Science.gov

Sample records for pleurodeles waltl urodele

  1. Effects of microgravity on the larval development, metamorphosis and reproduction of the urodele amphibian Pleurodeles waltl.

    PubMed

    Dournon, C; Durand, D; Tankosic, C; Membre, H; Gualandris-Parisot, L; Bautz, A

    2001-06-01

    The FERTILE experiment was twice performed onboard the Mir space station during the Cassiopée and Pégase French space missions. The goal was to analyze the effects of microgravity on fertilization and embryonic development, and then on further development on the ground in the amphibian Pleurodeles waltl. The present paper reports development that occurred in the laboratory after landing. Recovered on the ground at the hatching stage, young larvae reared at room temperature underwent metamorphosis and became adults without obvious abnormalities. Of particular interest was the rearing temperature that induced a delayed metamorphosis for animals from the Cassiopée space mission, but not for animals from the Pégase mission. The rate of development and the morphology were analogous in these animals and in ground controls reared in a similar annual period. Analysis of offspring was performed using these animals. Males born in space were first mated with control ground-born females and then with females born in space. The mating gave progeny that developed normally. Depending on the methods used and on the limits of the analyses, the results clearly demonstrated that animals born in space were able to live and reproduce after return to the ground.

  2. Pleurodeles waltl, amphibian, Urodele, is a suitable biological model for embryological and physiological space experiments on a vertebrate

    NASA Astrophysics Data System (ADS)

    Gualandris-Parisot, L.; Husson, D.; Foulquier, F.; Kan, P.; Davet, J.; Aimar, C.; Dournon, C.; Duprat, A. M.

    2001-01-01

    Pleurodeles waltl (amphibian, Urodele) is an appropriate biological model for space experiments on a vertebrate. One reason for interest in this animal concerns the study of the effects of absence of gravity on embryonic development. First, after mating (on Earth) the females retain live, functional sperm in their cloacum for up to 5 months, allowing normal in vivo fertilisation after hormonal stimulation. Second, their development is slow, which allows analyses of all the key stages of ontogenesis from the oocyte to swimming tailbud embryos or larvae. We have performed detailed studies and analyses of the effects of weightlessness on amphibian Pleurodeles embryos, fertilised and allowed to develop until the swimming larvae stage. These experiments were performed in space during three missions on the MIR-station: FERTILE I, FERTILE II and NEUROGENESIS respectively in 1996, 1998 and 1999. We show that in microgravity abnormalities appeared at specific stages of development compared to 1g-centrifuge control embryos and 1g-ground control embryos. In this report we describe abnormalities occurring in the central nervous system. These modifications occur during the neurulation process (delay in the closure of the neural tube and failure of closure of this tube in the cephalic area) and at the early tailbud stage (microcephaly observed in 40% of the microgravity-embryos). However, if acephalic and microcephalic embryos are not taken into account, these abnormalities did not disturb further morphological, biochemical and functional development and the embryos were able to regulate and a majority of normal hatching and swimming larvae were obtained in weightlessness with a developmental time-course equivalent to that of 1g-centrifuge control embryos (on the MIR station) and 1g-ground control embryos.

  3. Pleurodeles waltl, amphibian, Urodele, is a suitable biological model for embryological and physiological space experiments on a vertebrate.

    PubMed

    Gualandris-Parisot, L; Husson, D; Foulquier, F; Kan, P; Davet, J; Aimar, C; Dournon, C; Duprat, A M

    2001-01-01

    Pleurodeles waltl (amphibian, Urodele) is an appropriate biological model for space experiments on a vertebrate. One reason for interest in this animal concerns the study of the effects of absence of gravity on embryonic development. First, after mating (on Earth) the females retain live, functional sperm in their cloacum for up to 5 months, allowing normal in vivo fertilisation after hormonal stimulation. Second, their development is slow, which allows analyses of all the key stages of ontogenesis from the oocyte to swimming tailbud embryos or larvae. We have performed detailed studies and analyses of the effects of weightlessness on amphibian Pleurodeles embryos, fertilised and allowed to develop until the swimming larvae stage. These experiments were performed in space during three missions on the MIR-station: FERTILE I, FERTILE II and NEUROGENESIS respectively in 1996, 1998 and 1999. We show that in microgravity abnormalities appeared at specific stages of development compared to 1g-centrifuge control embryos and 1g-ground control embryos. In this report we describe abnormalities occurring in the central nervous system. These modifications occur during the neurulation process (delay in the closure of the neural tube and failure of closure of this tube in the cephalic area) and at the early tailbud stage (microcephaly observed in 40% of the microgravity-embryos). However, if acephalic and microcephalic embryos are not taken into account, these abnormalities did not disturb further morphological, biochemical and functional development and the embryos were able to regulate and a majority of normal hatching and swimming larvae were obtained in weightlessness with a developmental time-course equivalent to that of 1g-centrifuge control embryos (on the MIR station) and 1g-ground control embryos.

  4. Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development.

    PubMed

    Joven, Alberto; Morona, Ruth; Moreno, Nerea; González, Agustín

    2013-07-01

    The sequence of appearance of calretinin and calbindin-D28k immunoreactive (CRir and CBir, respectively) cells and fibers has been studied in the brain of the urodele amphibian Pleurodeles waltl. Embryonic, larval and juvenile stages were studied. The early expression and the dynamics of the distribution of CBir and CRir structures have been used as markers for developmental aspects of distinct neuronal populations, highlighting the accurate extent of many regions in the developing brain, not observed on the basis of cytoarchitecture alone. CR and, to a lesser extent, CB are expressed early in the central nervous system and show a progressively increasing expression from the embryonic stages throughout the larval life and, in general, the labeled structures in the developing brain retain their ability to express these proteins in the adult brain. The onset of CRir cells primarily served to follow the development of the olfactory bulbs, subpallium, thalamus, alar hypothalamus, mesencephalic tegmentum, and distinct cell populations in the rhombencephalic reticular formation. CBir cells highlighted the development of, among others, the pallidum, hypothalamus, dorsal habenula, midbrain tegmentum, cerebellum, and central gray of the rostral rhombencephalon. However, it was the relative and mostly segregated distribution of both proteins in distinct cell populations which evidenced the developing regionalization of the brain. The results have shown the usefulness in neuroanatomy of the analysis during development of the onset of CBir and CRir structures, but the comparison with previous data has shown extensive variability across vertebrate classes. Therefore, one should be cautious when comparing possible homologue structures across species only on the basis of the expression of these proteins, due to the variation of the content of calcium-binding proteins observed in well-established homologous regions in the brain of different vertebrates.

  5. Globuli ossei in the long limb bones of Pleurodeles waltl (Amphibia, Urodela, Salamandridae).

    PubMed

    Quilhac, Alexandra; de Ricqlès, Armand; Lamrous, Hayat; Zylberberg, Louise

    2014-11-01

    To date, little is known about the structure of the cells and the fibrillar matrix of the globuli ossei, globular structures showing histochemical properties of an osseous tissue, sometimes found in the resorption front of the hypertrophied cartilage in many tetrapods, and easily observed in the long bones of the Urodele Pleurodeles waltl. Here, we present the results obtained from the appendicular long bones of metamorphosed juveniles and subadults using histological and histochemical methods and transmission electron microscopy. The distal part of the cone-shaped cartilage contains a heterogeneous cell population composed of the typical "light" hypertrophic chondrocytes and scarce "dark" hypertrophic chondrocytes. The "dark" chondrocytes display ultrastructural characteristics suggesting that they probably undergo degeneration through chondroptosis. However, in the hypertrophic, calcified cartilage close to the erosion front by the marrow, several noninvaded chondrocytic lacunae retained cells that do not show any morphological characteristics of degeneration and that cannot be identified as regular chondrocytes or osteocytes. These modified chondrocytes that have lost their regular morphology, appear to be active in the terminal cartilage and synthesize collagen fibrils of a peculiar diameter intermediate between the Type I collagen found in bone and the Type II collagen characteristic of cartilage. It is suggested that the local occurrence of globuli ossei is linked to a low rate of longitudinal growth as is the case in the long bones of postmetamorphic urodeles.

  6. Glycan composition of follicle (Sertoli) cells of the amphibian Pleurodeles waltl. A lectin histochemical study

    PubMed Central

    SÁEZ, FRANCISCO JOSÉ; MADRID, JUAN FRANCISCO; ALONSO, EDURNE; HERNÁNDEZ, FRANCISCO

    2001-01-01

    The glycan composition of the N- and O-linked oligosaccharides of the follicle (Sertoli) cells of the urodele amphibian Pleurodeles waltl testis were identified by lectin histochemistry, performed alone or in combination with enzymatic and chemical deglycosylation methods. The follicle cells were shown to contain: (1) Fuc, Galβ(1,4)GlcNAc, GalNAc and Neu5Acα(2,3)Galβ(1,4)GlcNAc in both N- and O-linked oligosaccharides; (2) Man in N-linked glycans; and (3) Galβ(1,3)GalNAc in O-linked sugar chains. The follicle cells at the pre- and postmeiotic stages showed some differences in the UEA-I-positive Fuc characterisation, suggesting differences in the glycan composition. In addition, the sequence Neu5Acα(2,6)Gal/GalNAc was shown in the follicle cells only after spermiation, in the sperm-empty lobules of the developing glandular tissue. These results suggest that the follicle cells modify their glycoprotein content, probably for the performance of new roles, as the spermatogenetic cells develop. Thus the follicle cells surrounding male germ cells at different spermatogenetic stages would contain different glycoproteins involved in specific roles during male germ cell proliferation and maturation. PMID:11465860

  7. Localization of antigens PwA33 and La on lampbrush chromosomes and on nucleoplasmic structures in the oocyte of the urodele Pleurodeles waltl: light and electron microscopic immunocytochemical studies.

    PubMed

    Pyne, C K; Simon, F; Loones, M T; Géraud, G; Bachmann, M; Lacroix, J C

    1994-12-01

    Monoclonal antibodies A33/22 and La11G7 have been used to study the distribution of the corresponding antigens, PwA33 and La, on the lampbrush chromosome loops and nucleoplasmic structures of P. waltl oocytes, using immunofluorescence, confocal laser scanning microscopy and immunogold labeling. The results obtained with these antibodies have been compared with those obtained with the Sm-antigen-specific monoclonal antibody Y12. All these monoclonal antibodies (mAbs) labeled the matrices of the majority of normal loops along their whole length. Nucleoplasmic RNP granules showed a strong staining with the mAbs La11G7 and Y12 throughout their mass, but with the mAb A33/22, they showed only a weak peripheral labeling in the form of patches on their surface. This patchy labeling was confirmed by confocal laser scanning microscopy. Electron microscopy revealed that this patchy labeling might be due to a hitherto undescribed type of submicroscopic granular structure, around 100 nm in either dimension, formed by 10-nm particles. Such granules were observed either attached to the RNP granules or free in the nucleoplasm, but rarely in relation with the normal loop matrices. These 100-nm granules may have a role in the movement of proteins and snRNPs inside the oocyte nuclei for storage, recycling, and/or degradation. Our results also suggest that all the microscopically visible free RNP granules of the nucleoplasm of P. waltl oocytes correspond to B snurposomes. The granules forming the B (globular) loops showed a labeling pattern similar to that of B snurposomes; their possible relationship is discussed.

  8. Modulation of Pleurodeles waltl DNA Polymerase mu Expression by Extreme Conditions Encountered during Spaceflight

    PubMed Central

    Baatout, Sarah; Frippiat, Jean-Pol

    2013-01-01

    DNA polymerase µ is involved in DNA repair, V(D)J recombination and likely somatic hypermutation of immunoglobulin genes. Our previous studies demonstrated that spaceflight conditions affect immunoglobulin gene expression and somatic hypermutation frequency. Consequently, we questioned whether Polμ expression could also be affected. To address this question, we characterized Polμ of the Iberian ribbed newt Pleurodeles waltl and exposed embryos of that species to spaceflight conditions or to environmental modifications corresponding to those encountered in the International Space Station. We noted a robust expression of Polμ mRNA during early ontogenesis and in the testis, suggesting that Polμ is involved in genomic stability. Full-length Polμ transcripts are 8–9 times more abundant in P. waltl than in humans and mice, thereby providing an explanation for the somatic hypermutation predilection of G and C bases in amphibians. Polμ transcription decreases after 10 days of development in space and radiation seem primarily involved in this down-regulation. However, space radiation, alone or in combination with a perturbation of the circadian rhythm, did not affect Polμ protein levels and did not induce protein oxidation, showing the limited impact of radiation encountered during a 10-day stay in the International Space Station. PMID:23936065

  9. Analysis of Cell Proliferation in Newt (Pleurodeles waltl) Tissue Regeneration during Spaceflight in Foton M-2

    NASA Technical Reports Server (NTRS)

    Almeida, E. A. C.; Roden, C.; Phillips, J. A.; Yusuf, R.; Globus, R. K.; Searby, N.; Vercoutere, W.; Morey-Holton, E.; Tairbekov, M.; Grigoryan, N.; Domaratskaya, E.; Poplinskaya, V.; Mitashov, V.

    2006-01-01

    Terrestrial organisms exposed to microgravity during spaceflight expe rience musculoskeletal degeneration. It is still not understood if lo nger-term exposures to microgravity induce degeneration in other tiss ues, and if these effects are also observed in neutrally buoyant aqu atic organisms that may be pre-adapted to mechanical unloading. The " Regeneration" experiment conducted collaboratively between Russian an d US scientists for 16 days in the Russian Foton M-2 spaceflight soug ht to test the hypothesis that microgravity alters the proliferation of cells in regenerating tail tissue of the newt Pleurodeles waltl. Our initial results indicate that we successfUlly delivered the proli feration marker 5-bromo-2'-deoxy Uridine (BrdU) during spaceflight, and that it was incorporated in the nuclei of cells in regenerating tis sues. Cells in spaceflight tail regenerates proliferated at a slight ly slower rate and were more undifferentiated than those in ground sy nchronous controls. In addition, the size of regenerating tails from spaceflight was smaller than synchronous controls. However, onboard temperature recordings show that the temperature in spaceflight was a bout 2 C lower than ground synchronous controls, possibly explaining the observed differences. Additional post-facto ground controls at ma tched temperatures will correctly determine the effects of spaceflig ht on regenerative cell proliferation in the newt.

  10. Development of the Roll-Induced Vestibuloocular Reflex in the Absence of Vestibular Experience in Salamander Tadpoles (Pleurodeles Waltl)

    NASA Astrophysics Data System (ADS)

    Horn, Eberhard R.; Gabriel, Martin; Frippiat, Jean-Pol

    2008-06-01

    The macula organ of the labyrinth is stimulated by body roll or translatory movements. Due to its slow development, the salamander Pleurodeles waltl is an excellent model to study the impact of microgravity on the development of the roll-induced vestibuloocular reflex (rVOR) in the absence of any macular stimulation. The experiment was performed during the Soyuz mission TMA8 (return flight TMA7) in 2006 as part of the experiment AMPHIBODY. It was supplemented by a 3g-hypergravity experiment. It was shown, that microgravity retards the over-all development of Pleurodeles tadpoles but not specifically functional development of the vestibular system; normalization took place within 3 to 4 weeks after landing. Hypergravity accelerated rVOR development in the long-term frame.

  11. The Pleurodele, an animal model for space biology studies

    NASA Astrophysics Data System (ADS)

    Gualandris, L.; Grinfeld, S.; Foulquier, F.; Kan, P.; Duprat, A. M.

    Pleurodeles waltl, an Urodele amphibian is proposed as a model for space biology studies. Our laboratory is developing three types of experiments in space using this animal: 1) in vivo fertilization and development (``FERTILE'' project); 2) influence of microgravity and space radiation on the organization and preservation of spacialized structures in the neurons and muscle cells (in vitro; ``CELIMENE'' PROJECT); 3) influence of microgravity on tissue regeneration (muscle, bone, epidermis and spinal cord).

  12. Analysis of the hematopoietic tissue in Pleurodeles waltl newts exposed to 2 g hypergravity

    NASA Astrophysics Data System (ADS)

    Domaratskaya, Elena; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Dvorochkin, Natalya; Yousuf, Rukhsana; Almeida, Eduardo; Butorina, Nina N.

    2012-07-01

    Gravity is an important factor in creating biologically-relevant mechanical loads, and in spaceflight living organisms encounter both microgravity as well as hypergravity conditions. Here we studied the influence of hypergravity on the hematopoietic tissue of P. waltl newts in parallel with tissue regeneration experiments of the newt lens and tail. At day 9 post-surgery one group of newts was subjected to centrifugation at 2 g (2G, 12 days), while another was kept at 1 g. In addition, a basal control in wet mats, at 1g, (BC, 1G), and an aquarium control, neutrally buoyant, (AC, low G), were also performed. Differential blood counts and histological analysis of the spleen and liver were carried out in experimental and control groups of animals. At day 21 post-surgery in all groups (AC, 1G, and 2G), the number of neutrophils in the blood was significantly lower than in BC indicating a decrease in the inflammation induced by surgery. The 2G group however, showed numbers of neutrophils significantly higher than AC (neutrally buoyant) animals. This result suggests that post-operative inflammation can persist longer at 2 g that under unloaded aquarium conditions. In contrast we did not observe any significant differences in lymphocyte numbers between any experimental and control groups. Histological examination of the liver and spleen also did not show any significant morphological alterations due to hypergravity. These results indicate that 12 day exposure to hypergravity at 2 g, had only partial influence on newt hematopoiesis, possibly extending the duration of surgery-related inflammatory responses. Data obtained with newts in our previous experiments on Foton-M2 and Foton-M3 flights in microgravity also showed only slight effect on blood cells. Furthermore microgravity also did not cause any morphological changes in the hematopoietic and lymphoid tissues, and did not impair the proliferative capacity of newt hematopoietic cells. In sum these results indicate the

  13. Peptidase-1 expression in some organs of the salamander Pleurodeles waltl submitted to a 12-day space flight

    NASA Astrophysics Data System (ADS)

    Bautz, A.; Rudolf, E.; Mitashov, V.; Dournon, C.

    In Pleurodeles, the peptidase-1 is a sex-linked enzyme encoded by two codominant genes (Pep-1A and Pep-1B) located on the Z and W sex chromosomes. The sexual genotype can be determined by the electrophoretic pattern of the peptidase from erythrocytes. A_AW_B genotypic females characterized by 3 electrophoretic bands AA, AB and BB were embarked on Cosmos 2229. The pattern in ovary, muscles and gut issued from the embarked or synchrone females displayed the 3 characteristic bands. In heart and kidney, the bands AA and BB were revealed, while the band BB appeared very fainly. The specific enzymatic activity in the same organs was compared. Except for the kidney, no statistical significant difference was observed between flight and synchrone samples. This enzyme can be efficiently used as sexual genotypic marker of Pleurodeles experimentally submitted to the effects of space environment.

  14. IgX antibodies in the urodele amphibian Ambystoma mexicanum.

    PubMed

    Schaerlinger, Bérénice; Frippiat, Jean-Pol

    2008-01-01

    Until recently, it was believed that urodele amphibians are able to synthesize only two immunoglobulin isotypes, IgM and IgY. We reinvestigated this issue in the Iberian ribbed newt Pleurodeles waltl and reported recently that this urodele expresses at least three isotypes: IgM, IgP and IgY. In this study, we demonstrate that another urodele, Ambystoma mexicanum, has also a third isotype whose amino acid sequence presents the highest homology with the amino acid sequence of Xenopus IgX. This isotype has typical Ig H-chain characteristics, could form multimers and is mainly expressed in mucosal tissues thereby indicating that it is likely the physiological counterpart of Xenopus IgX and mammalian IgA. Interestingly, no IgP could be found in A. mexicanum, in contrast to P. waltl, in which IgX was not found in previous investigations. These data indicate, for the first time, that different families of urodeles can express different immunoglobulin isotypes.

  15. Micronuclei in red blood cells of the newt Pleurodeles waltl after treatment with benzo(a)pyrene: dependence on dose, length of exposure, posttreatment time, and uptake of the drug

    SciTech Connect

    Grinfeld, S.; Jaylet, A.; Siboulet, R.; Deparis, P.; Chouroulinkov, I.

    1986-01-01

    Aquatic larvae of the newt Pleurodeles waltl were exposed to different concentrations of benzo(a)pyrene (BaP) for various lengths of time. Frequencies of micronuclei in circulating erythrocytes were determined at different times after termination of the treatment. The incidence of micronuclei in larvae kept for 8 days in BaP-containing water displayed a marked increase with dose up to 0.075 ppm and a more gradual one with higher doses, reaching 158 per 1000 at 0.75 ppm. The lowest dose at which a significant increase could be discerned was 0.01 ppm. Short periods of exposure, less than 2 days, did not result in a marked increase in micronuclei. Uptake and release was studied with tritiated BaP. Larvae concentrated BaP rapidly, attaining maximal levels after 12 hr. Radioactive larvae placed in regularly renewed noncontaminated water lost 99% of the label after 100 hr. It is concluded that pleurodele larvae are a promising model for the detection of genotoxic activity in the aquatic environment.

  16. In vivo fertilization and development in microgravity using pleurodele (``Zeus'' project)

    NASA Astrophysics Data System (ADS)

    Grinfeld, S.; Dournon, C.; Houillon, C.; Bautz, A.; Duprat, A. M.

    1994-08-01

    The objectives of this experiment are to perform natural fertilization and to achieve embryonic development in microgravity. Pleurodeles waltl, an urodele amphibian, is considered by CNES and NASA to be suitable experimental material for achieving in vivo fertilization in space. Previously inseminated females can be embarked in the Frog Environmental Unit (FEU) developed by NASA. Laying of eggs will be provoked by hormonal stimulation in flight and development will be followed. Various technical problems have been resolved in laboratory experiments and during parabolic flights : the time of hormone stimulation after insemination, choice of hormone guarenteing 95 % success, other factors conditionning the laying, experimental procedures to study developmental kinetics at phenotypic levels, and selection of cellular and molecular markers of development.

  17. Studies on hemopoietic tissue of ribbed newt, Pleurodeles waltl after the flight on board Russian satellite "Foton- M2" in 2005

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E.; Payushina, O.; Butorina, N.; Nikonova, T.; Grigoryan, E.; Mitashov, V.; Almeida, E.; Tairbekov, M.; Khrushchov, N.

    The effect of 16-day spaceflight aboard the Foton-M2 satellite on the hematopoietic tissue of P waltl newts was studied in flown intact animals F-int and in animals used in experiments on tail and lens regeneration under spaceflight conditions F-reg In addition to the flown animals studies were performed on synchronous and aquarial controls in the case of non-operated animals and on synchronous and basal controls in the case of operated newts The main hematopoietic organs of urodelian species are the liver spleen and peripheral blood Therefore we determined differential blood counts estimated the weight of the liver and the content of its hematopoietic cells and histologically assessed spleen and liver in the above experimental groups and the corresponding control groups of animals No significant differences between these groups were revealed with respect to the structure of hematopoietic zones of the liver the content of hematopoietic cells in the liver and spleen morphology However liver weight in newts of the F-reg group was significantly greater than in the F-int group In the peripheral blood neutrophils eosinophils basophils lymphocytes and monocytes were found Lymphocytes L and neutrophils N prevailed accounting for about 50 and 38 of white blood cells respectively Among neutrophils cells differing in the degree of maturity were distinguished myelocytes M metamyelocytes Mm band B and segmented forms S For each group of animals we determined the ratio of maturing M Mm B to mature S

  18. Co-operative Bmp- and Fgf-signaling inputs convert skin wound healing to limb formation in urodele amphibians.

    PubMed

    Makanae, Aki; Mitogawa, Kazumasa; Satoh, Akira

    2014-12-01

    Urodele amphibians have remarkable organ regeneration capability, and their limb regeneration capability has been investigated as a representative phenomenon. In the early 19th century, nerves were reported to be an essential tissue for the successful induction of limb regeneration. Nerve substances that function in the induction of limb regeneration responses have long been sought. A new experimental system called the accessory limb model (ALM) has been established to identify the nerve factors. Skin wounding in urodele amphibians results in skin wound healing but never in limb induction. However, nerve deviation to the wounded skin induces limb formation in ALM. Thus, nerves can be considered to have the ability to transform skin wound healing to limb formation. In the present study, co-operative Bmp and Fgf application, instead of nerve deviation, to wounded skin transformed skin wound healing to limb formation in two urodele amphibians, axolotl (Ambystoma mexicanum) and newt (Pleurodeles waltl). Our findings demonstrate that defined factors can induce homeotic transformation in postembryonic bodies of urodele amphibians. The combination of Bmp and Fgf(s) may contribute to the development of novel treatments for organ regeneration.

  19. Cooperative inputs of Bmp and Fgf signaling induce tail regeneration in urodele amphibians.

    PubMed

    Makanae, Aki; Mitogawa, Kazumasa; Satoh, Akira

    2016-02-01

    Urodele amphibians have remarkable organ regeneration ability. They can regenerate not only limbs but also a tail throughout their life. It has been demonstrated that the regeneration of some organs are governed by the presence of neural tissues. For instance, limb regeneration cannot be induced without nerves. Thus, identifying the nerve factors has been the primary focus in amphibian organ regeneration research. Recently, substitute molecules for nerves in limb regeneration, Bmp and Fgfs, were identified. Cooperative inputs of Bmp and Fgfs can induce limb regeneration in the absence of nerves. In the present study, we investigated whether similar or same regeneration mechanisms control another neural tissue governed organ regeneration, i.e., tail regeneration, in Ambystoma mexicanum. Neural tissues in a tail, which is the spinal cord, could transform wound healing responses into organ regeneration responses, similar to nerves in limb regeneration. Furthermore, the identified regeneration inducer Fgf2+Fgf8+Bmp7 showed similar inductive effects. However, further analysis revealed that the blastema cells induced by Fgf2+Fgf8+Bmp7 could participate in the regeneration of several tissues, but could not organize a patterned tail. Regeneration inductive ability of Fgf2+Fgf8+Bmp7 was confirmed in another urodele, Pleurodeles waltl. These results suggest that the organ regeneration ability in urodele amphibians is controlled by a common mechanism.

  20. Comparative larval morphology in three species of Pleurodeles (Urodela: Salamandridae).

    PubMed

    Escoriza, Daniel; Hassine, Jihène Ben

    2017-03-01

    The Ribbed newts (genus Pleurodeles) are endemic to the Iberian Peninsula and northwest Africa (Raffaëlli 2013), and comprise three species: Pleurodeles nebulosus (Guichenot 1850), Pleurodeles poireti (Gervais 1836) and Pleurodeles waltl Michahelles 1830. Pleurodeles nebulosus is found in northern Algeria and Tunisia with an average size of 18 cm, while P. poireti is endemic to the Edough Massif, in northeastern Algeria and is the smallest species, with 12.9 cm in total length (Escoriza et al. 2016; Carranza & Wade 2004). Pleurodeles waltl appears on the Iberian Peninsula and Morocco (García-París et al. 2004). The eastern and western populations of P. waltl although they are not differentiated taxonomically show high levels of genetic divergence (estimated to have occurred 2.0-3.2 Ma; Carranza & Arnold 2003). The individuals of P. waltl attain large sizes (30 cm of total length) and have 8-10 cutaneous glands on both sides (Pasteur 1958), which are absent in other species of the genus.

  1. Fate of the grafted ovaries from female salamander Pleurodeles waltl embarked on the cosmos 2229 flight

    NASA Astrophysics Data System (ADS)

    Bautz, A.; Houillon, Ch.; Aimar, C.; Mitashov, V.; Dournon, C.

    The flight procedure of ``Experience Triton'' on Cosmos 2229 made necessary to sacrifice the embarked females just after landing. In order to detect genetic abnormalities in the progeny of these adult females, we have performed a surgical procedure based on the transplantation of an ovarian piece on a recipient animal. One year later, as observed after laparotomy, the grafted ovaries exhibit oogonies and some growing oocytes. In present time, out of 10 castrated and grafted adult females only one is still alive bearing a large grafted ovary. Out of 5 castred and grafted juvenile males, three are still alive, two of them exhibit a developping grafted ovary. The grafted animals will be ready for mating within a few months. Therefore, it will soon be possible to study the progeny of animals that have been submitted to space conditions.

  2. Influence of longitudinal whole animal clinorotation on lens, tail, and limb regeneration in urodeles

    NASA Astrophysics Data System (ADS)

    Anton, H. J.; Grigoryan, E. N.; Mitashov, V. I.

    Two species of newts (Urodela) and two types of clinostats for fast clinorotation (60 rpm) were used to investigate the influence of simulated weightlessness on regeneration and to compare results obtained with data from spaceflight experiments. Seven or fourteen days of weightlessness in Russian biosatellites caused acceleration of lens and limb regeneration by an increase in cell proliferation, differentiation, and rate of morphogenesis in comparison with ground controls. After a comparable time of clinorotation the results obtained with Triturus vulgaris using a horizontal clinostat were similar to those found in spaceflight. In contrast, in Pleurodeles waltl using both horizontal and radial clinostats the results were contradictionary compared to Triturus. We speculate that different levels of gravity or/and species specific thresholds for gravitational sensitivity could be responsible for these contradictionary results.

  3. Muscle development and differentiation in the urodele Ambystoma mexicanum.

    PubMed

    Banfi, Serena; Monti, Laura; Acquati, Francesco; Tettamanti, Gianluca; de Eguileor, Magda; Grimaldi, Annalisa

    2012-05-01

    Muscle differentiation has been widely described in zebrafish and Xenopus, but nothing is known about this process in amphibian urodeles. Both anatomical features and locomotor activity in urodeles are known to show intermediate features between fish and anurans. Therefore, a better understanding of myogenesis in urodeles could be useful to clarify the evolutionary changes that led to the formation of skeletal muscle in the trunk of land vertebrates. We report here a detailed morphological and molecular investigation on several embryonic stages of Ambystoma mexicanum and show that the first differentiating muscle fibers are the slow ones, originating from a myoblast population initially localized close to the notochord that forms a superficial layer on the somitic surface afterwards. Subsequently, fast fibers differentiation ensues. We also identified and cloned A. mexicanum Myf5 as a muscle-specific transcriptional factor likely involved in urodele muscle differentiation.

  4. Reinvestigation of DNA ligase I in axolotl and Pleurodeles development.

    PubMed Central

    Aoufouchi, S; Hardy, S; Prigent, C; Philippe, M; Thiebaud, P

    1991-01-01

    We have recently shown that the exclusion process causing the replacement of DNA ligases II by DNA ligase I in amphibian eggs after fertilization does not occur in the case of Xenopus laevis [Hardy, S., Aoufouchi, S., Thiebaud, P., and Prigent, C., (1991) Nucleic Acids Res. 19, 701-705]. Since this result is in contradiction with the situation reported in axolotl and Pleurodeles we decided to reinvestigate such results in both species. Three different approaches have been used: (1) the substrate specificity of DNA ligase I; (2) the DNA ligase-AMP adduct reaction and (3) the immunological detection using antibodies raised against the X.laevis DNA ligase I. Our results clearly demonstrate that DNA ligase I activity is associated with a single polypeptide which is present in oocyte, unfertilized egg and embryo of both amphibians. Therefore, the hypothesis of a change in DNA ligase forms, resulting from an expression of the DNA ligase I gene in axolotl and Pleurodeles early development must be rejected. We also show that, in contradiction with published data, the unfertilized sea urchin egg contains a DNA ligase activity able to join blunt ended DNA molecules. Images PMID:1886765

  5. Transcription activator-like effector nucleases efficiently disrupt the target gene in Iberian ribbed newts (Pleurodeles waltl), an experimental model animal for regeneration.

    PubMed

    Hayashi, Toshinori; Sakamoto, Kousuke; Sakuma, Tetsushi; Yokotani, Naoki; Inoue, Takeshi; Kawaguchi, Eri; Agata, Kiyokazu; Yamamoto, Takashi; Takeuchi, Takashi

    2014-01-01

    Regeneration of a lost tissue in an animal is an important issue. Although regenerative studies have a history of research spanning more than a century, the gene functions underlying regulation of the regeneration are mostly unclear. Analysis of knockout animals is a very powerful tool with which to elucidate gene function. Recently, transcription activator-like effector nucleases (TALENs) have been developed as an effective technique for genome editing. This technique enables gene targeting in amphibians such as newts that were previously impossible. Here we show that newts microinjected with TALEN mRNAs designed for targeting the tyrosinase gene in single-cell stage embryos revealed an albino phenotype. Sequence analysis revealed that the tyrosinase genes were effectively disrupted in these albino newts. Moreover, precise genome alteration was achieved using TALENs and single strand oligodeoxyribonucleotides. Our results suggest that TALENs are powerful tools for genome editing for regenerative research in newts.

  6. Interspecific hybridization between an anural and urodele ascidian: differential expression of urodele features suggests multiple mechanisms control anural development.

    PubMed

    Swalla, B J; Jeffery, W R

    1990-12-01

    Anural development in the ascidian Molgula occulta was examined using tissue-specific markers and interspecific hybridization. Unlike most ascidians, which develop into a swimming tadpole larva (urodele development), M. occulta eggs develop into a tailless slug-like larva (anural development) which metamorphoses into an adult. M. occulta embryos show conventional early cleavage patterns, gastrulation, and neurulation, but then diverge from the urodele developmental mode during larval morphogenesis. M. occulta larvae do not contain a pigmented sensory cell in their brain or form a tail with differentiated notochord and muscle cells. As shown by in situ hybridization with cloned probes and analysis of in vitro translation products, M. occulta embryos do not accumulate high levels of alpha actin or myosin heavy chain mRNA. In contrast, acetylcholinesterase is expressed in muscle lineage cells, indicating that various muscle cell features are differentially suppressed. M. occulta embryos also lack tyrosinase activity, suggesting that suppression of brain pigment cell differentiation occurs at an early step in development. M. occulta eggs fertilized with sperm from Molgula oculata (a closely related urodele species) develop into hybrid larvae exhibiting some of the missing urodele features. Some hybrid embryos develop tyrosinase activity and differentiate a brain pigment cell and a short row of notochord cells, and form a short tail. These urodele features appeared together or separately in different hybrid embryos suggesting that they develop by independent mechanisms. In contrast, alpha actin and myosin heavy chain mRNA accumulation was not enhanced in hybrid embryos. These results suggest that multiple mechanisms control anural development.

  7. Spinal cord regeneration in a tail autotomizing urodele.

    PubMed

    Dawley, Ellen M; O Samson, Shoji; Woodard, Kenton T; Matthias, Kathryn A

    2012-02-01

    Adult urodele amphibians possess extensive regenerative abilities, including lens, jaws, limbs, and tails. In this study, we examined the cellular events and time course of spinal cord regeneration in a species, Plethodon cinereus, that has the ability to autotomize its tail as an antipredator strategy. We propose that this species may have enhanced regenerative abilities as further coadaptations with this antipredator strategy. We examined the expression of nestin, vimentin, and glial fibrillary acidic protein (GFAP) after autotomy as markers of neural precursor cells and astroglia; we also traced the appearance of new neurons using 5-bromo-2'-deoxyuridine/neuronal nuclei (BrdU/NeuN) double labeling. As expected, the regenerating ependymal tube was a major source of new neurons; however, the spinal cord cranial to the plane of autotomy showed significant mitotic activity, more extensive than what is reported for other urodeles that cannot autotomize their tails. In addition, this species shows upregulation of nestin, vimentin, and GFAP within days after tail autotomy; further, this expression is upregulated within the spinal cord cranial to the plane of autotomy, not just within the extending ependymal tube, as reported in other urodeles. We suggest that enhanced survival of the spinal cord cranial to autotomy allows this portion to participate in the enhanced recovery and regeneration of the spinal cord.

  8. Effects of β radiation on amphibian embryos (Pleurodeles waltlii) and capacities of regulation during development

    NASA Astrophysics Data System (ADS)

    Gallien, Cl. L.; Lenfant-Guyot, M.; Labrousse, J. P.

    The eukariotic cells of complex organisms possessing abundant and sophisticated genetic information, advanced metabolism and very diversified structures are particularly sensitive to the effects of radiation. One may note, however, that all cells of an organism which has been totally radiated may not be affected in the same way; this leaves room, particularly in embryonic organisms during development, for fairly broad possibilities of regulation. We have undertaken analysis of one aspect of these phenomena on a particularly favorable biological model: the embryo of the salamander Pleurodeles waltlii.

  9. The role of peripheral nerves in urodele limb regeneration.

    PubMed

    Stocum, David L

    2011-09-01

    Nerve axons and the apical epidermal cap (AEC) are both essential for the formation of an accumulation blastema by amputated limbs of urodele salamanders. The AEC forms in the absence of axons, but is not maintained, and blastema formation fails. Growth stages of the blastema become nerve-independent for morphogenesis, but remain dependent on the nerve for blastema growth. Denervated growth stage blastemas form smaller than normal skeletal parts, owing to diminished mitosis, but form the full proximodistal array of skeletal elements. This difference in nerve dependency of morphogenesis and proliferation is hypothesized to be the result of a dependence of the AEC on nerves for blastema cell proliferation but not for blastema morphogenesis. Regenerating axons induce the synthesis and secretion of the anterior gradient protein (AGP) by distal Schwann cells during dedifferentiation and by the gland cells of the AEC during blastema growth stages. AGP promotes the regeneration of a denervated limb to digit stages when electroporated into the limb during dedifferentiation. Once a critical mass of blastema cells has been attained, the blastema can undergo morphogenesis in the absence of the nerve, but the regenerate will be a miniature, because the nerve is no longer inducing the AEC to carry out its AGP-mediated proliferative function. AGP expression by both Schwann cells and the AEC is induced by axons, but the nature of the inductive agent is unclear.

  10. Static osteogenesis does not precede dynamic osteogenesis in periosteal ossification of Pleurodeles (Caudata, Amphibia) and Pogona (Squamata, Lepidosauria).

    PubMed

    Cubo, Jorge; Hui, Mylaine; Clarac, François; Quilhac, Alexandra

    2017-02-01

    Two successive mechanisms have been described in perichondral ossification: (1) in static osteogenesis, mesenchymal cells differentiate into stationary osteoblasts oriented randomly, which differentiate into osteocytes in the same site; (2) in dynamic osteogenesis, mesenchymal cells differentiate into osteoblasts that are all oriented in the same direction and move back as they secrete collagen fibers. This study is aimed at testing the hypothesis that the ontogenetic sequence static then dynamic osteogenesis observed in the chicken and in the rabbit is homologous and was acquired by the last common ancestor of amniotes or at a more inclusive node. For this we analyze the developmental patterns of Pleurodeles (Caudata, Amphibia) and those of the lizard Pogona (Squamata, Lepidosauria). We processed Pleurodeles larvae and Pogona embryos, prepared thin and ultrathin sections of appendicular bones, and analyzed them using light and transmission electron microscopy. We show that static osteogenesis does not precede dynamic osteogenesis in periosteal ossification of Pleurodeles and Pogona. Therefore, the null hypothesis is rejected and according to the parsimony method the ontogenetic sequence observed in the chicken and in the rabbit are convergent. In Pleurodeles and Pogona dynamic osteogenesis occur without a previous rigid mineralized framework, whereas in the chicken and in the rabbit dynamic osteogenesis seems to take place over a mineralized support whether bone (in perichondral ossification) or calcified cartilage (in endochondral ossification). Interestingly, in typical dynamic osteogenesis, osteoblasts show an axis (basal nucleus-distal endoplasmic reticulum) perpendicular to the front of secreted unmineralized bone matrix, whereas in Pleurodeles and Pogona this axis is parallel to the bone matrix.

  11. Expression of pax-6 during urodele eye development and lens regeneration.

    PubMed Central

    Del Rio-Tsonis, K; Washabaugh, C H; Tsonis, P A

    1995-01-01

    Regeneration of eye tissues, such as lens, seen in some urodeles involves dedifferentiation of the dorsal pigmented epithelium and subsequent differentiation to lens cells. Such spatial regulation implies possible action of genes known to be specific for particular cell lineages and/or axis. Hox genes have been the best examples of genes for such actions. We have, therefore, investigated the possibility that such genes are expressed during lens regeneration in the newt. The pax-6 gene (a gene that contains a homeobox and a paired box) has been implicated in the development of the eye and lens determination in various species ranging from Drosophila to human and, because of these properties, could be instrumental in the regeneration of the urodele eye tissues as well. We present data showing that pax-6 transcripts are present in the developing and the regenerating eye tissues. Furthermore, expression in eye tissues, such as in retina, declines when a urodele not capable of lens regeneration (axolotl) surpasses the embryonic stages. Such a decline is not seen in adult newts capable of lens regeneration. This might indicate a vital role of pax-6 in newt lens regeneration. Images Fig. 2 Fig. 3 PMID:7761453

  12. Urodeles remove mesoderm from the superficial layer by subduction through a bilateral primitive streak.

    PubMed

    Shook, David R; Majer, Christina; Keller, Ray

    2002-08-15

    Urodeles begin gastrulation with much of their presumptive mesoderm in the superficial cell layer, all of which must move into the deep layers during development. We studied the morphogenesis of superficial mesoderm in the urodeles Ambystoma maculatum, Ambystoma mexicanum, and Taricha granulosa. In all three species, somitic, lateral, and ventral mesoderm move into the deep layer during gastrulation, ingressing through a "bilateral primitive streak" just inside the blastopore. The mesodermal epithelium appears to slide under the endodermal epithelium by a mechanism we term "subduction." Subduction removes the large expanse of superficial presumptive somitic and lateral-ventral mesoderm that initially separates the sub-blastoporal endoderm from the notochord, leaving the endoderm bounding the still epithelial notochord along the gastrocoel roof. Subduction may be a common feature of urodele gastrulation, differing in this regard from anurans. Subducting cells constrict their apices and become bottle-shaped as they approach the junction of the mesodermal and endodermal epithelia. Subducting bottle cells endocytose apical membrane and withdraw the tight junctional component cingulin from the contracting circumferential tight junctions. Either in conjunction with or immediately after subducting, the mesodermal cells undergo an epithelial-to-mesenchymal transition. The mechanism by which epithelial cells release their apical junctions to become mesenchymal, without disrupting the integrity of the epithelium, remains mysterious, but this system should prove useful in understanding this process in a developmental context.

  13. Evidence of light-dependent magnetic compass orientation in urodele amphibian larvae.

    PubMed

    Diego-Rasilla, Francisco J; Luengo, Rosa M; Phillips, John B

    2015-09-01

    Experiments were conducted to investigate whether larval palmate newts undertake orientation toward or away from the home shoreline (y-axis orientation) using the geomagnetic field to steer the most direct route, and if they accomplish this task through a light-dependent magnetoreception mechanism similar to that found in anuran tadpoles and adult newts. Larval palmate newts trained and then tested under full-spectrum light showed bimodal magnetic compass orientation that coincided with the magnetic direction of the trained y-axis. In contrast, larvae trained under long-wavelength (≥500nm) light and then tested under full-spectrum light displayed bimodal orientation perpendicular to the trained y-axis direction. These results offer evidence for the use of magnetic compass cues in orienting urodele amphibian larvae, and provide additional support for the light-dependent magnetoreception mechanism since they are in complete agreement with earlier studies showing that the observed 90° shift in the direction of magnetic compass orientation under long-wavelength light (≥500nm) is due to a direct effect of light on the underlying magnetoreception mechanism. This study is the first to provide evidence of a light-dependent magnetic compass in larval urodeles.

  14. Molecular genetic system for regenerative studies using newts.

    PubMed

    Hayashi, Toshinori; Yokotani, Naoki; Tane, Shoji; Matsumoto, Akira; Myouga, Ayumi; Okamoto, Mitsumasa; Takeuchi, Takashi

    2013-02-01

    Urodele newts have the remarkable capability of organ regeneration, and have been used as a unique experimental model for more than a century. However, the mechanisms underlying regulation of the regeneration are not well understood, and gene functions in particular remain largely unknown. To elucidate gene function in regeneration, molecular genetic analyses are very powerful. In particular, it is important to establish transgenic or knockout (mutant) lines, and systematically cross these lines to study the functions of the genes. In fact, such systems have been developed for other vertebrate models. However, there is currently no experimental model system using molecular genetics for newt regenerative research due to difficulties with respect to breeding newts in the laboratory. Here, we show that the Iberian ribbed newt (Pleurodeles waltl) has outstanding properties as a laboratory newt. We developed conditions under which we can obtain a sufficient number and quality of eggs throughout the year, and shortened the period required for sexual maturation from 18 months to 6 months. In addition, P. waltl newts are known for their ability, like other newts, to regenerate various tissues. We revealed that their ability to regenerate various organs is equivalent to that of Japanese common newts. We also developed a method for efficient transgenesis. These studies demonstrate that P. waltl newts are a suitable model animal for analysis of regeneration using molecular genetics. Establishment of this experimental model will enable us to perform comparable studies using these newts and other vertebrate models.

  15. An electrically mediated block to polyspermy in the primitive urodele Hynobius nebulosus and phylogenetic comparison with other amphibians.

    PubMed

    Iwao, Y

    1989-08-01

    At fertilization, the egg of the primitive urodele, Hynobius nebulosus, produced a fertilization potential which rose from -12 to +47 mV. A similar activation potential was elicited by pricking with a needle, by applying A23187, or by electric shock. The potential change was mediated by an increased permeability to Cl-. Clamping the egg's membrane potential at +40 mV blocked fertilization, while clamping at +20 mV induced polyspermy. These results indicated the occurrence of an electrical polyspermy block, typical of anurans, but atypical of urodeles. Furthermore, Hynobius eggs fertilized by natural mating incorporated only one sperm nucleus, and experimentally polyspermic eggs underwent multipolar division. Accessory sperm did not degenerate in the egg cytoplasm, indicating lack of an intracellular polyspermy block. By comparison, fertilization of Bufo japonicus (anuran) was also voltage dependent, whereas that of Cynops pyrrhogaster (urodele) was voltage independent. Thus polyspermy prevention mechanisms in Hynobius closely resemble those of anuran amphibians and differ from those of higher urodeles.

  16. Cold-induced changes in amphibian oocytes

    SciTech Connect

    Angelier, N.; Moreau, N.A.; N'Da, E.A.; Lautredou, N.F. )

    1989-08-01

    Female Pleurodeles waltl newts (Amphibia, urodele), usually raised at 20 degrees C, were submitted to low temperatures; oocytes responded to this cold stress by drastic changes both in lampbrush chromosome structure and in protein pattern. Preexisting lateral loops of lampbrush chromosomes were reduced in size and number, while cold-induced loops which were tremendously developed, occurred on defined bivalents of the oocyte at constant, reproducible sites. A comparison of protein patterns in control and stressed oocytes showed two main differences: in stressed oocytes, overall protein synthesis was reduced, except for a set of polypeptides, the cold-stress proteins; second, there was a striking inversion of the relative amount of beta- and gamma-actin found in the oocyte nucleus before and after cold stress. Whereas beta-actin was the predominant form in control oocytes, gamma-actin became the major form in stressed oocytes.

  17. Analyzing the radiation of the melanocortins in amphibians: cloning of POMC cDNAs from the pituitary of the urodele amphibians, Amphiuma means and Necturus maculosus.

    PubMed

    Kozak, Katarzyna; Costantino, David; Lecaude, Stephanie; Sollars, Cristina; Danielson, Phillip; Dores, Robert M

    2005-10-01

    Proopiomelanocortin (POMC) cDNAs were cloned and sequenced from brain extracts of two species of urodele amphibians: Amphiuma means and Necturus maculosus. Although the two species of urodele amphibians belong to separate families, and do not share a direct common ancestor, the level of primary sequence identity for the open reading of the POMC cDNAs was 90% at the amino acid level and 79% at the nucleotide level. It appears that the POMC gene in these urodele amphibians has been accumulating mutations at the amino acid level at a slower rate than the POMC gene in other sarcopterygian orders.

  18. Functional diversity of voltage‐sensing phosphatases in two urodele amphibians

    PubMed Central

    Mutua, Joshua; Jinno, Yuka; Sakata, Souhei; Okochi, Yoshifumi; Ueno, Shuichi; Tsutsui, Hidekazu; Kawai, Takafumi; Iwao, Yasuhiro; Okamura, Yasushi

    2014-01-01

    Abstract Voltage‐sensing phosphatases (VSPs) share the molecular architecture of the voltage sensor domain (VSD) with voltage‐gated ion channels and the phosphoinositide phosphatase region with the phosphatase and tensin homolog (PTEN), respectively. VSPs enzymatic activities are regulated by the motions of VSD upon depolarization. The physiological role of these proteins has remained elusive, and insights may be gained by investigating biological variations in different animal species. Urodele amphibians are vertebrates with potent activities of regeneration and also show diverse mechanisms of polyspermy prevention. We cloned cDNAs of VSPs from the testes of two urodeles; Hynobius nebulosus and Cynops pyrrhogaster, and compared their expression and voltage‐dependent activation. Their molecular architecture is highly conserved in both Hynobius VSP (Hn‐VSP) and Cynops VSP (Cp‐VSP), including the positively‐charged arginine residues in the S4 segment of the VSD and the enzymatic active site for substrate binding, yet the C‐terminal C2 domain of Hn‐VSP is significantly shorter than that of Cp‐VSP and other VSP orthologs. RT‐PCR analysis showed that gene expression pattern was distinct between two VSPs. The voltage sensor motions and voltage‐dependent phosphatase activities were investigated electrophysiologically by expression in Xenopus oocytes. Both VSPs showed “sensing” currents, indicating that their voltage sensor domains are functional. The phosphatase activity of Cp‐VSP was found to be voltage dependent, as shown by its ability to regulate the conductance of coexpressed GIRK2 channels, but Hn‐VSP lacked such phosphatase activity due to the truncation of its C2 domain. PMID:25347851

  19. Axolotl Nanog activity in mouse embryonic stem cells demonstrates that ground state pluripotency is conserved from urodele amphibians to mammals

    PubMed Central

    Dixon, James E.; Allegrucci, Cinzia; Redwood, Catherine; Kump, Kevin; Bian, Yuhong; Chatfield, Jodie; Chen, Yi-Hsien; Sottile, Virginie; Voss, S. Randal; Alberio, Ramiro; Johnson, Andrew D.

    2010-01-01

    Cells in the pluripotent ground state can give rise to somatic cells and germ cells, and the acquisition of pluripotency is dependent on the expression of Nanog. Pluripotency is conserved in the primitive ectoderm of embryos from mammals and urodele amphibians, and here we report the isolation of a Nanog ortholog from axolotls (axNanog). axNanog does not contain a tryptophan repeat domain and is expressed as a monomer in the axolotl animal cap. The monomeric form is sufficient to regulate pluripotency in mouse embryonic stem cells, but axNanog dimers are required to rescue LIF-independent self-renewal. Our results show that protein interactions mediated by Nanog dimerization promote proliferation. More importantly, they demonstrate that the mechanisms governing pluripotency are conserved from urodele amphibians to mammals. PMID:20736286

  20. Axolotl Nanog activity in mouse embryonic stem cells demonstrates that ground state pluripotency is conserved from urodele amphibians to mammals.

    PubMed

    Dixon, James E; Allegrucci, Cinzia; Redwood, Catherine; Kump, Kevin; Bian, Yuhong; Chatfield, Jodie; Chen, Yi-Hsien; Sottile, Virginie; Voss, S Randal; Alberio, Ramiro; Johnson, Andrew D

    2010-09-01

    Cells in the pluripotent ground state can give rise to somatic cells and germ cells, and the acquisition of pluripotency is dependent on the expression of Nanog. Pluripotency is conserved in the primitive ectoderm of embryos from mammals and urodele amphibians, and here we report the isolation of a Nanog ortholog from axolotls (axNanog). axNanog does not contain a tryptophan repeat domain and is expressed as a monomer in the axolotl animal cap. The monomeric form is sufficient to regulate pluripotency in mouse embryonic stem cells, but axNanog dimers are required to rescue LIF-independent self-renewal. Our results show that protein interactions mediated by Nanog dimerization promote proliferation. More importantly, they demonstrate that the mechanisms governing pluripotency are conserved from urodele amphibians to mammals.

  1. Comparative analysis of adrenomedullin-like immunoreactivity in the hypothalamus of amphibians.

    PubMed

    Muñoz, M; López, J M; Sánchez-Camacho, C; Moreno, N; Crespo, M; González, A

    2001-08-01

    Adrenomedullin (AM) is a novel neuropeptide with special significance in the mammalian hypothalamo-hypophysial axis. By using an antiserum specific for human AM, we have studied the localization of AM-like immunoreactive (AMi) cell bodies and fibers in the hypothalamus and hypophysis of the amphibians Rana perezi (anuran), Pleurodeles waltl (urodele), and Dermophis mexicanus (gymnophionan). Distinct AMi cell groups were found for each species. In the anuran, six cell groups were localized in the preoptic and infundibular regions, whereas only three and one were found in the urodele and gymnophionan, respectively. A comparative analysis of AMi cells and cells expressing arginine vasotocin (AVT), neuropeptide Y (NPY), and tyrosine hydroxylase (TH) revealed strong differences between species. Thus, colocalization of AVT/AM is most likely to occur in the preoptic magnocellular nucleus of urodeles and it is reflected by the intense AM immunoreactivity in the neural lobe of the hypophysis. Colocalization of NPY/AM seems to be possible in the suprachiasmatic nucleus of anurans. In the gymnophionan, cells containing AVT and NPY are distinct from AMi cells. Only in anurans, the ventral aspect of the suprachiasmatic nucleus possesses a small population of AMi cells that express also TH immunoreactivity and most likely also express NPY. The results strongly suggest that AM in amphibians plays an important regulatory role in the hypothalamo-hypophysial system, as has been demonstrated in mammals. On the other hand, substantial differences have been found between species with respect to the degree of colocalization with other chemical substances.

  2. Distribution of nitric oxide-producing cells along spinal cord in urodeles

    PubMed Central

    Mahmoud, Mayada A.; Fahmy, Gehan H.; Moftah, Marie Z.; Sabry, Ismail

    2014-01-01

    Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. There are little data about the neuronal nitric oxide synthase immunoreactivity in the spinal cord of amphibians. In this respect, the present study aims to investigate the distribution of nitric oxide producing cells in the spinal cord of urodele and to find out the possibility of a functional locomotory role to this neurotransmitter. The results of the present study demonstrate a specific pattern of NADPH-d labeling in the selected amphibian model throughout the spinal cord length as NADPH-d-producing cells and fibers were present in almost all segments of the spinal cord of the salamander investigated. However, their number, cytological characteristics and labeling intensity varied significantly. It was noticed that the NO-producing cells (NO-PC) were accumulated in the ventral side of certain segments in the spinal cord corresponding to the brachial and sacral plexuses. In addition, the number of NO-PC was found to be increased also at the beginning of the tail and this could be due to the fact that salamanders are tetrapods having bimodal locomotion, namely swimming and walking. PMID:25309330

  3. Re-regeneration of lower jaws and the dental lamina in adult urodeles.

    PubMed

    Graver, H T

    1978-09-01

    Transverse amputations were carried out through one-third fully regenerated jaw segments and through normal tissue of the mandible on the same and opposite sides of the jaw in adults of Notophthalmus viridescens. Collectively the results suggest that, in adult urodeles, the mandible and the dental lamina can be replaced in an identical manner more than one time. Although the major histological events are the same in jaw regeneration and re-regeneration, regrowth is more rapid in re-regeneration. It appears that recently differentiated tissues of the regenerate have a higher capacity for regeneration than normal tissues amputated for the first time. Re-regeneration of the jaw occurs by growth of the original regenerate cartilage which has undergone reorganization. In re-regeneration, the skeletal elements exhibit no polarity and regrowth occurs in both directions, while the dental lamina possesses an anterior-posterior polarity and can regrow in an anterior direction only. Information concerning the mechanisms involved in the regenerative events remain to be determined.

  4. Small molecules that recapitulate the early steps of urodele amphibian limb regeneration and confer multipotency.

    PubMed

    Kim, Woong-Hee; Jung, Da-Woon; Kim, Jinmi; Im, Sin-Hyeog; Hwang, Seung Yong; Williams, Darren R

    2012-04-20

    In urodele amphibians, an early step in limb regeneration is skeletal muscle fiber dedifferentiation into a cellulate that proliferates to contribute new limb tissue. However, mammalian muscle cannot dedifferentiate after injury. We have developed a novel, small-molecule-based method to induce dedifferentiation in mammalian skeletal muscle. Muscle cellularization was induced by the small molecule myoseverin. Candidate small molecules were tested for the induction of proliferation in the cellulate. We observed that treatment with the small molecules BIO (glycogen synthase-3 kinase inhibitor), lysophosphatidic acid (pleiotropic activator of G-protein-coupled receptors), SB203580 (p38 MAP kinase inhibitor), or SQ22536 (adenylyl cyclase inhibitor) induced proliferation. Moreover, these proliferating cells were multipotent, as confirmed by the chemical induction of mesodermal-derived cell lineages. Microarray analysis showed that the multipotent, BIO-treated cellulate possessed a markedly different gene expression pattern than lineage-restricted C2C12 myoblasts, especially for genes related to signal transduction and differentiation. Sequential small molecule treatment of the muscle cellulate with BIO, SB203580, or SQ22536 and the aurora B kinase inhibitor, reversine, induced the formation of cells with neurogenic potential (ectodermal lineage), indicating the acquirement of pluripotency. This is the first demonstration of a small molecule method that induces mammalian muscle to undergo dedifferentiation and rededifferentiation into alternate cell lineages. This method induces dedifferentiation in a simple, stepwise approach and has therapeutic potential to enhance tissue regeneration in mammals.

  5. A new approach of urodele amphibian limb regeneration: study of myosin isoforms and their control by thyroid hormone.

    PubMed

    Saadi, A; Gallien, C L; Guyot-Lenfant, M; Chanoine, C

    1993-09-01

    In P. waltlii, an urodele amphibian species which undergoes spontaneous metamorphosis, study of native myosin in pyrophosphate gels at various stages of normal development demonstrates a complete larval to fast myosin isoforms transition, which occurs more precociously in forelimb muscles than in the dorsal and ventral muscles. In the neotenic species A. mexicanum, forelimb muscles development also presents a complete myosin isoforms transition which is in contrast with the partial myosin isoforms transition observed in the dorsal muscle. In metamorphosed or neotenic animals of both species aged 1 year, forelimb regeneration is characterized by a complete transition from larval to fast myosin isoforms, that occurs earlier and more rapidly than in normal forelimb development. When forelimb regeneration is studied in P. waltlii aged 4 years, the adult fast and slow isomyosins are expressed very early in the regeneration process. In experimental hypothyroidian P. waltlii, the larval to fast isoforms transition in regenerating forelimb muscles is slightly delayed. Experimental hyperthyroidism accelerates the disappearance of larval isomyosins in regenerating forelimb muscles, both in P. waltlii and A. mexicanum aged 1 year. This work demonstrates that changes in myosin isoform pattern during forelimb regeneration in adult urodele amphibians are different from changes occurring in the normal forelimb development. They take place without any thyroid hormone influence, as opposed to normal development, and appear to be age-dependent.

  6. Urodele limb and tail regeneration in early biological thought: an essay on scientific controversy and social change.

    PubMed

    Dinsmore, C E

    1996-08-01

    Lazzaro Spallanzani (1729-1799) announced his discoveries of salamander tail and limb regeneration to Charles Bonnet (1729-1793) in the 1760's. The phenomenon soon became embroiled with the ongoing epigenesis/preformation controversy over the fundamental nature of generation. The concept of animal regeneration as a process linked to reproduction had emerged in 1740 with Abraham Trembley's (1710-1783) demonstration that a bisected hydra gives rise to two new, completely formed individuals. The discovery of urodele appendage regeneration revealed for the first time that a quadruped could regenerate and restore complex form, lizard tail regenerates having been recognized as only substitute structures. Moreover, regeneration of a quadruped appendage became problematic because it was not supposed to be possible and because it conflicted with prevailing opinion about the nature of higher organisms. Why animal regeneration in general engendered conflict transcends biological concerns and touches on personal philosophical commitments. Preformation had been adopted into orthodox theology as a validation of predestination and of the hierarchical structuring of man's relationships to nature and within society. Epigenetic interpretations of regeneration represented challenges to certain aspects of the extant social and political fabric in their extrapolation to ideas of what constituted natural order. Urodele regeneration as an integral part of the epigenesis/preformation debate therefore constituted a formative component of eighteenth century thought in a period of social and intellectual revolution.

  7. [The effect of space flight factors on the cellular proliferative activity of different eye tissues during lens regeneration in the Spanish newt Pleurodeles waltlii].

    PubMed

    Brushlinskaia, N V

    1995-01-01

    The proliferative activity of the cells of various eye tissues was studied during lens regeneration in Pleurodeles waltlii under the influence of space-flight factors. After space-flight termination, the index of 3H-thymidine labelled nuclei increased reliably in the lens regenerate, in the ciliary zone of the iris, and in the growth zone of the retina, i.e., in the eye tissues that are not directly involved in formation of the regenerate cell population. The rate of increase in regenerate size was higher in the flight group than in the control. Enhancement of the proliferative activity of eye tissues, acceleration of lens regeneration, and the larger size of the regenerates are related to hormonal changes arising under the effect of space-flight factors. We propose that changes in calcium metabolism under the conditions of microgravity (in particular, increased prolactin production) accelerates the regeneration of both lens and limb in P. waltlii.

  8. A non-invasive geometric morphometrics method for exploring variation in dorsal head shape in urodeles: sexual dimorphism and geographic variation in Salamandra salamandra.

    PubMed

    Alarcón-Ríos, Lucía; Velo-Antón, Guillermo; Kaliontzopoulou, Antigoni

    2017-04-01

    The study of morphological variation among and within taxa can shed light on the evolution of phenotypic diversification. In the case of urodeles, the dorso-ventral view of the head captures most of the ontogenetic and evolutionary variation of the entire head, which is a structure with a high potential for being a target of selection due to its relevance in ecological and social functions. Here, we describe a non-invasive procedure of geometric morphometrics for exploring morphological variation in the external dorso-ventral view of urodeles' head. To explore the accuracy of the method and its potential for describing morphological patterns we applied it to two populations of Salamandra salamandra gallaica from NW Iberia. Using landmark-based geometric morphometrics, we detected differences in head shape between populations and sexes, and an allometric relationship between shape and size. We also determined that not all differences in head shape are due to size variation, suggesting intrinsic shape differences across sexes and populations. These morphological patterns had not been previously explored in S. salamandra, despite the high levels of intraspecific diversity within this species. The methodological procedure presented here allows to detect shape variation at a very fine scale, and solves the drawbacks of using cranial samples, thus increasing the possibilities of using collection specimens and alive animals for exploring dorsal head shape variation and its evolutionary and ecological implications in urodeles. J. Morphol. 278:475-485, 2017. © 2017 Wiley Periodicals, Inc.

  9. Evolution of ossification sequences in salamanders and urodele origins assessed through event-pairing and new methods.

    PubMed

    Germain, Damien; Laurin, Michel

    2009-01-01

    Ossification sequences of the skull in extant Urodela and in Permo-Carboniferous Branchiosauridae have already been used to study the origin of lissamphibians. But most of these studies did not consider some recent methods developed to analyze the developmental sequences within a phylogenetic framework. Here, we analyze the ossification sequences of 24 cranial bones of 23 extant species of salamanders using the event-pairing method. This reveals new developmental synapomorphies for several extant salamander taxa and ancestral sequences for Urodela under four alternative reference phylogenies. An analysis with the 12 bones for which ossification sequence data are available in urodeles and in the branchiosaurid Apateon is also performed in order to compare the ancestral condition of the crown-group of Urodela to the sequence of Apateon. This reveals far more incompatibilities than previously suggested. The similarities observed between some extant salamanders and branchiosaurids may result from extensive homoplasy, as the extreme variation observed in extant Urodela suggests, or be plesiomorphic, as the conservation of some ossification patterns observed in other remotely related vertebrates like actinopterygians suggests. We propose a new, simpler method based on squared-change optimization to estimate the relative timing of ossification of various bones of hypothetical ancestors, and use independent-contrasts analysis to estimate the confidence intervals around these times. Our results show that the uncertainty of the ancestral ossification sequence of Urodela is much greater than event-pairing suggests. The developmental data do not allow to conclude that branchiosaurids are closely related to salamanders and their limited taxonomic distribution in Paleozoic taxa precludes testing hypotheses about lissamphibian origins. This is true regardless of the analytical method used (event-pairing or our new method based on squared-change parsimony). Simulations show that

  10. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study.

    PubMed

    Kawasumi-Kita, Aiko; Hayashi, Toshinori; Kobayashi, Takuya; Nagayama, Chikashi; Hayashi, Shinichi; Kamei, Yasuhiro; Morishita, Yoshihiro; Takeuchi, Takashi; Tamura, Koji; Yokoyama, Hitoshi

    2015-12-01

    Urodele amphibians (newts and salamanders) and anuran amphibians (frogs) are excellent research models to reveal mechanisms of three-dimensional organ regeneration since they have exceptionally high regenerative capacity among tetrapods. However, the difficulty in manipulating gene expression in cells in a spatially restricted manner has so far hindered elucidation of the molecular mechanisms of organ regeneration in amphibians. Recently, local heat shock by laser irradiation has enabled local gene induction even at the single-cell level in teleost fishes, nematodes, fruit flies and plants. In this study, local heat shock was made with infrared laser irradiation (IR-LEGO) by using a gene expression inducible system in transgenic animals containing a heat shock promoter, and gene expression was successfully induced only in the target region of two amphibian species, Xenopus laevis and Pleurodeles waltl (a newt), at postembryonic stages. Furthermore, we induced spatially restricted but wider gene expression in Xenopus laevis tadpoles and froglets by applying local heat shock by a temperature-controlled metal probe (temperature stimulator). The local gene manipulation systems, the IR-LEGO and the temperature stimulator, enable us to do a rigorous cell lineage trace with the combination of the Cre-LoxP system as well as to analyze gene function in a target region or cells with less off-target effects in the study of amphibian regeneration.

  11. Microgravity effects on neural retina regeneration in the newt

    NASA Astrophysics Data System (ADS)

    Grigoryan, E. N.; Anton, H. J.; Mitashov, V. I.

    Data on forelimb and eye lens regenerationin in urodeles under spaceflight conditions (SFC) have been obtained in our previous studies. Today, evidence is available that SFC stimulate regeneration in experimental animals rather than inhibit it. The results of control on-ground experiments with simulated microgravity suggest that the stimulatory effect of SFC is due largely to weightlessness. An original experimental model is proposed, which is convenient for comprehensively analyzing neural regeneration under SFC. The initial results described here concern regeneration of neural retina in Pleurodeles waltl newts exposed to microgravity simulated in radial clinostat. After clinorotation for seven days (until postoperation day 16), a positive effect of altered gravity on structural restoration of detached neural retina was confirmed by a number of criteria. Specifically, an increased number of Müllerian glial cells, an increased relative volume of the plexiform layers, reduced cell death, advanced redifferentiation of retinal pigment epithelium, and extended areas of neural retina reattachment were detected in experimental newts. Moreover, cell proliferation in the inner nuclear layer of neural retina increased as compared with control. Thus, low gravity appears to intensify natural cytological and molecular mechanisms of neural retina regeneration in lower vertebrates.

  12. [Biologically Active Peptides of King Crab Hepatopancreas].

    PubMed

    Bogdanov, V V; Berezin, B B; Il'ina, A P; Yamskova, V P; Yamskov, I A

    2015-01-01

    Substances of a peptide nature isolated from the hepatopancreas of the king crab Paralithodes camtschaticus exhibited physicochemical properties and membranotropic and specific activities similar to those of membranotropic homeostatic tissue-specific bioregulators previously found in different mammalian and plant tissues. Their biological effect on vertebrate tissues was demonstrated on a model of roller organotypic cultivation of Pleurodeles waltl newt liver tissue.

  13. Cloning proenkephalin from the brain of a urodele amphibian (Taricha granulosa) using a DOR-specific primer in a 3'RACE reaction.

    PubMed

    Walthers, Eliza A; Moore, Frank L

    2005-07-01

    A large cDNA fragment that codes for proenkephalin (PENK) was cloned from the rough-skinned newt, Taricha granulosa (GenBank Accession: AY817670). This 1299-bp PENK cDNA extends from the poly(A) sequence on the 3' end into the 5'-UTR (221bp) upstream of an open reading frame that codes for 264 amino acids and a stop codon. Within the precursor are five Met-enkephalin sequences and two C-terminally extended forms of Met-enkephalin (YGGFMRGV and YGGFMRY). The organization of the opioid core sequences within the newt PENK closely resembles that reported for other vertebrates. In this urodele amphibian, as in anurans, PENK does not contain the penultimate Leu-enkephalin opioid sequence found in mammals, and instead has in this position Met-enkephalin. PENK cDNA was amplified from newt brain in a RACE PCR targeting the 3' end of the newt delta opioid receptor (DOR). It remains to be determined whether generating the cDNA for the newt PENK while cloning its receptor was serendipitous or the result of a meaningful coincidence between the DOR and PENK sequences.

  14. Tachykinins with unusual structural features from a urodele, the amphiuma, an elasmobranch, the hammerhead shark, and an agnathan, the river lamprey.

    PubMed

    Waugh, D; Bondareva, V; Rusakov, Y; Bjenning, C; Nielsen, P F; Conlon, J M

    1995-01-01

    Tachykinins were purified from extracts of gastrointestinal tissues of the urodele, Amphiuma tridactylum (three-toed amphiuma), and the elasmobranch Sphyrna lewini (hammerhead shark), and from the brain of the agnathan Lampetra fluviatilis (river lamprey). The amphiuma substance P (SP) (DNPSVGQFYGLM-NH2) contains 12 amino residues compared with 11 for mammalian SP and lacks the Arg/Lys-Pro-Xaa-Pro motif that is characteristic of NK1 receptor-selective agonists. Lampetra SP (RKPHPKEFVGLM-NH2) is identical to SP from the sea lamprey and the shark SP-related peptide (AKFDKFYGLM-NH2) is identical to dogfish scyliorhinin I. Amphiuma neurokinin A (NKA) (HKDAFIGLM-NH2) and lamprey NKA (HFDEFVGLM-NH2) contain 9 amino acid residues compared with 10 for mammalian NKA. The shark NKA-related peptide (ASGPTQAGIV10GRKRQKGEMF20VGLM-NH2) shows limited structural similarity to mammalian neuropeptide gamma and the teleost tachykinin, carassin but contains 24 rather than 21 amino acid residues. The data show that the primary structures of the tachykinins have been very poorly conserved during vertebrate evolution and that pressure has acted only to maintain the functionally important sequence -Phe-Xaa-Gly Leu-Met-NH2 at the COOH-termini of the peptides.

  15. Microgravity can activate signals urging cells to S-phase entry during tissue and organ regeneration in Urodele amphibians exposed to real and simulated microgravity

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Anton, H.-J.; Mitashov, V.

    Regenerative response following local injury or tissue removal in urodele amphibians is dependent on cell cycle entry of cells sources for regeneration in the remaining tissue. In a number of our experiments performed aboard biosatellites in orbital flights and fast rotated clinostat we found enhanced proliferative activity and, as a result, regeneration quicker than that in controls. In each investigated case an activity of cell proliferation evaluated by 3H-thymidine radioautography and BrdU assay at the early stages of lens, retina, forelimb and tail regeneration in newts was about 1,2-1,7 fold higher both under conditions of real and physiological weightlessness as compared with controls. Faster S-phase entry under conditions of micro- g was demonstrated by cycling multipotent cells as well as by differentiated postmitotic cells both participated in regeneration. Important, that cycling cells outside areas of regeneration were also found as displayed faster cellular growth. In our papers (1,2,3,4) we offered some hypothesis that could explain mechanisms of low g stimulating effect upon cell growth in regeneration in Urodela. In particular, changes in expression of some growth factors and their receptors, as well as the synthesis of specific range of generalized stress proteins (AGSPs) were proposed. However, in fact, molecular mechanisms of micro- g effect upon cell proliferation are mediated by changes on organismic level induced by micro- g environment. Some of them which are able to trigger off signaling changes on the cellular level that, in turn, evoke cells to grow faster would be represented in our report. 1. Mitashov V. et al. Adv. Space Res. 1996. 17 (6/7): 241-255 2. Anton H.-J. et al. Adv. Space Res. 1996. 17 (6/7): 55-65 3. Grigoryan E. et al. Adv. Space Res. 1998. 22 (2): 293-301 4. Grigoryan E. et al. Adv. Space Res. 2002. 30 (4): 757-764

  16. Mutagenesis in Newts: Protocol for Iberian Ribbed Newts.

    PubMed

    Hayashi, Toshinori; Takeuchi, Takashi

    2016-01-01

    Newts have the remarkable capability of organ/tissue regeneration, and have been used as a unique experimental model for regenerative biology. The Iberian ribbed newt (Pleurodeles waltl) is suitable as a model animal. We have established methods for artificial insemination and efficient transgenesis using P. waltl newts. In addition to the transgenic technique, development of TALENs enables targeting mutagenesis in the newts. We have reported that TALENs efficiently disrupted targeted genes in newt embryos. In this chapter, we introduce a protocol for TALEN-mediated gene targeting in Iberian ribbed newts.

  17. Toxicity of CeO₂ nanoparticles on a freshwater experimental trophic chain: A study in environmentally relevant conditions through the use of mesocosms.

    PubMed

    Bour, Agathe; Mouchet, Florence; Cadarsi, Stéphanie; Silvestre, Jérôme; Verneuil, Laurent; Baqué, David; Chauvet, Eric; Bonzom, Jean-Marc; Pagnout, Christophe; Clivot, Hugues; Fourquaux, Isabelle; Tella, Marie; Auffan, Mélanie; Gauthier, Laury; Pinelli, Eric

    2016-01-01

    The toxicity of CeO2 NPs on an experimental freshwater ecosystem was studied in mesocosm, with a focus being placed on the higher trophic level, i.e. the carnivorous amphibian species Pleurodeles waltl. The system comprised species at three trophic levels: (i) bacteria, fungi and diatoms, (ii) Chironomus riparius larvae as primary consumers and (iii) Pleurodeles larvae as secondary consumers. NP contamination consisted of repeated additions of CeO2 NPs over 4 weeks, to obtain a final concentration of 1 mg/L. NPs were found to settle and accumulate in the sediment. No effects were observed on litter decomposition or associated fungal biomass. Changes in bacterial communities were observed from the third week of NP contamination. Morphological changes in CeO2 NPs were observed at the end of the experiment. No toxicity was recorded in chironomids, despite substantial NP accumulation (265.8 ± 14.1 mg Ce/kg). Mortality (35.3 ± 6.8%) and a mean Ce concentration of 13.5 ± 3.9 mg/kg were reported for Pleurodeles. Parallel experiments were performed on Pleurodeles to determine toxicity pathways: no toxicity was observed by direct or dietary exposures, although Ce concentrations almost reached 100 mg/kg. In view of these results, various toxicity mechanisms are proposed and discussed. The toxicity observed on Pleurodeles in mesocosm may be indirect, due to microorganism's interaction with CeO2 NPs, or NP dissolution could have occurred in mesocosm due to the structural complexity of the biological environment, resulting in toxicity to Pleurodeles. This study strongly supports the importance of ecotoxicological assessment of NPs under environmentally relevant conditions, using complex biological systems.

  18. The urodele limb regeneration blastema: the cell potential.

    PubMed

    Tweedell, Kenyon S

    2010-05-31

    The developmental potential of the limb regeneration blastema, a mass of mesenchymal cells of mixed origins, was once considered as being pluripotent, capable of forming all cell types. Now evidence asserts that the blastema is a heterogeneous mixture of progenitor cells derived from tissues of the amputation site, with limited developmental potential, plus various stem cells with multipotent abilities. Many specialized cells, bone, cartilage, muscle, and Schwann cells, at the injury site undergo dedifferentiation to a progenitor state and maintain their cell lineage as they redifferentiate in the regenerate. Muscle satellite reserve stem cells that are active in repair of injured muscle may also dedifferentiate and contribute new muscle cells to the limb blastema. Other cells from the dermis act as multipotent stem cells that replenish dermal fibroblasts and differentiate into cartilage. The blastema primordium is a self-organized, equipotential system, but at the cellular level can compensate for specific cell loss. It is able to induce dedifferentiation of introduced exogenous cells and such cells may be transformed into new cell types. Indigenous cells of the blastema associated with amputated tissues may also transform or possibly transdifferentiate into new cell types. The blastema is a microenvironment that enables dedifferentiation, redifferentiation, transdifferentiation, and stem cell activation, leading to progenitor cells of the limb regenerate.

  19. Differentiation in microgravity of neural and muscle cells of a vertebrate (amphibian)

    NASA Astrophysics Data System (ADS)

    Husson, D.; Gualandris-Parisot, L.; Foulquier, F.; Grinfield, S.; Kan, P.; Duprat, A.-M.

    The CELIMENE space experiment (CELulles en Impesanteur: Muscle Et Neurone Embryonnaires) was devoted to the study of the influence of gravity on the differentiation, the organisation and the maintenance of the highly specialised nervous system and muscular system. CELIMENE was carried out during the first flight of the IBIS hardware (Instrument for BIology in Space) with the fully automatic space mission PHOTON 10 in February 1995. Using the amphibian Pleurodeles waltl as a vertebrate model, in vitro experiments involved immunocytochemical detection of glial-, neuronal- and muscle-specific markers, and neurotransmitters in cells developed under conditions of microgravity compared with 1g controls, on-board and on the ground. We observed that the altered gravity did not disturb cell morphogenesis or differentiation.

  20. [Peptide-containing fraction from a culture medium of Fusarium sambucinum: composition and biological effects].

    PubMed

    Bogdanov, V V; Fatkulina, É F; Berezin, B B; Il'ina, A P; Iamskova, V P; Iamskov, I A

    2014-01-01

    The culture fluid of the fungus Fusarium sambucinum was investigated for the presence of new peptide-containing bioregulators, previously identified in various mammalian and plant tissues. A fraction containing peptides with molecular weights from 1000 to 2000 Da, which exhibited specific membranotropic activity and a number of physical and chemical properties characteristic of this group of bioregulators, was obtained. The effects of this fraction on the model roller organotypic cultivation of liver tissue of the Pleurodeles waltl newt in vitro were investigated for the first time. This fraction caused the additional activation of pigmented liver cells of newt (analogues to Kupffer cells of the liver of mammals) and provided the maintenance of cell-cell adhesive interactions in tissues. The results show that a new group of peptide bioregulators was present in the culture medium of the fungus F. sambucinum.

  1. [Photoreceptors and visual pigments in three species of newts].

    PubMed

    Koremiak, D A; Govardovskiĭ, V I

    2013-01-01

    Photoreceptor complement and retinal visual pigments in three newt (Caudata, Salamandridae, Pleurodelinae) species (Pleurodeles waltl, Lissotriton (Triturus) vulgaris and Cynops orientalis) were studied by light mucroscopy and microspectrophotometry. Retinas of all three species contain "red" (rhodopsin/porphyropsin) rods, large and small single cones, and double cones. Large single cones and both components of double cones contain red-sensitive (presumably LWS) visual pigment whose absorbance spectrum peaks between 593 and 611 nm. Small single cones are either blue- (SWS2, maximum absorbance between 470 and 489 nm) or UV-sensitive (SWS1, maximum absorbance between 340 and 359 nm). Chromophore composition of visual pigments (A1 vs. A2) was assessed both from template fitting of absorption spectra and by the method of selective bleaching. All pigments contained a mixture of A1 (11-cis retinal) and A2 (11-cis-3,4-dehydroretinal) chromophore in the proportion depending on the species and cell type. In all cases, A2 was dominant. However, in C. orientalis rods the fraction of A1 could reach 45%, while in P. waltl and L. vulgaris cones it did not exceed 5%. Remarkably, the absorbance of the newt blue-sensitive visual pigment was shifted by up to 45 nm toward the longer wavelength, as compared with all other amphibian SWS2-pigments. We found no "green" rods typical of retinas of Anura and some Caudata (ambystomas) in the three newt species studied.

  2. Amphibian interorder nuclear transfer embryos reveal conserved embryonic gene transcription, but deficient DNA replication or chromosome segregation.

    PubMed

    Narbonne, Patrick; Gurdon, John B

    2012-01-01

    Early interspecies nuclear transfer (iNT) experiments suggested that a foreign nucleus may become permanently damaged after a few rounds of cell division in the cytoplasm of another species. That is, in some distant species combinations, nucleocytoplasmic hybrid (cybrid) blastula nuclei can no longer support development, even if they are back-transferred into their own kind of egg cytoplasm. We monitored foreign DNA amplification and RNA production by quantitative PCR (qPCR) and RT-qPCR in interorder amphibian hybrids and cybrids formed by the transfer of newt (Pleurodeles waltl) embryonic nuclei into intact and enucleated frog (Xenopus laevis) eggs. We found a dramatic reduction in the expansion of foreign DNA and cell numbers in developing cybrid embryos that correlated with reduced gene transcription. Interestingly, expansion in cell numbers was rescued by the recipient species (Xenopus) maternal genome in iNT hybrids, but it did not improve P. waltl DNA expansion or gene transcription. Also, foreign gene transcripts, normalized to DNA copy numbers, were mostly normal in both iNT hybrids and cybrids. Thus, incomplete foreign DNA replication and/or chromosome segregation during cell division may be the major form of nuclear damage occurring as a result of nuclear replication in a foreign cytoplasmic environment. It also shows that the mechanisms of embryonic gene transcription are highly conserved across amphibians and may not be a major cause of cybrid lethality.

  3. Toxicity of CeO2 nanoparticles at different trophic levels--effects on diatoms, chironomids and amphibians.

    PubMed

    Bour, Agathe; Mouchet, Florence; Verneuil, Laurent; Evariste, Lauris; Silvestre, Jérôme; Pinelli, Eric; Gauthier, Laury

    2015-02-01

    The aim of the present work is to provide wider information on the toxicity of cerium dioxide nanoparticles (CeO2 NPs) in aquatic environments, by studying the toxicity of two types of CeO2 NPs for four species (diatoms Nitzschia palea, the sediment-dwelling invertebrate Chironomus riparius, and the amphibian larvae Xenopus laevis and Pleurodeles waltl.). The two types of CeO2 NPs have different intrinsic properties: some of them are small citrate-coated spheres (2-5 nm), and the others are larger uncoated plates (20-60 nm). Acute toxicity (mortality at 48 or 96 h, depending on the test-organism) was assessed for the four species, from 0.1 to 100 mg L(-1) of NPs. Sub-lethal effects were assessed on chironomids exposed between 0.01 and 1 mg L(-1) of NPs. Mortality, growth inhibition and genotoxic effects were evaluated on amphibian larvae from 0.1 to 10 mg L(-1). Results reveal that no acute toxicity occurs on any species after short exposures, even at the highest concentrations. Mortality (35%) is observed on Xenopus larvae after 12d of exposure at the highest concentration of one type of NPs. No significant effects were observed on chironomids during chronic exposure. Xenopus larvae growth was inhibited from 1 mg L(-1) of both NPs while growth inhibition is observed on Pleurodeles only at the highest concentration of one type of NPs. No genotoxicity was observed on Xenopus but Pleurodeles exhibited dose-dependent genotoxic effects when exposed to one type of NPs. Observed differences in toxicity are discussed focusing on the studied compartment, routes of exposure, species and NPs.

  4. Exotic Fish in Exotic Plantations: A Multi-Scale Approach to Understand Amphibian Occurrence in the Mediterranean Region

    PubMed Central

    Cruz, Joana; Sarmento, Pedro; Carretero, Miguel A.; White, Piran C. L.

    2015-01-01

    Globally, amphibian populations are threatened by a diverse range of factors including habitat destruction and alteration. Forestry practices have been linked with low diversity and abundance of amphibians. The effect of exotic Eucalyptus spp. plantations on amphibian communities has been studied in a number of biodiversity hotspots, but little is known of its impact in the Mediterranean region. Here, we identify the environmental factors influencing the presence of six species of amphibians (the Caudata Pleurodeles waltl, Salamandra salamandra, Lissotriton boscai, Triturus marmoratus and the anurans Pelobates cultripes and Hyla arborea/meridionalis) occupying 88 ponds. The study was conducted in a Mediterranean landscape dominated by eucalypt plantations alternated with traditional use (agricultural, montados and native forest) at three different scales: local (pond), intermediate (400 metres radius buffer) and broad (1000 metres radius buffer). Using the Akaike Information Criterion for small samples (AICc), we selected the top-ranked models for estimating the probability of occurrence of each species at each spatial scale separately and across all three spatial scales, using a combination of covariates from the different magnitudes. Models with a combination of covariates at the different spatial scales had a stronger support than those at individual scales. The presence of predatory fish in a pond had a strong effect on Caudata presence. Permanent ponds were selected by Hyla arborea/meridionalis over temporary ponds. Species occurrence was not increased by a higher density of streams, but the density of ponds impacted negatively on Lissotriton boscai. The proximity of ponds occupied by their conspecifics had a positive effect on the occurrence of Lissotriton boscai and Pleurodeles waltl. Eucalypt plantations had a negative effect on the occurrence of the newt Lissotriton boscai and anurans Hyla arborea/meridionalis, but had a positive effect on the presence of

  5. A zinc-binding domain is required for targeting the maternal nuclear protein PwA33 to lampbrush chromosome loops

    PubMed Central

    1995-01-01

    In oocytes of the newt Pleurodeles waltl, the maternal nuclear protein PwA33 occurs on the lampbrush chromosomes and in some nucleoplasmic particles of the germinal vesicle. PwA33 is a modular protein and we used site-directed mutagenesis to alter the sequences encoding two metal-binding regions, the C3HC4 (or RING finger) and B-box motifs. Several mutant clones were generated and their synthetic transcripts were injected into Pleurodeles oocytes for in vivo analysis. In the oocyte, all translation products localized in the germinal vesicle. Proteins encoded by RING finger mutant clones were distributed in a pattern identical to that of the wild type protein, but when His266 of the B-box was mutated, PwA33 failed to localize in the lampbrush chromosomes and the nucleoplasmic particles. Using an in vitro colorimetric assay, we demonstrated that PwA33 is a zinc-binding protein and that mutations in the RING finger and B-Box altered its metal-binding properties. The RING finger motif bound two Zn2+ ions and the binding ratios of several mutants were consistent with the tertiary structure recently proposed for this motif. The B-box coordinated one Zn2+ and this binding was inhibited by the His266 mutation. The failure of the His266 mutation to bind zinc and to localize properly within the germinal vesicle suggests that an intact B-box is required for normal functioning of the PwA33 protein in the oocyte. PMID:7593179

  6. Call and skin glands secretion induced by stimulation of midbrain in urodele (Andrias davidianus).

    PubMed

    Lan, S C; Li, D F; Jiang, J C

    1990-09-24

    Stimulation of the midbrain induced calls, gaping, tail lashing, locomotion and secretion of skin glands in the cryptobranchidae, Andrias davidianus, which is a rare precious animal in China. These responses can be considered as a complex of action related to escape. Most of the sites where calls and secretion of skin glands could be induced were found in the outside of central nucleus of the torus semicircularis. This is the first description of this cluster of functions in the midbrain of Andrias davidianus.

  7. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum).

    PubMed

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-02-04

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution.

  8. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum)

    PubMed Central

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-01-01

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution. PMID:26842386

  9. Novel insights into the flexibility of cell and positional identity during urodele limb regeneration.

    PubMed

    Kragl, M; Knapp, D; Nacu, E; Khattak, S; Schnapp, E; Epperlein, H-H; Tanaka, E M

    2008-01-01

    The ability of diverse metazoans to regenerate whole-body structures was first described systematically by Spallanzani in 1768 and continues to fascinate biologists today. Given the current interest in stem cell biology and its therapeutic potential, examples of vertebrate regeneration garner strong interest. Among regeneration-competent vertebrates such as the fish, frog, and salamander, the salamander is particularly impressive because it can regenerate the entire limb and tail as well as various internal organs as an adult (Goss 1969). This spectacular natural phenomenon leads us to ask what cellular properties allow regeneration and what prevents this phenomenon in other vertebrates. From this perspective, it is imperative to know whether the stem cells in regenerating limbs harbor particularly special traits such as a higher plasticity in cell fate compared to tissue stem cells in other organisms. Flexibility in cell fate needs to be considered with respect not only to tissue identity, but also to patterning because limb amputation causes cells in a particular limb segment to form more distal limb elements. How positional identity is encoded in stem cells and how it is controlled to produce only the missing portion of the limb are also questions of fundamental importance.

  10. Male Courtship Pheromones Induce Cloacal Gaping in Female Newts (Salamandridae)

    PubMed Central

    Janssenswillen, Sunita; Bossuyt, Franky

    2016-01-01

    Pheromones are an important component of sexual communication in courting salamanders, but the number of species in which their use has been demonstrated with behavioral evidence remains limited. Here we developed a behavioral assay for demonstrating courtship pheromone use in the aquatically courting Iberian ribbed newt Pleurodeles waltl. By performing an in-depth study of the courtship behavior, we show that females invariably open their cloaca (cloacal gaping) before engaging in pinwheel behavior, the circling movement that is the prelude to spermatophore uptake. In contrast, cloacal gaping was not observed in failed courtships, where females escaped or displayed thanatosis. Since gaping mainly occurred during male amplexus and cloacal imposition, which is the obvious period of pheromone transfer, we next investigated whether male courtship water (i.e., water holding courtship pheromones) alone was able to induce this reaction in females. These tests showed that courtship water induced cloacal gaping significantly more than water, even in the absence of a male. Cloacal gaping thus provides a simple and robust test for demonstrating courtship pheromone use in the Iberian ribbed newt. Since opening the cloaca is an essential prerequisite for spermatophore pick-up in all internally fertilizing salamanders, we hypothesize that variations on this assay will also be useful in several other species. PMID:26771882

  11. Review of the systematics, distribution, biogeography and natural history of Moroccan amphibians.

    PubMed

    Beukema, Wouter; De Pous, Philip; Donaire-Barroso, David; Boaerts, Sergé; Garcia-Porta, Joan; Escoriza, Daniel; Arribas, Oscar J; El Mouden, El Hassan; Carranza, Salvador

    2013-01-01

    The amphibian fauna of the Kingdom of Morocco was traditionally regarded as poor and closely related to its European counterpart. However, an increase in research during the last decades revealed a considerable degree of endemism amongst Moroccan amphibians, as well as phenotypic and genotypic inter- and intraspecific divergence. Despite this increase in knowledge, a comprehensible overview is lacking while several systematic issues have remained unresolved. We herein present a contemporary overview of the distribution, taxonomy and biogeography of Moroccan amphibians. Fourteen fieldtrips were made by the authors and colleagues between 2000 and 2012, which produced a total of 292 new distribution records. Furthermore, based on the results of the present work, we (i) review the systematics of the genus Salamandra in Morocco, including the description of a new subspecies from the Rif- and Middle Atlas Mountains, Salamandra algira splendens ssp. nov.; (ii) present data on intraspecific morphological variability of Pelobates varaldiiand Pleurodeles waltl in Morocco; (iii) attempt to resolve the phylogenetic position of Bufo brongersmai and erect a new genus for this species, Barbarophryne gen. nov.; (iv) summarize and assess the availability of tadpole-specific characteristics and bioacoustical data, and (v) summarize natural history data.

  12. Spaceflight Effects on the Hematopoietic Tissue of Ribbed Newts

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E. I.; Almeida, E. A. C.; Butorina, N. N.; Nikonova, T. M.; Grigoryan, E. N.; Poplinskaya, V. A.

    2008-06-01

    The newts Pleurodeles waltl flown on Foton-M2 for 12 days were used for studying the effects of spaceflight on hematopoiesis in lower vertebrates. Prior to the flight, all the animals underwent to removal their lenses and tail tips for regeneration studies. No significant differences in blood cell contents were detected between flight and control animals. Morphological examination of hematopoietic areas of the liver in both groups also showed no significant differences. Experiments with BrdU incorporation revealed labeled cells in the hemopoietic area of the liver as well as in blood. The blood cell composition of newts flown on Foton-M3 was similar to that in intact (nonoperated) newts used in Bion-11 and Foton-M2 experiments. The lack of blood changes in newts during the current experiments distinguishes them from mammals flown in space (rats and mice), which developed significant changes in both blood cell counts, stem and committed cells in the blood-forming tissues.

  13. Male Courtship Pheromones Induce Cloacal Gaping in Female Newts (Salamandridae).

    PubMed

    Janssenswillen, Sunita; Bossuyt, Franky

    2016-01-01

    Pheromones are an important component of sexual communication in courting salamanders, but the number of species in which their use has been demonstrated with behavioral evidence remains limited. Here we developed a behavioral assay for demonstrating courtship pheromone use in the aquatically courting Iberian ribbed newt Pleurodeles waltl. By performing an in-depth study of the courtship behavior, we show that females invariably open their cloaca (cloacal gaping) before engaging in pinwheel behavior, the circling movement that is the prelude to spermatophore uptake. In contrast, cloacal gaping was not observed in failed courtships, where females escaped or displayed thanatosis. Since gaping mainly occurred during male amplexus and cloacal imposition, which is the obvious period of pheromone transfer, we next investigated whether male courtship water (i.e., water holding courtship pheromones) alone was able to induce this reaction in females. These tests showed that courtship water induced cloacal gaping significantly more than water, even in the absence of a male. Cloacal gaping thus provides a simple and robust test for demonstrating courtship pheromone use in the Iberian ribbed newt. Since opening the cloaca is an essential prerequisite for spermatophore pick-up in all internally fertilizing salamanders, we hypothesize that variations on this assay will also be useful in several other species.

  14. Urodelean amphibians in studies on microgravity: effects upon organ and tissue regeneration

    NASA Astrophysics Data System (ADS)

    Grigoryan, E. N.; Mitashov, V. I.; Anton, H. J.

    Results obtained from nine experiments performed onboard Russian biosatellites have shown that microgravity promotes tissue regeneration in the newt, Pleurodeles waltl. The effect has been reproduced in all flights and on a clinostat as well for eye tissues (lens and retina), limbs and tail. The effect was demonstrated in 1.5- to 2 -fold increase in cell proliferation in the early stages of regeneration in space flight. Animals "flown" intact and operated after flight regenerated faster than control ones and showed long-lasting micro-"g" effect. The most recent experiment flew aboard the Bion-11 biosatellite. This test was performed for study on microgravity effect on neural retina regeneration after optic nerve lesioning in the newt. Obtained results confirmed our previous information about intensification of regenerative processes in detached neural retina in urodela exposed to simulated weightlessness (Grigoryan et al., 1998). In particular, we found the increase and activation of cell populations participating in neural retina restoration and maintenance of retinal structure. Our findings suggest that promoting effect of microgravity upon regeneration could be influenced by several factors, largely influenced by a response of the whole organism to changed gravity vector. We hypothesized the synthesis of the specific range of stress proteins induced by micro-"g" and their regulative role in cell proliferation. Such a hypothesis for the existence of "altered gravity stress proteins" is discussed.

  15. Development of neuronal and sensorimotor systems in the absence of gravity: Neurobiological research on four soyuz taxi flights to the international space station

    NASA Astrophysics Data System (ADS)

    Horn, Eberhard R.; Dournon, Christian; Frippiat, Jean-Pol; Marco, Roberto; Böser, Sybille; Kirschnick, Uta

    2007-09-01

    Neurobiological experiments on 4 animal species (Xenopus laevis, Pleurodeles waltl, Drosophila melanogaster, Acheta domesticus) were performed to study effects of microgravity on development and aging of neuronal, sensory and motor systems. Animal models were selected according to their suitability to answer questions concerning μg-effects on neuroanatomy, neuronal activity, and behaviour. The studies were performed on the Soyuz Taxi flights Andromède, Cervantes, Eneide and LDM-TMA8/TMA7. Observations from these flights include: (1) In tadpoles and cricket larvae, morphological features of sensory cells and neurons are rarely affected by microgravity. (2) In crickets, in-flight fertilization was successful; after landing, flight larvae hatched earlier than ground reared siblings. (3) In crickets, proliferation of peptidergic neurons and their projection patterns within the nervous system were not affected by microgravity. (4) During aging, the impact of microgravity on peptidergic neurons of male Drosophila was limited to the size of cell body. (5) In Xenopus, neurophysiological features of the spinal motor system during fictive swimming were partially modified. (6) In Xenopus tadpoles, the vestibuloocular reflex was affected in an age-related manner. Modifications were also related to the occurrence of a tail lordosis induced by microgravity. It is concluded that adaptation to microgravity during development and aging is mainly based on physiological mechanisms within the central nervous system while structural modifications of the sensory and neuronal system contribute less.

  16. Regeneration of eye tissues is modulated by altered levels of gravity at 1g, 2g, and in microgravity during spaceflight

    NASA Astrophysics Data System (ADS)

    Grigoryan, Eleonora; Almeida, Eduardo; Mitashov, Victor

    The pursuit of human space exploration requires detailed knowledge of microgravity-related changes in fundamental biological processes, and their effects on health. Normal regeneration of organs and tissues is one such fundamental process that allows maintenance of vitality and function of living organisms. Animal models of tissue regeneration include the newt (Pleurodeles waltl, Urodela) eye, which has been extensively used by our team in Russian Bion and Foton microgravity experiments since 1985, and in recent NASA 2.5 meter diameter centrifuge hypergravity experiments. In total, these experiments allow us to draw several broad conclusions: Newt lens regeneration is significantly altered in microgravity and hypergravity relative to 1g controls. Lenses formed in microgravity are larger and more developed than those regenerated in 1g controls; Microgravity alterations of lens regeneration can persist after spaceflight, and continue to affect repeated removal and regeneration of the lens after return to 1g; Microgravity increases the numbers of early stage regenerative proliferating BrdU-labeled cells in dorsal iris progenitors and in the lens regenerate. Regeneration under hypergravity conditions at 2g inhibits lens regeneration, and often causes retinal detachment. Molecular mechanisms regulating lens regeneration rate include FGF2 signaling, (a key pathway for eye tissue development and regeneration), and an expression of stress-related proteins - HSPs. In conclusion, regeneration of lens and other eye tissues in the newt is sensitive to, and regulated by the level of gravity mechanotransduction and developmental signaling pathways, with microgravity favoring stem cell progenitor proliferation, and gravity at 1g promoting terminal differentiation, while hypergravity at 2g often causes damage of delicate regenerating tissues.

  17. Morphogenetic changes occurring in the regenerating newt tail under changed gravity conditions

    NASA Astrophysics Data System (ADS)

    Radugina, Elena A.; Grigoryan, Eleonora N.; Dvorochkin, Natasha; Almeida, Eduardo

    2012-07-01

    It is widely accepted that gravity greatly affects animal physiology, development, and alters gene expression. Recently it became apparent that it can also affect tissue morphogenesis. In our work, we developed special laboratory conditions that allow us to produce the gravity-dependent alterations in tail regenerates of the newt Pleurodeles waltl. We examined the dynamic morphogenetic changes during 50-day tail regeneration using computer morphometric analysis. Changes that we observed under these conditions were comparable with those found earlier in our spaceflight experiments. The newts kept in aquarium deep water (low g) after 1/3 tail amputation developed normal lanceolate regenerates. In contrast, the animals that stayed on the moist mat (1g) developed tail regenerates curved ventrally, with tips almost touching the mat. The similar results were obtained with a 12-day centrifugation at 2g. The study of the regenerate morphology in low g, 1g, and 2g animal groups allowed us to determine the stage at which the morphological changes in regenerates become apparent, and to detect the main morphological events associated with the development of tail curve, such as bending of ependymal tube and reorientation of the forming cartilage. We describe cellular processes foregoing observed tissue morphogenetic changes, such as cell migration, condensation in cell population, and unequal proliferation in different areas of epidermis and blastema. Cell proliferation in epidermis and blastema of tails regenerated under the conditions of different gravitational load was evaluated by BrdU assay. In 1g newts, cell proliferation increased within the dorso-apical region of the regenerates compared with that in low g group. These results provide us with a valuable insight into the regenerative tissue homostasis that involves cell division, cell death, and migration in the newt regenerating tail. In addition, these findings could provide us with better understanding of the

  18. Blood and clonogenic hemopoietic cells of newts after the space flight

    NASA Astrophysics Data System (ADS)

    Michurina, T. V.; Domaratskaya, E. I.; Nikonova, T. M.; Khrushchov, N. G.

    Ribbed newts were used for studying the effect of space flight on board of the biosatellite (Cosmos-2229) on blood and clonogenic hemopoietic cells. In blood of newts of the flight group, the relative proportion of neutrophils increased, whereas that of lymphocytes and eosinophils decreased. Space flight did not result in loss of the ability of newt blood cells to incorporate H^3-thymidine. Analysis of clonogenic hemopoietic cells was performed using the method of hemopoietic colony formation on cellulose acetate membranes implanted into the peritoneal cavity of irradiated newts. To analyze reconstitution of hemopoiesis after irradiation donor hemopoietic cells from flight or control newts were transplanted into irradiated newts whose hemopoietic organs were investigated. The newt can be considered an adequate model for studying hemopoiesis under the conditions of the space flight. Previous studies on rats subjected to 5- to 19-day space flights revealed a decrease in the number of clonogenic cells in their hemopoietic organs accompanied by specific changes in the precursor cell compartment and in blood /1,2/. Hence, it was interesting to analyze blood and hemopoietic tissue of lower vertebrates after a space flight and to compare the response to it of animals belonging to different taxonomic groups. We analyzed blood and clonogenic hemopoietic cells of ribbed newts, Pleurodeles waltl (age one year, weight 20-28 g) subjected to a 12-day space flight on board of a Cosmos-2229 biosatellite. The same animals were used in studies on limb and lens regeneration. The results were compared with those obtained with control groups of newts: (1) basic control, operated newts sacrificed on the day of biosatellite launching (BC); (2) synchronous control, operated newts kept in the laboratory under simulated space flight conditions (SC); and (3) intact newts (IC).

  19. Development of the Gecko (Pachydactylus turneri) Animal Model during Foton M-2 to Study Comparative Effects of Microgravity in Terrestrial and Aquatic Organisms

    NASA Technical Reports Server (NTRS)

    Almeida, E. A.; Roden, C.; Phillips, J. A.; Globus, R. K.; Searby, N.; Vercoutere, W.; Morey-Holton, E.; Gulimova, V.; Saveliev, S.; Tairbekov, M.; Iwaniec, U. T.; McNamra, A. J.; Turner, R. T.

    2006-01-01

    Terrestrial organisms exposed to microgravity during spaceflight experience degeneration in bone, muscle, and possibly other tissues that require gravity-mediated mechanical stimulation for normal regenerative growth. In the Gecko experiment aboard Foton M-2, we flew for the first time, five terrestrial Pachydactylus turneri specimens to develop a model of microgravity effects comparable to the newt Pleurodeles waltl, a well-established model organism for spaceflight. These lower vertebrate species have similar body plans and size, are poikilothermic, have tissue regenerative ability, and are adapted to moderate periods of fasting. Furthermore the gecko (Pachydactylus) can also survive prolonged periods without water. In pre-flight control experiments and after a 16-day Foton M-2 spaceflight without food or water, the geckos were recovered and showed no apparent negative health effects. However, detailed analysis of bone mass and architecture by micro Computed Tomography { pCT), showed that both synchronous control and spaceflight animals lost significant amounts of cancellous bone in the distal femur and humerus relative to basal controls. In addition, cell cycle analysis of 30h post-flight liver tissue reveals a shift of DNA content from G2 and S to G1, both in spaceflight and synchronous controls. Together, these results suggest that housing conditions alone induce rapid catabolism of cancellous bone and reduced normal tissue regeneration. Further use of the gecko Puchydactylus turneri as a spaceflight model requires modification of housing conditions, possibly by including water and food, or changing other factors such as eliminating housing stresses to obtain stable bone structure and tissue regeneration during spaceflight experiments.

  20. The sensitivity of an immature vestibular system to altered gravity.

    PubMed

    Gabriel, Martin; Frippiat, Jean-Pol; Frey, Herbert; Horn, Eberhard R

    2012-07-01

    Stimulus deprivation or stimulus augmentation can induce long-lasting modifications to sensory and motor systems. If deprivation is effective only during a limited period of life this phase is called "critical period." A critical period was described for the development of the roll-induced vestibuloocular reflex (rVOR) of Xenopus laevis using spaceflights. Spaceflight durations and basic conditions of Xenopus' development did not make it possible to answer the question whether exposure of the immature vestibular organ to weightlessness affects rVOR development. The embryonic development of Pleurodeles waltl is slow enough to solve this problem because the rVOR cannot be induced before 15 dpf. Stage 20-21 embryos (4 dpf) were exposed to microgravity during a 10-day spaceflight, or to 3g hypergravity following the same time schedule. After termination of altered gravity, the rVOR was recorded twice in most animals. The main observations were as follows: (1) after the first rVOR appearance at stage 37 (16 dpf), both rVOR gain and amplitude increased steadily up to saturation levels of 0.22 and 20°, respectively. (2) Three days after termination of microgravity, flight and ground larvae showed no rVOR; 1 day later, the rVOR could be induced only in ground larvae. Differences disappeared after 3 weeks. (3) For 10 days after 3g exposure, rVOR development was similar to that of 1g-controls but 3 weeks later, 3g-larvae showed a larger rVOR than 1g-controls. These observations indicate that the immature vestibular system is transiently sensitive to microgravity exposure and that exposure of the immature vestibular system to hypergravity leads to a slowly growing vestibular sensitization.

  1. A new hynobiid-like salamander (Amphibia, Urodela) from Inner Mongolia, China, provides a rare case study of developmental features in an Early Cretaceous fossil urodele.

    PubMed

    Jia, Jia; Gao, Ke-Qin

    2016-01-01

    A new fossil salamander, Nuominerpeton aquilonaris (gen. et sp. nov.), is named and described based on specimens from the Lower Cretaceous Guanghua Formation of Inner Mongolia, China. The new discovery documents a far northern occurrence of Early Cretaceous salamanders in China, extending the geographic distribution for the Mesozoic fossil record of the group from the Jehol area (40th-45th parallel north) to near the 49th parallel north. The new salamander is characterized by having the orbitosphenoid semicircular in shape; coracoid plate of the scapulocoracoid greatly expanded with a convex ventral and posterior border; ossification of two centralia in carpus and tarsus; and first digit being about half the length of the second digit in both manus and pes. The new salamander appears to be closely related to hynobiids, although this inferred relationship awaits confirmation by research in progress by us on a morphological and molecular combined analysis of cryptobranchoid relationships. Comparison of adult with larval and postmetamorphic juvenile specimens provides insights into developmental patterns of cranial and postcranial skeletons in this fossil species, especially resorption of the palatine and anterior portions of the palatopterygoid in the palate and the coronoid in the mandible during metamorphosis, and postmetamorphic ossification of the mesopodium in both manus and pes. Thus, this study provides a rare case study of developmental features in a Mesozoic salamander.

  2. A new hynobiid-like salamander (Amphibia, Urodela) from Inner Mongolia, China, provides a rare case study of developmental features in an Early Cretaceous fossil urodele

    PubMed Central

    Jia, Jia

    2016-01-01

    A new fossil salamander, Nuominerpeton aquilonaris (gen. et sp. nov.), is named and described based on specimens from the Lower Cretaceous Guanghua Formation of Inner Mongolia, China. The new discovery documents a far northern occurrence of Early Cretaceous salamanders in China, extending the geographic distribution for the Mesozoic fossil record of the group from the Jehol area (40th–45th parallel north) to near the 49th parallel north. The new salamander is characterized by having the orbitosphenoid semicircular in shape; coracoid plate of the scapulocoracoid greatly expanded with a convex ventral and posterior border; ossification of two centralia in carpus and tarsus; and first digit being about half the length of the second digit in both manus and pes. The new salamander appears to be closely related to hynobiids, although this inferred relationship awaits confirmation by research in progress by us on a morphological and molecular combined analysis of cryptobranchoid relationships. Comparison of adult with larval and postmetamorphic juvenile specimens provides insights into developmental patterns of cranial and postcranial skeletons in this fossil species, especially resorption of the palatine and anterior portions of the palatopterygoid in the palate and the coronoid in the mandible during metamorphosis, and postmetamorphic ossification of the mesopodium in both manus and pes. Thus, this study provides a rare case study of developmental features in a Mesozoic salamander. PMID:27761316

  3. Effects of light on the cytotoxicity and genotoxicity of benzo(a)pyrene and an oil refinery effluent in the newt

    SciTech Connect

    Fernandez, M.; l`Haridon, J.

    1994-12-31

    The genotoxicity and/or toxicity of benzo(a)pyrene (BaP) were evaluated under different lighting conditions in larvae and embryos of the newt Pleurodeles waltl. Visible light alone, UVA alone, or BaP alone had no toxic effects on the larvae. Conversely, toxic effects were observed in animals exposed to BaP + daylight, or BaP + UVA. The genotoxicity of BaP (50 ppb) was halved by its previous exposure to UVA, and was abolished at the lowest concentration (12.5 ppb). In other experiments, the larvae were exposed alternatively to BaP or Irr BaP (18 hours in dark) and UVA (6 hr in water), every day for 8 days. All animals that had accumulated non-irradiated BaP (50 ppb) showed signs of severe toxicity, and 90% died before the end of the test. On the other hand, irradiated BaP (50 ppb) was a 4-fold less toxic and half as genotoxic as non-irradiated BaP. In addition, exposure of the animals to UVA alone for 4 days prior to treatment with BaP did not affect the genotoxicity or toxicity of this hydrocarbon. In the dark, the embryotoxicity of BaP was markedly attenuated by the presence of the jelly coats. Although UVA alone did not affect growth of the embryos, the toxicity of BaP was enhanced by the combined action of the two agents together or in succession (BaP + UVA or BaP then UVA). Larvae were treated with an oil refinery effluent (EF). At 125 ml/l, EF was not found to be genotoxic in the dark. However, in animals exposed to both EF and UVA, there was a progressive increase in level of micronucleated erythrocytes with increasing duration of daily exposure to UVA. Moreover, the genotoxic potential of irradiated EF + UVA was systematically below that of non-irradiated EF + UVA for all durations of exposure to ultraviolet light. Irradiation of this type of effluent might help reduce its harmful effects on aquatic species. Our results also suggest that metabolic activation is not necessary for hydrocarbons to induce toxic effects. 51 refs., 5 tabs., 3 figs.

  4. Newt tail regeneration: a model for gravity-dependent morphogenesis and clues to the molecular mechanisms involved.

    NASA Astrophysics Data System (ADS)

    Radugina, Elena A.; Almeida, Eduardo; Grigoryan, Eleonora

    Gravity alterations are widely recognized to influence living systems. They may cause temporary or permanent effects on physiology and development at different levels, from gene expression to morphogenesis. However, the molecular mechanisms underlying these effects are often unclear, and adequate model systems to study them are required. To address this problem we developed a new experimental model of how gravity affects morphogenesis during tail regeneration in the newt Pleurodeles waltl. The effects of increased gravity on newt tail morphogenesis were first documented in two joint Russian-US NASA spaceflight experiments in the Russian Foton-M2 (2005) and Foton-M3 (2007) missions. In these experiments the shape of newt tail regenerate was found to depend on the gravity level, being dorso-ventrally symmetrical in microgravity and in neutrally-buoyant aquarium controls, versus hook-like and bent downward in 1g controls. These 1g controls were conducted in spaceflight habitats using a water-saturated PVA sponge mat. These results were reproducible in multiple spaceflight, and ground laboratory studies, both in the US at NASA ARC and in Russia at IDB RAS, and were characterized in detail using morphometry and histology approaches. The role of hypergravity in shaping morphogenesis was confirmed at NASA ARC with an experiment in the ISS Testbed 8-foot diameter centrifuge operating at 2g. Animals that experienced two-week centrifugation (the period of time used in the Foton flights) developed the same hook-like regenerates as 1g controls, and morphometric analysis revealed no significant difference between 1g and 2g groups, however both were significantly different from aquarium controls. We hypothesize that exposure to 1g or 2g during tail morphogenesis constitutes excessive loading for newts that are adapted to microgravity-like conditions in their aquatic habitat. Because Heat Shock Proteins (HSPs) are stress-induced molecules that respond to a broad variety of

  5. The Center for Regenerative Biology and Medicine at Mount Desert Island Biological Laboratory

    DTIC Science & Technology

    2014-06-01

    biology. While this capacity is limited only to the very distal tips of digits in mammals, adult teolost fish and urodele amphibians have championed...tips of digits in mammals, adult teleost fish and urodele amphibians have championed regeneration of entire appendages. The key feature of appendage

  6. Expanding Distribution of Lethal Amphibian Fungus Batrachochytrium salamandrivorans in Europe

    PubMed Central

    Spitzen-van der Sluijs, Annemarieke; Martel, An; Asselberghs, Johan; Bales, Emma K.; Beukema, Wouter; Bletz, Molly C.; Dalbeck, Lutz; Goverse, Edo; Kerres, Alexander; Kinet, Thierry; Kirst, Kai; Laudelout, Arnaud; Marin da Fonte, Luis F.; Nöllert, Andreas; Ohlhoff, Dagmar; Sabino-Pinto, Joana; Schmidt, Benedikt R.; Speybroeck, Jeroen; Spikmans, Frank; Steinfartz, Sebastian; Veith, Michael; Vences, Miguel; Wagner, Norman; Pasmans, Frank

    2016-01-01

    Emerging fungal diseases can drive amphibian species to local extinction. During 2010–2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity. PMID:27070102

  7. Amphibians as research models for regenerative medicine

    PubMed Central

    Song, Fengyu; Li, Bingbing

    2010-01-01

    The ability to regenerate bone across a critical size defect would be a marked clinical advance over current methods for dealing with such structural gaps. Here, we briefly review the development of limb bones and the mandible, the regeneration of urodele limbs after amputation, and present evidence that urodele and anuran amphibians represent a valuable research model for the study of segment defect regeneration in both limb bones and mandible. PMID:21197215

  8. Gender-dependent dimorphic teeth in four species of Mesoamerican plethodontid salamanders (Urodela, Amphibia).

    PubMed

    Ehmcke, Jens; Wistuba, Joachim; Clemen, Günter

    2004-06-01

    The tooth shapes of premaxillary and maxillary teeth of adults of four Mesoamerican salamander species (Urodela, Plethodontidae) were examined. Using scanning electron microscopy we determined whether the monocuspid teeth that are present only on the premaxillary of sexually mature males belong to the conical, unbladed, monocuspid tooth type found in urodele larvae or whether they represent morphological variations of the typical, bladed, bicuspid teeth of metamorphosed individuals. The teeth of some studied species are, in fact, unbladed and in some cases show one very reduced tip. But none of the studied teeth is per definitionem monocuspid and no tooth shows an enameloid layer between dentine shaft and enamel cap, which is always present in the teeth of early urodele larvae. The "monocuspid" teeth of adult males of Mesoamerican plethodontid salamanders have to be considered a morphological variation of the metamorphosed, bicuspid tooth type typical for metamorphosed urodeles.

  9. Climate patterns as predictors of amphibians species richness and indicators of potential stress

    USGS Publications Warehouse

    Battaglin, W.; Hay, L.; McCabe, G.; Nanjappa, P.; Gallant, A.L.

    2005-01-01

    Amphibians occupy a range of habitats throughout the world, but species richness is greatest in regions with moist, warm climates. We modeled the statistical relations of anuran and urodele species richness with mean annual climate for the conterminous United States, and compared the strength of these relations at national and regional levels. Model variables were calculated for county and subcounty mapping units, and included 40-year (1960-1999) annual mean and mean annual climate statistics, mapping unit average elevation, mapping unit land area, and estimates of anuran and urodele species richness. Climate data were derived from more than 7,500 first-order and cooperative meteorological stations and were interpolated to the mapping units using multiple linear regression models. Anuran and urodele species richness were calculated from the United States Geological Survey's Amphibian Research and Monitoring Initiative (ARMI) National Atlas for Amphibian Distributions. The national multivariate linear regression (MLR) model of anuran species richness had an adjusted coefficient of determination (R2) value of 0.64 and the national MLR model for urodele species richness had an R2 value of 0.45. Stratifying the United States by coarse-resolution ecological regions provided models for anUrans that ranged in R2 values from 0.15 to 0.78. Regional models for urodeles had R2 values. ranging from 0.27 to 0.74. In general, regional models for anurans were more strongly influenced by temperature variables, whereas precipitation variables had a larger influence on urodele models.

  10. Evaluation of two methods for measuring nonspecific immunity in tiger salamanders (Ambystoma tigrinum).

    PubMed

    Froese, Jennifer M W; Smits, Judit E G; Wickstrom, Mark L

    2005-01-01

    Study of amphibian immunotoxicology is a growing area of research, but very little information is available on how environmental contaminants affect disease resistance in urodele amphibians. Urodele amphibians lack the more highly evolved aspects of the specific immune system that are present in anurans, birds, and mammals. Instead, these animals rely more heavily on innate defense mechanisms than do anurans to provide rapid, nonspecific protection from pathogens. Thus, it is prudent that immunotoxicologic research with urodele amphibians includes an evaluation of effects of contaminant exposure on nonspecific immunity. The objectives of this study were to measure the phagocytic and oxidative-burst activity of peritoneal neutrophils collected from a urodele, the tiger salamander (Ambystoma tigrinum), and to evaluate the use of these assays in immunotoxicologic research using urodele amphibians. Using tiger salamanders collected in August 2000, phagocytosis and oxidative-burst assays modified from mammalian protocols were conducted through October 2001. Results indicated that large numbers of peritoneal neutrophils for use in immunotoxicologic tests can be collected from salamanders injected with thioglycollate. Moreover, these neutrophils readily engulfed foreign material (phagocytic activity) and produced measurable amounts of hydrogen peroxide (oxidative-burst activity). Phagocytosis was effectively inhibited by incubating cells with sodium azide (P<0.001), and quantification of phagocytosis using flow cytometry was well correlated with manual counts (r=0.84, P<0.001). Dexamethasone treatment reduced phagocytic activity as measured by manual counts (P<0.02), suggesting that this test is useful for detecting alteration by immunosuppressive agents. In contrast, oxidative function was unaffected by dexamethasone treatment, and results from the oxidative-burst assay were generally less consistent than those from the phagocytosis assay. Based on these results

  11. Regeneration: The origin of cancer or a possible cure?

    PubMed

    Oviedo, Néstor J; Beane, Wendy S

    2009-07-01

    A better understanding of the forces controlling cell growth will be essential for developing effective therapies in regenerative medicine and cancer. Historically, the literature has linked cancer and tissue regeneration-proposing regeneration as both the source of cancer and a method to inhibit tumorigenesis. This review discusses two powerful regeneration models, the vertebrate urodele amphibians and invertebrate planarians, in light of cancer regulation. Urodele limb and eye lens regeneration is described, as well as the planarian's emergence as a molecular and genetic model system in which recent insights begin to molecularly dissect cancer and regeneration in adult tissues.

  12. Epimorphic regeneration approach to tissue replacement in adult mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor...

  13. Limited immune diversity in urodela: chronic transplantation responses occur even with family-disparate xenografts.

    PubMed

    Kinefuchi, Kenjiroh; Kushida, Yoshihiro; Touma, Maki; Hosono, Masamichi

    2013-07-01

    Urodele amphibians are thought to have poorer immune responses than evolutionary more ancestral vertebrate classes, such as bony fish. We investigated skin graft rejection and transplantation immunity in Urodele amphibians, Japanese newts, and Asiatic salamanders, and compared these findings to those from transplants in several species of frogs. The skin grafts used in this study were either allogeneic or xenogeneic. The mean survival time of the first set of allografts at 20°C was approximately 60 days for chronic responses in Urodela and 20 days for acute responses in Anura. As the graft survival times of urodeles were significantly longer than those of anurans, even when urodeles were repeatedly grafted from identical donors, there appear to be substantial differences in transplantation immunity between Urodela and Anura. These slow responses in Urodela may not be accompanied by the expansion of cytotoxic T cells, as observed in fish and anuran species, which are known to have functional major histocompatibility complex (MHC)-class I systems. In our study, approximately five histo-incompatible immunogenic components were found to be involved in chronic responses in newts. Similar chronic responses were also observed in xenograft rejection in newts. In contrast, xenografts were rejected in frogs due to an accelerated acute response, possibly involving natural killer cells. Our findings that some anti-allogeneic components appear to be shared with xenogeneic components indicate that the diversification of the acquired immune system is poorly developed in Urodela.

  14. Quantitative evaluation of morpholino-mediated protein knockdown of GFP, MSX1, and PAX7 during tail regeneration in Ambystoma mexicanum.

    PubMed

    Schnapp, Esther; Tanaka, Elly M; Tamaka, Elly M

    2005-01-01

    Vertebrate regeneration is a fascinating but poorly understood biological phenomena. Urodele amphibians such as Ambystoma mexicanum (the axolotl) can functionally regenerate complex body structures such as the limb and tail, including the spinal cord, throughout life. So far, molecular studies on regeneration have been limited due to the paucity of tools for knocking-down gene and protein function. In this article, we quantitatively assessed the ability of morpholinos to specifically down-regulate protein expression in both cultured urodele cells and in vivo. We focused on the down-regulation of green fluorescent protein and two axolotl proteins, MSX1 and PAX7. Our data show that the expression of these proteins can be efficiently reduced by morpholinos. MSX1 has been hypothesized to be involved in muscle dedifferentiation based on experiments using cultured myotubes. Our studies in in vivo muscle fibers so far have shown no influence of overexpressing or down-regulating MSX1 on the dedifferentiation process.

  15. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole

    PubMed Central

    2014-01-01

    Background Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. Results In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. Conclusion As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans. PMID:24941877

  16. Anatomical and electrophysiological plasticity of locomotor networks following spinal transection in the salamander.

    PubMed

    Cabelguen, Jean-Marie; Chevallier, Stéphanie; Amontieva-Potapova, Ianina; Philippe, Céline

    2013-08-01

    Recovery of locomotor behavior following spinal cord injury can occur spontaneously in some vertebrates, such as fish, urodele amphibians, and certain reptiles. This review provides an overview of the current status of our knowledge on the anatomical and electrophysiological changes occurring within the spinal cord that lead to, or are associated with the re-expression of locomotion in spinally-transected salamanders. A better understanding of these processes will help to devise strategies for restoring locomotor function in mammals, including humans.

  17. Lithium secretion in kidneys of amphibians and reptiles under hydrated conditions.

    PubMed

    Fleishman, D G; Nikiforov, V A; Saulus, A A; Vasilieva, V F; Borkin, L Y

    1997-12-01

    Renal lithium transport was studied at different hydration levels in five species of anuran amphibians (Bufo bufo, B. danatensis, B. viridis, Rana ridibunda, and R. temporaria), two species of urodeles (Triturus vulgaris and T. cristatus) and four species of reptiles (lizards Eremias multiocellata, Lacerta vivipara, Trapelus sanguinolentus, and Teratoscincus scincus). Under dehydration conditions, Li+ was reabsorbed in the kidneys of amphibians ans reptiles, but to a lesser degree than in mammalian kidneys: the ratio of lithium clearance (CLi) to glomerular filtration rate (GFR)--fractional lithium excretion--in dehydrated animals was in the range 0.5-0.8. The transition to the hydrated state resulted in a cessation of net renal lithium reabsorption. Under condition of high hydration, all the animals studied, except for urodeles, showed net renal secretion of Li+, i.e., CLi exceeded GFR. The ratio CLi/GFR was 1.2-1.3 in hydrated anurans and 1.7-2.3 in hydrated lizards. In urodeles, this ratio was approximately unity. It is suggested that renal lithium secretion in hydrated amphibians and reptiles reflects fluid secretion in the proximal tubule, which is additional to the glomerular filtration mechanism of fluid delivery to nephron under water loading.

  18. Deer antler regeneration: cells, concepts, and controversies.

    PubMed

    Kierdorf, Uwe; Kierdorf, Horst; Szuwart, Thomas

    2007-08-01

    The periodic replacement of antlers is an exceptional regenerative process in mammals, which in general are unable to regenerate complete body appendages. Antler regeneration has traditionally been viewed as an epimorphic process closely resembling limb regeneration in urodele amphibians, and the terminology of the latter process has also been applied to antler regeneration. More recent studies, however, showed that, unlike urodele limb regeneration, antler regeneration does not involve cell dedifferentiation and the formation of a blastema from these dedifferentiated cells. Rather, these studies suggest that antler regeneration is a stem-cell-based process that depends on the periodic activation of, presumably neural-crest-derived, periosteal stem cells of the distal pedicle. The evidence for this hypothesis is reviewed and as a result, a new concept of antler regeneration as a process of stem-cell-based epimorphic regeneration is proposed that does not involve cell dedifferentiation or transdifferentiation. Antler regeneration illustrates that extensive appendage regeneration in a postnatal mammal can be achieved by a developmental process that differs in several fundamental aspects from limb regeneration in urodeles.

  19. Diversity of Guilds of Amphibian Larvae in North-Western Africa

    PubMed Central

    Escoriza, Daniel; Ben Hassine, Jihène

    2017-01-01

    The composition and diversity of biotic assemblages is regulated by a complex interplay of environmental features. We investigated the influence of climate and the aquatic habitat conditions on the larval traits and the structure of amphibian larval guilds in north-western Africa. We classified the species into morphological groups, based on external traits: body shape, size, and the relative positions of the eyes and oral apparatus. We characterized the guild diversity based on species richness and interspecific phylogenetic/functional relationships. The larvae of the urodeles were classified as typical of either the stream or pond type, and the anurans as typical of either the lentic-benthic or lentic-nektonic type. The variations in the body shapes of both urodeles and anurans were associated with the type of aquatic habitat (lentic vs lotic) and the types of predators present. Most of the urodele guilds (98.9%) contained a single species, whereas the anuran guilds were usually more diverse. Both the phylogenetic and functional diversity of the anuran guilds were positively influenced by the size of the aquatic habitat and negatively by aridity. In anurans, the benthic and nektonic morphological types frequently co-occurred, possibly influenced by their opportunistic breeding strategies. PMID:28125660

  20. Brain regeneration in anuran amphibians.

    PubMed

    Endo, Tetsuya; Yoshino, Jun; Kado, Koji; Tochinai, Shin

    2007-02-01

    Urodele amphibians are highly regenerative animals. After partial removal of the brain in urodeles, ependymal cells around the wound surface proliferate, differentiate into neurons and glias and finally regenerate the lost tissue. In contrast to urodeles, this type of brain regeneration is restricted only to the larval stages in anuran amphibians (frogs). In adult frogs, whereas ependymal cells proliferate in response to brain injury, they cannot migrate and close the wound surface, resulting in the failure of regeneration. Therefore frogs, in particular Xenopus, provide us with at least two modes to study brain regeneration. One is to study normal regeneration by using regenerative larvae. In this type of study, the requirement of reconnection between a regenerating brain and sensory neurons was demonstrated. Functional restoration of a regenerated telencephalon was also easily evaluated because Xenopus shows simple responses to the stimulus of a food odor. The other mode is to compare regenerative larvae and non-regenerative adults. By using this mode, it is suggested that there are regeneration-competent cells even in the non-regenerative adult brain, and that immobility of those cells might cause the failure of regeneration. Here we review studies that have led to these conclusions.

  1. A model of transcriptional and morphological changes during thyroid hormone-induced metamorphosis of the axolotl.

    PubMed

    Page, Robert B; Monaghan, James R; Walker, John A; Voss, S Randal

    2009-06-01

    Anuran (frog) metamorphosis has long-served as a model of how thyroid hormones regulate post-embryonic development in vertebrates. However, comparatively little is known about urodele (salamander) metamorphosis. We conducted a detailed time-course study of induced metamorphosis in the Mexican axolotl (Ambystoma mexicanum) that probed metamorphic changes in morphology and gene expression in the skin. Using morphometrics, quantitative PCR, histology, and in situ hybridization we demonstrate that the development of transcriptional markers is fundamental to the resolution of early metamorphic events in axolotls. We then use linear and piecewise linear models to identify a sequence of morphological and transcriptional changes that define larval to adult remodeling events throughout metamorphosis. In addition, we show that transcriptional biomarkers are expressed in specific larval and adult cell populations of the skin and that temporal changes in these biomarkers correlate with tissue remodeling. We compare our results with other studies of natural and induced metamorphosis in urodeles and highlight what appear to be conserved features between urodele and anuran metamorphosis.

  2. A model of transcriptional and morphological changes during thyroid hormone-induced metamorphosis of the axolotl

    PubMed Central

    Page, Robert B.; Monaghan, James R.; Walker, John A.; Voss, S. Randal

    2009-01-01

    Anuran (frog) metamorphosis has long-served as a model of how thyroid hormones regulate post-embryonic development in vertebrates. However, comparatively little is known about urodele (salamander) metamorphosis. We conducted a detailed time-course study of induced metamorphosis in the Mexican axolotl (Ambystoma mexicanum) that probed metamorphic changes in morphology and gene expression in the skin. Using morphometrics, quantitative PCR, histology, and in situ hybridization we demonstrate that the development of transcriptional markers is fundamental to the resolution of early metamorphic events in axolotls. We then use linear and piecewise linear models to identify a sequence of morphological and transcriptional changes that define larval to adult remodeling events throughout metamorphosis. In addition, we show that transcriptional biomarkers are expressed in specific larval and adult cell populations of the skin and that temporal changes in these biomarkers correlate with tissue remodeling. We compare our results with other studies of natural and induced metamorphosis in urodeles and highlight what appear to be conserved features between urodele and anuran metamorphosis. PMID:19275901

  3. Purification and molecular cloning of aspartic proteinases from the stomach of adult Japanese fire belly newts, Cynops pyrrhogaster.

    PubMed

    Nagasawa, Tatsuki; Sano, Kaori; Kawaguchi, Mari; Kobayashi, Ken-Ichiro; Yasumasu, Shigeki; Inokuchi, Tomofumi

    2016-04-01

    Six aspartic proteinase precursors, a pro-cathepsin E (ProCatE) and five pepsinogens (Pgs), were purified from the stomach of adult newts (Cynops pyrrhogaster). On sodium dodecylsulfate-polyacrylamide gel electrophoresis, the molecular weights of the Pgs and active enzymes were 37-38 kDa and 31-34 kDa, respectively. The purified ProCatE was a dimer whose subunits were connected by a disulphide bond. cDNA cloning by polymerase chain reaction and subsequent phylogenetic analysis revealed that three of the purified Pgs were classified as PgA and the remaining two were classified as PgBC belonging to C-type Pg. Our results suggest that PgBC is one of the major constituents of acid protease in the urodele stomach. We hypothesize that PgBC is an amphibian-specific Pg that diverged during its evolutional lineage. PgBC was purified and characterized for the first time. The purified urodele pepsin A was completely inhibited by equal molar units of pepstatin A. Conversely, the urodele pepsin BC had low sensitivity to pepstatin A. In acidic condition, the activation rates of newt pepsin A and BC were similar to those of mammalian pepsin A and C1, respectively. Our results suggest that the enzymological characters that distinguish A- and C-type pepsins appear to be conserved in mammals and amphibians.

  4. [Biological experiments in flights of unmanned space craft Foton-M2 and Foton-M3].

    PubMed

    Ilyin, E A

    2013-01-01

    Missions of unmanned spacecraft Foton-M2 (2005) and Foton-M3 (2007) of 16 and 12 days in duration, respectively, provided an opportunity to conduct the Russian/US experiments with snails (Helix lucorum and Helix aspera), newts (Pleurodeles waltli), geckos (Pachydactilus turneri) and microorganisms (Streptomyces lividans 66, E. coli and others). Besides, Foton-M3 carried a Russian experiment with Mongolian gerbils (Meriones unguiculatus). Objectives of the space experiments were to study the micro-g effects on the living systems' behavior, structure and functioning, post-traumatic regeneration of bone and organs, stable inheritance of plasmid pIJ 702, and melanin pigment synthesis by streptomycets. The survey paper presents the major findings of a large team of investigators.

  5. Weak bases inhibit cleavage and embryogenesis in amphibians and echinoderms.

    PubMed

    Webb, D J; Charbonneau, M

    1987-01-01

    The action of weak bases was studied on the early embryonic development of a number of species. Gastrulation was disrupted in the frog, Xenopus laevis, the newt, Pleurodeles watlii, the sea urchins, Paracentrotus lividus and Sphaerechinus granularis and the starfish, Asterias rubens. This required only submillimolar amounts of either NH+4 (pH 9.0) or procaine (pH 8.2). At higher concentrations even early cell division was inhibited in all the species with furrow regression particularly noticeable in Xenopus eggs. A similar action of the weak bases on early development, the lack of any action at lower extracellular pH, and the counteracting action of NH+4 on acidity-induced disruption of sea urchin development, all implicate an elevation of intracellular pH. However, a more direct intracellular action of the weak bases cannot be ruled out.

  6. Spaceflight Effects on Hemopoiesis of Lower Vertebrates Flown on Foton-M2

    NASA Technical Reports Server (NTRS)

    Domaratskaya, E. I.; Payushina, O. V.; Butorina, M. N.; Nikonova, T. M.; Grigorian, E. N.; Mitashov, V. I.; Tairbekov, M. G.; Almeida, E.; Khrushchov, N. G.

    2006-01-01

    Intact and operated newts Pleumdeles waltl flown on Foton-M2 for 16 days were used to study the effects of spaceflight as well as tail amputation and lensectomy on their hemopoiesis. The flight did not produce noticeable changes in the peripheral blood of nonoperated newts. However, in operated animals, the number of lymphocytes increased whereas that of neutrophils decreased. There were no morphological differences in hemopoietic organs (liver and spleen) between flown non-operated and operated animals or their controls. However, in both non-operated and operated newts the liver weight and the number of hemopoietic cells in it increased. In contrast to nonoperated newts, space-flown mammals typically showed significant changes in blood cell counts. Experiments with BrdU incorporation revealed labeled cells in the hemopoietic area of the liver as well as in blood and spleen. This observation gives evidence that the BrdU label can be used to study proliferation of hemopoietic cells.

  7. Proliferation zones in the axolotl brain and regeneration of the telencephalon

    PubMed Central

    2013-01-01

    Background Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. Results There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. Conclusion There is a continual generation of neuronal cells from neural progenitor cells located within the

  8. Distribution of somatostatin-like immunoreactivity in the brain of the caecilian Dermophis mexicanus (Amphibia: Gymnophiona): comparative aspects in amphibians.

    PubMed

    López, Jesús M; Moreno, Nerea; Morona, Ruth; Muñoz, Margarita; Domínguez, Laura; González, Agustín

    2007-03-20

    The organization of the somatostatin-like-immunoreactive (SOM-ir) structures in the brain of anuran and urodele amphibians has been well documented, and significant differences were noted between the two amphibian orders. However, comparable data are not available for the third order of amphibians, the gymnophionans (caecilians). In the present study, we analyzed the anatomical distribution of SOM-ir cells and fibers in the brain of the gymnophionan Dermophis mexicanus. In addition, because of its known relationship with catecholamines in other vertebrates, double immunostaining for SOM and tyrosine hydroxylase was used to investigate this situation in the gymnophionan. Abundant SOM-ir cell bodies and fibers were widely distributed throughout the brain. In the telencephalon, pallial and subpallial cells were labeled, being most numerous in the medial pallium and amygdaloid region. Most of the SOM-ir neurons were found in the preoptic area and hypothalamus and showed a clear projection to the median eminence. Less conspicuously, SOM-ir structures were found in the thalamus, tectum, tegmentum, and reticular formation. Both SOM-ir cells and fibers were demonstrated in the spinal cord. The double-immunohistofluorescence technique revealed that catecholaminergic neurons and SOM-ir cells are largely intermingled in many brain regions but form totally separated populations. Many differences were found between the distribution of SOM-ir structures in Dermophis and that in anurans or urodeles. Some features were shared only with anurans, such as the abundant pallial SOM-ir cells, whereas others were common only to urodeles, such as the organization of the hypothalamohypophysial SOM-ir system. In addition, some characteristics were found only in Dermophis, such as the localization of the SOM-ir spinal cells and the lack of colocalization of catecholamines and SOM throughout the brain. Therefore, any conclusions concerning the SOM system in amphibians are incomplete without

  9. From fish to amphibians to mammals: in search of novel strategies to optimize cardiac regeneration.

    PubMed

    Ausoni, Simonetta; Sartore, Saverio

    2009-02-09

    Different vertebrate species have different cardiac regeneration rates: high in teleost fish, moderate in urodele amphibians, and almost negligible in mammals. Regeneration may occur through stem and progenitor cell differentiation or via dedifferentiation with residual cardiomyocytes reentering the cell cycle. In this review, we will examine the ability of zebrafish and newts to respond to cardiac damage with de novo cardiogenesis, whereas rodents and humans respond with a marked fibrogenic response and virtually no cardiomyocyte regeneration. Concerted strategies are needed to overcome this evolutionarily imposed barrier and optimize cardiac regeneration in mammals.

  10. Could we also be regenerative superheroes, like salamanders?

    PubMed

    Dall'Agnese, Alessandra; Puri, Pier Lorenzo

    2016-09-01

    Development of methods to reawaken the semi-dormant regenerative potential that lies within adult human tissues would hold promise for the restoration of diseased or damaged organs and tissues. While most of the regeneration potential is suppressed in many vertebrates, including humans, during adult life, urodele amphibians (salamanders) retain their regenerative ability throughout adulthood. Studies in newts and axolotls, two salamander models, have provided significant knowledge about adult limb regeneration. In this review, we present a comparative analysis of salamander and mammalian regeneration and discuss how evolutionarily altered properties of the regenerative environment can be exploited to restore full regenerative potential in the human body.

  11. Cardiovascular physiology and diseases of amphibians.

    PubMed

    Heinz-Taheny, Kathleen M

    2009-01-01

    The class Amphibia includes three orders of amphibians: the anurans (frogs and toads), urodeles (salamanders, axolotls, and newts), and caecilians. The diversity of lifestyles across these three orders has accompanying differences in the cardiovascular anatomy and physiology allowing for adaptations to aquatic or terrestrial habitats, pulmonic or gill respiration, hibernation, and body elongation (in the caecilian). This article provides a review of amphibian cardiovascular anatomy and physiology with discussion of unique species adaptations. In addition, amphibians as cardiovascular animal models and commonly encountered natural diseases are covered.

  12. Antler regrowth as a form of epimorphic regeneration in vertebrates - a comparative view.

    PubMed

    Kierdorf, Uwe; Kierdorf, Horst

    2012-01-01

    The annual regrowth of deer antlers is a unique case of extensive appendage regeneration in mammals. This review compares basic aspects of antler regeneration with epimorphic regeneration in other vertebrate taxa. The mesenchymal cells that build up the regenerating antler are not derived from dedifferentiated cells in the pedicle stump, but from the proliferation of cells of the pedicle periosteum; and based on different lines of evidence it has more recently been suggested that the pedicle periosteum contains stem cells that are periodically activated to produce a new antler. This constitutes a difference to urodele limb regeneration, where the blastema is (largely) formed from dedifferentiated cells. Antler regeneration involves healing of the large casting wound with no or only minor scarring, making the antler an interesting model for the control of scarring in mammals. Contrary to urodele limb regeneration, antler regrowth does not depend on a functional nerve supply. In our view, a comparative analysis of different regeneration phenomena, including antler regeneration, probably offers the best chance for achieving significant progress in regenerative medicine.

  13. Marsh frogs, Pelophylax ridibundus, determine migratory direction by magnetic field.

    PubMed

    Shakhparonov, Vladimir V; Ogurtsov, Sergei V

    2017-01-01

    Orientation by magnetic cues appears to be adaptive during animal migrations. Whereas the magnetic orientation in birds, mammals, and urodele amphibians is being investigated intensively, the data about anurans are still scarce. This study tests whether marsh frogs could determine migratory direction between the breeding pond and the wintering site by magnetic cues in the laboratory. Adult frogs (N = 32) were individually tested in the T-maze 127 cm long inside the three-axis Helmholtz coil system (diameter 3 m). The arms of the maze were positioned parallel to the natural migratory route of this population when measured in accordance with magnetic field. The frogs were tested under two-motivational conditions mediated by temperature/light regime: the breeding migratory state and the wintering state. The frogs' choice in a T-maze was evident only when analyzed in accordance with the direction of the magnetic field: they moved along the migratory route to the breeding pond and followed the reversion of the horizontal component of the magnetic field. This preference has been detected in both sexes only in the breeding migratory state. This suggests that adult ranid frogs can obtain directional information from the Earth's magnetic field as was shown earlier in urodeles and anuran larvae.

  14. FGF and BMP derived from dorsal root ganglia regulate blastema induction in limb regeneration in Ambystoma mexicanum.

    PubMed

    Satoh, Akira; Makanae, Aki; Nishimoto, Yurie; Mitogawa, Kazumasa

    2016-09-01

    Urodele amphibians have a remarkable organ regeneration ability that is regulated by neural inputs. The identification of these neural inputs has been a challenge. Recently, Fibroblast growth factor (Fgf) and Bone morphogenic protein (Bmp) were shown to substitute for nerve functions in limb and tail regeneration in urodele amphibians. However, direct evidence of Fgf and Bmp being secreted from nerve endings and regulating regeneration has not yet been shown. Thus, it remained uncertain whether they were the nerve factors responsible for successful limb regeneration. To gather experimental evidence, the technical difficulties involved in the usage of axolotls had to be overcome. We achieved this by modifying the electroporation method. When Fgf8-AcGFP or Bmp7-AcGFP was electroporated into the axolotl dorsal root ganglia (DRG), GFP signals were detectable in the regenerating limb region. This suggested that Fgf8 and Bmp7 synthesized in neural cells in the DRG were delivered to the limbs through the long axons. Further knockdown experiments with double-stranded RNA interference resulted in impaired limb regeneration ability. These results strongly suggest that Fgf and Bmp are the major neural inputs that control the organ regeneration ability.

  15. Analysis of the expression and function of Wnt-5a and Wnt-5b in developing and regenerating axolotl (Ambystoma mexicanum) limbs.

    PubMed

    Ghosh, Sukla; Roy, Stéphane; Séguin, Carl; Bryant, Susan V; Gardiner, David M

    2008-05-01

    Urodele amphibians are unique adult vertebrates because they are able to regenerate body parts after amputation. Studies of urodele limb regeneration, the key model system for vertebrate regeneration, have led to an understanding of the origin of blastema cells and the importance of positional interactions between blastema cells in the control of growth and pattern formation. Progress is now being made in the identification of the signaling pathways that regulate dedifferentiation, blastema morphogenesis, growth and pattern formation. Members of the Wnt family of secreted proteins are expressed in developing and regenerating limbs, and have the potential to control growth, pattern formation and differentiation. We have studied the expression of two non-canonical Wnt genes, Wnt-5a and Wnt-5b. We report that they are expressed in equivalent patterns during limb development and limb regeneration in the axolotl (Ambystoma mexicanum), and during limb development in other tetrapods, implying conservation of function. Our analysis of the effects of ectopic Wnt-5a expression is consistent with the hypothesis that canonical Wnt signaling functions during the early stages of regeneration to control the dedifferentiation of stump cells giving rise to the regeneration-competent cells of the blastema.

  16. Purification and characterization of cholecystokinin from the skin of salamander Tylototriton verrucosus.

    PubMed

    Jiang, Wen-Bin; Hakim, Ma; Luo, Lei; Li, Bo-Wen; Yang, Shi-Long; Song, Yu-Zhu; Lai, Ren; Lu, Qiu-Min

    2015-05-18

    As a group of intestinal hormones and neurotransmitters, cholecystokinins (CCKs) regulate and affect pancreatic enzyme secretion, gastrointestinal motility, pain hypersensitivity, digestion and satiety, and generally contain a DYMGWMDFG sequence at the C-terminus. Many CCKs have been reported in mammals. However, only a few have been reported in amphibians, such as Hyla nigrovittata, Xenopus laevis, and Rana catesbeiana, with none reported in urodele amphibians like newts and salamanders. Here, a CCK called CCK-TV was identified and characterized from the skin of the salamander Tylototriton verrucosus. This CCK contained an amino acid sequence of DYMGWMDF-NH2 as seen in other CCKs. A cDNA encoding the CCK precursor containing 129 amino acid residues was cloned from the cDNA library of T. verrucosus skin. The CCK-TV had the potential to induce the contraction of smooth muscle strips isolated from porcine gallbladder, eliciting contraction at a concentration of 5.0 x 10⁻¹¹ mol/L and inducing maximal contraction at a concentration of 2.0 x 10⁻⁶ mol/L. The EC50 was 13.6 nmol/L. To the best of our knowledge, this is the first report to identify the presence of a CCK in an urodele amphibian.

  17. Newt prolactin and its involvement in reproduction.

    PubMed

    Kikuyama, S; Yazawa, T; Abe, S; Yamamoto, K; Iwata, T; Hoshi, K; Hasunuma, I; Mosconi, G; Polzonetti-Magni, A M

    2000-12-01

    The amino acid sequence of newt (Cynops pyrrhogaster) prolactin deduced from the nucleotide sequence of its cDNA showed a relatively high homology with sequences of chicken and sea turtle prolactins as well as with those of anuran prolactins. Cynops prolactin receptor transcripts were detected in various tissues and organs, suggesting that prolactin plays multiple roles in urodeles. Urodele prolactin was purified from the pituitaries of C. pyrrhogaster. Antiserum against this prolactin was used for radioimmunoassay of plasma prolactin and immunoneutralization experiments. Endogenous prolactin was shown to induce migration to water, courtship behavior, and cessation of spermatocytogenesis in the Cynops newt. The hormone was found to be involved in the development of cloacal glands such as the lateral and abdominal glands, growth of the tail and Mauthner neurons, secretion of oviducal jelly, and enhanced synthesis of a female attracting pheromone (sodefrin), and responsiveness of the olfactory epithelium to sodefrin. In most of these cases, prolactin was found to act synergistically or antagonistically with sex steroids. We also discovered that hypersecretion of prolactin in the newts subjected to cold temperature was induced by hypothalamic stimulation rather than release from hypothalamic inhibition.

  18. Growth and apoptosis during larval forelimb development and adult forelimb regeneration in the newt ( Notophthalmus viridescens).

    PubMed

    Vlaskalin, Tatjana; Wong, Christine J; Tsilfidis, Catherine

    2004-09-01

    Many of the genes involved in the initial development of the limb in higher vertebrates are also expressed during regeneration of the limb in urodeles such as Notophthalmus viridescens. These similarities have led researchers to conclude that the regeneration process is a recapitulation of development, and that patterning of the regenerate mimics pattern formation in development. However, the developing limb and the regenerating limb do not look similar. In developing urodele forelimbs, digits appear sequentially as outgrowths from the limb palette. In regeneration, all the digits appear at once. In this work, we address the issue of whether regeneration and development are similar by examining growth and apoptosis patterns. In contrast to higher vertebrates, forelimb development in the newt, N. viridescens, does not use interdigital apoptosis as the method of digit separation. During adult forelimb regeneration, apoptosis seems to play an important role in wound healing and again during cartilage to bone turnover in the advanced digits and radius/ulna. However, similar to forelimb development, demarcation of the digits in adult forelimb regeneration does not involve interdigital apoptosis. Outgrowth, rather than regression of the interdigital mesenchyme, leads to the individualization of forelimb digits in both newt development and regeneration.

  19. Cell cycle regulation and regeneration.

    PubMed

    Heber-Katz, Ellen; Zhang, Yong; Bedelbaeva, Khamila; Song, Fengyu; Chen, Xiaoping; Stocum, David L

    2013-01-01

    Regeneration of ear punch holes in the MRL mouse and amputated limbs of the axolotl show a number of similarities. A large proportion of the fibroblasts of the uninjured MRL mouse ear are arrested in G2 of the cell cycle, and enter nerve-dependent mitosis after injury to form a ring-shaped blastema that regenerates the ear tissue. Multiple cell types contribute to the establishment of the regeneration blastema of the urodele limb by dedifferentiation, and there is substantial reason to believe that the cells of this early blastema are also arrested in G2, and enter mitosis under the influence of nerve-dependent factors supplied by the apical epidermal cap. Molecular analysis reveals other parallels, such as; (1) the upregulation of Evi5, a centrosomal protein that prevents mitosis by stabilizing Emi1, a protein that inhibits the degradation of cyclins by the anaphase promoting complex and (2) the expression of sodium channels by the epidermis. A central feature in the entry into the cell cycle by MRL ear fibroblasts is a natural downregulation of p21, and knockout of p21 in wild-type mice confers regenerative capacity on non-regenerating ear tissue. Whether the same is true for entry into the cell cycle in regenerating urodele limbs is presently unknown.

  20. Locomotion pattern and trunk musculoskeletal architecture among Urodela.

    PubMed

    Omura, Ayano; Ejima, Ken-Ichiro; Honda, Kazuya; Anzai, Wataru; Taguchi, Yuki; Koyabu, Daisuke; Endo, Hideki

    2015-04-01

    We comparatively examined the trunk musculature and prezygapophyseal angle of mid-trunk vertebra in eight urodele species with different locomotive modes (aquatic Siren intermedia, Amphiuma tridactylum, Necturus maculosus and Andrias japonicus; semi-aquatic Cynops pyrrhogaster, Cynops ensicauda; and terrestrial Hynobius nigrescens, Hynobius lichenatus and Ambystoma tigrinum). We found that the more terrestrial species were characterized by larger dorsal and abdominal muscle weight ratios compared with those of the more aquatic species, whereas muscle ratios of the lateral hypaxial musculature were larger in the more aquatic species. The lateral hypaxial muscles were thicker in the more aquatic species, whereas the M. rectus abdominis was more differentiated in the more terrestrial species. Our results suggest that larger lateral hypaxial muscles function for lateral bending during underwater locomotion in aquatic species. Larger dorsalis and abdominal muscles facilitate resistance against sagittal extension of the trunk, stabilization and support of the ventral contour line against gravity in terrestrial species. The more aquatic species possessed a more horizontal prezygapophyseal angle for more flexible lateral locomotion. In contrast, the more terrestrial species have an increasingly vertical prezygapophyseal angle to provide stronger column support against gravity. Thus, we conclude trunk structure in urodeles differs clearly according to their locomotive modes.

  1. Stages in follicle cell/oocyte interface during vitellogenesis in caecilians Ichthyophis tricolor and Gegeneophis ramaswamii: a transmission electron-microscopic study.

    PubMed

    Beyo, Reston Saroja; Divya, Lekha; Smita, Mathew; Oommen, Oommen Vilaverthottathil; Akbarsha, Mohammed Abdulkader

    2008-02-01

    We describe the ultrastructural organization of the vitellogenic follicle stages in two caecilian species. Monthly samples of slices of ovary of Ichthyophis tricolor and Gegeneophis ramaswamii from the Western Ghats of India were subjected to transmission electron-microscopic analysis, with special attention to the follicle cell/oocyte interface. In order to maintain uniformity of the stages among the amphibians, all the stages in the caecilian follicles were assigned to stages I-VI, the vitellogenic and post-vitellogenic follicles being assigned to stages III-VI. Stage III commences with the appearance of precursors of vitelline envelope material in the perivitelline space. Stages IV and V have been assigned appropriate substages. During the transition of stage III to stage VI oocytes, a sequential change occurs in the manifestations of follicle cells, perivitelline space, vitelline envelope and oocyte cortex. The vitelline envelope becomes a tough coat through the tunnels of which the macrovilli pass to interdigitate between the microvilli. The oocyte surface forms pinocytic vesicles that develop into coated pits and, later, coated vesicles. Contributions of the oocyte cortex to the vitelline envelope and of the follicle cells to yolk material via synthesis within them are indicated. The follicle cell/oocyte interface of vitellogenic follicles of these two caecilians resembles that in anurans and urodeles, with certain features being unique to caecilians. Thus, this paper throws light on the possible relationships of caecilians to anurans and urodeles with special reference to ovarian follicles.

  2. Amphibian chytridiomycosis: a review with focus on fungus-host interactions.

    PubMed

    Van Rooij, Pascale; Martel, An; Haesebrouck, Freddy; Pasmans, Frank

    2015-11-25

    Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host's skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.

  3. Neurosteroid Biosynthesis in the Brain of Amphibians

    PubMed Central

    Vaudry, Hubert; Do Rego, Jean-Luc; Burel, Delphine; Luu-The, Van; Pelletier, Georges; Vaudry, David; Tsutsui, Kazuyoshi

    2011-01-01

    Amphibians have been widely used to investigate the synthesis of biologically active steroids in the brain and the regulation of neurosteroid production by neurotransmitters and neuropeptides. The aim of the present review is to summarize the current knowledge regarding the neuroanatomical distribution and biochemical activity of steroidogenic enzymes in the brain of anurans and urodeles. The data accumulated over the past two decades demonstrate that discrete populations of neurons and/or glial cells in the frog and newt brains express the major steroidogenic enzymes and are able to synthesize de novo a number of neurosteroids from cholesterol/pregnenolone. Since neurosteroidogenesis has been conserved during evolution from amphibians to mammals, it appears that neurosteroids must play important physiological functions in the central nervous system of vertebrates. PMID:22649387

  4. A histone demethylase is necessary for regeneration in zebrafish.

    PubMed

    Stewart, Scott; Tsun, Zhi-Yang; Izpisua Belmonte, Juan Carlos

    2009-11-24

    Urodele amphibians and teleost fish regenerate amputated body parts via a process called epimorphic regeneration. A hallmark of this phenomenon is the reactivation of silenced developmental regulatory genes that previously functioned during embryonic patterning. We demonstrate that histone modifications silence promoters of numerous genes involved in zebrafish caudal fin regeneration. Silenced developmental regulatory genes contain bivalent me(3)K4/me(3)K27 H3 histone modifications created by the concerted action of Polycomb (PcG) and Trithorax histone methyltransferases. During regeneration, this silent, bivalent chromatin is converted to an active state by loss of repressive me(3)K27 H3 modifications, occurring at numerous genes that appear to function during regeneration. Loss-of-function studies demonstrate a requirement for a me(3)K27 H3 demethylase during fin regeneration. These results indicate that histone modifications at discreet genomic positions may serve as a crucial regulatory event in the initiation of fin regeneration.

  5. Predation of amphibians by carabid beetles of the genus Epomis found in the central coastal plain of Israel.

    PubMed

    Wizen, Gil; Gasith, Avital

    2011-01-01

    The genus Epomis is represented in Israel by two species: Epomis dejeani and Epomis circumscriptus. In the central coastal plain these species are sympatric but do not occur in the same sites. The objective of this study was to record and describe trophic interactions between the adult beetles and amphibian species occurring in the central coastal plain of Israel. Day and night surveys at three sites, as well as controlled laboratory experiments were conducted for studying beetle-amphibian trophic interaction. In the field we recorded three cases of Epomis dejeani preying upon amphibian metamorphs and also found that Epomis adults share shelters with amphibians. Laboratory experiments supported the observations that both Epomis species can prey on amphibians. Predation of the three anuran species (Bufo viridis, Hyla savignyi and Rana bedriagae) and two urodele species (Triturus vittatus and Salamandra salamandra infraimmaculata) is described. Only Epomis dejeani consumed Triturus vittatus. Therefore, we conclude that the two species display a partial overlap in food habit.

  6. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts.

    PubMed

    Tanaka, Hibiki Vincent; Ng, Nathaniel Chuen Yin; Yang Yu, Zhan; Casco-Robles, Martin Miguel; Maruo, Fumiaki; Tsonis, Panagiotis A; Chiba, Chikafumi

    2016-03-30

    The newt, a urodele amphibian, is able to repeatedly regenerate its limbs throughout its lifespan, whereas other amphibians deteriorate or lose their ability to regenerate limbs after metamorphosis. It remains to be determined whether such an exceptional ability of the newt is either attributed to a strategy, which controls regeneration in larvae, or on a novel one invented by the newt after metamorphosis. Here we report that the newt switches the cellular mechanism for limb regeneration from a stem/progenitor-based mechanism (larval mode) to a dedifferentiation-based one (adult mode) as it transits beyond metamorphosis. We demonstrate that larval newts use stem/progenitor cells such as satellite cells for new muscle in a regenerated limb, whereas metamorphosed newts recruit muscle fibre cells in the stump for the same purpose. We conclude that the newt has evolved novel strategies to secure its regenerative ability of the limbs after metamorphosis.

  7. Metacercariae of Clinostomum complanatum (Trematoda: Digenea) in European newts Triturus carnifex and Lissotriton vulgaris (Caudata: Salamandridae).

    PubMed

    Caffara, M; Bruni, G; Paoletti, C; Gustinelli, A; Fioravanti, M L

    2014-09-01

    Adults of Clinostomum spp. are digenetic trematodes found in fish-eating birds, reptiles and occasionally mammals, including humans. Freshwater snails serve as first intermediate hosts and many fish species and amphibians as second intermediate hosts. To date, amphibian hosts of Clinostomum metacercariae include members of urodele and anuran families in North America, but no data are available on infections of European amphibians, including newts. In this study, we characterize infections of Clinostomum complanatum metacercariae in four smooth (Lissotriton vulgaris) and 18 Italian crested newts (Triturus carnifex) from an artificial pond located in a protected area in Tuscany, Italy. Parasites were surgically removed from the infected newts and identified both morphologically and using sequences of a mitochondrial gene, cytochrome c oxidase I, and the ribosomal markers, internal transcribed spacers. This is the first record of C. complanatum in European newts and, more generally, in amphibians in Europe.

  8. The role of stem cells in limb regeneration

    PubMed Central

    Zielins, Elizabeth R.; Ransom, Ryan C.; Leavitt, Tripp E.; Longaker, Michael T.; Wan, Derrick C.

    2016-01-01

    ABSTRACT Limb regeneration is a complex yet fascinating process observed to some extent in many animal species, though seen in its entirety in urodele amphibians. Accomplished by formation of a morphologically uniform intermediate, the blastema, scientists have long attempted to define the cellular constituents that enable regrowth of a functional appendage. Today, we know that the blastema consists of a variety of multipotent progenitor cells originating from a variety of tissues, and which contribute to limb tissue regeneration in a lineage-restricted manner. By continuing to dissect the role of stem cells in limb regeneration, we can hope to one day modulate the human response to limb amputation and facilitate regrowth of a working replacement. PMID:27008101

  9. Regeneration inducers in limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Makanae, Aki

    2015-08-01

    Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species.

  10. Earliest known crown-group salamanders.

    PubMed

    Gao, Ke-Qin; Shubin, Neil H

    2003-03-27

    Salamanders are a model system for studying the rates and patterns of the evolution of new anatomical structures. Recent discoveries of abundant Late Jurassic and Early Cretaceous salamanders are helping to address these issues. Here we report the discovery of well-preserved Middle Jurassic salamanders from China, which constitutes the earliest known record of crown-group urodeles (living salamanders and their closest relatives). The new specimens are from the volcanic deposits of the Jiulongshan Formation (Bathonian), Inner Mongolia, China, and represent basal members of the Cryptobranchidae, a family that includes the endangered Asian giant salamander (Andrias) and the North American hellbender (Cryptobranchus). These fossils document a Mesozoic record of the Cryptobranchidae, predating the previous record of the group by some 100 million years. This discovery provides evidence to support the hypothesis that the divergence of the Cryptobranchidae from the Hynobiidae had taken place in Asia before the Middle Jurassic period.

  11. Extensive diversification of MHC in Chinese giant salamanders Andrias davidianus (Anda-MHC) reveals novel splice variants.

    PubMed

    Zhu, Rong; Chen, Zhong-yuan; Wang, Jun; Yuan, Jiang-di; Liao, Xiang-yong; Gui, Jian-Fang; Zhang, Qi-Ya

    2014-02-01

    A series of MHC alleles (including 26 class IA, 27 class IIA, and 17 class IIB) were identified from Chinese giant salamander Andrias davidianus (Anda-MHC). These genes are similar to classical MHC molecules in terms of characteristic domains, functional residues, deduced tertiary structures and genetic diversity. The majority of variation between alleles is found in the putative peptide-binding region (PBR), which is driven by positive Darwinian selection. The coexistence of two isoforms in MHC IA, IIA, and IIB alleles are shown: one full-length transcript and one novel splice variant. Despite lake of the external domains, these variants exhibit similar subcellular localization with the full-length transcripts. Moreover, the expression of MHC isoforms are up-regulated upon in vivo and in vitro stimulation with Andrias davidianus ranavirus (ADRV), suggesting their potential roles in the immune response. The results provide insights into understanding MHC variation and function in this ancient and endangered urodele amphibian.

  12. Salamander regeneration as a model for developing novel regenerative and anticancer therapies.

    PubMed

    Fior, Jonathan

    2014-01-01

    Among vertebrates, urodele amphibians are the only tetrapods with the ability to regenerate complex structures such as limbs, tail, and spinal cord throughout their lives. Furthermore, the salamander regeneration process has been shown to reverse tumorigenicity. Fibroblasts are essential for salamander regeneration, but the mechanisms underlying their role in the formation of a regeneration blastema remain unclear. Here, I review the role of fibroblasts in salamander limb regeneration and how their activity compares with that of human fibroblasts. In addition, the question of whether salamander blastema tissue could induce regeneration and tumor regression in animals with a limited regeneration ability is discussed. A deeper understanding of these processes may lead to the development of novel regenerative and anticancer therapies.

  13. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts

    PubMed Central

    Tanaka, Hibiki Vincent; Ng, Nathaniel Chuen Yin; Yang Yu, Zhan; Casco-Robles, Martin Miguel; Maruo, Fumiaki; Tsonis, Panagiotis A.; Chiba, Chikafumi

    2016-01-01

    The newt, a urodele amphibian, is able to repeatedly regenerate its limbs throughout its lifespan, whereas other amphibians deteriorate or lose their ability to regenerate limbs after metamorphosis. It remains to be determined whether such an exceptional ability of the newt is either attributed to a strategy, which controls regeneration in larvae, or on a novel one invented by the newt after metamorphosis. Here we report that the newt switches the cellular mechanism for limb regeneration from a stem/progenitor-based mechanism (larval mode) to a dedifferentiation-based one (adult mode) as it transits beyond metamorphosis. We demonstrate that larval newts use stem/progenitor cells such as satellite cells for new muscle in a regenerated limb, whereas metamorphosed newts recruit muscle fibre cells in the stump for the same purpose. We conclude that the newt has evolved novel strategies to secure its regenerative ability of the limbs after metamorphosis. PMID:27026263

  14. Reconstitution of the central nervous system during salamander tail regeneration from the implanted neurospheres.

    PubMed

    McHedlishvili, Levan; Mazurov, Vladimir; Tanaka, Elly M

    2012-01-01

    Urodele amphibians such as axolotl are well known for their regenerative potential of the damaged central nervous system structures. Upon tail amputation, neural stem cells behind the amputation plane undergo self-renewing divisions and contribute to the functional spinal cord in the newly formed regenerate. The neural stem cells, harboring this potential, can be isolated from the animal and cultured under the suspension conditions. After 2-3 weeks in vitro they will proliferate and form the floating aggregates of the spherical shape, so-called neurospheres. Reimplanted back into the animal, the neurospheres can efficiently integrate in the spinal cord lesion and contribute to the following spinal cord regeneration events. Here we demonstrate the unique method of the axolotl tail spinal cord regeneration from the implanted neurosphere.

  15. Gene expression profile of the regeneration epithelium during axolotl limb regeneration.

    PubMed

    Campbell, Leah J; Suárez-Castillo, Edna C; Ortiz-Zuazaga, Humberto; Knapp, Dunja; Tanaka, Elly M; Crews, Craig M

    2011-07-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate missing limbs. The process of limb regeneration requires several key tissues including a regeneration-competent wound epidermis called the regeneration epithelium (RE). We used microarray analysis to profile gene expression of the RE in the axolotl, a Mexican salamander. A list of 125 genes and expressed sequence tags (ESTs) showed a ≥1.5-fold expression in the RE than in a wound epidermis covering a lateral cuff wound. A subset of the RE ESTs and genes were further characterized for expression level changes over the time-course of regeneration. This study provides the first large scale identification of specific gene expression in the RE.

  16. [Retinal regeneration after dissection of the optic nerve in newts exposed on board the Bion-11 biosatellite].

    PubMed

    Grigorian, E N; Tuchkova, S Ia; Poplinskaia, V A; Mitashov, V I

    1999-01-01

    The work brought up initial information on the impacts of space flight (SF) on regeneration of nerve tissues in vertebrata. Summarized are data of analysis of the retinal regeneration following section of the ocular nerve and blood vessels in space-flown adult newts (Pleurodeles waltlii). Two weeks in SF were found not to impede the regeneration of retina as its growth was fully dependent on the same cell sources as in the condition of 1 g. In the newts which had been operated 2 wk prior to launch, recovery of retina in SF proceeded more intensively (phases V-VI) compared with the synchronous controls (phase IV). According to the morphometric analysis, differentiation of regenerates' layers in the space animals was also a more rapid process. The proliferative activity of cells in regenerates estimated with the 3H-timidine radioautography turned to be higher, too: the labeled nuclei index in early non-differentiated regenerates was in 1.2 to 1.5 times higher than in the control. Immunohistochemical array with the help of GFAP antibodies performed at the late phases of regeneration revealed an activating effect of SF on the Muller glia cells. These findings indicate that microgravity can stimulate general retinal regeneration and activate regenerate cells, specifically those involved in morphogenesis.

  17. Experiment aboard Russian satellite "Foton M2" in 2005: new approaches for study on stimulating effect of space flight on cell proliferation and regeneration in Urodela

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Almeida, E.; Domaratskaya, E.; Tairbekov, M.; Aleinikova, K.; Mitashov, V.

    A study on space flight effect upon processes of regeneration is due to the necessity to know their characteristics in animals and human exposed to space and earth conditions shortly after flight Several experiments on the newts performed earlier aboard Russian biosatellites showed that the rate of organ and tissue regeneration in space was greater than that on the ground Space flight effect stimulating regeneration was enduring and apparent not only just after flight but long time later as well This observation found support in studies simulated physiological weightlessness by means of fast-rotating clinostat It was shown also that the higher rate of regeneration was associated with enhanced cell proliferation For instance we found that the number of cells in S-phase in regenerating tissues was significantly greater in space-flown animals than in the ground controls However it was unclear whether cell proliferation stimulation was induced by micro- g per se or by conditions of hyper- g during launching and re-adaptation on the earth Molecular mechanisms underlying the change also remained obscure These issues were addressed by the joint Russian-USA experiment Regeneration performed on Foton-M2 in 2005 In 16- day flight we used two well-known models of regeneration lens regeneration after lensectomy and tail regeneration after amputation in adult newts Pleurodeles walt Urodela In order to evaluate cell proliferative activity in time limits of microgravity influence the original method for in-flight delivering DNA precursor BrdU

  18. Flexibility of the axial central pattern generator network for locomotion in the salamander.

    PubMed

    Ryczko, D; Knüsel, J; Crespi, A; Lamarque, S; Mathou, A; Ijspeert, A J; Cabelguen, J M

    2015-03-15

    In tetrapods, limb and axial movements are coordinated during locomotion. It is well established that inter- and intralimb coordination show considerable variations during ongoing locomotion. Much less is known about the flexibility of the axial musculoskeletal system during locomotion and the neural mechanisms involved. Here we examined this issue in the salamander Pleurodeles waltlii, which is capable of locomotion in both aquatic and terrestrial environments. Kinematics of the trunk and electromyograms from the mid-trunk epaxial myotomes were recorded during four locomotor behaviors in freely moving animals. A similar approach was used during rhythmic struggling movements since this would give some insight into the flexibility of the axial motor system. Our results show that each of the forms of locomotion and the struggling behavior is characterized by a distinct combination of mid-trunk motor patterns and cycle durations. Using in vitro electrophysiological recordings in isolated spinal cords, we observed that the spinal networks activated with bath-applied N-methyl-d-aspartate could generate these axial motor patterns. In these isolated spinal cord preparations, the limb motor nerve activities were coordinated with each mid-trunk motor pattern. Furthermore, isolated mid-trunk spinal cords and hemicords could generate the mid-trunk motor patterns. This indicates that each side of the cord comprises a network able to generate coordinated axial motor activity. The roles of descending and sensory inputs in the behavior-related changes in axial motor coordination are discussed.

  19. From lamprey to salamander: an exploratory modeling study on the architecture of the spinal locomotor networks in the salamander.

    PubMed

    Bicanski, Andrej; Ryczko, Dimitri; Cabelguen, Jean-Marie; Ijspeert, Auke Jan

    2013-10-01

    The evolutionary transition from water to land required new locomotor modes and corresponding adjustments of the spinal "central pattern generators" for locomotion. Salamanders resemble the first terrestrial tetrapods and represent a key animal for the study of these changes. Based on recent physiological data from salamanders, and previous work on the swimming, limbless lamprey, we present a model of the basic oscillatory network in the salamander spinal cord, the spinal segment. Model neurons are of the Hodgkin-Huxley type. Spinal hemisegments contain sparsely connected excitatory and inhibitory neuron populations, and are coupled to a contralateral hemisegment. The model yields a large range of experimental findings, especially the NMDA-induced oscillations observed in isolated axial hemisegments and segments of the salamander Pleurodeles waltlii. The model reproduces most of the effects of the blockade of AMPA synapses, glycinergic synapses, calcium-activated potassium current, persistent sodium current, and [Formula: see text]-current. Driving segments with a population of brainstem neurons yields fast oscillations in the in vivo swimming frequency range. A minimal modification to the conductances involved in burst-termination yields the slower stepping frequency range. Slow oscillators can impose their frequency on fast oscillators, as is likely the case during gait transitions from swimming to stepping. Our study shows that a lamprey-like network can potentially serve as a building block of axial and limb oscillators for swimming and stepping in salamanders.

  20. Insect infestation of stored oats in Florida and field evaluation of a device for counting insects electronically.

    PubMed

    Arbogast, R T; Kendra, P E; Weaver, D K; Shuman, D

    2000-06-01

    Automated methods of monitoring stored grain for insect pests will contribute to early detection and aid in management of pest problems. An insect population infesting stored oats at a seed processing plant in north-central Florida was studied to test a device for counting insects electronically (Electronic Grain Probe Insect Counter, EGPIC), and to characterize the storage environment. The device counts insects as they fall through an infrared beam incorporated into a modified grain probe (pitfall) trap and transmits the counts to a computer for accumulation and storage. Eight traps were inserted into the surface of the grain bulk, and the insects trapped were identified and counted manually at weekly intervals. Grain temperature and moisture content also were recorded for each trap location. Manual and automatic counts were compared to estimate error in the EGPIC system. Both over- and undercounting occurred, and errors ranged from -79.4 to 82.4%. The mean absolute value of error (+/- SE) was 31.7% (+/- 4.3). At least 31 species, or higher taxa, were detected, but the psocid Liposcelis entomophila (Enderlein) and the foreign grain beetle, Ahasverus advena (Waltl), accounted for 88% of the captured insects. Species diversity, phenology, and spatial distribution are presented, as well as temporal and spatial distribution of grain temperature and moisture content. The data sets generated will find application in population modeling and development of integrated pest management systems for stored grain.

  1. Hox C6 expression during development and regeneration of forelimbs in larval Notophthalmus viridescens.

    PubMed

    Khan, P A; Tsilfidis, C; Liversage, R A

    1999-06-01

    A central theme concerning the epimorphic regenerative potential of urodele amphibian appendages is that limb regeneration in the adult parallels larval limb development. Results of previous research have led to the suggestion that homeobox containing genes are "re-expressed" during the epimorphic regeneration of forelimbs of adult Notophthalmus viridescens in patterns which retrace larval limb development. However, to date no literature exists concerning expression patterns of any homeobox containing genes during larval development of this species. The lack of such information has been a hindrance in exploring the similarities as well as differences which exist between limb regeneration in adults and limb development in larvae. Here we report the first such results of the localization of Hox C6 (formerly, NvHBox-1) in developing and regenerating forelimbs of N. viridescens larvae as demonstrated by whole-mount in situ hybridization. Inasmuch as the pattern of Hox C6 expression is similar in developing forelimb buds of larvae and epimorphically regenerating forelimb blastemata of both adults and larvae, our results support the paradigm that epimorphic regeneration in adult newts parallels larval forelimb development. However, in contrast with observations which document the presence of Hox C6 in both intact, as well as regenerating hindlimbs and tails of adult newts, our results reveal no such Hox C6 expression during larval development of hindlimbs or the tail. As such, our findings indicate that critical differences in larval hindlimb and tail development versus adult expression patterns of this gene in these two appendages may be due primarily to differences in gene regulation as opposed to gene function. Thus, the apparent ability of urodeles to regulate genes in such a highly co-ordinated fashion so as to replace lost, differentiated, appendicular structures in adult animals may assist, at least in part, in better elucidating the phenomenon of epimorphic

  2. A de novo assembly of the newt transcriptome combined with proteomic validation identifies new protein families expressed during tissue regeneration

    PubMed Central

    2013-01-01

    Background Notophthalmus viridescens, an urodelian amphibian, represents an excellent model organism to study regenerative processes, but mechanistic insights into molecular processes driving regeneration have been hindered by a paucity and poor annotation of coding nucleotide sequences. The enormous genome size and the lack of a closely related reference genome have so far prevented assembly of the urodelian genome. Results We describe the de novo assembly of the transcriptome of the newt Notophthalmus viridescens and its experimental validation. RNA pools covering embryonic and larval development, different stages of heart, appendage and lens regeneration, as well as a collection of different undamaged tissues were used to generate sequencing datasets on Sanger, Illumina and 454 platforms. Through a sequential de novo assembly strategy, hybrid datasets were converged into one comprehensive transcriptome comprising 120,922 non-redundant transcripts with a N50 of 975. From this, 38,384 putative transcripts were annotated and around 15,000 transcripts were experimentally validated as protein coding by mass spectrometry-based proteomics. Bioinformatical analysis of coding transcripts identified 826 proteins specific for urodeles. Several newly identified proteins establish novel protein families based on the presence of new sequence motifs without counterparts in public databases, while others containing known protein domains extend already existing families and also constitute new ones. Conclusions We demonstrate that our multistep assembly approach allows de novo assembly of the newt transcriptome with an annotation grade comparable to well characterized organisms. Our data provide the groundwork for mechanistic experiments to answer the question whether urodeles utilize proprietary sets of genes for tissue regeneration. PMID:23425577

  3. Collection of gametes from live axolotl, Ambystoma mexicanum, and standardization of in vitro fertilization.

    PubMed

    Mansour, N; Lahnsteiner, F; Patzner, R A

    2011-01-15

    This study established the first protocol for collection of gametes from live axolotl, Ambystoma mexicanum, by gentle abdominal massage and in vitro fertilization. To stimulate spermiation and ovulation, human chorionic gonadotrophin (hCG) and Ovopel pellets, which are commercially used to stimulate spawning in fish, were tested. The hCG was more effective than Ovopel pellets and yielded a higher semen volume in the injected males and a shorter response time in the females. Collected semen by this method was already motile and fertile. Fertile eggs could be collected in 3-4 successive collection times after the female has started the typical spawning behaviour. The fertilization condition that yielded the highest hatching rate was mixing semen with eggs before the addition of a fertilization saline solution (20 mmol/l NaCl, 1 mmol/l KCl, 1 mmol/l Mg(2)SO(4), 1 mmol Ca(2)Cl, 3 mmol NaHCO(3), 10 mmol/l Tris, pH 8.5 - Osmolality = 65 mosmol/kg). When the pH of the fertilization solution was increased to ≥ 10, the hatching rate was significantly increased. The use of fertilization solutions with osmolalities of ≥ 150 and ≥ 182 were accompanied with a significant decrease in hatching rates and the appearance of deformed larvae, respectively. In conclusion, a reliable protocol for gamete collection from live axolotl is established as a laboratory model of in vitro fertilization for urodele amphibians. This protocol may be transferable to endangered urodeles.

  4. A Novel Cysteine Knot Protein for Enhancing Sperm Motility That Might Facilitate the Evolution of Internal Fertilization in Amphibians.

    PubMed

    Yokoe, Misato; Takayama-Watanabe, Eriko; Saito, Yoko; Kutsuzawa, Megumi; Fujita, Kosuke; Ochi, Haruki; Nakauchi, Yuni; Watanabe, Akihiko

    2016-01-01

    Internal fertilization ensures successful reproduction of tetrapod vertebrates on land, although how this mode of reproduction evolved is unknown. Here, we identified a novel gene encoding sperm motility-initiating substance (SMIS), a key protein for the internal fertilization of the urodele Cynops pyrrhogaster by Edman degradation of an isolated protein and subsequent reverse transcription polymerase chain reaction. The SMIS gene encoded a 150 amino-acid sequence including the cysteine knot (CK) motif. No gene with substantial similarity to the SMIS was in the data bank of any model organisms. An active site of the SMIS was in the C-terminal region of the 2nd loop of CK motif. A synthetic peptide including the active site sequence bound to the midpiece and initiated/enhanced the circular motion of C. pyrrhogaster sperm, which allows penetration of the egg jelly specialized for the internal fertilization of this species. The synthetic peptide bound to whole sperm of Rhacophorus arboreus and enhanced the rotary motion, which is adapted to propel the sperm through egg coat matrix specialized for arboreal reproduction, while it bound to the tip of head and tail of Bufo japonicus sperm, and enhanced the vibratory motion, which is suited to sperm penetration through the egg jelly specialized for the reproduction of that species in freshwater. The polyclonal antibody against the active site of the SMIS specifically bound to egg coat matrix of R. arboreus. These findings suggest that diversification of amphibian reproductive modes accompanies the specialization of egg coat and the adaptation of sperm motility to penetrate the specialized egg coat, and SMIS acts as the sperm motility enhancer of anurans and urodeles that might facilitate to adaptively optimize sperm motility for allowing the establishment of internal fertilization.

  5. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.

    PubMed

    Weber, Christopher M; Martindale, Mark Q; Tapscott, Stephen J; Unguez, Graciela A

    2012-01-01

    The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes) revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these progenitor cells

  6. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.

    PubMed

    Yoshii, Chika; Ueda, Yoko; Okamoto, Mitumasa; Araki, Masasuke

    2007-03-01

    In urodele amphibians like the newt, complete retina and lens regeneration occurs throughout their lives. In contrast, anuran amphibians retain this capacity only in the larval stage and quickly lose it during metamorphosis. It is believed that they are unable to regenerate these tissues after metamorphosis. However, contrary to this generally accepted notion, here we report that both the neural retina (NR) and lens regenerate following the surgical removal of these tissues in the anuran amphibian, Xenopus laevis, even in the mature animal. The NR regenerated both from the retinal pigment epithelial (RPE) cells by transdifferentiation and from the stem cells in the ciliary marginal zone (CMZ) by differentiation. In the early stage of NR regeneration (5-10 days post operation), RPE cells appeared to delaminate from the RPE layer and adhere to the remaining retinal vascular membrane. Thereafter, they underwent transdifferentiation to regenerate the NR layer. An in vitro culture study also revealed that RPE cells differentiated into neurons and that this was accelerated by the presence of FGF-2 and IGF-1. The source of the regenerating lens appeared to be remaining lens epithelium, suggesting that this is a kind of repair process rather than regeneration. Thus, we show for the first time that anuran amphibians retain the capacity for retinal regeneration after metamorphosis, similarly to urodeles, but that the mode of regeneration differs between the two orders. Our study provides a new tool for the molecular analysis of regulatory mechanisms involved in retinal and lens regeneration by providing an alternative animal model to the newt, the only other experimental model.

  7. Immunocytochemical characterisation of ensheathing glia in the olfactory and vomeronasal systems of Ambystoma mexicanum (Caudata: Ambystomatidae).

    PubMed

    Lazzari, Maurizio; Bettini, Simone; Franceschini, Valeria

    2016-03-01

    The olfactory and vomeronasal systems of vertebrates are characterised by neurogenesis occurring throughout life. The regenerative ability of olfactory receptor neurons relies on specific glial cells, the olfactory and vomeronasal axon-surrounding cells. Numerous studies have examined mammalian olfactory ensheathing cells which are considered potential candidates for spinal cord injury repair using cell-based therapy. With regard to non-mammalian vertebrates, limited information is available on these glial cells in fish, and there is no information on them in terrestrial anamniotes, the amphibians. In the present research, we studied the immunocytochemical characteristics of axon-surrounding cells in Ambystoma mexicanum. Urodeles have relatively simple olfactory and vomeronasal systems, and represent a good model for studying ensheathing cells in extant representatives of basal tetrapods. Sections from the decalcified heads of A. mexicanum were immunocytochemically processed for the detection of proteins used in research on mammalian olfactory-ensheathing cells. S100, GFAP and NCAM were clearly observed. p75NTR, Gal-1 and PSA-NCAM showed weak staining. No vimentin immunopositivity was observed. The corresponding areas of the olfactory and vomeronasal pathways displayed the same staining characteristics, with the exception of Gal-1, p75NTR and PSA-NCAM in the mucosae. The degree of marker expression was not uniform throughout the sensory pathways. In contrast to fish, both olfactory and vomeronasal nerves displayed uniform staining intensity. This study showed that some markers for mammalian and fish-ensheathing glia are also applicable in urodeles. The olfactory systems of vertebrates show similarities, and also clear dissimilarities. Further investigations are required to ascertain the functional significance of these regional and interspecific differences.

  8. Homology of the cranial vault in birds: new insights based on embryonic fate-mapping and character analysis

    NASA Astrophysics Data System (ADS)

    Maddin, Hillary C.; Piekarski, Nadine; Sefton, Elizabeth M.; Hanken, James

    2016-08-01

    Bones of the cranial vault appear to be highly conserved among tetrapod vertebrates. Moreover, bones identified with the same name are assumed to be evolutionarily homologous. However, recent developmental studies reveal a key difference in the embryonic origin of cranial vault bones between representatives of two amniote lineages, mammals and birds, thereby challenging this view. In the mouse, the frontal is derived from cranial neural crest (CNC) but the parietal is derived from mesoderm, placing the CNC-mesoderm boundary at the suture between these bones. In the chicken, this boundary is located within the frontal. This difference and related data have led several recent authors to suggest that bones of the avian cranial vault are misidentified and should be renamed. To elucidate this apparent conflict, we fate-mapped CNC and mesoderm in axolotl to reveal the contributions of these two embryonic cell populations to the cranial vault in a urodele amphibian. The CNC-mesoderm boundary in axolotl is located between the frontal and parietal bones, as in the mouse but unlike the chicken. If, however, the avian frontal is regarded instead as a fused frontal and parietal (i.e. frontoparietal) and the parietal as a postparietal, then the cranial vault of birds becomes developmentally and topologically congruent with those of urodeles and mammals. This alternative hypothesis of cranial vault homology is also phylogenetically consistent with data from the tetrapod fossil record, where frontal, parietal and postparietal bones are present in stem lineages of all extant taxa, including birds. It further implies that a postparietal may be present in most non-avian archosaurs, but fused to the parietal or supraoccipital as in many extant mammals.

  9. A Novel Cysteine Knot Protein for Enhancing Sperm Motility That Might Facilitate the Evolution of Internal Fertilization in Amphibians

    PubMed Central

    Yokoe, Misato; Takayama-Watanabe, Eriko; Saito, Yoko; Kutsuzawa, Megumi; Fujita, Kosuke; Ochi, Haruki; Nakauchi, Yuni; Watanabe, Akihiko

    2016-01-01

    Internal fertilization ensures successful reproduction of tetrapod vertebrates on land, although how this mode of reproduction evolved is unknown. Here, we identified a novel gene encoding sperm motility-initiating substance (SMIS), a key protein for the internal fertilization of the urodele Cynops pyrrhogaster by Edman degradation of an isolated protein and subsequent reverse transcription polymerase chain reaction. The SMIS gene encoded a 150 amino-acid sequence including the cysteine knot (CK) motif. No gene with substantial similarity to the SMIS was in the data bank of any model organisms. An active site of the SMIS was in the C-terminal region of the 2nd loop of CK motif. A synthetic peptide including the active site sequence bound to the midpiece and initiated/enhanced the circular motion of C. pyrrhogaster sperm, which allows penetration of the egg jelly specialized for the internal fertilization of this species. The synthetic peptide bound to whole sperm of Rhacophorus arboreus and enhanced the rotary motion, which is adapted to propel the sperm through egg coat matrix specialized for arboreal reproduction, while it bound to the tip of head and tail of Bufo japonicus sperm, and enhanced the vibratory motion, which is suited to sperm penetration through the egg jelly specialized for the reproduction of that species in freshwater. The polyclonal antibody against the active site of the SMIS specifically bound to egg coat matrix of R. arboreus. These findings suggest that diversification of amphibian reproductive modes accompanies the specialization of egg coat and the adaptation of sperm motility to penetrate the specialized egg coat, and SMIS acts as the sperm motility enhancer of anurans and urodeles that might facilitate to adaptively optimize sperm motility for allowing the establishment of internal fertilization. PMID:27579691

  10. Homology of the cranial vault in birds: new insights based on embryonic fate-mapping and character analysis

    PubMed Central

    Piekarski, Nadine; Sefton, Elizabeth M.; Hanken, James

    2016-01-01

    Bones of the cranial vault appear to be highly conserved among tetrapod vertebrates. Moreover, bones identified with the same name are assumed to be evolutionarily homologous. However, recent developmental studies reveal a key difference in the embryonic origin of cranial vault bones between representatives of two amniote lineages, mammals and birds, thereby challenging this view. In the mouse, the frontal is derived from cranial neural crest (CNC) but the parietal is derived from mesoderm, placing the CNC–mesoderm boundary at the suture between these bones. In the chicken, this boundary is located within the frontal. This difference and related data have led several recent authors to suggest that bones of the avian cranial vault are misidentified and should be renamed. To elucidate this apparent conflict, we fate-mapped CNC and mesoderm in axolotl to reveal the contributions of these two embryonic cell populations to the cranial vault in a urodele amphibian. The CNC–mesoderm boundary in axolotl is located between the frontal and parietal bones, as in the mouse but unlike the chicken. If, however, the avian frontal is regarded instead as a fused frontal and parietal (i.e. frontoparietal) and the parietal as a postparietal, then the cranial vault of birds becomes developmentally and topologically congruent with those of urodeles and mammals. This alternative hypothesis of cranial vault homology is also phylogenetically consistent with data from the tetrapod fossil record, where frontal, parietal and postparietal bones are present in stem lineages of all extant taxa, including birds. It further implies that a postparietal may be present in most non-avian archosaurs, but fused to the parietal or supraoccipital as in many extant mammals. PMID:27853617

  11. [The comparative characteristics of crystalline lens and limb regeneration in newts operated on before and after the completion of an orbital space flight].

    PubMed

    Tuchkova, S Ia; Brushlinskaia, N V; Grigorian, E N; Mitashov, V I

    1994-01-01

    It has been already established that a tendency towards synchronization and acceleration of the forelimb and lens regeneration is observed in Pleurodeles waltlii under the effect of space flight factors. Here we present the results obtained after 16-day space flight of two groups of newts. In animals of group I forelimbs were amputated and lenses were removed 14 and 7 days before the space flight, respectively. Intact animals of group II were operated on the day of the sputnik landing. Regenerates of the flight and corresponding control animals were fixed at the same time after the operation. For evaluation of the regeneration rate morphological criteria were used: morphological stages of regeneration were compared in the experiment and the control. For quantitative assay of the regeneration rate we determined the index of nuclei labelled with 3H-thymidine in the blastema and lens rudiment cells and used morphometry of the lens regenerates. Acceleration of forelimb and lens regeneration was observed in both groups of animals. In group II more than two-fold increase of the index of labelled nuclei was found in the blastema cells at the comparable stages of development. The size of lens regenerates in flight groups I and II exceeded reliably those in the control animals. The results obtained suggest a prolonged effect of the space flight factors on forelimb and lens regeneration. Under the conditions of space flight the lens regenerates reached more advanced stages of regeneration, as compared with the control animals operated after the space flight. These results also suggest acceleration of regeneration in lower vertebrates.

  12. Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes.

    PubMed

    Zhang, Peng; Papenfuss, Theodore J; Wake, Marvalee H; Qu, Lianghu; Wake, David B

    2008-11-01

    Phylogenetic relationships of members of the salamander family Salamandridae were examined using complete mitochondrial genomes collected from 42 species representing all 20 salamandrid genera and five outgroup taxa. Weighted maximum parsimony, partitioned maximum likelihood, and partitioned Bayesian approaches all produce an identical, well-resolved phylogeny; most branches are strongly supported with greater than 90% bootstrap values and 1.0 Bayesian posterior probabilities. Our results support recent taxonomic changes in finding the traditional genera Mertensiella, Euproctus, and Triturus to be non-monophyletic species assemblages. We successfully resolved the current polytomy at the base of the salamandrid tree: the Italian newt genus Salamandrina is sister to all remaining salamandrids. Beyond Salamandrina, a clade comprising all remaining newts is separated from a clade containing the true salamanders. Among these newts, the branching orders of well-supported clades are: primitive newts (Echinotriton, Pleurodeles, and Tylototriton), New World newts (Notophthalmus-Taricha), Corsica-Sardinia newts (Euproctus), and modern European newts (Calotriton, Lissotriton, Mesotriton, Neurergus, Ommatotriton, and Triturus) plus modern Asian newts (Cynops, Pachytriton, and Paramesotriton).Two alternative sets of calibration points and two Bayesian dating methods (BEAST and MultiDivTime) were used to estimate timescales for salamandrid evolution. The estimation difference by dating methods is slight and we propose two sets of timescales based on different calibration choices. The two timescales suggest that the initial diversification of extant salamandrids took place in Europe about 97 or 69Ma. North American salamandrids were derived from their European ancestors by dispersal through North Atlantic Land Bridges in the Late Cretaceous ( approximately 69Ma) or Middle Eocene ( approximately 43Ma). Ancestors of Asian salamandrids most probably dispersed to the eastern Asia

  13. A molecular assessment of phylogenetic relationships and lineage accumulation rates within the family Salamandridae (Amphibia, Caudata).

    PubMed

    Weisrock, David W; Papenfuss, Theodore J; Macey, J Robert; Litvinchuk, Spartak N; Polymeni, Rosa; Ugurtas, Ismail H; Zhao, Ermi; Jowkar, Houman; Larson, Allan

    2006-11-01

    We examine phylogenetic relationships among salamanders of the family Salamandridae using approximately 2700 bases of new mtDNA sequence data (the tRNALeu, ND1, tRNAIle, tRNAGln, tRNAMet, ND2, tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr, and COI genes and the origin for light-strand replication) collected from 96 individuals representing 61 of the 66 recognized salamandrid species and outgroups. Phylogenetic analyses using maximum parsimony and Bayesian analysis are performed on the new data alone and combined with previously reported sequences from other parts of the mitochondrial genome. The basal phylogenetic split is a polytomy of lineages ancestral to (1) the Italian newt Salamandrina terdigitata, (2) a strongly supported clade comprising the "true" salamanders (genera Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), and (3) a strongly supported clade comprising all newts except S. terdigitata. Strongly supported clades within the true salamanders include monophyly of each genus and grouping Chioglossa and Mertensiella as the sister taxon to a clade comprising Lyciasalamandra and Salamandra. Among newts, genera Echinotriton, Pleurodeles, and Tylototriton form a strongly supported clade whose sister taxon comprises the genera Calotriton, Cynops, Euproctus, Neurergus, Notophthalmus, Pachytriton, Paramesotriton, Taricha, and Triturus. Our results strongly support monophyly of all polytypic newt genera except Paramesotriton and Triturus, which appear paraphyletic, and Calotriton, for which only one of the two species is sampled. Other well-supported clades within newts include (1) Asian genera Cynops, Pachytriton, and Paramesotriton, (2) North American genera Notophthalmus and Taricha, (3) the Triturus vulgaris species group, and (4) the Triturus cristatus species group; some additional groupings appear strong in Bayesian but not parsimony analyses. Rates of lineage accumulation through time are evaluated using this nearly comprehensive sampling of

  14. A Bayesian approach on molecules and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts.

    PubMed

    Steinfartz, Sebastian; Vicario, Saverio; Arntzen, J W; Caccone, Adalgisa

    2007-03-15

    The monophyly of European newts of the genus Triturus within the family Salamandridae has for decades rested on presumably homologous behavioral and morphological characters. Molecular data challenge this hypothesis, but the phylogenetic position of Triturus within the Salamandridae has not yet been convincingly resolved. We addressed this issue and the temporal divergence of Triturus within the Salamandridae with novel Bayesian approaches applied to DNA sequence data from three mitochondrial genes (12S, 16S and cytb). We included 38 salamandrid species comprising all 13 recognized species of Triturus and 16 out of 17 salamandrid genera. A clade comprising all the "Newts" can be separated from the "True Salamanders" and Salamandrina clades. Within the "Newts" well-supported clades are: Tylototriton-Pleurodeles, the "New World Newts" (Notophthalmus-Taricha), and the "Modern Eurasian Newts" (Cynops, Pachytriton, Paramesotriton=together the "Modern Asian Newts", Calotriton, Euproctus, Neurergus and Triturus species). We found that Triturus is a non-monophyletic species assemblage, which includes four groups that are themselves monophyletic: (i) the "Large-Bodied Triturus" (six species), (ii) the "Small-Bodied Triturus" (five species), (iii) T. alpestris and (iv) T. vittatus. We estimated that the last common ancestor of Triturus existed around 64 million years ago (mya) while the root of the Salamandridae dates back to 95 mya. This was estimated using a fossil-based molecular dating approach and an explicit framework to select calibration points that least underestimated their corresponding nodes. Using the molecular phylogeny we mapped the evolution of life history and courtship traits in Triturus and found that several Triturus-specific courtship traits evolved independently.

  15. Fictive rhythmic motor patterns produced by the tail spinal cord in salamanders.

    PubMed

    Charrier, V; Cabelguen, J-M

    2013-01-01

    Most investigations into the role of the body axis in vertebrate locomotion have focused on the trunk, although in most tetrapods, the tail also plays an active role. In salamanders, the tail contributes to propulsion during swimming and to dynamic balance and maneuverability during terrestrial locomotion. The aim of the present study was to obtain information concerning the neural mechanisms that produce tail muscle contractions during locomotion in the salamander Pleurodeles waltlii. We recorded the ventral root activities in in vitro spinal cord preparations in which locomotor-like activity was induced via bath application of N-methyl-d-aspartate (20μM) and d-serine (10μM). Recordings showed that the tail spinal cord is capable of producing propagated waves of motor activity that alternate between the left and right sides. Lesion experiments further revealed that the tail rhythmogenic network is composed of a double chain of identical hemisegmental oscillators. Finally, using spinal cord preparations bathed in a chamber partitioned into two pools, we revealed efficient short-distance coupling between the trunk and tail networks. Together, our results demonstrate the existence of a pattern generator for rhythmic tail movements in the salamander and show that the global architecture of the tail network is similar to that previously proposed for the mid-trunk locomotor network in the salamander. Our findings further support the view that salamanders can control their trunk and tail independently during stepping movements. The relevance of our results in relation to the generation of tail muscle contractions in freely moving salamanders is discussed.

  16. Bis-(5'-guanosyl) tetraphosphatase in rat tissues.

    PubMed Central

    Cameselle, J C; Costas, M J; Sillero, M A; Sillero, A

    1982-01-01

    The occurrence and distribution of bis-(5'-guanosyl) tetraphosphatase activity towards dinucleoside tetraphosphates between the 27 000 g supernatant and sedimented fraction were studied in liver, kidney, brain, muscle and intestinal mucosa from rat. The p1p4-bis-(5'-guanosyl) tetraphosphate-hydrolysing activities found in total homogenates were 0.77, 1.44, 0.39, 0.36 and 2.14 units (mumol/min)/g respectively. The activities found in the 27000 g-sedimented fractions were 74, 49, 11, 4 and 96% of those present in the homogenates respectively. The properties of the soluble enzymes were investigated. All of them have low Km values for p1p4-bis-(5'-guanosyl) tetraphosphate (from 2 to 50 microM), are competitively inhibited by guanosine 5'-tetraphosphate with K1 values from 10 to 160 nM, have molecular weights of about 21 000, require Mg2+ or Mn2+ and are inhibited by Ca2+. These properties show that bis-(5'-guanosyl) tetraphosphatase (EC 3.6.1.17), an enzyme previously characterized in Artemia salina and rat liver [Warner & Finamore (1965) Biochemistry 4, 1568-1575; Vallejo, Sillero & Sillero (1974) Biochim, Biophys. Acta 358, 117-125; Lobatón, Vallejo, Sillero & Sillero (1975) Eur. J. Biochem. 50, 495-501], is present in all the rat tissues examined. The inhibition of the enzyme by Ca2+ could be related to the effect of p1p4-bis-(5'-adenosyl) tetraphosphate as a trigger of DNA synthesis [Grummt, Waltl, Jantzen, Hamprecht, Huebscher & Kuenzle (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 6081-6085]. PMID:6282267

  17. Bis-(5'-guanosyl) tetraphosphatase in rat tissues.

    PubMed

    Cameselle, J C; Costas, M J; Sillero, M A; Sillero, A

    1982-02-01

    The occurrence and distribution of bis-(5'-guanosyl) tetraphosphatase activity towards dinucleoside tetraphosphates between the 27 000 g supernatant and sedimented fraction were studied in liver, kidney, brain, muscle and intestinal mucosa from rat. The p1p4-bis-(5'-guanosyl) tetraphosphate-hydrolysing activities found in total homogenates were 0.77, 1.44, 0.39, 0.36 and 2.14 units (mumol/min)/g respectively. The activities found in the 27000 g-sedimented fractions were 74, 49, 11, 4 and 96% of those present in the homogenates respectively. The properties of the soluble enzymes were investigated. All of them have low Km values for p1p4-bis-(5'-guanosyl) tetraphosphate (from 2 to 50 microM), are competitively inhibited by guanosine 5'-tetraphosphate with K1 values from 10 to 160 nM, have molecular weights of about 21 000, require Mg2+ or Mn2+ and are inhibited by Ca2+. These properties show that bis-(5'-guanosyl) tetraphosphatase (EC 3.6.1.17), an enzyme previously characterized in Artemia salina and rat liver [Warner & Finamore (1965) Biochemistry 4, 1568-1575; Vallejo, Sillero & Sillero (1974) Biochim, Biophys. Acta 358, 117-125; Lobatón, Vallejo, Sillero & Sillero (1975) Eur. J. Biochem. 50, 495-501], is present in all the rat tissues examined. The inhibition of the enzyme by Ca2+ could be related to the effect of p1p4-bis-(5'-adenosyl) tetraphosphate as a trigger of DNA synthesis [Grummt, Waltl, Jantzen, Hamprecht, Huebscher & Kuenzle (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 6081-6085].

  18. Comparison of three trap types for monitoring insect populations in stored grains.

    PubMed

    Weston, P A; Barney, R J

    1998-12-01

    Three trap types--probe, cone, and sticky--were used to monitor insect populations infesting shelled maize, Zea mays L., housed in galvanized steel storage bins. Sticky traps were suspended in the headspace 1 m above the grain mass, probe traps were inserted into the grain near the top and bottom of the grain mass, and cone traps were positioned at the surface of the grain mass. Although there was some overlap, each trap type was rather specific in the range of insect species trapped. Probe traps positioned near the grain surface trapped mostly Oryzaephilus surinamensis (L.), Tribolium castaneum (Herbst), and Cynaeus angustus (LeConte); whereas those positioned near the bottom of the grain mass trapped mostly Sitophilus zeamais Motschulsky. Cone traps caught mostly Typhaea stercorea (L.), Cryptolestes spp., and Ahasverus advena Waltl. Sticky traps caught primarily stored-product moths [Plodia interpunctella (Hübner) and Sitotroga cerealella (Olivier)] and A. advena. In addition to catching pest species, cone traps also caught hemipteran predators and hymenopteran parasitoids, and sticky traps caught large numbers of parasitoids. Although probe traps caught smaller numbers of several pest species than cone traps, these traps generally detected the presence of these species at the same time as cone traps, in addition to trapping other species that were not detected at all in cone traps. Therefore, a combination of sticky traps in the grain bin headspace and probe traps positioned just below the grain surface is probably most efficient for monitoring the presence of pest and beneficial insect species in grain storage. If pests cannot be eliminated from the space beneath the false floor of a grain bin, probe traps set at the bottom of the grain mass should provide the best early warning of infestation by species colonizing a grain mass by this route.

  19. Using five sampling methods to measure insect distribution and abundance in bins storing wheat.

    PubMed

    Hagstrum

    2000-07-01

    Newly-harvested wheat stored in each of two bins on each of two farms in Kansas during each of 3 years was sampled every 3-4 days at two locations (in the center and midway between the center and bin wall) within each bin. The variation in insect numbers between bins, locations within a bin, farms and years differed with insect species and sampling method. Five sampling methods were used to monitor insect populations in three regions of each bin: (1) in the head space above the grain; (2) on the grain surface; and (3) within the top 50 cm of the grain mass. Cryptolestes ferrugineus (Stephens) and Ahasverus advena (Waltl) were more evenly distributed among these three regions of a bin than the other species. Typhaea stercorea (L.) were found mainly in the head space and on the grain surface. These distribution patterns were consistent throughout the 126-day storage period. R. dominica (F.) were found in the head space and within the grain mass early in the storage period, and mainly in the grain mass as grain cooled in the autumn. The majority of Plodia interpunctella (Hübner) (91%) were caught in sticky traps in the head space. Two of the three less abundant species, Sitophilus oryzae (L.) and Tribolium castaneum (Herbst), tended to be found most often on the grain surface and the other, Oryzaephilus surinamensis (L.), within the grain mass. The sampling method often influenced the results. Emergence traps captured greater numbers of A. advena than other species. More R. dominica were found in grain samples than in traps in the autumn. Pushing probe traps below the surface of the grain reduced the numbers of T. stercorea, A. advena, S. oryzae and T. castaneum captured. Differences between species and times during the storage period in the effectiveness of different sampling methods need to be considered in making pest management decisions.

  20. Skin shedding and tissue regeneration in African spiny mice (Acomys)

    PubMed Central

    Seifert, Ashley W.; Kiama, Stephen G.; Seifert, Megan G.; Goheen, Jacob R.; Palmer, Todd M.; Maden, Malcolm

    2012-01-01

    SUMMARY Evolutionary modification has produced a spectrum of animal defense traits to escape predation, including the ability to autotomize body parts to elude capture1,2. Following autotomy, the missing part is either replaced through regeneration (e.g. urodeles, lizards, arthropods, crustaceans) or is permanently lost (mammals). While most autotomy involves the loss of appendages (e.g. leg, cheliped, antennae, tail), skin autotomy can occur in certain taxa of scincid and gekkonid lizards3. Here we report the first demonstration of skin autotomy in Mammalia (African spiny mice, Acomys). Mechanical testing revealed a propensity for skin to tear under very low tension and the absence of a fracture plane. Following skin loss, rapid wound contraction was followed by hair follicle regeneration in dorsal skin wounds. Surprisingly, we found regenerative capacity in Acomys extended to ear holes where they exhibited complete regeneration of hair follicles, sebaceous glands, dermis, and cartilage. Salamanders capable of limb regeneration form a blastema (a mass of lineage-restricted progenitor cells4) following limb loss, and our findings suggest that ear tissue regeneration in Acomys may proceed through assembly of a similar structure. This study underscores the importance of investigating regenerative phenomena outside of traditional model organisms and suggests that mammals may retain a higher capacity for regeneration than previously believed. As re-emergent interest in regenerative medicine seeks to isolate molecular pathways controlling tissue regeneration in mammals, Acomys may prove useful in identifying mechanisms to promote regeneration in lieu of fibrosis and scarring. PMID:23018966

  1. Skin shedding and tissue regeneration in African spiny mice (Acomys).

    PubMed

    Seifert, Ashley W; Kiama, Stephen G; Seifert, Megan G; Goheen, Jacob R; Palmer, Todd M; Maden, Malcolm

    2012-09-27

    Evolutionary modification has produced a spectrum of animal defence traits to escape predation, including the ability to autotomize body parts to elude capture. After autotomy, the missing part is either replaced through regeneration (for example, in urodeles, lizards, arthropods and crustaceans) or permanently lost (such as in mammals). Although most autotomy involves the loss of appendages (legs, chelipeds, antennae or tails, for example), skin autotomy can occur in certain taxa of scincid and gekkonid lizards. Here we report the first demonstration of skin autotomy in Mammalia (African spiny mice, Acomys). Mechanical testing showed a propensity for skin to tear under very low tension and the absence of a fracture plane. After skin loss, rapid wound contraction was followed by hair follicle regeneration in dorsal skin wounds. Notably, we found that regenerative capacity in Acomys was extended to ear holes, where the mice exhibited complete regeneration of hair follicles, sebaceous glands, dermis and cartilage. Salamanders capable of limb regeneration form a blastema (a mass of lineage-restricted progenitor cells) after limb loss, and our findings suggest that ear tissue regeneration in Acomys may proceed through the assembly of a similar structure. This study underscores the importance of investigating regenerative phenomena outside of conventional model organisms, and suggests that mammals may retain a higher capacity for regeneration than was previously believed. As re-emergent interest in regenerative medicine seeks to isolate molecular pathways controlling tissue regeneration in mammals, Acomys may prove useful in identifying mechanisms to promote regeneration in lieu of fibrosis and scarring.

  2. Comparative histological study of hepatic architecture in the three orders amphibian livers

    PubMed Central

    2012-01-01

    Background This report presents a detailed description of hepatic architecture in 46 amphibian livers by light microscopy, and extensively discusses the phylogenetic viewpoint. Results The 46 amphibian livers showed a variety of histological features, but anurans were the same as in mammalian livers. The hepatocyte-sinusoidal structures of the amphibian livers were classified into three different types: (I) several-cell-thick plate type, (II) two-cell-thick plate type, and (III) one-cell-thick plate type, depending on the percentage extension of sinusoidal areas per unit area, measured by morphometry. Hematopoietic tissue structures were observed in the connective tissue of both the perihepatic subcapsular regions and portal triads in the order Caudata and Gymnophiona, but were not observed in the order Anura (except for the genus Bombina and Xenopus). As phylogenetic relationships are branched from urodeles to anurans, the parenchyma arrangement progressed from the combined several- and two-cell-thick plate type to one-cell-thick plate type as seen in the mammalian liver type. In contrast, hematopoietic tissue structures were exactly the opposite and did not involve anurans. Conclusions This study is the first to investigate amphibian livers phylogenically, and their architectural differences are shown in the route of hepatic ontogenesis. In this process, parenchymal arrangement formation is acquired phylogenically. The occurrence of hematopoietic cells may be related with the development of the systemic immune system in the spleen and bone marrow. PMID:22905994

  3. Proteinaceous Pheromone Homologs Identified from the Cloacal Gland Transcriptome of a Male Axolotl, Ambystoma mexicanum

    PubMed Central

    Hall, Kevin W.; Eisthen, Heather L.; Williams, Barry L.

    2016-01-01

    Pheromones play an important role in modifying vertebrate behavior, especially during courtship and mating. Courtship behavior in urodele amphibians often includes female exposure to secretions from the cloacal gland, as well as other scent glands. The first vertebrate proteinaceous pheromone discovered, the decapeptide sodefrin, is a female attracting pheromone secreted by the cloacal gland of male Cynops pyrrhogaster. Other proteinaceous pheromones in salamanders have been shown to elicit responses from females towards conspecific males. The presence and levels of expression of proteinaceous pheromones have not been identified in the family Ambystomatidae, which includes several important research models. The objective of this research was therefore to identify putative proteinaceous pheromones from male axolotls, Ambystoma mexicanum, as well as their relative expression levels. The results indicate that axolotls possess two different forms of sodefrin precursor-like factor (alpha and beta), as well as a putative ortholog of plethodontid modulating factor. The beta form of sodefrin precursor-like factor was amongst the most highly expressed transcripts within the cloacal gland. The ortholog of plethodontid modulating factor was expressed at a level equivalent to the beta sodefrin precursor-like factor. The results are from a single male axolotl; therefore, we are unable to assess how representative our results may be. Nevertheless, the presence of these highly expressed proteinaceous pheromones suggests that male axolotls use multiple chemical cues to attract female conspecifics. Behavioral assays would indicate whether the putative protein pheromones elicit courtship activity from female axolotls. PMID:26885665

  4. Cellular and molecular processes of regeneration, with special emphasis on fish fins.

    PubMed

    Nakatani, Yuki; Kawakami, Atsushi; Kudo, Akira

    2007-02-01

    The phenomenon of 'epimorphic regeneration', a complete reformation of lost tissues and organs from adult differentiated cells, has been fascinating many biologists for many years. While most vertebrate species including humans do not have a remarkable ability for regeneration, the lower vertebrates such as urodeles and fish have exceptionally high regeneration abilities. In particular, the teleost fish has a high ability to regenerate a variety of tissues and organs including scales, muscles, spinal cord and heart among vertebrate species. Hence, an understanding of the regeneration mechanism in teleosts will provide an essential knowledge base for rational approaches to tissue and organ regeneration in mammals. In the last decade, small teleost fish such as the zebrafish and medaka have emerged as powerful animal models in which a variety of developmental, genetic and molecular approaches are applicable. In addition, rapid progress in the development of genome resources such as expressed sequence tags and genome sequences has accelerated the speed of the molecular analysis of regeneration. This review summarizes the current status of our understanding of the cellular and molecular basis of regeneration, particularly that regarding fish fins.

  5. Epimorphic regeneration approach to tissue replacement in adult mammals.

    PubMed

    Agrawal, Vineet; Johnson, Scott A; Reing, Janet; Zhang, Li; Tottey, Stephen; Wang, Gang; Hirschi, Karen K; Braunhut, Susan; Gudas, Lorraine J; Badylak, Stephen F

    2010-02-23

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor and stem cells to a site of injury. Bioactive molecules resulting from degradation of extracellular matrix (ECM) have been shown to recruit a variety of progenitor and stem cells in vitro in adult mammals. The ability to recruit multipotential cells to the site of injury by in vivo administration of chemotactic ECM degradation products in a mammalian model of digit amputation was investigated in the present study. Adult, 6- to 8-week-old C57/BL6 mice were subjected to midsecond phalanx amputation of the third digit of the right hind foot and either treated with chemotactic ECM degradation products or left untreated. At 14 days after amputation, mice treated with ECM degradation products showed an accumulation of heterogeneous cells that expressed markers of multipotency, including Sox2, Sca1, and Rex1 (Zfp42). Cells isolated from the site of amputation were capable of differentiation along neuroectodermal and mesodermal lineages, whereas cells isolated from control mice were capable of differentiation along only mesodermal lineages. The present findings demonstrate the recruitment of endogenous stem cells to a site of injury, and/or their generation/proliferation therein, in response to ECM degradation products.

  6. Regenerative medicine for diseases of the head and neck: principles of in vivo regeneration.

    PubMed

    Löwenheim, H

    2003-09-01

    The application of endogenous regeneration in regenerative medicine is based on the concept of inducing regeneration of damaged or lost tissues from residual tissues in situ. Therefore, endogenous regeneration is also termed in vivo regeneration as opposed to mechanisms of ex vivo regeneration which are applied, for example, in the field of tissue engineering. The basic science foundation for mechanisms of endogenous regeneration is provided by the field of regenerative biology. The ambitious vision for the application of endogenous regeneration in regenerative medicine is stimulated by investigations in the model organisms of regenerative biology, most notably hydra, planarians and urodeles. These model organisms demonstrate remarkable regenerative capabilities, which appear to be conserved over large phylogenetical stretches with convincing evidence for a homologue origin of an endogenous regenerative capability. Although the elucidation of the molecular and cellular mechanisms of these endogenous regenerative phenomena is still in its beginning, there are indications that these processes have potential to become useful for human benefit. Such indications also exist for particular applications in diseases of the head and neck region. As such epimorphic regeneration without blastema formation may be relevant to regeneration of sensorineural epithelia of the inner ear or the olphactory epithelium. Complex tissue lesions of the head and neck as they occur after trauma or tumor resections may be approached on the basis of relevant mechanisms in epimorphic regeneration with blastema formation.

  7. The regeneration blastema of lizards: an amniote model for the study of appendage replacement.

    PubMed

    Gilbert, E A B; Delorme, S L; Vickaryous, M K

    2015-04-01

    Although amniotes (reptiles, including birds, and mammals) are capable of replacing certain tissues, complete appendage regeneration is rare. Perhaps the most striking example is the lizard tail. Tail loss initiates a spontaneous epimorphic (blastema-mediated) regenerative program, resulting in a fully functional but structurally non-identical replacement. Here we review lizard tail regeneration with a particular focus on the blastema. In many lizards, the original tail has evolved a series of fracture planes, anatomical modifications that permit the tail to be self-detached or autotomized. Following tail loss, the wound site is covered by a specialized wound epithelium under which the blastema develops. An outgrowth of the spinal cord, the ependymal tube, plays a key role in governing growth (and likely patterning) of the regenerate tail. In some species (e.g., geckos), the blastema forms as an apical aggregation of proliferating cells, similar to that of urodeles and teleosts. For other species (e.g., anoles) the identification of a proliferative blastema is less obvious, suggesting an unexpected diversity in regenerative mechanisms among tail-regenerating lizards.

  8. A critical role for thrombin in vertebrate lens regeneration.

    PubMed Central

    Imokawa, Yutaka; Simon, András; Brockes, Jeremy P

    2004-01-01

    Lens regeneration in urodele amphibians such as the newt proceeds from the dorsal margin of the iris where pigment epithelial cells (PEC) re-enter the cell cycle and transdifferentiate into lens. A general problem in regeneration research is to understand how the events of tissue injury or removal are coupled to the activation of plasticity in residual differentiated cells or stem cells. Thrombin, a pivotal regulator of the injury response, has been implicated as a regulator of cell cycle re-entry in newt myotubes, and also in newt iris PEC. After removal of the lens, thrombin was activated on the dorsal margin for 5-7 days. Inactivation of thrombin by either of two different inhibitors essentially blocked S-phase re-entry by PEC at this location. The axolotl, a related species which can regenerate its limb but not its lens, can activate thrombin after amputation but not after lens removal. These data support the hypothesis that thrombin is a critical signal linking injury to regeneration, and offer a new perspective on the evolutionary and phylogenetic questions about regeneration. PMID:15293804

  9. Full regeneration of the tribasal Polypterus fin.

    PubMed

    Cuervo, Rodrigo; Hernández-Martínez, Rocío; Chimal-Monroy, Jesús; Merchant-Larios, Horacio; Covarrubias, Luis

    2012-03-06

    Full limb regeneration is a property that seems to be restricted to urodele amphibians. Here we found that Polypterus, the most basal living ray-finned fish, regenerates its pectoral lobed fins with a remarkable accuracy. Pectoral Polypterus fins are complex, formed by a well-organized endoskeleton to which the exoskeleton rays are connected. Regeneration initiates with the formation of a blastema similar to that observed in regenerating amphibian limbs. Retinoic acid induces dose-dependent phenotypes ranging from inhibition of regeneration to apparent anterior-posterior duplications. As in all developing tetrapod limbs and regenerating amphibian blastema, Sonic hedgehog is expressed in the posterior mesenchyme during fin regeneration. Hedgehog signaling plays a role in the regeneration and patterning processes: an increase or reduction of fin bony elements results when this signaling is activated or disrupted, respectively. The tail fin also regenerates but, in contrast with pectoral fins, regeneration can resume after release from the arrest caused by hedgehog inhibition. A comparative analysis of fin phenotypes obtained after retinoic acid treatment or altering the hedgehog signaling levels during regeneration allowed us to assign a limb tetrapod equivalent segment to Polypterus fin skeletal structures, thus providing clues to the origin of the autopod. We propose that appendage regeneration was a common property of vertebrates during the fin to limb transition.

  10. Expression analysis of Baf60c during heart regeneration in axolotls and neonatal mice.

    PubMed

    Nakamura, Ryo; Koshiba-Takeuchi, Kazuko; Tsuchiya, Megumi; Kojima, Mizuyo; Miyazawa, Asuka; Ito, Kohei; Ogawa, Hidesato; Takeuchi, Jun K

    2016-05-01

    Some organisms, such as zebrafish, urodele amphibians, and newborn mice, have a capacity for heart regeneration following injury. However, adult mammals fail to regenerate their hearts. To know why newborn mice can regenerate their hearts, we focused on epigenetic factors, which are involved in cell differentiation in many tissues. Baf60c (BRG1/BRM-associated factor 60c), a component of ATP-dependent chromatin-remodeling complexes, has an essential role for cardiomyocyte differentiation at the early heart development. To address the function of Baf60c in postnatal heart homeostasis and regeneration, we examined the detailed expression/localization patterns of Baf60c in both mice and axolotls. In the mouse heart development, Baf60c was highly expressed in the entire heart at the early stages, but gradually downregulated at the postnatal stages. During heart regeneration in neonatal mice and axolotls, Baf60c expression was strongly upregulated after resection. Interestingly, the timing of Baf60c upregulation after resection was consistent with the temporal dynamics of cardiomyocyte proliferation. Moreover, knockdown of Baf60c downregulated proliferation of neonatal mouse cardiomyocytes. These data suggested that Baf60c plays an important role in cardiomyocyte proliferation in heart development and regeneration. This is the first study indicating that Baf60c contributes to the heart regeneration in vertebrates.

  11. Testicular structure and germ cells morphology in salamanders

    PubMed Central

    Uribe, Mari Carmen; Mejía-Roa, Víctor

    2014-01-01

    Testes of salamanders or urodeles are paired elongated organs that are attached to the dorsal wall of the body by a mesorchium. The testes are composed of one or several lobes. Each lobe is morphologically and functionally a similar testicular unit. The lobes of the testis are joined by cords covered by a single peritoneal epithelium and subjacent connective tissue. The cords contain spermatogonia. Spermatogonia associate with Sertoli cells to form spermatocysts or cysts. The spermatogenic cells in a cyst undergo their development through spermatogenesis synchronously. The distribution of cysts displays the cephalo-caudal gradient in respect to the stage of spermatogenesis. The formation of cysts at cephalic end of the testis causes their migration along the lobules to the caudal end. Consequently, the disposition in cephalo-caudal regions of spermatogenesis can be observed in longitudinal sections of the testis. The germ cells are spermatogonia, diploid cells with mitotic activity; primary and second spermatocytes characterized by meiotic divisions that develop haploid spermatids; during spermiogenesis the spermatids differentiate to spermatozoa. During spermiation the cysts open and spermatozoa leave the testicular lobules. After spermiation occurs the development of Leydig cells into glandular tissue. This glandular tissue regressed at the end of the reproductive cycle. PMID:26413406

  12. Interactions of androgens and estradiol on sex accessory ducts of larval tiger salamanders, Ambystoma tigrinum.

    PubMed

    Norris, D O; Carr, J A; Summers, C H; Featherston, R

    1997-06-01

    Immature tiger salamander larvae were treated with 12.5 or 25 micrograms of estradiol, testosterone, or dihydrotestosterone (DHT), or 12.5 micrograms of estradiol combined with 12.5 micrograms of either testosterone or DHT. Müllerian duct epithelium was more stimulated by combined steroid treatment than by any steroid alone. Estradiol antagonized the action of DHT in the Wolffian duct. Both of the androgens and estradiol when administered alone at the higher dose stimulated enlargement of connective tissue surrounding the ducts, but the combined 12.5 micrograms androgen/12.5 micrograms estrogen treatment was more effective even though the total steroid administered was the same. The effectiveness of DHT on müllerian cells of this species is evidence against a required aromatization of androgens to explain paradoxical steroid effects and suggests that fundamental differences may exist in steroid receptors of müllerian ducts, connective tissue, and Wolffian ducts. A possible role for the urodele duct system for assessing estrogenic activity of environmental contaminants is discussed.

  13. Genomics of a metamorphic timing QTL: met1 maps to a unique genomic position and regulates morph and species-specific patterns of brain transcription.

    PubMed

    Page, Robert B; Boley, Meredith A; Kump, David K; Voss, Stephen R

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation.

  14. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum)

    PubMed Central

    Phan, Anne Q.; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V.

    2015-01-01

    Abstract Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain‐of‐function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position‐specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position‐specific, developmental‐stage‐specific, and heparan sulfate‐dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals. PMID:27499874

  15. Implication of two different regeneration systems in limb regeneration

    PubMed Central

    Makanae, Aki; Mitogawa, Kazumasa

    2014-01-01

    Abstract Limb regeneration is a representative phenomenon of organ regeneration in urodele amphibians, such as an axolotl. An amputated limb starts regenerating from a remaining stump (proximal) to lost finger tips (distal). In the present case, proximal−distal (PD) reorganization takes place in a regenerating tissue, called a blastema. It has been a mystery how an induced blastema recognizes its position and restores an exact replica of missing parts. Recently, a new experimental system called the accessory limb model (ALM) has been established. The gained ALM phenotypes are demanding to reconsider the reorganization PD positional values. Based on the ALM phenotype, it is reasonable to hypothesize that reorganization of positional values has a certain discontinuity and that two different regeneration systems cooperatively reorganize the PD axis to restore an original structure. In this review, PD axis reestablishments are focused on limb regeneration. Knowledge from ALM studies in axolotls and Xenopus is providing a novel concept of PD axis reorganization in limb regeneration. PMID:27499860

  16. Reintegration of the regenerated and the remaining tissues during joint regeneration in the newt Cynops pyrrhogaster

    PubMed Central

    Inoue, Takeshi; Yamada, Shigehito

    2015-01-01

    Abstract Urodele amphibians, such as newts, can regenerate a functional limb, including joints, after amputation at any level along the proximal−distal axis of the limb. The blastema can regenerate the limb morphology largely independently of the stump after proximal−distal identity has been established, but the remaining and regenerated tissues must be structurally reintegrated (matched in size and shape). Here we used newt joint regeneration as a model to investigate reintegration, because a functionally interlocking joint requires structural integration between its opposing skeletal elements. After forelimbs were amputated at the elbow joint, the joint was regenerated between the remaining and regenerated skeletal elements. The regenerated cartilage was thick around the amputated joint to make a reciprocally interlocking joint structure with the remaining bone. Furthermore, during regeneration, the extracellular matrix of the remaining tissues was lost, suggesting that the remaining tissues might contribute to the morphogenesis of regenerating cartilage. Our results showed that the area of the regenerated cartilage matched the area of the apposed remaining cartilage, thus contributing to formation of a functional structure. PMID:27499865

  17. Limb blastema cell: a stem cell for morphological regeneration.

    PubMed

    Tamura, Koji; Ohgo, Shiro; Yokoyama, Hitoshi

    2010-01-01

    The limb blastema cell, which is a major source of mesenchymal components in the limb regenerate, serves as a stem cell that possesses an undifferentiated state and multipotency. A remarkable property of the limb blastema cell can be seen in its capability for morphogenesis. Elucidation of the molecular basis for morphological regeneration is essential for success in organ regeneration in humans, and characterization of limb blastema cells will provide many insights into how to create three-dimensional morphology during the regeneration process. In this review, we deal with positional memory, a key trait of the limb blastema cell in regard to morphological regeneration, making reference to classic surgical experiments, comparative descriptions of limb and fin blastemas, and genetic/epigenetic regulation of gene transcription. Urodele amphibians, anuran amphibians, and teleosts are likely to share fundamental mechanisms for morphological regeneration, but there are several differences in the process of regeneration, including the epigenetic conditions. Accumulation of knowledge of the molecular mechanisms and epigenetic modifications of gene activation in morphological regeneration of the model organisms for which an overview is provided in this review will lead to successful stimulation of regenerative capacity in amniotes, which only have a limited capability for morphological regeneration.

  18. Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation.

    PubMed

    Cano-Martínez, Agustina; Vargas-González, Alvaro; Guarner-Lans, Verónica; Prado-Zayago, Esteban; León-Oleda, Martha; Nieto-Lima, Betzabé

    2010-01-01

    "In the present study we evaluated the effect of partial ventricular amputation (PVA) in the heart of the adult urodele amphibian (Ambystoma mexicanum) in vivo on spontaneous heart contractile activity recorded in vitro in association to the structural recovery at one, five, 30 and 90 days after injury. One day after PVA, ventricular-tension (VT) (16 ± 3%), atrium-tension (AT) (46 ± 4%) and heart rate (HR) (58+10%) resulted lower in comparison to control hearts. On days five, 30 and 90 after damage, values achieved a 61 ± 5, 93 ± 3, and 98 ± 5% (VT), 60 ± 4, 96 ± 3 and 99 ± 5% (AT) and 74 ± 5, 84 ± 10 and 95 ± 10% (HR) of the control values, respectively. Associated to contractile activity recovery we corroborated a gradual tissue restoration by cardiomyocyte proliferation. Our results represent the first quantitative evidence about the recovery of heart of A. mexicanum restores its functional capacity concomitantly to the structural recovery of the myocardium by proliferation of cardiomyocytes after PVA. These properties make the heart of A. mexicanum a potential model to study the mechanisms underlying heart regeneration in adult vertebrates in vivo.

  19. The yeast two hybrid system in a screen for proteins interacting with axolotl (Ambystoma mexicanum) Msx1 during early limb regeneration.

    PubMed

    Abuqarn, Mehtap; Allmeling, Christina; Amshoff, Inga; Menger, Bjoern; Nasser, Inas; Vogt, Peter M; Reimers, Kerstin

    2011-07-01

    Urodele amphibians are exceptional in their ability to regenerate complex body structures such as limbs. Limb regeneration depends on a process called dedifferentiation. Under an inductive wound epidermis terminally differentiated cells transform to pluripotent progenitor cells that coordinately proliferate and eventually redifferentiate to form the new appendage. Recent studies have developed molecular models integrating a set of genes that might have important functions in the control of regenerative cellular plasticity. Among them is Msx1, which induced dedifferentiation in mammalian myotubes in vitro. Herein, we screened for interaction partners of axolotl Msx1 using a yeast two hybrid system. A two hybrid cDNA library of 5-day-old wound epidermis and underlying tissue containing more than 2×10⁶ cDNAs was constructed and used in the screen. 34 resulting cDNA clones were isolated and sequenced. We then compared sequences of the isolated clones to annotated EST contigs of the Salamander EST database (BLASTn) to identify presumptive orthologs. We subsequently searched all no-hit clone sequences against non redundant NCBI sequence databases using BLASTx. It is the first time, that the yeast two hybrid system was adapted to the axolotl animal model and successfully used in a screen for proteins interacting with Msx1 in the context of amphibian limb regeneration.

  20. Glucose transporter distribution in the vessels of the central nervous system of the axolotl Ambystoma mexicanum (Urodela: Ambystomatidae).

    PubMed

    Lazzari, Maurizio; Bettini, Simone; Ciani, Franco; Franceschini, Valeria

    2008-10-01

    The GLUT-1 isoform of the glucose transporter is commonly considered a reliable molecular marker of blood-brain barrier endothelia in the neural vasculature organized in a three-dimensional network of single vessels. The central nervous system of the axolotl Ambystoma mexicanum is characterized by a vascular architecture that contains both single and paired vessels. The presence and distribution of the GLUT-1 transporter are studied in this urodele using both immunoperoxidase histochemistry and immunogold technique. Light microscopy reveals immunopositivity in both parenchymal and meningeal vessels. The transverse-sectioned pairs of vessels do not show the same size. Furthermore, in the same pair, the two elements often differ in diameter. The main regions of the central nervous system show a different percentage of the paired structures. Only immunogold cytochemistry reveals different staining intensity in the two adjoined elements of a vascular pair. Colloidal gold particles show an asymmetric distribution in the endothelia of both single and paired vessels. These particles are more numerous on the abluminal surface than on the luminal one. The particle density is calculated in both vascular types. The different values could indicate functional differences between single and paired vessels and between the two adjoined elements of a pair, regarding glucose transport.

  1. Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Satoh, A; Graham, G M C; Bryant, S V; Gardiner, D M

    2008-07-15

    Adult urodeles (salamanders) are unique in their ability to regenerate complex organs perfectly. The recently developed Accessory Limb Model (ALM) in the axolotl provides an opportunity to identify and characterize the essential signaling events that control the early steps in limb regeneration. The ALM demonstrates that limb regeneration progresses in a stepwise fashion that is dependent on signals from the wound epidermis, nerves and dermal fibroblasts from opposite sides of the limb. When all the signals are present, a limb is formed de novo. The ALM thus provides an opportunity to identify and characterize the signaling pathways that control blastema morphogenesis and limb regeneration. In the present study, we have utilized the ALM to identity the buttonhead-like zinc-finger transcription factor, Sp9, as being involved in the formation of the regeneration epithelium. Sp9 expression is induced in basal keratinocytes of the apical blastema epithelium in a pattern that is comparable to its expression in developing limb buds, and it thus is an important marker for dedifferentiation of the epidermis. Induction of Sp9 expression is nerve-dependent, and we have identified KGF as an endogenous nerve factor that induces expression of Sp9 in the regeneration epithelium.

  2. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Phan, Anne Q; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V; Gardiner, David M

    2015-08-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position-specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position-specific, developmental-stage-specific, and heparan sulfate-dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals.

  3. Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin.

    PubMed

    Ferris, Donald R; Satoh, Akira; Mandefro, Berhan; Cummings, Gillian M; Gardiner, David M; Rugg, Elizabeth L

    2010-10-01

    Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re-epithelialization of the wound area is rapid (typically <11 h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration.

  4. Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-01-15

    The ability of animals to repair tissue damage is widespread and impressive. Among tissues, the repair and remodeling of bone occurs during growth and in response to injury; however, loss of bone above a threshold amount is not regenerated, resulting in a "critical-size defect" (CSD). The development of therapies to replace or regenerate a CSD is a major focus of research in regenerative medicine and tissue engineering. Adult urodeles (salamanders) are unique in their ability to regenerate complex tissues perfectly, yet like mammals do not regenerate a CSD. We report on an experimental model for the regeneration of a CSD in the axolotl (the Excisional Regeneration Model) that allows for the identification of signals to induce fibroblast dedifferentiation and skeletal regeneration. This regenerative response is mediated in part by BMP signaling, as is the case in mammals; however, a complete regenerative response requires the induction of a population of undifferentiated, regeneration-competent cells. These cells can be induced by signaling from limb amputation to generate blastema cells that can be grafted to the wound, as well as by signaling from a nerve and a wound epithelium to induce blastema cells from fibroblasts within the wound environment.

  5. Tooth development in Ambystoma mexicanum: phosphatase activities, calcium accumulation and cell proliferation in the tooth-forming tissues.

    PubMed

    Wistuba, Joachim; Ehmcke, Jens; Clemen, Günter

    2003-06-01

    Prerequisites of tooth formation, cell proliferation in the tooth-forming tissues, calcium accumulation and the enzymatic activities of alkaline (ALP) and acid phosphatases (ACP) were investigated by immunohistochemical and histochemical methods in various developmental stages of the Mexican Axolotl, Ambystoma mexicanum. During the growth of replacement teeth, the tooth-forming tissues continually recruit cells from the surrounding regions. The basal layer of the oral epithelium, the dental lamina and sometimes even the outer enamel epithelium provide cells for the differentiated inner enamel epithelium, in which the active ameloblasts are localized. The differentiating odontoblasts are derived from proliferating cells situated basally to the replacement teeth in the mesenchymal tissue. When differentiation has started and the cells have become functional, proliferative activity can no longer be observed. Calcium is accumulated close to the site of mineralization in the inner enamel epithelium and in the odontoblasts as it is in mammals, elasmobranchii and teleostei. The activities of ACP and ALP related to the mineralization of the replacement teeth are separated spatially and not sequentially as they are in mammals. However, the results indicate a similar function of these enzymatic components in relation to tooth formation and maturation of mineral deposition. Most of the substantial processes related to tooth formation reported from other vertebrates occur in a manner similar to that in Ambystoma mexicanum, but there also seem to be basic mechanisms present that are realised in a unique way in this urodele.

  6. Blastema induction in aneurogenic state and Prrx-1 regulation by MMPs and FGFs in Ambystoma mexicanum limb regeneration.

    PubMed

    Satoh, Akira; makanae, Aki; Hirata, Ayako; Satou, Yutaka

    2011-07-15

    Urodele amphibians can regenerate amputated limbs. It has been considered that differentiated dermal tissues generate multipotent and undifferentiated cells called blastema cells during limb regeneration. In early phases of limb regeneration, blastema cells are induced by nerves and the apical epithelial cap (AEC). We had previously investigated the role of neurotrophic factors in blastema or blastema-like formation consisting of Prrx-1 positive cells. A new system suitable for investigating early phases of limb regeneration, called the accessory limb model (ALM), was recently developed. In this study, we performed a comparative transcriptome analysis between a blastema and wound using ALM. Matrix metalloproteinase (MMP) and fibroblast growth factor (FGF) signaling components were observed to be predominantly expressed in ALM blastema cells. Furthermore, we found that MMP activity induced a blastema marker gene, Prrx-1, in vitro, and FGF signaling pathways worked in coordination to maintain Prrx-1 expression and ALM blastema formation. Furthermore, we demonstrated that these two activities were sufficient to induce an ALM blastema in the absence of a nerve in vivo.

  7. An integrated view of asteroid regeneration: tissues, cells and molecules.

    PubMed

    Ben Khadra, Yousra; Sugni, Michela; Ferrario, Cinzia; Bonasoro, Francesco; Varela Coelho, Ana; Martinez, Pedro; Candia Carnevali, Maria Daniela

    2017-03-22

    The potential for repairing and replacing cells, tissues, organs and body parts is considered a primitive attribute of life shared by all the organisms, even though it may be expressed to a different extent and which is essential for the survival of both individual and whole species. The ability to regenerate is particularly evident and widespread within invertebrates. In spite of the wide availability of experimental models, regeneration has been comprehensively explored in only a few animal systems (i.e., hydrozoans, planarians, urodeles) leaving many other animal groups unexplored. The regenerative potential finds its maximum expression in echinoderms. Among echinoderm classes, asteroids offer an impressive range of experimental models in which to study arm regeneration at different levels. Many studies have been recently carried out in order to understand the regenerative mechanisms in asteroids and the overall morphological processes have been well documented in different starfish species, such as Asterias rubens, Leptasterias hexactis and Echinaster sepositus. In contrast, very little is known about the molecular mechanisms that control regeneration development and patterning in these models. The origin and the fate of cells involved in the regenerative process remain a matter of debate and clear insights will require the use of complementary molecular and proteomic approaches to study this problem. Here, we review the current knowledge regarding the cellular, proteomic and molecular aspects of asteroid regeneration.

  8. Frog virus 3-like infections in aquatic amphibian communities.

    PubMed

    Duffus, A L J; Pauli, B D; Wozney, K; Brunetti, C R; Berrill, M

    2008-01-01

    Frog virus 3 (FV3) and FV3-like viruses, are members of the genus Ranavirus (family Iridoviridae), and they have been associated with infectious diseases that may be contributing to amphibian population declines. We examined the mode of transmission of an FV3-like virus, and potential hosts and reservoirs of the virus in a local amphibian community. Using the polymerase chain reaction to detect infected animals, we found an FV3-like virus in south-central Ontario, Canada, amphibian communities, where it infects sympatric amphibian species, including ranid and hylid tadpoles (Rana sylvatica, Hyla versicolor, and Pseudacris spp.), larval salamanders (Ambystoma spp.), and adult eastern-spotted newts (Notophthalmus viridescens). The high prevalence of FV3-like infections in caudate larvae suggests that salamanders are likely to be both hosts and reservoirs. In laboratory FV3 challenges of R. sylvatica, the rate of infection was dependent on the amount of virus to which the animals were exposed. In addition, although vertical transmission was suspected, horizontal transmission through exposure to infected pond water is the most likely route of infection in tadpoles. Based on our observations, a simple model of FV3/FV3-like virus transmission postulates that, in aquatic amphibian communities, transmission of the virus occurs between anuran and urodele species, with ambystomatid salamanders the most likely reservoir for the ranavirus in our study.

  9. Predation of amphibians by carabid beetles of the genus Epomis found in the central coastal plain of Israel

    PubMed Central

    Wizen, Gil; Gasith, Avital

    2011-01-01

    Abstract The genus Epomis is represented in Israel by two species: Epomis dejeani and Epomis circumscriptus. In the central coastal plain these species are sympatric but do not occur in the same sites. The objective of this study was to record and describe trophic interactions between the adult beetles and amphibian species occurring in the central coastal plain of Israel. Day and night surveys at three sites, as well as controlled laboratory experiments were conducted for studying beetle-amphibian trophic interaction. In the field we recorded three cases of Epomis dejeani preying upon amphibian metamorphs and also found that Epomis adults share shelters with amphibians. Laboratory experiments supported the observations that both Epomis species can prey on amphibians. Predation of the three anuran species (Bufo viridis, Hyla savignyi and Rana bedriagae) and two urodele species (Triturus vittatus and Salamandra salamandra infraimmaculata) is described. Only Epomis dejeani consumed Triturus vittatus. Therefore, we conclude that the two species display a partial overlap in food habit. PMID:21738411

  10. Development of cranial muscles in the actinopterygian fish Senegal bichir, Polypterus senegalus Cuvier, 1829.

    PubMed

    Noda, Masatsugu; Miyake, Tsutomu; Okabe, Masataka

    2017-02-09

    Polypterus senegalus Cuvier, 1829 is one of the most basal living actinopterygian fish and a member of the Actinopterygii. We analyzed the spatial and temporal pattern of cranial muscle development of P. senegalus using whole-mount immunostaining and serial sectioning. We described the detailed structure of the external gill muscles which divided into dorsal and ventral parts after yolk exhaustion. The pattern of the division is similar to that of urodeles. We suggest that, the external gill muscles of P. senegalus are involved in spreading and folding of the external gill stem and the branches. The fibers of the external gill muscles appear postero-lateral to the auditory capsule. In addition, the facial nerve passes through the external gills. Therefore, the external gill muscles are probably derived from the m. constrictor hyoideus dorsalis. In contrast to previous studies, we described the mm. interhyoideus and hyohyoideus fibers as independent components in the yolk-sac larvae. The m. hyohyoideus fibers appear lateral to the edge of the ventral portion of the external gill muscles, which are probably derived from the m. constrictor hyoideus dorsalis. These findings suggest that the m. hyohyoidues is derived from the m. constrictor hyoideus dorsalis in P. senegalus. In other actinopterygians, the m. hyohyoideus is derived from the m. constrictor hyoideus ventralis; therefore, the homology of the m. hyohyoidues of P. senegalus and other actinopterygians remains unclear. J. Morphol., 2017. © 2017 Wiley Periodicals, Inc.

  11. TALEN‐mediated gene editing of the thrombospondin‐1 locus in axolotl

    PubMed Central

    Kuo, Tzu‐Hsing; Kowalko, Johanna E.; DiTommaso, Tia; Nyambi, Mandi; Montoro, Daniel T.; Essner, Jeffrey J.

    2015-01-01

    Abstract Loss‐of‐function genetics provides strong evidence for a gene's function in a wild‐type context. In many model systems, this approach has been invaluable for discovering the function of genes in diverse biological processes. Axolotls are urodele amphibians (salamanders) with astonishing regenerative abilities, capable of regenerating entire limbs, portions of the tail (including spinal cord), heart, and brain into adulthood. With their relatively short generation time among salamanders, they offer an outstanding opportunity to interrogate natural mechanisms for appendage and organ regeneration provided that the tools are developed to address these long‐standing questions. Here we demonstrate targeted modification of the thrombospondin‐1 (tsp‐1) locus using transcription‐activator‐like effector nucleases (TALENs) and identify a role of tsp‐1 in recruitment of myeloid cells during limb regeneration. We find that while tsp‐1‐edited mosaic animals still regenerate limbs, they exhibit a reduced subepidermal collagen layer in limbs and an increased number of myeloid cells within blastemas. This work presents a protocol for generating and genotyping mosaic axolotls with TALEN‐mediated gene edits. PMID:27499866

  12. Notes on cranial ontogeny and delayed metamorphosis in the hynobiid salamander Ranodon sibiricus Kessler, 1866 (Urodela).

    PubMed

    Jömann, Norbert; Clemen, Günter; Greven, Hartmut

    2005-07-01

    The skull of larvae, juveniles and adults of the rare and primitive hynobiid salamander Ranodon sibiricus was re-examined using transparencies and illustrated by new graphics. The earliest larva available for investigations already had the dominant bones. The maxillary, however, was still lacking. Previous descriptions regarding the appearance and growth of bones could be largely confirmed. The vomer, first seen as a relatively small obliquely arranged dentate bar in the 3.8 cm long larva, became larger during ontogeny, but did not change its position remarkably. The vomerine pars dentalis with only a single tooth line was straight in larvae and juveniles, but was slightly curved in adults allowing for distinction of an outer and inner portion. This feature is typical and more pronounced in most other hynobiids. The significance of the vomer and vomerine dentition for systematic and phylogenetic purposes and its changes during metamorphosis are briefly discussed. Two of the specimens examined showed delayed metamorphosis very likely caused by low temperatures. Here the temporal course of transformation was "stretched" and therefore some alterations, e.g. regression of the palatinal portion of the palatopterygoid, were shown more clearly. Continuous growth of some skull elements in these individuals suggested a relative independence from metamorphosis perhaps due to variable thyroid activity and/or independent changes in individual tissue sensitivities. It is suggested that remodelling of the mouth roof could be used for staging urodele ontogeny.

  13. Regeneration and pattern formation - an interview with Susan Bryant. Interviewed by Richardson, Michael K and Chuong, Cheng-Ming.

    PubMed

    Bryant, Susan

    2009-01-01

    Susan Bryant is one of the leading researchers in regeneration and pattern formation. Born in England in 1943, she studied biology at Kings College, London (UK). After a Ph.D. with Angus Bellairs on caudal autotomy and regeneration in lizards, she researched urodele regeneration in Marcus Singer's lab at Case Western Reserve University. Then, at the University of California, Irvine, she adopted the axolotl as a research model for limb regeneration and pattern formation. Her work supported models involving the intercalation of positional values in a polar coordinate system. Fibroblasts, often regarded as "junk" cells, are seen by Susan Bryant as central to patterning. She argues that fibroblasts express positional values needed for regeneration. She also argues that vertebrate species capable of regeneration have evolved steps to plug back into developmental programmes. Susan Bryant thinks that regeneration is essential for a full understanding of development, and believes that developmental biology has suffered though not embracing regeneration. She also believes that deeper knowledge of pattern formation will bring advances in emerging field of tissue engineering. Since 2000, she has served as Dean of Biological Sciences and more recently, as Vice Chancellor for Research, at UC Irvine (USA). She is an advocate of equal opportunities for women and other under-represented groups in academia. She lives in California with husband David Gardiner, her scientific partner for over 20 years. They have two children. We interviewed Susan Bryant in her office in Irvine on October 5th, 2007.

  14. Cooperative regulation of substrate stiffness and extracellular matrix proteins in skin wound healing of axolotls.

    PubMed

    Huang, Ting-Yu; Wu, Cheng-Han; Wang, Mu-Hui; Chen, Bo-Sung; Chiou, Ling-Ling; Lee, Hsuan-Shu

    2015-01-01

    Urodele amphibians (Ambystoma mexicanum), unique among vertebrates, can regenerate appendages and other body parts entirely and functionally through a scar-free healing process. The wound epithelium covering the amputated or damaged site forms early and is essential for initiating the subsequent regenerative steps. However, the molecular mechanism through which the wound reepithelializes during regeneration remains unclear. In this study, we developed an in vitro culture system that mimics an in vivo wound healing process; the biomechanical properties in the system were precisely defined and manipulated. Skin explants that were cultured on 2 to 50 kPa collagen-coated substrates rapidly reepithelialized within 10 to 15 h; however, in harder (1 GPa) and other extracellular matrices (tenascin-, fibronectin-, and laminin-coated environments), the wound epithelium moved slowly. Furthermore, the reepithelialization rate of skin explants from metamorphic axolotls cultured on a polystyrene plate (1 GPa) increased substantially. These findings afford new insights and can facilitate investigating wound epithelium formation during early regeneration using biochemical and mechanical techniques.

  15. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells

    PubMed Central

    2012-01-01

    Background In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood. Results Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2+ cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2+ cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages. Conclusions Sox2+ cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2+ cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection. PMID:22537391

  16. Multicellular Mathematical Modelling of Mesendoderm Formation in Amphibians.

    PubMed

    Brown, L E; Middleton, A M; King, J R; Loose, M

    2016-03-01

    The earliest cell fate decisions in a developing embryo are those associated with establishing the germ layers. The specification of the mesoderm and endoderm is of particular interest as the mesoderm is induced from the endoderm, potentially from an underlying bipotential group of cells, the mesendoderm. Mesendoderm formation has been well studied in an amphibian model frog, Xenopus laevis, and its formation is driven by a gene regulatory network (GRN) induced by maternal factors deposited in the egg. We have recently demonstrated that the axolotl, a urodele amphibian, utilises a different topology in its GRN to specify the mesendoderm. In this paper, we develop spatially structured mathematical models of the GRNs governing mesendoderm formation in a line of cells. We explore several versions of the model of mesendoderm formation in both Xenopus and the axolotl, incorporating the key differences between these two systems. Model simulations are able to reproduce known experimental data, such as Nodal expression domains in Xenopus, and also make predictions about how the positional information derived from maternal factors may be interpreted to drive cell fate decisions. We find that whilst cell-cell signalling plays a minor role in Xenopus, it is crucial for correct patterning domains in axolotl.

  17. Persistent fibrosis, hypertrophy and sarcomere disorganisation after endoscopy-guided heart resection in adult Xenopus

    PubMed Central

    Girardot, Fabrice; Péricard, Louise; Demeneix, Barbara A.; Coen, Laurent; Chai, Norin

    2017-01-01

    Models of cardiac repair are needed to understand mechanisms underlying failure to regenerate in human cardiac tissue. Such studies are currently dominated by the use of zebrafish and mice. Remarkably, it is between these two evolutionary separated species that the adult cardiac regenerative capacity is thought to be lost, but causes of this difference remain largely unknown. Amphibians, evolutionary positioned between these two models, are of particular interest to help fill this lack of knowledge. We thus developed an endoscopy-based resection method to explore the consequences of cardiac injury in adult Xenopus laevis. This method allowed in situ live heart observation, standardised tissue amputation size and reproducibility. During the first week following amputation, gene expression of cell proliferation markers remained unchanged, whereas those relating to sarcomere organisation decreased and markers of inflammation, fibrosis and hypertrophy increased. One-month post-amputation, fibrosis and hypertrophy were evident at the injury site, persisting through 11 months. Moreover, cardiomyocyte sarcomere organisation deteriorated early following amputation, and was not completely recovered as far as 11 months later. We conclude that the adult Xenopus heart is unable to regenerate, displaying cellular and molecular marks of scarring. Our work suggests that, contrary to urodeles and teleosts, with the exception of medaka, adult anurans share a cardiac injury outcome similar to adult mammals. This observation is at odds with current hypotheses that link loss of cardiac regenerative capacity with acquisition of homeothermy. PMID:28278282

  18. Cardiac performance correlates of relative heart ventricle mass in amphibians.

    PubMed

    Kluthe, Gregory J; Hillman, Stanley S

    2013-08-01

    This study used an in situ heart preparation to analyze the power output and stroke work of spontaneously beating hearts of four anurans (Rhinella marina, Lithobates catesbeianus, Xenopus laevis, Pyxicephalus edulis) and three urodeles (Necturus maculosus, Ambystoma tigrinum, Amphiuma tridactylum) that span a representative range of relative ventricle mass (RVM) found in amphibians. Previous research has documented that RVM correlates with dehydration tolerance and maximal aerobic capacity in amphibians. The power output (mW g(-1) ventricle mass) and stroke work (mJ g(-1) ventricle muscle mass) were independent of RVM and were indistinguishable from previously published results for fish and reptiles. RVM was significantly correlated with maximum power output (P max, mW kg(-1) body mass), stroke volume, cardiac output, afterload pressure (P O) at P max, and preload pressure (P I) at P max. P I at P max and P O at P max also correlated very closely with each other. The increases in both P I and P O at maximal power outputs in large hearts suggest that concomitant increases in blood volume and/or increased modulation of vascular compliance either anatomically or via sympathetic tone on the venous vasculature would be necessary to achieve P max in vivo. Hypotheses for variation in RVM and its concomitant increased P max in amphibians are developed.

  19. Molecular characterization of major histocompatibility complex class II alleles in wild tiger salamanders (Ambystoma tigrinum).

    PubMed

    Bos, David H; DeWoody, J Andrew

    2005-11-01

    Major histocompatibility complex (MHC) class II genes are usually among the most polymorphic in vertebrate genomes because of their critical role (antigen presentation) in immune response. Prior to this study, the MHC was poorly characterized in tiger salamanders (Ambystoma tigrinum), but the congeneric axolotl (Ambystoma mexicanum) is thought to have an unusual MHC. Most notably, axolotl class II genes lack allelic variation and possess a splice variant without a full peptide binding region (PBR). The axolotl is considered immunodeficient, but it is unclear how or to what extent MHC genetics and immunodeficiency are interrelated. To study the evolution of MHC genes in urodele amphibians, we describe for the first time an expressed polymorphic class II gene in wild tiger salamanders. We sequenced the PBR of a class II gene from wild A. tigrinum (n=33) and identified nine distinct alleles. Observed heterozygosity was 73%, and there were a total of 46 polymorphic sites, most of which correspond to amino acid positions that bind peptides. Patterns of nucleotide substitutions exhibit the signature of diversifying selection, but no recombination was detected. Not surprisingly, trans-species evolution of tiger salamander and axolotl class II alleles was apparent. We have no direct data on the immunodeficiency of tiger salamanders, but the levels of polymorphism in our study population should suffice to bind a variety of foreign peptides (unlike axolotls). Our tiger salamander data suggest that the monomorphism and immunodeficiencies associated with axolotl class II genes is a relic of their unique historical demography, not their phylogenetic legacy.

  20. Cranial muscle development in the model organism ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny.

    PubMed

    Ziermann, Janine M; Diogo, Rui

    2013-07-01

    There is still confusion about the homology of several cranial muscles in salamanders with those of other vertebrates. This is true, in part, because of the fact that many muscles present in early ontogeny of amphibians disappear during development and specifically during metamorphosis. Resolving this confusion is important for the understanding of the comparative and evolutionary morphology of vertebrates and tetrapods because amphibians are the phylogenetically most plesiomorphic tetrapods, concerning for example their myology, and include two often used model organisms, Xenopus laevis (anuran) and Ambystoma mexicanum (urodele). Here we provide the first detailed report of the cranial muscle development in axolotl from early ontogenetic stages to the adult stage. We describe different and complementary types of general muscle morphogenetic gradients in the head: from anterior to posterior, from lateral to medial, and from origin to insertion. Furthermore, even during the development of neotenic salamanders such as axolotls, various larval muscles become indistinct, contradicting the commonly accepted view that during ontogeny the tendency is mostly toward the differentiation of muscles. We provide an updated comparison between these muscles and the muscles of other vertebrates, a discussion of the homologies and evolution, and show that the order in which the muscles appear during axolotl ontogeny is in general similar to their appearance in phylogeny (e.g. differentiation of adductor mandibulae muscles from one anlage to four muscles), with only a few remarkable exceptions, as for example the dilatator laryngis that appears evolutionary later but in the development before the intermandibularis.

  1. Proteinaceous Pheromone Homologs Identified from the Cloacal Gland Transcriptome of a Male Axolotl, Ambystoma mexicanum.

    PubMed

    Hall, Kevin W; Eisthen, Heather L; Williams, Barry L

    2016-01-01

    Pheromones play an important role in modifying vertebrate behavior, especially during courtship and mating. Courtship behavior in urodele amphibians often includes female exposure to secretions from the cloacal gland, as well as other scent glands. The first vertebrate proteinaceous pheromone discovered, the decapeptide sodefrin, is a female attracting pheromone secreted by the cloacal gland of male Cynops pyrrhogaster. Other proteinaceous pheromones in salamanders have been shown to elicit responses from females towards conspecific males. The presence and levels of expression of proteinaceous pheromones have not been identified in the family Ambystomatidae, which includes several important research models. The objective of this research was therefore to identify putative proteinaceous pheromones from male axolotls, Ambystoma mexicanum, as well as their relative expression levels. The results indicate that axolotls possess two different forms of sodefrin precursor-like factor (alpha and beta), as well as a putative ortholog of plethodontid modulating factor. The beta form of sodefrin precursor-like factor was amongst the most highly expressed transcripts within the cloacal gland. The ortholog of plethodontid modulating factor was expressed at a level equivalent to the beta sodefrin precursor-like factor. The results are from a single male axolotl; therefore, we are unable to assess how representative our results may be. Nevertheless, the presence of these highly expressed proteinaceous pheromones suggests that male axolotls use multiple chemical cues to attract female conspecifics. Behavioral assays would indicate whether the putative protein pheromones elicit courtship activity from female axolotls.

  2. Multiple sex pheromone genes are expressed in the abdominal glands of the smooth newt (Lissotriton vulgaris) and Montandon's Newt (L. montandoni) (Salamandridae).

    PubMed

    Artur, Osikowski; Wiesław, Babik; Paweł, Grzmil; Jacek M, Szymura

    2008-06-01

    The smooth newt (Lissotriton "Triturus" vulgaris) and Montandon's newt (L."T." montandoni) are sister species exhibiting pronounced differences in male secondary sexual traits but nevertheless hybridizing and producing fertile hybrids in nature. Since pheromonal communication is an important aspect of the reproductive biology of urodeles, structural differentiation of peptide pheromones and their receptors may contribute to incipient reproductive isolation. The aim of the study was the identification of genes encoding putative courtship pheromone precursors in two newt species and the reconstruction of phylogenetic relationships among them. Our analyses were based on cDNA obtained from the transcripts from the abdominal glands of male newts. We identified five unique cDNA sequences encoding the putative pheromone precursors in L. vulgaris and three additional unique sequences in L. montandoni. The results indicate that in the abdominal glands of Lissotriton newts more than one pheromone-encoding gene is expressed and that these loci form a gene family. Phylogenetic analysis indicates that the divergence of at least some of these genes predates the radiation of European newts.

  3. Turning the fate of reprogramming cells from retinal disorder to regeneration by Pax6 in newts

    PubMed Central

    Casco-Robles, Martin Miguel; Islam, Md Rafiqul; Inami, Wataru; Tanaka, Hibiki Vincent; Kunahong, Ailidana; Yasumuro, Hirofumi; Hanzawa, Shiori; Casco-Robles, Roman Martin; Toyama, Fubito; Maruo, Fumiaki; Chiba, Chikafumi

    2016-01-01

    The newt, a urodele amphibian, has an outstanding ability– even as an adult –to regenerate a functional retina through reprogramming and proliferation of the retinal pigment epithelium (RPE) cells, even though the neural retina is completely removed from the eye by surgery. It remains unknown how the newt invented such a superior mechanism. Here we show that disability of RPE cells to regenerate the retina brings about a symptom of proliferative vitreoretinopathy (PVR), even in the newt. When Pax6, a transcription factor that is re-expressed in reprogramming RPE cells, is knocked down in transgenic juvenile newts, these cells proliferate but eventually give rise to cell aggregates that uniformly express alpha smooth muscle actin, Vimentin and N-cadherin, the markers of myofibroblasts which are a major component of the sub-/epi-retinal membranes in PVR. Our current study demonstrates that Pax6 is an essential factor that directs the fate of reprogramming RPE cells toward the retinal regeneration. The newt may have evolved the ability of retinal regeneration by modifying a mechanism that underlies the RPE-mediated retinal disorders. PMID:27640672

  4. Germ cell specification and regeneration in planarians.

    PubMed

    Newmark, P A; Wang, Y; Chong, T

    2008-01-01

    In metazoans, two apparently distinct mechanisms specify germ cell fate: Determinate specification (observed in animals including Drosophila, Caenorhabditis elegans, zebra fish, and Xenopus) uses cytoplasmic factors localized to specific regions of the egg, whereas epigenetic specification (observed in many basal metazoans, urodeles, and mammals) involves inductive interactions between cells. Much of our understanding of germ cell specification has emerged from studies of model organisms displaying determinate specification. In contrast, our understanding of epigenetic/inductive specification is less advanced and would benefit from studies of additional organisms. Freshwater planarians--widely known for their remarkable powers of regeneration--are well suited for studying the mechanisms by which germ cells can be induced. Classic experiments showed that planarians can regenerate germ cells from body fragments entirely lacking reproductive structures, suggesting that planarian germ cells could be specified by inductive signals. Furthermore, the availability of the genome sequence of the planarian Schmidtea mediterranea, coupled with the animal's susceptibility to systemic RNA interference (RNAi), facilitates functional genomic analyses of germ cell development and regeneration. Here, we describe recent progress in studies of planarian germ cells and frame some of the critical unresolved questions for future work.

  5. Genomics of a Metamorphic Timing QTL: met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription

    PubMed Central

    Page, Robert B.; Boley, Meredith A.; Kump, David K.; Voss, Stephen R.

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation. PMID:23946331

  6. Better than fish on land? Hearing across metamorphosis in salamanders

    PubMed Central

    Christensen, Christian Bech; Lauridsen, Henrik; Christensen-Dalsgaard, Jakob; Pedersen, Michael; Madsen, Peter Teglberg

    2015-01-01

    Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early ‘lepospondyl’ microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears. PMID:25652830

  7. The regeneration blastema of lizards: an amniote model for the study of appendage replacement

    PubMed Central

    Gilbert, E. A. B.; Delorme, S. L.

    2015-01-01

    Abstract Although amniotes (reptiles, including birds, and mammals) are capable of replacing certain tissues, complete appendage regeneration is rare. Perhaps the most striking example is the lizard tail. Tail loss initiates a spontaneous epimorphic (blastema‐mediated) regenerative program, resulting in a fully functional but structurally non‐identical replacement. Here we review lizard tail regeneration with a particular focus on the blastema. In many lizards, the original tail has evolved a series of fracture planes, anatomical modifications that permit the tail to be self‐detached or autotomized. Following tail loss, the wound site is covered by a specialized wound epithelium under which the blastema develops. An outgrowth of the spinal cord, the ependymal tube, plays a key role in governing growth (and likely patterning) of the regenerate tail. In some species (e.g., geckos), the blastema forms as an apical aggregation of proliferating cells, similar to that of urodeles and teleosts. For other species (e.g., anoles) the identification of a proliferative blastema is less obvious, suggesting an unexpected diversity in regenerative mechanisms among tail‐regenerating lizards. PMID:27499867

  8. Reintegration of the regenerated and the remaining tissues during joint regeneration in the newt Cynops pyrrhogaster.

    PubMed

    Tsutsumi, Rio; Inoue, Takeshi; Yamada, Shigehito; Agata, Kiyokazu

    2015-02-01

    Urodele amphibians, such as newts, can regenerate a functional limb, including joints, after amputation at any level along the proximal-distal axis of the limb. The blastema can regenerate the limb morphology largely independently of the stump after proximal-distal identity has been established, but the remaining and regenerated tissues must be structurally reintegrated (matched in size and shape). Here we used newt joint regeneration as a model to investigate reintegration, because a functionally interlocking joint requires structural integration between its opposing skeletal elements. After forelimbs were amputated at the elbow joint, the joint was regenerated between the remaining and regenerated skeletal elements. The regenerated cartilage was thick around the amputated joint to make a reciprocally interlocking joint structure with the remaining bone. Furthermore, during regeneration, the extracellular matrix of the remaining tissues was lost, suggesting that the remaining tissues might contribute to the morphogenesis of regenerating cartilage. Our results showed that the area of the regenerated cartilage matched the area of the apposed remaining cartilage, thus contributing to formation of a functional structure.

  9. Dual embryonic origin and patterning of the pharyngeal skeleton in the axolotl (Ambystoma mexicanum).

    PubMed

    Sefton, Elizabeth M; Piekarski, Nadine; Hanken, James

    2015-01-01

    The impressive morphological diversification of vertebrates was achieved in part by innovation and modification of the pharyngeal skeleton. Extensive fate mapping in amniote models has revealed a primarily cranial neural crest derivation of the pharyngeal skeleton. Although comparable fate maps of amphibians produced over several decades have failed to document a neural crest derivation of ventromedial elements in these vertebrates, a recent report provides evidence of a mesodermal origin of one of these elements, basibranchial 2, in the axolotl. We used a transgenic labeling protocol and grafts of labeled cells between GFP+ and white embryos to derive a fate map that describes contributions of both cranial neural crest and mesoderm to the axolotl pharyngeal skeleton, and we conducted additional experiments that probe the mechanisms that underlie mesodermal patterning. Our fate map confirms a dual embryonic origin of the pharyngeal skeleton in urodeles, including derivation of basibranchial 2 from mesoderm closely associated with the second heart field. Additionally, heterotopic transplantation experiments reveal lineage restriction of mesodermal cells that contribute to pharyngeal cartilage. The mesoderm-derived component of the pharyngeal skeleton appears to be particularly sensitive to retinoic acid (RA): administration of exogenous RA leads to loss of the second basibranchial, but not the first. Neural crest was undoubtedly critical in the evolution of the vertebrate pharyngeal skeleton, but mesoderm may have played a central role in forming ventromedial elements, in particular. When and how many times during vertebrate phylogeny a mesodermal contribution to the pharyngeal skeleton evolved remain to be resolved.

  10. Evolutionary cytogenetics in salamanders.

    PubMed

    Sessions, Stanley K

    2008-01-01

    Salamanders (Amphibia: Caudata/Urodela) have been the subject of numerous cytogenetic studies, and data on karyotypes and genome sizes are available for most groups. Salamanders show a more-or-less distinct dichotomy between families with large chromosome numbers and interspecific variation in chromosome number, relative size, and shape (i.e. position of the centromere), and those that exhibit very little variation in these karyological features. This dichotomy is the basis of a major model of karyotype evolution in salamanders involving a kind of 'karyotypic orthoselection'. Salamanders are also characterized by extremely large genomes (in terms of absolute mass of nuclear DNA) and extensive variation in genome size (and overall size of the chromosomes), which transcends variation in chromosome number and shape. The biological significance and evolution of chromosome number and shape within the karyotype is not yet understood, but genome size variation has been found to have strong phenotypic, biogeographic, and phylogenetic correlates that reveal information about the biological significance of this cytogenetic variable. Urodeles also present the advantage of only 10 families and less than 600 species, which facilitates the analysis of patterns within the entire order. The purpose of this review is to present a summary of what is currently known about overall patterns of variation in karyology and genome size in salamanders. These patterns are discussed within an evolutionary context.

  11. Proximal to distal patterning during limb development and regeneration: a review of converging disciplines.

    PubMed

    Mariani, Francesca V

    2010-05-01

    Regeneration of lost structures typically involves distinct events: wound healing at the damaged site, the accumulation of cells that will be used as future building blocks and, finally, the initiation of molecular signaling pathways that dictate the form and pattern of the regenerated structures. Amphibians and urodeles in particular, have long been known to have exceptional regenerative properties. For many years, these animals have been the model of choice for understanding limb regeneration, a complex process that involves reconstructing skin, muscle, bone, connective tissue and nerves into a functional 3D structure. It appears that this process of rebuilding an adult limb has many similarities with how the limb forms in the first place--for example, in the embryo, all the components of the limb need to be formed and this requires signaling mechanisms to specify the final pattern. Thus, both limb formation and limb regeneration are likely to employ the same molecular pathways. Given the available tools of molecular biology and genetics, this is an exciting time for both fields to share findings and make significant progress in understanding more about the events that dictate embryonic limb pattern and control limb regeneration. This article focuses particularly on what is known about the molecular control of patterning along the proximal-distal axis.

  12. From ontogenesis to regeneration: learning how to instruct adult cardiac progenitor cells.

    PubMed

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Giacomello, Alessandro; Messina, Elisa

    2012-01-01

    Since the first observations over two centuries ago by Lazzaro Spallanzani on the extraordinary regenerative capacity of urodeles, many attempts have been made to understand the reasons why such ability has been largely lost in metazoa and whether or how it can be restored, even partially. In this context, important clues can be derived from the systematic analysis of the relevant distinctions among species and of the pathways involved in embryonic development, which might be induced and/or recapitulated in adult tissues. This chapter provides an overview on regeneration and its mechanisms, starting with the lesson learned from lower vertebrates, and will then focus on recent advancements and novel insights concerning regeneration in the adult mammalian heart, including the discovery of resident cardiac progenitor cells (CPCs). Subsequently, it explores all the important pathways involved in regulating differentiation during development and embryogenesis, and that might potentially provide important clues on how to activate and/or modulate regenerative processes in the adult myocardium, including the potential activation of endogenous CPCs. Furthermore the importance of the stem cell niche is discussed, and how it is possible to create in vitro a microenvironment and culture system to provide adult CPCs with the ideal conditions promoting their regenerative ability. Finally, the state of clinical translation of cardiac cell therapy is presented. Overall, this chapter provides a new perspective on how to approach cardiac regeneration, taking advantage of important lessons from development and optimizing biotechnological tools to obtain the ideal conditions for cell-based cardiac regenerative therapy.

  13. A potential wound-healing-promoting peptide from salamander skin.

    PubMed

    Mu, Lixian; Tang, Jing; Liu, Han; Shen, Chuanbin; Rong, Mingqiang; Zhang, Zhiye; Lai, Ren

    2014-09-01

    Although it is well known that wound healing proceeds incredibly quickly in urodele amphibians, such as newts and salamanders, little is known about skin-wound healing, and no bioactive/effector substance that contributes to wound healing has been identified from these animals. As a step toward understanding salamander wound healing and skin regeneration, a potential wound-healing-promoting peptide (tylotoin; KCVRQNNKRVCK) was identified from salamander skin of Tylototriton verrucosus. It shows comparable wound-healing-promoting ability (EC50=11.14 μg/ml) with epidermal growth factor (EGF; NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR) in a murine model of full-thickness dermal wound. Tylotoin directly enhances the motility and proliferation of keratinocytes, vascular endothelial cells, and fibroblasts, resulting in accelerated reepithelialization and granulation tissue formation in the wound site. Tylotoin also promotes the release of transforming growth factor β1 (TGF-β1) and interleukin 6 (IL-6), which are essential in the wound healing response. Gene-encoded tylotoin secreted in salamander skin is possibly an effector molecule for skin wound healing. This study may facilitate understanding of the cellular and molecular events that underlie quick wound healing in salamanders.

  14. The structure of the nasal chemosensory system in squamate reptiles. 2. Lubricatory capacity of the vomeronasal organ.

    PubMed

    Rehorek, S J; Firth, B T; Hutchinson, M N

    2000-06-01

    The vomeronasal organ is a poorly understood accessory olfactory organ, present in many tetrapods. In mammals, amphibians and lepidosaurian reptiles, it is an encapsulated structure with a central, fluid-filled lumen. The morphology of the lubricatory system of the vomeronasal organ (the source of this fluid) varies among classes, being either intrinsic (mammalian and caecilian amphibian vomeronasal glands) or extrinsic (anuran and urodele nasal glands). In the few squamate reptiles thus far examined, there are no submucosal vomeronasal glands. In this study, we examined the vomeronasal organs of several species of Australian squamates using histological, histochemical and ultrastructural techniques, with the goal of determining the morphology of the lubricatory system in the vomeronasal organ. Histochemically, the fluid within the vomeronasal organ of all squamates is mucoserous, though it is uncertain whether mucous and serous constituents constitute separate components. The vomeronasal organ produces few secretory granules intrinsically, implying an extrinsic source for the luminal fluid. Of three possible candidates, the Harderian gland is the most likely extrinsic source of this secretion.

  15. Distribution of NADPH-diaphorase/nitric oxide synthase in the brain of the caecilian Dermophis mexicanus (amphibia: gymnophiona): comparative aspects in amphibians.

    PubMed

    González, Augustín; Moreno, Nerea; López, Jesús M

    2002-01-01

    The organization of nitrergic systems in the brains of anuran and urodele amphibians was recently studied and significant differences were noted between both amphibian orders. However, comparable data are not available for the third order of amphibians, the gymnophionans (caecilians). In the present study we have investigated the distribution of neuronal elements that express nitric oxide synthase (NOS) in the brain of the gymnophionan amphibian Dermophis mexicanus by means of immunohistochemistry with specific antibodies against NOS and enzyme histochemistry for NADPH-diaphorase. Both techniques yielded identical results and were equally suitable to demonstrate the nitrergic system. In addition, they were useful tools in the identification of cell groups and brain structures, otherwise indistinct in the brains of caecilians. The distribution of nitrergic structures observed in Dermophis conforms to the overall amphibian pattern but numerous distinct peculiarities were also noted. These included a dense innervation of the olfactory bulbs but a lack of reactivity in olfactory and vomeronasal fibers and glomeruli. A large population of nitrergic cells in the striatum and the presence of thalamic neurons, as well as the specific distribution of nitrergic cells in the isthmic region, are some of the differential features in the gymnophionan brain. Given the variability among species in the same class of vertebrates any discussion including amphibians should also include evidence for gymnophionans.

  16. Ultrastructure of the mature spermatozoa of caecilians (Amphibia: Gymnophiona).

    PubMed

    Scheltinga, David M; Wilkinson, Mark; Jamieson, Barrie G M; Oommen, Oommen V

    2003-11-01

    The spermatozoa of Gymnophiona show the following autapomorphies: 1) penetration of the distal centriole by the axial fiber; 2) presence of an acrosomal baseplate; 3) presence of an acrosome seat (flattened apical end of nucleus); and 4) absence of juxta-axonemal fibers. The wide separation of the plasma membrane bounding the undulating membrane is here also considered to be apomorphic. Three plesiomorphic spermatozoal characters are recognized that are not seen in other Amphibia but occur in basal amniotes: 1) presence of mitochondria with a delicate array of concentric cristae (concentric cristae of salamander spermatozoa differ in lacking the delicate array); 2) presence of peripheral dense fibers associated with the triplets of the distal centriole; and 3) presence of a simple annulus (a highly modified, elongate annulus is present in salamander sperm). The presence of an endonuclear canal containing a perforatorium is a plesiomorphic feature of caecilian spermatozoa that is shared with urodeles, some basal anurans, sarcopterygian fish, and some amniotes. Spermatozoal synapomorphies are identified for 1) the Uraeotyphlidae and Ichthyophiidae, and 2) the Caeciliidae and Typhlonectidae, suggesting that the members of each pair of families are more closely related to each other than to other caecilians. Although caecilian spermatozoa exhibit the clear amphibian synapomorphy of the unilateral location of the undulating membrane and its axial fiber, they have no apomorphic characters that suggest a closer relationship to either the Urodela or Anura.

  17. Persistent fibrosis, hypertrophy and sarcomere disorganisation after endoscopy-guided heart resection in adult Xenopus.

    PubMed

    Marshall, Lindsey; Vivien, Céline; Girardot, Fabrice; Péricard, Louise; Demeneix, Barbara A; Coen, Laurent; Chai, Norin

    2017-01-01

    Models of cardiac repair are needed to understand mechanisms underlying failure to regenerate in human cardiac tissue. Such studies are currently dominated by the use of zebrafish and mice. Remarkably, it is between these two evolutionary separated species that the adult cardiac regenerative capacity is thought to be lost, but causes of this difference remain largely unknown. Amphibians, evolutionary positioned between these two models, are of particular interest to help fill this lack of knowledge. We thus developed an endoscopy-based resection method to explore the consequences of cardiac injury in adult Xenopus laevis. This method allowed in situ live heart observation, standardised tissue amputation size and reproducibility. During the first week following amputation, gene expression of cell proliferation markers remained unchanged, whereas those relating to sarcomere organisation decreased and markers of inflammation, fibrosis and hypertrophy increased. One-month post-amputation, fibrosis and hypertrophy were evident at the injury site, persisting through 11 months. Moreover, cardiomyocyte sarcomere organisation deteriorated early following amputation, and was not completely recovered as far as 11 months later. We conclude that the adult Xenopus heart is unable to regenerate, displaying cellular and molecular marks of scarring. Our work suggests that, contrary to urodeles and teleosts, with the exception of medaka, adult anurans share a cardiac injury outcome similar to adult mammals. This observation is at odds with current hypotheses that link loss of cardiac regenerative capacity with acquisition of homeothermy.

  18. Regulative germ cell specification in axolotl embryos: a primitive trait conserved in the mammalian lineage.

    PubMed Central

    Johnson, Andrew D; Crother, Brian; White, Mary E; Patient, Roger; Bachvarova, Rosemary F; Drum, Matthew; Masi, Thomas

    2003-01-01

    How germ cells are specified in the embryos of animals has been a mystery for decades. Unlike most developmental processes, which are highly conserved, embryos specify germ cells in very different ways. Curiously, in mouse embryos germ cells are specified by extracellular signals; they are not autonomously specified by maternal germ cell determinants (germ plasm), as are the germ cells in most animal model systems. We have developed the axolotl (Ambystoma mexicanum), a salamander, as an experimental system, because classic experiments have shown that the germ cells in this species are induced by extracellular signals in the absence of germ plasm. Here, we provide evidence that the germ cells in axolotls arise from naive mesoderm in response to simple inducing agents. In addition, by analysing the sequences of axolotl germ-cell-specific genes, we provide evidence that mice and urodele amphibians share a common mechanism of germ cell development that is ancestral to tetrapods. Our results imply that germ plasm, as found in species such as frogs and teleosts, is the result of convergent evolution. We discuss the evolutionary implications of our findings. PMID:14511484

  19. Peculiarities of lens and tail regeneration detected in newts after spaceflight aboard Foton M3

    NASA Astrophysics Data System (ADS)

    Grigoryan, Eleonora N.; Almeida, Eduardo; Poplinskaya, Valentina; Novikova, Julia; Domaratskaya, Elena; Aleinikova, Karina; Souza, Kenneth; Skidmore, Mike; Grigoryan, Eleonora N.

    In September 2007 the joint, 12 day long experiment was carried out aboard Russian satellite Foton M3. The goal of the experiment was to study eye lens, tail and forelimb toe regeneration in adult 16 newts (Pl. waltl.) operated 10 days before taking-off. In spaceflight and synchronous ground control we used video recording, temperature and irradiation control, as well as constant availability of thymidine analog BrdU for its absorption via animals' skin. New techniques allowed us to analyze animals' behavior in hyperand microgravity periods of time, to take proper account of spaceflight factors, and measure accumulated pools of DNA-synthesizing cells in regenerating tissues. All tissue specimens obtained from animals were isolated in the day of landing and then prepared for morphological, immunochemical and molecular investigations. Synchronous control was shifted for two days and reproduced flight conditions except changes of gravity influence. As a result in flown animals as compared with synchronous ground control we found lens regeneration of 0.5-1 stage speeded up and an increased BrdU+ (S-phase) cell number in eye cornea, growth zone, limbus and newly forming lens. These features of regeneration were accompanied by an increase of FGF2 expression in eye growth zone and heat shock protein (HSP90) induction purely in retinal macroglial cells of regenerating eyes. Toe regeneration rate was equal and achieved the stage of accomplished healing of amputation area in both groups - "flown" and control animals. We found no essential differences in tail regeneration rate and tail regenerate sizes in the newts exposed to space and on ground. In both groups tail regeneration reached the stage IV-V when tail length and square were around 4.4 mm and 15.5 mm2, correspondingly. However we did observe remarkable changes of tail regenerate form and some of pigmentation. Computer morphometrical analysis showed that only in ground control animals the evident dorso

  20. Hemopoietic tissue in newts flown aboard Foton M3

    NASA Astrophysics Data System (ADS)

    Domaratskaya, Elena I.; Almeida, Eduardo; Butorina, Nina N.; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Poplinskaya, Valentina A.; Souza, Kenneth; Skidmore, Mike

    The effect of 12-day spaceflight aboard the Foton-M3 biosatellite on the hematopoietic tissue of P. waltl newts was studied. These animals used at the same time in regeneration experiments after lens and tail tip amputation. In flight and synchronous groups there were performed video recording, temperature and radiation monitoring and continuous contact (via skin) with thymidine analog BrdU. We took differential blood counts and assessed histologically the liver in the flight (F), basal (BC) and synchronous (SC)control groups of animals. In the peripheral blood, we identified neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Lymphocytes (L) and neutrophils (N) prevailed, accounting for about 60 and 20% of white blood cells, respectively. The spaceflight had no apparent effect on the differential blood count in the F group: neither the L and N contents nor the maturing to mature N - ratio differed from those in the control groups. No significant differences between F, SC and BC groups were observed with respect to the structure of hematopoietic areas and the liver morphology. As in Foton-M2, BrdU labeled cells revealed in blood as well as in the hemopoietic areas of the liver. However, in previous experiments performed at satellites Bion-10 and Foton-M2 the changes in peripheral blood contents were registered in operated F newts, and we supposed it could be the result of additive effects of spaceflight factors and stimulation of reparative potency and stress due to surgical operation. Possibly, the temperature conditions also may provide some influence on blood cell content of newts that belong to poikilothermic animals. Thus, in present experiment F and SC groups were reared in the same temperature regims, whereas it was nearly 3o C differences between SC and F groups exposed on Foton-M2. At the same time as it was found in experiments on Bion-11 and Foton-M2 spaceflight factors did not affect on differential blood counts of intact non

  1. Molecular tools, classic questions - an interview with Clifford Tabin. Interviewed by Richardson, Michael K.

    PubMed

    Tabin, Clifford

    2009-01-01

    Clifford J. Tabin has made pioneering contributions to several fields in biology, including retroviruses, oncogenes, developmental biology and evolution. His father, a physicist who worked in the Manhattan project, kindled his interest in science. Cliff later chose to study biology and started his research career when the world of recombinant DNA was opening up. In Robert Weinbergs lab, he constructed the Moloney leukaemia virus (MLV-tk), the first recombinant retrovirus that could be used as a eukaryotic vector. He also discovered the amino acid changes leading to the activation of Ras, the first human oncogene discovered. As an independent researcher, he began in the field of urodele limb regeneration, and described the expression of retinoic acid receptor and Hox genes in the blastema. Moving to the chick model, his was one of the labs that simultaneously cloned the first vertebrate hedgehog cognates and showed that sonic hedgehog functions as a morphogen in certain developmental contexts, in particular as an organizing activity during limb development. Comparative studies by Ann Burke in his lab showed that differences in boundaries of Hox gene expression across vertebrate phylogeny correlated with differences in skeletal morphology. The Tabin lab also discovered a genetic pathway responsible for mediating left-right asymmetry in vertebrates; helped uncover the pathways leading to dorsoventral limb patterning; made contributions to our understanding of skeletal morphogenesis and identified developmental mechanisms that might underpin the diversification of the beak in Darwins finches. Despite being a professor of genetics at Harvard, Tabin says: "I have never done a genetics experiment in my life!". This is changing with his latest project: the genetics of Mexican cavefish. I interviewed Cliff on the 3rd October, 2007, in his office at Harvard.

  2. Lungfish evolution and development.

    PubMed

    Joss, Jean M P

    2006-09-15

    The first vertebrates recognizable as tetrapods appeared in the mid-Devonian. It is generally agreed that their ancestors were lobe-finned fish. What is not agreed is how close either of the extant groups of lobe-finned fish, lungfish or coelacanths, is to the actual ancestor of the tetrapods. The soft anatomy of living lungfish shares many similarities with that of living amphibians. Many of these similarities are not present in either coelacanths or any members of the other extant bony fish group, the ray-finned fishes. Many very well preserved lungfish from the Devonian possess specialized features that would appear to exclude them from being ancestral to tetrapods. I am hypothesizing that lungfish in the Devonian may have included metamorphosis in their life cycle and that neoteny in some species may have been an early corollary. These reproductively mature neotenous lungfish would not have had the specialised features of metamorphosed adults. Fossils of these neotenous forms may have more closely resembled the tetrapod ancestral lobe-finned fish, currently believed to be a panderichthiad fish. Living lungfish have a number of larval features, which suggest paedomorphosis. Also of significance is the very large genome of living lungfish, which, in urodele amphibians, is a feature correlated with neoteny. Our current knowledge of the thyroid axis in the lungfish, Neoceratodus forsteri, is consistent with neoteny in amphibians, but the only Devonian fossil considered to be a larval lungfish bears no resemblance to living lungfish or to panderichthiads. The enigmatic phylogenetic relationship of lungfish with the first tetrapods remains, but the hunt for other forms of larval Devonian lungfish is on!

  3. Two different network topologies yield bistability in models of mesoderm and anterior mesendoderm specification in amphibians.

    PubMed

    Brown, L E; King, J R; Loose, M

    2014-07-21

    Understanding the Gene Regulatory Networks (GRNs) that underlie development is a major question for systems biology. The establishment of the germ layers is amongst the earliest events of development and has been characterised in numerous model systems. The establishment of the mesoderm is best characterised in the frog Xenopus laevis and has been well studied both experimentally and mathematically. However, the Xenopus network has significant differences from that in mouse and humans, including the presence of multiple copies of two key genes in the network, Mix and Nodal. The axolotl, a urodele amphibian, provides a model with all the benefits of amphibian embryology but crucially only a single Mix and Nodal gene required for the specification of the mesoderm. Remarkably, the number of genes within the network is not the only difference. The interaction between Mix and Brachyury, two transcription factors involved in the establishment of the endoderm and mesoderm respectively, is not conserved. While Mix represses Brachyury in Xenopus, it activates Brachyury in axolotl. Thus, whilst the topology of the networks in the two species differs, both are able to form mesoderm and endoderm in vivo. Based on current knowledge of the structure of the mesendoderm GRN we develop deterministic models that describe the time evolution of transcription factors in a single axolotl cell and compare numerical simulations with previous results from Xenopus. The models are shown to have stable steady states corresponding to mesoderm and anterior mesendoderm, with the in vitro model showing how the concentration of Activin can determine cell fate, while the in vivo model shows that β-catenin concentration can determine cell fate. Moreover, our analysis suggests that additional components must be important in the axolotl network in the specification of the full range of tissues.

  4. Wound healing in mammals and amphibians: toward limb regeneration in mammals.

    PubMed

    Kawasumi, Aiko; Sagawa, Natsume; Hayashi, Shinichi; Yokoyama, Hitoshi; Tamura, Koji

    2013-01-01

    Mammalian fetal skin regenerates perfectly, but adult skin repairs by the formation of scar tissue. The cause of this imperfect repair by adult skin is not understood. In contrast, wounded adult amphibian (urodeles and anurans) skin is like mammalian fetal skin in that it repairs by regeneration, not scarring. Scar-free wound repair in adult Xenopus is associated with expression of the paired homeobox transcription factor Prx1 by mesenchymal cells of the wound, a feature shared by mesenchymal cells of the regeneration blastema of the axolotl limb. Furthermore, mesenchymal cells of Xenopus skin wounds that harbor the mouse Prx1-limb-enhancer as a transgene exhibit activation of the enhancer despite the fact that they are Xenopus cells, suggesting that the mouse Prx1 enhancer possesses all elements required for its activation in skin wound healing, even though activation of the same enhancer in the mouse is not seen in the wounded skin of an adult mouse. Elucidation of the role of the Prx1 gene in amphibian skin wound healing will help to clarify the molecular mechanisms of scarless wound healing. Shifting the molecular mechanism of wound repair in mammals to that of amphibians, including reactivation of the Prx1-limb-enhancer, will be an important clue to stimulate scarless wound repair in mammalian adult skin. Finding or creating Prx1-positive stem cells in adult mammal skin by activating the Prx1-limb-enhancer may be a fast and reliable way to provide for scarless skin wound repair, and even directly lead to limb regeneration in mammals.

  5. Amphibians as a model for the study of endocrine disruptors.

    PubMed

    Kloas, Werner

    2002-01-01

    Evidence shows that environmental compounds can interfere with the endocrine systems of wildlife and humans. The main sink of such substances, called endocrine disruptors (EDs), which are mainly of anthropogenic origin, is surface water; thus, aquatic vertebrates such as fishes and amphibians are most endangered. Despite numerous reports on EDs in fishes, information about EDs in amphibians is scarce, and this paucity of information is of particular concern in view of the worldwide decline of amphibians. EDs could contribute to changes of amphibian populations via adverse effects on reproduction and the thyroid system. In amphibians, EDs can affect reproduction by (anti)estrogenic and (anti)androgenic modes of action that produce severe effects including abnormal sexual differentiation. ED actions on the thyroid system cause acceleration or retardation of metamorphosis, which may also affect population levels. Our broad knowledge of amphibian biology and endocrinology indicates that amphibians are very suitable models for the study of EDs. In particular, effects of EDs on the thyroid system triggering metamorphosis can be determined easily and most sensitively in amphibians compared to other vertebrates. A new classification of EDs according to their biological modes of action is proposed because EDs have quite heterogeneous chemical structures, which do not allow prediction of their biological effects. Methods and strategies are proposed for identification and risk assessment of EDs, whether as pure test substances or as mixtures from environmental samples. Effects of EDs on the thyroid system of amphibians can be assessed by a single animal model (Xenopus laevis), whereas the various types of reproduction need comparative studies to investigate whether general endocrine principles do exist among several species of anurans and urodeles. Thus, at least one anuran and one urodelean model are needed to determine ED interference with reproduction.

  6. Phylogeny and Differentiation of Reptilian and Amphibian Ranaviruses Detected in Europe

    PubMed Central

    Stöhr, Anke C.; López-Bueno, Alberto; Blahak, Silvia; Caeiro, Maria F.; Rosa, Gonçalo M.; Alves de Matos, António Pedro; Martel, An; Alejo, Alí; Marschang, Rachel E.

    2015-01-01

    Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6–100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of

  7. Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages

    PubMed Central

    Froehlich, Jacob Michael; Seiliez, Iban; Gabillard, Jean-Charles; Biga, Peggy R.

    2014-01-01

    Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4. PMID:24835774

  8. The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality.

    PubMed

    Bullock, T H; Bodznick, D A; Northcutt, R G

    1983-08-01

    Specializations for electroreception in sense organs and brain centers are found in a wide variety of fishes and amphibians, though probably in a small minority of teleost taxa. No other group of vertebrates or invertebrates is presently suspected to have adaptations for electroreception in the definition given here. The distribution among fishes is unlike any other sense modality in that it has apparently been invented, lost completely and reinvented several times independently, using distinct receptors and central nuclei in the medulla. There are so far no clearly borderline or transitional fishes, either physiologically or anatomically. We rather expect a few new electroreceptive taxa to be found. The evoked potential method and the newly validated central anatomical criteria provide two useful tools for searching. Although Myxiniformes probably lack electroreception, it is well developed in Petromyzoniformes and in all other non-teleost fishes except Holostei. Thus Elasmobranchia, Holocephala, Dipneusti, Crossopterygii, Polypteriformes and Chondrostei have the physiological and anatomical specializations in a common form consistent with a single origin in primitive vertebrates. Amphibian ancestors probably inherited the system from a stem similar to one of these and passed it on at least to the ambystomatoid and salamandroid urodeles, apparently after losing the kinocilium of the sense cell. The suggestion of electroreception in ichthyophid apodans from skin histology has not been confirmed physiologically, behaviorally or by brain anatomy. With respect to more advanced fishes the most parsimonious interpretation is that the entire system, peripheral and central was lost in ancestors of holostean and teleostean fishes and new systems reinvented in Siluriformes, in Gymnotiformes, in Xenomystinae and in Mormyriformes. These 4 taxa must represent at least two, and probably 3 or 4 independent inventions, presumably from mechanoreceptive lateral line organs and

  9. Light-dependent magnetic compass in Iberian green frog tadpoles

    NASA Astrophysics Data System (ADS)

    Diego-Rasilla, Francisco Javier; Luengo, Rosa Milagros; Phillips, John B.

    2010-12-01

    Here, we provide evidence for a wavelength-dependent effect of light on magnetic compass orientation in Pelophylax perezi (order Anura), similar to that observed in Rana catesbeiana (order Anura) and Notophthalmus viridescens (order Urodela), and confirm for the first time in an anuran amphibian that a 90° shift in the direction of magnetic compass orientation under long-wavelength light (≥500 nm) is due to a direct effect of light on the underlying magnetoreception mechanism. Although magnetic compass orientation in other animals (e.g., birds and some insects) has been shown to be influenced by the wavelength and/or intensity of light, these two amphibian orders are the only taxa for which there is direct evidence that the magnetic compass is light-dependent. The remarkable similarities in the light-dependent magnetic compasses of anurans and urodeles, which have evolved as separate clades for at least 250 million years, suggest that the light-dependent magnetoreception mechanism is likely to have evolved in the common ancestor of the Lissamphibia (Early Permian, ~294 million years) and, possibly, much earlier. Also, we discuss a number of similarities between the functional properties of the light-dependent magnetic compass in amphibians and blue light-dependent responses to magnetic stimuli in Drosophila melanogaster, which suggest that the wavelength-dependent 90° shift in amphibians may be due to light activation of different redox forms of a cryptochrome photopigment. Finally, we relate these findings to earlier studies showing that the pineal organ of newts is the site of the light-dependent magnetic compass and recent neurophysiological evidence showing magnetic field sensitivity in the frog frontal organ (an outgrowth of the pineal).

  10. Insights into the mating habits of the tiger salamander (Ambystoma tigrinum tigrinum) as revealed by genetic parentage analyses.

    PubMed

    Gopurenko, David; Williams, Rod N; McCormick, Cory R; DeWoody, J Andrew

    2006-06-01

    Among urodeles, ambystomatid salamanders are particularly amenable to genetic parentage analyses because they are explosive aggregate breeders that typically have large progeny arrays. Such analyses can lead to direct inferences about otherwise cryptic aspects of salamander natural history, including the rate of multiple mating, individual reproductive success, and the spatial distribution of clutches. In 2002, we collected eastern tiger salamander (Ambystoma tigrinum tigrinum) egg masses (> 1000 embryos) from a approximately 80 m linear transect in Indiana, USA. Embryos were genotyped at four variable microsatellite loci and the resulting progeny array data were used to reconstruct multilocus genotypes of the parental dams and sires for each egg mass. UPGMA analysis of genetic distances among embryos resolved four instances of egg mass admixture, where two or more females had oviposited at exactly the same site resulting in the mixing of independent cohorts. In total, 41 discrete egg masses were available for parentage analyses. Twenty-three egg masses (56%) consisted exclusively of full-siblings (i.e. were singly sired) and 18 (44%) were multiply sired (mean 2.6 males/clutch). Parentage could be genetically assigned to one of 17 distinct parent pairs involving at least 15 females and 14 different males. Reproductive skew was evident among males who sired multiply sired clutches. Additional evidence of the effects of sexual selection on male reproductive success was apparent via significant positive correlations between male mating and reproductive success. Females frequently partitioned their clutches into multiple discrete egg masses that were separated from one another by as many as 43 m. Collectively, these data provide the first direct evidence for polygynandry in a wild population of tiger salamanders.

  11. Chronic transplantation immunity in newts: temperature susceptibility of an effector phase in allo-skin graft rejection.

    PubMed

    Kinefuchi, Kenjiroh; Kushida, Yoshihiro; Johnouchi, Masato; Shimizu, Yuiko; Ohneda, Hikaru; Fujii, Masato; Hosono, Masamichi

    2011-07-01

    Urodele amphibians are unique due to their greatly reduced immune responsiveness compared to bony fishes, which show acute immune responsiveness. In newts, the mean survival time of allogenic skin grafts in the transplantation immunity was 48.8 ± 8.3 days at 25°C, suggesting that it occurs in a chronic manner. The graft rejection process was categorized into three stages: a latent stage with frequent blood circulation, or the immune induction phase; a vascular stoppage stage with dominant infiltrating cells of T cells; and a rejection stage showing the change of the dominant cells to monocytes/macrophages, probably as effector cells, tetntatively referred to as the immune effector phase. The immune induction phase is susceptible to the cyclophosphamide (CY) mitosis inhibitor, but not to a temperature shift from 18 to 27°C, while the immune effector phase is susceptible to temperature shifts, but not CY-treatment, although the temperature shift failed to shorten the graft survival time to less than 25 days, which nearly equals that of the secondary set of grafts where the lack of complete blood circulation is remarkable and graft rejection is resistant to CY-treatment. In contrast, a very low temperature (5-10°C) completely prevented effector generation in newts; in frogs, however, it is reported that such low temperatures did not prevent the generation of effectors. Taken together, these data suggest that chronic responses in newts are due to effector cells other than cytotoxic T cells; possible effector cells are discussed.

  12. Effects of Tail Clipping on Larval Performance and Tail Regeneration Rates in the Near Eastern Fire Salamander, Salamandra infraimmaculata

    PubMed Central

    Segev, Ori; Polevikove, Antonina; Blank, Lior; Goedbloed, Daniel; Küpfer, Eliane; Gershberg, Anna; Koplovich, Avi; Blaustein, Leon

    2015-01-01

    Tail-tip clipping is a common technique for collecting tissue samples from amphibian larvae and adults. Surprisingly, studies of this invasive sampling procedure or of natural tail clipping – i.e., bites inflicted by predators including conspecifics - on the performance and fitness of aquatic larval stages of urodeles are scarce. We conducted two studies in which we assessed the effects of posterior tail clipping (~30 percent of tail) on Near Eastern fire salamander (Salamandra infraimmaculata) larvae. In a laboratory study, we checked regeneration rates of posterior tail-tip clipping at different ages. Regeneration rates were hump-shaped, peaking at the age of ~30 days and then decreasing. This variation in tail regeneration rates suggests tradeoffs in resource allocation between regeneration and somatic growth during early and advanced development. In an outdoor artificial pond experiment, under constant larval densities, we assessed how tail clipping of newborn larvae affects survival to, time to, and size at metamorphosis. Repeated measures ANOVA on mean larval survival per pond revealed no effect of tail clipping. Tail clipping had correspondingly no effect on larval growth and development expressed in size (mass and snout-vent length) at, and time to, metamorphosis. We conclude that despite the given variation in tail regeneration rates throughout larval ontogeny, clipping of 30% percent of the posterior tail area seems to have no adverse effects on larval fitness and survival. We suggest that future use of this imperative tool for the study of amphibian should take into account larval developmental stage during the time of application and not just the relative size of the clipped tail sample. PMID:26065683

  13. Blood vessel formation during tail regeneration in the leopard gecko (Eublepharis macularius): The blastema is not avascular.

    PubMed

    Payne, Samantha L; Peacock, Hanna M; Vickaryous, Matthew K

    2017-03-01

    Unique among amniotes, many lizards are able to self-detach (autotomize) their tail and then regenerate a replacement. Tail regeneration involves the formation of a blastema, an accumulation of proliferating cells at the site of autotomy. Over time, cells of the blastema give rise to most of the tissues in the replacement tail. In non-amniotes capable of regenerating (such as urodeles and some teleost fish), the blastema is reported to be essentially avascular until tissue differentiation takes place. For tail regenerating lizards less is known. Here, we investigate neovascularization during tail regeneration in the leopard gecko (Eublepharis macularius). We demonstrate that the gecko tail blastema is not an avascular structure. Beginning with the onset of regenerative outgrowth, structurally mature (mural cell supported) blood vessels are found within the blastema. Although the pattern of blood vessel distribution in the regenerate tail differs from that of the original, a hierarchical network is established, with vessels of varying luminal diameters and wall thicknesses. Using immunostaining, we determine that blastema outgrowth and tissue differentiation is characterized by a dynamic interplay between the pro-angiogenic protein vascular endothelial growth factor (VEGF) and the anti-angiogenic protein thrombospondin-1 (TSP-1). VEGF-expression is initially widespread, but diminishes as tissues differentiate. In contrast, TSP-1 expression is initially restricted but becomes more abundant as VEGF-expression wanes. We predict that variation in the neovascular response observed between different regeneration-competent species likely relates to the volume of the blastema. J. Morphol. 278:380-389, 2017. © 2017 Wiley Periodicals, Inc.

  14. Genome Wide Expression Profiling during Spinal Cord Regeneration Identifies Comprehensive Cellular Responses in Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Sengupta, Dhriti; Lee, Serene Gek Ping; Sen, Triparna; Kundu, Sudip; Mathavan, Sinnakaruppan; Ghosh, Sukla

    2014-01-01

    Background Among the vertebrates, teleost and urodele amphibians are capable of regenerating their central nervous system. We have used zebrafish as a model to study spinal cord injury and regeneration. Relatively little is known about the molecular mechanisms underlying spinal cord regeneration and information based on high density oligonucleotide microarray was not available. We have used a high density microarray to profile the temporal transcriptome dynamics during the entire phenomenon. Results A total of 3842 genes expressed differentially with significant fold changes during spinal cord regeneration. Cluster analysis revealed event specific dynamic expression of genes related to inflammation, cell death, cell migration, cell proliferation, neurogenesis, neural patterning and axonal regrowth. Spatio-temporal analysis of stat3 expression suggested its possible function in controlling inflammation and cell proliferation. Genes involved in neurogenesis and their dorso-ventral patterning (sox2 and dbx2) are differentially expressed. Injury induced cell proliferation is controlled by many cell cycle regulators and some are commonly expressed in regenerating fin, heart and retina. Expression pattern of certain pathway genes are identified for the first time during regeneration of spinal cord. Several genes involved in PNS regeneration in mammals like stat3, socs3, atf3, mmp9 and sox11 are upregulated in zebrafish SCI thus creating PNS like environment after injury. Conclusion Our study provides a comprehensive genetic blue print of diverse cellular response(s) during regeneration of zebrafish spinal cord. The data highlights the importance of different event specific gene expression that could be better understood and manipulated further to induce successful regeneration in mammals. PMID:24465396

  15. Exploring the Distribution of the Spreading Lethal Salamander Chytrid Fungus in Its Invasive Range in Europe – A Macroecological Approach

    PubMed Central

    Feldmeier, Stephan; Schefczyk, Lukas; Wagner, Norman; Heinemann, Günther; Veith, Michael; Lötters, Stefan

    2016-01-01

    The chytrid fungus Batrachochytrium salamandrivorans (Bsal) is a dangerous pathogen to salamanders and newts. Apparently native to Asia, it has recently been detected in Western Europe where it is expected to spread and to have dramatic effects on naïve hosts. Since 2010, Bsal has led to some catastrophic population declines of urodeles in the Netherlands and Belgium. More recently, it has been discovered in additional, more distant sites including sites in Germany. With the purpose to contribute to a better understanding of Bsal, we modelled its potential distribution in its invasive European range to gain insights about the factors driving this distribution. We computed Bsal Maxent models for two predictor sets, which represent different temporal resolutions, using three different background extents to account for different invasion stage scenarios. Beside ‘classical’ bioclimate, we employed weather data, which allowed us to emphasize predictors in accordance with the known pathogen’s biology. The most important predictors as well as spatial predictions varied between invasion scenarios and predictor sets. The most reasonable model was based on weather data and the scenario of a recent pathogen introduction. It identified temperature predictors, which represent optimal growing conditions and heat limiting conditions, as the most explaining drivers of the current distribution. This model also predicted large areas in the study region as suitable for Bsal. The other models predicted considerably less, but shared some areas which we interpreted as most likely high risk zones. Our results indicate that growth relevant temperatures measured under laboratory conditions might also be relevant on a macroecological scale, if predictors with a high temporal resolution and relevance are used. Additionally, the conditions in our study area support the possibility of a further Bsal spread, especially when considering that our models might tend to underestimate the

  16. The Mechanics of Air-Breathing in Anuran Larvae: Implications to the Development of Amphibians in Microgravity

    NASA Astrophysics Data System (ADS)

    Wassersug, Richard J.; Yamashita, Masamichi

    Because of their rapid development, amphibians have been important model organisms in studies of how microgravity (μG) affects vertebrate growth and differentiation. Both urodele (salamanders) and anuran (frogs and toads) embryos have been raised in orbital flight, the latter several times. The most commonly reported and striking effects of μG on tadpoles are not in the vestibular system, as one might suppose, but in their lungs and tails. Pathological changes in these organs disrupt behavior and retard larval growth. What causes malformed (typically lordotic) tadpoles in μG is not known, nor have axial pathologies been reported in every flight experiment. Lung pathology, however, has been consistently observed and is understood to result from the failure of the animals to inflate their lungs in a timely and adequate fashion. We suggest that malformities in the axial skeleton of tadpoles raised in μG are secondary to problems in respiratory function. We have used high speed videography to investigate how tadpoles breathe air in the 1G environment. The video images reveal alternative species-specific mechanisms, that allow tadpoles to separate air from water in less that 150 ms. We observed nothing in the biomechanics of air-breathing in 1G that would preclude these same mechanisms from working in μG. Thus our kinematic results suggest that the failure of tadpoles to inflate their lungs properly in μG is due to the tadpoles' inability to locate the air-water interface and not a problem with the inhalation mechanism per se

  17. A comparative study of the hyobranchial apparatus in Hynobiidae (Amphibia: Urodela).

    PubMed

    Xiong, Jian-li; Sun, Ping; Zhang, Ji-liang; Liu, Xiu-ying

    2013-04-01

    The morphology of the adult hyobranchial apparatus has played an important role in understanding the systematics and evolution of urodeles, but the hyobranchial apparatus of hynobiid salamanders has received little attention so far. In this study, the hyobranchial apparatus of eight hynobiid salamanders (Hynobius leechii, Onychodactylus zhangyapingi, Ranodon sibiricus, Batrachuperus pinchonii, Salamandrella keyserlingii, Liua shihi, Pachyhynobius shangchengensis and Pseudohynobius flavomaculatus) is described and compared based on the clearing and double-staining method. The basic elements of the hyobranchial apparatus of the eight species are similar, including one basibranchial, cornua, one pair of radial loops, one pair of ceratohyals, one pair of hypobranchials II, one pair of ceratobranchials II, one urohyal (absent in O. zhangyapingi), one pair of the complex of hypobranchial I and ceratobranchial I (separated in certain species). Although the hyobranchial apparatus is similar among hynobiid salamanders and shows a unique morphological pattern, there are also certain species-specific distinctions that may be used for specific or generic diagnosis. The results of an ancestral state reconstruction of five traits showed that the ossified basibranchial, the presence of a separated hypobranchial I and ceratobranchial I, the absence of a urohyal, the ossified hypobranchial I and the partially ossified ceratohyal are derived traits. The state shown by the traits of each species is consistent with the phylogenetic position of each species. Compared with other Urodela, the hyobranchial apparatus of this group shows certain distinctive features that may represent the diagnostic characters of the family Hynobiidae. The partially ossified ceratohyal is correlated with the habitat and represents an ecological adaptation.

  18. Metabolism, gas exchange, and acid-base balance of giant salamanders.

    PubMed

    Ultsch, Gordon R

    2012-08-01

    The giant salamanders are aquatic and paedomorphic urodeles including the genera Andrias and Cryptobranchus (Cryptobranchidae), Amphiuma (Amphiumidae), Siren (Sirenidae), and Necturus (Proteidae, of which only N. maculosus is considered 'a giant'). Species in the genera Cryptobranchus and Necturus are considered aquatic salamanders well adapted for breathing water, poorly adapted for breathing air, and with limited abilities to compensate acid-base disturbances. As such, they are water-breathing animals with a somewhat fish-like respiratory and acid-base physiology, whose habitat selection is limited to waters that do not typically become hypoxic or hypercarbic (although this assertion has been questioned for N. maculosus). Siren and Amphiuma species, by contrast, are dependent upon air-breathing, have excellent lungs, inefficient (Siren) or no (Amphiuma) gills, and are obligate air-breathers with an acid-base status more similar to that of terrestrial tetrapods. As such, they can be considered to be air-breathing animals that live in water. Their response to the aquatic hypercarbia that they often encounter is to maintain intracellular pH (pH(i) ) and abandon extracellular pH regulation, a process that has been referred to as preferential pH(i) regulation. The acid-base status of some present-day tropical air-breathing fishes, and of Siren and Amphiuma, suggests that the acid-base transition from a low PCO(2) -low [] system typical of water-breathing fishes to the high PCO(2) -high [] systems of terrestrial tetrapods may have been completed before emergence onto land, and likely occurred in habitats that were typically both hypoxic and hypercarbic.

  19. Is salamander limb regeneration really perfect? Anatomical and morphogenetic analysis of forelimb muscle regeneration in GFP-transgenic axolotls as a basis for regenerative, developmental, and evolutionary studies.

    PubMed

    Diogo, R; Nacu, E; Tanaka, E M

    2014-06-01

    The axolotl Ambystoma mexicanum is one of the most commonly used model organisms in developmental and regenerative studies because it can reconstitute what is believed to be a completely normal anatomical and functional forelimb/hindlimb after amputation. However, to date it has not been confirmed whether each regenerated forelimb muscle is really a "perfect" copy of the original muscle. This study describes the regeneration of the arm, forearm, hand, and some pectoral muscles (e.g., coracoradialis) in transgenic axolotls that express green fluorescent protein (GFP) in muscle fibers. The observations found that: (1) there were muscle anomalies in 43% of the regenerated forelimbs; (2) however, on average in each regenerated forelimb there are anomalies in only 2.5% of the total number of muscles examined, and there were no significant differences observed in the specific insertion and origin of the other muscles analyzed; (3) one of the most notable and common anomalies (seen in 35% of the regenerated forelimbs) was the presence of a fleshy coracoradialis at the level of the arm; this is a particularly outstanding configuration because in axolotls and in urodeles in general this muscle only has a thin tendon at the level of the arm, and the additional fleshy belly in the regenerated arms is strikingly similar to the fleshy biceps brachii of amniotes, suggesting a remarkable parallel between a regeneration defect and a major phenotypic change that occurred during tetrapod limb evolution; (4) during forelimb muscle regeneration there was a clear proximo-distal and radio-ulnar morphogenetic gradient, as seen in normal development, but also a ventro-dorsal gradient in the order of regeneration, which was not previously described in the literature. These results have broader implications for regenerative, evolutionary, developmental and morphogenetic studies.

  20. Microarray analysis of microRNA expression during axolotl limb regeneration.

    PubMed

    Holman, Edna C; Campbell, Leah J; Hines, John; Crews, Craig M

    2012-01-01

    Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum) has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression) of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum ("Amex") miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3'UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes.

  1. Deep-time evolution of regeneration and preaxial polarity in tetrapod limb development.

    PubMed

    Fröbisch, Nadia B; Bickelmann, Constanze; Olori, Jennifer C; Witzmann, Florian

    2015-11-12

    Among extant tetrapods, salamanders are unique in showing a reversed preaxial polarity in patterning of the skeletal elements of the limbs, and in displaying the highest capacity for regeneration, including full limb and tail regeneration. These features are particularly striking as tetrapod limb development has otherwise been shown to be a highly conserved process. It remains elusive whether the capacity to regenerate limbs in salamanders is mechanistically and evolutionarily linked to the aberrant pattern of limb development; both are features classically regarded as unique to urodeles. New molecular data suggest that salamander-specific orphan genes play a central role in limb regeneration and may also be involved in the preaxial patterning during limb development. Here we show that preaxial polarity in limb development was present in various groups of temnospondyl amphibians of the Carboniferous and Permian periods, including the dissorophoids Apateon and Micromelerpeton, as well as the stereospondylomorph Sclerocephalus. Limb regeneration has also been reported in Micromelerpeton, demonstrating that both features were already present together in antecedents of modern salamanders 290 million years ago. Furthermore, data from lepospondyl 'microsaurs' on the amniote stem indicate that these taxa may have shown some capacity for limb regeneration and were capable of tail regeneration, including re-patterning of the caudal vertebral column that is otherwise only seen in salamander tail regeneration. The data from fossils suggest that salamander-like regeneration is an ancient feature of tetrapods that was subsequently lost at least once in the lineage leading to amniotes. Salamanders are the only modern tetrapods that retained regenerative capacities as well as preaxial polarity in limb development.

  2. Effects of Tail Clipping on Larval Performance and Tail Regeneration Rates in the Near Eastern Fire Salamander, Salamandra infraimmaculata.

    PubMed

    Segev, Ori; Polevikove, Antonina; Blank, Lior; Goedbloed, Daniel; Küpfer, Eliane; Gershberg, Anna; Koplovich, Avi; Blaustein, Leon

    2015-01-01

    Tail-tip clipping is a common technique for collecting tissue samples from amphibian larvae and adults. Surprisingly, studies of this invasive sampling procedure or of natural tail clipping--i.e., bites inflicted by predators including conspecifics--on the performance and fitness of aquatic larval stages of urodeles are scarce. We conducted two studies in which we assessed the effects of posterior tail clipping (~30 percent of tail) on Near Eastern fire salamander (Salamandra infraimmaculata) larvae. In a laboratory study, we checked regeneration rates of posterior tail-tip clipping at different ages. Regeneration rates were hump-shaped, peaking at the age of ~30 days and then decreasing. This variation in tail regeneration rates suggests tradeoffs in resource allocation between regeneration and somatic growth during early and advanced development. In an outdoor artificial pond experiment, under constant larval densities, we assessed how tail clipping of newborn larvae affects survival to, time to, and size at metamorphosis. Repeated measures ANOVA on mean larval survival per pond revealed no effect of tail clipping. Tail clipping had correspondingly no effect on larval growth and development expressed in size (mass and snout-vent length) at, and time to, metamorphosis. We conclude that despite the given variation in tail regeneration rates throughout larval ontogeny, clipping of 30% percent of the posterior tail area seems to have no adverse effects on larval fitness and survival. We suggest that future use of this imperative tool for the study of amphibian should take into account larval developmental stage during the time of application and not just the relative size of the clipped tail sample.

  3. Proteomic analysis of blastema formation in regenerating axolotl limbs

    PubMed Central

    2009-01-01

    Background Following amputation, urodele salamander limbs reprogram somatic cells to form a blastema that self-organizes into the missing limb parts to restore the structure and function of the limb. To help understand the molecular basis of blastema formation, we used quantitative label-free liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)-based methods to analyze changes in the proteome that occurred 1, 4 and 7 days post amputation (dpa) through the mid-tibia/fibula of axolotl hind limbs. Results We identified 309 unique proteins with significant fold change relative to controls (0 dpa), representing 10 biological process categories: (1) signaling, (2) Ca2+ binding and translocation, (3) transcription, (4) translation, (5) cytoskeleton, (6) extracellular matrix (ECM), (7) metabolism, (8) cell protection, (9) degradation, and (10) cell cycle. In all, 43 proteins exhibited exceptionally high fold changes. Of these, the ecotropic viral integrative factor 5 (EVI5), a cell cycle-related oncoprotein that prevents cells from entering the mitotic phase of the cell cycle prematurely, was of special interest because its fold change was exceptionally high throughout blastema formation. Conclusion Our data were consistent with previous studies indicating the importance of inositol triphosphate and Ca2+ signaling in initiating the ECM and cytoskeletal remodeling characteristic of histolysis and cell dedifferentiation. In addition, the data suggested that blastema formation requires several mechanisms to avoid apoptosis, including reduced metabolism, differential regulation of proapoptotic and antiapoptotic proteins, and initiation of an unfolded protein response (UPR). Since there is virtually no mitosis during blastema formation, we propose that high levels of EVI5 function to arrest dedifferentiated cells somewhere in the G1/S/G2 phases of the cell cycle until they have accumulated under the wound epidermis and enter mitosis in response to neural and

  4. Sperm motility-initiating substance in newt egg-jelly induces differential initiation of sperm motility based on sperm intracellular calcium levels.

    PubMed

    Watanabe, Akihiko; Takayama-Watanabe, Eriko; Vines, Carol A; Cherr, Gary N

    2011-01-01

    Sperm motility-initiating substance (SMIS), a novel motility inducer from newt egg-jelly, is activated by the release from associated jelly substances at the beginning of internal fertilization and affects female-stored sperm. We examined motility initiation kinetics of newt sperm in response to SMIS by monitoring the changes of sperm intracellular calcium ([Ca²(+)](i)). In quiescent non-motile sperm loaded with the Ca²(+) indicator Fluo-4, intracellular free Ca²(+) was observed around mitochondria using confocal scanning laser microscopy. A slight increase in [Ca²(+)](i) occurred simultaneously and transiently at motility initiation in sperm treated with either heated jelly extract (hJE) containing activated SMIS, or a low osmotic solution, which naturally initiates motility in externally-fertilizing amphibians and can initiate motility in urodele sperm. When the increase of [Ca²(+)](i) at motility-initiation was monitored using spectrofluorometry, large increases in [Ca²(+)](i) occurred immediately in the low osmotic solution and within 1.5 min in the hJE. In the intact jelly extract (no heating), small increases of [Ca²(+)](i) irregularly occurred from around 1 min and for about 4 min, during which motility was differentially initiated among sperm. These results indicate that the SMIS induces differential initiation of sperm motility depending on the activational states of the SMIS and its overall activity. The motility initiation in the jelly extract was delayed in sperm whose intracellular Ca²(+) had been chelated with BAPTA-AM. The relative levels of [Ca²(+)](i) were variable with a mean of 414 ± 256 nmol/L among resting sperm, suggesting that the level of [Ca²(+)](i) in the resting sperm modulates the responsiveness to the SMIS.

  5. Immunohistological classification of ionocytes in the external gills of larval Japanese black salamander, Hynobius nigrescens Stejneger.

    PubMed

    Uchiyama, Minoru; Kumano, Tomoko; Komiyama, Makiko; Yoshizawa, Hideki; Matsuda, Kouhei

    2011-08-01

    In this cytological and immunohistological study, we clarified the localization of the membrane transporters Na(+) , K(+) -ATPase (NKA), vacuolar-type H(+) -ATPase (VHA), and epithelial sodium channel (ENaC) and distinguished ionocyte subtypes in the gill of the Japanese salamander (Hynobius nigrescens). In larvae (IY stages 43-65), NKA immunoreactivity was observed on the basolateral plasma membrane in more than 60% cells and less than 20% cells in the primary filaments and secondary lamellae of the external gills, respectively. VHA immunoreactivity was observed on the apical membrane of some epithelial cells in the secondary lamellae of the external gills. High ENaCα immunoreactivity was widely observed on the apical cell membrane of a population of squamous cells, presumably pavement cells (PVCs), and mitochondria-rich cells (MRCs), in the primary filaments and secondary lamellae of the external gills. Using double immunofluorescence microscopy, epithelial cell types involved in ionic regulation were characterized and divided into three ionocyte types: NKA-, NKA- and ENaC-, and VHA-positive cells. VHA-immunoreactive cells as well as NKA-positive cells were observed during IY stages 43-65 of the salamander larvae. During late stages of metamorphosis, NKA, VHA, and ENaCα immunoreactivities in the external gills decreased and finally disappeared during the completion of metamorphosis (IY stage 68). PVCs and MRCs in the external gills are probably involved in acid-base balance regulation and osmoregulation in urodele amphibian larvae. The results are discussed in relation to the ionocytes previously reported in fish gills and the frog skin epithelium.

  6. In vivo electroporation of morpholinos into the regenerating adult zebrafish tail fin.

    PubMed

    Hyde, David R; Godwin, Alan R; Thummel, Ryan

    2012-03-29

    Certain species of urodeles and teleost fish can regenerate their tissues. Zebrafish have become a widely used model to study the spontaneous regeneration of adult tissues, such as the heart, retina, spinal cord, optic nerve, sensory hair cells, and fins. The zebrafish fin is a relatively simple appendage that is easily manipulated to study multiple stages in epimorphic regeneration. Classically, fin regeneration was characterized by three distinct stages: wound healing, blastema formation, and fin outgrowth. After amputating part of the fin, the surrounding epithelium proliferates and migrates over the wound. At 33 °C, this process occurs within six hours post-amputation (hpa, Figure 1B). Next, underlying cells from different lineages (ex. bone, blood, glia, fibroblast) re-enter the cell cycle to form a proliferative blastema, while the overlying epidermis continues to proliferate (Figure 1D). Outgrowth occurs as cells proximal to the blastema re-differentiate into their respective lineages to form new tissue (Figure 1E). Depending on the level of the amputation, full regeneration is completed in a week to a month. The expression of a large number of gene families, including wnt, hox, fgf, msx, retinoic acid, shh, notch, bmp, and activin-betaA genes, is up-regulated during specific stages of fin regeneration. However, the roles of these genes and their encoded proteins during regeneration have been difficult to assess, unless a specific inhibitor for the protein exists, a temperature-sensitive mutant exists or a transgenic animal (either overexpressing the wild-type protein or a dominant-negative protein) was generated. We developed a reverse genetic technique to quickly and easily test the function of any gene during fin regeneration. Morpholino oligonucleotides are widely used to study loss of specific proteins during zebrafish, Xenopus, chick, and mouse development. Morpholinos basepair with a complementary RNA sequence to either block pre-mRNA splicing or m

  7. Ghrelin receptor in Japanese fire belly newt, Cynops pyrrhogaster.

    PubMed

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2015-11-01

    We identified cDNA encoding a functional ghrelin receptor (growth hormone secretagogue-receptor 1a (GHS-R1a)) in a urodele amphibian, the Japanese fire belly newt (Cynops pyrrhogaster). Two functional receptor proteins, composed of 378- and 362-amino acids, were deduced from the identified cDNA because two candidate initiation methionine sites were found. The long-chain receptor protein shared 80%, 69%, and 59% identities with the bullfrog GHS-R1a, human GHS-R1a and tilapia GHS-R1a-like receptor, respectively. Phylogenetic analysis suggested that the newt receptor is grouped to the clade of the tetrapod homologs, and very closed to anuran amphibians. In functional analyses, homologous newt ghrelin, heterologous bullfrog and rat ghrelin, and a GHS-R1a agonist, GHRP-6 increased intracellular Ca(2+) concentration in human embryonic kidney (HEK) 293 cells stably expressed newt GHS-R1a. The responsiveness was much greater in the short-chain receptor than in the long-chain receptor. Both receptors preferred to bind Ser(3)-ghrelin including newt and rat ghrelin than Thr(3)-ghrelin with bullfrog ghrelin. GHRP-6 has a similar affinity to bullfrog ghrelin. GHS-R1a mRNA was expressed in the brain, pituitary, intestine, pancreas, testis and fat body with high level, and eyes, heart, stomach, liver, gall bladder, kidney and dorsal skin with low level. In a fasting experiment, gene expression of GHS-R1a in the brain and pituitary increased 4days after fasting, and the increased level decreased to the initial level 2weeks after fasting. These changes are consistent with the change in ghrelin mRNA. In contrast, expression of ghrelin and GHS-R1a mRNA in the stomach decreased on day 4 after fasting, and increased 2weeks after fasting. These results indicate that ghrelin and its receptor system are present and altered by energy states in this newt.

  8. Carotid labyrinth of amphibians.

    PubMed

    Kusakabe, Tatsumi

    2002-11-01

    The amphibian carotid labyrinth is a characteristic maze-like vascular expansion at the bifurcation of the common carotid artery into the internal and external carotid arteries. The carotid labyrinths of anurans are spherical and those of urodeles are oblong. In the intervascular stroma of both anuran and urodelan carotid labyrinths, the glomus cells (type I cells, chief cells) are distributed singly or in clusters between connective tissue cells and smooth muscle cells. In fluorescence histochemistry, the glomus cells emit intense fluorescence for biogenic monoamines. In fine structure, the glomus cells are characterized by a number of dense-cored vesicles in their cytoplasm. The glomus cells have long, thin cytoplasmic processes, some of which are closely associated with smooth muscle cells, endothelial cells, and pericytes. Afferent, efferent, and reciprocal synapses are found on the glomus cells. The morphogenesis of the carotid labyrinth starts in the larvae at the point where the carotid arch descends to the internal gills. Through the early stages of larval development, the slightly expanded region of the external carotid artery becomes closely connected with the carotid arch. By the end of the foot stage, the expanded region becomes globular, and at the final stage of metamorphosis the carotid labyrinth is close to its adult form. In fine structure, the glomus cells appear as early as the initial stage of larval development. At the middle stages of development, the number of dense-cored vesicles increases remarkably. Distinct afferent synapses are found in juveniles, although efferent synapses can be seen during metamorphosis. The carotid labyrinth is innervated by nerve fibers containing several kinds of regulatory neuropeptides. Double-immunolabeling in combination with a multiple dye filter system demonstrates the coexistence of two different neuropeptides. The amphibian carotid labyrinth has been electrophysiologically confirmed to have arterial chemo

  9. Some remarks on the female and male Keimbahn in the light of evolution and history.

    PubMed

    Hilscher, W

    1999-10-15

    From the existence of two types of cells for reproduction-the female and male germ cells (GCs)-and by recombination of the genome, evolution proceeded dramatically. Unicellular and multicellular plants frequently are characterized by a sequence of haploid and diploid phases, or generations, with gametes and spores as reproductive cells. Isogamy, anisogamy, and oogamy can be distinguished depending on the GCs that correspond, differ in size, or impose as egg cell and sperm cell. In protozoans, too, species are found in which GCs differ clearly from each other. In the female lineage of angiosperms, a "Keimbahn chain" consisting of five successive germ line cells can be observed. Oogenesis and spermatogenesis are complete in coelenterates and similar in mammals. However, the controlling mechanisms are by far more complex in the latter. This means that the balance of hormonal and vegetative nervous influences (stimulation, inhibition) on gametogenesis is not primarily orientated on the germ line cells themselves, but mostly on the structural and functional situation of the gonads and the individual carriers. This becomes particularly evident in insects, where gametogenesis, on the one side, depends on the development of the rest of the organism but on the other side represents an independent developmental process. The point at which germ line cells and somatic cells separate correlates more or less with the degree of phylogenetic development. In worms, insects, and up to the anurans, a part of the cytoplasm, the so-called germ plasma, is separated for the development of GCs during oogenesis (preformistic development). However, in urodeles, reptiles, birds, and mammals, GCs and somatic cells cannot be distinguished before gastrulation (epigenetic development). In various species (e.g., in some oligochaetes and snails), there exist "double spermatogenic lines." In mammals (probably in other vertebrates and perhaps in various phyla of animals, too), the female Keimbahn is

  10. Is evolutionary biology becoming too politically correct? A reflection on the scala naturae, phylogenetically basal clades, anatomically plesiomorphic taxa, and 'lower' animals.

    PubMed

    Diogo, Rui; Ziermann, Janine M; Linde-Medina, Marta

    2015-05-01

    The notion of scala naturae dates back to thinkers such as Aristotle, who placed plants below animals and ranked the latter along a graded scale of complexity from 'lower' to 'higher' animals, such as humans. In the last decades, evolutionary biologists have tended to move from one extreme (i.e. the idea of scala naturae or the existence of a general evolutionary trend in complexity from 'lower' to "higher" taxa, with Homo sapiens as the end stage) to the other, opposite, extreme (i.e. to avoid using terms such as 'phylogenetically basal' and 'anatomically plesiomorphic' taxa, which are seen as the undesired vestige of old teleological theories). The latter view tries to avoid any possible connotations with the original anthropocentric idea of a scala naturae crowned by man and, in that sense, it can be regarded as a more politically correct view. In the past years and months there has been renewed interest in these topics, which have been discussed in various papers and monographs that tend to subscribe, in general, to the points defended in the more politically correct view. Importantly, most evolutionary and phylogenetic studies of tetrapods and other vertebrates, and therefore most discussions on the scala naturae and related issues have been based on hard tissue and, more recently, on molecular data. Here we provide the first discussion of these topics based on a comparative myological study of all the major vertebrate clades and of myological cladistic and Bayesian phylogenetic analyses of bony fish and tetrapods, including Primates. We specifically (i) contradict the notions of a scala naturae or evolutionary progressive trends leading to more complexity in 'higher' animals and culminating in Homo sapiens, and (ii) stress that the refutation of these old notions does not necessarily mean that one should not keep using the terms 'phylogenetically basal' and particularly 'anatomically plesiomorphic' to refer to groups such as the urodeles within the Tetrapoda

  11. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians?

    PubMed

    Orton, Frances; Tyler, Charles R

    2015-11-01

    Globally, amphibians are undergoing a precipitous decline. At the last estimate in 2004, 32% of the approximately 6000 species were threatened with extinction and 43% were experiencing significant declines. These declines have been linked with a wide range of environmental pressures from habitat loss to climate change, disease and pollution. This review evaluates the evidence that endocrine-disrupting contaminants (EDCs) - pollutants that affect hormone systems - are impacting on wild amphibians and contributing to population declines. The review is limited to anurans (frogs and toads) as data for effects of EDCs on wild urodeles (salamanders, newts) or caecilians (limbless amphibians) are extremely limited. Evidence from laboratory studies has shown that a wide range of chemicals have the ability to alter hormone systems and affect reproductive development and function in anurans, but for the most part only at concentrations exceeding those normally found in natural environments. Exceptions can be found for exposures to the herbicide atrazine and polychlorinated biphenyls in leopard frogs (Rana pipiens) and perchlorate in African clawed frogs (Xenopus laevis). These contaminants induce feminising effects on the male gonads (including 'intersex' - oocytes within testes) at concentrations measured in some aquatic environments. The most extensive data for effects of an EDC in wild amphibian populations are for feminising effects of atrazine on male gonad development in regions across the USA. Even where strong evidence has been provided for feminising effects of EDCs, however, the possible impact of these effects on fertility and breeding outcome has not been established, making inference for effects on populations difficult. Laboratory studies have shown that various chemicals, including perchlorate, polychlorinated biphenyls and bromodiphenylethers, also act as endocrine disrupters through interfering with thyroid-dependent processes that are fundamental for

  12. Tail regeneration in Urodela: old model and new perspectives in studies

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Anton, H.; Mitashov, V.

    For better understanding of micro-"g" effect on nervous tissue regeneration we have chosen the regeneration of the Urodele tail, because it utilizes many developmental processes and represents the most convenient model for experiments in Space. The special interesting aspect lies in the ability of regenerates to differentiate the spinal cord (SC) and this, in turn, has a potential of practical application. Meanwhile there are conclusive evidences suggesting the production by SC cells the neurotrophic factors promoting cell proliferation and differentiation in growing tail regenerate. Previously our studies on tail regeneration in the adult newt showed that the force of gravity clearly inf luences the events underlying the regeneration. We reported the significant increase of tail regeneration rate and tissue volume of tail regenerates in the newts exposed to real and simulated low "g". In Bion 11 mission animals that were exposed 14 days in microgravity and whose tails were operated two and four weeks before launch demonstrated the regenerates achieved 1.5 - 2 times the volume of those in 1"g" control. Results of this experiment indicated also that the regeneration of central and peripheral neurons and nerve fibers was carrying out faster under low "g" conditions than in 1 "g" control. Similar data were obtained in several experiments remodeling physiological weightlessness by mean of the clinostat. It led us to the hypothesis that the stimulation of tail regeneration is linked with an over activation of neurotrophic factors produced by quickly growing SC neurons. Now we've completed the experiment on tail regeneration in the newts Tr. alpestris subjected to 5 day long clinorotation after 6 days post tail amputation. The rate of primary- and secondary regeneration was evaluated at different time points after treatment. Cell proliferation, differentiation and expression of neurotrophic proteins in SC and other major tissue-type of regenerate were investigated by

  13. A molecular footprint of limb loss: sequence variation of the autopodial identity gene Hoxa-13.

    PubMed

    Kohlsdorf, Tiana; Cummings, Michael P; Lynch, Vincent J; Stopper, Geffrey F; Takahashi, Kazuhiko; Wagner, Günter P

    2008-12-01

    The homeobox gene Hoxa-13 codes for a transcription factor involved in multiple functions, including body axis and hand/foot development in tetrapods. In this study we investigate whether the loss of one function (e.g., limb loss in snakes) left a molecular footprint in exon 1 of Hoxa-13 that could be associated with the release of functional constraints caused by limb loss. Fragments of the Hoxa-13 exon 1 were sequenced from 13 species and analyzed, with additional published sequences of the same region, using relative rates and likelihood-ratio tests. Five amino acid sites in exon 1 of Hoxa-13 were detected as evolving under positive selection in the stem lineage of snakes. To further investigate whether there is an association between limb loss and sequence variation in Hoxa-13, we used the random forest method on an alignment that included shark, basal fish lineages, and "eu-tetrapods" such as mammals, turtle, alligator, and birds. The random forest method approaches the problem as one of classification, where we seek to predict the presence or absence of autopodium based on amino acid variation in Hoxa-13 sequences. Different alignments tested were associated with similar error rates (18.42%). The random forest method suggested that phenotypic states (autopodium present and absent) can often be correctly predicted based on Hoxa-13 sequences. Basal, nontetrapod gnat-hostomes that never had an autopodium were consistently classified as limbless together with the snakes, while eu-tetrapods without any history of limb loss in their phylogeny were also consistently classified as having a limb. Misclassifications affected mostly lizards, which, as a group, have a history of limb loss and limb re-evolution, and the urodele and caecilian in our sample. We conclude that a molecular footprint can be detected in Hoxa-13 that is associated with the lack of an autopodium; groups with classification ambiguity (lizards) are characterized by a history of repeated limb loss

  14. Complement-triggered pathways orchestrate regenerative responses throughout phylogenesis

    PubMed Central

    Mastellos, Dimitrios C.; DeAngelis, Robert A.; Lambris, John D.

    2014-01-01

    Adult tissue plasticity, cell reprogramming, and organ regeneration are major challenges in the field of modern regenerative medicine. Devising strategies to increase the regenerative capacity of tissues holds great promise for dealing with donor organ shortages and low transplantation outcomes and also provides essential impetus to tissue bioengineering approaches for organ repair and replacement. The inherent ability of cells to reprogram their fate by switching into an embryonic-like, pluripotent progenitor state is an evolutionary vestige that in mammals has been retained mostly in fetal tissues and persists only in a few organs of the adult body. Tissue regeneration reflects the capacity of terminally differentiated cells to re-enter the cell cycle and proliferate in response to acute injury or environmental stress signals. In lower vertebrates, this regenerative capacity extends to several organs and remarkably culminates in precise tissue patterning, through cellular transdifferentiation and complex morphogenetic processes that can faithfully reconstruct entire body parts. Many lessons have been learned from robust regeneration models in amphibians such as the newt and axolotl. However, the dynamic interactions between the regenerating tissue, the surrounding stroma, and the host immune response, as it adapts to the actively proliferating tissue, remain ill-defined. The regenerating zone, through a sequence of distinct molecular events, adopts phenotypic plasticity and undergoes rigorous tissue remodeling that, in turn, evokes a significant inflammatory response. Complement is a primordial sentinel of the innate immune response that engages in multiple inflammatory cascades as it becomes activated during tissue injury and remodeling. In this respect, complement proteins have been implicated in tissue and organ regeneration in both urodeles and mammals. Distinct complement-triggered pathways have been shown to modulate critical responses that promote tissue

  15. Anatomy of the pectoral and forelimb muscles of wildtype and green fluorescent protein-transgenic axolotls and comparison with other tetrapods including humans: a basis for regenerative, evolutionary and developmental studies

    PubMed Central

    Diogo, R; Tanaka, E M

    2012-01-01

    stated in the literature, A. mexicanum has a muscle coracoradialis that has both a well developed proximal fleshy belly and a distal long and thin tendon, supporting the idea that this muscle very likely corresponds to at least part of the amniote biceps brachii. Our observations also: (i) confirmed that the flexores digitorum minimi, interphalangeus digiti 3, pronator quadratus and palmaris profundus 1 are present as distinct muscles in A. mexicanum, supporting the idea that the latter muscle does not correspond to the pronator accessorius of reptiles; (ii) confirmed that the so-called extensor antebrachii radialis is present as a distinct muscle in this species and, importantly, indicated that this muscle corresponds to the supinator of other tetrapods; (iii) showed that, contrary to some other urodeles, including some other Ambystoma species, there is no distinct muscle epitrochleoanconeus in A. mexicanum and; (iv) showed that the ulnar and radial bundles of the abductor et extensor digiti 1 correspond to the abductor pollicis longus and extensor pollicis longus of other tetrapods, respectively. PMID:22957800