in a screen for proteins interacting with Msx1 in the context of amphibian limb regeneration.

  1. Blastema induction in aneurogenic state and Prrx-1 regulation by MMPs and FGFs in Ambystoma mexicanum limb regeneration.

    PubMed

    Satoh, Akira; makanae, Aki; Hirata, Ayako; Satou, Yutaka

    2011-07-15

    Urodele amphibians can regenerate amputated limbs. It has been considered that differentiated dermal tissues generate multipotent and undifferentiated cells called blastema cells during limb regeneration. In early phases of limb regeneration, blastema cells are induced by nerves and the apical epithelial cap (AEC). We had previously investigated the role of neurotrophic factors in blastema or blastema-like formation consisting of Prrx-1 positive cells. A new system suitable for investigating early phases of limb regeneration, called the accessory limb model (ALM), was recently developed. In this study, we performed a comparative transcriptome analysis between a blastema and wound using ALM. Matrix metalloproteinase (MMP) and fibroblast growth factor (FGF) signaling components were observed to be predominantly expressed in ALM blastema cells. Furthermore, we found that MMP activity induced a blastema marker gene, Prrx-1, in vitro, and FGF signaling pathways worked in coordination to maintain Prrx-1 expression and ALM blastema formation. Furthermore, we demonstrated that these two activities were sufficient to induce an ALM blastema in the absence of a nerve in vivo.

  2. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease.

    PubMed

    Flowers, G Parker; Timberlake, Andrew T; McLean, Kaitlin C; Monaghan, James R; Crews, Craig M

    2014-05-01

    Among tetrapods, only urodele salamanders, such as the axolotl Ambystoma mexicanum, can completely regenerate limbs as adults. The mystery of why salamanders, but not other animals, possess this ability has for generations captivated scientists seeking to induce this phenomenon in other vertebrates. Although many recent advances in molecular biology have allowed limb regeneration and tissue repair in the axolotl to be investigated in increasing detail, the molecular toolkit for the study of this process has been limited. Here, we report that the CRISPR-Cas9 RNA-guided nuclease system can efficiently create mutations at targeted sites within the axolotl genome. We identify individual animals treated with RNA-guided nucleases that have mutation frequencies close to 100% at targeted sites. We employ this technique to completely functionally ablate EGFP expression in transgenic animals and recapitulate developmental phenotypes produced by loss of the conserved gene brachyury. Thus, this advance allows a reverse genetic approach in the axolotl and will undoubtedly provide invaluable insight into the mechanisms of salamanders' unique regenerative ability.

  3. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease

    PubMed Central

    Flowers, G. Parker; Timberlake, Andrew T.; Mclean, Kaitlin C.; Monaghan, James R.; Crews, Craig M.

    2014-01-01

    Among tetrapods, only urodele salamanders, such as the axolotl Ambystoma mexicanum, can completely regenerate limbs as adults. The mystery of why salamanders, but not other animals, possess this ability has for generations captivated scientists seeking to induce this phenomenon in other vertebrates. Although many recent advances in molecular biology have allowed limb regeneration and tissue repair in the axolotl to be investigated in increasing detail, the molecular toolkit for the study of this process has been limited. Here, we report that the CRISPR-Cas9 RNA-guided nuclease system can efficiently create mutations at targeted sites within the axolotl genome. We identify individual animals treated with RNA-guided nucleases that have mutation frequencies close to 100% at targeted sites. We employ this technique to completely functionally ablate EGFP expression in transgenic animals and recapitulate developmental phenotypes produced by loss of the conserved gene brachyury. Thus, this advance allows a reverse genetic approach in the axolotl and will undoubtedly provide invaluable insight into the mechanisms of salamanders' unique regenerative ability. PMID:24764077

  4. Genomics of a metamorphic timing QTL: met1 maps to a unique genomic position and regulates morph and species-specific patterns of brain transcription.

    PubMed

    Page, Robert B; Boley, Meredith A; Kump, David K; Voss, Stephen R

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation.

  5. Ultrastructure of the mature spermatozoa of caecilians (Amphibia: Gymnophiona).

    PubMed

    Scheltinga, David M; Wilkinson, Mark; Jamieson, Barrie G M; Oommen, Oommen V

    2003-11-01

    The spermatozoa of Gymnophiona show the following autapomorphies: 1) penetration of the distal centriole by the axial fiber; 2) presence of an acrosomal baseplate; 3) presence of an acrosome seat (flattened apical end of nucleus); and 4) absence of juxta-axonemal fibers. The wide separation of the plasma membrane bounding the undulating membrane is here also considered to be apomorphic. Three plesiomorphic spermatozoal characters are recognized that are not seen in other Amphibia but occur in basal amniotes: 1) presence of mitochondria with a delicate array of concentric cristae (concentric cristae of salamander spermatozoa differ in lacking the delicate array); 2) presence of peripheral dense fibers associated with the triplets of the distal centriole; and 3) presence of a simple annulus (a highly modified, elongate annulus is present in salamander sperm). The presence of an endonuclear canal containing a perforatorium is a plesiomorphic feature of caecilian spermatozoa that is shared with urodeles, some basal anurans, sarcopterygian fish, and some amniotes. Spermatozoal synapomorphies are identified for 1) the Uraeotyphlidae and Ichthyophiidae, and 2) the Caeciliidae and Typhlonectidae, suggesting that the members of each pair of families are more closely related to each other than to other caecilians. Although caecilian spermatozoa exhibit the clear amphibian synapomorphy of the unilateral location of the undulating membrane and its axial fiber, they have no apomorphic characters that suggest a closer relationship to either the Urodela or Anura.

  6. Distribution of NADPH-diaphorase/nitric oxide synthase in the brain of the caecilian Dermophis mexicanus (amphibia: gymnophiona): comparative aspects in amphibians.

    PubMed

    González, Augustín; Moreno, Nerea; López, Jesús M

    2002-01-01

    The organization of nitrergic systems in the brains of anuran and urodele amphibians was recently studied and significant differences were noted between both amphibian orders. However, comparable data are not available for the third order of amphibians, the gymnophionans (caecilians). In the present study we have investigated the distribution of neuronal elements that express nitric oxide synthase (NOS) in the brain of the gymnophionan amphibian Dermophis mexicanus by means of immunohistochemistry with specific antibodies against NOS and enzyme histochemistry for NADPH-diaphorase. Both techniques yielded identical results and were equally suitable to demonstrate the nitrergic system. In addition, they were useful tools in the identification of cell groups and brain structures, otherwise indistinct in the brains of caecilians. The distribution of nitrergic structures observed in Dermophis conforms to the overall amphibian pattern but numerous distinct peculiarities were also noted. These included a dense innervation of the olfactory bulbs but a lack of reactivity in olfactory and vomeronasal fibers and glomeruli. A large population of nitrergic cells in the striatum and the presence of thalamic neurons, as well as the specific distribution of nitrergic cells in the isthmic region, are some of the differential features in the gymnophionan brain. Given the variability among species in the same class of vertebrates any discussion including amphibians should also include evidence for gymnophionans.

  7. Comparative histological study of hepatic architecture in the three orders amphibian livers

    PubMed Central

    2012-01-01

    Background This report presents a detailed description of hepatic architecture in 46 amphibian livers by light microscopy, and extensively discusses the phylogenetic viewpoint. Results The 46 amphibian livers showed a variety of histological features, but anurans were the same as in mammalian livers. The hepatocyte-sinusoidal structures of the amphibian livers were classified into three different types: (I) several-cell-thick plate type, (II) two-cell-thick plate type, and (III) one-cell-thick plate type, depending on the percentage extension of sinusoidal areas per unit area, measured by morphometry. Hematopoietic tissue structures were observed in the connective tissue of both the perihepatic subcapsular regions and portal triads in the order Caudata and Gymnophiona, but were not observed in the order Anura (except for the genus Bombina and Xenopus). As phylogenetic relationships are branched from urodeles to anurans, the parenchyma arrangement progressed from the combined several- and two-cell-thick plate type to one-cell-thick plate type as seen in the mammalian liver type. In contrast, hematopoietic tissue structures were exactly the opposite and did not involve anurans. Conclusions This study is the first to investigate amphibian livers phylogenically, and their architectural differences are shown in the route of hepatic ontogenesis. In this process, parenchymal arrangement formation is acquired phylogenically. The occurrence of hematopoietic cells may be related with the development of the systemic immune system in the spleen and bone marrow. PMID:22905994

  8. Better than fish on land? Hearing across metamorphosis in salamanders

    PubMed Central

    Christensen, Christian Bech; Lauridsen, Henrik; Christensen-Dalsgaard, Jakob; Pedersen, Michael; Madsen, Peter Teglberg

    2015-01-01

    Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early ‘lepospondyl’ microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears. PMID:25652830

  9. Turning the fate of reprogramming cells from retinal disorder to regeneration by Pax6 in newts.

    PubMed

    Casco-Robles, Martin Miguel; Islam, Md Rafiqul; Inami, Wataru; Tanaka, Hibiki Vincent; Kunahong, Ailidana; Yasumuro, Hirofumi; Hanzawa, Shiori; Casco-Robles, Roman Martin; Toyama, Fubito; Maruo, Fumiaki; Chiba, Chikafumi

    2016-01-01

    The newt, a urodele amphibian, has an outstanding ability- even as an adult -to regenerate a functional retina through reprogramming and proliferation of the retinal pigment epithelium (RPE) cells, even though the neural retina is completely removed from the eye by surgery. It remains unknown how the newt invented such a superior mechanism. Here we show that disability of RPE cells to regenerate the retina brings about a symptom of proliferative vitreoretinopathy (PVR), even in the newt. When Pax6, a transcription factor that is re-expressed in reprogramming RPE cells, is knocked down in transgenic juvenile newts, these cells proliferate but eventually give rise to cell aggregates that uniformly express alpha smooth muscle actin, Vimentin and N-cadherin, the markers of myofibroblasts which are a major component of the sub-/epi-retinal membranes in PVR. Our current study demonstrates that Pax6 is an essential factor that directs the fate of reprogramming RPE cells toward the retinal regeneration. The newt may have evolved the ability of retinal regeneration by modifying a mechanism that underlies the RPE-mediated retinal disorders. PMID:27640672

  10. From ontogenesis to regeneration: learning how to instruct adult cardiac progenitor cells.

    PubMed

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Giacomello, Alessandro; Messina, Elisa

    2012-01-01

    Since the first observations over two centuries ago by Lazzaro Spallanzani on the extraordinary regenerative capacity of urodeles, many attempts have been made to understand the reasons why such ability has been largely lost in metazoa and whether or how it can be restored, even partially. In this context, important clues can be derived from the systematic analysis of the relevant distinctions among species and of the pathways involved in embryonic development, which might be induced and/or recapitulated in adult tissues. This chapter provides an overview on regeneration and its mechanisms, starting with the lesson learned from lower vertebrates, and will then focus on recent advancements and novel insights concerning regeneration in the adult mammalian heart, including the discovery of resident cardiac progenitor cells (CPCs). Subsequently, it explores all the important pathways involved in regulating differentiation during development and embryogenesis, and that might potentially provide important clues on how to activate and/or modulate regenerative processes in the adult myocardium, including the potential activation of endogenous CPCs. Furthermore the importance of the stem cell niche is discussed, and how it is possible to create in vitro a microenvironment and culture system to provide adult CPCs with the ideal conditions promoting their regenerative ability. Finally, the state of clinical translation of cardiac cell therapy is presented. Overall, this chapter provides a new perspective on how to approach cardiac regeneration, taking advantage of important lessons from development and optimizing biotechnological tools to obtain the ideal conditions for cell-based cardiac regenerative therapy.

  11. Proximal to distal patterning during limb development and regeneration: a review of converging disciplines.

    PubMed

    Mariani, Francesca V

    2010-05-01

    Regeneration of lost structures typically involves distinct events: wound healing at the damaged site, the accumulation of cells that will be used as future building blocks and, finally, the initiation of molecular signaling pathways that dictate the form and pattern of the regenerated structures. Amphibians and urodeles in particular, have long been known to have exceptional regenerative properties. For many years, these animals have been the model of choice for understanding limb regeneration, a complex process that involves reconstructing skin, muscle, bone, connective tissue and nerves into a functional 3D structure. It appears that this process of rebuilding an adult limb has many similarities with how the limb forms in the first place--for example, in the embryo, all the components of the limb need to be formed and this requires signaling mechanisms to specify the final pattern. Thus, both limb formation and limb regeneration are likely to employ the same molecular pathways. Given the available tools of molecular biology and genetics, this is an exciting time for both fields to share findings and make significant progress in understanding more about the events that dictate embryonic limb pattern and control limb regeneration. This article focuses particularly on what is known about the molecular control of patterning along the proximal-distal axis. PMID:20455655

  12. Proteinaceous Pheromone Homologs Identified from the Cloacal Gland Transcriptome of a Male Axolotl, Ambystoma mexicanum

    PubMed Central

    Hall, Kevin W.; Eisthen, Heather L.; Williams, Barry L.

    2016-01-01

    Pheromones play an important role in modifying vertebrate behavior, especially during courtship and mating. Courtship behavior in urodele amphibians often includes female exposure to secretions from the cloacal gland, as well as other scent glands. The first vertebrate proteinaceous pheromone discovered, the decapeptide sodefrin, is a female attracting pheromone secreted by the cloacal gland of male Cynops pyrrhogaster. Other proteinaceous pheromones in salamanders have been shown to elicit responses from females towards conspecific males. The presence and levels of expression of proteinaceous pheromones have not been identified in the family Ambystomatidae, which includes several important research models. The objective of this research was therefore to identify putative proteinaceous pheromones from male axolotls, Ambystoma mexicanum, as well as their relative expression levels. The results indicate that axolotls possess two different forms of sodefrin precursor-like factor (alpha and beta), as well as a putative ortholog of plethodontid modulating factor. The beta form of sodefrin precursor-like factor was amongst the most highly expressed transcripts within the cloacal gland. The ortholog of plethodontid modulating factor was expressed at a level equivalent to the beta sodefrin precursor-like factor. The results are from a single male axolotl; therefore, we are unable to assess how representative our results may be. Nevertheless, the presence of these highly expressed proteinaceous pheromones suggests that male axolotls use multiple chemical cues to attract female conspecifics. Behavioral assays would indicate whether the putative protein pheromones elicit courtship activity from female axolotls. PMID:26885665

  13. Multiple sex pheromone genes are expressed in the abdominal glands of the smooth newt (Lissotriton vulgaris) and Montandon's Newt (L. montandoni) (Salamandridae).

    PubMed

    Artur, Osikowski; Wiesław, Babik; Paweł, Grzmil; Jacek M, Szymura

    2008-06-01

    The smooth newt (Lissotriton "Triturus" vulgaris) and Montandon's newt (L."T." montandoni) are sister species exhibiting pronounced differences in male secondary sexual traits but nevertheless hybridizing and producing fertile hybrids in nature. Since pheromonal communication is an important aspect of the reproductive biology of urodeles, structural differentiation of peptide pheromones and their receptors may contribute to incipient reproductive isolation. The aim of the study was the identification of genes encoding putative courtship pheromone precursors in two newt species and the reconstruction of phylogenetic relationships among them. Our analyses were based on cDNA obtained from the transcripts from the abdominal glands of male newts. We identified five unique cDNA sequences encoding the putative pheromone precursors in L. vulgaris and three additional unique sequences in L. montandoni. The results indicate that in the abdominal glands of Lissotriton newts more than one pheromone-encoding gene is expressed and that these loci form a gene family. Phylogenetic analysis indicates that the divergence of at least some of these genes predates the radiation of European newts.

  14. Turning the fate of reprogramming cells from retinal disorder to regeneration by Pax6 in newts

    PubMed Central

    Casco-Robles, Martin Miguel; Islam, Md Rafiqul; Inami, Wataru; Tanaka, Hibiki Vincent; Kunahong, Ailidana; Yasumuro, Hirofumi; Hanzawa, Shiori; Casco-Robles, Roman Martin; Toyama, Fubito; Maruo, Fumiaki; Chiba, Chikafumi

    2016-01-01

    The newt, a urodele amphibian, has an outstanding ability– even as an adult –to regenerate a functional retina through reprogramming and proliferation of the retinal pigment epithelium (RPE) cells, even though the neural retina is completely removed from the eye by surgery. It remains unknown how the newt invented such a superior mechanism. Here we show that disability of RPE cells to regenerate the retina brings about a symptom of proliferative vitreoretinopathy (PVR), even in the newt. When Pax6, a transcription factor that is re-expressed in reprogramming RPE cells, is knocked down in transgenic juvenile newts, these cells proliferate but eventually give rise to cell aggregates that uniformly express alpha smooth muscle actin, Vimentin and N-cadherin, the markers of myofibroblasts which are a major component of the sub-/epi-retinal membranes in PVR. Our current study demonstrates that Pax6 is an essential factor that directs the fate of reprogramming RPE cells toward the retinal regeneration. The newt may have evolved the ability of retinal regeneration by modifying a mechanism that underlies the RPE-mediated retinal disorders. PMID:27640672

  15. Cooperative Regulation of Substrate Stiffness and Extracellular Matrix Proteins in Skin Wound Healing of Axolotls

    PubMed Central

    Huang, Ting-Yu; Wu, Cheng-Han; Wang, Mu-Hui; Chen, Bo-Sung; Chiou, Ling-Ling; Lee, Hsuan-Shu

    2015-01-01

    Urodele amphibians (Ambystoma mexicanum), unique among vertebrates, can regenerate appendages and other body parts entirely and functionally through a scar-free healing process. The wound epithelium covering the amputated or damaged site forms early and is essential for initiating the subsequent regenerative steps. However, the molecular mechanism through which the wound reepithelializes during regeneration remains unclear. In this study, we developed an in vitro culture system that mimics an in vivo wound healing process; the biomechanical properties in the system were precisely defined and manipulated. Skin explants that were cultured on 2 to 50 kPa collagen-coated substrates rapidly reepithelialized within 10 to 15 h; however, in harder (1 GPa) and other extracellular matrices (tenascin-, fibronectin-, and laminin-coated environments), the wound epithelium moved slowly. Furthermore, the reepithelialization rate of skin explants from metamorphic axolotls cultured on a polystyrene plate (1 GPa) increased substantially. These findings afford new insights and can facilitate investigating wound epithelium formation during early regeneration using biochemical and mechanical techniques. PMID:25839038

  16. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum)

    PubMed Central

    Phan, Anne Q.; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V.

    2015-01-01

    Abstract Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain‐of‐function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position‐specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position‐specific, developmental‐stage‐specific, and heparan sulfate‐dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals. PMID:27499874

  17. Turning back the cardiac regenerative clock: lessons from the neonate.

    PubMed

    Mahmoud, Ahmed I; Porrello, Enzo R

    2012-07-01

    The adult mammalian heart has an extremely limited capacity for regeneration. As a consequence, ischemic heart disease remains the leading cause of death in the developed world, and the heart continues to be a major focal point for regenerative medicine. Understanding innate mechanisms of heart regeneration is important and may provide a blueprint for clinical translation. For example, urodele amphibians and teleost fish can mount an endogenous regenerative response following multiple forms of cardiac injury, and this regenerative response appears to be mediated through proliferation of pre-existing cardiomyocytes. How and why mammals have lost the capacity for heart regeneration since the divergence from teleost fish more than 450 million years ago has been a major unresolved question in the field. Recent studies in mice indicate that the mammalian heart possesses significant regenerative potential during embryonic and neonatal life, but this regenerative capacity is lost rapidly after birth. This review focuses on mechanisms of heart regeneration in neonatal mice, with a particular emphasis on similarities and differences with the zebrafish model. Recent advances in our understanding of the molecular mechanisms of postnatal heart maturation and regenerative arrest are also highlighted. The possibility of recapitulating ontogenetically and phylogenetically ancient mechanisms of cardiac regeneration in the adult human heart represents an exciting new frontier in cardiology.

  18. Implication of two different regeneration systems in limb regeneration

    PubMed Central

    Makanae, Aki; Mitogawa, Kazumasa

    2014-01-01

    Abstract Limb regeneration is a representative phenomenon of organ regeneration in urodele amphibians, such as an axolotl. An amputated limb starts regenerating from a remaining stump (proximal) to lost finger tips (distal). In the present case, proximal−distal (PD) reorganization takes place in a regenerating tissue, called a blastema. It has been a mystery how an induced blastema recognizes its position and restores an exact replica of missing parts. Recently, a new experimental system called the accessory limb model (ALM) has been established. The gained ALM phenotypes are demanding to reconsider the reorganization PD positional values. Based on the ALM phenotype, it is reasonable to hypothesize that reorganization of positional values has a certain discontinuity and that two different regeneration systems cooperatively reorganize the PD axis to restore an original structure. In this review, PD axis reestablishments are focused on limb regeneration. Knowledge from ALM studies in axolotls and Xenopus is providing a novel concept of PD axis reorganization in limb regeneration. PMID:27499860

  19. Characterization of a multimeric polypeptide complex on the surface of thymus-derived cells in the Mexican axolotl.

    PubMed

    Kerfourn, F; Guillet, F; Charlemagne, J; Tournefier, A

    1993-10-01

    We previously raised a rabbit antiserum (L12) against a 38 kD polypeptide which is expressed on the surface of thymocytes and peripheral T cells of an Urodele Amphibian, the Mexican axolotl (Ambystoma mexicanum). Here we show that L12 antibodies immunoprecipitate several labelled molecules from surface iodinated axolotl spleen cells, including the 38 kD molecule, but also two polypeptides of 43 and 22 kD which are covalently linked to other elements. Another rabbit antiserum (L10) was raised against detergent-solubilized axolotl thymocyte membranes and shown to recognize the majority of thymocytes and about half of the splenocytes in immunofluorescence. In Western blotting, L10 antibodies recognized a limited number of surface polypeptides in thymocyte and splenocyte lysates, including 43, 38, and 22 kD elements. Immune complexes formed between L10 antibodies and solubilized splenocyte membranes were used to immunize BALB/c mice intrasplenically in the aim of raising MoAbs specific for axolotl T cells. Monoclonal antibody 87.16 was shown to stain in immunofluorescence 26.7% of thymocytes and 26.8% of spleen cells. This MoAb recognized a 43 kD polypeptide that can covalently associate on the T-cell surface with several other molecules to form a multimeric complex. PMID:8211000

  20. Cooperative regulation of substrate stiffness and extracellular matrix proteins in skin wound healing of axolotls.

    PubMed

    Huang, Ting-Yu; Wu, Cheng-Han; Wang, Mu-Hui; Chen, Bo-Sung; Chiou, Ling-Ling; Lee, Hsuan-Shu

    2015-01-01

    Urodele amphibians (Ambystoma mexicanum), unique among vertebrates, can regenerate appendages and other body parts entirely and functionally through a scar-free healing process. The wound epithelium covering the amputated or damaged site forms early and is essential for initiating the subsequent regenerative steps. However, the molecular mechanism through which the wound reepithelializes during regeneration remains unclear. In this study, we developed an in vitro culture system that mimics an in vivo wound healing process; the biomechanical properties in the system were precisely defined and manipulated. Skin explants that were cultured on 2 to 50 kPa collagen-coated substrates rapidly reepithelialized within 10 to 15 h; however, in harder (1 GPa) and other extracellular matrices (tenascin-, fibronectin-, and laminin-coated environments), the wound epithelium moved slowly. Furthermore, the reepithelialization rate of skin explants from metamorphic axolotls cultured on a polystyrene plate (1 GPa) increased substantially. These findings afford new insights and can facilitate investigating wound epithelium formation during early regeneration using biochemical and mechanical techniques.

  1. Germ cell specification and regeneration in planarians.

    PubMed

    Newmark, P A; Wang, Y; Chong, T

    2008-01-01

    In metazoans, two apparently distinct mechanisms specify germ cell fate: Determinate specification (observed in animals including Drosophila, Caenorhabditis elegans, zebra fish, and Xenopus) uses cytoplasmic factors localized to specific regions of the egg, whereas epigenetic specification (observed in many basal metazoans, urodeles, and mammals) involves inductive interactions between cells. Much of our understanding of germ cell specification has emerged from studies of model organisms displaying determinate specification. In contrast, our understanding of epigenetic/inductive specification is less advanced and would benefit from studies of additional organisms. Freshwater planarians--widely known for their remarkable powers of regeneration--are well suited for studying the mechanisms by which germ cells can be induced. Classic experiments showed that planarians can regenerate germ cells from body fragments entirely lacking reproductive structures, suggesting that planarian germ cells could be specified by inductive signals. Furthermore, the availability of the genome sequence of the planarian Schmidtea mediterranea, coupled with the animal's susceptibility to systemic RNA interference (RNAi), facilitates functional genomic analyses of germ cell development and regeneration. Here, we describe recent progress in studies of planarian germ cells and frame some of the critical unresolved questions for future work.

  2. Morphogenesis of the axolotl pronephric duct: a model system for the study of cell migration in vivo.

    PubMed

    Drawbridge, J; Steinberg, M S

    1996-08-01

    Pronephric duct (PND) morphogenesis is a critical early event in the development of the vertebrate excretory system. This structure is the exit channel for both pronephric and mesonephric filtrate, forms the ureteric bud of the metanephros and gives rise to the ductus deferens of the testis. In addition, the PND and ureteric bud epithelia induce terminal differentiation of the mesonephric and metanephric mesenchyme, respectively. Elongation of the PND in all vertebrates involves active cell migration of the primordium. In urodele embryos--unlike in some anuran, avian and mammalian embryos--elongation of the PND occurs solely by cell migration. In the axolotl embryo, the PND primordium segregates as an ovoid tissue mass from the anterodorsal flank mesoderm directly beneath somites 3-7. The primordium then extends caudally along the ventral border of the developing somites until it reaches the cloaca. The ease with which these embryos can be manipulated microsurgically makes the PND system ideal for the study of the mechanisms controlling cell migration in vivo. This review summarizes the progress that has been made in characterizing the environmental cues and the cell surface recognition systems that drive this tightly regulated migration event. PMID:8877443

  3. Multicellular Mathematical Modelling of Mesendoderm Formation in Amphibians.

    PubMed

    Brown, L E; Middleton, A M; King, J R; Loose, M

    2016-03-01

    The earliest cell fate decisions in a developing embryo are those associated with establishing the germ layers. The specification of the mesoderm and endoderm is of particular interest as the mesoderm is induced from the endoderm, potentially from an underlying bipotential group of cells, the mesendoderm. Mesendoderm formation has been well studied in an amphibian model frog, Xenopus laevis, and its formation is driven by a gene regulatory network (GRN) induced by maternal factors deposited in the egg. We have recently demonstrated that the axolotl, a urodele amphibian, utilises a different topology in its GRN to specify the mesendoderm. In this paper, we develop spatially structured mathematical models of the GRNs governing mesendoderm formation in a line of cells. We explore several versions of the model of mesendoderm formation in both Xenopus and the axolotl, incorporating the key differences between these two systems. Model simulations are able to reproduce known experimental data, such as Nodal expression domains in Xenopus, and also make predictions about how the positional information derived from maternal factors may be interpreted to drive cell fate decisions. We find that whilst cell-cell signalling plays a minor role in Xenopus, it is crucial for correct patterning domains in axolotl. PMID:26934886

  4. Expression analysis of Baf60c during heart regeneration in axolotls and neonatal mice.

    PubMed

    Nakamura, Ryo; Koshiba-Takeuchi, Kazuko; Tsuchiya, Megumi; Kojima, Mizuyo; Miyazawa, Asuka; Ito, Kohei; Ogawa, Hidesato; Takeuchi, Jun K

    2016-05-01

    Some organisms, such as zebrafish, urodele amphibians, and newborn mice, have a capacity for heart regeneration following injury. However, adult mammals fail to regenerate their hearts. To know why newborn mice can regenerate their hearts, we focused on epigenetic factors, which are involved in cell differentiation in many tissues. Baf60c (BRG1/BRM-associated factor 60c), a component of ATP-dependent chromatin-remodeling complexes, has an essential role for cardiomyocyte differentiation at the early heart development. To address the function of Baf60c in postnatal heart homeostasis and regeneration, we examined the detailed expression/localization patterns of Baf60c in both mice and axolotls. In the mouse heart development, Baf60c was highly expressed in the entire heart at the early stages, but gradually downregulated at the postnatal stages. During heart regeneration in neonatal mice and axolotls, Baf60c expression was strongly upregulated after resection. Interestingly, the timing of Baf60c upregulation after resection was consistent with the temporal dynamics of cardiomyocyte proliferation. Moreover, knockdown of Baf60c downregulated proliferation of neonatal mouse cardiomyocytes. These data suggested that Baf60c plays an important role in cardiomyocyte proliferation in heart development and regeneration. This is the first study indicating that Baf60c contributes to the heart regeneration in vertebrates. PMID:27125315

  5. Dual embryonic origin and patterning of the pharyngeal skeleton in the axolotl (Ambystoma mexicanum).

    PubMed

    Sefton, Elizabeth M; Piekarski, Nadine; Hanken, James

    2015-01-01

    The impressive morphological diversification of vertebrates was achieved in part by innovation and modification of the pharyngeal skeleton. Extensive fate mapping in amniote models has revealed a primarily cranial neural crest derivation of the pharyngeal skeleton. Although comparable fate maps of amphibians produced over several decades have failed to document a neural crest derivation of ventromedial elements in these vertebrates, a recent report provides evidence of a mesodermal origin of one of these elements, basibranchial 2, in the axolotl. We used a transgenic labeling protocol and grafts of labeled cells between GFP+ and white embryos to derive a fate map that describes contributions of both cranial neural crest and mesoderm to the axolotl pharyngeal skeleton, and we conducted additional experiments that probe the mechanisms that underlie mesodermal patterning. Our fate map confirms a dual embryonic origin of the pharyngeal skeleton in urodeles, including derivation of basibranchial 2 from mesoderm closely associated with the second heart field. Additionally, heterotopic transplantation experiments reveal lineage restriction of mesodermal cells that contribute to pharyngeal cartilage. The mesoderm-derived component of the pharyngeal skeleton appears to be particularly sensitive to retinoic acid (RA): administration of exogenous RA leads to loss of the second basibranchial, but not the first. Neural crest was undoubtedly critical in the evolution of the vertebrate pharyngeal skeleton, but mesoderm may have played a central role in forming ventromedial elements, in particular. When and how many times during vertebrate phylogeny a mesodermal contribution to the pharyngeal skeleton evolved remain to be resolved. PMID:25963195

  6. Cooperative regulation of substrate stiffness and extracellular matrix proteins in skin wound healing of axolotls.

    PubMed

    Huang, Ting-Yu; Wu, Cheng-Han; Wang, Mu-Hui; Chen, Bo-Sung; Chiou, Ling-Ling; Lee, Hsuan-Shu

    2015-01-01

    Urodele amphibians (Ambystoma mexicanum), unique among vertebrates, can regenerate appendages and other body parts entirely and functionally through a scar-free healing process. The wound epithelium covering the amputated or damaged site forms early and is essential for initiating the subsequent regenerative steps. However, the molecular mechanism through which the wound reepithelializes during regeneration remains unclear. In this study, we developed an in vitro culture system that mimics an in vivo wound healing process; the biomechanical properties in the system were precisely defined and manipulated. Skin explants that were cultured on 2 to 50 kPa collagen-coated substrates rapidly reepithelialized within 10 to 15 h; however, in harder (1 GPa) and other extracellular matrices (tenascin-, fibronectin-, and laminin-coated environments), the wound epithelium moved slowly. Furthermore, the reepithelialization rate of skin explants from metamorphic axolotls cultured on a polystyrene plate (1 GPa) increased substantially. These findings afford new insights and can facilitate investigating wound epithelium formation during early regeneration using biochemical and mechanical techniques. PMID:25839038

  7. A potential wound-healing-promoting peptide from salamander skin.

    PubMed

    Mu, Lixian; Tang, Jing; Liu, Han; Shen, Chuanbin; Rong, Mingqiang; Zhang, Zhiye; Lai, Ren

    2014-09-01

    Although it is well known that wound healing proceeds incredibly quickly in urodele amphibians, such as newts and salamanders, little is known about skin-wound healing, and no bioactive/effector substance that contributes to wound healing has been identified from these animals. As a step toward understanding salamander wound healing and skin regeneration, a potential wound-healing-promoting peptide (tylotoin; KCVRQNNKRVCK) was identified from salamander skin of Tylototriton verrucosus. It shows comparable wound-healing-promoting ability (EC50=11.14 μg/ml) with epidermal growth factor (EGF; NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR) in a murine model of full-thickness dermal wound. Tylotoin directly enhances the motility and proliferation of keratinocytes, vascular endothelial cells, and fibroblasts, resulting in accelerated reepithelialization and granulation tissue formation in the wound site. Tylotoin also promotes the release of transforming growth factor β1 (TGF-β1) and interleukin 6 (IL-6), which are essential in the wound healing response. Gene-encoded tylotoin secreted in salamander skin is possibly an effector molecule for skin wound healing. This study may facilitate understanding of the cellular and molecular events that underlie quick wound healing in salamanders.

  8. Proteomic analysis of the skin from Chinese fire-bellied newt and comparison to Chinese giant salamander.

    PubMed

    Sun, Jingyan; Geng, Xiaofang; Guo, Jianlin; Zang, Xiayan; Li, Pengfei; Li, Deming; Xu, Cunshuan

    2016-09-01

    Animal skin that directly interfaces with the external environment has developed diverse adaptive functions to a variety of ecological conditions laden with pathogenic infection and physical harm. Amphibians exhibit various adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. Therefore, it is very necessary to explore the molecular basis of skin function and adaptation in amphibians. Currently, the studies on the molecular mechanisms of skin functions in anuran amphibians have been reported, but in urodele amphibians are rare. This study identified the skin proteomes of Chinese fire-bellied newt Cynops orientalis by a proteomic method, and compared the results to the skin proteomes of Chinese giant salamander Andrias davidianus obtained previously. A total of 452 proteins were identified in the newt skin by MALDI-TOF/MS, and functional annotation results by DAVID analysis showed that special functions such as wound healing, immune response, defense and respiration, were significantly enriched. Comparison results showed that the two species had a great difference in the aspects of protein kinds and abundance, and the highly expressed proteins may tightly correlate with living conditions. Moreover, the newt skin might have stronger immunity, but weaker respiration than the giant salamander skin to adapt to various living environments. This research provides a molecular basis for further studies on amphibian skin function and adaptation.

  9. Two distal-less related homeobox-containing genes expressed in regeneration blastemas of the newt.

    PubMed

    Beauchemin, M; Savard, P

    1992-11-01

    Urodeles, like the newt, are able to replace their limbs and tail following amputation by the formation of a blastema, a mass of proliferating mesenchymal cells originating from the tissue adjacent to the cut surface. As this capacity may involve genetic control, we investigated in adult tissues the expression of genes controlling embryonic development. We screened a newt cDNA library with a redundant oligonucleotide specific to the highly conserved third helix of the DNA-binding domain of homeobox genes. Five classes of cDNA have been isolated. We report the nucleotide sequence and the tissue distribution of two of them, NvHBox-4 and NvHBox-5. The amino acid sequences of both homeodomains are highly homologous (83 and 87% identity) to distal-less, a Drosophila homeobox gene expressed during the development of appendages. NvHBox-4 and NvHBox-5 express respectively 2.8 and 2 kb transcripts. The pattern of expression of both genes is identical in adult tissues of the newt. Polyadenylated transcripts are detectable in the forelimbs, hindlimbs, the tail, flank, and brain as well as in limb and tail blastemas. Analysis of dissected tissue from the hindlimbs indicated that the expression of both genes is restricted to the skin. This work is a first step toward understanding the possible relation between sustained expression of homeobox-containing genes in adult newt tissues and regeneration potential.

  10. Proteomic analysis of the skin from Chinese fire-bellied newt and comparison to Chinese giant salamander.

    PubMed

    Sun, Jingyan; Geng, Xiaofang; Guo, Jianlin; Zang, Xiayan; Li, Pengfei; Li, Deming; Xu, Cunshuan

    2016-09-01

    Animal skin that directly interfaces with the external environment has developed diverse adaptive functions to a variety of ecological conditions laden with pathogenic infection and physical harm. Amphibians exhibit various adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. Therefore, it is very necessary to explore the molecular basis of skin function and adaptation in amphibians. Currently, the studies on the molecular mechanisms of skin functions in anuran amphibians have been reported, but in urodele amphibians are rare. This study identified the skin proteomes of Chinese fire-bellied newt Cynops orientalis by a proteomic method, and compared the results to the skin proteomes of Chinese giant salamander Andrias davidianus obtained previously. A total of 452 proteins were identified in the newt skin by MALDI-TOF/MS, and functional annotation results by DAVID analysis showed that special functions such as wound healing, immune response, defense and respiration, were significantly enriched. Comparison results showed that the two species had a great difference in the aspects of protein kinds and abundance, and the highly expressed proteins may tightly correlate with living conditions. Moreover, the newt skin might have stronger immunity, but weaker respiration than the giant salamander skin to adapt to various living environments. This research provides a molecular basis for further studies on amphibian skin function and adaptation. PMID:27343457

  11. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Phan, Anne Q; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V; Gardiner, David M

    2015-08-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position-specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position-specific, developmental-stage-specific, and heparan sulfate-dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals. PMID:27499874

  12. Dual embryonic origin and patterning of the pharyngeal skeleton in the axolotl (Ambystoma mexicanum).

    PubMed

    Sefton, Elizabeth M; Piekarski, Nadine; Hanken, James

    2015-01-01

    The impressive morphological diversification of vertebrates was achieved in part by innovation and modification of the pharyngeal skeleton. Extensive fate mapping in amniote models has revealed a primarily cranial neural crest derivation of the pharyngeal skeleton. Although comparable fate maps of amphibians produced over several decades have failed to document a neural crest derivation of ventromedial elements in these vertebrates, a recent report provides evidence of a mesodermal origin of one of these elements, basibranchial 2, in the axolotl. We used a transgenic labeling protocol and grafts of labeled cells between GFP+ and white embryos to derive a fate map that describes contributions of both cranial neural crest and mesoderm to the axolotl pharyngeal skeleton, and we conducted additional experiments that probe the mechanisms that underlie mesodermal patterning. Our fate map confirms a dual embryonic origin of the pharyngeal skeleton in urodeles, including derivation of basibranchial 2 from mesoderm closely associated with the second heart field. Additionally, heterotopic transplantation experiments reveal lineage restriction of mesodermal cells that contribute to pharyngeal cartilage. The mesoderm-derived component of the pharyngeal skeleton appears to be particularly sensitive to retinoic acid (RA): administration of exogenous RA leads to loss of the second basibranchial, but not the first. Neural crest was undoubtedly critical in the evolution of the vertebrate pharyngeal skeleton, but mesoderm may have played a central role in forming ventromedial elements, in particular. When and how many times during vertebrate phylogeny a mesodermal contribution to the pharyngeal skeleton evolved remain to be resolved.

  13. Skin shedding and tissue regeneration in African spiny mice (Acomys).

    PubMed

    Seifert, Ashley W; Kiama, Stephen G; Seifert, Megan G; Goheen, Jacob R; Palmer, Todd M; Maden, Malcolm

    2012-09-27

    Evolutionary modification has produced a spectrum of animal defence traits to escape predation, including the ability to autotomize body parts to elude capture. After autotomy, the missing part is either replaced through regeneration (for example, in urodeles, lizards, arthropods and crustaceans) or permanently lost (such as in mammals). Although most autotomy involves the loss of appendages (legs, chelipeds, antennae or tails, for example), skin autotomy can occur in certain taxa of scincid and gekkonid lizards. Here we report the first demonstration of skin autotomy in Mammalia (African spiny mice, Acomys). Mechanical testing showed a propensity for skin to tear under very low tension and the absence of a fracture plane. After skin loss, rapid wound contraction was followed by hair follicle regeneration in dorsal skin wounds. Notably, we found that regenerative capacity in Acomys was extended to ear holes, where the mice exhibited complete regeneration of hair follicles, sebaceous glands, dermis and cartilage. Salamanders capable of limb regeneration form a blastema (a mass of lineage-restricted progenitor cells) after limb loss, and our findings suggest that ear tissue regeneration in Acomys may proceed through the assembly of a similar structure. This study underscores the importance of investigating regenerative phenomena outside of conventional model organisms, and suggests that mammals may retain a higher capacity for regeneration than was previously believed. As re-emergent interest in regenerative medicine seeks to isolate molecular pathways controlling tissue regeneration in mammals, Acomys may prove useful in identifying mechanisms to promote regeneration in lieu of fibrosis and scarring.

  14. Reintegration of the regenerated and the remaining tissues during joint regeneration in the newt Cynops pyrrhogaster

    PubMed Central

    Inoue, Takeshi; Yamada, Shigehito

    2015-01-01

    Abstract Urodele amphibians, such as newts, can regenerate a functional limb, including joints, after amputation at any level along the proximal−distal axis of the limb. The blastema can regenerate the limb morphology largely independently of the stump after proximal−distal identity has been established, but the remaining and regenerated tissues must be structurally reintegrated (matched in size and shape). Here we used newt joint regeneration as a model to investigate reintegration, because a functionally interlocking joint requires structural integration between its opposing skeletal elements. After forelimbs were amputated at the elbow joint, the joint was regenerated between the remaining and regenerated skeletal elements. The regenerated cartilage was thick around the amputated joint to make a reciprocally interlocking joint structure with the remaining bone. Furthermore, during regeneration, the extracellular matrix of the remaining tissues was lost, suggesting that the remaining tissues might contribute to the morphogenesis of regenerating cartilage. Our results showed that the area of the regenerated cartilage matched the area of the apposed remaining cartilage, thus contributing to formation of a functional structure. PMID:27499865

  15. Ectopic blastema induction by nerve deviation and skin wounding: a new regeneration model in Xenopus laevis

    PubMed Central

    Mitogawa, Kazumasa; Hirata, Ayako; Moriyasu, Miyuki; Makanae, Aki; Miura, Shinichirou; Endo, Tetsuya

    2014-01-01

    Abstract Recently, the accessory limb model (ALM) has become an alternative study system for limb regeneration studies in axolotls instead of using an amputated limb. ALM progresses limb regeneration study in axolotls because of its advantages. To apply and/or to compare knowledge in axolotl ALM studies to other vertebrates is a conceivable next step. First, Xenopus laevis, an anuran amphibian, was investigated. A Xenopus frog has hypomorphic regeneration ability. Its regeneration ability has been considered intermediate between that of non‐regenerative higher vertebrates and regenerative urodele amphibians. Here, we successfully induced an accessory blastema in Xenopus by skin wounding and rerouting of brachial nerve bundles to the wound site, which is the regular ALM surgery. The induced Xenopus ALM blastemas have limited regenerative potential compared with axolotl ALM blastemas. Comparison of ALM blastemas from species with different regenerative potentials may facilitate the identification of the novel expression programs necessary for the formation of cartilage and other tissues during limb regeneration. PMID:27499859

  16. TALEN‐mediated gene editing of the thrombospondin‐1 locus in axolotl

    PubMed Central

    Kuo, Tzu‐Hsing; Kowalko, Johanna E.; DiTommaso, Tia; Nyambi, Mandi; Montoro, Daniel T.; Essner, Jeffrey J.

    2015-01-01

    Abstract Loss‐of‐function genetics provides strong evidence for a gene's function in a wild‐type context. In many model systems, this approach has been invaluable for discovering the function of genes in diverse biological processes. Axolotls are urodele amphibians (salamanders) with astonishing regenerative abilities, capable of regenerating entire limbs, portions of the tail (including spinal cord), heart, and brain into adulthood. With their relatively short generation time among salamanders, they offer an outstanding opportunity to interrogate natural mechanisms for appendage and organ regeneration provided that the tools are developed to address these long‐standing questions. Here we demonstrate targeted modification of the thrombospondin‐1 (tsp‐1) locus using transcription‐activator‐like effector nucleases (TALENs) and identify a role of tsp‐1 in recruitment of myeloid cells during limb regeneration. We find that while tsp‐1‐edited mosaic animals still regenerate limbs, they exhibit a reduced subepidermal collagen layer in limbs and an increased number of myeloid cells within blastemas. This work presents a protocol for generating and genotyping mosaic axolotls with TALEN‐mediated gene edits. PMID:27499866

  17. The regeneration blastema of lizards: an amniote model for the study of appendage replacement

    PubMed Central

    Gilbert, E. A. B.; Delorme, S. L.

    2015-01-01

    Abstract Although amniotes (reptiles, including birds, and mammals) are capable of replacing certain tissues, complete appendage regeneration is rare. Perhaps the most striking example is the lizard tail. Tail loss initiates a spontaneous epimorphic (blastema‐mediated) regenerative program, resulting in a fully functional but structurally non‐identical replacement. Here we review lizard tail regeneration with a particular focus on the blastema. In many lizards, the original tail has evolved a series of fracture planes, anatomical modifications that permit the tail to be self‐detached or autotomized. Following tail loss, the wound site is covered by a specialized wound epithelium under which the blastema develops. An outgrowth of the spinal cord, the ependymal tube, plays a key role in governing growth (and likely patterning) of the regenerate tail. In some species (e.g., geckos), the blastema forms as an apical aggregation of proliferating cells, similar to that of urodeles and teleosts. For other species (e.g., anoles) the identification of a proliferative blastema is less obvious, suggesting an unexpected diversity in regenerative mechanisms among tail‐regenerating lizards. PMID:27499867

  18. Conservation of position-specific gene expression in axolotl limb skin.

    PubMed

    Satoh, Akira; Makanae, Aki

    2014-01-01

    Urodele amphibians can regenerate their limbs after amputation. After amputation, undifferentiated cells appear on the amputation plane and form regeneration blastema. A limb blastema recreates a complete replica of the original limb. It is well known that disturbance of the location of limb tissues prior to amputation perturbs limb patterning, suggesting that different intact limb tissues carry different location information despite their identical appearance. The cause of such differences in intact tissues remains unknown. In this study, we found that Lmx1b, Tbx2, and Tbx3 genes, which are expressed in developing limb in a region specific manner, remained detectable in a mature axolotl limb. Furthermore, those position-specific gene expression patterns were conserved in mature limbs. Treatment with retinoic acid (RA), which is known to have ventralizing activity, changed Lmx1b expression in intact dorsal skin and dorsal character to ventral, indicating that conserved Lmx1b expression was due to the dorsal character and not leaky gene expression. Furthermore, we found that such conserved gene expression was rewritable in regeneration blastemas. These results suggest that axolotl limb cells can recognize their locations and maintain limbness via conserved expression profiles of developmental genes. PMID:24410490

  19. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease.

    PubMed

    Flowers, G Parker; Timberlake, Andrew T; McLean, Kaitlin C; Monaghan, James R; Crews, Craig M

    2014-05-01

    Among tetrapods, only urodele salamanders, such as the axolotl Ambystoma mexicanum, can completely regenerate limbs as adults. The mystery of why salamanders, but not other animals, possess this ability has for generations captivated scientists seeking to induce this phenomenon in other vertebrates. Although many recent advances in molecular biology have allowed limb regeneration and tissue repair in the axolotl to be investigated in increasing detail, the molecular toolkit for the study of this process has been limited. Here, we report that the CRISPR-Cas9 RNA-guided nuclease system can efficiently create mutations at targeted sites within the axolotl genome. We identify individual animals treated with RNA-guided nucleases that have mutation frequencies close to 100% at targeted sites. We employ this technique to completely functionally ablate EGFP expression in transgenic animals and recapitulate developmental phenotypes produced by loss of the conserved gene brachyury. Thus, this advance allows a reverse genetic approach in the axolotl and will undoubtedly provide invaluable insight into the mechanisms of salamanders' unique regenerative ability. PMID:24764077

  20. Genomics of a metamorphic timing QTL: met1 maps to a unique genomic position and regulates morph and species-specific patterns of brain transcription.

    PubMed

    Page, Robert B; Boley, Meredith A; Kump, David K; Voss, Stephen R

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation. PMID:23946331

  1. Mapping hematopoiesis in a fully regenerative vertebrate: the axolotl.

    PubMed

    Lopez, David; Lin, Li; Monaghan, James R; Cogle, Christopher R; Bova, Frank J; Maden, Malcolm; Scott, Edward W

    2014-08-21

    Hematopoietic stem cell (HSC)-derived cells are involved in wound healing responses throughout the body. Unfortunately for mammals, wound repair typically results in scarring and nonfunctional reparation. Among vertebrates, none display such an extensive ability for adult regeneration as urodele amphibians, including 1 of the more popular models: the axolotl. However, a lack of knowledge of axolotl hematopoiesis hinders the use of this animal for the study of hematopoietic cells in scar-free wound healing and tissue regeneration. We used white and cytomegalovirus:green fluorescent protein(+) transgenic white axolotl strains to map sites of hematopoiesis and develop hematopoietic cell transplant methodology. We also established a fluorescence-activated cell sorter enrichment technique for major blood lineages and colony-forming unit assays for hematopoietic progenitors. The liver and spleen are both active sites of hematopoiesis in adult axolotls and contain transplantable HSCs capable of long-term multilineage blood reconstitution. As in zebrafish, use of the white axolotl mutant allows direct visualization of homing, engraftment, and hematopoiesis in real time. Donor-derived hematopoiesis occurred for >2 years in recipients generating stable hematopoietic chimeras. Organ segregation, made possible by embryonic microsurgeries wherein halves of 2 differently colored embryos were joined, indicate that the spleen is the definitive site of adult hematopoiesis. PMID:24802774

  2. Configural prey recognition by the praying mantis, Sphodromantis lineola (Burr.); effects of size and direction of movement.

    PubMed

    Prete, F R

    1990-01-01

    The visually released, predatory behaviors of approaching and striking at prey by the praying mantis, Sphodromantis lineola (Burr.), were measured in response to various moving, three-dimensional lure configurations. Lures varied in length (3, 7, 15, 25, 35, 50, 70 or 100 mm), thickness (i.e. width and height: 3, 7, 10, 15, 20 or 30 mm) and direction (approaching or moving orthogonally). Each of these three parameters has a significant effect on whether adult female S. lineola recognize a moving object as potential prey. Approaching lures are strong releasers of predatory behaviors when they are 3-35 mm long and 10 mm thick. Orthogonally moving lures, although overall poor releasers of predatory behavior, are at their strongest when 3-35 mm long but only 3 mm thick. These response patterns are similar to those for some anurans and urodeles, which also hunt small invertebrates with analogous behavioral repertoires. This suggests that these groups may have evolved similar algorithms for identifying prey in spite of dissimilar neural organization. PMID:2285856

  3. Better than fish on land? Hearing across metamorphosis in salamanders.

    PubMed

    Christensen, Christian Bech; Lauridsen, Henrik; Christensen-Dalsgaard, Jakob; Pedersen, Michael; Madsen, Peter Teglberg

    2015-03-01

    Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early 'lepospondyl' microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears.

  4. Proximodistal patterning during limb regeneration.

    PubMed

    Echeverri, Karen; Tanaka, Elly M

    2005-03-15

    Regeneration is an ability that has been observed extensively throughout metazoan phylogeny. Amongst vertebrates, the urodele amphibians stand out for their exceptional capacity to regenerate body parts such as the limb. During this process, only the missing portion of the limb is precisely replaced--amputation in the upper arm results in regeneration of the entire limb, while amputation at the wrist produces a hand. Limb regeneration occurs through the formation of a local proliferative zone called the blastema. Here, we examine how proximodistal identity is established in the blastema. Using cell marking and transplantation experiments, we show that distal identities have already been established in the earliest stages of blastemas examined. Transplantation of cells into new environments is not sufficient to respecify cell identity. However, overexpression of the CD59, a cell surface molecule previously implicated in proximodistal identity during limb regeneration, causes distal blastema cells to translocate to a more proximal location and causes defects in the patterning of the distal elements of the regenerate. We suggest a model for the limb regeneration blastema where by 4 days post-amputation the blastema is already divided into distinct growth zones; the cells of each zone are already specified to give rise to upper arm, lower arm, and hand. PMID:15733667

  5. Sonic hedgehog (shh) expression in developing and regenerating axolotl limbs.

    PubMed

    Torok, M A; Gardiner, D M; Izpisúa-Belmonte, J C; Bryant, S V

    1999-07-01

    Sonic hedgehog (shh) expression is detectable in the posterior mesenchyme of many developing vertebrate limbs. We have isolated an RT-PCR fragment from the axolotl, Ambystoma mexicanum, that has high identity to other vertebrate shh genes. We describe the localization of this transcript during development and regeneration and in response to tissue grafts and retinoic acid (RA) exposure in the axolotl. Even though axolotl digits show a reversed polarity of differentiation (anterior [A] to posterior [P]) when compared to other tetrapods (P to A), shh is nevertheless expressed on the posterior margin of developing and regenerating limb buds. When A cells are grafted adjacent to P cells, an ectopic domain of shh is induced. Exposure to retinoic acid (RA), a molecule known to alter pattern in all three limb axes in urodeles, results in ectopic expression of shh in anterior cells of the regeneration blastema. Prior to this induced expression in response to RA, there is an earlier response by the endogenous domain of shh, which is downregulated within the first few hours of exposure. PMID:10404648

  6. Regulative germ cell specification in axolotl embryos: a primitive trait conserved in the mammalian lineage.

    PubMed

    Johnson, Andrew D; Crother, Brian; White, Mary E; Patient, Roger; Bachvarova, Rosemary F; Drum, Matthew; Masi, Thomas

    2003-08-29

    How germ cells are specified in the embryos of animals has been a mystery for decades. Unlike most developmental processes, which are highly conserved, embryos specify germ cells in very different ways. Curiously, in mouse embryos germ cells are specified by extracellular signals; they are not autonomously specified by maternal germ cell determinants (germ plasm), as are the germ cells in most animal model systems. We have developed the axolotl (Ambystoma mexicanum), a salamander, as an experimental system, because classic experiments have shown that the germ cells in this species are induced by extracellular signals in the absence of germ plasm. Here, we provide evidence that the germ cells in axolotls arise from naive mesoderm in response to simple inducing agents. In addition, by analysing the sequences of axolotl germ-cell-specific genes, we provide evidence that mice and urodele amphibians share a common mechanism of germ cell development that is ancestral to tetrapods. Our results imply that germ plasm, as found in species such as frogs and teleosts, is the result of convergent evolution. We discuss the evolutionary implications of our findings. PMID:14511484

  7. Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-01-15

    The ability of animals to repair tissue damage is widespread and impressive. Among tissues, the repair and remodeling of bone occurs during growth and in response to injury; however, loss of bone above a threshold amount is not regenerated, resulting in a "critical-size defect" (CSD). The development of therapies to replace or regenerate a CSD is a major focus of research in regenerative medicine and tissue engineering. Adult urodeles (salamanders) are unique in their ability to regenerate complex tissues perfectly, yet like mammals do not regenerate a CSD. We report on an experimental model for the regeneration of a CSD in the axolotl (the Excisional Regeneration Model) that allows for the identification of signals to induce fibroblast dedifferentiation and skeletal regeneration. This regenerative response is mediated in part by BMP signaling, as is the case in mammals; however, a complete regenerative response requires the induction of a population of undifferentiated, regeneration-competent cells. These cells can be induced by signaling from limb amputation to generate blastema cells that can be grafted to the wound, as well as by signaling from a nerve and a wound epithelium to induce blastema cells from fibroblasts within the wound environment. PMID:19944088

  8. Lens induction in axolotls: comparison with inductive signaling mechanisms in Xenopus laevis.

    PubMed

    Servetnick, M D; Cook, T L; Grainger, R M

    1996-08-01

    Amphibian lens induction is an embryonic process whose broad outlines are conserved between anurans and urodeles; however, it has been argued that some aspects of this process differ significantly between even closely related species. Classical embryologists concluded that in some species direct contact between the optic vesicle and ectoderm was both necessary and sufficient to induce the ectoderm to form a lens, while in other species tissues other than the optic vesicle induce lens formation. Recent studies of lens induction in Xenopus have argued that lens induction may be more conserved evolutionarily than was previously thought and that the different conclusions reached in the classical literature may be due more to experimental methodology than to actual differences in the process of lens induction. We have tested this hypothesis by examining the timing of lens induction in the axolotl and the ability of various tissues to induce lenses in explant cultures. We find that, despite the evolutionary divergence between Xenopus and Ambystoma, the mechanism of lens specification is substantially similar in the two species. These results support the hypothesis that the mechanism of lens induction is evolutionarily conserved among amphibians. PMID:8877449

  9. Cloning and analysis of axolotl ISL2 and LHX2 LIM-homeodomain transcription factors.

    PubMed

    Showalter, Aaron D; Yaden, Benjamin C; Chernoff, Ellen A G; Rhodes, Simon J

    2004-03-01

    We cloned and characterized the ISL2 and LHX2 LIM-homeodomain transcription factors of the Mexican salamander, or axolotl, Ambystoma mexicanum. Using a degenerate PCR approach, partial cDNAs representing five LIM-homeodomain genes were cloned, indicating conservation of this class of transcription factors in urodeles. Full-length cDNAs for Isl2 and Lhx2 were identified and sequenced. The predicted ISL2 and LHX2 proteins are well conserved, especially in the LIM and DNA-binding domains. The Isl2 and Lhx2 genes are expressed at all examined stages of embryogenesis and display tissue-restricted expression patterns in adults. In functional tests, axolotl LHX2 was inactive compared to homologous mammalian factors and adopted unusual DNA/protein complexes. However, axolotl ISL2 bound and induced transcription from the rat insulin gene. These experiments demonstrate conservation of key developmental regulatory proteins in salamanders and will allow future studies of their potential roles in the molecular regulation of tissue regeneration in such species. PMID:15048808

  10. Tongue and taste organ development in the ontogeny of direct-developing salamander Plethodon cinereus (Lissamphibia: Plethodontidae).

    PubMed

    Budzik, Karolina A; Żuwała, Krystyna; Kerney, Ryan

    2016-07-01

    The latest research on direct developing caecilian and anuran species indicate presence of only one generation of taste organs during their ontogeny. This is distinct from indirect developing batrachians studied thus far, which possess taste buds in larvae and anatomically distinct taste discs in metamorphs. This study is a description of the tongue and taste organ morphology and development in direct developing salamander Plethodon cinereus (Plethodontidae) using histology and electron microscopy techniques. The results reveal two distinct stages tongue morphology (primary and secondary), similar to metamorphic urodeles, although only one stage of taste organ morphology. Taste disc sensory zones emerge on the surface of the oropharyngeal epithelium by the end of embryonic development, which coincides with maturation of the soft tongue. Taste organs occur in the epithelium of the tongue pad (where they are situated on the dermal papillae), the palate and the inner surface of the mandible and the maxilla. Plethodon cinereus embryos only possess taste disc type taste organs. Similar to the direct developing anuran Eleutherodactylus coqui (Eleutherodactylidae), these salamanders do not recapitulate larval taste bud morphology as an embryo. The lack of taste bud formation is probably a broadly distributed feature characteristic to direct developing batrachians. J. Morphol. 277:906-915, 2016. © 2016 Wiley Periodicals, Inc. PMID:27087010

  11. Genomics of a Metamorphic Timing QTL: met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription

    PubMed Central

    Page, Robert B.; Boley, Meredith A.; Kump, David K.; Voss, Stephen R.

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation. PMID:23946331

  12. IGF signaling between blastema and wound epidermis is required for fin regeneration.

    PubMed

    Chablais, Fabian; Jazwinska, Anna

    2010-03-01

    In mammals, the loss of a limb is irreversible. By contrast, urodele amphibians and teleost fish are capable of nearly perfect regeneration of lost appendages. This ability depends on direct interaction between the wound epithelium and mesenchymal progenitor cells of the blastema. It has been known for decades that contact between the wound epithelium and the underlying blastema is essential for successful regeneration. However, the underlying mechanisms are poorly understood. Here, we show that upon amputation the blastema induces expression of the ligand Igf2b, which then activates IGF signaling specifically in cells of the adjacent apical epithelium. Inhibition of IGF signaling by either morpholino antisense technology, or by specific chemical inhibitors of Igf1 receptor function NVP-AEW541 and NVP-ADW742, impairs fin regeneration. At the cellular level, this block in regeneration is reflected by a lack of the distinctive basal epithelium, increased apoptosis in the wound epidermis and reduced proliferation of blastema cells. Furthermore, induction of the blastemal and wound epidermal markers cannot be supported in the absence of IGF signaling. These data provide evidence that Igf2b expressed in the blastema promotes the properties of the adjacent wound epidermis, which subsequently are necessary for blastema function. Thus, IGF signaling upregulated upon fin amputation represents a signal from the blastema to the wound epithelium, a crucial step in appendage regeneration.

  13. Ultrastructure of the mature spermatozoa of caecilians (Amphibia: Gymnophiona).

    PubMed

    Scheltinga, David M; Wilkinson, Mark; Jamieson, Barrie G M; Oommen, Oommen V

    2003-11-01

    The spermatozoa of Gymnophiona show the following autapomorphies: 1) penetration of the distal centriole by the axial fiber; 2) presence of an acrosomal baseplate; 3) presence of an acrosome seat (flattened apical end of nucleus); and 4) absence of juxta-axonemal fibers. The wide separation of the plasma membrane bounding the undulating membrane is here also considered to be apomorphic. Three plesiomorphic spermatozoal characters are recognized that are not seen in other Amphibia but occur in basal amniotes: 1) presence of mitochondria with a delicate array of concentric cristae (concentric cristae of salamander spermatozoa differ in lacking the delicate array); 2) presence of peripheral dense fibers associated with the triplets of the distal centriole; and 3) presence of a simple annulus (a highly modified, elongate annulus is present in salamander sperm). The presence of an endonuclear canal containing a perforatorium is a plesiomorphic feature of caecilian spermatozoa that is shared with urodeles, some basal anurans, sarcopterygian fish, and some amniotes. Spermatozoal synapomorphies are identified for 1) the Uraeotyphlidae and Ichthyophiidae, and 2) the Caeciliidae and Typhlonectidae, suggesting that the members of each pair of families are more closely related to each other than to other caecilians. Although caecilian spermatozoa exhibit the clear amphibian synapomorphy of the unilateral location of the undulating membrane and its axial fiber, they have no apomorphic characters that suggest a closer relationship to either the Urodela or Anura. PMID:14518011

  14. Evolution of the red nucleus and rubrospinal tract.

    PubMed

    ten Donkelaar, H J

    1988-01-01

    A red nucleus, defined by its relative position in the tegmentum mesencephali, its contralateral rubrospinal or rubrobulbar projections and by crossed cerebellar afferents, is found in terrestrial vertebrates and certain rays. A crossed rubrospinal tract occurs in anurans, limbed urodeles and reptiles, birds and mammals, but is apparently absent in boid snakes, caecilians and sharks. A distinct rubrospinal tract is found in certain rays which use their enlarged pectoral fins for locomotion. A crossed tegmentospinal tract, possibly a rubrospinal tract, is found in lungfishes. Although evidence was presented for a rubrospinal tract in more advanced snakes, the available experimental data in lower vertebrates suggest that the presence of a rubrospinal tract is related to the presence of limbs or limb-like structures. In the connectivity of the red nucleus in terrestrial vertebrates, 'levels' of complexity can be distinguished, paralleled by the development of the cerebellum. These 'grades of organization' are probably related to the type of motor performance the particular terrestrial vertebrates are capable of. PMID:3289562

  15. Identification and localization of neurohypophysial peptides in the brain of a caecilian amphibian, Typhlonectes natans (Amphibia: Gymnophiona).

    PubMed

    Hilscher-Conklin, C; Conlon, J M; Boyd, S K

    1998-05-01

    The amphibian order Gymnophiona contains more than 150 different species of caecilians. The characterization and distribution of neurohypophysial peptides, however, has not been described for any member of this order. By using high-performance liquid chromatography, radioimmunoassay, and mass spectrometry, we identified the peptide arginine vasotocin (AVT) in brain and pituitary extracts from the caecilian Typhlonectes natans. By using immunocytochemistry, we found five populations of AVT-immunoreactive (AVT-ir) cells in the brain of T. natans. AVT-ir cell bodies were located in the preoptic area, amygdala pars medialis, ventral thalamus, dorsal hypothalamic nucleus, and nucleus of the solitary tract. AVT-ir fibers and terminal fields were widespread. We also identified a mesotocin-like peptide. The distribution of this peptide in the brain of T. natans was more restricted than the distribution of AVT. Mesotocin-like-immunoreactive cell bodies were located almost exclusively in the preoptic area, with only a few other cells located in the amygdala pars medialis. This caecilian species, therefore, possesses neurohypophysial peptides that are similar in their structure and distribution to the peptides found in anuran and urodele amphibian orders. PMID:9552122

  16. Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, Dermophis mexicanus (Amphibia: Gymnophiona).

    PubMed

    González, Agustín; López, Jesús M; Sánchez-Camacho, Cristina; Marín, Oscar

    2002-07-01

    The organization of the cholinergic system in the brain of anuran and urodele amphibians was recently studied, and significant differences were noted between both amphibian orders. However, comparable data are not available for the third order of amphibians, the limbless gymnophionans (caecilians). To further assess general and derived features of the cholinergic system in amphibians, we have investigated the distribution of choline acetyltransferase immunoreactive (ChAT-ir) cell bodies and fibers in the brain of the gymnophionan Dermophis mexicanus. This distribution showed particular features of gymnophionans such as the existence of a particularly large cholinergic population in the striatum, the presence of ChAT-ir cells in the mesencephalic tectum, and the organization of the cranial nerve motor nuclei. These peculiarities probably reflect major adaptations of gymnophionans to a fossorial habit. Comparison of our results with those in other vertebrates, including a segmental approach to correlate cell populations across species, shows that the general pattern of organization of cholinergic systems in vertebrates can be modified in certain species in response to adaptative processes that lead to morphological and behavioral modifications of members of a given class of vertebrates, as shown for gymnophionans. PMID:12115707

  17. Distribution of NADPH-diaphorase/nitric oxide synthase in the brain of the caecilian Dermophis mexicanus (amphibia: gymnophiona): comparative aspects in amphibians.

    PubMed

    González, Augustín; Moreno, Nerea; López, Jesús M

    2002-01-01

    The organization of nitrergic systems in the brains of anuran and urodele amphibians was recently studied and significant differences were noted between both amphibian orders. However, comparable data are not available for the third order of amphibians, the gymnophionans (caecilians). In the present study we have investigated the distribution of neuronal elements that express nitric oxide synthase (NOS) in the brain of the gymnophionan amphibian Dermophis mexicanus by means of immunohistochemistry with specific antibodies against NOS and enzyme histochemistry for NADPH-diaphorase. Both techniques yielded identical results and were equally suitable to demonstrate the nitrergic system. In addition, they were useful tools in the identification of cell groups and brain structures, otherwise indistinct in the brains of caecilians. The distribution of nitrergic structures observed in Dermophis conforms to the overall amphibian pattern but numerous distinct peculiarities were also noted. These included a dense innervation of the olfactory bulbs but a lack of reactivity in olfactory and vomeronasal fibers and glomeruli. A large population of nitrergic cells in the striatum and the presence of thalamic neurons, as well as the specific distribution of nitrergic cells in the isthmic region, are some of the differential features in the gymnophionan brain. Given the variability among species in the same class of vertebrates any discussion including amphibians should also include evidence for gymnophionans. PMID:12373060

  18. Epimorphic regeneration approach to tissue replacement in adult mammals

    PubMed Central

    Agrawal, Vineet; Johnson, Scott A.; Reing, Janet; Zhang, Li; Tottey, Stephen; Wang, Gang; Hirschi, Karen K.; Braunhut, Susan; Gudas, Lorraine J.; Badylak, Stephen F.

    2009-01-01

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor and stem cells to a site of injury. Bioactive molecules resulting from degradation of extracellular matrix (ECM) have been shown to recruit a variety of progenitor and stem cells in vitro in adult mammals. The ability to recruit multipotential cells to the site of injury by in vivo administration of chemotactic ECM degradation products in a mammalian model of digit amputation was investigated in the present study. Adult, 6- to 8-week-old C57/BL6 mice were subjected to midsecond phalanx amputation of the third digit of the right hind foot and either treated with chemotactic ECM degradation products or left untreated. At 14 days after amputation, mice treated with ECM degradation products showed an accumulation of heterogeneous cells that expressed markers of multipotency, including Sox2, Sca1, and Rex1 (Zfp42). Cells isolated from the site of amputation were capable of differentiation along neuroectodermal and mesodermal lineages, whereas cells isolated from control mice were capable of differentiation along only mesodermal lineages. The present findings demonstrate the recruitment of endogenous stem cells to a site of injury, and/or their generation/proliferation therein, in response to ECM degradation products. PMID:19966310

  19. Turning the fate of reprogramming cells from retinal disorder to regeneration by Pax6 in newts.

    PubMed

    Casco-Robles, Martin Miguel; Islam, Md Rafiqul; Inami, Wataru; Tanaka, Hibiki Vincent; Kunahong, Ailidana; Yasumuro, Hirofumi; Hanzawa, Shiori; Casco-Robles, Roman Martin; Toyama, Fubito; Maruo, Fumiaki; Chiba, Chikafumi

    2016-09-19

    The newt, a urodele amphibian, has an outstanding ability- even as an adult -to regenerate a functional retina through reprogramming and proliferation of the retinal pigment epithelium (RPE) cells, even though the neural retina is completely removed from the eye by surgery. It remains unknown how the newt invented such a superior mechanism. Here we show that disability of RPE cells to regenerate the retina brings about a symptom of proliferative vitreoretinopathy (PVR), even in the newt. When Pax6, a transcription factor that is re-expressed in reprogramming RPE cells, is knocked down in transgenic juvenile newts, these cells proliferate but eventually give rise to cell aggregates that uniformly express alpha smooth muscle actin, Vimentin and N-cadherin, the markers of myofibroblasts which are a major component of the sub-/epi-retinal membranes in PVR. Our current study demonstrates that Pax6 is an essential factor that directs the fate of reprogramming RPE cells toward the retinal regeneration. The newt may have evolved the ability of retinal regeneration by modifying a mechanism that underlies the RPE-mediated retinal disorders.

  20. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells

    PubMed Central

    2012-01-01

    Background In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood. Results Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2+ cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2+ cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages. Conclusions Sox2+ cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2+ cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection. PMID:22537391

  1. Peculiarities of lens and tail regeneration detected in newts after spaceflight aboard Foton M3

    NASA Astrophysics Data System (ADS)

    Grigoryan, Eleonora N.; Almeida, Eduardo; Poplinskaya, Valentina; Novikova, Julia; Domaratskaya, Elena; Aleinikova, Karina; Souza, Kenneth; Skidmore, Mike; Grigoryan, Eleonora N.

    In September 2007 the joint, 12 day long experiment was carried out aboard Russian satellite Foton M3. The goal of the experiment was to study eye lens, tail and forelimb toe regeneration in adult 16 newts (Pl. waltl.) operated 10 days before taking-off. In spaceflight and synchronous ground control we used video recording, temperature and irradiation control, as well as constant availability of thymidine analog BrdU for its absorption via animals' skin. New techniques allowed us to analyze animals' behavior in hyperand microgravity periods of time, to take proper account of spaceflight factors, and measure accumulated pools of DNA-synthesizing cells in regenerating tissues. All tissue specimens obtained from animals were isolated in the day of landing and then prepared for morphological, immunochemical and molecular investigations. Synchronous control was shifted for two days and reproduced flight conditions except changes of gravity influence. As a result in flown animals as compared with synchronous ground control we found lens regeneration of 0.5-1 stage speeded up and an increased BrdU+ (S-phase) cell number in eye cornea, growth zone, limbus and newly forming lens. These features of regeneration were accompanied by an increase of FGF2 expression in eye growth zone and heat shock protein (HSP90) induction purely in retinal macroglial cells of regenerating eyes. Toe regeneration rate was equal and achieved the stage of accomplished healing of amputation area in both groups - "flown" and control animals. We found no essential differences in tail regeneration rate and tail regenerate sizes in the newts exposed to space and on ground. In both groups tail regeneration reached the stage IV-V when tail length and square were around 4.4 mm and 15.5 mm2, correspondingly. However we did observe remarkable changes of tail regenerate form and some of pigmentation. Computer morphometrical analysis showed that only in ground control animals the evident dorso

  2. Hemopoietic tissue in newts flown aboard Foton M3

    NASA Astrophysics Data System (ADS)

    Domaratskaya, Elena I.; Almeida, Eduardo; Butorina, Nina N.; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Poplinskaya, Valentina A.; Souza, Kenneth; Skidmore, Mike

    The effect of 12-day spaceflight aboard the Foton-M3 biosatellite on the hematopoietic tissue of P. waltl newts was studied. These animals used at the same time in regeneration experiments after lens and tail tip amputation. In flight and synchronous groups there were performed video recording, temperature and radiation monitoring and continuous contact (via skin) with thymidine analog BrdU. We took differential blood counts and assessed histologically the liver in the flight (F), basal (BC) and synchronous (SC)control groups of animals. In the peripheral blood, we identified neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Lymphocytes (L) and neutrophils (N) prevailed, accounting for about 60 and 20% of white blood cells, respectively. The spaceflight had no apparent effect on the differential blood count in the F group: neither the L and N contents nor the maturing to mature N - ratio differed from those in the control groups. No significant differences between F, SC and BC groups were observed with respect to the structure of hematopoietic areas and the liver morphology. As in Foton-M2, BrdU labeled cells revealed in blood as well as in the hemopoietic areas of the liver. However, in previous experiments performed at satellites Bion-10 and Foton-M2 the changes in peripheral blood contents were registered in operated F newts, and we supposed it could be the result of additive effects of spaceflight factors and stimulation of reparative potency and stress due to surgical operation. Possibly, the temperature conditions also may provide some influence on blood cell content of newts that belong to poikilothermic animals. Thus, in present experiment F and SC groups were reared in the same temperature regims, whereas it was nearly 3o C differences between SC and F groups exposed on Foton-M2. At the same time as it was found in experiments on Bion-11 and Foton-M2 spaceflight factors did not affect on differential blood counts of intact non

  3. The structure, rearrangement, and ontogenic expression of DB and JB gene segments of the Mexican axolotl T-cell antigen receptor beta chain (TCRB).

    PubMed

    Kerfourn, F; Charlemagne, J; Fellah, J S

    1996-01-01

    We sequenced a total of 189 independent rearrangements in which the VB7.1 element is associated with CB1 (99 clones) or CB2 (90 clones) isotypes of the T-cell receptor (TCR) beta chain in the Mexican axolotl. Three stages of development were analyzed: 2.5 months, 10 months, and 25 months. Three JB1 segments were associated with the VB-CB1 rearrangements and six JB2 segments with VB-CB2. As in other vertebrates, some amino acid positions were conserved in all Jbetas (e. g., Phe-108, Gly-109, Gly-111, Thr-112, and Val-116). Two 11 nucleotides DB-like sequences, differed by one (A or T) central residue and could be productively read in the three putative reading frames. Most of the DB1 and JB1 segments were in the VB-CB1 clones, and most of the DB2 and JB2 segments were in the VB-CB2 clones, suggesting that the TCRB locus is organized into independent DB-JB-CB clusters that used the same collection of VB segments. About 40% of the beta-chain VDJ junctions in 2.5-month-old larvae had N nucleotides, compared with about 73% in 10 - 25-month old animals. The beta-chain VDJ junctions had about 30% of defective rearrangements at all stages of development, which could be due to the slow rate of cell division in the axolotl lymphoid organs, and the large genome in this urodele. Many of the axolotl CDRbeta3 sequences deduced for in frame VDJ rearrangements are the same in animals of different origins. Such redundancy could be a statistical effect due to the small number of thymocytes in the developing axolotl, rather than to some bias due to junctional preferences.

  4. Position dependent expression of a homeobox gene transcript in relation to amphibian limb regeneration.

    PubMed Central

    Savard, P; Gates, P B; Brockes, J P

    1988-01-01

    Adult urodele amphibians such as the newt Notophthalmus viridescens are capable of regenerating their limbs and tail by formation of a blastema, a growth zone of mesenchymal progenitor cells. In an attempt to identify genes implicated in specification of the regenerate, we screened a newt forelimb blastema cDNA library with homeobox probes, and isolated and sequenced clones that identify a 1.8 kb polyadenylated transcript containing a homeobox. The transcript is derived from a single gene called NvHbox 1, the newt homologue of XIHbox 1 (Xenopus), HHO.c8 (human) and Hox-6.1 (mouse). The cDNA for the 1.8 kb transcript has two exons as determined by isolation and partial sequencing of a genomic clone. The expression of the transcript shows several interesting features in relation to limb regeneration: (i) Hybridization of Northern blots of poly(A)+ RNA from limb and tail and their respective blastemas shows that the transcript in limb tissues has exons 1 and 2, whereas a 1.8 kb transcript in tail tissues has only exon 2. (ii) The transcript is expressed in limbs of adult newt but not of adult Xenopus, raising the possibility that this contributes to an explanation of the loss of regenerative ability with maturation in adult anurans. (iii) The transcript is expressed at a higher level in a proximal (mid-humerus) blastema than in a distal one (mid-radius). When distal blastemas were proximalized by treatment with retinoic acid, no change in the level of the transcript was detected by Northern analysis at a single time point after amputation.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2907476

  5. Effects of Tail Clipping on Larval Performance and Tail Regeneration Rates in the Near Eastern Fire Salamander, Salamandra infraimmaculata.

    PubMed

    Segev, Ori; Polevikove, Antonina; Blank, Lior; Goedbloed, Daniel; Küpfer, Eliane; Gershberg, Anna; Koplovich, Avi; Blaustein, Leon

    2015-01-01

    Tail-tip clipping is a common technique for collecting tissue samples from amphibian larvae and adults. Surprisingly, studies of this invasive sampling procedure or of natural tail clipping--i.e., bites inflicted by predators including conspecifics--on the performance and fitness of aquatic larval stages of urodeles are scarce. We conducted two studies in which we assessed the effects of posterior tail clipping (~30 percent of tail) on Near Eastern fire salamander (Salamandra infraimmaculata) larvae. In a laboratory study, we checked regeneration rates of posterior tail-tip clipping at different ages. Regeneration rates were hump-shaped, peaking at the age of ~30 days and then decreasing. This variation in tail regeneration rates suggests tradeoffs in resource allocation between regeneration and somatic growth during early and advanced development. In an outdoor artificial pond experiment, under constant larval densities, we assessed how tail clipping of newborn larvae affects survival to, time to, and size at metamorphosis. Repeated measures ANOVA on mean larval survival per pond revealed no effect of tail clipping. Tail clipping had correspondingly no effect on larval growth and development expressed in size (mass and snout-vent length) at, and time to, metamorphosis. We conclude that despite the given variation in tail regeneration rates throughout larval ontogeny, clipping of 30% percent of the posterior tail area seems to have no adverse effects on larval fitness and survival. We suggest that future use of this imperative tool for the study of amphibian should take into account larval developmental stage during the time of application and not just the relative size of the clipped tail sample. PMID:26065683

  6. Two different network topologies yield bistability in models of mesoderm and anterior mesendoderm specification in amphibians.

    PubMed

    Brown, L E; King, J R; Loose, M

    2014-07-21

    Understanding the Gene Regulatory Networks (GRNs) that underlie development is a major question for systems biology. The establishment of the germ layers is amongst the earliest events of development and has been characterised in numerous model systems. The establishment of the mesoderm is best characterised in the frog Xenopus laevis and has been well studied both experimentally and mathematically. However, the Xenopus network has significant differences from that in mouse and humans, including the presence of multiple copies of two key genes in the network, Mix and Nodal. The axolotl, a urodele amphibian, provides a model with all the benefits of amphibian embryology but crucially only a single Mix and Nodal gene required for the specification of the mesoderm. Remarkably, the number of genes within the network is not the only difference. The interaction between Mix and Brachyury, two transcription factors involved in the establishment of the endoderm and mesoderm respectively, is not conserved. While Mix represses Brachyury in Xenopus, it activates Brachyury in axolotl. Thus, whilst the topology of the networks in the two species differs, both are able to form mesoderm and endoderm in vivo. Based on current knowledge of the structure of the mesendoderm GRN we develop deterministic models that describe the time evolution of transcription factors in a single axolotl cell and compare numerical simulations with previous results from Xenopus. The models are shown to have stable steady states corresponding to mesoderm and anterior mesendoderm, with the in vitro model showing how the concentration of Activin can determine cell fate, while the in vivo model shows that β-catenin concentration can determine cell fate. Moreover, our analysis suggests that additional components must be important in the axolotl network in the specification of the full range of tissues.

  7. Wound healing in mammals and amphibians: toward limb regeneration in mammals.

    PubMed

    Kawasumi, Aiko; Sagawa, Natsume; Hayashi, Shinichi; Yokoyama, Hitoshi; Tamura, Koji

    2013-01-01

    Mammalian fetal skin regenerates perfectly, but adult skin repairs by the formation of scar tissue. The cause of this imperfect repair by adult skin is not understood. In contrast, wounded adult amphibian (urodeles and anurans) skin is like mammalian fetal skin in that it repairs by regeneration, not scarring. Scar-free wound repair in adult Xenopus is associated with expression of the paired homeobox transcription factor Prx1 by mesenchymal cells of the wound, a feature shared by mesenchymal cells of the regeneration blastema of the axolotl limb. Furthermore, mesenchymal cells of Xenopus skin wounds that harbor the mouse Prx1-limb-enhancer as a transgene exhibit activation of the enhancer despite the fact that they are Xenopus cells, suggesting that the mouse Prx1 enhancer possesses all elements required for its activation in skin wound healing, even though activation of the same enhancer in the mouse is not seen in the wounded skin of an adult mouse. Elucidation of the role of the Prx1 gene in amphibian skin wound healing will help to clarify the molecular mechanisms of scarless wound healing. Shifting the molecular mechanism of wound repair in mammals to that of amphibians, including reactivation of the Prx1-limb-enhancer, will be an important clue to stimulate scarless wound repair in mammalian adult skin. Finding or creating Prx1-positive stem cells in adult mammal skin by activating the Prx1-limb-enhancer may be a fast and reliable way to provide for scarless skin wound repair, and even directly lead to limb regeneration in mammals.

  8. Light-dependent magnetic compass in Iberian green frog tadpoles

    NASA Astrophysics Data System (ADS)

    Diego-Rasilla, Francisco Javier; Luengo, Rosa Milagros; Phillips, John B.

    2010-12-01

    Here, we provide evidence for a wavelength-dependent effect of light on magnetic compass orientation in Pelophylax perezi (order Anura), similar to that observed in Rana catesbeiana (order Anura) and Notophthalmus viridescens (order Urodela), and confirm for the first time in an anuran amphibian that a 90° shift in the direction of magnetic compass orientation under long-wavelength light (≥500 nm) is due to a direct effect of light on the underlying magnetoreception mechanism. Although magnetic compass orientation in other animals (e.g., birds and some insects) has been shown to be influenced by the wavelength and/or intensity of light, these two amphibian orders are the only taxa for which there is direct evidence that the magnetic compass is light-dependent. The remarkable similarities in the light-dependent magnetic compasses of anurans and urodeles, which have evolved as separate clades for at least 250 million years, suggest that the light-dependent magnetoreception mechanism is likely to have evolved in the common ancestor of the Lissamphibia (Early Permian, ~294 million years) and, possibly, much earlier. Also, we discuss a number of similarities between the functional properties of the light-dependent magnetic compass in amphibians and blue light-dependent responses to magnetic stimuli in Drosophila melanogaster, which suggest that the wavelength-dependent 90° shift in amphibians may be due to light activation of different redox forms of a cryptochrome photopigment. Finally, we relate these findings to earlier studies showing that the pineal organ of newts is the site of the light-dependent magnetic compass and recent neurophysiological evidence showing magnetic field sensitivity in the frog frontal organ (an outgrowth of the pineal).

  9. Metabolism, gas exchange, and acid-base balance of giant salamanders.

    PubMed

    Ultsch, Gordon R

    2012-08-01

    The giant salamanders are aquatic and paedomorphic urodeles including the genera Andrias and Cryptobranchus (Cryptobranchidae), Amphiuma (Amphiumidae), Siren (Sirenidae), and Necturus (Proteidae, of which only N. maculosus is considered 'a giant'). Species in the genera Cryptobranchus and Necturus are considered aquatic salamanders well adapted for breathing water, poorly adapted for breathing air, and with limited abilities to compensate acid-base disturbances. As such, they are water-breathing animals with a somewhat fish-like respiratory and acid-base physiology, whose habitat selection is limited to waters that do not typically become hypoxic or hypercarbic (although this assertion has been questioned for N. maculosus). Siren and Amphiuma species, by contrast, are dependent upon air-breathing, have excellent lungs, inefficient (Siren) or no (Amphiuma) gills, and are obligate air-breathers with an acid-base status more similar to that of terrestrial tetrapods. As such, they can be considered to be air-breathing animals that live in water. Their response to the aquatic hypercarbia that they often encounter is to maintain intracellular pH (pH(i) ) and abandon extracellular pH regulation, a process that has been referred to as preferential pH(i) regulation. The acid-base status of some present-day tropical air-breathing fishes, and of Siren and Amphiuma, suggests that the acid-base transition from a low PCO(2) -low [] system typical of water-breathing fishes to the high PCO(2) -high [] systems of terrestrial tetrapods may have been completed before emergence onto land, and likely occurred in habitats that were typically both hypoxic and hypercarbic.

  10. Effects of Tail Clipping on Larval Performance and Tail Regeneration Rates in the Near Eastern Fire Salamander, Salamandra infraimmaculata

    PubMed Central

    Segev, Ori; Polevikove, Antonina; Blank, Lior; Goedbloed, Daniel; Küpfer, Eliane; Gershberg, Anna; Koplovich, Avi; Blaustein, Leon

    2015-01-01

    Tail-tip clipping is a common technique for collecting tissue samples from amphibian larvae and adults. Surprisingly, studies of this invasive sampling procedure or of natural tail clipping – i.e., bites inflicted by predators including conspecifics - on the performance and fitness of aquatic larval stages of urodeles are scarce. We conducted two studies in which we assessed the effects of posterior tail clipping (~30 percent of tail) on Near Eastern fire salamander (Salamandra infraimmaculata) larvae. In a laboratory study, we checked regeneration rates of posterior tail-tip clipping at different ages. Regeneration rates were hump-shaped, peaking at the age of ~30 days and then decreasing. This variation in tail regeneration rates suggests tradeoffs in resource allocation between regeneration and somatic growth during early and advanced development. In an outdoor artificial pond experiment, under constant larval densities, we assessed how tail clipping of newborn larvae affects survival to, time to, and size at metamorphosis. Repeated measures ANOVA on mean larval survival per pond revealed no effect of tail clipping. Tail clipping had correspondingly no effect on larval growth and development expressed in size (mass and snout-vent length) at, and time to, metamorphosis. We conclude that despite the given variation in tail regeneration rates throughout larval ontogeny, clipping of 30% percent of the posterior tail area seems to have no adverse effects on larval fitness and survival. We suggest that future use of this imperative tool for the study of amphibian should take into account larval developmental stage during the time of application and not just the relative size of the clipped tail sample. PMID:26065683

  11. Lungfish evolution and development.

    PubMed

    Joss, Jean M P

    2006-09-15

    The first vertebrates recognizable as tetrapods appeared in the mid-Devonian. It is generally agreed that their ancestors were lobe-finned fish. What is not agreed is how close either of the extant groups of lobe-finned fish, lungfish or coelacanths, is to the actual ancestor of the tetrapods. The soft anatomy of living lungfish shares many similarities with that of living amphibians. Many of these similarities are not present in either coelacanths or any members of the other extant bony fish group, the ray-finned fishes. Many very well preserved lungfish from the Devonian possess specialized features that would appear to exclude them from being ancestral to tetrapods. I am hypothesizing that lungfish in the Devonian may have included metamorphosis in their life cycle and that neoteny in some species may have been an early corollary. These reproductively mature neotenous lungfish would not have had the specialised features of metamorphosed adults. Fossils of these neotenous forms may have more closely resembled the tetrapod ancestral lobe-finned fish, currently believed to be a panderichthiad fish. Living lungfish have a number of larval features, which suggest paedomorphosis. Also of significance is the very large genome of living lungfish, which, in urodele amphibians, is a feature correlated with neoteny. Our current knowledge of the thyroid axis in the lungfish, Neoceratodus forsteri, is consistent with neoteny in amphibians, but the only Devonian fossil considered to be a larval lungfish bears no resemblance to living lungfish or to panderichthiads. The enigmatic phylogenetic relationship of lungfish with the first tetrapods remains, but the hunt for other forms of larval Devonian lungfish is on!

  12. Chronic transplantation immunity in newts: temperature susceptibility of an effector phase in allo-skin graft rejection.

    PubMed

    Kinefuchi, Kenjiroh; Kushida, Yoshihiro; Johnouchi, Masato; Shimizu, Yuiko; Ohneda, Hikaru; Fujii, Masato; Hosono, Masamichi

    2011-07-01

    Urodele amphibians are unique due to their greatly reduced immune responsiveness compared to bony fishes, which show acute immune responsiveness. In newts, the mean survival time of allogenic skin grafts in the transplantation immunity was 48.8 ± 8.3 days at 25°C, suggesting that it occurs in a chronic manner. The graft rejection process was categorized into three stages: a latent stage with frequent blood circulation, or the immune induction phase; a vascular stoppage stage with dominant infiltrating cells of T cells; and a rejection stage showing the change of the dominant cells to monocytes/macrophages, probably as effector cells, tetntatively referred to as the immune effector phase. The immune induction phase is susceptible to the cyclophosphamide (CY) mitosis inhibitor, but not to a temperature shift from 18 to 27°C, while the immune effector phase is susceptible to temperature shifts, but not CY-treatment, although the temperature shift failed to shorten the graft survival time to less than 25 days, which nearly equals that of the secondary set of grafts where the lack of complete blood circulation is remarkable and graft rejection is resistant to CY-treatment. In contrast, a very low temperature (5-10°C) completely prevented effector generation in newts; in frogs, however, it is reported that such low temperatures did not prevent the generation of effectors. Taken together, these data suggest that chronic responses in newts are due to effector cells other than cytotoxic T cells; possible effector cells are discussed.

  13. Activation by mitogens and superantigens of axolotl lymphocytes: functional characterization and ontogenic study.

    PubMed Central

    Salvadori, F; Tournefier, A

    1996-01-01

    Urodele amphibians have weak and slow immune responses compared to mammals and anuran amphibians. Using new culture conditions, we tested the ability of lymphocytes of a well-studied salamander, the Mexican axolotl (Ambystoma mexicanum) to proliferate in vitro with diverse mitogenic agents. We demonstrated that the axolotl has a population of B lymphocytes that proliferate specifically and with a high stimulation index to the lipopolysaccharide (LPS) known as a B-cell mitogen in mammals. This proliferative capacity is observed without significant changes throughout ontogenesis. In the presence of LPS, axolotl B lymphocytes are able to synthesize and secrete both isotopes of immunoglobulin described in this species, IgM and IgY. Moreover, a distinct lymphocyte subpopulation is able to poliferate significantly in response to the mitogens usually known as T-cell specific in mammals, phytohaemagglutinin (PHA) and concanavalin A (Con A). The activated cells are T lymphocytes, as shown by depletion experiments performed in vitro with monoclonal antibodies, and in vivo by thymectomy. Splenic T lymphocytes of young axolotls (before 10 months) do not have this functional ability, which suggests maturation and/or migration phenomena during T-cell ontogenesis in this species. Axolotl lymphocytes are able to proliferate in vitro with a significant stimulation index to staphylococcal enterotoxins A and B (SEA and SEB). These products act on mammalian lymphocytes as superantigens: in combination with products of the major histocompatibility complex (MHC), they bind T-cell receptors with particular V beta elements. The fact that these superantigens are able to activate lymphocytes of a primitive vertebrate suggests a striking conservation of molecular structures implied in superantigen presentation and recognition. PMID:8881761

  14. Structure, diversity and expression of the TCRdelta chains in the Mexican axolotl.

    PubMed

    Fellah, Julien S; André, Sébastien; Kerfourn, Fabienne; Guerci, Aline; Durand, Charles; Aubet, Geneviève; Charlemagne, Jacques

    2002-05-01

    Mammals and birds have two major populations of T cells, based on the molecular composition and biological properties of their antigen receptors (TCR). alpha beta T cells recognize antigenic peptides linked to major histocompatibility complex (MHC) molecules, and gamma delta T cells recognize native peptide or non-peptide antigens independently of MHC. Very little is known about gamma delta T cells in ectothermic vertebrates. We have cloned and characterized the TCRdelta chains of an urodele amphibian, the Mexican axolotl (Ambystoma mexicanum). The Cdelta domain is structurally similar to its mammalian homologues and the transmembrane domain is very well conserved. Four of the six Valpha regions that can associate with Calpha (Valpha2, Valpha3, Valpha5 and Valpha6) can also associate with Cdelta, but no specific Vdelta regions were found. This suggests that the axolotl TRD locus is nested within the TRA locus, as in mammals, and that this organization has been present in all tetrapod vertebrates and in the common ancestor of Lissamphibians and mammals, for over 400 million years. Two Jdelta regions were identified, but no Ddelta segments were clearly recognized at the Vdelta-Jdelta junctions. This results in shorter and less variable CDR3 loops than in other vertebrates and the size range of the Vdelta-Jdelta junctions is similar to that of mammalian immunoglobulin light chains. Equivalent quantities of TRD mRNA were found in the lymphoid organs, and in the skin and the intestines of normal and thymectomized axolotls. The analysis of several Valpha/delta6-Cdelta and Vbeta7-Cbeta junctions showed that both the TCRdelta and the TCRbeta chains were limited in diversity in thymectomized axolotls. PMID:11981822

  15. The structure, rearrangement, and ontogenic expression of DB and JB gene segments of the Mexican axolotl T-cell antigen receptor beta chain (TCRB).

    PubMed

    Kerfourn, F; Charlemagne, J; Fellah, J S

    1996-01-01

    We sequenced a total of 189 independent rearrangements in which the VB7.1 element is associated with CB1 (99 clones) or CB2 (90 clones) isotypes of the T-cell receptor (TCR) beta chain in the Mexican axolotl. Three stages of development were analyzed: 2.5 months, 10 months, and 25 months. Three JB1 segments were associated with the VB-CB1 rearrangements and six JB2 segments with VB-CB2. As in other vertebrates, some amino acid positions were conserved in all Jbetas (e. g., Phe-108, Gly-109, Gly-111, Thr-112, and Val-116). Two 11 nucleotides DB-like sequences, differed by one (A or T) central residue and could be productively read in the three putative reading frames. Most of the DB1 and JB1 segments were in the VB-CB1 clones, and most of the DB2 and JB2 segments were in the VB-CB2 clones, suggesting that the TCRB locus is organized into independent DB-JB-CB clusters that used the same collection of VB segments. About 40% of the beta-chain VDJ junctions in 2.5-month-old larvae had N nucleotides, compared with about 73% in 10 - 25-month old animals. The beta-chain VDJ junctions had about 30% of defective rearrangements at all stages of development, which could be due to the slow rate of cell division in the axolotl lymphoid organs, and the large genome in this urodele. Many of the axolotl CDRbeta3 sequences deduced for in frame VDJ rearrangements are the same in animals of different origins. Such redundancy could be a statistical effect due to the small number of thymocytes in the developing axolotl, rather than to some bias due to junctional preferences. PMID:8753858

  16. Phylogeny and differentiation of reptilian and amphibian ranaviruses detected in Europe.

    PubMed

    Stöhr, Anke C; López-Bueno, Alberto; Blahak, Silvia; Caeiro, Maria F; Rosa, Gonçalo M; Alves de Matos, António Pedro; Martel, An; Alejo, Alí; Marschang, Rachel E

    2015-01-01

    Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6-100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of

  17. Two different network topologies yield bistability in models of mesoderm and anterior mesendoderm specification in amphibians.

    PubMed

    Brown, L E; King, J R; Loose, M

    2014-07-21

    Understanding the Gene Regulatory Networks (GRNs) that underlie development is a major question for systems biology. The establishment of the germ layers is amongst the earliest events of development and has been characterised in numerous model systems. The establishment of the mesoderm is best characterised in the frog Xenopus laevis and has been well studied both experimentally and mathematically. However, the Xenopus network has significant differences from that in mouse and humans, including the presence of multiple copies of two key genes in the network, Mix and Nodal. The axolotl, a urodele amphibian, provides a model with all the benefits of amphibian embryology but crucially only a single Mix and Nodal gene required for the specification of the mesoderm. Remarkably, the number of genes within the network is not the only difference. The interaction between Mix and Brachyury, two transcription factors involved in the establishment of the endoderm and mesoderm respectively, is not conserved. While Mix represses Brachyury in Xenopus, it activates Brachyury in axolotl. Thus, whilst the topology of the networks in the two species differs, both are able to form mesoderm and endoderm in vivo. Based on current knowledge of the structure of the mesendoderm GRN we develop deterministic models that describe the time evolution of transcription factors in a single axolotl cell and compare numerical simulations with previous results from Xenopus. The models are shown to have stable steady states corresponding to mesoderm and anterior mesendoderm, with the in vitro model showing how the concentration of Activin can determine cell fate, while the in vivo model shows that β-catenin concentration can determine cell fate. Moreover, our analysis suggests that additional components must be important in the axolotl network in the specification of the full range of tissues. PMID:24650939

  18. Is salamander limb regeneration really perfect? Anatomical and morphogenetic analysis of forelimb muscle regeneration in GFP-transgenic axolotls as a basis for regenerative, developmental, and evolutionary studies.

    PubMed

    Diogo, R; Nacu, E; Tanaka, E M

    2014-06-01

    The axolotl Ambystoma mexicanum is one of the most commonly used model organisms in developmental and regenerative studies because it can reconstitute what is believed to be a completely normal anatomical and functional forelimb/hindlimb after amputation. However, to date it has not been confirmed whether each regenerated forelimb muscle is really a "perfect" copy of the original muscle. This study describes the regeneration of the arm, forearm, hand, and some pectoral muscles (e.g., coracoradialis) in transgenic axolotls that express green fluorescent protein (GFP) in muscle fibers. The observations found that: (1) there were muscle anomalies in 43% of the regenerated forelimbs; (2) however, on average in each regenerated forelimb there are anomalies in only 2.5% of the total number of muscles examined, and there were no significant differences observed in the specific insertion and origin of the other muscles analyzed; (3) one of the most notable and common anomalies (seen in 35% of the regenerated forelimbs) was the presence of a fleshy coracoradialis at the level of the arm; this is a particularly outstanding configuration because in axolotls and in urodeles in general this muscle only has a thin tendon at the level of the arm, and the additional fleshy belly in the regenerated arms is strikingly similar to the fleshy biceps brachii of amniotes, suggesting a remarkable parallel between a regeneration defect and a major phenotypic change that occurred during tetrapod limb evolution; (4) during forelimb muscle regeneration there was a clear proximo-distal and radio-ulnar morphogenetic gradient, as seen in normal development, but also a ventro-dorsal gradient in the order of regeneration, which was not previously described in the literature. These results have broader implications for regenerative, evolutionary, developmental and morphogenetic studies. PMID:24692358

  19. Molecular tools, classic questions - an interview with Clifford Tabin. Interviewed by Richardson, Michael K.

    PubMed

    Tabin, Clifford

    2009-01-01

    Clifford J. Tabin has made pioneering contributions to several fields in biology, including retroviruses, oncogenes, developmental biology and evolution. His father, a physicist who worked in the Manhattan project, kindled his interest in science. Cliff later chose to study biology and started his research career when the world of recombinant DNA was opening up. In Robert Weinbergs lab, he constructed the Moloney leukaemia virus (MLV-tk), the first recombinant retrovirus that could be used as a eukaryotic vector. He also discovered the amino acid changes leading to the activation of Ras, the first human oncogene discovered. As an independent researcher, he began in the field of urodele limb regeneration, and described the expression of retinoic acid receptor and Hox genes in the blastema. Moving to the chick model, his was one of the labs that simultaneously cloned the first vertebrate hedgehog cognates and showed that sonic hedgehog functions as a morphogen in certain developmental contexts, in particular as an organizing activity during limb development. Comparative studies by Ann Burke in his lab showed that differences in boundaries of Hox gene expression across vertebrate phylogeny correlated with differences in skeletal morphology. The Tabin lab also discovered a genetic pathway responsible for mediating left-right asymmetry in vertebrates; helped uncover the pathways leading to dorsoventral limb patterning; made contributions to our understanding of skeletal morphogenesis and identified developmental mechanisms that might underpin the diversification of the beak in Darwins finches. Despite being a professor of genetics at Harvard, Tabin says: "I have never done a genetics experiment in my life!". This is changing with his latest project: the genetics of Mexican cavefish. I interviewed Cliff on the 3rd October, 2007, in his office at Harvard.

  20. Molecular analysis of the Wnt-1 proto-oncogene in Ambystoma mexicanum (axolotl) embryos.

    PubMed

    Busse, U; Séguin, C

    1993-05-01

    To analyze Wnt-1 expression during neurulation in urodele embryos, we have isolated a Wnt-1 cDNA clone, Awnt-1, from an Ambystoma mexicanum (axolotl) neurula-stage cDNA library. Awnt-1 codes for a protein of 369 amino acids rich in cysteine residues, is preceded by a hydrophobic leader peptide sequence and contains four possible sites for N-linked glycosylation. The temporal expression profile of Awnt-1 was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Awnt-1 expression in the axolotl embryo is biphasic. Awnt-1 transcripts are found in early blastulae until gastrulation, are barely detectable during gastrulation, and are present again from neurulation until late embryogenesis. Transcripts are present before the midblastula transition, indicating that they might be of maternal origin. To localize Awnt-1 expression in embryos during the first phase of expression, early gastrulae were dissected by cutting along the animal-vegetal and future dorso-ventral axes and analyzed by RT-PCR. At the early gastrula stage Awnt-1 transcripts appear to be located in the future ventral region of the embryo. Hatching larvae no longer express Awnt-1. PCR reactions performed using cDNA library-phage DNA templates derived from whole neurulae versus embryos with the neuroectoderm removed suggest that, in the neurula, Awnt-1 transcripts are located in the neuroectoderm. This suggest that, as is the case for Wnt-1 in other vertebrates, Awnt-1 may be involved in neurogenesis. These results suggest that Wnt-1 has earlier roles in development than has been considered until now.

  1. Phylogeny and Differentiation of Reptilian and Amphibian Ranaviruses Detected in Europe

    PubMed Central

    Stöhr, Anke C.; López-Bueno, Alberto; Blahak, Silvia; Caeiro, Maria F.; Rosa, Gonçalo M.; Alves de Matos, António Pedro; Martel, An; Alejo, Alí; Marschang, Rachel E.

    2015-01-01

    Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6–100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of

  2. Phylogeny and differentiation of reptilian and amphibian ranaviruses detected in Europe.

    PubMed

    Stöhr, Anke C; López-Bueno, Alberto; Blahak, Silvia; Caeiro, Maria F; Rosa, Gonçalo M; Alves de Matos, António Pedro; Martel, An; Alejo, Alí; Marschang, Rachel E

    2015-01-01

    Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6-100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of

  3. Effects of Tail Clipping on Larval Performance and Tail Regeneration Rates in the Near Eastern Fire Salamander, Salamandra infraimmaculata.

    PubMed

    Segev, Ori; Polevikove, Antonina; Blank, Lior; Goedbloed, Daniel; Küpfer, Eliane; Gershberg, Anna; Koplovich, Avi; Blaustein, Leon

    2015-01-01

    Tail-tip clipping is a common technique for collecting tissue samples from amphibian larvae and adults. Surprisingly, studies of this invasive sampling procedure or of natural tail clipping--i.e., bites inflicted by predators including conspecifics--on the performance and fitness of aquatic larval stages of urodeles are scarce. We conducted two studies in which we assessed the effects of posterior tail clipping (~30 percent of tail) on Near Eastern fire salamander (Salamandra infraimmaculata) larvae. In a laboratory study, we checked regeneration rates of posterior tail-tip clipping at different ages. Regeneration rates were hump-shaped, peaking at the age of ~30 days and then decreasing. This variation in tail regeneration rates suggests tradeoffs in resource allocation between regeneration and somatic growth during early and advanced development. In an outdoor artificial pond experiment, under constant larval densities, we assessed how tail clipping of newborn larvae affects survival to, time to, and size at metamorphosis. Repeated measures ANOVA on mean larval survival per pond revealed no effect of tail clipping. Tail clipping had correspondingly no effect on larval growth and development expressed in size (mass and snout-vent length) at, and time to, metamorphosis. We conclude that despite the given variation in tail regeneration rates throughout larval ontogeny, clipping of 30% percent of the posterior tail area seems to have no adverse effects on larval fitness and survival. We suggest that future use of this imperative tool for the study of amphibian should take into account larval developmental stage during the time of application and not just the relative size of the clipped tail sample.

  4. A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors.

    PubMed

    McHedlishvili, Levan; Epperlein, Hans H; Telzerow, Anja; Tanaka, Elly M

    2007-06-01

    Complete regeneration of the spinal cord occurs after tail regeneration in urodele amphibians such as the axolotl. Little is known about how neural progenitor cells are recruited from the mature tail, how they populate the regenerating spinal cord, and whether the neural progenitor cells are multipotent. To address these issues we used three types of cell fate mapping. By grafting green fluorescent protein-positive (GFP(+)) spinal cord we show that a 500 microm region adjacent to the amputation plane generates the neural progenitors for regeneration. We further tracked single nuclear-GFP-labeled cells as they proliferated during regeneration, observing their spatial distribution, and ultimately their expression of the progenitor markers PAX7 and PAX6. Most progenitors generate descendents that expand along the anterior/posterior (A/P) axis, but remain close to the dorsal/ventral (D/V) location of the parent. A minority of clones spanned multiple D/V domains, taking up differing molecular identities, indicating that cells can execute multipotency in vivo. In parallel experiments, bulk labeling of dorsally or ventrally restricted progenitor cells revealed that ventral cells at the distal end of the regenerating spinal cord switch to dorsal cell fates. Analysis of PAX7 and PAX6 expression along the regenerating spinal cord indicated that these markers are expressed in dorsal and lateral domains all along the spinal cord except at the distal terminus. These results suggest that neural progenitor identity is destabilized or altered in the terminal vesicle region, from which clear migration of cells into the surrounding blastema is also observed. PMID:17507409

  5. Insights into the mating habits of the tiger salamander (Ambystoma tigrinum tigrinum) as revealed by genetic parentage analyses.

    PubMed

    Gopurenko, David; Williams, Rod N; McCormick, Cory R; DeWoody, J Andrew

    2006-06-01

    Among urodeles, ambystomatid salamanders are particularly amenable to genetic parentage analyses because they are explosive aggregate breeders that typically have large progeny arrays. Such analyses can lead to direct inferences about otherwise cryptic aspects of salamander natural history, including the rate of multiple mating, individual reproductive success, and the spatial distribution of clutches. In 2002, we collected eastern tiger salamander (Ambystoma tigrinum tigrinum) egg masses (> 1000 embryos) from a approximately 80 m linear transect in Indiana, USA. Embryos were genotyped at four variable microsatellite loci and the resulting progeny array data were used to reconstruct multilocus genotypes of the parental dams and sires for each egg mass. UPGMA analysis of genetic distances among embryos resolved four instances of egg mass admixture, where two or more females had oviposited at exactly the same site resulting in the mixing of independent cohorts. In total, 41 discrete egg masses were available for parentage analyses. Twenty-three egg masses (56%) consisted exclusively of full-siblings (i.e. were singly sired) and 18 (44%) were multiply sired (mean 2.6 males/clutch). Parentage could be genetically assigned to one of 17 distinct parent pairs involving at least 15 females and 14 different males. Reproductive skew was evident among males who sired multiply sired clutches. Additional evidence of the effects of sexual selection on male reproductive success was apparent via significant positive correlations between male mating and reproductive success. Females frequently partitioned their clutches into multiple discrete egg masses that were separated from one another by as many as 43 m. Collectively, these data provide the first direct evidence for polygynandry in a wild population of tiger salamanders. PMID:16689907

  6. Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages.

    PubMed

    Froehlich, Jacob Michael; Seiliez, Iban; Gabillard, Jean-Charles; Biga, Peggy R

    2014-01-01

    Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystoma mexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream(1-4). PMID:24835774

  7. PCNA immunoreactivity revealing normal proliferative activity in the brain of adult Lampetra planeri (Bloch, 1784).

    PubMed

    Margotta, Vito; Caronti, Brunella; Colombari, Paolo Tito; Castiglia, Riccardo

    2007-01-01

    It is now well known that the Teleosts among Osteichthyes, Urodele and Anuran Amphibians, Lacertilian Reptiles possess encephalic natural proliferative activities even into adulthood, as demonstrated by a great number of researches performed both under normal and various experimental conditions. Few years ago we have undertaken in adult heterothermic vertebrates a reappraisal on spontaneous cerebral proliferative events involving some organisms (Podarcis sicula, Triturus carnifex, Rana esculenta, Carassius carassius) representative of these vertebrates and belonging to the same or phylogenetically similar species used by previous researchers in studies having the same object. In our investigations, these performances were revealed by a proliferative immunocytochemical marker, the Proliferating Cell Nuclear Antigen (PCNA). At this point of our study in the scenario emerging from findings a missing piece is represented by Petromyzontidae. To fill up this gap in the present investigation, using our usual test, we have paid attention to adult specimens of Lampetra planeri. The obtained immunostaining panorama has revealed the presence of a considerable number of spontaneous proliferative activities. These events might differ in quantity, in various encephalic districts. PCNA-labelled cells appeared scattered in the cranial portion of olfactory bulbs, while the PCNA expression has been observed steadily localized with a distinctly continous distribution in cells interposed among the ependymal epithelium which lines the cavities of the proximal portion of the olfactory region and of the cerebral ventricles. DNA synthesis activity has been also found in cells scattered in the telencephalic, diencephalic, mesencephalic and medulla oblongata periventricular grey. This immunoreactivity was not revealable in the cerebellum. Our findings are discussed in the light of bibliographic news.

  8. The Mechanics of Air-Breathing in Anuran Larvae: Implications to the Development of Amphibians in Microgravity

    NASA Astrophysics Data System (ADS)

    Wassersug, Richard J.; Yamashita, Masamichi

    Because of their rapid development, amphibians have been important model organisms in studies of how microgravity (μG) affects vertebrate growth and differentiation. Both urodele (salamanders) and anuran (frogs and toads) embryos have been raised in orbital flight, the latter several times. The most commonly reported and striking effects of μG on tadpoles are not in the vestibular system, as one might suppose, but in their lungs and tails. Pathological changes in these organs disrupt behavior and retard larval growth. What causes malformed (typically lordotic) tadpoles in μG is not known, nor have axial pathologies been reported in every flight experiment. Lung pathology, however, has been consistently observed and is understood to result from the failure of the animals to inflate their lungs in a timely and adequate fashion. We suggest that malformities in the axial skeleton of tadpoles raised in μG are secondary to problems in respiratory function. We have used high speed videography to investigate how tadpoles breathe air in the 1G environment. The video images reveal alternative species-specific mechanisms, that allow tadpoles to separate air from water in less that 150 ms. We observed nothing in the biomechanics of air-breathing in 1G that would preclude these same mechanisms from working in μG. Thus our kinematic results suggest that the failure of tadpoles to inflate their lungs properly in μG is due to the tadpoles' inability to locate the air-water interface and not a problem with the inhalation mechanism per se

  9. Amphibians as a model for the study of endocrine disruptors.

    PubMed

    Kloas, Werner

    2002-01-01

    Evidence shows that environmental compounds can interfere with the endocrine systems of wildlife and humans. The main sink of such substances, called endocrine disruptors (EDs), which are mainly of anthropogenic origin, is surface water; thus, aquatic vertebrates such as fishes and amphibians are most endangered. Despite numerous reports on EDs in fishes, information about EDs in amphibians is scarce, and this paucity of information is of particular concern in view of the worldwide decline of amphibians. EDs could contribute to changes of amphibian populations via adverse effects on reproduction and the thyroid system. In amphibians, EDs can affect reproduction by (anti)estrogenic and (anti)androgenic modes of action that produce severe effects including abnormal sexual differentiation. ED actions on the thyroid system cause acceleration or retardation of metamorphosis, which may also affect population levels. Our broad knowledge of amphibian biology and endocrinology indicates that amphibians are very suitable models for the study of EDs. In particular, effects of EDs on the thyroid system triggering metamorphosis can be determined easily and most sensitively in amphibians compared to other vertebrates. A new classification of EDs according to their biological modes of action is proposed because EDs have quite heterogeneous chemical structures, which do not allow prediction of their biological effects. Methods and strategies are proposed for identification and risk assessment of EDs, whether as pure test substances or as mixtures from environmental samples. Effects of EDs on the thyroid system of amphibians can be assessed by a single animal model (Xenopus laevis), whereas the various types of reproduction need comparative studies to investigate whether general endocrine principles do exist among several species of anurans and urodeles. Thus, at least one anuran and one urodelean model are needed to determine ED interference with reproduction.

  10. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians?

    PubMed

    Orton, Frances; Tyler, Charles R

    2015-11-01

    Globally, amphibians are undergoing a precipitous decline. At the last estimate in 2004, 32% of the approximately 6000 species were threatened with extinction and 43% were experiencing significant declines. These declines have been linked with a wide range of environmental pressures from habitat loss to climate change, disease and pollution. This review evaluates the evidence that endocrine-disrupting contaminants (EDCs) - pollutants that affect hormone systems - are impacting on wild amphibians and contributing to population declines. The review is limited to anurans (frogs and toads) as data for effects of EDCs on wild urodeles (salamanders, newts) or caecilians (limbless amphibians) are extremely limited. Evidence from laboratory studies has shown that a wide range of chemicals have the ability to alter hormone systems and affect reproductive development and function in anurans, but for the most part only at concentrations exceeding those normally found in natural environments. Exceptions can be found for exposures to the herbicide atrazine and polychlorinated biphenyls in leopard frogs (Rana pipiens) and perchlorate in African clawed frogs (Xenopus laevis). These contaminants induce feminising effects on the male gonads (including 'intersex' - oocytes within testes) at concentrations measured in some aquatic environments. The most extensive data for effects of an EDC in wild amphibian populations are for feminising effects of atrazine on male gonad development in regions across the USA. Even where strong evidence has been provided for feminising effects of EDCs, however, the possible impact of these effects on fertility and breeding outcome has not been established, making inference for effects on populations difficult. Laboratory studies have shown that various chemicals, including perchlorate, polychlorinated biphenyls and bromodiphenylethers, also act as endocrine disrupters through interfering with thyroid-dependent processes that are fundamental for

  11. Ghrelin receptor in Japanese fire belly newt, Cynops pyrrhogaster.

    PubMed

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2015-11-01

    We identified cDNA encoding a functional ghrelin receptor (growth hormone secretagogue-receptor 1a (GHS-R1a)) in a urodele amphibian, the Japanese fire belly newt (Cynops pyrrhogaster). Two functional receptor proteins, composed of 378- and 362-amino acids, were deduced from the identified cDNA because two candidate initiation methionine sites were found. The long-chain receptor protein shared 80%, 69%, and 59% identities with the bullfrog GHS-R1a, human GHS-R1a and tilapia GHS-R1a-like receptor, respectively. Phylogenetic analysis suggested that the newt receptor is grouped to the clade of the tetrapod homologs, and very closed to anuran amphibians. In functional analyses, homologous newt ghrelin, heterologous bullfrog and rat ghrelin, and a GHS-R1a agonist, GHRP-6 increased intracellular Ca(2+) concentration in human embryonic kidney (HEK) 293 cells stably expressed newt GHS-R1a. The responsiveness was much greater in the short-chain receptor than in the long-chain receptor. Both receptors preferred to bind Ser(3)-ghrelin including newt and rat ghrelin than Thr(3)-ghrelin with bullfrog ghrelin. GHRP-6 has a similar affinity to bullfrog ghrelin. GHS-R1a mRNA was expressed in the brain, pituitary, intestine, pancreas, testis and fat body with high level, and eyes, heart, stomach, liver, gall bladder, kidney and dorsal skin with low level. In a fasting experiment, gene expression of GHS-R1a in the brain and pituitary increased 4days after fasting, and the increased level decreased to the initial level 2weeks after fasting. These changes are consistent with the change in ghrelin mRNA. In contrast, expression of ghrelin and GHS-R1a mRNA in the stomach decreased on day 4 after fasting, and increased 2weeks after fasting. These results indicate that ghrelin and its receptor system are present and altered by energy states in this newt. PMID:26172570

  12. Tail regeneration in Urodela: old model and new perspectives in studies

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Anton, H.; Mitashov, V.

    For better understanding of micro-"g" effect on nervous tissue regeneration we have chosen the regeneration of the Urodele tail, because it utilizes many developmental processes and represents the most convenient model for experiments in Space. The special interesting aspect lies in the ability of regenerates to differentiate the spinal cord (SC) and this, in turn, has a potential of practical application. Meanwhile there are conclusive evidences suggesting the production by SC cells the neurotrophic factors promoting cell proliferation and differentiation in growing tail regenerate. Previously our studies on tail regeneration in the adult newt showed that the force of gravity clearly inf luences the events underlying the regeneration. We reported the significant increase of tail regeneration rate and tissue volume of tail regenerates in the newts exposed to real and simulated low "g". In Bion 11 mission animals that were exposed 14 days in microgravity and whose tails were operated two and four weeks before launch demonstrated the regenerates achieved 1.5 - 2 times the volume of those in 1"g" control. Results of this experiment indicated also that the regeneration of central and peripheral neurons and nerve fibers was carrying out faster under low "g" conditions than in 1 "g" control. Similar data were obtained in several experiments remodeling physiological weightlessness by mean of the clinostat. It led us to the hypothesis that the stimulation of tail regeneration is linked with an over activation of neurotrophic factors produced by quickly growing SC neurons. Now we've completed the experiment on tail regeneration in the newts Tr. alpestris subjected to 5 day long clinorotation after 6 days post tail amputation. The rate of primary- and secondary regeneration was evaluated at different time points after treatment. Cell proliferation, differentiation and expression of neurotrophic proteins in SC and other major tissue-type of regenerate were investigated by

  13. Carotid labyrinth of amphibians.

    PubMed

    Kusakabe, Tatsumi

    2002-11-01

    The amphibian carotid labyrinth is a characteristic maze-like vascular expansion at the bifurcation of the common carotid artery into the internal and external carotid arteries. The carotid labyrinths of anurans are spherical and those of urodeles are oblong. In the intervascular stroma of both anuran and urodelan carotid labyrinths, the glomus cells (type I cells, chief cells) are distributed singly or in clusters between connective tissue cells and smooth muscle cells. In fluorescence histochemistry, the glomus cells emit intense fluorescence for biogenic monoamines. In fine structure, the glomus cells are characterized by a number of dense-cored vesicles in their cytoplasm. The glomus cells have long, thin cytoplasmic processes, some of which are closely associated with smooth muscle cells, endothelial cells, and pericytes. Afferent, efferent, and reciprocal synapses are found on the glomus cells. The morphogenesis of the carotid labyrinth starts in the larvae at the point where the carotid arch descends to the internal gills. Through the early stages of larval development, the slightly expanded region of the external carotid artery becomes closely connected with the carotid arch. By the end of the foot stage, the expanded region becomes globular, and at the final stage of metamorphosis the carotid labyrinth is close to its adult form. In fine structure, the glomus cells appear as early as the initial stage of larval development. At the middle stages of development, the number of dense-cored vesicles increases remarkably. Distinct afferent synapses are found in juveniles, although efferent synapses can be seen during metamorphosis. The carotid labyrinth is innervated by nerve fibers containing several kinds of regulatory neuropeptides. Double-immunolabeling in combination with a multiple dye filter system demonstrates the coexistence of two different neuropeptides. The amphibian carotid labyrinth has been electrophysiologically confirmed to have arterial chemo

  14. PCNA immunoreactivity revealing normal proliferative activity in the brain of an adult Elasmobranch, Torpedo marmorata.

    PubMed

    Margotta, Vito

    2007-01-01

    The brain of adult heterothermic vertebrates can be already provided of quiescent cells, scattered ("matrix cells") and/or clustered ("matrix areas"). These typical cells, in some regions located at or near ventricular surfaces and at peri-ependymal layers, in other territories populating their framework, maintain some embryonic properties and are responsible of normal or variously experimentally induced proliferative activities. On these topics there are a great number of reports concerning Teleostean Osteichthyes, Urodele and Anuran Amphibians, Lacertilian Reptiles. At the contrary, only few are the contributions regarding the Petromyzontidae. Involving an immunocytochemical marker, the Proliferating Cell Nuclear Antigen (PCNA), revealing proliferative events, in the last years we have undertaken a reappraisal focused on these encephalic performances in normal adult poikilothermal vertebrates. To provide a valid comparison between our results and the literature data, our choice of the specimens was based on the desire to employ organisms belonging to the same or phylogenetically close species used by previous Authors in similar studies. In our immunocytochemical panorama there is a substantial agreement between our contributions and bibliographic references concerning natural encephalic proliferative phenomena in these vertebrates. At this point of our study, the last missing piece was represented by the Chondrichthyes about which the literature data are lacking. In order to fill this gap, the aim of the present research is to investigate, involving the same PCNA test, whether proliferative events also persist in the brain of adult cartilaginous fishes. The immunostaining images obtained in the Elasmo branch Torpedo marmorata, well-known for the emission of high electrical discharges, exhibit undifferentiated cells in relationship with the ependymal epithelium lining the cavities of all cerebral districts; some other neuroblasts are scattered in the mesencephalic

  15. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians?

    PubMed

    Orton, Frances; Tyler, Charles R

    2015-11-01

    Globally, amphibians are undergoing a precipitous decline. At the last estimate in 2004, 32% of the approximately 6000 species were threatened with extinction and 43% were experiencing significant declines. These declines have been linked with a wide range of environmental pressures from habitat loss to climate change, disease and pollution. This review evaluates the evidence that endocrine-disrupting contaminants (EDCs) - pollutants that affect hormone systems - are impacting on wild amphibians and contributing to population declines. The review is limited to anurans (frogs and toads) as data for effects of EDCs on wild urodeles (salamanders, newts) or caecilians (limbless amphibians) are extremely limited. Evidence from laboratory studies has shown that a wide range of chemicals have the ability to alter hormone systems and affect reproductive development and function in anurans, but for the most part only at concentrations exceeding those normally found in natural environments. Exceptions can be found for exposures to the herbicide atrazine and polychlorinated biphenyls in leopard frogs (Rana pipiens) and perchlorate in African clawed frogs (Xenopus laevis). These contaminants induce feminising effects on the male gonads (including 'intersex' - oocytes within testes) at concentrations measured in some aquatic environments. The most extensive data for effects of an EDC in wild amphibian populations are for feminising effects of atrazine on male gonad development in regions across the USA. Even where strong evidence has been provided for feminising effects of EDCs, however, the possible impact of these effects on fertility and breeding outcome has not been established, making inference for effects on populations difficult. Laboratory studies have shown that various chemicals, including perchlorate, polychlorinated biphenyls and bromodiphenylethers, also act as endocrine disrupters through interfering with thyroid-dependent processes that are fundamental for

  16. The axolotl limb: a model for bone development, regeneration and fracture healing.

    PubMed

    Hutchison, Cara; Pilote, Mireille; Roy, Stéphane

    2007-01-01

    Among vertebrates, urodele amphibians (e.g., axolotls) have the unique ability to perfectly regenerate complex body parts after amputation. The limb has been the most widely studied due to the presence of three defined axes and its ease of manipulation. Hence, the limb has been chosen as a model to study the process of skeletogenesis during axolotl development, regeneration and to analyze this animal's ability to heal bone fractures. Extensive studies have allowed researchers to gain some knowledge of the mechanisms controlling growth and pattern formation in regenerating and developing limbs, offering an insight into how vertebrates are able to regenerate tissues. In this study, we report the cloning and characterization of two axolotl genes; Cbfa-1, a transcription factor that controls the remodeling of cartilage into bone and PTHrP, known for its involvement in the differentiation and maturation of chondrocytes. Whole-mount in situ hybridization and immunohistochemistry results show that Cbfa-1, PTHrP and type II collagen are expressed during limb development and regeneration. These genes are expressed during specific stages of limb development and regeneration which are consistent with the appearance of skeletal elements. The expression pattern for Cbfa-1 in late limb development was similar to the expression pattern found in the late stages of limb regeneration (i.e. re-development phase) and it did not overlap with the expression of type II collagen. It has been reported that the molecular mechanisms involved in the re-development phase of limb regeneration are a recapitulation of those used in developing limbs; therefore the detection of Cbfa-1 expression during regeneration supports this assertion. Conversely, PTHrP expression pattern was different during limb development and regeneration, by its intensity and by the localization of the signal. Finally, despite its unsurpassed abilities to regenerate, we tested whether the axolotl was able to regenerate non

  17. Further amputations of the tail in adult Triturus carnifex: contribution to the study on the nature of regenerated spinal cord.

    PubMed

    Margotta, Vito

    2008-01-01

    Adult Urodele Amphibians, if deprived of the tail, are able to fully regenerate it. This occurs owing to a typical epimorphic phenomenon which takes place in various phases. Within this matter, in particular on the reconstruction of the caudal nervous component, literature sources refer to a great quantity of research following only one amputation of the tail. Being aware of these data we programmed to investigate the possible persistence, decrease or disappearance of the medullary regenerative power after repeated amputations of the regenerated tail. With this objective in view, we have performed on adult Triturus carnifex a series of such operations at time spaced out from one another. In previous experiments, the amputations of the tail have been before seven and then nine. In the current experiment, the same specimens have been subjected to further removals of the tail. This study has developed into three cycles going on over a period of more than ten years. Overall, our panorama rising from the integration of present results and those of former observations is in agreement with what occurs in the area which is the centre of the beginnings of medullary regeneration processes and the bibliographic information concerning the pre-blastematic and blastematic phases. In the subsequent morphogenetic and differentiative phases, however, with the recurrence of the re-establishment of the spinal cord, these events proceed more slowly (gap which reduces when the time interval starting from the operation increases) than in the spinal cords which regenerated after only one tail amputation. Furthermore, although the regenerated spinal cords, if compared to normal spinal cord, show some anomalies (regarding medullary length and diameter, distribution of the spinal nerves and ganglia), the regenerated spinal cords (as well-known uncapable to re-form the Mauthner fibres and supplied with the Rohon-Beard sensitive neurons), their nerves and ganglia reacquire the same complex

  18. Anatomy of the pectoral and forelimb muscles of wildtype and green fluorescent protein-transgenic axolotls and comparison with other tetrapods including humans: a basis for regenerative, evolutionary and developmental studies

    PubMed Central

    Diogo, R; Tanaka, E M

    2012-01-01

    stated in the literature, A. mexicanum has a muscle coracoradialis that has both a well developed proximal fleshy belly and a distal long and thin tendon, supporting the idea that this muscle very likely corresponds to at least part of the amniote biceps brachii. Our observations also: (i) confirmed that the flexores digitorum minimi, interphalangeus digiti 3, pronator quadratus and palmaris profundus 1 are present as distinct muscles in A. mexicanum, supporting the idea that the latter muscle does not correspond to the pronator accessorius of reptiles; (ii) confirmed that the so-called extensor antebrachii radialis is present as a distinct muscle in this species and, importantly, indicated that this muscle corresponds to the supinator of other tetrapods; (iii) showed that, contrary to some other urodeles, including some other Ambystoma species, there is no distinct muscle epitrochleoanconeus in A. mexicanum and; (iv) showed that the ulnar and radial bundles of the abductor et extensor digiti 1 correspond to the abductor pollicis longus and extensor pollicis longus of other tetrapods, respectively. PMID:22957800

  19. Further amputations of the tail in adult Triturus carnifex: contribution to the study on the nature of regenerated spinal cord.

    PubMed

    Margotta, Vito

    2008-01-01

    Adult Urodele Amphibians, if deprived of the tail, are able to fully regenerate it. This occurs owing to a typical epimorphic phenomenon which takes place in various phases. Within this matter, in particular on the reconstruction of the caudal nervous component, literature sources refer to a great quantity of research following only one amputation of the tail. Being aware of these data we programmed to investigate the possible persistence, decrease or disappearance of the medullary regenerative power after repeated amputations of the regenerated tail. With this objective in view, we have performed on adult Triturus carnifex a series of such operations at time spaced out from one another. In previous experiments, the amputations of the tail have been before seven and then nine. In the current experiment, the same specimens have been subjected to further removals of the tail. This study has developed into three cycles going on over a period of more than ten years. Overall, our panorama rising from the integration of present results and those of former observations is in agreement with what occurs in the area which is the centre of the beginnings of medullary regeneration processes and the bibliographic information concerning the pre-blastematic and blastematic phases. In the subsequent morphogenetic and differentiative phases, however, with the recurrence of the re-establishment of the spinal cord, these events proceed more slowly (gap which reduces when the time interval starting from the operation increases) than in the spinal cords which regenerated after only one tail amputation. Furthermore, although the regenerated spinal cords, if compared to normal spinal cord, show some anomalies (regarding medullary length and diameter, distribution of the spinal nerves and ganglia), the regenerated spinal cords (as well-known uncapable to re-form the Mauthner fibres and supplied with the Rohon-Beard sensitive neurons), their nerves and ganglia reacquire the same complex