Sample records for plinian eruption column

  1. The Past 20,000 Years of Plinian Explosive Activity at Mt Pelée Volcano (Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Michaud-Dubuy, A.; Kaminski, E. C.; Tait, S.

    2017-12-01

    Major volcanic hazards in the Lesser Antilles arc include powerful Plinian explosive eruptions that inject ash into the atmosphere and produce dangerous pyroclastic density currents (PDC) on the ground. Reconstructions of past eruptive activities based on stratigraphic records are crucial to assessing specific hazards in this region where large eruptions do not occur frequently. The present study focuses on the dynamics of the last Plinian eruptions of Mount Pelée volcano in Martinique. Previous field-based studies identified 6 major Plinian eruptions over the past 5,000 years but limited information on their dynamics exist, except for the most recent one dated at AD 1300. Based on a new comprehensive field study and physical models of volcanic plumes, we largely improve our knowledge of the number of Plinian eruptions that occurred in Martinique over the past 20,000 years. We also provide a detailed reconstruction of important eruptive parameters such as mass eruption rates, maximum column heights, volumes, and impacted areas. Among the 6 Plinian eruptions newly identified during our field campaign, one is found to have produced voluminous pyroclastic density currents that reached the sea and partially rose as a co-PDC plume above a region that is beyond the existing hazard map. The estimated mass eruption rates for the 12 Plinian eruptions identified over the last 20,000 years range from 107 to 108 kg/s, producing 15-30 km-high Plinian columns, initially stable but ultimately collapsing and forming PDC. Empirical models of deposit thinning suggest that the minimum volume of pyroclastic deposits systematically ranges between 0.1 and 1 km3, corresponding to VEI 4 to 5 events. Archaeological evidences suggest that the impact of several eruptions forced the first Caribbean inhabitants to flee to other islands for decades.

  2. Geochemical and textural constraints on degassing processes in sub-Plinian eruptions: case-study of the Greenish Pumice eruption of Mount Somma-Vesuvius

    NASA Astrophysics Data System (ADS)

    Zdanowicz, G.; Boudon, G.; Balcone-Boissard, H.; Cioni, R.; Mundula, F.; Orsi, G.; Civetta, L.; Agrinier, P.

    2018-04-01

    Plinian eruptions are characterized by high intensity and an overall steady character, and result in a stable convective column. The main processes controlling the dynamics of such steady and stable plume systems have been extensively investigated. Conversely, sub-Plinian eruptions are unsteady, as recorded by the large variability of the products and deposits. Our knowledge of the processes creating this unsteadiness on various timescales remains limited, and still requires more observations as well as theoretical and experimental investigation. Here, we focus on the sub-Plinian eruption of the Greenish Pumice (GP, 19,265 ± 105 BP), Mt. Somma-Vesuvius (Italy). On the basis of coupled geochemical and textural analyses of samples from the well-established stratigraphy of the GP deposits, we investigate volatiles (H2O, CO2, F, Cl) to better constrain the unsteady sub-Plinian eruptive style. This allows us to carry out a detailed study of the degassing processes in relation to the eruption dynamics. We find that degassing by open-system processes generally dominates throughout the entire eruption, but alternates with episodes of closed-system degassing. The fluctuating degassing regimes, responsible for the variable magma ascent rate within the conduit, are also responsible for the eruptive column instability. Volatile behavior is well correlated with textural heterogeneities of the eruptive products. Both reflect higher conduit heterogeneity than for Plinian eruptions, where we find a higher horizontal gradient in magma ascent velocity due to a smaller conduit diameter.

  3. Tephra dispersal during the Campanian Ignimbrite (Italy) eruption: implications for ultra-distal ash transport during the large caldera-forming eruption

    NASA Astrophysics Data System (ADS)

    Smith, Victoria C.; Isaia, Roberto; Engwell, Sam L.; Albert, Paul. G.

    2016-06-01

    The Campanian Ignimbrite eruption dispersed ash over much of the central eastern Mediterranean Sea and eastern Europe. The eruption started with a Plinian phase that was followed by a series of pyroclastic density currents (PDCs) associated with the collapse of the Plinian column and the caldera. The glass compositions of the deposits span a wide geochemical range, but the Plinian fallout and PDCs associated with column collapse, the Lower Pumice Flow, only erupted the most evolved compositions. The later PDCs, the Breccia Museo and Upper Pumice Flow, erupted during and after caldera collapse, tap a less evolved component, and intermediate compositions that represent mixing between the end-members. The range of glass compositions in the Campanian Ignimbrite deposits from sites across the central and eastern Mediterranean Sea allow us to trace the dispersal of the different phases of this caldera-forming eruption. We map the fallout from the Plinian column and the plumes of fine material associated with the PDCs (co-PDCs) across the entire dispersal area. This cannot be done using the usual grain-size methods as deposits in these distal regions do not retain characteristics that allow attribution to either the Plinian or co-PDC phases. The glass compositions of the tephra at ultra-distal sites (>1500 km from the vent) match those of the uppermost PDC units, suggesting that most of the ultra-distal dispersal was associated with the late co-PDC plume that was generated during caldera collapse.

  4. An Integrative Approach for Defining Plinian and Sub-Plinian Eruptive Scenarios at Andesitic Volcanoes: Event-Lithostratigraphy, Eruptive Parameters and Pyroclast Textural Variations of the Largest Late-Holocene Eruptions of Mt. Taranaki, New Zealand.

    NASA Astrophysics Data System (ADS)

    Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.

    2016-12-01

    Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.

  5. Causes of complexity in a fallout dominated plinian eruption sequence: 312 ka Fasnia Member, Diego Hernández Formation, Tenerife, Spain

    NASA Astrophysics Data System (ADS)

    Edgar, C. J.; Cas, R. A. F.; Olin, P. H.; Wolff, J. A.; Martí, J.; Simmons, J. M.

    2017-10-01

    The 312 ka Fasnia eruption from the Las Cañadas Caldera on Tenerife, Canary Islands, Spain, produced a complex sequence of twenty-two intercalated units, including 7 pumice fall, 7 ignimbrite and 8 ash surge and fall deposits that define two distinct eruption sequences (Lower and Upper Fasnia sequences). The fallout units themselves are internally complex, reflecting waxing and waning of the eruption column, while many of the ignimbrites reflect multiple intra-plinian partial column collapse events associated with the injection of lithic clasts into the eruption column. The Lower and Upper Fasnia eruption phases were each terminated by caldera collapse and complete column collapse events. Probable blockage of the conduit and vent system during Lower Fasnia caldera collapse event briefly terminated the eruption, resulting in a short-lived period of erosion and sedimentation prior to the onset of the Upper Fasnia phase. The transition to the Upper Fasnia eruption phase coincided with the eruption of more geochemically homogeneous pyroclasts. In total, 62 km3 of tephra were erupted, including 49 km3 of juvenile clasts and > 12 km3 of lithic clasts. The DRE volume of magma erupted was 13 km3 (Lower Fasnia > 5 km3, Upper Fasnia > 8 km3), two thirds of which ( 9-10 km3) was deposited purely by fallout. The Fasnia Member is one of the most complex plinian sequences known.

  6. Complexities of plinian fall deposition at vent: An example from the 1912 Novarupta eruption (Alaska)

    USGS Publications Warehouse

    Fierstein, J.; Houghton, Bruce F.; Wilson, C.J.N.; Hildreth, W.

    1997-01-01

    An extremely proximal ejecta ring, with exposures to within 100 m of vent, was deposited during later-stage plinian fall activity during the 1912 Novarupta eruption in Alaska. One bed in the ejecta ring (bed S) contains predominantly andesitic clasts which serve to delineate the striking contrast in thinning rates along dispersal axis of the ejecta ring [Pyle bt values of 70 m (bed S alone) or 190 m (whole ejecta ring)] and the coeval dacitic plinian fall deposits [Pyle bt, values of 4 km (proximal) and 37 km (medial-distal)]. The locally deposited andesitic and dacitic clasts of the ejecta ring are interpreted as products of an irregular 'collar' of low-fountaining ejecta partially sheathing the core of higher-velocity dacitic ejecta that fed the stable, convecting 23-km-high column. The presence of such an extremely proximal accumulation of ejecta appears to be a feature common to several other historic eruptions that generated widespread fall deposits. This feature in part accounts for conflicts between measured and calculated values for thickness maxima in plinian fall deposits and suggests that modifications may be required of existing models for plinian eruption columns.

  7. Understanding the plume dynamics of explosive super-eruptions.

    PubMed

    Costa, Antonio; J Suzuki, Yujiro; Koyaguchi, Takehiro

    2018-02-13

    Explosive super-eruptions can erupt up to thousands of km 3 of magma with extremely high mass flow rates (MFR). The plume dynamics of these super-eruptions are still poorly understood. To understand the processes operating in these plumes we used a fluid-dynamical model to simulate what happens at a range of MFR, from values generating intense Plinian columns, as did the 1991 Pinatubo eruption, to upper end-members resulting in co-ignimbrite plumes like Toba super-eruption. Here, we show that simple extrapolations of integral models for Plinian columns to those of super-eruption plumes are not valid and their dynamics diverge from current ideas of how volcanic plumes operate. The different regimes of air entrainment lead to different shaped plumes. For the upper end-members can generate local up-lifts above the main plume (over-plumes). These over-plumes can extend up to the mesosphere. Injecting volatiles into such heights would amplify their impact on Earth climate and ecosystems.

  8. Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazards

    NASA Astrophysics Data System (ADS)

    Andronico, Daniele; Cioni, Raffaello

    2002-09-01

    Intense explosive activity occurred repeatedly at Vesuvius during the nearly 1,600-year period between the two Plinian eruptions of Avellino (3.5 ka) and Pompeii (79 A.D.). By correlating stratigraphic sections from more than 40 sites around the volcano, we identify the deposits of six main eruptions (AP1-AP6) and of some minor intervening events. Several deposits can be traced up to 20 km from the vent. Their stratigraphic and dispersal features suggest the prevalence of two main contrasting eruptive styles, each involving a complex relationship between magmatic and phreatomagmatic phases. The two main eruption styles are (1) sub-Plinian to phreato-Plinian events (AP1 and AP2 members), where deposits consist of pumice and scoria fall layers alternating with fine-grained, vesiculated, accretionary lapilli-bearing ashes; and (2) mixed, violent Strombolian to Vulcanian events (AP3-AP6 members), which deposited a complex sequence of fallout, massive to thinly stratified, scoria-bearing lapilli layers and fine ash beds. Morphology and density variations of the juvenile fragments confirm the important role played by magma-water interaction in the eruptive dynamics. The mean composition of the ejected material changes with time, and shows a strong correlation with vent position and eruption style. The ranges of intensity and magnitude of these events, derived by estimations of peak column height and volume of the ejecta, are significantly smaller than the values for the better known Plinian and sub-Plinian eruptions of Vesuvius, enlarging the spectrum of the possible eruptive scenarios at Vesuvius, useful in the assessment of its potential hazard.

  9. Textural and geochemical constraints on eruptive style of the 79AD eruption at Vesuvius

    NASA Astrophysics Data System (ADS)

    Balcone-Boissard, Hélène; Boudon, Georges; Villemant, Benoît.

    2010-05-01

    The 79AD eruption of Vesuvius, also known as the "Pompeii eruption", is the reference for one of the explosive eruptive styles, the plinian-type eruption. The eruption involved H2O-rich phonolitic magmas and is commonly divided into three phases: an initial phreatomagmatic phase, followed by a plinian event which produced a thick pumice fallout deposit and a final phase that was dominated by numerous column-collapse events. During the plinian phase, a first white pumice fallout was produced from a high steady eruptive column, followed by a grey pumice fallout originated by an oscillatory eruptive column with several partial column collapse events. This study focuses on the pumice fallout deposits, sampled in a proximal thick section, at the Terzigno quarry, 6 km southeast of the present crater. In order to constrain the degassing processes and the eruptive dynamics, major element compositions, residual volatile contents (H2O, Cl) and textural characteristics (vesicularity and microcrystallinity) were studied. A previous study that we performed on the pre-eruptive Cl content has shown that Cl may be used as an indicator of magma saturation with Cl-rich fluids and of pre-eruptive pressures. Cl contents measured in melt inclusions show that only the white pumice and the upper part of the grey pumice magma were H2O saturated prior eruption. Large variations in residual volatile contents exist between the different eruptive units and textural features strongly differ between white and grey pumice clasts but also within the grey pumice clasts. The degassing processes were thus highly heterogeneous: the white pumice eruptive units represent a typical closed-system degassing evolution whereas the first grey pumice one, stored in the same pre-eruptive saturation conditions, follows a particular open-system degassing evolution. Here we propose a new model of the 79AD eruption where pre-eruptive conditions (H2O saturation, magma temperature and viscosity) are the critical parameters which determine the diversity of the syn-eruptive degassing processes and hence the eruptive dynamics. We suggest that the oscillatory regime that dominates the grey pumice eruptive phase is linked to the pre-eruptive water undersaturation of most part of the grey magma and to the time delays necessary for H2O exsolution.

  10. Reconstruction of a kimberlite eruption, using an integrated volcanological, geochemical and numerical approach: A case study of the Fox Kimberlite, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Cas, R. A. F.

    2009-01-01

    An integrated approach involving volcanology, geochemistry and numerical modelling has enabled the reconstruction of the volcanic history of the Fox kimberlite pipe. The observed deposits within the vent include a basal massive, poorly sorted, matrix supported, lithic fragment rich, eruption column collapse lapilli tuff. Extensive vent widening during the climactic magmatic phase of the eruption led to overloading of the eruption column with cold dense country rock lithic fragments, dense juvenile pyroclasts and olivine crystals, triggering column collapse. > 40% dilution of the kimberlite by granodiorite country rock lithic fragments is observed both in the physical componentry of the rocks and in the geochemical signature, where enrichment in Al 2O 3 and Na 2O compared to average values for coherent kimberlite is seen. The wide, deep, open vent provided a trap for a significant proportion of the collapsing column material, preventing large scale run-away in the form of pyroclastic flow onto the ground surface, although minor flows probably also occurred. A massive to diffusely bedded, poorly sorted, matrix supported, accretionary-lapilli bearing, lithic fragment rich, lapilli tuff overlies the column collapse deposit providing evidence for a late phreatomagmatic eruption stage, caused by the explosive interaction of external water with residual magma. Correlation of pipe morphology and internal stratigraphy indicate that widening of the pipe occurred during this latter stage and a thick granodiorite cobble-boulder breccia was deposited. Ash- and accretionary lapilli-rich tephra, deposited on the crater rim during the late phreatomagmatic stage, was subsequently resedimented into the vent. Incompatible elements such as Nb are used as indicators of the proportion of the melt fraction, or kimberlite ash, retained or removed by eruptive processes. When compared to average coherent kimberlite the ash-rich deposits exhibit ~ 30% loss of fines whereas the column collapse deposit exhibits ~ 50% loss. This shows that despite the poorly sorted nature of the column collapse deposit significant elutriation has occurred during the eruption, indicating the existence of a high sustained eruption column. The deposits within Fox record a complex eruption sequence showing a transition from a probable violent sub-plinian style eruption, driven by instantaneous exsolution of magmatic volatiles, to a late phreatomagmatic eruption phase. Mass eruption rate and duration of the sub-plinian phase of the eruption have been determined based on the dimensions of milled country-rock boulders found within the intra-vent deposits. Calculations show a short lived eruption of one to eleven days for the sub-plinian magmatic phase, which is similar in duration to small volume basaltic eruptions. This is in general agreement with durations of kimberlite eruptions calculated using entirely different approaches and parameters, such as predictions of magma ascent rates in kimberlite dykes.

  11. Hybrid Pyroclastic Deposits Accumulated From The Eruptive Transitional Regime of Plinian Eruptions.

    NASA Astrophysics Data System (ADS)

    di Muro, Andrea; Rosi, Mauro

    In the past 15 years sedimentological studies (Valentine and Giannetti, 1995; Wilson and Hildreth, 1997; Rosi et al., 2001), physical models (Neri et al., 1988; Veitch and Woods, 2000; Kaminski and Jaupart, 2001) and laboratory experiments (Carey et al., 1988) converge at defining a new eruptive regime transitional between the fully convective and the fully collapsing end -members. Buoyant columns and density currents are contemporaneously fed in the transitional dynamic regime and fall beds are intercalated with the density current deposits in the area invested by them. The sedimentological analysis of the well exposed 800yr B.P. plinian eruption of the volcano Quilotoa (Ecuador) enabled us to i) recognize a gradual evolution of the eruptive regime, ii) characterize the fall and density current deposits emplaced during the transitional regime. The eruptive activity began with at least two phreatic explosions and the effusion of a small volume lava dome. Eruptive behaviour then switched to explosive and fed a purely convective column that accumulated a reverse graded pumice fall while rising up to an height of 30 km. A small volume, diluted and slow density current (S1 current) was emplaced in the proximal SW sector just before the column reached its maximum height. Two group s of more voluminous and faster intra-plinian density currents (S2 and S3 currents) were subsequently emplaced contemporaneously with the accumulation of the lower and upper part respectively of a normal graded pumice fall bed. S2 and S3 currents were radially distributed around the crater and deposited bedded layers with facies of decreasing energy when moving away from the crater. Massive beds of small volume were emplaced only i) inside the proximal valley channel near the topography break in slope, ii) outside the valley channel in medial area where the currents impinged against relieves. A thick sequence of pyroclastic flow deposits (S4 currents) accumulated in the valley channels around the crater only in a post-plinian phase. During this phase, the convective plume was purely coignimbritic. The runout (from 4 to 11 km) and the degree of valley -confinement progressively increased from S1 to S4 currents. The eruption ended with the collapse of a 2.6 km summit caldera. During this last eruptive phase, coarse lithic-rich flow units with runout shorter than previously were emplaced. The parallel evolution of column height (grain-size), fountain height (size of ballistics) and flow properties (surges vs. flows) compares well with the numerical simulations of pyroclastic dispersion performed by Neri et al. (2002). In the whole dispersion area, the fall bed has a polymodal grain-size. The coarse modes of the fall appear related to the plinian column, while the fines ones have a co-ignimbrite fall origin. Sub-pop ulation analysis shows that the fine modes are related to ash aggregation that in transitional eruptions plays a significant role in the deposition of very fine sizzes also in very proximal areas. The fall deposit is totally eroded and reworked by the syn-plinian currents in the proximal areas and partially eroded in the medial areas. Grain-size and maximum clast analysis indicate that a significant fraction of the intraplinian beds is of primary fall origin. Strong similarities are found between the Quilot oa deposits and that accumulated during the transitional phase of the 1991 Pinatubo eruption (Rosi et al., 2001). These evidences should be carefully taken in account for risk assessment when analysing deposits accumulated in the transitional eruptive regi me with the aim at calculating the physical parameters characterizing the density currents ( Brissette and Lajoie, 1990). References : Brissette FP and Lajoie J (1990) Depositional mechanics of turbulent nuées ardentes (surges) from their grain-sizes. Bull Volcanol 53:60-66. Carey S, Sigurdsson H, Sparks RSJ (1988) Experimental studies of particle-laden plumes. J Geophys Res 93:15314-15328 Kaminski E and Jaupart C (2001) Marginal stability of atmospheric eruption columns and pyroclastic flow generation J Geophys Res 106: 21785-21798 Neri A, Papale P and Macedonio G (1998) The role of magma composition and water content in explosive eruptions: 2. Pyroclastic dispersion dynamics. J Volcanol Geotherm Res 87: 95-115 Neri A, Di Muro A, Rosi M (2002) Mass partition during collapsing and transitional columns by using numerical simulations. In press on J Volcanol Geotherm Res Rosi M., Paladio-Melosantos M.L., Di Muro A., Leoni R., Bacolcol T. (2001) Fall vs Flow Activity During the 1991 Climactic Eruption of Mt. Pinatubo (Philippines). Bull Volcanol 62: 549-566 Valentine G.A., Giannetti B. (1995) Single Pyroclastic beds deposited by simultaneous fallout and surge processes: Roccamonfina volcano, Italy. J Volcanol Geotherm Res 64:129-137. Veitch G and Woods A (2002) Particle recycling and oscillations of volcanic eruption columns. J of Geophys Res, 105: 2829-2842. Wilson C.J.N., Hildreth W. (1997) The Bishop Tuff: new insights from eruptive stratigraphy J of Geol. 105:407-439.

  12. Magma degassing and eruption dynamics of the Avellino pumice Plinian eruption of Somma-Vesuvius (Italy). Comparison with the Pompeii eruption

    NASA Astrophysics Data System (ADS)

    Balcone-Boissard, H.; Boudon, G.; Ucciani, G.; Villemant, B.; Cioni, R.; Civetta, L.; Orsi, G.

    2012-05-01

    The eruptive history of Mt. Somma-Vesuvius is characterised by large explosive events: Pomici di Base eruption (22,030 ± 175 yr cal BP), Mercato (8890 ± 90 yr cal BP), Avellino (3945 ± 10 yr cal BP) and Pompeii (79 AD). Pre-eruptive conditions and sin-eruptive degassing processes of the Avellino eruption, the highest-magnitude Plinian event, have been investigated, using volatile contents (F, Cl, H2O) in melt inclusions and residual glass, and textural characteristics of pumice clasts of the 9 fallout layers sampled in detail in a representative sequence. The sequence displays an up-section sharp colour change from white to grey, corresponding to variations in both magma composition and textural characteristics. The pre-eruptive conditions have been constrained by systematic measurements of Cl content in both melt inclusions and matrix glass of pumice clasts. The pumice glass composition varies from Na-rich phonolite (white pumice) to K-rich phonolite (grey pumice). The measured Cl values constantly cluster at 5200 ± 400 ppm (buffer value), whatever the composition of the melt, suggesting that the entire magma body was saturated with sub-critical fluids. This Cl saturation constrains the pre-eruptive pressures and maximum H2O contents at 200 ± 10 MPa and 6.3 ± 0.2 wt.% H2O for the white pumice melt and 195 ± 15 MPa and 5.2 ± 0.2 wt.% H2O for the grey pumice melt. The fluid phase, mainly composed of a H2O-rich vapour phase and brine, probably accumulated at the top of the reservoir and generated an overpressure able to trigger the onset of the eruption. Magma degassing was rather homogeneous for the white and grey eruptive units, mostly occurring through closed-system processes, leading to a typical Plinian eruptive style. A steady-state withdrawal of an H2O-saturated magma may explain the establishment of a sustained Plinian column. Variation from white to grey pumice is accompanied by decrease of mean vesicularity and increase of mean microcrystallinity and permeability related to significant vesicle coalescence. Despite this, the ascending magma column still evolves under closed-system degassing, without significant gas loss through conduit walls. The Avellino eruption shows numerous similarities with the 79 AD Pompeii eruption in pre-eruptive conditions, degassing processes and eruptive style which are discussed here.

  13. Impact of sedimentation and particle fragmentation on the collapse of explosive volcanic eruption columns.

    NASA Astrophysics Data System (ADS)

    Michaud-Dubuy, A.; Carazzo, G.; Kaminski, E. C.

    2017-12-01

    High-velocity atmospheric turbulent jets produced by explosive volcanic eruptions can form a high buoyant Plinian plume or produce pyroclastic density currents (PDCs) when the column collapses. A major goal of physical volcanology is to determine the limit between the two flow regimes, as a function of source conditions. But their highly non-linear dynamics makes this prediction particularly difficult. Classically, in the so-called "dusty gas" hypothesis, the regime boundary is calculated as a function of the eruptive mass flux and the amount of gas dissolved in the magma. Here, we relax this hypothesis and account for the differential behavior between gas and particle, i.e. sedimentation. The sedimentation rate is calculated as a function of the particle size, which introduces the total grain-size distribution (TGSD) as a new model parameter. Here we further consider power-law TGSDs characterized by an exponent D. For low eruption rates (Vulcanian and sub-Plinian eruptions), the loss of particles by sedimentation is so large that it drains out the thermal reservoir available to heat the engulfed cold atmospheric air, which favors PDCs production. In powerful Plinian eruptions with a mass flux greater than 107 kg/s, the loss of particles by sedimentation is less important and its dominant effect is to decrease the column mass flux during its rise, which favors the formation of stable columns. In this case, we further obtain that coarse distributions promote the formation of stable plumes, a result at odds with previous studies. To interpret this conclusion, we reconsider the effect of gas entrapment by pumice at fragmentation and show that in general it has a dominant role on column collapse compared to particle sedimentation. However, for D values < 2.8, sedimentation and gas entrapment are of equal importance and act together to prevent the production of stable plumes. This latter conclusion is consistent with field data. We compare the predictions of the model including gas entrapment and sedimentation to two well constrained historical events, the Taupo 186 AD and Vesuvius 79 AD eruptions. In both cases, we obtain that the model should take into account not solely gas entrapment but also the open porosity to accurately reproduce field data.

  14. The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska

    USGS Publications Warehouse

    Fierstein, J.; Hildreth, W.

    1992-01-01

    The three-day eruption at Novarupta in 1912 consisted of three discrete episodes. Episode I began with plinian dispersal of rhyolitic fallout (Layer A) and contemporaneous emplacement of rhyolitic ignimbrites and associated proximal veneers. The plinian column was sustained throughout most of the interval of ash flow generation, in spite of progressive increases in the proportions of dacitic and andesitic ejecta at the expense of rhyolite. Accordingly, plinian Layer B, which fell in unbroken continuity with purely rhyolitic Layer A, is zoned from >99% to ???15% rhyolite and accumulated synchronously with emplacement of the correspondingly zoned ash flow sequence in Mageik Creek and the Valley of Ten Thousand Smokes (VTTS). Only the andesiterichest flow units that cap the flow sequence lack a widespread fallout equivalent, indicating that ignimbrite emplacement barely outlasted the plinian phase. On near-vent ridges, the passing ash flows left proximal ignimbrite veneers that share the compositional zonation of their valley-filling equivalents but exhibit evidence for turbulent deposition and recurrent scour. Episode II began after a break of a few hours and was dominated by plinian dispersal of dacitic Layers C and D, punctuated by minor proximal intraplinian flows and surges. After another break, dacitic Layers F and G resulted from a third plinian episode (III); intercalated with these proximally are thin intraplinian ignimbrites and several andesite-rich fall/flow layers. Both CD and FG were ejected from an inner vent <400 m wide (nested within that of Episode I), into which the rhyolitic lava dome (Novarupta) was still later extruded. Two finer-grained ash layers settled from composite regional dust clouds: Layer E, which accumulated during the D-F hiatus, includes a contribution from small contemporaneous ash flows; and Layer H settled after the main eruption was over. Both are distinct layers in and near the VTTS, but distally they merge with CD and FG, respectively; they are largely dacitic but include rhyolitic shards that erupted during Episode I and were kept aloft by atmospheric turbulence. Published models yield column heights of 23-26 km for A, 22-25 km for CD, and 17-23 km for FG; and peak mass eruption rates of 0.7-1x108, 0.6-2x108, and 0.2-0.4x108 kg s-1, respectively. Fallout volumes, adjusted to reflect calculated redistribution of rhyolitic glass shards, are 8.8 km3, 4.8 km3, and 3.4 km3 for Episodes I, II, and III. Microprobe analyses of glass show that as much as 0.4 km3 of rhyolitic glass shards from eruptive Episode I fell with CDE and 1.1 km3 with FGH. Most of the rhyolitic ash in the dacitic fallout layers fell far downwind (SE of the vent); near the rhyolite-dominated ignimbrite, however, nearly all of Layers E and H are dacitic, showing that the downwind rhyolitic ash is of 'co-plinian' rather than co-ignimbrite origin. ?? 1992 Springer-Verlag.

  15. Reconstruction and analysis of sub-plinian tephra dispersal during the 1530 A.D. Soufrière (Guadeloupe) eruption: Implications for scenario definition and hazards assessment

    NASA Astrophysics Data System (ADS)

    Komorowski, J.-C.; Legendre, Y.; Caron, B.; Boudon, G.

    2008-12-01

    The last magmatic eruption of Soufrière of Guadeloupe dated at 1530 A.D. (Soufrière eruption) is characterized by an onset with a partial flank-collapse and emplacement of a debris-avalanche that was followed by a sub-plinian VEI 2-3 explosive short-lived eruption (Phase-1) with a column that reached a height between 9 and 12 km producing about 3.9 × 10 6 m 3 DRE (16.3 × 10 6 m 3 bulk) of juvenile products. The column recurrently collapsed generating scoriaceous pyroclastic flows in radiating valleys up to a distance of 5-6 km with a maximum interpolated bulk deposit volume of 11.7 × 10 6 m 3 (5 × 10 6 m 3 DRE). We have used HAZMAP, a numerical simple first-order model of tephra dispersal [Macedonio, G., Costa, A., Longo, A., 2005. A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31, 837-845] to reconstruct to a first approximation the potential dispersal of tephra and associated tephra mass loadings generated by the sub-plinian Phase 1 of the 1530 A.D. eruption. We have tested our model on a deterministic average dry season wind profile that best-fits the available data as well as on a set of randomly selected wind profiles over a 5 year interval that allows the elaboration of probabilistic maps for the exceedance of specific tephra mass load thresholds. Results show that in the hypothesis of a future 1530 A.D. scenario, populated areas to a distance of 3-4 km west-southwest of the vent could be subjected to a static load pressure between 2 and 10 kPa in case of wet tephra, susceptible to cause variable degrees of roof damage. Our results provide volcanological input parameters for scenario and event-tree definition, for assessing volcanic risks and evaluating their impact in case of a future sub-plinian eruption which could affect up to 70 000 people in southern Basse-Terre island and the region. They also provide a framework to aid decision-making concerning land management and development. A sub-plinian eruption is the most likely magmatic scenario in case of a future eruption of this volcano which has shown, since 1992, increasing signs of low-energy seismic, thermal, and acid degassing unrest without significant deformation.

  16. The 0.57 Ma plinian eruption of the Granadilla Member, Tenerife (Canary Islands): an example of complexity in eruption dynamics and evolution

    NASA Astrophysics Data System (ADS)

    Bryan, S. E.; Cas, R. A. F.; Martí, J.

    2000-12-01

    The Granadilla Member is one of the most widely dispersed and largest volume pyroclastic units at Tenerife (Canary Islands) and represents the culminating eruption to a second cycle of explosive volcanism of the Las Cañadas edifice. The member, dated at 0.57 Ma, comprises a plinian fall deposit, the Granadilla pumice, which is overlain by ignimbrite up to 30 m thick. The Granadilla pumice is up to 9 m thick approximately 10 km from source (Pyle bt value is 5.35 km), and is subdivided into four fall units. Unit 1 is up to 1.2 m thick and is further divisible into another four pumice fall subunits, based on bedding and grainsize differences. Unit 2 is a thin but distinctive ash layer (˜2 cm thick), and its wide dispersal (>550 km2), constant thickness, planar laminations and ash aggregate textures collectively indicate a phreatoplinian fall origin. The lithic-rich nature and abundance of unaltered lithic fragments reflect magma interaction with aquifer-derived water at depth. Unit 3 (≤1.8 m thick), records a reversal to dry plinian eruptive activity. Unit 4, the thickest of the fall units (up to 6.3 m thick), records the maximum dispersal and intensity of the eruption (Pyle bt and bc values are 5.7 and 6.3 km, respectively), best illustrated by the presence of large pumice bombs up to 30 cm diameter (at distances up to 20 km from vent), and reverse grading of lithic and pumice clasts. The widespread (>500 km2), nonwelded and pumice-rich Granadilla ignimbrite (unit 5) records the collapse of the plinian eruption column. The ignimbrite has a simple sheet-like geometry, but exhibits a complex internal stratigraphy. The base of the ignimbrite locally cuts down through the underlying Granadilla pumice removing it entirely, indicating up to 9 m of erosion by the pyroclastic flows. A coarse, vent-derived lithic breccia horizon towards the top of the ignimbrite is interpreted to record the onset of caldera collapse late in the eruption. Minimum volume estimates for the Granadilla pumice and ignimbrite are 5.2 and 5 km3, respectively. The dispersal area, deposit characteristics, and exponential thickness and clast size decay relationships with (isopach area)1/2 are consistent with dispersal and fallout from the umbrella region of a moderately high (˜17 to ≥25 km) plinian column. We propose that the eruption involved two vents, probably aligned along a NE-SW fissure within the Las Cañadas caldera.

  17. A historical analysis of Plinian unrest and the key promoters of explosive activity.

    NASA Astrophysics Data System (ADS)

    Winson, A. E. G.; Newhall, C. G.; Costa, F.

    2015-12-01

    Plinian eruptions are the largest historically recorded volcanic phenomena, and have the potential to be widely destructive. Yet when a volcano becomes newly restless we are unable to anticipate whether or not a large eruption is imminent. We present the findings from a multi-parametric study of 42 large explosive eruptions (29 Plinian and 13 Sub-plinian) that form the basis for a new Bayesian Belief network that addresses this question. We combine the eruptive history of the volcanoes that have produced these large eruptions with petrological studies, and reported unrest phenomena to assess the probability of an eruption being plinian. We find that the 'plinian probability' is increased most strongly by the presence of an exsolved volatile phase in the reservoir prior to an eruption. In our survey 60% of the plinian eruptions, had an excess SO2 gas phase of more than double than it is calculated by petrologic studies alone. Probability is also increased by three related and more easily observable parameters: a high plinian Ratio (that is the ratio of VEI≥4 eruptions in a volcanoes history to the number of all VEI≥2 eruptions in the history), a repose time of more than 1000 years, and a Repose Ratio (the ratio of the average return of VEI≥4 eruptions in the volcanic record to the repose time since the last VEI≥4) of greater than 0.7. We looked for unrest signals that potentially are indicative of future plinian activity and report a few observations from case studies but cannot say if these will generally appear. Finally we present a retrospective analysis of the probabilities of eruptions in our study becoming plinian, using our Bayesian belief network. We find that these probabilities are up to about 4 times greater than those calculate from an a priori assessment of the global eruptive catalogue.

  18. The Avellino 3780-yr-B.P. catastrophe as a worst-case scenario for a future eruption at Vesuvius

    PubMed Central

    Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Sheridan, Michael F.

    2006-01-01

    A volcanic catastrophe even more devastating than the famous anno Domini 79 Pompeii eruption occurred during the Old Bronze Age at Vesuvius. The 3780-yr-B.P. Avellino plinian eruption produced an early violent pumice fallout and a late pyroclastic surge sequence that covered the volcano surroundings as far as 25 km away, burying land and villages. Here we present the reconstruction of this prehistoric catastrophe and its impact on the Bronze Age culture in Campania, drawn from an interdisciplinary volcanological and archaeoanthropological study. Evidence shows that a sudden, en masse evacuation of thousands of people occurred at the beginning of the eruption, before the last destructive plinian column collapse. Most of the fugitives likely survived, but the desertification of the total habitat due to the huge eruption size caused a social–demographic collapse and the abandonment of the entire area for centuries. Because an event of this scale is capable of devastating a broad territory that includes the present metropolitan district of Naples, it should be considered as a reference for the worst eruptive scenario at Vesuvius. PMID:16537390

  19. The 12.4 ka Upper Apoyeque Tephra, Nicaragua: stratigraphy, dispersal, composition, magma reservoir conditions and trigger of the plinian eruption

    NASA Astrophysics Data System (ADS)

    Wehrmann, Heidi; Freundt, Armin; Kutterolf, Steffen

    2016-04-01

    Highly-explosive plinian eruptions belong to the most devastating phenomena of volcanic activity. Upper Apoyeque Tephra (UAq), erupted in close vicinity of the Managua city region in west-central Nicaragua with two million inhabitants, was formed by a rhyodacitic plinian eruption at 12.4 ka BP. The fallout tephra was dispersed from a progressively rising plinian eruption column that became exposed to different wind speeds and directions at different heights in the stratosphere, leading to an asymmetric tephra fan with different facies in the western and southern sector. Tephra dispersal data integrated with geochemical compositions of lava flows in the area facilitate to delimit the source vent to the south of Chiltepe Peninsula. UAq, Lower Apoyeque Tephra, Apoyeque Ignimbrite, and two lithic clasts in San Isidro Tephra together form a trend distinct from that of the younger tephras and lavas at Chiltepe Volcanic Complex in a TiO2 versus K2O diagram, compositionally precluding a genetic relationship of UAq with the present-day Apoyeque Volcano. Apoyeque Volcano in its present shape did not exist at the time of the UAq eruption. The surface expression of the UAq vent is now obscured by younger eruption products and lake water. Pressure-temperature constraints based on mineral-melt equilibria indicate at least two magma storage levels. Clinopyroxenes crystallised in a deep crustal reservoir at ˜24 km depth as inferred from clinopyroxene-melt inclusion pairs. Chemical disequilibrium between clinopyroxenes and matrix glasses indicate rapid magma ascent to the shallower reservoir at ˜5.4 km depth, where magnesiohornblendes and plagioclase fractionated at a temperature of ˜830°C. Water concentrations ranged at ˜5.5 wt. % as derived from congruent results of amphibole and plagioclase-melt hygrometry. The eruption was triggered through injection of a hotter, more primitive melt into a water-supersaturated reservoir.

  20. Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu

    USGS Publications Warehouse

    Pardo, Natalia; Cronin, Shane J.; Wright, Heather M.N.; Schipper, C. Ian; Smith, Ian; Stewart, Bob

    2014-01-01

    Between 27 and 11 cal. ka BP, a transition is observed in Plinian eruptions at Mt. Ruapehu, indicating evolution from non-collapsing (steady and oscillatory) eruption columns to partially collapsing columns (both wet and dry). To determine the causes of these variations over this eruptive interval, we examined lapilli fall deposits from four eruptions representing the climactic phases of each column type. All eruptions involve andesite to basaltic andesite magmas containing plagioclase, clinopyroxene, orthopyroxene and magnetite phenocrysts. Differences occur in the dominant pumice texture, the degree of bulk chemistry and textural variability, the average microcrystallinity and the composition of groundmass glass. In order to investigate the role of ascent and degassing processes on column stability, vesicle textures were quantified by gas volume pycnometry (porosity), X-ray synchrotron and computed microtomography (μ-CT) imagery from representative clasts from each eruption. These data were linked to groundmass crystallinity and glass geochemistry. Pumice textures were classified into six types (foamy, sheared, fibrous, microvesicular, microsheared and dense) according to the vesicle content, size and shape and microlite content. Bulk porosities vary from 19 to 95 % among all textural types. Melt-referenced vesicle number density ranges between 1.8 × 102 and 8.9 × 102 mm−3, except in fibrous textures, where it spans from 0.3 × 102 to 53 × 102 mm−3. Vesicle-free magnetite number density varies within an order of magnitude from 0.4 × 102 to 4.5 × 102 mm−3 in samples with dacitic groundmass glass and between 0.0 and 2.3 × 102 mm−3 in samples with rhyolitic groundmass. The data indicate that columns that collapsed to produce pyroclastic flows contained pumice with the greatest variation in bulk composition (which overlaps with but extends to slightly more silicic compositions than other eruptive products); textures indicating heterogeneous bubble nucleation, progressively more complex growth history and shear-localization; and the highest degrees of microlite crystallization, most evolved melt compositions and lowest relative temperatures. These findings suggest that collapsing columns in Ruapehu have been produced when strain localization is prominent, early bubble nucleation occurs and variation in decompression rate across the conduit is greatest. This study shows that examination of pumice from steady phases that precede column collapse may be used to predict subsequent column behaviour.

  1. Eruptive parameters and dynamics of the April 2015 sub-Plinian eruptions of Calbuco volcano (southern Chile)

    NASA Astrophysics Data System (ADS)

    Castruccio, Angelo; Clavero, Jorge; Segura, Andrea; Samaniego, Pablo; Roche, Olivier; Le Pennec, Jean-Luc; Droguett, Bárbara

    2016-09-01

    We conducted geological and petrological analyses of the tephra fallout and pyroclastic density current (PDC) products of the 22-23 April 2015 Calbuco eruptions. The eruptive cycle consisted of two sub-Plinian phases that generated > 15 km height columns and PDCs that travelled up to 6 km from the vent. The erupted volume is estimated at 0.38 km3 (non-DRE), with approximately 90% corresponding to tephra fall deposits and the other 10% to PDC deposits. The erupted products are basaltic-andesite, 54-55 wt.% SiO2, with minor amounts of andesite (58 wt.% SiO2). Despite the uniform composition of the products, there are at least four types of textures in juvenile clasts, with different degrees of vesicularity and types and content of crystals. We propose that the eruption triggering mechanism was either exsolution of volatiles due to crystallization, or a small intrusion into the base of the magma chamber, without significant magma mixing or with a magma compositionally similar to that of the residing magma. In either case the triggering mechanism generated convection and sufficient overpressure to promote the first eruptive phase. The start of the eruption decompressed the chamber, promoting intense vesiculation of the remaining magma and an increase in eruption rate towards the end of the eruption.

  2. Numerical modeling of a sub Plinian eruption at La Soufrière de Guadeloupe: implications for pyroclastic density currents hazard assessment.

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, Tomaso; Neri, Augusto; Komorowski, Jean-Christophe

    2013-04-01

    We present three-dimensional numerical simulations of a sub-Plinian eruptive scenario at La Soufrière de Guadeloupe, aimed at assessing the capability of pyroclastic density currents to reach the inhabited regions on the volcano slopes, in case of the future resumption of the explosive activity. The selected eruptive scenario is similar to that hypothesized for the 1530 a.D. eruption, but several eruptive conditions have been analyzed to account for different behaviours of the eruptive column and percentages of collapse. Numerical results describe, in 3D and in time, the formation, instability and partial collapse of the eruptive column, and the simultaneous formation of a convective plume and several branched pyroclastic density currents. The proximal volcano morphology, characterized by the presence of ancient caldera rims and the remnants of the old edifice, controls the areal distribution of the collapsed material and the paths of channelized flows along the incised topography. The analysis of the 3D runs suggests that partial collapse scenarios produce steeply stratified pyroclastic density currents, which are strongly controlled by the topography and whose propagation is likely driven by the dynamics of the dense, basal layer. Although vertical grid size still does not allow the resolution of the dynamics of such concentrated flows, preliminary georeferenced maps of pyroclastic density currents' hazardous actions (temperature and dynamic pressure) provide interesting and useful information which can serve as a basis for elaborating a quantitative framework for the assessment of their impact on vulnerable infrastructures, networks, and population.

  3. A revisit of the role of gas entrapment on the stability conditions of explosive volcanic columns

    NASA Astrophysics Data System (ADS)

    Michaud-Dubuy, Audrey; Carazzo, Guillaume; Kaminski, Edouard; Girault, Frédéric

    2018-05-01

    Explosive volcanic eruptions produce high-velocity turbulent jets that can form either a stable buoyant Plinian column or a collapsing fountain producing pyroclastic density currents (PDC). Determining the source conditions leading to these extreme regimes is a major goal in physical volcanology. Classically, the regime boundary is defined as the critical eruptive mass discharge rate (MDR) before collapse for a given amount of free gas in the eruptive mixture (free gas + pyroclasts) at the vent. Previous studies have shown that an agreement between theory and field data can be achieved in two different frameworks: (i) by accounting for the effect of gas entrapment in large pumice fragments, which lowers the effective gas content, depending on the total grain-size distribution (TGSD) of pyroclastic fragments, or (ii) by accounting for the reduction of turbulent entrainment at the base of the volcanic column due to its negative buoyancy. Here, we aim at combining these two using a 1D model of volcanic column that includes sedimentation to follow the evolution of the TGSD. In powerful (≥ 107 kg s-1) Plinian eruptions, the loss of particles by sedimentation acts as to decrease the load of particles during the plume rise, which favors the formation of a stable column. In this case, we obtain that coarse TGSD promote the formation of stable plumes, a result at odds with the predictions of models considering gas entrapment in large pyroclastic fragments. To interpret this conclusion, we reconsider the effect of gas entrapment and show that in general, it has a dominant role on column collapse compared to particle sedimentation, and hinders the formation of buoyant columns. This drastic effect is reduced when incorporating open porosity, e.g. by considering that some bubbles inside a fragment are connected to the exterior. The characteristics of the PDC produced by column collapse are then predicted as a function of the TGSD and MDR at the source. We further test the model using two well-documented historical events, the ≈186 CE Taupo and 79 CE Vesuvius eruptions. Our model predictions are consistent with the Taupo eruption record, but not with the Vesuvius one. In this latter case, we suggest that the characteristics of the TGSD imply to take into account the thermal disequilibrium between gas and pyroclasts.

  4. Ash fallout scenarios at Vesuvius: Numerical simulations and implications for hazard assessment

    NASA Astrophysics Data System (ADS)

    Macedonio, G.; Costa, A.; Folch, A.

    2008-12-01

    Volcanic ash fallout subsequent to a possible renewal of the Vesuvius activity represents a serious threat to the highly urbanized area around the volcano. In order to assess the relative hazard we consider three different possible scenarios such as those following Plinian, Sub-Plinian, and violent Strombolian eruptions. Reference eruptions for each scenario are similar to the 79 AD (Pompeii), the 1631 AD (or 472 AD) and the 1944 AD Vesuvius events, respectively. Fallout deposits for the first two scenarios are modeled using HAZMAP, a model based on a semi-analytical solution of the 2D advection-diffusion-sedimentation equation. In contrast, fallout following a violent Strombolian event is modeled by means of FALL3D, a numerical model based on the solution of the full 3D advection-diffusion-sedimentation equation which is valid also within the atmospheric boundary layer. Inputs for models are total erupted mass, eruption column height, bulk grain-size, bulk component distribution, and a statistical set of wind profiles obtained by the NCEP/NCAR re-analysis. We computed ground load probability maps for different ash loadings. In the case of a Sub-Plinian scenario, the most representative tephra loading maps in 16 cardinal directions were also calculated. The probability maps obtained for the different scenarios are aimed to give support to the risk mitigation strategies.

  5. Vent Processes and Deposits of a Hiatus in a Violent Eruption: Quilotoa Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Best, J. A.; Bustillos, J.; Ort, M. H.; Cashman, K. V.; Mothes, P. A.; di Muro, A.; Rosi, M.

    2009-12-01

    The 800 BP eruption of Quilotoa volcano, Ecuador, produced two plinian eruptions separated by a short (days-weeks) hiatus. We examine the tephra produced both during this hiatus and erupted at the onset of the second Plinian eruption. Units 1 and 3 (U1 and U3) of the eruption correspond to the first and second Plinian eruptions, respectively, and produced fallout and pyroclastic density currents. Unit 2 (U2) records processes during the hiatus and consists of two subunits: U2a, a vitric ashfall, and U2b, a crystal and lithic-rich fallout. 130 individual tephra samples of U1, U2, and U3 were collected from 24 sites along three radial transects from the volcano in January 2009. Thickness and grain-size features were described, with particular attention paid to U2. Grain-size and componentry analysis of a subset of these samples reveals a number of trends. The upper part of U1 is massive and normally graded at its top. This part of U1 is dominantly vitric ash smaller than 3.0 φ and likely represents the clearing of the air at the end of the first plinian eruption. U2a has a polymodal distribution with a large fraction of 4.0 φ and finer vitric material. Dune forms occur in this unit, which is interpreted to be the product of surges. U2b is coarser overall with alternating fine- (2-3φ) and coarse- (1-2φ) grained layers. The beds have a unimodal grain-size distribution and normal grading. U2b is interpreted as a fall deposit. The U2a/U2b contact is gradational in that 0-2 beds of U2b material occur within the uppermost U2a beds, indicating vent conditions for both briefly coexisted. U2c is a <2-cm-thick vitric ash with sparse crystal-rich lava lapilli. These lapilli also occur in the overlying basal U3 fallout, which has a polymodal grain-size distribution. Some U2b pumice fragments and crystals are stained orange, which gives U2b its characteristic color. Stained grains are also present but rare in other units and may have been sourced from the conduit walls. The high proportion of stained fragments in U2b requires a different, possibly hydrothermal, source. We interpret the lava lapilli of U2c and U3 as being from a single explosion, perhaps the opening of a new vent, and thus they indicate that the eruption was continuous from U2b through U3. Our current hypothesis is that, as the U1 eruption ended, acidic gas streamed through the material clogging the vent. This elutriated vitric material that eventually formed a cap on the system. As the U3 magma began its ascent, gas flux increased, leading to explosions that gradually removed the vitric cap and depositing the vitric U2a. Then, more continuous gas streaming led to the development of an pulsatory eruption column that carried the hot stained crystals and lithic fragments into a convecting column and eventual deposition as fallout of U2b, which was then followed by the establishment of the U3 eruption column.

  6. Volcán Quizapu, Chilean Andes

    USGS Publications Warehouse

    Hildreth, Wes; Drake, Robert E.

    1992-01-01

    Quizapu is a flank vent of the basalt-to-rhyodacite Holocene stratocone, Cerro Azul, and lies at the focus of a complex Quaternary volcanic field on the Andean volcanic front. The Quizapu vent originated in 1846 when 5 km3 of hornblende-dacite magma erupted effusively with little accompanying tephra. Between ∼ 1907 and 1932, phreatic and strombolian activity reamed out a deep crater, from which 4 km3 of dacite magma identical to that of 1846 fed the great plinian event of 10–11 April 1932. Although a total of >9 km3 of magma was thus released in 86 years, there is no discernible subsidence. As the pre-plinian crater was lined by massive lavas, 1932 enlargement was limited and the total plinian deposit contains only ∼ 0.4 wt % lithics. Areas of 5-cm and 1-cm isopachs for compacted 1932 fallout are about half of those estimated in the 1930's, yielding a revised ejecta volume of ∼9.5 km3. A strong inflection near the 10-cm isopach (downwind ∼110 km) on a plot of log Thickness vs Area1/2 reflects slow settling of fine plinian ash — not of coignimbrite ash, as the volume of pyroclastic flows was trivial (<0.01 km3). About 17 vol.% of the fallout lies beyond the 1-cm isopach, and ∼ 82 wt% of the ejecta are finer than 1 mm. A least 18 hours of steady plinian activity produced an exceptionally uniform fall deposit. Observed column height (27–30 km) and average mass eruption rate (1.5x108 kg/s) compare well with values for height and peak intensity calculated from published eruption models. The progressive “aeolian fractionation” of downwind ash (for which Quizapu is widely cited) is complicated by the large compositional range of 1932 juvenile pumice (52–70% SiO2). The eruption began with andesitic scoria and ended with basaltic scoria, but >95% of the ejecta are dacitic pumice (67–68% SiO2); minor andesitic scoria and frothier rhyodacite pumice (70% SiO2) accompanied the dominant dacite. Phenocrysts (pl>hb∼opx>mt>ilm∼cpx) are similar in both abundance and composition in the 1846 (effusive) and 1932 (plinian) dacites. Despite the contrast in mode of eruption, bulk compositions are also indistinguishable. The only difference so far identified is a lower range of δ D values for 1846 hornblende, consistent with pre-eruptive degassing of the effusive batch.

  7. Are Avellino (4365 cal BP) and Pompeii twin plinian eruptions? Pre-eruptive constraints and degassing history

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît.; Ucciani, Guillaume; Cioni, Raffaello

    2010-05-01

    Somma-Vesuvius activity started 35 ky ago and is characterized by numerous eruptions of variable composition and eruptive style, sometimes interrupted by long periods of unrest. The main explosive eruptions are represented by four plinian eruptions: Pomici di Base eruption (22 cal ky), Mercato (~8900 cal BP), Avellino (4365 cal BP) and Pompeii (79 AD). The 79 AD eruption embodies the most famous eruption since it's responsible of the destruction of Pompeii and Herculanum and it's the first described eruption. The Avellino eruption represents the last plinian event that preceded the Pompeii eruption. The eruptive sequence is similar to the 79 AD plinian eruption, with an opening phase preceding a main plinian fallout activity which ended by a phreatomagmatic phase. The fallout deposit displays a sharp colour contrast from white to grey pumice, corresponding to a magma composition evolution. We focus our study on the main fallout deposit that we sampled in detail in the Traianello quarry, 9 km North-North East of the crater, to investigate the degassing processes during the eruption, using volatile content and textural observations. Density and vesicularity measurements were obtained on a minimum of 100 pumice clasts sampled in 10 stratigraphic levels in the fallout deposit. On the basis of the density distribution, bulk geochemical data, point analytical measurements on glasses (melt inclusions and residual glass) and textural observations were obtained simultaneously on a minimum of 5 pumice clasts per eruptive unit. The glass composition, in particular the Na/K ratio, evolves from Na-rich phonolite for white pumices to a more K-rich phonolite for grey pumices. The pre-eruptive conditions are constrained by systematic Cl measurements in melt inclusions and matrix glass of pumice clasts. The entire magma was saturated relative to sub-critical fluids (a Cl-rich H2O vapour phase and a brine), with a Cl melt content buffered at ~6000 ppm, and a mean pre-eruptive H2O content depending of the magma composition. Most of the pumices of the different eruptive units show that H2O degassing during the eruption followed a typical closed-system evolution as expected for plinian eruption. Contrary to H2O, Cl was not efficiently degassed during the plinian phase of the eruption: the matrix glass composition remains close to the pre-eruptive content. Compared to the 79AD eruption the degassing processes showed by the whole Avellino plinian phase is more homogeneous and similar to the white pumice phase of the Pompeii eruption whereas the open-system degassing mode identified from the grey pumices of the 79AD eruption is not represented during the Avellino eruption.

  8. The Ottaviano eruption of Somma-Vesuvio (8000 y B.P.): a magmatic alternating fall and flow-forming eruption

    NASA Astrophysics Data System (ADS)

    Rolandi, G.; Maraffi, S.; Petrosino, P.; Lirer, L.

    1993-11-01

    The Ottaviano eruption occurred in the late neolithic (8000 y B.P.). 2.40 km 3 of phonolitic pyroclastic material (0.61 km 3 DRE) were emplaced as pyroclastic flow, surge and fall deposits. The eruption began with a fall phase, with a model column height of 14 km, producing a pumice fall deposit (LA). This phase ended with short-lived weak explosive activity, giving rise to a fine-grained deposit (L1), passing to pumice fall deposits as the result of an increasing column height and mass discharge rate. The subsequent two fall phases (producing LB and LC deposits), had model column heights of 20 and 22 km with eruption rates of 2.5 × 10 7 and 2.81 × 10 7 kg/s, respectively. These phases ended with the deposition of ash layers (L2 and L3), related to a decreasing, pulsing explosive activity. The values of dynamic parameters calculated for the eruption classify it as a sub-plinian event. Each fall phase was characterized by variations in the eruptive intensity, and several pyroclastic flows were emplaced (F1 to F3). Alternating pumice and ash fall beds record the waning of the eruption. Finally, owing to the collapse of a eruptive column of low gas content, the last pyroclastic flow (F4) was emplaced.

  9. The 12.4 ka Upper Apoyeque Tephra, Nicaragua: stratigraphy, dispersal, composition, magma reservoir conditions and trigger of the plinian eruption

    NASA Astrophysics Data System (ADS)

    Wehrmann, Heidi; Freundt, Armin; Kutterolf, Steffen

    2016-06-01

    Upper Apoyeque Tephra (UAq) was formed by a rhyodacitic plinian eruption in west-central Nicaragua at 12.4 ka BP. The fallout tephra was dispersed from a progressively rising plinian eruption column that became exposed to different wind speeds and directions at different heights in the stratosphere, leading to an asymmetric tephra fan with different facies in the western and southern sector. Tephra dispersal data integrated with geochemical compositions of lava flows in the area facilitate delimitation of the source vent to the south of Chiltepe Peninsula. UAq, Lower Apoyeque Tephra, Apoyeque Ignimbrite, and two lava lithic clasts in San Isidro Tephra together form a differentiation trend distinct from that of the younger tephras and lavas at Chiltepe Volcanic Complex in a TiO2 versus K2O diagram, compositionally precluding a genetic relationship of UAq with the present-day Apoyeque stratovolcano. Apoyeque Volcano in its present shape did not exist at the time of the UAq eruption. The surface expression of the UAq vent is now obscured by younger eruption products and lake water. Pressure-temperature constraints based on mineral-melt equilibria and fluid inclusions in plagioclase indicate at least two magma storage levels. Clinopyroxenes crystallised in a deep crustal reservoir at ˜24 km depth as inferred from clinopyroxene-melt inclusion pairs. Chemical disequilibrium between clinopyroxenes and matrix glasses indicates rapid magma ascent to the shallower reservoir at ˜5.4 km depth, where magnesiohornblendes and plagioclase fractionated at a temperature of ˜830 °C. Water concentrations were ˜5.5 wt.% as derived from congruent results of amphibole and plagioclase-melt hygrometry. The eruption was triggered by injection of a hotter, more primitive melt into a water-supersaturated reservoir.

  10. Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand

    NASA Astrophysics Data System (ADS)

    Thompson, Mary Anne; Lindsay, Jan M.; Sandri, Laura; Biass, Sébastien; Bonadonna, Costanza; Jolly, Gill; Marzocchi, Warner

    2015-05-01

    Uncertainties in modelling volcanic hazards are often amplified in geographically large systems which have a diverse eruption history that comprises variable eruption styles from many different vent locations. The ~700 km2 Okataina Volcanic Centre (OVC) is a caldera complex in New Zealand which has displayed a range of eruption styles and compositions over its current phase of activity (26 ka-present), including one basaltic maar-forming eruption, one basaltic Plinian eruption and nine rhyolitic Plinian eruptions. All three of these eruption styles occurred within the past 3.5 ky, and any of these styles could occur in the event of a future eruption. The location of a future eruption is also unknown. Future vents could potentially open in one of three different areas which have been activated in the past 26 ky at the OVC: the Tarawera linear vent zone (LVZ) (five eruptions), the Haroharo LVZ (five eruptions) or outside of these LVZs (one eruption). A future rhyolitic or basaltic Plinian eruption from the OVC is likely to generate widespread tephra fall in loads that will cause significant disruption and have severe socio-economic impacts. Past OVC tephra hazard studies have focused on evaluating hazard from a rhyolitic Plinian eruption at select vent locations in the OVC's Tarawera LVZ. Here, we expand upon past studies by evaluating tephra hazard for all possible OVC eruption vent areas and for both rhyolitic and basaltic Plinian eruption styles, and explore how these parameters influence tephra hazard forecasts. Probabilistic volcanic hazard model BET_VH and advection-diffusion model TEPHRA2 were used to assess the hazard of accumulating ≥10 kg m-2 of tephra from both basaltic Plinian and rhyolitic Plinian eruption styles, occurring from within the Tarawera LVZ, the Haroharo LVZ or other potential vent areas within the caldera. Our results highlight the importance of considering all the potential vent locations of a volcanic system, in order to capture the full eruption catalogue in analyses (e.g. 11 eruptions over 26 ky for the OVC versus only five eruptions over 26 ky for the Tarawera LVZ), as well as the full spatial distribution of tephra hazard. Although the Tarawera LVZ has been prominently discussed in studies of OVC hazard because of its recent activity (1886 and ~1315 ad), we find that in the event of a future eruption, the estimated likelihood of a vent opening within the Haroharo LVZ (last eruption 5.6 ka) is equivalent (<1 % difference) to that for the Tarawera LVZ (31.8 compared to 32.5 %). Including both the Haroharo LVZ and the Tarawera LVZ as possible source areas in the hazard analysis allows us to assess the full spatial extent of OVC tephra fall hazard. By considering both basaltic Plinian and rhyolitic Plinian eruption styles, as well as multiple vent location areas, we present a hazard assessment which aims to reduce bias through incorporating a greater range of eruption variables.

  11. Mafic Plinian volcanism and ignimbrite emplacement at Tofua volcano, Tonga

    NASA Astrophysics Data System (ADS)

    Caulfield, J. T.; Cronin, S. J.; Turner, S. P.; Cooper, L. B.

    2011-11-01

    Tofua Island is the largest emergent mafic volcano within the Tofua arc, Tonga, southwest Pacific. The volcano is dominated by a distinctive caldera averaging 4 km in diameter, containing a freshwater lake in the south and east. The latest paroxysmal (VEI 5-6) explosive volcanism includes two phases of activity, each emplacing a high-grade ignimbrite. The products are basaltic andesites with between 52 wt.% and 57 wt.% SiO2. The first and largest eruption caused the inward collapse of a stratovolcano and produced the `Tofua' ignimbrite and a sub-circular caldera located slightly northwest of the island's centre. This ignimbrite was deposited in a radial fashion over the entire island, with associated Plinian fall deposits up to 0.5 m thick on islands >40 km away. Common sub-rounded and frequently cauliform scoria bombs throughout the ignimbrite attest to a small degree of marginal magma-water interaction. The common intense welding of the coarse-grained eruptive products, however, suggests that the majority of the erupted magma was hot, water-undersaturated and supplied at high rates with moderately low fragmentation efficiency and low levels of interaction with external water. We propose that the development of a water-saturated dacite body at shallow (<6 km) depth resulted in failure of the chamber roof to cause sudden evacuation of material, producing a Plinian eruption column. Following a brief period of quiescence, large-scale faulting in the southeast of the island produced a second explosive phase believed to result from recharge of a chemically distinct magma depleted in incompatible elements. This similar, but smaller eruption, emplaced the `Hokula' Ignimbrite sheet in the northeast of the island. A maximum total volume of 8 km3 of juvenile material was erupted by these events. The main eruption column is estimated to have reached a height of ˜12 km, and to have produced a major atmospheric injection of gas, and tephra recorded in the widespread series of fall deposits found on coral islands 40-80 km to the east (in the direction of regional upper-tropospheric winds). Radiocarbon dating of charcoal below the Tofua ignimbrite and organic material below the related fall units imply this eruption sequence occurred post 1,000 years BP. We estimate an eruption magnitude of 2.24 × 1013 kg, sulphur release of 12 Tg and tentatively assign this eruption to the AD 1030 volcanic sulphate spike recorded in Antarctic ice sheet records.

  12. Somma-Vesuvius Plinian Eruptions fed by mafic magma: insights from bubbles in melt inclusions

    NASA Astrophysics Data System (ADS)

    Esposito, R.; Redi, D.; Cannatelli, C.; Danyushevsky, L. V.; Lima, A.; Bodnar, R. J.; De Vivo, B.

    2014-12-01

    Mt. Somma-Vesuvius Plinian eruptions were first described by Pliny the younger in 79 AD during the infamous eruption that destroyed Pompeii. Today, such eruptions are still a concern to the nearly 3 million people living in the Naples metropolitan area. Understanding the source for Mt. Somma-Vesuvius magma and the coexisting volatile phase is vital to better constrain the long-term eruptive behavior of this volcano. In the present study, ~ 50 olivine phenocrysts were selected from lavas and pumices produced during mild effusive events referred to as inter-Plinian eruptions, and from highly explosive Plinian eruptions that occurred at Mt. Somma-Vesuvius between 33000 ka and 1631 AD. Selected olivine phenocrysts containing MI were examined petrographically and analyzed for Fo content. Fo varies from 69 to 73 mole% for inter-Plinian olivine crystals and from 84 to 90 mole% with one zoned olivine containing 76-81 mole% Fo, for Plinian olivine crystals. Investigated MI vary from slightly crystallized to highly crystallized. Selected crystallized MI were reheated using the Vernadsky stage, and quenched to a homogeneous glass (Group 1) or glass plus a vapor bubble (Group 2). On one hand, MI of Group 1 are hosted in olivine ranging from Fo72 to Fo76 and were all erupted from the Pompeii eruption (white pumice deposit). On the other hand, MI of Group 2 are trapped in olivine ranging from Fo69 to Fo81 and from Fo84 to Fo90, and the hosts are representative of both Plinian and inter-Plinian events. The only eruption where Group-1 and Group-2 MI coexist is the Pompeii eruption. Group 2 MIs were further analyzed by Raman to test for the presence of volatiles (CO2 or H2O) in the vapor bubbles. CO2 was detected in all MI analyzed. CO2 density was determined using the distance between the two Fermi-diad peaks, and ranges between 0.14 and 0.55 g/cm3. Six MI also showed evidence for H2O in the vapor bubble. In addition, carbonates were detected at the glass-vapor interface of five MI. This study shows that the CO2-rich fluid phase, which might exsolve from Plinian melts contain a significant amount of H2O. In addition, the first melting temperature of the fluids in the vapor bubble (~ -58ºC) suggests that volatile components, other than CO2, are included in the vapor bubbles.

  13. Fluid inclusion studies of ejected nodules from plinian eruptions of Mt. Somma-Vesuvius

    USGS Publications Warehouse

    Belkin, H.E.; de Vivo, B.

    1993-01-01

    Mt. Somma-Vesuvius (Naples, Italy) has erupted potassium-rich and silica-undersaturated products during a complicated history of plinian and non-plinian events. Coarse-grained cognate nodules are commonly found in the pyroclastics and are upper crustal in origin. We examined cumulate and subeffusive nodules from the 3800 y.B.P. Avellino. A.D. 79 Pompei, and A.D. 472 Pollena eruptions. Silicate-melt and liquid-vapor fluid inclusion studies in clinopyroxene from both types of nodules have been used to assess the fluids attending crystallization and to place constraints on the pressure and temperature of nodule formation. Thermometric and volumetric data from primary and pseudosecondary CO2-H2O and CO2 and coeval silicate-melt fluid inclusions indicate that they were trapped at a pressure of ???1 to ???2.5 kbar at ???1200??C. This suggests a crystallization depth of ???4 to ???10 km. The H2O-bearing fluid inclusions are abundant from plinian eruptions in contrast to non-plinian eruptions where H2O-bearing fluid inclusions were rare. The presence of primary H2O-CO2 fluid inclusions indicates that an immiscible, supercritical H2O-CO2 fluid was in the nodule-forming environment. The H2O-bearing fluid inclusions in plinian nodules may record a higher pre-eruptive H2O content in the bulk magma that is dramatically reflected in the eruption dynamics. ?? 1993.

  14. The 23,500 y 14C BP White Pumice Plinian eruption and associated debris avalanche and Tochimilco lava flow of Popocatépetl volcano, México

    NASA Astrophysics Data System (ADS)

    Siebe, Claus; Salinas, Sergio; Arana-Salinas, Lilia; Macías, José Luis; Gardner, James; Bonasia, Rosanna

    2017-03-01

    The White Pumice (WP) is one of the thickest and most voluminous Plinian fallouts produced by Popocatépetl volcano in central Mexico during the Late Pleistocene-Holocene. Its eruption 23,500 14C y BP (27,800 cal BP) was triggered by the catastrophic failure of the SW flank of the volcano. The resulting debris avalanche was highly mobile reaching 72 km from the cone with an apparent coefficient of friction (L/H) of 0.06. The deposit covers an area of 1200 km2, and has a volume of 10.4 km3. This gigantic landslide, characterized by exceptionally large proximal hummocks (> 400 m) provoked the sudden decompression of the hydrothermal and magmatic systems, which produced an initial blast followed by the rise of a Plinian column that reached an altitude of 33 km. The isopach map allows the recognition of a dispersal axis pointing toward the south, where an area of 2490 km2 was covered by > 10 cm of pumice and ash. The total volume of the pumice fallout was estimated at 1.9 km3 DRE (Dense Rock Equivalent). Pumice clasts are dacitic (62-66 wt.% SiO2, anhydrous basis), highly vesicular (55-88 vol.%) and display a seriate texture with phenocrysts of plagioclase + hornblende + augite + hypersthene + oxides (Ti-magnetite and ilmenite) + apatite. As the eruption advanced, discharge rates became more intermittent and the height of the column fluctuated and finally collapsed, generating pumice-and-ash flows that were emplaced around the volcano. This short but intense activity was followed during subsequent years by rain-induced lahars that reached great distances from the volcano. At the same time, more degassed andesitic-dacitic (61-65 wt.% SiO2) magma was erupted effusively (4.4 km3, DRE) in the new horseshoe-shaped 5 km-wide crater from which the Tochimilco lava flow descended toward the SSE, where it inundated an area of 68 km2 and reached as far as 22 km from its source. Since then, multiple eruptions have reconstructed the summit cone, almost completely obliterating the horseshoe-shaped crater. During the course of this catastrophic eruption (VEI = 5) a total volume of 6.3 km3 (DRE) of juvenile magma (pumice and lava) were emitted and at least an additional 10 km3 of pre-existing rocks (debris avalanche) mobilized. It surpasses in magnitude most other known Plinian eruptions from Popocatépetl and can be envisaged as an example of a worst-case scenario for hazard evaluation purposes. It dramatically changed the morphology of the volcano and had profound and far-reaching effects beyond its immediate vicinity along rivers draining surrounding plains as well as on the lacustrine basins (e.g. Chalco) to the NE. A repeat of such an eruption in this densely populated area would certainly cause a major calamity of unprecedented dimensions.

  15. The location and timing of magma degassing during Plinian eruptions

    NASA Astrophysics Data System (ADS)

    Giachetti, T.; Gonnermann, H. M.

    2014-12-01

    Water is the most abundant volatile species in explosively erupting silicic magmas and significantly affects magma viscosity, magma fragmentation and the dynamics of the eruption column. The effect that water has on these eruption processes can be modulated by outgassing degassing from a permeable magma. The magnitude, rate and timing of outgassing during magma ascent, in particular in relation to fragmentation, remains a subject of debate. Here we constrain how much, how fast and where the erupting magma lost its water during the 1060 CE Plinian phase of the Glass Mountain eruption of Medicine Lake Volcano, California. Using thermogravimetric analysis coupled with numerical modeling, we show that the magma lost >90% of its initial water upon eruption. Textural analyses of natural pumices, together with numerical modeling of magma ascent and degassing, indicate that 65-90% of the water exsolved before fragmentation, but very little was able to outgas before fragmentation. The magma attained permeability only within about 1 to 10 seconds before fragmenting and during that time interval permeable gas flow resulted in only a modest amount of gas flux from the un-fragmented magma. Instead, most of the water is lost shortly after fragmentation, because gas can escape rapidly from lapilli-size pyroclasts. This results in an efficient rarefaction of the gas-pyroclast mixture above the fragmentation level, indicating that the development of magma permeability and ensuing permeable outgassing are a necessary condition for sustain explosive eruptions of silicic magma. Magma permeability is thus a double-edged sword, it facilitates both, the effusive and the explosive eruption of silicic magma.

  16. Basaltic scoria fallout deposits from Ambrym volcano (Vanuatu archipelago): Textural and geochemical evidence of plinian eruptive styles

    NASA Astrophysics Data System (ADS)

    Balcone-Boissard, H.; Boudon, G.; Poulain, P.

    2017-12-01

    Plinian eruptions are among the most threatening volcanic hazard responsible of gas and solid particles release into atmosphere leading to potential damages at various spatial and time scales. Such explosive activity generally involves differentiated magmas, silica-rich enough to behave as viscous media and volatile-rich enough to generate significant overpressure in ascending magma. In some rare cases, Plinian eruptions can occur with more basic magmas as basalts. Few eruptions are now recognized on Earth, on Etna (122 BC), Masaya (Fontana) or Tarawera (1886). On Ambrym volcano (Vanuatu), the caldera formation was the result of several large eruptions including some Plinian events dated around 2000 yr. BP. By applying joint textural and geochemical investigations of a representative stratigraphic section of one of these eruptions we present new arguments to discuss the origin of such explosivity for basic magma. To achieve this goal we establish a degassing budget (H2O, CO2, SO2, F, Cl) through the petrological investigation by comparing melt inclusion and residual glass. We compare these results to those of quantitative textural description of pumice clasts through SEM images treated using Image J software, thus linking textural and geochemical arguments. We thus highlight that a low volatile content is not responsible of the overpressure leading to explosivity. Textural characteristics evidence vesicle organisation and low microlite content close that described for Plinian eruption involving differentiated melt. Degassing processes occur following a closed-system degassing evolution well correlated with textural parameters. By comparison to deposits of other basaltic Plinian eruptions, we show that for 122 BC eruption of Mt Etna, textural signature is diverse although we also evidence closed-system degassing processes. This study also permits to confirm that Ambrym is a valuable contributor to halogen release into the atmosphere at a time of reflexion on volcanic halogen contribution to atmosphere budget.

  17. The latest explosive eruptions of Ciomadul (Csomád) volcano, East Carpathians - A tephrostratigraphic approach for the 51-29 ka BP time interval

    NASA Astrophysics Data System (ADS)

    Karátson, D.; Wulf, S.; Veres, D.; Magyari, E. K.; Gertisser, R.; Timar-Gabor, A.; Novothny, Á.; Telbisz, T.; Szalai, Z.; Anechitei-Deacu, V.; Appelt, O.; Bormann, M.; Jánosi, Cs.; Hubay, K.; Schäbitz, F.

    2016-06-01

    The most recent, mainly explosive eruptions of Ciomadul, the youngest volcano in the Carpatho-Pannonian Region, have been constrained by detailed field volcanological studies, major element pumice glass geochemistry, luminescence and radiocarbon dating, and a critical evaluation of available geochronological data. These investigations were complemented by the first tephrostratigraphic studies of the lacustrine infill of Ciomadul's twin craters (St. Ana and Mohoş) that received tephra deposition during the last eruptions of the volcano. Our analysis shows that significant explosive activity, collectively called EPPA (Early Phreatomagmatic and Plinian Activity), started at Ciomadul in or around the present-day Mohoş, the older crater, at ≥ 51 ka BP. These eruptions resulted in a thick succession of pyroclastic-fall deposits found in both proximal and medial/distal localities around the volcano, characterized by highly silicic (rhyolitic) glass chemical compositions (ca. 75.2-79.8 wt.% SiO2). The EPPA stage was terminated by a subplinian/plinian eruption at ≥ 43 ka BP, producing pumiceous pyroclastic-fall and -flow deposits of similar glass composition, probably from a "Proto-St. Ana" vent located at or around the younger crater hosting the present-day Lake St. Ana. After a quiescent period with a proposed lava dome growth in the St. Ana crater, a new explosive stage began, defined as MPA (Middle Plinian Activity). In particular, a significant two-phase eruption occurred at 31.5 ka BP, producing pyroclastic flows from vulcanian explosions disrupting the preexisting lava dome of Sf. Ana, and followed by pumiceous fallout from a plinian eruption column. Related pyroclastic deposits show a characteristic, less evolved rhyolitic glass composition (ca. 70.2-74.5 wt.% SiO2) and occur both in proximal and medial/distal localities up to 21 km from source. The MPA eruptions, that may have pre-shaped a crater similar to, but possibly smaller than, the present-day St. Ana crater, was followed by a so far unknown, but likewise violent last eruptive stage from the same vent, creating the final morphology of the crater. This stage, referred to as LSPA (Latest St. Ana Phreatomagmatic Activity), produced pyroclastic-fall deposits of more evolved rhyolitic glass composition (ca. 72.8-78.8 wt.% SiO2) compared to that of the previous MPA stage. According to radiocarbon age constraints on bulk sediment, charcoal and organic matter from lacustrine sediments recovered from both craters, the last of these phreatomagmatic eruptions - that draped the landscape toward the east and southeast of the volcano - occurred at 29.6 ka BP, some 2000 years later than the previously suggested last eruption of Ciomadul.

  18. Sensitivity analysis and uncertainty estimation in ash concentration simulations and tephra deposit daily forecasted at Mt. Etna, in Italy

    NASA Astrophysics Data System (ADS)

    Prestifilippo, Michele; Scollo, Simona; Tarantola, Stefano

    2015-04-01

    The uncertainty in volcanic ash forecasts may depend on our knowledge of the model input parameters and our capability to represent the dynamic of an incoming eruption. Forecasts help governments to reduce risks associated with volcanic eruptions and for this reason different kinds of analysis that help to understand the effect that each input parameter has on model outputs are necessary. We present an iterative approach based on the sequential combination of sensitivity analysis, parameter estimation procedure and Monte Carlo-based uncertainty analysis, applied to the lagrangian volcanic ash dispersal model PUFF. We modify the main input parameters as the total mass, the total grain-size distribution, the plume thickness, the shape of the eruption column, the sedimentation models and the diffusion coefficient, perform thousands of simulations and analyze the results. The study is carried out on two different Etna scenarios: the sub-plinian eruption of 22 July 1998 that formed an eruption column rising 12 km above sea level and lasted some minutes and the lava fountain eruption having features similar to the 2011-2013 events that produced eruption column high up to several kilometers above sea level and lasted some hours. Sensitivity analyses and uncertainty estimation results help us to address the measurements that volcanologists should perform during volcanic crisis to reduce the model uncertainty.

  19. The Influence of Conduit Processes During Basaltic Plinian Eruptions.

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Sable, J. E.; Wilson, C. J.; Coltelli, M.; Del Carlo, P.

    2001-12-01

    Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e. generating widespread phreatomagmatic, subplinian and Plinian fall deposits. These eruptions are particularly dangerous because the ascent rate of basaltic magma prior to eruption can be very rapid (giving warning times as little as a few hours) and because their precursors may be ignored or misunderstood. The main question addressed in this talk is: what conditions in the conduit cause basaltic magma to adopt an eruption style more typical of chemically evolved, highly viscous magmas? Possible mechanisms (acting singly, or in concert) are: (1) interaction between magma and water, (ii) very rapid ascent producing a delayed onset of degassing then exceptionally rapid "runaway" vesiculation at shallow levels in the conduit, (iii) microlite crystallization and degassing of the magma during ascent leading to increased viscosity. We focus here on two examples of basaltic Plinian volcanism: the 1886 eruption of Tarawera, New Zealand, which is the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well documented 122 BC eruption of Mount Etna, Italy. Field and laboratory evidence suggests that the Plinian phase of the 1886 eruption was a consequence of two processes. Firstly rheologic changes during magma ascent accompanied early (pre-fragmentation) interaction between the basaltic melt and water-bearing rhyolitic units forming the conduit walls and, secondly, late-stage magma:water interaction. In contrast, during the 122 BC eruption tectonic processes, such as slope failure or permanent displacement of a mobile flank of the volcano, appear to have triggered exceptionally rapid ascent, delayed onset of degassing and exceptionally rapid vesiculation at shallow levels in the conduit.

  20. Vent Processes and Deposits of a Hiatus in a Violent Eruption: Quilotoa Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Best, J. A.; Bustillos, J.; Ort, M. H.; Cashman, K. V.; Mothes, P. A.; di Muro, A.; Rosi, M.

    2010-12-01

    The 800 BP eruption of Quilotoa volcano, Ecuador, produced two plinian eruptions separated by a short (days-weeks) hiatus. Units 1 and 3 (U1 and U3) of the eruption correspond to the first and second Plinian eruptions, respectively, and produced fallout and pyroclastic density currents. Unit 2 (U2) records processes during the hiatus and consists of three subunits: U2a, U2b, and U2c. 147 tephra samples of U1, U2, and U3 were collected from 25 sites from around the volcano. Thickness and grain-size features were described, with particular attention paid to U2, in order to characterize the processes that occurred during the eruptive hiatus. Grain-size and componentry analysis of a subset of these samples reveals a number of trends. The upper part of U1 is massive and normally graded at its top, 32-45 % dominantly vitric ash ≤ 3.0 φ, and likely represents the clearing of the air at the end of the first plinian eruption. U2a, present out to a maximum of 7 km from the vent, has a polymodal distribution with a large fraction of 4.0 φ and finer vitric material. Dune forms occur in this unit, which are interpreted to be the product of surges. The areal distribution of U2a is constrained by topography, whereas U2b is not. U2b is coarser overall with alternating fine- (2-3φ) and coarse- (1-2φ) grained layers. The beds, both coarse and fine, have a near-bimodal grain-size distribution and normal grading. U2b is interpreted as a fall deposit. The U2a/U2b contact is gradational in that 0-2 beds of U2b material occur within the uppermost U2a beds at proximal localities, indicating vent conditions for both briefly coexisted. U2c is a <2-cm-thick vitric ash bed with sparse dense juvenile vitric lapilli. These lapilli also occur in the overlying basal U3 fallout, which has a polymodal grain-size distribution. U2b is characteristically orange in color due to the dust that loosely covers the grains. Hydrothermal activity within the vent is likely the source of this staining, with the simultaneous milling of the weakened material producing the orange dust. We interpret the dense vitric lapilli ≥ -2.0 φ of U2c as being from an explosion through a lava dome, and thus they indicate that the eruption was continuous from U2c through U3. Our current hypothesis is that, as the U1 eruption ended, magma stalled deep in the conduit and degassed hot acidic gas that streamed through the material clogging the vent. This elutriated vitric material that eventually formed a cap on the system. As the U3 magma began its ascent, gas flux increased, leading to explosions that gradually removed the vitric cap and deposited the vitric U2a. Then, more continuous gas streaming led to the development of a pulsatory eruption column that carried hot crystals and vitric grains from the vent clog into a convecting column and eventual deposition as U2b fallout, which was then followed by the establishment of the U3 eruption column.

  1. The 1913 VEI-4 Plinian Eruption of Volcan de Colima (Mexico): Tephrochronology, Petrology, and Plume Modeling

    NASA Astrophysics Data System (ADS)

    Luhr, J. F.; Navarro, C.; Connor, C. B.; Connor, L.

    2006-12-01

    The 18-20 January 1913 VEI-4 eruption of Volcán de Colima closed out a century-scale eruptive cycle, left the summit a deep jagged crater 100 m shorter than before, sent pyroclastic flows out to 15 km on the S flank, and culminated in a Plinian column that resulted in ashfall as far as 725 km to the NE at Saltillo. Historical accounts allow a rough delineation of where distal ash did and did not fall. Today in the field, the 1913 Plinian fall deposit can be traced across the upper flanks of Nevado de Colima, but only to distances of 13 km from the vent. Beyond that point all evidence of the eruption has been eroded from Earth's surface in the past 93 years. We studied the proximal 1913 fall deposit at 45 locations. At 27 locations the 1913 deposit is a single fall unit, up to 80 cm thick. At the other locations, 2-3 individual scoria-fall layers are separated by charcoal- bearing fine-ash horizons, which we interpret as pyroclastic-surge deposits. At locations with multiple units and complex lower 1913 stratigraphy, bulk compositional data on scoriae provided insight regarding to the base of the 1913 deposit. Particular uncertainty clouds field identification of the scoria-fall deposit from the similar VEI-4 eruption in 1818. Granulometric data for the 1913 deposit were obtained by sieving both scoria- fall and fine-ash layers. The 1913 scoriae are relatively homogeneous hornblende andesites with ~58 wt.% SiO2, more mafic than all of the andesitic lava flows that preceded it starting in 1869 and have followed since 1961 (~60% SiO2). The 1913 scoriae have plagioclase > orthopyroxene > clinopyroxene > hornblende > titanomagnetite. The hornblende phenocrysts are greenish brown in color and have clean rims against the vesiculated glassy matrix, indicating that the hornblende remained stable until eruptive quenching. We used electron and ion microprobes to analyze a series of glass inclusions trapped within orthopyroxene phenocrysts for major, minor, and volatile elements. The 1913 glass inclusions are very homogeneous in composition and contain ~6 wt.% H2O, ~80 ppm CO2, ~1,500 ppm S, ~2,800 ppm Cl, and ~600 ppm F. The H2O and CO2 data indicate a minimum solubility pressure of ~2,250 bars, and a minimum depth of ~8 km for the pre-eruptive 1913 magma reservoir. Field and laboratory data for the 1913 tephra-fall deposit are used with the TEPHRA2 forward model and inversion algorithms to quantify eruption parameters (e.g., volume, column height, and wind structure), together with uncertainties in these parameters.

  2. Toward an integrative spatiotemporal architecture of the magma plumbing system leading to systematic Plinian eruption at Montagne Pelée Martinique (Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Boudon, G.; Balcone-Boissard, H.; Lyonnet, E.; Morgan, D. J.

    2017-12-01

    The dynamic of crustal magma reservoir may be at the origin of pressure/temperature variations that may trigger magma ascent and eruption. These changes can be registered during crystal growth and can probably produce at the surface geophysical or/and geochemical signals that could be registered by monitoring network, constituting precursory signals. For volcanoes where the plumbing system is well established in terms of volume and depth for a given cycle, repetitive eruptions of the same order of magnitude and involving similar magma composition may occur. It was the case for Montagne Pelée (Martinique, Lesser Antilles), sadly known for the 1902 lava dome-forming eruption that killed 30 000 inhabitants, and that produce repetitive Plinian eruptions in the last 15 ky. Are the perturbations in the dynamic of the magma storage identical for all these eruptions and is the timescale between these perturbations and the eruptions in the same order of magnitude? In the last decade, intracristalline diffusion modelling has been increasingly used to constrain timescale of magmatic processes. Recently this kind of investigations has been coupled to a petrological model of the magma storage region to better wholly describe its behaviour through a Crystal System Analysis (CSA) approach. Here we aim at constraining the pre-eruptive dynamic of the reservoir giving birth to the Plinian eruptions at Montagne Pelée. Precisely we attempt to identify the processes at the origin of the eruptions and the timescale between this process and the eruption. By studying the last five Plinian eruptions of this volcano the question of the systematic occurrence of one process at the same time prior eruption will be discussed. To achieve this goal we performed a detailed petrological description of the eruptive products of the first Plinian phase of these eruptions to build a CSA tree through EPMA and SEM analyses, coupled to Fe-Mg diffusion modelling in orthopyroxenes to retrieve timescale between the perturbation identified in the reservoir and the eruption. We thus highlight that: i) the perturbation event is not systematically the same through all eruptions; ii) the timescale that separate this event from the eruptions is in the order of 4-6 months, significantly shorter that what was up to now estimated for large silicic eruptions.

  3. The recent pumice eruptions of Mt. Pelée volcano, Martinique. Part I: Depositional sequences, description of pumiceous deposits

    NASA Astrophysics Data System (ADS)

    Traineau, Hervé; Westercamp, Denis; Bardintzeff, Jacques-Marie; Miskovsky, Jean-Claude

    1989-08-01

    Mount Pelée is one of the most active volcanoes of the Lesser Antilles arc, with more than twenty eruptions over the last 5000 years. Both nuée ardente-type eruptions, which are well known, and pumice eruptions, although little known, are very common in the stratigraphic record. The four younger pumice eruptions, P4 (2440 y.B.P.), P3 (2010 y.B.P.), P2 (1670 y.B.P.) and P1 (650 y.B.P.) can be used to reconstruct the eruption sequences. The various pumiceous deposits can be described as fine lithic ash layer, Plinian fall deposits, pumice and ash flow deposits with associated ash cloud fall deposits, and pumice surge deposits. Three kinds of depositional sequences have been defined. The distinctions between them are based on the occurrence of an initial Plinian phase and the generation of intraflow pyroclastic surges. The pumice eruptions of Mt. Pelée are small in intensity and magnitude, as expressed by the dispersal of their products and by the total mass of erupted material which is estimated to be less than 1 km 3 in each case. The pumice fall deposits have dispersal characteristics of small Plinian eruptions, close to the sub-Plinian type. Nevertheless, the probability of an occurrence of a new pumice eruption at Mt. Pelée is high, and the widespread distribution of pumice deposits around the volcano suggests that such an eruption is a major volcanic risk during the present stage of activity.

  4. The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Wilson, C. J. N.; Del Carlo, P.; Coltelli, M.; Sable, J. E.; Carey, R.

    2004-09-01

    Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e., generating widespread phreatomagmatic, subplinian and Plinian fall deposits. We focus here on the influence of conduit processes, especially partial open-system degassing, in triggering abrupt changes in style and intensity that occurred during two examples of basaltic Plinian volcanism. We use the 1886 eruption of Tarawera, New Zealand, the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well-documented 122 BC eruption of Mount Etna, Italy, and present new grain size and vesicularity data from the proximal deposits. These data show that even during extremely powerful basaltic eruptions, conduit processes play a critical role in modifying the form of the eruptions. Even with very high discharge, and presumably ascent, rates, partial open-system behaviour of basaltic melts becomes a critical factor that leads to development of domains of largely stagnant and outgassed melt that restricts the effective radius of the conduit. The exact path taken in the waning stages of the eruptions varied, in response to factors which included conduit geometry, efficiency and extent of outgassing and availability of ground water, but a relatively abrupt cessation to sustained high-intensity discharge was an inevitable consequence of the degassing processes.

  5. Decompression Induced Crystallization of Basaltic Andesite Magma: Constraints on the Eruption of Arenal Volcano, Costa Rica.

    NASA Astrophysics Data System (ADS)

    Szramek, L. A.; Gardner, J. E.; Larsen, J. F.

    2004-12-01

    Arenal Volcano is a small stratovolcano located 90 km NW of San Jose, Costa Rica. In 1968 current activity began with a Plinian phase, and has continued to erupt lava flows and pyroclastic flows intermittently since. Samples from the Plinian, pyroclastic flow, strombolian, and effusive phases have been studied texturally. Little variation in crystallinity occurs amongst the different phases. Number density of crystals, both 2D and 3D are 50-70 mm-2 and 30,000-50,000 mm-3 in the Plinian sample, compared to the lesser values in other eruptive types. Characteristic crystal size also increases as explosivity decreases. Two samples, both lava flows collected while warm, overlap with the Plinian sample. This suggests that the variations seen may be a result of cooling history. Plagioclase differs between the Plinian sample, in which they are only tabular in shape, and the other eruptive types, which contain both tabular and equant crystals. To link decompression paths of the Arenal magma to possible pre-eruptive conditions, we have carried out hydrothermal experiments. The experiments were preformed in TZM pressure vessels buffered at a fugacity of Ni-NiO and water saturation. Phase equilibria results in conjunction with mineral compositions and temperature estimates by previous workers from active lava flows and two-pyroxene geothermometry, constrain the likely pre-eruptive conditions for the Arenal magma to 950-1040° C with a water pressure of 50-80 MPa. Samples that started from conditions that bracket our estimated pre-eruptive conditions were decompressed in steps of 5-30 MPa and held for various times at each step until 20 MPa was reached, approximating average decompression rates of 0.25, 0.025, 0.0013 MPa/s. Comparison of textures found in the natural samples to the experimentally produced textures suggest that the Plinian eruption likely was fed by magma ascending at 0.05-1 m/s, whereas the less explosive phases were fed by magma ascending at 0.05 m/s or less.

  6. Total grain-size distribution of four subplinian-Plinian tephras from Hekla volcano, Iceland: Implications for sedimentation dynamics and eruption source parameters

    NASA Astrophysics Data System (ADS)

    Janebo, Maria H.; Houghton, Bruce F.; Thordarson, Thorvaldur; Bonadonna, Costanza; Carey, Rebecca J.

    2018-05-01

    The size distribution of the population of particles injected into the atmosphere during a volcanic explosive eruption, i.e., the total grain-size distribution (TGSD), can provide important insights into fragmentation efficiency and is a fundamental source parameter for models of tephra dispersal and sedimentation. Recent volcanic crisis (e.g. Eyjafjallajökull 2010, Iceland and Córdon Caulle 2011, Chile) and the ensuing economic losses, highlighted the need for a better constraint of eruption source parameters to be used in real-time forecasting of ash dispersal (e.g., mass eruption rate, plume height, particle features), with a special focus on the scarcity of published TGSD in the scientific literature. Here we present TGSD data associated with Hekla volcano, which has been very active in the last few thousands of years and is located on critical aviation routes. In particular, we have reconstructed the TGSD of the initial subplinian-Plinian phases of four historical eruptions, covering a range of magma composition (andesite to rhyolite), eruption intensity (VEI 4 to 5), and erupted volume (0.2 to 1 km3). All four eruptions have bimodal TGSDs with mass fraction of fine ash (<63 μm; m63) from 0.11 to 0.25. The two Plinian dacitic-rhyolitic Hekla deposits have higher abundances of fine ash, and hence larger m63 values, than their andesitic subplinian equivalents, probably a function of more intense and efficient primary fragmentation. Due to differences in plume height, this contrast is not seen in samples from individual sites, especially in the near field, where lapilli have a wider spatial coverage in the Plinian deposits. The distribution of pyroclast sizes in Plinian versus subplinian falls reflects competing influences of more efficient fragmentation (e.g., producing larger amounts of fine ash) versus more efficient particle transport related to higher and more vigorous plumes, displacing relatively coarse lapilli farther down the dispersal axis.

  7. The 1999 eruption of Shishaldin Volcano, Alaska: Monitoring a distant eruption

    USGS Publications Warehouse

    Nye, C.J.; Keith, T.E.C.; Eichelberger, J.C.; Miller, T.P.; McNutt, S.R.; Moran, S.; Schneider, D.J.; Dehn, J.; Schaefer, J.R.

    2002-01-01

    Shishaldin Volcano, in the central Aleutian volcanic arc, became seismically restless during the summer of 1998. Increasing unrest was monitored using a newly installed seismic network, weather satellites, and rare local visual observations. The unrest culminated in large eruptions on 19 April and 22-23 April 1999. The opening phase of the 19 April eruption produced a sub-Plinian column that rose to 16 km before rapidly dissipating. About 80 min into the 19 April event we infer that the eruption style transitioned to vigorous Strombolian fountaining. Exceptionally vigorous seismic tremor heralded the 23 April eruption, which produced a large thermal anomaly observable by satellite, but only a modest, 6-km-high plume. There are no ground-based visual observations of this eruption; however we infer that there was renewed, vigorous Strombolian fountaining. Smaller low-level ash-rich plumes were produced through the end of May 1999. The lava that erupted was evolved basalt with about 49% SiO2. Subsequent field investigations have been unable to find a distinction between deposits from each of the two major eruptive episodes.

  8. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    USGS Publications Warehouse

    Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2013-01-01

    Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C yr BP). FALL3D model input eruptive parameters are constrained through an inversion method carried out with the semi-analytical HAZMAP model and are varied by sampling them using probability density functions. We analyze the influence of seasonal variations on ash dispersal and estimate the average persistence of critical ash concentrations at relevant locations and airports. This study assesses the impact that a Plinian eruption similar to the Ochre Pumice eruption would have on the main airports of Mexico and adjacent areas. The hazard maps presented here can support long-term planning that would help minimize the impacts of such an eruption on civil aviation.

  9. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    NASA Astrophysics Data System (ADS)

    Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2014-01-01

    Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP). FALL3D model input eruptive parameters are constrained through an inversion method carried out with the semi-analytical HAZMAP model and are varied by sampling them using probability density functions. We analyze the influence of seasonal variations on ash dispersal and estimate the average persistence of critical ash concentrations at relevant locations and airports. This study assesses the impact that a Plinian eruption similar to the Ochre Pumice eruption would have on the main airports of Mexico and adjacent areas. The hazard maps presented here can support long-term planning that would help minimize the impacts of such an eruption on civil aviation.

  10. The Tephra Layer From the Plinian Eruption in ™r‘faj”kull 1362, Southeast Iceland

    NASA Astrophysics Data System (ADS)

    Selbekk, R. S.

    2002-12-01

    Pyroclastic fallout from the 1362 eruption of ™r‘faj”kull forms one of the volcanic marker horizons of the North Atlantic. This contribution reports the mineralogical and geochemical characteristics of the ™r‘faj”kull 1362 fallout and its grain-size distribution. A non-rifting 120 km long volcanic lineament some 50 km east of the Eastern Rift-Zone of Iceland is defined by transitional and alkalic volcanic rocks resting unconformably on late Tertiary strata. ™r‘faj”kull which forms the southern termination of this off-rift liniment is an ice-covered stratovolcano (2200 masl) composed mostly of subglacially formed hyaloclastite ranging from basalts to rhyolites. The two historical (1100 yrs) eruptions of ™r‘faj”kull include a small explosive eruption in 1727 and a large devastating Plinian eruption associated with major lahars and a caldera collapse in 1362. Between 1 and 2 km3 dense rock equivalent or 5-10 km3 of rhyolitic pumice was erupted and the fallout was mainly towards ESE. Tentative modelling of the PT-conditions of the magma formation, based on glass/mineral equilibria, indicates that the source was a near-eutectic melt in equilibrium with fayalite, hedenbergite, oligoclase and hematite at some 0.2 GPa pressure. A profile through the fallout was sampled at elevation of about 1100 masl on the SE flank of the volcano. A deposit of 1.8 m thickness was collected in 14 units for examination of composition, mineralogy and grain-size distribution during the eruption. In the profile the fallout is fine grained vesicular glass (1-3% minerals, 3% lithic fragments) with bubble wall thickness in the low micron range. The high and even vesiculation of the glass indicates fast magma ascent and explains the extreme mechanical fragmentation within the eruptive column, yielding between 50 and 80 wt% of less than 0.25 mm grain size. A reconstruction of the Plinian phase, based on grain-size analysis and abundance of lithic fragments, reveals that the eruption proceeded in three successive phases. An initial explosion produced phreatomagmatic debris associated with up to 35% of lithic fragments. In distal facies of the fallout, the initial phase is recognised as pale brownish base of the otherwise white glassy layer. The material ejection proceeded in two largely similar phases. These phases are separated only by a transition in grain size distribution indicating a temporary lowering in the effusion rate.

  11. The effect of wind and eruption source parameter variations on tephra fallout hazard assessment: an example from Vesuvio (Italy)

    NASA Astrophysics Data System (ADS)

    Macedonio, Giovanni; Costa, Antonio; Scollo, Simona; Neri, Augusto

    2015-04-01

    Uncertainty in the tephra fallout hazard assessment may depend on different meteorological datasets and eruptive source parameters used in the modelling. We present a statistical study to analyze this uncertainty in the case of a sub-Plinian eruption of Vesuvius of VEI = 4, column height of 18 km and total erupted mass of 5 × 1011 kg. The hazard assessment for tephra fallout is performed using the advection-diffusion model Hazmap. Firstly, we analyze statistically different meteorological datasets: i) from the daily atmospheric soundings of the stations located in Brindisi (Italy) between 1962 and 1976 and between 1996 and 2012, and in Pratica di Mare (Rome, Italy) between 1996 and 2012; ii) from numerical weather prediction models of the National Oceanic and Atmospheric Administration and of the European Centre for Medium-Range Weather Forecasts. Furthermore, we modify the total mass, the total grain-size distribution, the eruption column height, and the diffusion coefficient. Then, we quantify the impact that different datasets and model input parameters have on the probability maps. Results shows that the parameter that mostly affects the tephra fallout probability maps, keeping constant the total mass, is the particle terminal settling velocity, which is a function of the total grain-size distribution, particle density and shape. Differently, the evaluation of the hazard assessment weakly depends on the use of different meteorological datasets, column height and diffusion coefficient.

  12. Stratigraphy and Melt Compositions of the 3.6 and 6.7 ka Plinian Eruptions of Hudson Volcano, Chile.

    NASA Astrophysics Data System (ADS)

    Carey, S.; Scasso, R.; Kratzmann, D.; Naranjo, J.; Bande, A.

    2005-12-01

    Fallout deposits from two major Holocene eruptions of Hudson Volcano in southern Chile (3.6 ka and 6.7 ka BP, Naranjo and Stern, 1998) provide new evidence for multiple phases, including subplinian to plinian discharges and episodes of phreatomagmatic activity. Four phases have been identified for the 3.6 ka eruption. The melt was trachydacitic and did not exhibit any significant variation throughout the fall sequence. Phase one (P1) produced a commonly reverse graded, lapilli fall deposit. Phase two (P2) also produced a reverse graded, coarse lapilli fall layer. Phase three (P3) deposited a massive, poorly-sorted, silty-ash layer with pumice and minor accretionary lapilli. The final phase of the eruption (P4) laid down a commonly normal graded, coarse lapilli fall deposit. Phases P1, P2 and P4 represent fallout from high altitude plumes with minor intensity fluctuations, whereas P3 resulted from magma/water interactions and a lower eruption column. Isopach maps show a shift in the main dispersal axis for the 3.6 ka phreatomagmatic ashfall (P3), relative to the lapilli deposits. Phases 1, 2 and 4 trend generally to the east, whereas the axis for the P3 fallout trends northeast. This is likely caused by dispersal of material at different altitudes during the eruption and not a general change in the predominant wind direction. Three major phases (P1 to P3) were identified for the 6.7 ka eruption. The initial phase (P1) produced a commonly reverse graded, coarse lapilli fall deposit. The second phase (P2) produced a thick, distinctive accretionary lapilli-rich, silty-ash layer with accretionary lapilli diameters up to 2.3 cm at 35 kms from the volcano. The final phase (P3) laid down an often normal graded, coarse lapilli fall unit. The melt phase was also trachydacitic in composition and relatively uniform during the eruption, but less evolved than the magma erupted during the 3.6 ka event. The accretionary lapilli layer (P2) has been correlated with a widespread tephra in southern Patagonia, 900km to the south of Hudson volcano with an estimated bulk volume more than 18 km3 making this one of the largest Holocene eruptions in southern South America (Naranjo et al. 2001). The occurrence of extensive, fine grained accretionary lapilli-bearing beds within these two plinian eruption sequences may be related to magma/meltwater interactions triggered by eruption discharge through the summit glacier of Hudson volcano, probably related to the formation of its last superimposed or partially nested caldera (Orihashi et al., 2004).

  13. Water, CO2, Cl, and F in melt inclusions in phenocrysts from three Holocene explosive eruptions, Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Newman, S.; Stolper, E.

    1992-01-01

    Rare melt inclusions ~100 ??m in diameter trapped near the boundaries of corroded patchy zones in plagioclase phenocrysts from Plinian pumice of three Holocene eruptions were analyzed by IR spectroscopy for molecular H2O, OH groups, and CO2 and by electron microprobe for Cl and F. The three rhyodacitic eruptions, each of which began with a Plinian phase, occurred over ~200 yr. The Llao Rock and Cleetwood eruptions ended with degassed lava flows and the subsequent climatic eruption with voluminous ignimbrite. Location of melt inclusions near boundaries of patchy zones, which are mantled by oscillatory-zoned overgrowths, suggests that their H2O concentrations represent magmatic values significantly before eruption. -from Authors

  14. New insights into Holocene eruption episodes from proximal deposit sequences at Mt. Taranaki (Egmont), New Zealand

    NASA Astrophysics Data System (ADS)

    Torres-Orozco, Rafael; Cronin, Shane J.; Pardo, Natalia; Palmer, Alan S.

    2017-01-01

    Upper stratovolcano flanks contain the most nuanced depositional record of long eruption episodes, but steep, irregular terrain makes these sequences difficult to correlate and interpret. This necessitates development of a detailed and systematic approach to describing localized depositional facies and relating these to eruptive processes. In this work, the late-Holocene eruption history of Mt. Taranaki/Egmont, New Zealand, was re-assessed based on a study of proximal deposits spanning the 14C-dated age range of 5.0-0.3 cal ka B.P. Mt. Taranaki is a textbook-example stratovolcano, with geological evidence pointing to sudden switches in scale, type and frequency of eruptions over its 130 ka history. The proximal stratigraphy presented here almost doubles the number of eruptions recognized from previous soil-stratigraphy studies. A total of 53 lithostratigraphic bed-sets record eruptions of the summit crater and parasitic vents like Fanthams Peak (the latter between 3.0 and 1.5 cal ka B.P.). At least 12 of the eruptions represented by these bed-sets comprise deposits comparable with or thicker than those of the latest sub-Plinian eruption of AD 1655. The largest eruption episode represented is the 4.6-4.7-cal ka B.P. Kokowai. Contrasting eruption styles were identified, from stable basaltic-andesite eruption columns at Fanthams Peak, to andesitic lava-dome extrusion, blasts and partial collapse of unstable eruption columns at Mt. Taranaki's summit. The centemetre-scale proximal deposit descriptions were used to identify several previously unknown, smaller eruption events. These details are indispensable for building a comprehensive probabilistic event record and in the development of realistic eruptive scenarios for complex eruption episodes prior to re-awakening of a volcano.

  15. A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits

    USGS Publications Warehouse

    Mastin, Larry G.; Ghiorso, Mark S.

    2000-01-01

    This report presents a model that calculates flow properties (pressure, vesicularity, and some 35 other parameters) as a function of vertical position within a volcanic conduit during a steady-state eruption. The model idealizes the magma-gas mixture as a single homogeneousfluid and calculates gas exsolution under the assumption of equilibrium conditions. These are the same assumptions on which classic conduit models (e.g. Wilson and Head, 1981) have been based. They are most appropriate when applied to eruptions of rapidly ascending magma (basaltic lava-fountain eruptions, and Plinian or sub-Plinian eruptions of intermediate or silicic magmas) that contains abundant nucleation sites (microlites, for example) for bubble growth.

  16. Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy): Volatile stocking, gas fluxing, and the shift from low-energy to highly-explosive basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Moretti, Roberto; Métrich, Nicole; Di Renzo, Valeria; Aiuppa, Alessandro; Allard, Patrick; Arienzo, Ilenia

    2017-04-01

    Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO2 gas fluxing can explain the evolution of H2O, CO2, S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO2-rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas-rich batches stored within the plumbing system. When reaching gas dominated conditions (i.e., a gas/melt mass ratio of 0.3 and CO2,gas/H2Ogas molar ratio 5 ), these will erupt effusively or mildly explosively, whilst in case of the 122 BC Plinian eruption, open-system degassing conditions took place within the plumbing system, such that continuous CO2-fluxing determined gas accumulation on top of the magmatic system. The emission of such a cap in the early eruptive phase triggered the arrival of deep H2O-rich whose fast decompression and bubble nucleation lead to the highly explosive character, enhanced by abundant microlite crystallization and consequent increase of magma effective viscosity. This could explain why open system basaltic systems like Etna may experience highly explosive or even Plinian episodes during eruptions that start with effusive to mildly explosive phases. The proposed mechanism also determines a depression of chlorine contents in CO2-fluxed (and less explosive) magmas with respect to those feeding Plinian events like 122 BC one. The opposite is seen for sulfur: low to mild-explosive fluxed magmas are S-enriched, whereas the 122 BC Plinian products are relatively S-poor, likely because of early sulfide separation accompanying magma crystallization. The proposed mechanism involving CO2 separation and fluxing may suggest a subordinate role for variable mixing of different sources having different degrees of K-enrichment. However, such a mechanism requires further experimental studies about the effects on S and Cl dissolution and does not exclude self-mixing between degassed and undegassed batches within the Etna plumbing system. Finally, our findings may represent a new interpretative tool for the geochemical and petrological monitoring of plume gas discharges and melt inclusions, and allow tracking the switch from mild-explosive to highly explosive or even Plinian events at Etna.

  17. Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite

    PubMed Central

    Marti, Alejandro; Folch, Arnau; Costa, Antonio; Engwell, Samantha

    2016-01-01

    The 39 ka Campanian Ignimbrite (CI) super-eruption was the largest volcanic eruption of the past 200 ka in Europe. Tephra deposits indicate two distinct plume forming phases, Plinian and co-ignimbrite, characteristic of many caldera-forming eruptions. Previous numerical studies have characterized the eruption as a single-phase event, potentially leading to inaccurate assessment of eruption dynamics. To reconstruct the volume, intensity, and duration of the tephra dispersal, we applied a computational inversion method that explicitly accounts for the Plinian and co-ignimbrite phases and for gravitational spreading of the umbrella cloud. To verify the consistency of our results, we performed an additional single-phase inversion using an independent thickness dataset. Our better-fitting two-phase model suggests a higher mass eruption rate than previous studies, and estimates that 3/4 of the total fallout volume is co-ignimbrite in origin. Gravitational spreading of the umbrella cloud dominates tephra transport only within the first hundred kilometres due to strong stratospheric winds in our best-fit wind model. Finally, tephra fallout impacts would have interrupted the westward migration of modern hominid groups in Europe, possibly supporting the hypothesis of prolonged Neanderthal survival in South-Western Europe during the Middle to Upper Palaeolithic transition. PMID:26883449

  18. Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite.

    PubMed

    Marti, Alejandro; Folch, Arnau; Costa, Antonio; Engwell, Samantha

    2016-02-17

    The 39 ka Campanian Ignimbrite (CI) super-eruption was the largest volcanic eruption of the past 200 ka in Europe. Tephra deposits indicate two distinct plume forming phases, Plinian and co-ignimbrite, characteristic of many caldera-forming eruptions. Previous numerical studies have characterized the eruption as a single-phase event, potentially leading to inaccurate assessment of eruption dynamics. To reconstruct the volume, intensity, and duration of the tephra dispersal, we applied a computational inversion method that explicitly accounts for the Plinian and co-ignimbrite phases and for gravitational spreading of the umbrella cloud. To verify the consistency of our results, we performed an additional single-phase inversion using an independent thickness dataset. Our better-fitting two-phase model suggests a higher mass eruption rate than previous studies, and estimates that 3/4 of the total fallout volume is co-ignimbrite in origin. Gravitational spreading of the umbrella cloud dominates tephra transport only within the first hundred kilometres due to strong stratospheric winds in our best-fit wind model. Finally, tephra fallout impacts would have interrupted the westward migration of modern hominid groups in Europe, possibly supporting the hypothesis of prolonged Neanderthal survival in South-Western Europe during the Middle to Upper Palaeolithic transition.

  19. Eruption and Degassing Processes in a Supervolcanic System: The Volatile Record Preserved in Melt Inclusions from the 3.49Ma Tara Ignimbrite in the Central Andes

    NASA Astrophysics Data System (ADS)

    Grocke, S.; de Silva, S. L.; Schmitt, A. K.; Wallace, P. J.

    2010-12-01

    Analysis of H2O and CO2 in quartz and sanidine-hosted melt inclusions from one of the youngest supervolcanic eruptions in the Altiplano Puna Volcanic Complex (APVC) in the Central Andes provides information on crystallization depths and eruption and degassing processes. At least 740 km3 of high-K, metaluminous, rhyodacite to rhyolite magma erupted from the Guacha Caldera in southwest Bolivia, producing three phases of the 3.49 Ma Tara Ignimbrite: a Plinian fall-deposit, an extensive ignimbrite, and several post-caldera domes. Infrared spectroscopic analyses of quartz-hosted melt inclusions from Tara Plinian pumice have H2O contents of ~4.5 wt % and variable CO2 contents (110-300 ppm), corresponding to vapor saturation pressures up to 180 MPa. In contrast, sanidine-hosted melt inclusions from the Plinian-fall deposit contain bubbles, lower water contents (1.4-2.2 wt %) and lower CO2 (87-143 ppm). These vesiculated melt inclusions and low volatile contents suggest that the sanidine crystals leaked on their ascent to the surface and therefore do not record accurate pre-eruptive melt volatile contents. In contrast, quartz-hosted melt inclusions from post-caldera dome samples contain lower H2O contents of 2.5-3.5 wt % (average 2.9 wt %) and no detectable CO2, corresponding to vapor saturation pressures of 50-90 MPa. These data indicate that the preeruptive plinian stage Tara magma was vapor saturated at the time of melt inclusion entrapment and stored between 5-6 km, while those from the post-caldera domes were trapped at 2-3 km. Differences in CO2 between Plinian and dome melt inclusions require that the post-caldera dome quartzes represent a different generation of crystals that grew as the magma slowly rose and progressively degassed at 2-3 km. During this shallow crystallization, the magma evolved further and eventually fed the post-caldera domes, one of which is a high-Si rhyolite. Consistent with this interpretation, melt inclusions from post-caldera dome samples contain lower OH/H2Om that indicate slower cooling rates compared to Plinian samples. The volatile record from pre and post-caldera deposits therefore reflects an eruptive history that was strongly influenced by volatile evolution within the Tara magma.

  20. Numerical Simulation using VolcFlow for Pyroclastic Density Currents by Explosive Eruption of Mt. Baekdu, Korea

    NASA Astrophysics Data System (ADS)

    Yun, S. H.; Chang, C.

    2015-12-01

    It is the numerical simulation using a VolcFlow model to determine the runout range of pyroclastic density currents where an eruption column had been formed by the explosive Plinian eruption and the collapse of the column had caused to occur on Mt. Baekdu. We assumed that the most realistic way for the simulation of a sustained volcanic column is to modify the topography with a cone above the crater to follow expert advice from Dr. Karim Kelfoun, the developer of VolcFlow. Then we set the radius and height of the cone, the volume of pyroclastic flow, and the duration and simulation time accoding to the volcanic explosivity index (VEI). Also we set the yield stress as 5,000 Pa, 10,000 Pa, 15,000 Pa, the basal friction angle as 3°, 5°, 10°, respectively. As the simulation results, the longest runout range was 2.3 km, 9.1 km, 14.4 km, 18.6 km, 23.4 km from VEI 3 to VEI 7, respectively. It can be used as a very important material to predict the impact range of pyroclastic density currents and to minimize human and material damages caused by pyroclastic density currents derived from the future explosive eruption of Mt. Baekdu. This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.

  1. Rapid ascent of rhyolitic magma at Chaitén volcano, Chile.

    PubMed

    Castro, Jonathan M; Dingwell, Donald B

    2009-10-08

    Rhyolite magma has fuelled some of the Earth's largest explosive volcanic eruptions. Our understanding of these events is incomplete, however, owing to the previous lack of directly observed eruptions. Chaitén volcano, in Chile's northern Patagonia, erupted rhyolite magma unexpectedly and explosively on 1 May 2008 (ref. 2). Chaitén residents felt earthquakes about 24 hours before ash fell in their town and the eruption escalated into a Plinian column. Although such brief seismic forewarning of a major explosive basaltic eruption has been documented, it is unprecedented for silicic magmas. As precursory volcanic unrest relates to magma migration from the storage region to the surface, the very short pre-eruptive warning at Chaitén probably reflects very rapid magma ascent through the sub-volcanic system. Here we present petrological and experimental data that indicate that the hydrous rhyolite magma at Chaitén ascended very rapidly, with velocities of the order of one metre per second. Such rapid ascent implies a transit time from storage depths greater than five kilometres to the near surface in about four hours. This result has implications for hazard mitigation because the rapidity of ascending rhyolite means that future eruptions may provide little warning.

  2. Transient dynamics of vulcanian explosions and column collapse.

    PubMed

    Clarke, A B; Voight, B; Neri, A; Macedonio, G

    2002-02-21

    Several analytical and numerical eruption models have provided insight into volcanic eruption behaviour, but most address plinian-type eruptions where vent conditions are quasi-steady. Only a few studies have explored the physics of short-duration vulcanian explosions with unsteady vent conditions and blast events. Here we present a technique that links unsteady vent flux of vulcanian explosions to the resulting dispersal of volcanic ejecta, using a numerical, axisymmetric model with multiple particle sizes. We use observational data from well documented explosions in 1997 at the Soufrière Hills volcano in Montserrat, West Indies, to constrain pre-eruptive subsurface initial conditions and to compare with our simulation results. The resulting simulations duplicate many features of the observed explosions, showing transitional behaviour where mass is divided between a buoyant plume and hazardous radial pyroclastic currents fed by a collapsing fountain. We find that leakage of volcanic gas from the conduit through surrounding rocks over a short period (of the order of 10 hours) or retarded exsolution can dictate the style of explosion. Our simulations also reveal the internal plume dynamics and particle-size segregation mechanisms that may occur in such eruptions.

  3. Probabilistic evaluation of the physical impact of future tephra fallout events for the Island of Vulcano, Italy

    NASA Astrophysics Data System (ADS)

    Biass, Sebastien; Bonadonna, Costanza; di Traglia, Federico; Pistolesi, Marco; Rosi, Mauro; Lestuzzi, Pierino

    2016-05-01

    A first probabilistic scenario-based hazard assessment for tephra fallout is presented for La Fossa volcano (Vulcano Island, Italy) and subsequently used to assess the impact on the built environment. Eruption scenarios are based upon the stratigraphy produced by the last 1000 years of activity at Vulcano and include long-lasting Vulcanian and sub-Plinian eruptions. A new method is proposed to quantify the evolution through time of the hazard associated with pulsatory Vulcanian eruptions lasting from weeks to years, and the increase in hazard related to typical rainfall events around Sicily is also accounted for. The impact assessment on the roofs is performed by combining a field characterization of the buildings with the composite European vulnerability curves for typical roofing stocks. Results show that a sub-Plinian eruption of VEI 2 is not likely to affect buildings, whereas a sub-Plinian eruption of VEI 3 results in 90 % of the building stock having a ≥12 % probability of collapse. The hazard related to long-lasting Vulcanian eruptions evolves through time, and our analysis shows that the town of Il Piano, located downwind of the preferential wind patterns, is likely to reach critical tephra accumulations for roof collapse 5-9 months after the onset of the eruption. If no cleaning measures are taken, half of the building stock has a probability >20 % of suffering roof collapse.

  4. Plinian vs. phreatomagmatic eruptions at Grímsvötn volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Haddadi, Baptiste; Sigmarsson, Olgeir; Larsen, Guðrún

    2016-04-01

    Grímsvötn is a subglacial central volcano located under the Vatnajökull ice cap, above the assumed centre of the Iceland mantle plume. Historical explosive eruptions are mostly of phreatomagmatic character whereas pure magmatic behaviour may characterize the largest eruptions. What causes this different eruption behaviour is uncertain. Here, we report petrological estimates of crystallization depth and volatile degassing as recorded by sulfur concentrations in melt inclusions (MI) hosted by ferromagnesian minerals and the groundmass glass. Tephra from four eruptions, AD 1823, 1873, 2004 and 2011, were selected. The 2011 and 1873 are the largest known historical eruptions, whereas the 2004 eruption is probably amongst the smallest. The repose time preceding those eruptions is surprisingly similar, or 6 to 7 years, and the major-element compositions are uniform. Plagioclase, clinopyroxene (cpx) and olivine are the three coexisting phases at the liquidus in the quartz-tholeiites of Grímsvötn. The cpx-melt geothermobarometer (Putirka 2008) applied to the 2011 tephra reveals that cpx crystallized over a large range of P from 60 to 640 MPa (depth range: 1.7-18km) and T between 1060 and 1175°C before the Plinian eruption, therefore mobilizing the entire crustal magma system. In contrast, the phreatomagmatic tephra do not record the shallowest crystallization but interestingly all four tephra have identical median entrapment pressure of approximately 400 MPa. Therefore, the depth from which the magma bodies are derived, does not explain the difference in explosivity between those eruptions nor the variable magma volume (V) produced. Sulfur concentrations in MI are only slightly higher in the Plinian products, the difference (10%) being insufficient to explain the different eruption regimes. The ΔS, the difference between the maximum S concentrations in MI and the mean of the groundmass glass for a given eruption, is higher in the Plinian tephra. Based on literature data for the VDRE of 2004, 2011 and Laki eruptions, a semi-log correlation with R2 = 0.92 was obtained. From ΔS = 1094 + 262 log V, we calculate DRE volumes of 0.02 and 0.3 km3 for the 1823 and 1873 eruptions, respectively. The latter volume is similar to estimates from Thorarinsson (1974), whereas little is known about the relatively small 1823 eruption. This simple method allows volume assessments of older historical eruptions and, thus, the magma flux of Grímsvötn volcano over the centuries. Here, we apply the volume estimates for the five eruptions in question to evaluate the degassing efficiency of these explosive basaltic eruptions. An excellent correlation between residual S concentrations in the groundmass glass and the logarithm of the magma volume emitted (R2 = 0.98) reveals that tephra from the small phreatomagmatic eruptions in 2004 and 1823 are only partially outgassed whereas those of the Plinian 1873 and 2011 are largely outgassed, with the subaerial Laki products being almost completely outgassed. The efficiency of volatile degassing is thus correlated with the eruption size that in turn is most likely controlled by deeper-seated processes.

  5. Postglacial eruptive history, geochemistry, and recent seismicity of Aniakchak volcano, Alaska Peninsula

    USGS Publications Warehouse

    Bacon, Charles R.; Neal, Christina A.; Miller, Thomas P.; McGimsey, Robert G.; Nye, Christopher J.

    2014-01-01

    Future volcanic activity of Aniakchak could include hydromagmatic explosions, possibly followed by effusion or strombolian eruption of basaltic andesite to Plinian eruption of dacite. Another voluminous eruption, such as Aniakchak II, is considered unlikely in the near future.

  6. Assessing future vent opening locations at the Somma-Vesuvio volcanic complex: 2. Probability maps of the caldera for a future Plinian/sub-Plinian event with uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Tadini, A.; Bevilacqua, A.; Neri, A.; Cioni, R.; Aspinall, W. P.; Bisson, M.; Isaia, R.; Mazzarini, F.; Valentine, G. A.; Vitale, S.; Baxter, P. J.; Bertagnini, A.; Cerminara, M.; de Michieli Vitturi, M.; Di Roberto, A.; Engwell, S.; Esposti Ongaro, T.; Flandoli, F.; Pistolesi, M.

    2017-06-01

    In this study, we combine reconstructions of volcanological data sets and inputs from a structured expert judgment to produce a first long-term probability map for vent opening location for the next Plinian or sub-Plinian eruption of Somma-Vesuvio. In the past, the volcano has exhibited significant spatial variability in vent location; this can exert a significant control on where hazards materialize (particularly of pyroclastic density currents). The new vent opening probability mapping has been performed through (i) development of spatial probability density maps with Gaussian kernel functions for different data sets and (ii) weighted linear combination of these spatial density maps. The epistemic uncertainties affecting these data sets were quantified explicitly with expert judgments and implemented following a doubly stochastic approach. Various elicitation pooling metrics and subgroupings of experts and target questions were tested to evaluate the robustness of outcomes. Our findings indicate that (a) Somma-Vesuvio vent opening probabilities are distributed inside the whole caldera, with a peak corresponding to the area of the present crater, but with more than 50% probability that the next vent could open elsewhere within the caldera; (b) there is a mean probability of about 30% that the next vent will open west of the present edifice; (c) there is a mean probability of about 9.5% that the next medium-large eruption will enlarge the present Somma-Vesuvio caldera, and (d) there is a nonnegligible probability (mean value of 6-10%) that the next Plinian or sub-Plinian eruption will have its initial vent opening outside the present Somma-Vesuvio caldera.

  7. Volcanic geology of Furnas Volcano, São Miguel, Azores

    NASA Astrophysics Data System (ADS)

    Guest, J. E.; Gaspar, J. L.; Cole, P. D.; Queiroz, G.; Duncan, A. M.; Wallenstein, N.; Ferreira, T.; Pacheco, J.-M.

    1999-09-01

    Furnas is the easternmost of the three active central volcanoes on the island of São Miguel in the Azores. Unlike the other two central volcanoes, Sete Cidades and Fogo, Furnas does not have a well-developed edifice, but consists of a steep-sided caldera complex 8×5 km across. It is built on the outer flanks of the Povoação/Nordeste lava complex that forms the eastern end of São Miguel. Constructive flanks to the volcano exist on the southern side where they form the coastal cliffs, and to the west. The caldera margins tend to reflect the regional/local tectonic pattern which has also controlled the distribution of vents within the caldera and areas of thermal springs. Activity at Furnas has been essentially explosive, erupting materials of trachytic composition. Products associated with the volcano include plinian and sub-plinian pumice deposits, ignimbrites and surge deposits, phreatomagmatic ashes, block and ash deposits and dome materials. Most of the activity has occurred from vents within the caldera, or on the caldera margin, although strombolian eruptions with aa flows of ankaramite and hawaiite have occurred outside the caldera. The eruptive history consists of at least two major caldera collapses, followed by caldera infilling. Based on 14C dates, it appears that the youngest major collapse occurred about 12,000-10,000 years BP. New 14C dates for a densely welded ignimbrite suggest that a potential caldera-forming eruption occurred at about 30,000 years BP. Recent eruptions (<5000 years old) were mainly characterised by alternating episodes of magmatic and phreatomagmatic activity of plinian and sub-plinian magnitude, forming deposits of interbedded ash and lapilli. An historical eruption is documented in 1630 AD; new evidence suggests that another occurred during the early occupation of the area at about 1440 AD.

  8. Insights into Proximal-Medial Pyroclastic Density Current Deposits at a High-Risk Glaciated Volcano: Mt Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Cowlyn, J.; Kennedy, B.; Gravley, D. M.; Cronin, S. J.; Pardo, N.; Wilson, T. M.; Leonard, G.; Townsend, D.; Dufek, J.

    2014-12-01

    Pyroclastic density currents (PDCs) are a destructive volcanic hazard. Quantifying the types, frequency and magnitudes of PDC events in the geological record is essential for effective risk management. However small-medium volume valley-confined PDC deposits have low preservation potential, especially when emplaced in active drainages or onto snow or ice. Where PDC deposits are preserved they can be difficult to distinguish from other surficial deposits and are frequently misinterpreted or overlooked. This is the case at Mt. Ruapehu; a much visited, high-risk active volcano in New Zealand with no historical PDCs. Through systematic field observations we identified several young proximal-medial andesitic PDC deposits exposed on Ruapehu's eastern flanks. The oldest deposits (Ohinewairua PDCs, <13.6 ka) are massive pumice-rich deposits that are preserved at least 7km from source (North Crater) and correlate with Ruapehu's largest plinian eruptions. Overlying these, the pumice-rich Pourahu PDC deposit reaches >10km from source (South Crater) and correlates with Ruapehu's last known plinian eruption (~11.6 ka). Several younger locally preserved PDC deposits (Tukino PDCs) with denser juvenile clasts represent proximal PDCs from smaller eruptions at South Crater. Finally, a variably welded, bedded deposit containing clasts of welded spatter is interpreted to represent multiple failures of near-vent (North Ruapehu) accumulations of erupted material. Here, PDC initiation appears to have been controlled by the topographic gradient and deposition rate, without requiring a collapsing eruption column. The Ruapehu deposits highlight the limited preservation of PDC deposits, which appears to be favoured at PDC margins. Lateral and vertical flow stratification means the resulting deposits may not then represent the bulk flow. Additionally, deposit textures, distributions, and associations with moraines indicate that many of Ruapehu's PDCs encountered glacial ice during transport. This affected their distribution, mobility and preservation, and has implications for assessing the PDC hazard at Ruapehu and other glaciated volcanoes. The deposits reinforce that hazardous PDCs threatening life and infrastructure may be generated even from small eruptions and across a wide range of eruption styles.

  9. The origin of a coarse lithic breccia in the 34 ka caldera-forming Sounkyo eruption, Taisetsu volcano group, central Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Yasuda, Y.; Suzuki-Kamata, K.

    2018-05-01

    The 34 ka Sounkyo eruption produced 7.6 km3 of tephra ( 5 km3 DRE) as fallout, ignimbrite, and lithic breccia units, forming a small, 2-km-diameter summit caldera in the Taisetsu volcano group, Japan. The Sounkyo eruption products are made up of five eruptive units (SK-A to -E) in proximal regions, corresponding to the distal deposits, a 1- to 2-m-thick pumice fallout and the Px-type ignimbrite up to 220 m thick. The eruption began with a fallout phase, producing unstable low eruption columns during the earlier phase to form a <7-m-thick succession of well-stratified fallouts (SK-A1 and the lower part of the distal fallout). The eruption column reached up to 25 km high (subplinian to plinian) and became more stable at the late of the phase, producing a < 60-m-thick, pumice-dominated fallout (SK-A2 and the upper part of the distal fallout). The second phase, the climax of the Sounkyo eruption, produced a widespread, valley-filling ignimbrite in both proximal and distal regions (SK-B and the Px-type ignimbrite). At the end of the climactic phase, the waning of the eruption led to extensive failure of the walls of the shallow conduit, generating a dense, lithic-rich, low-mobile pyroclastic density current (PDC) to form a >27-m-thick, unstratified and ungraded, coarse lithic breccia (SK-C). The failure in turn choked the conduit, and then the eruption stopped. After a short eruptive hiatus, the eruption resumed with a short-lived fall phase, establishing an eruption column up to 16 km high and producing a <6-m-thick scoria fallout (SK-D). Finally, the eruption ended with the generation of PDCs by eruption column collapse to form a 5- to 15-m-thick ignimbrite in the proximal area (SK-E). Volume relationships between the caldera, ejected magma, and ejected lithic fragments suggest that the caldera was not essentially formed by caldera collapse but, instead, by vent widening as a consequence of explosive erosion and failure of the shallow conduit. The dominance of shallow-origin volcanic rocks in the lithic fraction throughout the Sounkyo eruption products implies the development of a flaring funnel-shaped vent. Hence, the occurrence of lithic breccias within small caldera-forming eruption products does not necessarily reflect either the existence or the timing of caldera collapse, as commonly assumed in literature. Lithic breccias commonly overlie climactic ignimbrite/fallout deposits in small caldera-forming eruptions, and an alternative explanation is that this reflects the collapse of the shallow conduit after an eruption climax, whose walls had been highly fractured and had become unstable owing to progressive erosion.

  10. Understanding Vesuvius magmatic processes: Evidence from primitive silicate-melt inclusions in medieval scoria clinopyroxenes (Terzigno formation)

    USGS Publications Warehouse

    Lima, A.; Belkin, H.E.; Torok, K.

    1999-01-01

    Microthermometric investigations of silicate-melt inclusions and electron microprobe analyses were conducted on experimentally homogenized silicate-melt inclusions and on the host clinopyroxenes from 4 scoria samples of different layers from the Mt. Somma-Vesuvius medieval eruption (Formazione di Terzigno, 893 A.D.). The temperature of homogenization, considered the minimum trapping temperature, ranges from 1190 to 1260??5 ??C for all clinopyroxene-hosted silicate melt inclusions. The major and minor-element compositional trends shown by Terzigno scoria and matrix glass chemical analysis are largely compatible with fractional crystallization of clinopyroxene and Fe-Ti oxides. Sulfur contents of the homogenized silicate-melt inclusions in clinopyroxene phenocrysts compared with that in the host scoria show that S has been significantly degassed in the erupted products; whereas, Cl has about the same abundance in the inclusions and in host scoria. Fluorine is low (infrequently up to 800 ppm) in the silicate-melt inclusions compared to 2400 ppm in the bulk scoria. Electron microprobe analyses of silicate-melt inclusions show that they have primitive magma compositions (Mg# = 75-91). The composition of the host clinopyroxene phenocrysts varies from typical plinian-related (Mg#???85) to non-plinian related (Mg#???85). The mixed source of the host clinopyroxenes and primitive nature of the silicate-melt inclusions implies that these phenocrysts, in part, may be residual and/or have a polygenetic origin. The similar variation trends of major and minor-elements between homogenized silicate-melt inclusions from the Terzigno scoria, and silicate-melt inclusions in olivine and diopside phenocrysts from plinian eruptions (Marianelli et al., 1995) suggest that the trapped inclusions represent melts similar to those that supplied the plinian and sub-plinian magma chambers. These geochemical characteristics suggest that the Vesuvius magmatic system retained a vestige of the most recent plinian event.

  11. Tephra Fallout Hazard Assessment for VEI5 Plinian Eruption at Kuju Volcano, Japan, Using TEPHRA2

    NASA Astrophysics Data System (ADS)

    Tsuji, Tomohiro; Ikeda, Michiharu; Kishimoto, Hiroshi; Fujita, Koji; Nishizaka, Naoki; Onishi, Kozo

    2017-06-01

    Tephra fallout has a potential impact on engineered structures and systems at nuclear power plants. We provide the first report estimating potential accumulations of tephra fallout as big as VEI5 eruption from Kuju Volcano and calculated hazard curves at the Ikata Power Plant, using the TEPHRA2 computer program. We reconstructed the eruptive parameters of Kj-P1 tephra fallout deposit based on geological survey and literature review. A series of parameter studies were carried out to determine the best values of empirical parameters, such as diffusion coefficient and the fall time threshold. Based on such a reconstruction, we represent probabilistic analyses which assess the variation in meteorological condition, using wind profiles extracted from a 22 year long wind dataset. The obtained hazard curves and probability maps of tephra fallout associated to a Plinian eruption were used to discuss the exceeding probability at the site and the implications of such a severe eruption scenario.

  12. The 3640-3510 BC rhyodacite eruption of Chachimbiro compound volcano, Ecuador: a violent directed blast produced by a satellite dome

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Hidalgo, Silvana; Robin, Claude; Beate, Bernardo; Quijozaca, Jenny

    2014-09-01

    Based on geochronological, petrological, stratigraphical, and sedimentological data, this paper describes the deposits left by the most powerful Holocene eruption of Chachimbiro compound volcano, in the northern part of Ecuador. The eruption, dated between 3640 and 3510 years BC, extruded a ˜650-m-wide and ˜225-m-high rhyodacite dome, located 6.3 km east of the central vent, that exploded and produced a large pyroclastic density current (PDC) directed to the southeast followed by a sub-Plinian eruptive column drifted by the wind to the west. The PDC deposit comprises two main layers. The lower layer (L1) is massive, typically coarse-grained and fines-depleted, with abundant dense juvenile fragments from the outgassed dome crust. The upper layer (L2) consists of stratified coarse ash and lapilli laminae, with juvenile clasts showing a wide density range (0.7-2.6 g cm-3). The thickness of the whole deposit ranges from few decimeters on the hills to several meters in the valleys. Deposits extending across six valleys perpendicular to the flow direction allowed us to determine a minimum velocity of 120 m s-1. These characteristics show striking similarities with deposits of high-energy turbulent stratified currents and in particular directed blasts. The explosion destroyed most of the dome built during the eruption. Subsequently, the sub-Plinian phase left a decimeter-thick accidental-fragment-rich pumice layer in the Chachimbiro highlands. Juvenile clasts, rhyodacitic in composition (SiO2 = 68.3 wt%), represent the most differentiated magma of Chachimbiro volcano. Magma processes occurred at two different depths (˜14.4 and 8.0 km). The hot (˜936 °C) deep reservoir fed the central vent while the shallow reservoir (˜858 °C) had an independent evolution, probably controlled by El Angel regional fault system. Such destructive eruptions, related to peripheral domes, are of critical importance for hazard assessment in large silicic volcanic complexes such as those forming the Frontal Volcanic Arc of Ecuador and Colombia.

  13. Effects of Plinian Eruptions of Somma-vesuvius On People, Animals, Structures and Objects: Inferences From Avellino (3760 Yr B.p.) and Pompei (79 A.d.) Events.

    NASA Astrophysics Data System (ADS)

    Mastrolorenzo, G.; Petrone, P. P.; Geraci, G.; Guarino, F.; Incoronato, A.

    An interdisciplinary approach to the archaeological sites affected by Avellino (3750 yr. B.P.) and Pompei (79 A.D.) plinian eruptions of Somma-Vesuvius provides new data relative to the depositional mechanisms. Large scale stratigraphy and local evi- dences provide new informations about the physical conditions at the emplacement of PDCs and their effects on structures, people and environment. Field evidences indicate that fine grained pyroclastic deposits related to the column collapses propagate up to a distance of about 15 km from the crater and emplaced with conspicuous thickness. In both Avellino and Pompei eruptions, direct evidences from archaeological sites in- dicate that the emplacement in intermediate and distal areas was relatively quite (low mechanical energy). The recognition of thin, continuous, fine grained surge deposits up to a distance of ca. 15 km from the crater suggests that turbulence was important and the PDCs advanced as a relatively thick dilute current, very poorly controlled by the topography. Furthermore, due to the very small sizes, the particles were always transported in suspension, even at very low current velocity, thus avoiding vertical grading to occur. However, due to the very high depositional mass rate, the emplace- ment was very rapid causing buildings and hut, objects, animals and people to be engulfed within the ash deposits thus preserving their original position, as seen at Herculaneum, Oplontis, Pompeii (79 AD) and Nola (3760 bp). The skeletons of hu- man as well animal victims show high temperature effects. In particular, microscopic bones texture of the victims in the sites affected by the 79 A.D are consistent with very high temperatures, which are anomalous in pyroclastic surge clouds.

  14. Age and whole rock glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal tephrostratigraphy

    NASA Astrophysics Data System (ADS)

    Santacroce, Roberto; Cioni, Raffaello; Marianelli, Paola; Sbrana, Alessandro; Sulpizio, Roberto; Zanchetta, Giovanni; Donahue, Douglas J.; Joron, Jean Louis

    2008-10-01

    A review of compositional data of the major explosive eruptions of Vesuvius is presented, comparing compositions (major elements) of whole rock with glass shards from the proximal deposits, hopefully useful for long-distance correlation. A critical review of published and new geochronological data is also provided. All available 14C ages are calibrated to give calendar ages useful for the reconstruction of the volcanological evolution of the volcanic complex. The pyroclastic deposits of the four major Plinian eruptions (22,000 yr cal BP "Pomici di Base", 8900 yr cal BP "Mercato Pumice", 4300 yr cal BP "Avellino Pumice", and A.D. 79 "Pompeii Pumice") are widely dispersed and allow a four-folded, Plinian to Plinian, stratigraphic division: 1. B-M (between Pomici di Base and Mercato); 2. M-A (between Mercato and Avellino); 3. A-P (between Avellino and Pompeii); 4. P-XX (from the Pompeii Pumice to the last erupted products of the XXth century). Within each interval, the age, lithologic and compositional features of pyroclastic deposits of major eruptions, potentially useful for tephrostratigraphic purposes on distal areas, are briefly discussed. The Vesuvius rocks are mostly high Potassic products, widely variable in terms of their silica saturation. They form three groups, different for both composition and age: 1. slightly undersaturated, older than Mercato eruption; 2. mildly undersaturated, from Mercato to Pompeii eruptions; 3. highly undersaturated, younger than Pompeii eruption. For whole rock analyses, the peculiar variations in contents of some major and trace elements as well as different trends in element/element ratios, allow a clear, unequivocal, easy diagnosis of the group they belong. Glass analyses show large compositional overlap between different groups, but selected element vs. element plots are distinctive for the three groups. The comparative analysis of glass and whole rock major element compositions provides reliable geochemical criteria helping in the recognition, frequently not obvious, of distal products from the different single eruptions.

  15. A Nanolite Record of Eruption Style Transition

    NASA Astrophysics Data System (ADS)

    Mujin, M.; Nakamura, M.

    2014-12-01

    Microlites in pyroclasts have been intensively studied to understand magma ascent processes. However, microlites do not record the explosive-effusive transitions in sub-Plinian eruptions when such transitions are governed by the shallow level degassing rather than by the magma ascent rate. To overcome this limitation, we studied the "nanolites" in the quenched products of the 2011 Shinmoedake, Kirishima Volcanic Group, Kyusyu Japan1. Nanolites are the nanometer-scale components of the groundmass minerals and exhibit a steeper slope of crystal size distribution than that of the microlites2. In the 2011 Shinmoedake eruption, the style of activity had undergone transformations from sub-Plinian eruption to Vulcanian explosion and intermittent effusion of lava3. We found that, although the products formed by different eruptive activities have similar microlite characteristics, such products can be distinguished clearly by their mineral assemblage of nanolites. The samples of pumices of sub-Plinian eruptions and Vulcanian explosions and the dense juvenile fragments of lava (in descending order of explosivity) contained, respectively, nanolites of low-Ca pyroxene, low-Ca pyroxene + plagioclase, and low-Ca pyroxene + plagioclase + Fe-Ti oxides. Nanolites are assumed to crystallize when undercooling of the magma due primarily to dehydration increases rapidly near the surface. The water contents of the interstitial glass indicate that the quenched depths did not differ greatly between eruption styles. Hence, the different nanolite assemblages of each eruption style are assumed to have resulted from differences in magma residence time near the surface. Thus, we propose that nanolites in pyroclasts have the potential to indicate the physicochemical conditions of magma at the transition points of eruption styles. References 1) Mujin and Nakamura, 2014, Geology, v.42, p.611-614 2) Sharp et al., 1996, Bull. Volcanol, v.57, p.631-640 3) Miyabuchi et al, 2013, J. Volcanol. Geotherm. Res, v.258, p.31-46

  16. Stratigraphy of the Grande Savane Ignimbrite Sequence, Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Smith, A. L.; Deuerling, K.; Killingsworth, N.; Daly, G.

    2007-12-01

    The island of Dominica, located in the central part of the Lesser Antilles island arc has eight potentially active volcanoes. One of these, Morne Diablotins, is a composite stratovolcano with several superimposed stratigraphic sequences ranging in age from Pliocene (4-2 Ma) to "Younger" Pleistocene (<1.8 Ma). The most recent major eruptive activity from this volcano was a series of Plinian eruptions that produced ignimbrites that gave dates of >22,000 and >40,000 years B.P. The ignimbrite sequences form four flow fans that reached both the east and west coasts of the island. One of these flow fans, the Grande Savane, on the west coast of the island, also extends off-shore for a distance of at least 14 km as a distinctive submarine fan. Stratigraphical studies of the on- shore deposits that make up this fan indicate an older sequence of block and ash flow deposits, within which occurs a distinctive vulcanian fall deposit. These are overlain, with no evidence of an intervening paleosol, by a sequence of ignimbrites containing welded horizons (ranging in thickness from around 4 m to 16m). The lack of fall deposits beneath the ignimbrites suggest they may have been formed by instantaneous continuous collapse of the eruption column. This whole succession is overlain by a series of planar and dune bedded pumiceous surge deposits with interbedded pumiceous lapilli fall and ash fall deposits, that extend laterally outside of the main area of ignimbrite deposition. Beds within this upper sequence often contain accretionary lapilli and gas cavities suggesting magma-water interaction. The youngest deposits from Morne Diablotins appear to be valley- fill deposits of both ignimbrite and block and ash flow. A comparison of the of the Grande Savane pyroclastic sequence with the Pointe Ronde (west coast) and Londonderry (east coast) pyroclastic flow fans will provide information on the eruptive history of this major Plinian episode.

  17. The three youngest Plinian eruptions of Mt Pelée, Martinique (P1, P2 and P3): Constraining the eruptive conditions from field and experimental studies.

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Uhlig, Joan; Carazzo, Guillaume; Kaminski, Edouard; Perugini, Diego; Tait, Steve; Clouard, Valérie

    2015-04-01

    Mt Pelée on Martinique, French Lesser Indies, is infamous for the last big Pelean (i.e., dome forming) eruption in 1902 AD that destroyed agricultural land and the city of Saint Pierre by pyroclastic density currents. Beside such mostly valley-confined deposits, the geological record shows thick fall deposits of at least three Plinian eruptions during the past 2000 years. In an attempt to describe and understand systematic eruptive behaviours as well as the associated variability of eruptive scenarios of Plinian eruptions in Martinique, we have investigated approx. 50 outcrops belonging to the P1 (1315 AD), P2 (345 AD) and P3 (4 AD) eruptions (Traineau et al., JVGR 1989) and collected bulk samples as well as >100 mm pumiceous clasts. All samples are andesitic, contain plagioclase and pyroxene in a glassy matrix and range in porosity between 55 and 69 vol.% with individual bubbles rarely larger than 1 mm. Our approach was two-fold: 1) Loose bulk samples have been subject to dry mechanical sieving in order to quantively describe the grain-size distribution and the fractal dimension. 2) From large clasts, 60*25 mm cylinders have been drilled for fragmentation experiments following the sudden decompression of gas in the sample's pore space. The used experimental set-up allowed for precisely controllable and repeatable conditions (5, 10 and 15 MPa, 25 °C) and the complete sampling of the generated pyroclasts. These experimentally generated clasts were analysed for their grain-size distribution and fractal dimension. For both natural samples and experimental populations, we find we find that the grain-size distribution follows a power-law, with an exponent between 2,5 and 3,7. Deciphering eruption conditions from deposits alone is challenging because of the complex interplay of dynamic volcanic processes and transport-related sorting. We use the quantified values of fractal dimension for a comparison of the power law exponents among the three eruptions and the laboratory results. This will contribute to an increased interpretability of well-preserved deposits and a critical evaluation of the limits.

  18. The unsteady end to a powerful Plinian eruption: insights from a Vulcanian block apron from the 1912 eruption of Novarupta, Alaska

    NASA Astrophysics Data System (ADS)

    Isgett, S. J.; Houghton, B. F.; Burgisser, A.; Arbaret, L.

    2016-12-01

    Current models propose a static conduit architecture prior to Vulcanian eruptions where a dense, outgassed dome/plug overlies an orderly, texturally horizontally layered conduit. Blocks from a Vulcanian phase (Episode IV) during the 1912 eruption of Novarupta provide special insight to the state of the magma within a complex shallow conduit prior to fragmentation. Extreme conduit heterogeneity is seen in a diverse range of dacitic block types, including pumiceous, dense, flow-banded, and variably welded breccia clasts, all with a range of surface-breadcrusting. Diverse 2D and 3D textures suggest a variety of degassing states, with ranges of vesicle textures (e.g. bubble number, shape, and size) in each of the block types. The nonbreadcrusted pumice exhibit textures similar to preceding Plinian phases, reflecting bubble nucleation, growth, and coalescence followed by fragmentation. Breadcrusted rind and dense dacite textures are the result of bubble collapse with the dense dacites progressing furthest along the outgassing pathway. Residual water contents within the quenched glass are all less than 0.5 wt% and indicate that the melt came from the upper 100 m of the conduit. There is no correlation between water content and vesicularity. Overall, the evidence indicates 1) the mingling of variably degassed and outgassed melts in varying states of chemical disequilibrium over a narrow depth range close to the surface and 2) fragmentation was probably driven by the melt forming the non-breadcrusted pumices which we consider was probably newly arrived in the shallow conduit at the time of fragmentation. We therefore propose a revised, dynamic model applicable to Vulcanian explosions in the context of downscaling Plinian eruptions that involves vigorous mingling of melts that are all actively degassing and outgassing to varying degrees within the shallow conduit.

  19. Ground-based weather radar remote sensing of volcanic ash explosive eruptions

    NASA Astrophysics Data System (ADS)

    Marzano, F. S.; Marchiotto, S.; Barbieri, S.; Giuliani, G.; Textor, C.; Schneider, D. J.

    2009-04-01

    The explosive eruptions of active volcanoes with a consequent formation of ash clouds represent a severe threat in several regions of the urbanized world. During a Plinian or a sub-Plinian eruption the injection of large amounts of fine and coarse rock fragments and corrosive gases into the troposphere and lower stratosphere is usually followed by a long lasting ashfall which can cause a variety of damages. Volcanic ash clouds are an increasing hazard to aviation safety because of growing air traffic volumes that use more efficient and susceptible jet engines. Real-time and areal monitoring of a volcano eruption, in terms of its intensity and dynamics, is not always possible by conventional visual inspections, especially during worse visibility periods which are quite common during eruption activity. Remote sensing techniques both from ground and from space represent unique tools to be exploited. In this respect, microwave weather radars can gather three-dimensional information of atmospheric scattering volumes up several hundreds of kilometers, in all weather conditions, at a fairly high spatial resolution (less than a kilometer) and with a repetition cycle of few minutes. Ground-based radar systems represent one of the best methods for determining the height and volume of volcanic eruption clouds. Single-polarization Doppler radars can measure horizontally-polarized power echo and Doppler shift from which ash content and radial velocity can be, in principle, extracted. In spite of these potentials, there are still several open issues about microwave weather radar capabilities to detect and quantitatively retrieve ash cloud parameters. A major issue is related to the aggregation of volcanic ash particles within the eruption column of explosive eruptions which has been observed at many volcanoes. It influences the residence time of ash in the atmosphere and the radiative properties of the "umbrella" cloud. Numerical experiments are helpful to explore processes occurring in the eruption column. In this study we use the plume model ATHAM (Active Tracer High Resolution Atmospheric Model) to investigate, in both time and space, processes leading to particle aggregation in the eruption column. In this work a set of numerical simulations of radar reflectivity is performed with the ATHAM model, under the same experimental conditions except for the initial size distribution, i.e. varying the radii of average mass of the two particle dimension modes. A sensitivity analysis is carried out to evaluate the possible impact of aggregate particles on microwave radar reflectivity. It is shown how dimension, composition, temperature and mass concentration are the main characteristics of eruptive cloud particles that contribute to determine different radar reflectivity responses. In order to evaluate Rayleigh scattering approximation accuracy, the ATHAM simulations of radar reflectivity are used to compare in a detailed way the Mie and Rayleigh scattering regimes at S-, C- and X-band. The relationship between radar reflectivity factor and ash concentration has been statistically derived for the various particle classes by applying a new radar reflectivity microphysical model, which was developed starting from results of numerical experiments performed with plume model ATHAM. The ash retrieval physical-statistical algorithm is based on the backscattering microphysical model of volcanic cloud particles, used within a Bayesian classification and optimal regression algorithm. In order to illustrate the potential of this microwave active remote sensing technique, the case study of the eruption of Augustine volcano in Alaska in January 2006 is described. This event was the first time that a significant volcanic eruption was observed within the nominal range of a WSR-88D. The radar data, in conjunction with pilot reports, proved to be crucial in analyzing the height and movement of volcanic ash clouds during and immediately following each eruptive event. This data greatly aided National Weather Service meteorologists in the issuance of timely and accurate warning and advisory products to aviation, public, and marine interests. An application of the retrieval technique has been shown, taking into consideration the eruption of the Augustine volcano. Volume scan data from the NEXRAD WSR-88D S-band radar, which are located 190 km from the volcano vent, are processed to identify and estimate the particles concentration in an automatic fashion. The evolution of the Augustine Vulcanian eruption is discussed in terms of radar measurements products, pointing out the unique features, the current limitations and future improvements of radar remote sensing of volcanic plumes.

  20. Mt. Spurr's 1992 eruptions

    USGS Publications Warehouse

    1993-01-01

    On 27 June, 1992, the Crater Peak vent on the south side of Mt. Spurr awoke from 39 years of dormancy and burst into sub-plinian eruption after 10 months of elevated seismicity. Two more eruptions followed in August and September. The volcano lies 125 km west of Anchorage, Alaska's largest city and an important international hub for air travel. The Alaska Volcano Observatory (AVO) was able to warn communities and the aviation industry well in advance of these eruptions.

  1. Stratigraphic, Granulometric and Geochemical Studies of a Major Plinian Eruption on Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Smith, A. L.; Daly, G.; Killingsworth, N.; Deuerling, K.; Schneider, S.; Fryxell, J. E.

    2008-12-01

    The island of Dominica, located in the center of the Lesser Antilles island arc has witnessed, probably within the last 100,000 years, three large volume Plinian eruptions. One of these, associated with the Morne Diablotins center, forms the Grande Savane pyroclastic flow fan, that extends off shore as a distinctive submarine feature for a distance of at least 14 km. Stratigraphical studies of road cuts and well-exposed sea cliffs indicate the fan is composed of an older unit composed of reworked deposits at the base followed by at least four sequences, based on the presence of paleosols, of block and ash flow deposits. The upper unit of block and ash flows is overlain, with no evidence of an intervening paleosol, by a sequence of ignimbrites and pumiceous surges (representing the Plinian eruption). There is no evidence of an initial Plinian fall deposit, so the lowest bed in the succession is an ignimbrite with a highly irregular base that cuts into the underlying block and ash flow deposits, the upper parts of which are colored red due to thermal effects. This lowest ignimbrite is welded (minimum porosity of 15%) throughout its thickness (maximum thickness of greater than 21 m), although a few outcrops near the margins show a thin (20-30 cm) non-welded but lithified zone beneath the welded zone. The remainder of the sequence is composed of lithified ignimbrite that can be subdivided into three units separated by pumiceous surge layers. The ignimbrite succession is overlain, with no obvious break, by a thin fall deposit containing accretionary lapilli and gas cavities, followed by three pumiceous surge deposits (lower and upper show planar stratification and the middle surge shows massive bedding); towards the north the upper two surge deposits are separated by thin pumiceous lapilli fall and ash fall deposits. This surge sequence extends laterally outside of the main area of ignimbrite deposition. The pumice clasts from the ignimbrites are andesitic in composition and show essentially no variation up stratigraphy. In contrast, the surges are more variable in composition, ranging from andesite to dacite. Modeling of these data will provide information on the dynamics of this major Plinian eruption including the effects of water/magma interaction.

  2. Chronology and dispersal characteristics of recently (last 5000 years) erupted tephra of Cotopaxi (Ecuador): implications for long-term eruptive forecasting

    NASA Astrophysics Data System (ADS)

    Barberi, F.; Coltelli, M.; Frullani, A.; Rosi, M.; Almeida, E.

    1995-12-01

    Cotopaxi, the highest active volcano on earth and one of the most dangerous of Ecuador is constituted by a composite cone made up of lava and tephra erupted from the summit crater. The activity of the present volcano begun with large-volume plinian eruptions followed by a succession of small-volume lava emissions and pyroclastic episodes which led to the edification of a symmetrical cone. The growth of the cone was broken by an episode of slope failure, the scar of which is now obliterated by recent and historical products. Volcanic history, eruptive frequency and characteristics of the activity were investigated by studying the stratigraphy of tephra and carrying out fifteen new 14C dating on paleosols and charcoals. The investigated period is comprised between the slope failure and the present. The deposit of the volcanic landside (dry debris avalanche of Rio Pita), previously believed to be between 13,000 and 25,000 yr B.P., is now considered to have an age slightly older than 5000 yr B.P. The stratigraphy of tephra of the last 2000 years reveals the existence of 22 fallout layers. Seven of them were dated with 14C whereas three were ascribed to the eruptions of 1534, 1768 and 1877 on the basis of comparison with historical information. Maximum clast size distribution (isopleths) of 9 tephra layers points out that the sustained explosive eruptions of Cotopaxi during the last 2000 years are characterized by very high dispersive power (plinian plumes with column heights between 28 and 39 km) and high intensity (peak mass discharges from 1.1 to 4.1 × 10 8kg/s). The magnitude (mass) of tephra fallout deposits calculated from distribution of thickness (isopaches) are, however, moderate (from 0.8 to 7.2 × 10 11 kg). The limited volume of magma erupted during each explosive episode is consistent with the lack of caldera collapses. Small-volume pyroclastic flows and surges virtually accompanied all identified tephra fallouts. During such an activity large scale snow/ice melting of the summit glacier produced devastating mudflows comparable in scale to those of 1877 eruption. By assuming a 1:1 correspondence between fallout episodes and generation of large-scale lahar, we have estimated an average recurrence of one explosive, lahartriggering event every 117 years over the last two millennia. This value compares well with that calculated by considering the period since Spanish Conquest. The probability of having an eruption like this in 100 or 200 years is respectively of 0.57 and 0.82. Such an high probability underscores the need for quick actions aimed at the mitigation of Cotopaxi lahar hazard along all the main valleys which originate from the volcano.

  3. A multi-source probabilistic hazard assessment of tephra dispersal in the Neapolitan area

    NASA Astrophysics Data System (ADS)

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Folch, Arnau; Macedonio, Giovanni; Tonini, Roberto

    2015-04-01

    In this study we present the results obtained from a long-term Probabilistic Hazard Assessment (PHA) of tephra dispersal in the Neapolitan area. Usual PHA for tephra dispersal needs the definition of eruptive scenarios (usually by grouping eruption sizes and possible vent positions in a limited number of classes) with associated probabilities, a meteorological dataset covering a representative time period, and a tephra dispersal model. PHA then results from combining simulations considering different volcanological and meteorological conditions through weights associated to their specific probability of occurrence. However, volcanological parameters (i.e., erupted mass, eruption column height, eruption duration, bulk granulometry, fraction of aggregates) typically encompass a wide range of values. Because of such a natural variability, single representative scenarios or size classes cannot be adequately defined using single values for the volcanological inputs. In the present study, we use a method that accounts for this within-size-class variability in the framework of Event Trees. The variability of each parameter is modeled with specific Probability Density Functions, and meteorological and volcanological input values are chosen by using a stratified sampling method. This procedure allows for quantifying hazard without relying on the definition of scenarios, thus avoiding potential biases introduced by selecting single representative scenarios. Embedding this procedure into the Bayesian Event Tree scheme enables the tephra fall PHA and its epistemic uncertainties. We have appied this scheme to analyze long-term tephra fall PHA from Vesuvius and Campi Flegrei, in a multi-source paradigm. We integrate two tephra dispersal models (the analytical HAZMAP and the numerical FALL3D) into BET_VH. The ECMWF reanalysis dataset are used for exploring different meteorological conditions. The results obtained show that PHA accounting for the whole natural variability are consistent with previous probabilities maps elaborated for Vesuvius and Campi Flegrei on the basis of single representative scenarios, but show significant differences. In particular, the area characterized by a 300 kg/m2-load exceedance probability larger than 5%, accounting for the whole range of variability (that is, from small violent strombolian to plinian eruptions), is similar to that displayed in the maps based on the medium magnitude reference eruption, but it is of a smaller extent. This is due to the relatively higher weight of the small magnitude eruptions considered in this study, but neglected in the reference scenario maps. On the other hand, in our new maps the area characterized by a 300 kg/m2-load exceedance probability larger than 1% is much larger than that of the medium magnitude reference eruption, due to the contribution of plinian eruptions at lower probabilities, again neglected in the reference scenario maps.

  4. Quaternary silicic pyroclastic deposits of Atitlán Caldera, Guatemala

    USGS Publications Warehouse

    Rose, William I.; Newhall, Christopher G.; Bornhorst, Theodore J.; Self, Stephen

    1987-01-01

    Atitlán caldera has been the site of several silicic eruptions within the last 150,000 years, following a period of basalt/andesite volcanism. The silicic volcanism began with 5–10 km3 of rhyodacites, erupted as plinian fall and pyroclastic flows, about 126,000 yr. B.P. At 85,000 yr. B.P. 270–280 km3 of compositionally distinct rhyolite was erupted in the Los Chocoyos event which produced widely dispersed, plinian fall deposits and widespread, mobile pyroclastic flows. In the latter parts of this eruption rhyodacite and minor dacite were erupted which compositionally resembled the earliest silicic magmas of the Atitlán center. As a result of this major eruption, the modern Atitlán (III) caldera formed. Following this event, rhyodacites were again erupted in smaller (5–13 km3) volumes, partly through the lake, and mafic volcanism resumed, forming three composite volcanoes within the caldera. The bimodal mafic/silicic Atitlán volcanism is similar to that which has occurred elsewhere in the Guatemalan Highlands, but is significantly more voluminous. Mafic lavas are thought to originate in the mantle, but rise, intrude and underplate the lower crust and partly escape to the surface. Eventually, silicic melts form in the crust, possibly partly derived from underplated basaltic material, rise, crystallize and erupt. The renewed mafic volcanism could reflect either regional magmato-tectonic adjustment after the large silicic eruption or the onset of a new cycle.

  5. Comparing eruptions of varying intensity at Kilauea via melt inclusion analysis

    NASA Astrophysics Data System (ADS)

    Ferguson, D. J.; Plank, T. A.; Hauri, E. H.; Houghton, B. F.; Gonnermann, H. M.; Swanson, D. A.; Blaser, A. P.

    2013-12-01

    Over the past 500 years explosive summit eruptions from Kilauea volcano, Hawaii, have exhibited a range of eruption magnitudes, from large basaltic sub-plinian events to Hawaiian lava fountains of various intensity. Knowledge of the factors controlling such dramatic changes in explosivity and mass discharge rate is vital for understanding the dynamics of explosive basaltic magma systems, but these remain poorly constrained. At Kilauea this information also has important implications for hazard assessment, as future eruptions may be far larger than those observed historically. To investigate the processes associated with eruptions of varying magnitudes we have analyzed the composition and dissolved volatile contents (H2O-CO2-S-Cl-F) of olivine-hosted melt inclusions, sampled from tephra deposits associated with three eruptions of different sizes: a moderate lava-fountain (1959 Episode of Kilauea Iki); an exceptionally high lava-fountain (1500 CE Keanakāko'i reticulite) and a basaltic sub-plinian eruption (1650 CE Keanakāko'i layer 6 scoria). Over this time period (~500 years) we find no major shifts in the major element composition of primary melts feeding the Kilauea magmatic system, and melt inclusions from all eruptions record similar maximum water (~0.7 wt% H2O) and CO2 (~300 ppm) contents, regardless of eruption magnitude. Co-variations between other volatile species, such as CO2 and S, do not support a role for excess volatiles (i.e. CO2) in the larger eruptions via ';gas-fluxing'. Our data therefore suggests that major shifts in eruptive magnitude are unlikely to be linked to either changes in the primary volatile content of the melts or excess gas supplied by open-system degassing of deeper melts. Rather we find evidence for significant variations in the shallow degassing behavior of magmas associated with the larger Keanakāko'i eruptions (sub-plinian and strong lava-fountaining events) compared to that from less vigorous moderate Kilauea Iki lava-fountaining events. On plots of CO2 versus H2O, Kilauea Iki MI's record volatile contents consistent with equilibrium degassing of magma rising from a depth of ~3 km. In contrast, the volatile contents of melts from the more explosive eruptions appear to be strongly affected by degassing processes at shallow depths (< 300 m), indicating variations in the ascent and storage of melts over this time-period. These changes in storage conditions may be linked to variations in the depth of the summit caldera, which was significantly greater during the older more explosive eruptive phases.

  6. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  7. White and gray pumice in pyroclastic deposits. (Invited)

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Cashman, K. V.

    2013-12-01

    Many primary pyroclastic deposits contain at least two different colors of pumice, including volumetrically dominant white and subordinate gray. White pumice is vesicular, microlite-free, and in most cases represents direct samples of the principal magma reservoir. In contrast, subordinate gray pumice with lower vesicularity and/or more abundant microlites may sample either deep recharge OR shallow vanguard magma, where both may record information on eruption triggers. Pumice may appear gray for several reasons: 1. Gray pumice has a less-evolved bulk composition than white pumice. Presence of less-evolved (generally deep-derived) magma provides information about possible recharge magma and/or pre-eruptive compositional variation in the magma storage region. A well-known example of this difference is the 1912 eruption of Novarupta [Hildreth & Fierstein, 2012], which includes white (rhyolite) and gray (andesite and dacite) pumice. 2. Gray pumice contains elevated microlite number densities and/or microlite crystallinities and is compositionally similar to white pumice. a. Gray pumice contains abundant broken crystal fragments and lithic fragments. Broken crystals and incorporated white pumice indicate passage through the primary magma reservoir. Incorporated lithic fragments indicate breakage of wall rock and creation of new transport pathways. Microlites and breadcrusted surfaces indicate slow and/or episodic ascent at shallow levels. This textural association indicates that proto-gray pumice magma played an active role in creating a conduit to the surface. In some cases, small differences in chemistry may further indicate differences in magma batches (recharge pulses). This textural variation is found in the products of high-crystallinity large-volume (Plinian or boil-over style) eruptions, as in the Cerro Galan Ignimbrite, Argentina [Wright et al., 2011]. b. Gray pumice contains abundant microlites due to differences in decompression and/or cooling history. In this case, microlites indicate shallow degassing-induced crystallization, where proto-gray pumice forms vanguard magma or a shallow conduit plug. Gray pumice originating in a shallow conduit plug is common in Vulcanian and subPlinian silicic eruptions and is seen in the 1980 Plinian and subPlinian eruptions of Mount St. Helens [Klug & Cashman, 1994; Cashman & McConnell, 2005]. c. Gray pumice may record syn-eruptive changes in the magmatic system, often manifested as crystallization caused by either decompression or cooling [cf., Gurioli et al., 2005; Andrews & Gardner, 2010]. In summary, the compositional and textural complexities of gray pumice provide detail on pre- and syn-eruptive magmatic processes that may be impossible to obtain from (dominant) white pumice alone. Subtle compositional variations may characterize melts available to recharge and destabilize the upper magma reservoir, whereas crystal textures and compositions can be compared with experimental data to infer shallow magma ascent associated with conduit formation prior to climatic activity. Thus, analysis of gray pumice in pyroclastic deposits can yield new insight into the dynamics of eruptive processes.

  8. Magma storage conditions of historic Plinian eruptions of Volcán de Colima, México

    NASA Astrophysics Data System (ADS)

    Macias, J.; Arce, J.; Sosa, G.; Gardner, J. E.; Saucedo, R.

    2013-12-01

    Volcán de Colima has a historical record with major explosive eruptions occurring every ~100 years (1606, 1690, 1818, and 1913) followed by intra-Plinian effusive activity. The 1818 and 1913 Plinian eruptions erupted andesitic magmas (Pl > Opx > Cpx >> Hbl + Fe-Ti oxides + Ap and rare resorbed Ol) with homogeneous bulk compositions (1913; 58.3 × 0.5 wt.% SiO2, 1818; 58.9 × 0.2 wt.% SiO2; Saucedo et al., 2010). Instead, intra-Plinian magmas are devoid of hornblende and have compositions of 59-61 wt. % in silica (Savov et al., 2008). Pre-eruptive temperatures of oxide Fe-Ti pairs in 1818 and 1913 products yielded temperatures of 830×20°C colder than intra-Plinian magmas usually >970°C (Luhr et al., 2002) depending on the mineral phase analyzed. Amphibole in 1818 and 1913 products consists of two populations: a) large xenocrysts, with plag-px-Fe-Ti oxide rims with equilibrium pressures and temperatures of 380 MPa and 950 °C (Ridolfi et al., 2010), and b) microphenocryst with equilibrium pressures and temperatures of 190-280 MPa and 870-910 °C, respectively. Some phenocrysts in the 1818 magma have a high pressure core overgrowth by a low pressure rim. In order to understand the storage conditions of Colima explosive magmas we carried out a set of hydrothermal experiments with a 1818 pumice sample. Experiments were water oversaturated and close to the oxygen fugacity of the NNO buffer. Experiments show that amphibole is stable at pressures greater than 75 MPa at 850°C, and greater than 100 MPa at 925°C. For the same range of temperature, plagioclase is stable at pressures below ~210 MPa and 100 MPa, respectively. Experimental plagioclase and experimental glass were analyzed and compared to those from the natural sample, yielding an approximate storage pressure of 210 MPa. This pressure is confirmed by the chemical equilibrium of microphenocrystic amphibole of the natural sample. Given the nearly equivalent composition of the most recent Plinain magmas is possible to assume the storage pressure of the 1913 Plinian magma. Previous studies found ~6 wt. % of water dissolved in orthopyroxene melt inclusions in the 1913 magma (Luhr, 2006). That water concentration would be dissolved in a melt with the 1913 composition at ~200 MPa (Papale et al., 2006). Equilibrium pressure of 1913 amphiboles, microphenocrysts, and xenocrysts (280-380 MPa), overall, are deeper than those of the 1818 suggesting a deeper 1913 reservoir. Therefore, the 1818 amphiboles with lower pressure rims found in the natural sample could have been inherited from a previous magma (>280 MPa) seated at similar depths than the 1913 reservoir from which were taped. Luhr, J.F., 2002 JVGR 117, 169-194. Ridolfi, F., Renzulli, A., Puerini, M., 2010. Cont Min Petrol 160, 45-66. R. Saucedo, J.L. Macías, J.C. Gavilanes, J.L. Arce, J.C. Komorowski, J.E. Gardner, G. Valdez-Moreno JVGR 191, 149-166 Savov, I.P., Luhr, J.F., Navarro-Ochoa, C., 2008. JVGR 174: 241-256.

  9. The interplinian activity at Somma-Vesuvius in the last 3500 years

    USGS Publications Warehouse

    Rolandi, G.; Petrosino, P.; Mc, Geehin J.

    1998-01-01

    Between 1884 B.C. and A.D. 472, eruptive activity at Somma-Vesuvius was dominated by the three plinian eruptions of Avellino (3550 yr B.P.), Pompei (A.D. 79) and A.D. 472 and, as a result, little attention has been given to the intervening interplinian activity. The interplinian events are here reconstructed using new data from twenty stratigraphic sections around the lower flanks of the volcano. Three main eruptions have been identified fro the protohistoric period (3550 yr B.P.-A.D. 79). The first two occurred shortly after the Avellino event and both show a progression from magmatic to phreatomagmatic behaviour. The third eruption (2700 B.P.) consisted of five phreatomagmetic episodes separated by the emplacement of mud flows. Only one event, the explosive erupton of A.D. 203, has been identified for the ancient historic period (A.D. 79-472). In contrast, the A.D. 472 eruption was followed during the medievel period (A.D. 472-1631) by comparatively vigorous interplinian activity, including four strombolian-phreatomagmatic events and extensive lava effusion, which formed a summit cone (destroyed in A.D. 1631) similar to that on Vesuvius today. Such regular alternations of plinian and interplinian events are evident only since 3550 yr B.P. and provide important constraints for forecasting future behaviour at Somma-Vesuvius.

  10. Experimental petrology applied in deposits of the 550 yr b.p. eruption at El Chichon volcano, Chiapas.

    NASA Astrophysics Data System (ADS)

    Mora, J. C.

    2002-12-01

    The 550 years ago a plinian-type eruption took place at El Chich¢n volcano, this event produced a 1.5 km3 pumice fall deposit. Contrary to the 1982 eruption, this event occurred under open vent conditions similar to the present crater. Comparing the pre-eruptive conditions of these two events would shed new lights on the location of the magma chamber, and the magmatic evolution. In order to determine the pre-eruptive conditions (P and T) of the 550 yr BP magma, laboratory experiments were carried out under fixed pressure and temperature conditions at the University of Alaska at Fairbanks. For this purpose fresh samples of the pumice were crushed, pulverized and saturated with water. The sample was then placed into ~2mg experimental tube charges of Ag70Pd30 of 2mm diameter. Our results indicate that prior to the 550 plinian the magma has a temperature of 825-830°C. and at approximated pressure of 2500 bars. This pressure estimate differs from the 4000 bars estimated with the geobaromether of Al-hornblende. The water contents obtained in the experiments were oversaturated similar to the calculated with the plagioclase-melts equation (5.3-6.1 percent in vol.)

  11. Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR

    USGS Publications Warehouse

    Schneider, D.J.; Rose, William I.; Coke, L.R.; Bluth, G.J.S.; Sprod, I.E.; Krueger, A.J.

    1999-01-01

    This paper is a detailed study of remote sensing data from the total ozone mapping spectrometer (TOMS) and the advanced very high resolution radiometer (AVHRR) satellite detectors, of the 1982 eruption of El Chichón, Mexico. The volcanic cloud/atmosphere interactions in the first four days of this eruption were investigated by combining ultraviolet retrievals to estimate the mass of sulfur dioxide in the volcanic cloud [Krueger et al., 1995] with thermal infrared retrievals of the size, optical depth, and mass of fine-grained (1–10 μm radius) volcanic ash [Wen and Rose, 1994]. Our study provides the first direct evidence of gravitational separation of ash from a stratospheric, gas-rich, plinian eruption column and documents the marked differences in residence times of volcanic ash and sulfur dioxide in volcanic clouds. The eruption column reached as high as 32 km [Carey and Sigurdsson, 1986] and was injected into an atmosphere with a strong wind shear, which allowed for an observation of the separation of sulfur dioxide and volcanic ash. The upper, more sulfur dioxide-rich part of the cloud was transported to the west in the stratosphere, while the fine-grained ash traveled to the south in the troposphere. The mass of sulfur dioxide released was estimated at 7.1 × 109 kg with the mass decreasing by approximately 4% 1 day after the peak. The mass of fine-grained volcanic ash detected was estimated at 6.5 × 109 kg, amounting to about 0.7% of the estimated mass of the ash which fell out in the mapped ash blanket close to the volcano. Over the following days, 98% of this remaining fine ash was removed from the volcanic cloud, and the effective radius of ash in the volcanic cloud decreased from about 8 μm to about 4 μm.

  12. Using Computer Simulations to Model Scoria Cone Growth

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Mehta, R. D.

    2016-12-01

    Scoria cones form from the accumulation of scoria delivered by either bursting lava bubbles (Strombolian style eruptions) or the gas thrust of an eruption column (Hawaiian to sub-Plinian style eruption). In this study, we focus on connecting the distribution of scoria delivery to the eventual cone shape rather than the specifics of the mechanism of delivery. For simplicity, we choose to model ballistic paths, that follow the scoria from ejection from crater to landing on the surface and then avalanching down slope. The first stage corresponds to Strombolian-like bursts of the bubble. The second stage only occurs if the angle of repose is greater than 30 degrees. After this condition is met, the scoria particles grain flow downwards until a stable slope is formed. These two stages of the volcanic eruption repeat themselves in the number of phases. We hypothesize that the horizontal travel distance of the ballistic paths, and as a result the width of the volcano, is primarily dependent of the velocity of the particles bursting from the bubble in the crater. Other parameters that may affect the shape of cinder cones are air resistance on ballistic paths, ranges in particle size, ballistic ejection angles, and the total number of particles. Ejection velocity, ejection angle, particle size and air resistance control the delivery distribution of scoria; a similar distribution of scoria can be obtained by sedimentation from columns and the controlling parameters of such (gas thrust velocity, particle density, etc.) can be related to the ballistic delivery in terms of eruption energy and particle characteristics. We present a series of numerical experiments that test our hypotheses by varying different parameters one or more at a time in sets each designed to test a specific hypothesis. Volcano width increases as ejection velocity, ejection angle (measured from surface), or the total number of scoria particles increases. Ongoing investigations seek the controls on crater width.

  13. Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR

    NASA Astrophysics Data System (ADS)

    Schneider, David J.; Rose, William I.; Coke, Larry R.; Bluth, Gregg J. S.; Sprod, Ian E.; Krueger, Arlin J.

    1999-02-01

    This paper is a detailed study of remote sensing data from the total ozone mapping spectrometer (TOMS) and the advanced very high resolution radiometer (AVHRR) satellite detectors, of the 1982 eruption of El Chichón, Mexico. The volcanic cloud/atmosphere interactions in the first four days of this eruption were investigated by combining ultraviolet retrievals to estimate the mass of sulfur dioxide in the volcanic cloud [Krueger et al., 1995] with thermal infrared retrievals of the size, optical depth, and mass of fine-grained (1-10 μm radius) volcanic ash [Wen and Rose, 1994]. Our study provides the first direct evidence of gravitational separation of ash from a stratospheric, gas-rich, plinian eruption column and documents the marked differences in residence times of volcanic ash and sulfur dioxide in volcanic clouds. The eruption column reached as high as 32 km [Carey and Sigurdsson, 1986] and was injected into an atmosphere with a strong wind shear, which allowed for an observation of the separation of sulfur dioxide and volcanic ash. The upper, more sulfur dioxide-rich part of the cloud was transported to the west in the stratosphere, while the fine-grained ash traveled to the south in the troposphere. The mass of sulfur dioxide released was estimated at 7.1 × 109 kg with the mass decreasing by approximately 4% 1 day after the peak. The mass of fine-grained volcanic ash detected was estimated at 6.5 × 109 kg, amounting to about 0.7% of the estimated mass of the ash which fell out in the mapped ash blanket close to the volcano. Over the following days, 98% of this remaining fine ash was removed from the volcanic cloud, and the effective radius of ash in the volcanic cloud decreased from about 8 μm to about 4 μm.

  14. Pre-eruptive conditions of dacitic magma erupted during the 21.7 ka Plinian event at Nevado de Toluca volcano, Central Mexico

    NASA Astrophysics Data System (ADS)

    Arce, J. L.; Gardner, J. E.; Macías, J. L.

    2013-01-01

    The Nevado de Toluca volcano in Central Mexico has been active over the last ca. 42 ka, during which tens of km3 of pyroclastic material were erupted and two important Plinian-type eruptions occurred at ca. 21.7 ka (Lower Toluca Pumice: LTP) and ca. 10.5 ka (Upper Toluca Pumice: UTP). Samples from both the LTP and UTP contain plagioclase, amphibole, iron-titanium oxides, and minor anhedral biotite, set in a vesicular, rhyolitic, glassy matrix. In addition, UTP dacites contain orthopyroxene. Analysis of melt inclusions in plagioclase phenocrysts yields H2O contents of 2-3.5 wt.% for LTP and 1.3-3.6 wt.% for UTP samples. Ilmenite-ulvospinel geothermometry yields an average temperature of ~ 868 °C for the LTP magma (hotter than the UTP magma, ~ 842 °C; Arce et al., 2006), whereas amphibole-plagioclase geothermometry yields a temperature of 825-859 °C for the LTP magma. Water-saturated experiments using LTP dacite suggest that: (i) amphibole is stable above 100 MPa and below 900 °C; (ii) plagioclase crystallizes below 250-100 MPa at temperatures of 850-900 °C; and (iii) pyroxene is stable only below pressures of 200-100 MPa and temperatures of 825-900 °C. Comparison of natural and experimental data suggests that the LTP dacitic magma was stored at 150-200 MPa (5.8-7.7 km below the volcano summit). No differences in pressure found between 21.7 ka and 10.5 ka suggest that these two magmas were stored at similar depths. Orthopyroxene produced in lower temperature LTP experiments is compositionally different to those found in UTP natural samples, suggesting that they originated in two different magma batches. Whole-rock chemistry, petrographic features, and mineral compositions suggest that magma mixing was responsible for the generation of the dacitic Plinian LTP eruption.

  15. Juvenile pumice and pyroclastic obsidian reveal the eruptive conditions necessary for the stability of Plinian eruption of rhyolitic magma

    NASA Astrophysics Data System (ADS)

    Giachetti, T.; Shea, T.; Gonnermann, H. M.; McCann, K. A.; Hoxsie, E. C.

    2016-12-01

    Significant explosive activity generally precedes or coexists with the large effusion of rhyolitic lava (e.g., Mono Craters; Medicine Lake Volcano; Newberry; Chaitén; Cordón Caulle). Such explosive-to-effusive transitions and, ultimately, cessation of activity are commonly explained by the overall waning magma chamber pressure accompanying magma withdrawal, albeit modulated by magma outgassing. The tephra deposits of such explosive-to-effusive eruptions record the character of the transition - abrupt or gradual - as well as potential changes in eruptive conditions, such as magma composition, volatiles content, mass discharge rate, conduit size, magma outgassing. Results will be presented from a detailed study of both the gas-rich (pumice) and gas-poor (obsidian) juvenile pyroclasts produced during the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California. In the proximal deposits, a multitude of pumice-rich sections separated by layers rich in dense clasts suggests a pulsatory behavior of the explosive phase. Density measurements on 2,600 pumices show that the intermediate, most voluminous deposits have a near constant median porosity of 65%. However, rapid increase in porosity to 75-80% is observed at both the bottom and the top of the fallout deposits, suggestive of rapid variations in magma degassing. In contrast, a water content of pyroclastic obsidians of approximately 0.6 wt% does remain constant throughout the eruption, suggesting that the pyroclastic obsidians degassed up to a constant pressure of a few megapascals. Numerical modeling of eruptive magma ascent and degassing is used to provide constraints on eruption conditions.

  16. The 1845 Hekla eruption: Grain-size characteristics of a tephra layer

    NASA Astrophysics Data System (ADS)

    Gudnason, Jonas; Thordarson, Thor; Houghton, Bruce F.; Larsen, Gudrun

    2018-01-01

    The 1845 eruption is commonly viewed as a typical Hekla eruption. It is a key event in the eruptive history of the volcano, as it is one of the best documented Hekla eruptions, in terms of contemporary accounts and observations. The eruption started on 2 September 1845 with an intense, hour long explosive Plinian phase that passed into effusive activity, ending on the 16 March 1846. The amount of tephra produced in the opening phase was 0.13 km3/7.5 × 1010 kg. The total grain-size distribution of the deposit is bimodal with a dominant coarse mode at - 2.5 φ (5.6 mm) and a broad finer mode at 3 to 4.5 φ (0.125 to 0.045 mm). At individual sites, the grain-size distribution of the tephra from the Plinian opening phase is also commonly (not always) bimodal. Deconvolved grain-size distributions exhibit distinctly different sedimentation patterns of the coarse and fine subpopulations. The lapilli-dominated subpopulation fines rapidly with transport, while the ash-dominated subpopulation shows less changes with distance, indicating premature sedimentation of fines by aggregation from the 1845 volcanic plume. Tephra deposition was to the ESE of the volcano from a 19 km (a.s.l.) high eruption plume. The plume front travelled at speeds of 16-19 m s- 1. Reports of ash deposition onto ships near the Faroe and Shetland Islands, 700 to 1100 km away from Hekla, demonstrate that even moderate-sized Hekla eruptions can affect very large parts of European air-space.

  17. Assessing future vent opening locations at the Somma-Vesuvio volcanic complex: 1. A new information geodatabase with uncertainty characterizations

    NASA Astrophysics Data System (ADS)

    Tadini, A.; Bisson, M.; Neri, A.; Cioni, R.; Bevilacqua, A.; Aspinall, W. P.

    2017-06-01

    This study presents new and revised data sets about the spatial distribution of past volcanic vents, eruptive fissures, and regional/local structures of the Somma-Vesuvio volcanic system (Italy). The innovative features of the study are the identification and quantification of important sources of uncertainty affecting interpretations of the data sets. In this regard, the spatial uncertainty of each feature is modeled by an uncertainty area, i.e., a geometric element typically represented by a polygon drawn around points or lines. The new data sets have been assembled as an updatable geodatabase that integrates and complements existing databases for Somma-Vesuvio. The data are organized into 4 data sets and stored as 11 feature classes (points and lines for feature locations and polygons for the associated uncertainty areas), totaling more than 1700 elements. More specifically, volcanic vent and eruptive fissure elements are subdivided into feature classes according to their associated eruptive styles: (i) Plinian and sub-Plinian eruptions (i.e., large- or medium-scale explosive activity); (ii) violent Strombolian and continuous ash emission eruptions (i.e., small-scale explosive activity); and (iii) effusive eruptions (including eruptions from both parasitic vents and eruptive fissures). Regional and local structures (i.e., deep faults) are represented as linear feature classes. To support interpretation of the eruption data, additional data sets are provided for Somma-Vesuvio geological units and caldera morphological features. In the companion paper, the data presented here, and the associated uncertainties, are used to develop a first vent opening probability map for the Somma-Vesuvio caldera, with specific attention focused on large or medium explosive events.

  18. Estimating the eruptive volume of a large pyroclastic body: the Otowi Member of the Bandelier Tuff, Valles caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Cook, Geoffrey W.; Wolff, John A.; Self, Stephen

    2016-02-01

    The 1.60 Ma caldera-forming eruption of the Otowi Member of the Bandelier Tuff produced Plinian and coignimbrite fall deposits, outflow and intracaldera ignimbrite, all of it deposited on land. We present a detailed approach to estimating and reconstructing the original volume of the eroded, partly buried large ignimbrite and distal ash-fall deposits. Dense rock equivalent (DRE) volume estimates for the eruption are 89 + 33/-10 km3 of outflow ignimbrite and 144 ± 72 km3 of intracaldera ignimbrite. Also, there was at least 65 km3 (DRE) of Plinian fall when extrapolated distally, and 107 + 40/-12 km3 of coignimbrite ash was "lost" from the outflow sheet to form an unknown proportion of the distal ash fall. The minimum total volume is 216 km3 and the maximum is 550 km3; hence, the eruption overlaps the low end of the super-eruption spectrum (VEI ˜8.0). Despite an abundance of geological data for the Otowi Member, the errors attached to these estimates do not allow us to constrain the proportions of intracaldera (IC), outflow (O), and distal ash (A) to better than a factor of three. We advocate caution in applying the IC/O/A = 1:1:1 relation of Mason et al. (2004) to scaling up mapped volumes of imperfectly preserved caldera-forming ignimbrites.

  19. Evolution of the magma feeding system during a Plinian eruption: The case of Pomici di Avellino eruption of Somma-Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Massaro, S.; Costa, A.; Sulpizio, R.

    2018-01-01

    The current paradigm for volcanic eruptions is that magma erupts from a deep magma reservoir through a volcanic conduit, typically modelled with fixed rigid geometries such as cylinders. This simplistic view of a volcanic eruption does not account for the complex dynamics that usually characterise a large explosive event. Numerical simulations of magma flow in a conduit combined with volcanological and geological data, allow for the first description of a physics-based model of the feeding system evolution during a sustained phase of an explosive eruption. The method was applied to the Plinian phase of the Pomici di Avellino eruption (PdA, 3945 ±10 cal yr BP) from Somma-Vesuvius (Italy). Information available from volcanology, petrology, and lithology studies was used as input data and as constraints for the model. In particular, Mass Discharge Rates (MDRs) assessed from volcanological methods were used as target values for numerical simulations. The model solutions, which are non-unique, were constrained using geological and volcanological data, such as volume estimates and types of lithic components in the fall deposits. Three stable geometric configurations of the feeding system (described assuming elliptical cross-section of variable dimensions) were assessed for the Eruptive Units 2 and 3 (EU2, EU3), which form the magmatic Plinian phase of PdA eruption. They describe the conduit system geometry at time of deposition of EU2 base, EU2 top, and EU3. A 7-km deep dyke (length 2 a = 200-4 00 m, width 2 b = 10- 12 m), connecting the magma chamber to the surface, characterised the feeding system at the onset of the Plinian phase (EU2 base). The feeding system rapidly evolved into hybrid geometric configuration, with a deeper dyke (length 2 a = 600- 800 m, width 2 b = 50 m) and a shallower cylindrical conduit (diameter D = 50 m, dyke-to-cylinder transition depth ∼2100 m), during the eruption of the EU2 top. The deeper dyke reached the dimensions of 2 a = 2000 m and 2 b = 60 m at EU3 peak MDR, when the shallower cylinder had enlarged to a diameter of 60 m and a transition depth of 3000 m. The changes in feeding system geometry indicate a partitioning of the driving pressure of the eruption, which affected both magma movement to the surface and dyke growth. This implies that a significant portion of the magma injected from the magma chamber filled the enlarging dyke before it erupted to the surface. In this model, the lower dyke acted as a sort of magma "capacitor" in which the magma was stored briefly before accelerating to the cylindrical conduit and erupting. The capacitor effect of the lower dyke implies longer times of transit for the erupting magma, which also underwent several steps of decompression. On the other hand, the decompression of magma within the capacitor provided the driving pressure to maintain the flow into the upper cylindrical conduit, even as the base of the dyke started to close due to the drop in driving pressure from progressive emptying of the magma chamber. The shallower cylindrical conduit was shaped through the erosion of conduit wall rocks at and above the fragmentation level. Using the lithic volume and duration of EU3, the erosion rate of shallower cylindrical conduit was calculated at ∼5 × 103 m3/s. The outcomes of this work represent an important baseline for further petrologic and geophysical studies devoted to the comprehension of processes driving volcanic eruptions.

  20. The transition from explosive to effusive eruptive regime: The example of the 1912 Novarupta eruption, Alaska

    USGS Publications Warehouse

    Adams, N.K.; Houghton, Bruce F.; Fagents, S.A.; Hildreth, W.

    2006-01-01

    The shift from explosive to effusive silicic volcanism seen in many historical eruptions reflects a change in the style of degassing of erupted magma. This paper focuses on such a transition during the largest eruption of the twentieth century, the 1912 eruption of Novarupta. The transition is recorded in a dacite block bed, which covers an elliptical area of 4 km2 around the vent. Approximately 700 studied blocks fall into four main lithologic categories: (1) pumiceous, (2) dense, (3) flow-banded dacites, and (4) welded breccias. Textural analyses of the blocks indicate portions of the melt underwent highly variable degrees of outgassing. Vesicle populations show features characteristic of bubble coalescence and collapse. A decrease in measured vesicularity and increased evidence for bubble collapse compared with pumice from earlier Plinian episodes mark the transition from closed- to open-system degassing. Block morphology and textures strongly suggest the magma was first erupted as a relatively gas-rich lava dome/plug, but incomplete out-gassing led to explosive disruption. Heterogeneous degassing of ascending magma began in Plinian Episode III and resulted in instability during Episode IV dome growth and a (series of) Vulcanian explosion(s). Modeling of the dynamics of explosion initiation and ejecta dispersal indicates that a significant concentration in gas is required to produce the explosions responsible for the observed block field dispersal. The amount of gas available in the hot pumiceous dome material appears to have been inadequate to drive the explosion(s); therefore, external water most likely contributed to the destruction. ?? 2006 Geological Society of America.

  1. Tephrostratigraphy of Changbaishan volcano, northeast China, since the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Sun, Chunqing; Liu, Jiaqi; You, Haitao; Nemeth, Karoly

    2017-12-01

    A detailed tephrostratigraphy of an active volcano is essential for evaluating its eruptive history, forecasting future eruptions and correlation with distal tephra records. Changbaishan volcano is known for its Millennium eruption (ME, AD 940s; VEI 7) and the ME tephra has been detected in Greenland ice cores ∼9000 km from the vent. However, the pre-Millennium (pre-ME) and post-Millennium (post-ME) eruptions are still poorly characterized. In this study, we present a detailed late Holocene eruptive sequence of Changbaishan volcano based on single glass shard compositions from tephra samples collected from around the caldera rim and flanks. Tephra ages are constrained by optically stimulated luminescence (OSL) and AMS 14C dates. Tephra from the mid-Holocene pre-ME eruption can be divided into two pyroclastic fall subunits, and it cannot be correlated with any known Changbaishan-sourced tephra recorded in the Japan Sea based on major element composition of glass shards, such as the B-J (Baegdusan-Japan Basin) and B-V (Baegdusan-Vladivostok-oki) tephras. ME pyroclastic fall deposits from the caldera rims and volcanic flanks can be correlated to the juvenile pumice lapilli or blocks within the pyroclastic density current (PDC) deposits deposited in the valleys around the volcano based on glass shard compositions. Our results indicate that the glass shard compositions of proximal ME tephra are more varied than previously thought and can be correlated with distal ME tephra. In addition, widely-dispersed mafic scoria was ejected by the ME Plinian column and deposited on the western and southern summits and the eastern flank of the volcano. Data for glass from post-ME eruptions, such as the historically-documented AD 1403, AD 1668 and AD 1702 eruptions, are reported here for the first time. Except for the ME, other Holocene eruptions, including pre-ME and post-ME eruptions, had the potential to form widely-distributed tephra layers around northeast Asia, and our dataset provides a proximal reference for tephra and cryptotephra studies in surrounding areas.

  2. Probabilistic tephra hazard maps for the Neapolitan area: Quantitative volcanological study of Campi Flegrei eruptions

    NASA Astrophysics Data System (ADS)

    Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.

    2008-07-01

    Tephra fall is a relevant hazard of Campi Flegrei caldera (Southern Italy), due to the high vulnerability of Naples metropolitan area to such an event. Here, tephra derive from magmatic as well as phreatomagmatic activity. On the basis of both new and literature data on known, past eruptions (Volcanic Explosivity Index (VEI), grain size parameters, velocity at the vent, column heights and erupted mass), and factors controlling tephra dispersion (wind velocity and direction), 2D numerical simulations of fallout dispersion and deposition have been performed for a large number of case events. A bayesian inversion has been applied to retrieve the best values of critical parameters (e.g., vertical mass distribution, diffusion coefficients, velocity at the vent), not directly inferable by volcanological study. Simulations are run in parallel on multiple processors to allow a fully probabilistic analysis, on a very large catalogue preserving the statistical proprieties of past eruptive history. Using simulation results, hazard maps have been computed for different scenarios: upper limit scenario (worst-expected scenario), eruption-range scenario, and whole-eruption scenario. Results indicate that although high hazard characterizes the Campi Flegrei caldera, the territory to the east of the caldera center, including the whole district of Naples, is exposed to high hazard values due to the dominant westerly winds. Consistently with the stratigraphic evidence of nature of past eruptions, our numerical simulations reveal that even in the case of a subplinian eruption (VEI = 3), Naples is exposed to tephra fall thicknesses of some decimeters, thereby exceeding the critical limit for roof collapse. Because of the total number of people living in Campi Flegrei and the city of Naples (ca. two million of inhabitants), the tephra fallout risk related to a plinian eruption of Campi Flegrei largely matches or exceeds the risk related to a similar eruption at Vesuvius.

  3. The Ongoing 2011 Eruption of Cordón Caulle (Southern Andes) and its Related Hazards

    NASA Astrophysics Data System (ADS)

    Amigo, A.; Lara, L. E.; Silva, C.; Orozco, G.; Bertin, D.

    2011-12-01

    On June 4, 2011, at 18:45 UTC, Cordón Caulle volcano (Southern Andes, 40.52S, 72.14W) erupted explosively after 51 years of quiescence. The last eruption occurred in 1960 and was triggered by the great Mw 9.5 Chile earthquake. The ongoing eruption started after 2 months of increased shallow seismicity as recorded by OVDAS (the volcano observatory at Sernageomin). This close monitoring effort allowed a timely eruption forecast with at least 3 hours of warning, which facilitated the crisis response. In addition to this successful performance, for the first time in Chile volcanic hazards were assessed in advance supporting the emergency management. In particular, tephra dispersal was daily forecasted using the ASHFALL advection-diffusion model and potential lahars and PDC impact zones were delineated according to numerical approaches. The first eruptive stage lasted 27 hours. It was characterized by ca. 15-km strong Plinian-like column, associated with the emission of 0.2 - 0.4 km3 of magma (DRE). Tephra fallout mostly occurred in Chile and Argentina, although fine particles and aerosols circumnavigated the globe twice, causing disruptions on air navigation across the Southern Hemisphere. The second ongoing eruptive stage has been characterized by persistent weak plumes and lava emission at effusion rates in the range of 20 and 60 m3/s, which total volume is estimated <0.20 km3 (at the end of July 2011). Eruptive products have virtually the same bulk composition as those of the historical 1921 and 1960 eruptions, corresponding to phenocryst-poor rhyodacites (67 - 70% SiO2) for what a pre-eruptive temperature of ca. 920C could be inferred. In contrast to the previous eruptive cycles, the ongoing eruption has not evolved (at the time of writing) as a fissure eruption although the vent is atop of fault scarp that borders the Pleistocene-Holocene extensional graben of the Cordón Caulle. This episode is a good case of successful eruption forecast and hazards assessment but it is also an important case-study of silicic eruptions in an arc segment where mostly mafic magmas have been erupted during the Holocene.

  4. Bromine release during Plinian eruptions along the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Hansteen, T. H.; Kutterolf, S.; Appel, K.; Freundt, A.; Perez-Fernandez, W.; Wehrmann, H.

    2010-12-01

    Volcanoes of the Central American Volcanic Arc (CAVA) have produced at least 72 highly explosive eruptions within the last 200 ka. The eruption columns of all these “Plinian” eruptions reached well into the stratosphere such that their released volatiles may have influenced atmospheric chemistry and climate. While previous research has focussed on the sulfur and chlorine emissions during such large eruptions, we here present measurements of the heavy halogen bromine by means of synchrotron radiation induced micro-XRF microanalysis (SR-XRF) with typical detection limits at 0.3 ppm (in Fe rich standard basalt ML3B glass). Spot analyses of pre-eruptive glass inclusions trapped in minerals formed in magma reservoirs were compared with those in matrix glasses of the tephras, which represent the post-eruptive, degassed concentrations. The concentration difference between inclusions and matrix glasses, multiplied by erupted magma mass determined by extensive field mapping, yields estimates of the degassed mass of bromine. Br is probably hundreds of times more effective in destroying ozone than Cl, and can accumulate in the stratosphere over significant time scales. Melt inclusions representing deposits of 22 large eruptions along the CAVA have Br contents between 0.5 and 13 ppm. Br concentrations in matrix glasses are nearly constant at 0.4 to 1.5 ppm. However, Br concentrations and Cl/Br ratios vary along the CAVA. The highest values of Br contents (>8 ppm) and lowest Cl/Br ratios (170 to 600) in melt inclusions occur across central Nicaragua and southern El Salvador, and correlate with bulk-rock compositions of high Ba/La > 85 as well as low La/Yb <5. Thus we observe the maximum magmatic Br-concentrations in the segements of the arc. where the input of sediment and water into the subduction system is largest and the melting column is longest. The largest eruptive emissions of Br into the atmosphere, however, occurred in Guatemala due to the large magnitude of eruptions. The most prominent example is the 84 ka Los Chocoyos eruption from Atitlán Caldera, which discharged 700 kilotons of Br. On average, each of the remaining 21 CAVA eruptions studied have discharged c.100 kilotons of bromine. During the past 200 ka, CAVA volcanoes have emitted a cumulative mass of 3.2 Mt of Br through highly explosive eruptions. There are six periods in the past (c. 2ka, 6ka, 25ka, 40ka, 60ka, 75ka) when up to four larger eruptions occurred within only several hundred years. The heavy halogen release of these eruptions may have had a cumulative effect on the atmosphere which is presently investigated by climate/atmosphere models based on our analyses as input data.

  5. Emplacement dynamics and hydrothermal alteration of the Atengo ignimbrite, southern Sierra Madre Occidental, northwestern Mexico

    NASA Astrophysics Data System (ADS)

    Agarwal, Amar; Alva-Valdivia, L. M.; Rivas-Sánchez, M. L.; Herrero-Bervera, E.; Urrutia-Fucugauchi, J.; Espejel-García, V.

    2017-12-01

    The Sierra Madre Occidental is a thick continental arc related to the subduction of the Farallon plate beneath North America resulting in a very intense and widespread Cretaceous to Cenozoic magmatic and tectonic activity. The 28 My old Atengo ignimbrite outcrops in the southern Sierra Madre Occidental, northwestern Mexico. From 12 sites that belong to various pyroclastic and lava flows emplaced during two pulses in the Oligocene (ca. 32-28 Ma) and Early Miocene (ca. 24-20 Ma), 97 rock specimens were drilled. The mineralogical and rock magnetic properties of the Atengo ignimbrite are compared with the surrounding volcanic rocks to identify the eruption mechanism, and with the El Castillo Ignimbrite, Veracruz, Mexico, to understand the depositional conditions. The comparisons reveal that the Atengo ignimbrite erupted from a single source, but less violently than the El Castillo ignimbrite, and cooled rapidly, inhibiting the formation of subhedral grains. The source of the Atengo Ignimbrite was a Plinian-type eruption, and the characteristic mineralogical and textural properties of each flow are related to different stages of the Plinian-type eruption. Further more, hydrothermal fluids were active during the last stages of volcanism, and caused moderate to intense alteration, especially in the ignimbrites, where high permeability aided the movement of hydrothermal fluids.

  6. 40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: Summit flows, tephra, and caldera collapse

    USGS Publications Warehouse

    Harpel, C.J.; Kyle, P.R.; Esser, R.P.; McIntosh, W.C.; Caldwell, D.A.

    2004-01-01

    Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ?? 8 to 1 ?? 5 ka. Dated pre-caldera summit flows display two age populations at 95 ?? 9 to 76 ?? 4 ka and 27 ?? 3 to 21 ??4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ?? 5 and 15 ?? 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ?? 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka. ?? Springer-Verlag 2004.

  7. Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera

    NASA Astrophysics Data System (ADS)

    Cioni, Raffaello; Santacroce, Roberto; Sbrana, Alessandro

    The evolution of the Somma-Vesuvius caldera has been reconstructed based on geomorphic observations, detailed stratigraphic studies, and the distribution and facies variations of pyroclastic and epiclastic deposits produced by the past 20,000years of volcanic activity. The present caldera is a multicyclic, nested structure related to the emptying of large, shallow reservoirs during Plinian eruptions. The caldera cuts a stratovolcano whose original summit was at 1600-1900m elevation, approximately 500m north of the present crater. Four caldera-forming events have been recognized, each occurring during major Plinian eruptions (18,300 BP "Pomici di Base", 8000 BP "Mercato Pumice", 3400 BP "Avellino Pumice" and AD 79 "Pompeii Pumice"). The timing of each caldera collapse is defined by peculiar "collapse-marking" deposits, characterized by large amounts of lithic clasts from the outer margins of the magma chamber and its apophysis as well as from the shallow volcanic and sedimentary units. In proximal sites the deposits consist of coarse breccias resulting from emplacement of either dense pyroclastic flows (Pomici di Base and Pompeii eruptions) or fall layers (Avellino eruption). During each caldera collapse, the destabilization of the shallow magmatic system induced decompression of hydrothermal-magmatic and hydrothermal fluids hosted in the wall rocks. This process, and the magma-ground water interaction triggered by the fracturing of the thick Mesozoic carbonate basement hosting the aquifer system, strongly enhanced the explosivity of the eruptions.

  8. The stratigraphic sequence of Scafati (Italy) - An archive of 10,000 years of volcanism, soil formation and land use in the shade of Mount Vesuvius

    NASA Astrophysics Data System (ADS)

    Maerker, Michael; Vogel, Sebastian; Hoelzmann, Phillip; Rellini, Ivano

    2014-05-01

    In this study we carried out a detailed lithostratigraphic, pedological and micromorphological analysis at a stratigraphic sequence close to Scafati, about 3 km east of ancient Pompeii. It consists of a multilayered succession of repeated volcanic deposition and pedogenesis caused by several phases of volcanic activity of Somma-Vesuvius and volcanic quiescence. This comprises, at least, the last 10,000 years of sedimentation history, on one hand, reflecting the entire spectrum of eruption types of Somma-Vesuvius from Plinian, sub-Plinian, rather small eruptions to effusive volcanic events and, on the other hand, soil formations of different durations, intensities and soil-forming environments. Furthermore, the paleosols repeatedly reveal clear evidence of anthropogenic activity by means of agriculture. Hence, a landscape evolution model was developed trying to reconstruct the last 10,000 years of volcanic activity, soil formation and land use in the hinterland of Pompeii.

  9. Constraining the Volatile Regime of Primitive Somma-Vesuvius Magmas Based on the Compositions of Phenocrysts and Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Danyushevsky, L. V.; Esposito, R.; De Vivo, B.; Redi, D.; Lima, A.; Bodnar, R. J.; Gurenko, A.

    2017-12-01

    The volcanic complex of Mt. Somma-Vesuvius is located in the Campanian Plain on east of Naples. We present the results of a mineralogical and melt inclusion studies of primitive volcanic products erupted during the last 2 magmatic cycles of Soma-Vesuvius, aimed at better understanding the volatile fluxes and eruptive behaviour of the volcano. Our results suggest that despite large differences in the compositions of the erupted magmas (from olivine-bearing basaltic lavas to leucite-bearing phonolites) and the eruption style (from plinian to strombolian), there was very little change in the nature of the parental magmas. Melt inclusions in olivine phenocrysts in all volcanic products and styles reveal the highest volatile contents in the most magnesian, early formed crystals (Fo90; H2O 4-5 wt%; CO2 3,000-4,000 ppm), decreasing to near 0 levels of concentrations in olivine Fo70. Major and trace element compositions of the clinopyroxene phenocrysts (Mg#92-70) also suggest a similar parental magma composition and similar liquid lines of decent for all Somma-Vesuvius eruptions. Our results are best explained by a model which relates the eruption style to the intensity of melt supply under the volcano. High intensity plinian eruptions occur after a prolonged repose time, whereas strombolian eruptions occur during periods of more frequent volcanic activity [1]. We will also discuss possible implications for the role of carbonate assimilation during magma evolution of Somma-Vesuvius and for total volatile budget of the SOmma-Vesuvius eruptions. [1] [42] Lima, A., Danyushevsky, L.V., De Vivo, B. and Fedele, L. 2003: A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations. In: Melt Inclusions in volcanic systems: Methods, applications and Problems (B. De Vivo & R.J. Bodnar, Eds), Series: Developments in Volcanology. No. 5 Elsevier, Amsterdam, 227-251

  10. Ionospheric "Volcanology": Ionospheric Detection of Volcano Eruptions

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Shults, K.; Lognonne, P. H.; Rakoto, V.

    2016-12-01

    It is known that volcano eruptions and explosions can generate acoustic and gravity waves. These neutral waves further propagate into the atmosphere and ionosphere, where they are detectable by atmospheric and ionospheric sounding tools. So far, the features of co-volcanic ionospheric perturbations are not well understood yet. The development of the global and regional networks of ground-based GPS/GNSS receivers has opened a new era in the ionospheric detection of natural hazard events, including volcano eruptions. It is now known that eruptions with the volcanic explosivity index (VEI) of more than 2 can be detected in the ionosphere, especially in regions with dense GPS/GNSS-receiver coverage. The co-volcanic ionospheric disturbances are usually characterized as quasi-periodic oscillations. The Calbuco volcano, located in southern Chile, awoke in April 2015 after 43 years of inactivity. The first eruption began at 21:04UT on 22 April 2015, preceded by only an hour-long period of volcano-tectonic activity. This first eruption lasted 90 minutes and generated a sub-Plinian (i.e. medium to large explosive event), gray ash plume that rose 15 km above the main crater. A larger second event on 23 April began at 04:00UT (01:00LT), it lasted six hours, and also generated a sub-Plinian ash plume that rose higher than 15 km. The VEI was estimated to be 4 to 5 for these two events. In this work, we first study ionospheric TEC response to the Calbuco volcano eruptions of April 2015 by using ground-based GNSS-receivers located around the volcano. We analyze the spectral characteristics of the observed TEC variations and we estimate the propagation speed of the co-volcanic ionospheric perturbations. We further proceed with the normal mode summation technique based modeling of the ionospheric TEC variations due to the Calbuco volcano eruptions. Finally, we attempt to localize the position of the volcano from the ionospheric measurements, and we also estimate the time of the beginning of the eruption.

  11. Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines

    USGS Publications Warehouse

    Hammer, J.E.; Cashman, K.V.; Hoblitt, R.P.; Newman, S.

    1999-01-01

    Dacite tephras produced by the 1991 pre-climactic eruptive sequence at Mt. Pinatubo display extreme heterogeneity in vesicularity, ranging in clast density from 700 to 2580 kg m-3. Observations of the 13 surge-producing blasts that preceded the climactic plinian event include radar-defined estimates of column heights and seismically defined eruptive and intra-eruptive durations. A comparison of the characteristics of erupted material, including microlite textures, chemical compositions, and H2O contents, with eruptive parameters suggests that devolatilization-induced crystallization of the magma occurred to a varying extent prior to at least nine of the explosive events. Although volatile loss progressed to the same approximate level in all of the clasts analyzed (weight percent H2O=1.26-1.73), microlite crystallization was extremely variable (0-22%). We infer that syn-eruptive volatile exsolution from magma in the conduit and intra-eruptive separation of the gas phase was facilitated by the development of permeability within magma residing in the conduit. Correlation of maximum microlite crystallinity with repose interval duration (28-262 min) suggests that crystallization occurred primarily intra-eruptively, in response to the reduction in dissolved H2O content that occurred during the preceding event. Detailed textural characterization, including determination of three-dimensional shapes and crystal size distributions (CSD), was conducted on a subset of clasts in order to determine rates of crystal nucleation and growth using repose interval as the time available for crystallization. Shape and size analysis suggests that crystallization proceeded in response to lessening degrees of feldspar supersaturation as repose interval durations increased. We thus propose that during repose intervals, a plug of highly viscous magma formed due to the collapse of vesicular magma that had exsolved volatiles during the previous explosive event. If plug thickness grew proportionally to the square root of time, and if magma pressurization increased during the eruptive sequence, the frequency of eruptive pulses may have been modulated by degassing of magma within the conduit. Dense clasts in surge deposits probably represent plug material entrained by each subsequent explosive event.

  12. Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano

    NASA Astrophysics Data System (ADS)

    Dehn, Jonathan; Dean, Kenneson; Engle, Kevin; Izbekov, Pavel

    2002-07-01

    Shishaldin Volcano, Unimak Island Alaska, began showing signs of thermal unrest in satellite images on 9 February 1999. A thermal anomaly and small steam plume were detected at the summit of the volcano in short-wave thermal infrared AVHRR (advanced very high resolution radiometer) satellite data. This was followed by over 2 months of changes in the observed thermal character of the volcano. Initially, the thermal anomaly was only visible when the satellite passed nearly directly over the volcano, suggesting a hot source deep in the central crater obscured from more oblique satellite passes. The "zenith angle" needed to see the anomaly increased with time, presumably as the thermal source rose within the conduit. Based on this change, an ascent rate of ca. 14 m per day for the thermal source was estimated, until it reached the summit on around 21 March. It is thought that Strombolian activity began around this time. The precursory activity culminated in a sub-Plinian eruption on 19 April, ejecting ash to over 45,000 ft. (13,700 m). The thermal energy output through the precursory period was calculated based on geometric constraints unique to Shishaldin. These calculations show fluctuations that can be tied to changes in the eruptive character inferred from seismic records and later geologic studies. The remote location of this volcano made satellite images a necessary observation tool for this eruption. To date, this is the longest thermal precursory activity preceding a sub-Plinian eruption recorded by satellite images in the region. This type of thermal monitoring of remote volcanoes is central in the efforts of the Alaska Volcano Observatory to provide timely warnings of volcanic eruption, and mitigate their associated hazards to air-traffic and local residents.

  13. Unearthing The Eruptive Personality Of El Salvador's Santa Ana (Ilamatepec) Volcano Though In-depth Stratigraphic Analysis Of Pre-1904 Deposits

    NASA Astrophysics Data System (ADS)

    Gallant, E.; Martinez-Hackert, B.

    2011-12-01

    The Santa Ana (Ilamatepec) volcano (2384 m) in densely populated El Salvador Central America presents serious volcanic hazard potential. The volcano is a prevalent part of every day life in El Salvador; the sugarcane and coffee belt of the country are to its Southern and Western flanks, recreational areas lies to its East, and second and third largest cities of El Salvador exist within its 25 km radius. Understanding the eruptive characteristics and history is imperative due to the volcano's relative size (the highest in the country) and it's explosive, composite nature. Historical records indicate at least 9 potential VEI 3 eruptions since 1521 AD. The volcano's relative inaccessibility and potential hazards do not promote a vast reservoir of research activity, as can be seen in the scarcity of published papers on topics prior to the 1904 eruption. This research represents the first steps towards creating a comprehensive stratigraphic record of the crater and characterizing its eruptive history, with an eventual goal of recreating the volcanic structure prior to its collapse. Samples of pre-1904 eruptive material were taken from the southern wall of an E-W oriented fluvial gully located within the SSW of the tertiary crater. These were analyzed using thin sections and optical microscopy, grain size distribution techniques, and scanning electron microscopy. The 15-layer sequence indicates an explosive history characterized by intense phreatomagmatic phases, plinian, sub-plinian and basaltic/andesitic composition strombolian activity. Another poster within the session will discuss an older sequence within the walls of the secondary crater. Further detailed studies will be required to gain a better understanding of the characteristics of Santa Ana Volcano.

  14. Infrasound and SO2 Observations of the 2011 Explosive Eruption of Nabro Volcano, Eritrea

    NASA Astrophysics Data System (ADS)

    Fee, D.; Carn, S. A.; Prata, F.

    2011-12-01

    Nabro volcano, Eritrea erupted explosively on 12 June 2011 and produced near continuous emissions and infrasound until mid-July. The eruption disrupted air traffic and severely affected communities in the region. Although the eruption was relatively ash-poor, it produced significant SO2 emissions, including: 1) the highest SO2 column ever retrieved from space (3700 DU), 2) >1.3 Tg SO2 mass on 13 June, and 3) >2 Tg of SO2 for the entire eruption, one of the largest eruptive SO2 masses produced since the 1991 eruption of Mt. Pinatubo. Peak emissions reached well into the stratosphere (~19 km). Although the 12 June eruption was preceded by significant seismicity and clearly detected by satellite sensors, Nabro volcano is an understudied volcano that lies in a remote region with little ground-based monitoring. The Nabro eruption also produced significant infrasound signals that were recorded by two infrasound arrays: I19DJ (Djibouti, 264 km) and I32KE (Kenya, 1708 km). The I19DJ infrasound array detected the eruption with high signal-noise and provides the most detailed eruption chronology available, including eruption onset, duration, changes in intensity, etc. As seen in numerous other studies, sustained low frequency infrasound from Nabro is coincident with high-altitude emissions. Unexpectedly, the eruption also produced hundreds of short-duration, impulsive explosion signals, in addition to the sustained infrasonic jetting signals more typical of subplinian-plinian eruptions. These explosions are variable in amplitude, duration, and often cluster in groups. Here we present: 1) additional analyses, classification, and source estimation of the explosions, 2) infrasound propagation modeling to determine acoustic travel times and propagation paths, 3) detection and characterization of the SO2 emissions using the Ozone Monitoring Instrument (OMI) and Spin Enhanced Visible and Infra-Red Instrument (SEVIRI), and 4) a comparison between the relative infrasound energy and SO2 measurements to investigate the relationship between degassing and infrasound, and to speculate on possible eruption source mechanisms. This example, in addition to other recent work, demonstrates the utility of using regional and global infrasound arrays to characterize explosive volcanic eruptions, particularly in remote and poorly monitored regions. Further, comparison of SO2 emissions and infrasound lends insight into degassing processes and shows the potential to use infrasound as a real-time, remote means to detect hazardous emissions.

  15. Lithic breccia and ignimbrite erupted during the collapse of Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Druitt, T.H.; Bacon, C.R.

    1986-01-01

    The climactic eruption of Mount Mazama (6845 y.B.P.) vented a total of ???50 km3 of compositionally zoned rhyodacitic to basaltic magma from: (a) a single vent as a Plinian pumice fall deposit and the overlying Wineglass Welded Tuff, and (b) ring vents as ignimbrite and coignimbrite lithic breccia accompanying the collapse of Crater Lake caldera. New field and grain-size data for the ring-vent products are presented in this report. The coarse-grained, poorly bedded, clast-supported lithic breccia extends as far as 18 km from the caldera center. Like the associated ignimbrite, the breccia is compositionally zoned both radially and vertically, and silicic, mixed, and mafic types can be recognized, based on the proportion of rhyodacitic pumice. Matrix fractions in silicic breccias are depleted of fines and are lithic- and crystal-enriched relative to silicic ignimbrite due to vigorous gas sorting during emplacement. Ignimbrite occurs as a proximal veneer deposit overlying the breccia, a medial (??? 8 to ??? 25 km from the caldera center), compositionally zoned valley fill as much as > 110 m thick, and an unzoned distal ({slanted equal to or greater-than} 20 km) facies which extends as far as 55 km from the caldera. Breccia within ??? 9 km of the caldera center is interpreted as a coignimbrite lag breccia formed within the deflation zone of the collapsing ring-vent eruption columns. Expanded pyroclastic flows of the deflation zone were probably vertically graded in both size and concentration of blocks, as recently postulated for some turbidity currents. An inflection in the rate of falloff of lithic-clast size within the lithic breccia at ??? 9 km may mark the outer edge of the deflation zone or may be an artifact of incomplete exposure. The onset of ring-vent activity at Mt. Mazama was accompanied by a marked increase in eruptive discharge. Pyroclastic flows were emplaced as a semicontinuous stream, as few ignimbrite flow-unit boundaries are evident. As eruption from the ring vents progressed, flow-runout distance and the extent of breccia deposition decreased due to (a) greater internal flow friction, and (b) decreasing eruption column heights. Effect (b) probably resulted from a progressive decrease in magmatic gas content and discharge rate. Waning discharge may have been promoted by the tapping of more viscous, crystal-rich magma, collapse of conduit walls, and declining caldera collapse rate. ?? 1986.

  16. Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record

    NASA Astrophysics Data System (ADS)

    Gurioli, L.; Sulpizio, R.; Cioni, R.; Sbrana, A.; Santacroce, R.; Luperini, W.; Andronico, D.

    2010-11-01

    During the past 22 ka of activity at Somma-Vesuvius, catastrophic pyroclastic density currents (PDCs) have been generated repeatedly. Examples are those that destroyed the towns of Pompeii and Ercolano in AD 79, as well as Torre del Greco and several circum-Vesuvian villages in AD 1631. Using new field data and data available from the literature, we delineate the area impacted by PDCs at Somma-Vesuvius to improve the related hazard assessment. We mainly focus on the dispersal, thickness, and extent of the PDC deposits generated during seven plinian and sub-plinian eruptions, namely, the Pomici di Base, Greenish Pumice, Pomici di Mercato, Pomici di Avellino, Pompeii Pumice, AD 472 Pollena, and AD 1631 eruptions. We present maps of the total thickness of the PDC deposits for each eruption. Five out of seven eruptions dispersed PDCs radially, sometimes showing a preferred direction controlled by the position of the vent and the paleotopography. Only the PDCs from AD 1631 eruption were influenced by the presence of the Mt Somma caldera wall which stopped their advance in a northerly direction. Most PDC deposits are located downslope of the pronounced break-in slope that marks the base of the Somma-Vesuvius cone. PDCs from the Pomici di Avellino and Pompeii Pumice eruptions have the most dispersed deposits (extending more than 20 km from the inferred vent). These deposits are relatively thin, normally graded, and stratified. In contrast, thick, massive, lithic-rich deposits are only dispersed within 7 to 8 km of the vent. Isopach maps and the deposit features reveal that PDC dispersal was strongly controlled by the intensity of the eruption (in terms of magma discharge rate), the position of the vent area with respect to the Mt Somma caldera wall, and the pre-existing topography. Facies characteristics of the PDC deposits appear to correlate with dispersal; the stratified facies are consistently dispersed more widely than the massive facies.

  17. Characterisation of Fine Ash Fractions from the AD 1314 Kaharoa Eruption

    NASA Astrophysics Data System (ADS)

    Weaver, S. J.; Rust, A.; Carey, R. J.; Houghton, B. F.

    2012-12-01

    The AD 1314±12 yr Kaharoa eruption of Tarawera volcano, New Zealand, produced deposits exhibiting both plinian and subplinian characteristics (Nairn et al., 2001; 2004, Leonard et al., 2002, Hogg et al., 2003). Their widespread dispersal yielded volumes, column heights, and mass discharge rates of plinian magnitude and intensity (Sahetapy-Engel, 2002); however, vertical shifts in grain size suggest waxing and waning within single phases and time-breaks on the order of hours between phases. These grain size shifts were quantified using sieve, laser diffraction, and image analysis of the fine ash fractions (<1 mm in diameter) of some of the most explosive phases of the eruption. These analyses served two purposes: 1) to characterise the change in eruption intensity over time, and 2) to compare the three methods of grain size analysis. Additional analyses of the proportions of components and particle shape were also conducted to aid in the interpretation of the eruption and transport dynamics. 110 samples from a single location about 6 km from source were sieved at half phi intervals between -4φ to 4φ (16 mm - 63 μm). A single sample was then chosen to test the range of grain sizes to run through the Mastersizer 2000. Three aliquots were tested; the first consisted of each sieve size fraction ranging between 0φ (1000 μm) and <4φ (<63 μm, i.e. the pan). For example, 0, 0.5, 1, …, 4φ, and the pan were ran through the Mastersizer and then their results, weighted according to their sieve weight percents, were summed together to produce a total distribution. The second aliquot included 3 samples ranging between 0-2φ (1000-250 μm), 2.5-4φ (249-63 μm), and the pan. A single sample consisting of the total range of grain sizes between 0φ and the pan was used for the final aliquot. Their results were compared and it was determined that the single sample consisting of the broadest range of grain sizes yielded an accurate grain size distribution. This data was then compared with the sieve weight percent data, and revealed that there is a significant difference in size characterisation between sieving and the Mastersizer for size fractions between 0-3φ (1000-125 μm). This is due predominantly to the differing methods that sieving and the Mastersizer use to characterise a single particle, to inhomogeneity in grain density in each grain-size fraction, and to grain-shape irregularities. This led the Mastersizer to allocate grains from a certain sieve size fraction into coarser size fractions. Therefore, only the Mastersizer data from 3.5φ and below were combined with the coarser sieve data to yield total grain size distributions. This high-resolution analysis of the grain size data enabled subtle trends in grain size to be identified and related to short timescale eruptive processes.

  18. Two-Stage Magma Mixing and Initial Phase of the 1667 Plinian Eruption of Tarumai Volcano

    NASA Astrophysics Data System (ADS)

    Tomiya, A.; Takeuchi, S.

    2009-12-01

    Plinian eruptions can eject high-viscosity low-T magma with high crystal content. Several mechanisms have been proposed, such as remobilization by addition of volatile from high-T magma (Bachmann & Bergantz, 2006) and precursory eruption of low-viscosity hybrid magma between low-T and high-T magmas (Pallister et al., 1996; Takeuchi & Nakamura, 2001). We discuss this matter by analysis on a Plinian eruption of Tarumai Volcano. Tarumai (Tarumae) is one of the most active volcanoes in Japan. The 1667 eruption is the first one in historical time after thousands of years of dormancy, and one of the largest eruptions (VEI 5) in the volcano (Soya & Sato, 1980). The major eruptive product, Ta-b pumice, is andesite, consisting of abundant phenocrysts (20-40 %) and rhyolitic glass (Soya, 1971; Furukawa, 1998; Nakagawa et al., 2006). Hiraga & Nakagawa (2000) reported that the bulk rock was homogeneous (SiO2 = 58-62 wt.%) from subunit b8 (lower) to b1 (upper). On the other hand, Takeuchi (2001) found that the bottom layer of b8 (b8-bottom) was more mafic (SiO2 = 56-58 wt.%) and interpreted it as precursory hybrid magma. We analyzed phenocrysts in b8-bottom and other subunits of Ta-b, and compared their compositions and textures. The followings are obtained. Plagioclase: the compositions and textures are similar among the subunits; some phenocrysts are calcic with a homogeneous core of An > 90, whereas most have a complex texture with An 65 to 75. Orthopyroxene/clinopyroxene: the compositions and textures are similar among the subunits; most phenocrysts have a homogeneous core of Mg* 62 to 68 for orthopyroxene and Mg* 70 to 74 for clinopyroxene; those in b8-bottom show reverse zonings. Olivine: there are few phenocrysts and they often coexist with the calcic plagioclase. Magnetite: the compositions are homogeneous (Usp 30 to 34, Mg/Mn 5 to 7; type-1) except for those in b8-bottom; there are two types of phenocrysts in b8-bottom, Usp 30 to 34, Mg/Mn 7 to 9 (type-2) and Usp 23 to 25, Mg/Mn > 10 (type-3) with no type-1 (classification based on Nakagawa et al. (2006)); magnetite inclusions in pyroxene phenocrysts in b8-bottom are, however, type-1. According to the observations, we propose two-stage magma mixing as follows. Prior to the 1667 eruption, there are high-T mafic magma with olivine, calcic plagioclase and type-3 magnetite, and low-T main magma with two pyroxenes, other types of plagioclase and type-1 magnetite (and few ilmenite). The first-stage mixing between the two magmas formed the precursory hybrid magma, but could not prompt the magma to erupt immediately. In the hybrid magma, type-1 and -3 magnetite rehomogenized into type-2 due to rapid cation diffusion, but magnetite inclusions in pyroxene remained type-1. Then, the second-stage mixing between the hybrid magma and the high-T magma occurred, and just after the mixing (with no rehomogenization of type-3 magnetite) the eruption began. Following the hybrid magma (b8-bottom), the main magma erupted. Considering the diffusion coefficients of Ti and Mg in magnetite, the period between the two mixings was several years, whereas the period between the second mixing and the eruption was less than weeks. The two-stage mixing of high-T magma enabled the high-viscosity phenocryst-rich magma to erupt.

  19. Stability of volcanic conduits: insights from magma ascent modelling and possible consequences on eruptive dynamics

    NASA Astrophysics Data System (ADS)

    Aravena, Alvaro; de'Michieli Vitturi, Mattia; Cioni, Raffaello; Neri, Augusto

    2017-04-01

    Geological evidences of changes in volcanic conduit geometry (i.e. erosive processes) are common in the volcanic record, as revealed by the occurrence of lithic fragments in most pyroclastic deposits. However, the controlling factors of conduit enlargement mechanisms are still partially unclear, as well as the influence of conduit geometry in the eruptive dynamics. Despite physical models have been systematically used for studying volcanic conduits, their mechanical stability has been poorly addressed. In order to study the mechanical stability of volcanic conduits during explosive eruptions, we present a 1D steady-state model which considers the main processes experimented by ascending magmas, such as crystallization, drag forces, fragmentation, outgassing and degassing; and the application of the Mogi-Coulomb collapse criterion, using a set of constitutive equations for studying typical cases of rhyolitic and trachytic explosive volcanism. From our results emerge that conduit stability is mainly controlled by magma rheology and conduit dimensions. Indeed, in order to be stable, feeding conduits of rhyolitic eruptions need larger radii respect to their trachytic counterparts, which is manifested in the higher eruption rates usually observed in rhyolitic explosive eruptions, as confirmed by a small compilation of global data. Additionally, for both magma compositions, we estimated a minimum magma flux for developing stable conduits (˜3ṡ106 kg/s for trachytic magmas and ˜8ṡ107 kg/s for rhyolitic magmas), which is consistent with the unsteady character commonly observed in low-mass flux events (e.g. sub-Plinian eruptions), which would be produced by episodic collapse events of the volcanic conduit, opposite to the mainly stationary high-mass flux events (e.g. Plinian eruptions), characterized by stable conduits. For a given magma composition, a minimum radius for reaching stable conditions can be computed, as a function of inlet overpressure and water content. Under the assumption that magma chamber conditions during a typical volcanic eruption follow a depressurizing trend, a continuous conduit widening process is expected. This process could explain the pervasive and continuous presence of lithic fragments in most pyroclastic deposits, even with stationary properties and conditions of the magma source (e.g. water content, temperature, composition).

  20. Late Holocene Andesitic Eruptions at Mount Rainier

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Vallance, J. W.

    2005-12-01

    Holocene Mt. Rainier erupted much more frequently than is recorded by its 11 pumiceous tephras. In the 2.6-2.2 ka Summerland eruptive period, 6 groups of thin (1-5 mm) Sparsely Vesicular Glassy (SVG) ashes were deposited (S1-S6), followed by the 0.3 km3 C-tephra. Two groups of andesitic lava flows and one andesitic block-and-ash flow (2.45 ka) also erupted in the Summerland period (ice conceals any other products). Based on glass composition the pyroclastic flow correlates with S4 ashes that also contain pumiceous grains and rare pumice lapilli. The first of the lava groups, exposed in windows through the Emmons and Winthrop glaciers, is Sr-rich for Mt. Rainier eruptives and correlates with S5 & S6 ashes based on similar high-Sr plagioclase. The ensuing C-tephra formed by plinian eruption of mixed and mingled magma comprising 4 juvenile components: mixed porphyritic andesite pumice, crystal-poor andesite scoria, vesicular high-Sr dacite blebs in pumice and scoria, and poorly inflated crystal-rich high-Sr dacite. High-Sr components were probably entrained conduit linings and segregations from the preceding high-Sr eruptions. The youngest lava group, exposed at the summit, is normal-Sr andesite lacking mixing textures of the C-tephra, and represents eruption of another small batch of andesitic magma perhaps just after the C event. SVG ash grains have blocky-to-fluidal shapes, are rich in plagioclase microlites, and their glasses are high-SiO2 (66-78%) and low-Al2O3 (15-11%). Melting experiments yield apparent equilibration pressures <50MPa for SVG liquids. SVG ashes likely result from shallow hydromagmatic explosions as largely degassed magmas transited the upper-edifice hydrothermal system during effusive eruptions. Rare pumice lapilli codeposited with S1, S2, and S4 ashes have microlite-free dacitic glasses, one with nonreacted hbl phenocrysts. These pumice formed from magmas that ascended rapidly from reservoir depths, synchronous with or closely between effusive-hydromagmatic eruptions. Mt. Rainier's late Holocene activity was typified by repeated arrival and eruption of slightly different andesitic magmas. Most eruptions were effusions of largely degassed magma, accompanied by near-surface explosions that blanketed the proximal region with fine-grained glassy ash. Associated rapidly ascended magma led to sparse pumice, pyroclastic flows, or plinian tephra fall, depending on amount.

  1. Catalog of earthquake hypocenters for Augustine, Redoubt, Iliamna, and Mount Spurr volcanoes, Alaska: January 1, 1991 - December 31, 1993

    USGS Publications Warehouse

    Jolly, Arthur D.; Power, John A.; Stihler, Scott D.; Rao, Lalitha N.; Davidson, Gail; Paskievitch, John F.; Estes, Steve; Lahr, John C.

    1996-01-01

    The 1992 eruptions at Mount Spurr's Crater Peak vent provided the highlight of the catalog period. The crisis included three sub-plinian eruptions, which occurred on June 27, August 18, and September 16-17, 1992. The three eruptions punctuated a complex seismic sequence which included volcano-tectonic (VT) earthquakes, tremor, and both deep and shallow long period (LP) earthquakes. The seismic sequence began on August 18, 1991, with a small swarm of volcano-tectonic events beneath Crater Peak, and spread throughout the volcanic complex by November of the same year. Elevated levels of seismicity persisted at Mount Spurr beyond the catalog time period.

  2. Textural constraints on the dynamics of the 2000 Miyakejima eruption

    NASA Astrophysics Data System (ADS)

    Garozzo, Ileana; Romano, Claudia; Giordano, Guido; Geshi, Nobuo; Vona, Alessandro

    2016-04-01

    Miyakejima Volcano is a basaltic-andesite stratovolcano active from ~10.000 years, located on the north of the Izu-Bonin arc. During the last 600 years the volcano has been characterized mainly by flank fissure activity, with explosive phreatomagmatic eruptions on the coastal areas. In the last century, the activity became more frequent and regular with intervals of 20 to 70 years (1940, 1962, 1983 and 2000). The last activity started on 27 June 2000, with a minor submarine eruption on the west coast of the volcano, and proceeded with six major summit eruptions from July 8 to August 29. The eruptions led to the formation of a collapse caldera ~1.6 km across. The total erupted tephra represents only 1.7% in volume of the caldera, the high fragmentation of magma produced mainly fine-grained volcanic ash. In order to improve the understanding on the triggering and dynamics of this explosive eruption, we carried out a detailed investigation of the erupted materials with particular attention to the textural features of juvenile pyroclasts (Vesicle and Crystal Size Distributions). The stratigraphic record can be divided into six fall units, corresponding to the six summit eruptions, although juvenile materials were identified only in 4 units (unit 2, 4, 5, 6). We selected about 100 juvenile grains sampled from the bottom to the top of each level, to be analyzed by scanning electron microscopy. The study of juvenile morphological features allowed us to recognize the existence of three characteristic morphotypes, showing marked differences in their external morphologies and internal textures (from poorly to highly crystallized and vesiculated clasts). The distribution of these morphotypes is non-homogeneous along the eruptive sequence indicating changes of dynamics during magma ascent. Juveniles do not show features inherited from the interaction with external water. Vesicle Volume Distributions of the selected ash grains show that the three types of pyroclasts experienced different nucleation and growth processes. Also the Vesicles Number Densities (VNDs) vary of about one order of magnitude in the different populations (from 107 to 108 cm-3), with values comparable with those commonly related to sub-Plinian and Plinian eruptions. Data from the CSD analysis show perfect agreement with the measured VNDs (crystal population densities increasing with VNDs), suggesting a link between the degassing history and the syn-eruptive crystallization. The results of the textural analysis are used to produce a conduit model for the 2000 Miyakejima eruption. Textural analysis and modeling data are presented to reconstruct the eruptive dynamics leading to this high - energetic eruption.

  3. Insights From Field Geology Into the Styles and Timings of Large Silicic Explosive `Supereruptions'

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.

    2006-12-01

    The evocative terms `supereruption' (and `supervolcano'), whilst eminently saleable to the media, conceal the fact that, apart from knowing that such large eruptions (>300 km3, magma) actually have occurred, we understand very little about the dynamics of such events. Field studies of 3 supereruption deposits suggest that we are missing information on the timing and eruptive styles that is essential in assessing the dynamics and impacts of past and future large eruptions. The 26.5 ka Oruanui eruption in New Zealand (ca. 530 km3, magma) shows evidence in the form of erosion intervals and/or reworked horizons for spasmodic activity, including a hiatus of weeks plus other shorter breaks, that interrupted 10 phases of activity. Following the plinian fall unit of phase 1, there was a time break long enough for local reworking (and possibly emplacement of a small dome), thus of the order of weeks in duration. Other breaks, during which minor wind- or water-reworking took place are observed between phases 4 and 5, and 9 and 10, and were of the order of days. Two other horizons saw the complete settling out of 10-20 micron-sized ash particles before commencement of the next phase of the eruption, and thus may represent breaks of hours. The whole eruption was a series of large-scale outbreaks of generally increasing vigor, daisy-chained to form a single geological event, but one which would represent recurrent hazards, and uncertainties in eruptive activity if repeated today. The 0.76 Ma Bishop Tuff eruption (ca. 600 km3, magma), on the other hand, displays evidence only for one short time break, represented by settling out of fine ash at the top of a plinian pumice fall unit. Most of the eruption volume may have been emplaced over only about 6 days. Such an eruption, although catastrophic when placed in today's societal context, at least was over relatively rapidly. The immense 2.06 Ma Huckleberry Ridge Tuff (HRT) eruption (ca. 2500 km3, magma) shows evidence for prolonged time breaks, possibly of months to years, at several stages. During deposition of the basal pre- ignimbrite fall deposit, horizons of wind- and/or water-reworked material occur, suggesting that normal weather processes (wind, hail deposition, rainfall) may have affected the deposits during breaks in deposition. Between the three major ignimbrite units (A, B and C), there is local evidence for cooling below temperatures required for welding across their mutual boundaries and partial cessation of vapour-phase alteration in the earlier unit where the ignimbrites thin against topographic highs. A false impression of continuity in HRT emplacement is given by a lack of significant density contrasts across unit boundaries in areas where the deposits were thick enough to cause high temperatures and concomitant welding across the mutual contacts. All three eruptions show evidence for partial or complete simultaneity of plinian pumice fall deposition with co- generation and emplacement of ignimbrite. The widespread notions of fall and flow activity being antipathetic and of the former leading to the latter are too simple, especially given the demonstrable development of multiple vent sites in the Oruanui and Bishop eruptions. All three eruptions show that there is a wealth of information to be gained from detailed field studies that can provide powerful constraints on eruption dynamics, although it is apparent that there is no simple model that can be applied to supereruptions. Two out of the three examples were prolonged for months or years, and assessing when the eruption would have actually finished, or foreseeing the climactic stage(s) which would have caused the greatest impact, would have been problematic.

  4. Olivine-hosted Melt Inclusions: Insights into Highly Explosive Basaltic Volcanism from Alkali-rich Magma at Sunset Crater, AZ

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2017-12-01

    Sunset Crater volcano, an alkali basalt scoria cone in northern Arizona, erupted ca. 1085 AD, producing a large tephra blanket through sub-Plinian activity during its most explosive period. Primary melt inclusions (MIs) in free olivine crystals from the tephra were analyzed to study magma characteristics and storage conditions. We compare MIs from the early-erupted Strombolian deposit to those of sub-Plinian units to identify magma properties related to eruptive style. All MIs are faceted and closely similar in composition exhibiting minor post entrapment crystallization (3-15%). MIs are relatively dry (0.5-1.5 wt% H2O) but CO2-rich (1,200-3000 ppm). Most MIs contain >1 wt% H2O and >2,000 ppm CO2. MI vapor bubbles are ubiquitous in Sunset Crater samples ranging in size from 1 to 10 vol% of the MI in typical samples or 3 vol% on average. However, based on MI shrinkage caused by the decrease of olivine and melt densities with lower temperatures, only bubbles smaller than 3 vol% can result from post-entrapment cooling alone. We conclude that larger MI bubbles likely include volume contributions from pre-entrapment vapor. Raman spectroscopy, calibrated with synthetic CO2 inclusions, shows that the bubbles contain CO2 vapor and carbonate crystals have been observed on the bubble walls. Total MI CO2 contents, representing dissolved CO2 plus vapor bubble (if less than 3 vol% in size), range up to 4500 ppm. If no size constraint is applied to the vapor bubbles, the maximum total CO2 content (dissolved + vapor) reaches 6,500 ppm. These volatile abundances exceed the current experimental data on volatile solubility in alkali basalts. Fluid-saturated H2O-CO2 solubility experiments at 1200 °C between 400 and 600 MPa were conducted on the bulk Sunset Crater composition to account for the enhanced CO2 solubility of alkali-rich magma and accurately constrain solubility. This experimental data and the resulting calibrated thermodynamic model, indicates that MIs record depths up to 17 km, assuming fluid saturation. We do not observe any significant differences between MIs from Strombolian and sub-Plinian phases, suggesting that while a high CO2 content may drive rapid magma ascent and be partly responsible for highly explosive eruptions, shallower processes may play an important role in the final eruptive character.

  5. The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias

    2017-01-01

    New experiments of falling volcanic particles were performed in order to define terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity Φ3D and fractal dimension D3D were obtained. They are easier to measure and less operator dependent than the 2D shape parameters used in previous papers. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3 × 10- 2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of Φ3D and D3D of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are finally proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions.

  6. The Somma-Vesuvius complex and the Phlaegrean Fields caldera: New chronological data of several eruptions of the Copper-Middle Bronze Age period

    NASA Astrophysics Data System (ADS)

    Passariello, Isabella; Lubritto, Carmine; D'Onofrio, Antonio; Guan, Yongjing; Terrasi, Filippo

    2010-04-01

    Radiocarbon dating of short-lived sample materials is a useful tool applied to date deposits of volcanic eruptions. Several archaeological sites discovered and excavated in Campania witnessed important volcanic eruptions, which occurred in the Copper and Middle Bronze Ages. These eruptions come from the Somma-Vesuvius complex and the Phlaegrean Fields caldera. At least four Plinian eruptions have been identified in the eruptive history of Somma-Vesuvius, interspersed by interplinian events, called protohistoric, which occurred between Avellino and Pompeii. At S. Paolo Belsito a stratigraphic sequence below Avellino and above the first two protohistoric events after Avellino were highlighted; while Nola (Naples) gives new information on the chronology of Avellino. Sites like Caivano and Gricignano D'Aversa, involved by the Agnano 3, Paleoastroni 2 and Agnano Monte Spina eruptions were highlighted and investigated. In this work, we want to clarify the chronology of some eruptions by comparing our results with previous data. Charcoal, bone and seed samples were collected, treated and measured at the CIRCE laboratory in Caserta.

  7. The influence of regional extensional tectonic stress on the eruptive behaviour of subduction-zone volcanoes

    NASA Astrophysics Data System (ADS)

    Tost, M.; Cronin, S. J.

    2015-12-01

    Regional tectonic stress is considered a trigger mechanism for explosive volcanic activity, but the related mechanisms at depth are not well understood. The unique geological setting of Ruapehu, New Zealand, allows investigation on the effect of enhanced regional extensional crustal tension on the eruptive behaviour of subduction-zone volcanoes. The composite cone is located at the southwestern terminus of the Taupo Volcanic Zone, one of the most active silicic magma systems on Earth, which extends through the central part of New Zealand's North Island. Rhyolitic caldera eruptions are limited to its central part where crustal extension is highest, whereas lower extension and additional dextral shear dominate in the southwestern and northeastern segments characterized by andesitic volcanism. South of Ruapehu, the intra-arc rift zone traverses into a compressional geological setting with updoming marine sequences dissected by reverse and normal faults. The current eruptive behaviour of Ruapehu is dominated by small-scaled vulcanian eruptions, but our studies indicate that subplinian to plinian eruptions have frequently occurred since ≥340 ka and were usually preceded by major rhyolitic caldera unrest in the Taupo Volcanic Zone. Pre-existing structures related to the NNW-SSE trending subduction-zone setting are thought to extend at depth and create preferred pathways for the silicic magma bodies, which may facilitate the development of large (>100 km3) dyke-like upper-crustal storage systems prior to major caldera activity. This may cause enhanced extensional stress throughout the entire intra-arc setting, including the Ruapehu area. During periods of caldera dormancy, the thick crust underlying the volcano and the enhanced dextral share rate likely impede ascent of larger andesitic magma bodies, and storage of andesitic melts dominantly occurs within small-scaled magma bodies at middle- to lower-crustal levels. During episodes of major caldera unrest, ascent and storage of voluminous rhyolitic magma bodies at upper crustal levels may cause the extensional stress to supercede the dextral shear rate in the Ruapehu area, facilitating ascent of larger andesitic magma bodies at depth, and changing the volcano's eruptive behaviour from dominantly vulcanian to violently subplinian/plinian.

  8. The 2011-2012 eruption of Cordón Caulle volcano (Southern Andes): Evolution, crisis management and current hazards

    NASA Astrophysics Data System (ADS)

    Silva Parejas, C.; Lara, L. E.; Bertin, D.; Amigo, A.; Orozco, G.

    2012-04-01

    A new kind of integrated approach was for first time achieved during the eruptive crisis of Cordón Caulle volcano (Southern Andes, 40.59°S, 72.12°W) in Chile. The monitoring network of SERNAGEOMIN around the volcano detected the increasing precursory seismicity, alerting the imminence of an eruption about 5 hours before its onset, on June 4, 2011. In addition, SERNAGEOMIN generated daily forecasts of tephra dispersal and fall (ASHFALL advection-diffusion model), and prepared simulations of areas affected by the possible occurrence of lahars and pyroclastic flows. Models were improved with observed effects on the field and satellite imagery, resulting in a good correlation. The information was timely supplied to the authorities as well as recommendations in order to better precise the vulnerable areas. Eruption has initially occurred from a couple of overlapped cones located along the eastern fault scarp of the Pleistocene-Holocene extensional graben of Cordón Caulle. Eruptive products have virtually the same bulk composition as those of the historical 1921 and 1960 eruptions, corresponding to phenocryst-poor rhyodacites (67-70 % SiO2). During the first eruptive stage, a ca. 15-km strong Plinian column lasting 27 hours emitted 0.2-0.4 km3 of magma (DRE). Thick tephra deposits have been accumulated in Chile and Argentina, whereas fine particles and aerosols dispersion disrupted air navigation across the Southern Hemisphere. The second ongoing eruptive stage, which started in mid-June, has been characterized by lava emission already covering a total area comparable to the 1960 lava flows with a total estimated volume <0.25 km3 (at the end of December 2011). Weak but persistent plumes have caused preventive flight suspensions in Chile and Argentina until the end of the year. Main current hazards at Cordón Caulle volcano are fine tephra fallout, secondary lahars, minor explosions and lava flow front collapse. Even if this case can be considered successful from the point of view of eruption forecast and hazard assessment, a new protocol of volcanic alerts has been recently signed between SERNAGEOMIN and the National Emergency Agency (ONEMI) in order to improve the communication, information transfer and roles of those institutions during risky volcanic crises.

  9. Conduit margin heating and deformation during the AD 1886 basaltic Plinian eruption at Tarawera volcano, New Zealand.

    PubMed

    Schauroth, Jenny; Wadsworth, Fabian B; Kennedy, Ben; von Aulock, Felix W; Lavallée, Yan; Damby, David E; Vasseur, Jérémie; Scheu, Bettina; Dingwell, Donald B

    During explosive eruptions, a suspension of gas and pyroclasts rises rapidly within a conduit. Here, we have analysed textures preserved in the walls of a pyroclastic feeder dyke of the AD 1886 Tarawera basaltic Plinian fissure eruption. The samples examined consist of basaltic ash and scoria plastered onto a conduit wall of a coherent rhyolite dome and a welded rhyolitic dome breccia. We examine the textural evidence for the response of the wall material, built of ∼75 vol.% glass and ∼25 vol.% crystals (pore-free equivalent), to mass movement in the adjacent conduit. In the rhyolitic wall material, we quantify the orientation and aspect ratio of biotite crystals as strain markers of simple shear deformation, and interpret juxtaposed regions of vesiculation and vesicle collapse as evidence of conduit wall heating. Systematic changes occur close to the margin: (1) porosity is highly variable, with areas locally vesiculated or densified, (2) biotite crystals are oriented with their long axis parallel to the margin, (3) the biotites have greater aspect ratios close to the margin and (4) the biotite crystals are fractured. We interpret the biotite phenocryst deformation to result from crystal fracture, rotation and cleavage-parallel bookcase translation. These textural observations are inferred to indicate mechanical coupling between the hot gas-ash jet and the conduit wall and reheating of wall rock rhyolite. We couple these observations with a simple 1D conductive heating model to show what minimum temperature the conduit wall needs to reach in order to achieve a temperature above the glass transition throughout the texturally-defined deformed zone. We propose that conduit wall heating and resulting deformation influences conduit margin outgassing and may enhance the intensity of such large basaltic eruptions.

  10. Applications of the PUFF model to forecasts of volcanic clouds dispersal from Etna and Vesuvio

    NASA Astrophysics Data System (ADS)

    Daniele, P.; Lirer, L.; Petrosino, P.; Spinelli, N.; Peterson, R.

    2009-05-01

    PUFF is a numerical volcanic ash tracking model developed to simulate the behaviour of ash clouds in the atmosphere. The model uses wind field data provided by meteorological models and adds dispersion and sedimentation physics to predict the evolution of the cloud once it reaches thermodynamic equilibrium with the atmosphere. The software is intended for use in emergency response situations during an eruption to quickly forecast the position and trajectory of the ash cloud in the near (˜1-72 h) future. In this paper, we describe the first application of the PUFF model in forecasting volcanic ash dispersion from the Etna and Vesuvio volcanoes. We simulated the daily occurrence of an eruptive event of Etna utilizing ash cloud parameters describing the paroxysm of 22nd July 1998 and wind field data for the 1st September 2005-31st December 2005 time span from the Global Forecast System (GFS) model at the approximate location of the Etna volcano (38N 15E). The results show that volcanic ash particles are dispersed in a range of directions in response to changing wind field at various altitudes and that the ash clouds are mainly dispersed toward the east and southeast, although the exact trajectory is highly variable, and can change within a few hours. We tested the sensitivity of the model to the mean particle grain size and found that an increased concentration of ash particles in the atmosphere results when the mean grain size is decreased. Similarly, a dramatic variation in dispersion results when the logarithmic standard deviation of the particle-size distribution is changed. Additionally, we simulated the occurrence of an eruptive event at both Etna and Vesuvio, using the same parameters describing the initial volcanic plume, and wind field data recorded for 1st September 2005, at approximately 38N 15E for Etna and 41N 14E for Vesuvio. The comparison of the two simulations indicates that identical eruptions occurring at the same time at the two volcanic centres display significantly different dispersal axes as a consequence of the different local wind field acting at the respective eruptive vents. At the Vesuvio the volcano, a plinian eruptive event with the dynamical parameters of the 79 A.D. eruption was simulated daily for one year, from 1st July 2005 to 30th June 2006. The statistical processing of results points out that, although in most cases the ash cloud dispersal encompasses many different areas, generally the easterly southeasterly direction is preferred. Our results highlight the significant role of wind field trends in influencing the distribution of ash particles from eruptive columns and prove that the dynamical parameters that most influence the variability of plume dispersal are the duration of the eruption and the maximum column height. Finally, the possible use of cloud simulations for refining hazard maps of areas exposed to volcanic ash dispersal is proposed.

  11. Impact of explosive volcanic eruptions around Vesuvius: a story of resilience in Roman time

    NASA Astrophysics Data System (ADS)

    Scarpati, Claudio; Perrotta, Annamaria; De Simone, Girolamo Ferdinando

    2016-03-01

    Large explosive eruptions have reshaped the landscape around Vesuvius many times in prehistoric and historical times. Previous stratigraphic surveys suggested that people living in this area have probably abandoned their settlements (in the Bronze Age) or towns and villas (in the Roman period) for centuries after each major plinian eruption. New archaeological excavations on the northern slope of Vesuvius suggest a much more intriguing scenario. At Pollena Trocchia, an ongoing excavation has shown the superimposition of three different Roman structures, sandwiched between the deposits of the AD 79, AD 472, and AD 512 Vesuvius eruptions. Each of these eruptions more or less completely destroyed and buried the buildings under meters of volcanic products. Surprisingly, after a few years or decades, a new settlement was established exactly on the top of the buried one, indicating the immediate recovery of part of the devastated area. Our research documents the destruction of Roman buildings by volcanic eruptions over a period of five centuries (first to sixth century AD) and provides new insight into human behavior after major explosive eruptions.

  12. Interpretation of Historical Eruptions of Mt. Baekdu Volcano, Korea

    NASA Astrophysics Data System (ADS)

    Yun, S. H.; Cho, E.; Yang, I. S.

    2014-12-01

    This study is performed to find out the eruptive events of the historical period recorded in literature, which have been recognized and regarded as ones from Mt. Baekdusan, and to make volcanological interpretations of the eruptive events. Since the Millennium eruption, more than 31 eruptive events have been discovered, most of which are Plinian eruptions with volcanic ash that dispersed into the regions in the vicinity of the volcano. The minimum volume of erupted materials in 1702 is estimated to be 1.2 km3when calculated with an empirical formula using an isopach line obtained from two points 140 km away from the vent. The 1702 eruption was a paroxysmal one with VEI of 5. The historical record described a deposition of wind-modified fallout ash by movement of hot ash cloud. The 1903 record includes the event of the phreatomagmatic or vulcanian eruption that occurred within the Cheonji caldera lake. Based on the eruption records of the historical period and the 2002 precursor unrest to volcanic eruptions, Mt. Baekdusan has been evaluated and regarded as an active volcano that has the potential to erupt in the future. This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-2] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea. T

  13. Legendary Mount Vesuvius is subject of intensive volcanological study

    NASA Astrophysics Data System (ADS)

    Spera, Frank

    The Roman population centers of Pompeii and Herculaneum (circa 15,000 inhabitants) were destroyed when Mount Vesuvius erupted in 79 A.D. after centuries of repose. Many times since then its eruptions have claimed human lives; basaltic lava flows from an eruption in 1631 killed 3,000. Vesuvius' location, near the heart of the Roman empire—a center of learning in the ancient world—led it to become the site ofsome of the earliest volcanological studies on record.In letters to Tacitus, Pliny the Younger documented the sequence of events of the 79 A.D. plinian eruption. Geophysical studies of volcanoes were pioneered by Italian volcanologists who installed seismographs in an observatory on the flanks of Vesuvius to study volcano seismology and to forecast and monitor eruptions early this century. It is easy to understand why interest in Vesuvius has been so keen: it is accessible, persistently active, and a large population resides nearby. Today, around 1 million people live within the shadow of this potentially explosive and dangerous volcano.

  14. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan.

    PubMed

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato

    2016-09-13

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide.

  15. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan

    PubMed Central

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato

    2016-01-01

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide. PMID:27619897

  16. The drag and terminal velocity of volcanic ash and lapilli with 3D shape obtained by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias

    2017-04-01

    New experiments of falling volcanic particles were performed in order to define drag and terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity and fractal dimension were obtained, the latter used for quantifying the aerodynamic drag of irregular particles for the first time. With this method, the measure of particle shape descriptors proved to be easier and less operator dependent than previously used 2D image particle analyses. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3x10-2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column and pyroclastic density currents, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of 3D sphericity and fractal dimension of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions. Some volcanological application examples are finally presented.

  17. Late Holocene stratigraphy of the Tetimpa archaeological sites, northeast flank of Popocatepetl volcano, central Mexico

    USGS Publications Warehouse

    Panfil, M.S.; Gardner, T.W.; Hirth, K.G.

    1999-01-01

    Late Holocene (240 km2 on the east side of the volcano with >25 cm of tephra. Lavas from eruptive sequence I dammed drainage in the lowland area near the town of San Nicolas and caused local upstream deposition of as much as 30 m of lacustrine silts, clays, and sands. These lacustrine deposits record an eruptive hiatus for the Tetimpa area of about 750 14C yr: between ca. 2100 and ca. 1350 yr B.P., no major tephras were deposited in the Tetimpa area. In upland areas, this time period is represented by an unconformity and by Entisols formed in the top of pumice deposits and lavas from eruptive sequence I. Artifacts, agricultural furrows, and dwellings record human reoccupation of this surface. At the end of this hiatus, several lahars were deposited above the lacustrine sequence and locally above the Entisol in upland positions adjacent to streams. Between ca. 1350 and ca. 1200 yr B.P., tephras from eruptive sequence II buried these paleosols, occupation sites, lacustrine sediments, and lahars. Andesitic (~62% SiO2) pumice lapilli deposits in the Tetimpa area record three pumice-fall eruptions directed northeast and east of the crater. The first and smallest of these (maximum Tetimpa area thickness = 12 cm; >52 km2 covered by >25 cm) took place at ca. 1350 yr B.P. and was accompanied by pyroclastic surge events preserved in the Tetimpa area by charcoal, sand waves, and cross-stratified sand-sized tephra. At ca. 1200 yr B.P., the products of two Plinian-style events and additional pyroclastic surges reached the Tetimpa area. The largest of these tephra-fall events covered the Tetimpa area with 0.5-1 m of tephra and blanketed an area of >230 km2 with a thickness of >25 cm. The Tetimpa record confirms two of the four periods of explosive volcanism recognized by studies conducted around Popocatepetl in the past 30 yr. Eruptive sequence I corresponds to the explosive period between 2100 and 2500 yr B.P., and eruptive sequence II corresponds to the period between 900 and 1400 yr B.P. The archaeology and lacustrine stratigraphy of the Tetimpa area help constrain the timing of the Plinian phase of eruptive sequence I to ca. 2100 yr B.P. and suggest that the pumice-fall eruptions of eruptive sequence II took place in at least two intervals between ca. 1350 and ca. 1200 yr B.P.

  18. Electrification processes and lightning generation in volcanic plumes—observations from recent eruptions

    NASA Astrophysics Data System (ADS)

    Van Eaton, A. R.; Smith, C. M.; Schneider, D. J.

    2017-12-01

    Lightning in volcanic plumes provides a promising way to monitor ash-producing eruptions and investigate their dynamics. Among the many methods of lightning detection are global networks of sensors that detect electromagnetic radiation in the very low frequency band (3-30 kHz), including the World Wide Lightning Location Network. These radio waves propagate thousands of kilometers at the speed of light, providing an opportunity for rapid detection of explosive volcanism anywhere in the world. Lightning is particularly valuable as a near real-time indicator of ash-rich plumes that are hazardous to aviation. Yet many fundamental questions remain. Under what conditions does electrical activity in volcanic plumes become powerful, detectable lightning? And conversely, can we use lightning to illuminate eruption processes and hazards? This study highlights recent observations from the eruptions of Redoubt (Alaska, 2009), Kelud (Indonesia, 2014), Calbuco (Chile, 2015), and Bogoslof (Alaska, 2017) to examine volcanic lighting from a range of eruption styles (Surtseyan to Plinian) and mass eruption rates from 10^5 to 10^8 kg/s. It is clear that lightning stroke-rates do not scale in a simple way with mass eruption rate or plume height across different eruptions. However, relative changes in electrical activity through individual eruptions relate to changes in eruptive intensity, ice content, and volcanic plume processes (fall vs. flow).

  19. Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions

    NASA Astrophysics Data System (ADS)

    Campagnola, S.; Romano, C.; Mastin, L. G.; Vona, A.

    2016-06-01

    Numerical simulations are useful tools to illustrate how flow parameters and physical processes may affect eruption dynamics of volcanoes. In this paper, we present an updated version of the Conflow model, an open-source numerical model for flow in eruptive conduits during steady-state pyroclastic eruptions (Mastin and Ghiorso in A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. U.S. Geological Survey Open File Report 00-209, 2000). In the modified version, called Confort 15, the rheological constraints are improved, incorporating the most recent constitutive equations of both the liquid viscosity and crystal-bearing rheology. This allows all natural magma compositions, including the peralkaline melts excluded in the original version, to be investigated. The crystal-bearing rheology is improved by computing the effect of strain rate and crystal shape on the rheology of natural magmatic suspensions and expanding the crystal content range in which rheology can be modeled compared to the original version ( Conflow is applicable to magmatic mixtures with up to 30 vol% crystal content). Moreover, volcanological studies of the juvenile products (crystal and vesicle size distribution) of the investigated eruption are directly incorporated into the modeling procedure. Vesicle number densities derived from textural analyses are used to calculate, through Toramaru equations, maximum decompression rates experienced during ascent. Finally, both degassing under equilibrium and disequilibrium conditions are considered. This allows considerations on the effect of different fragmentation criteria on the conduit flow analyses, the maximum volume fraction criterion ("porosity criterion"), the brittle fragmentation criterion and the overpressure fragmentation criterion. Simulations of the pantelleritic and trachytic phases of the Green Tuff (Pantelleria) and of the Plinian Etna 122 BC eruptions are performed to test the upgrades in the Confort 15 modeling. Conflow and Confort 15 numerical results are compared analyzing the effect of viscosity, decompression rate, temperature, fragmentation criteria (critical strain rate, porosity and overpressure criteria) and equilibrium versus disequilibrium degassing in the magma flow along volcanic conduits. The equilibrium simulation results indicate that an increase in viscosity, a faster decompression rate, a decrease in temperature or the application of the porosity criterion in place of the strain rate one produces a deepening in fragmentation depth. Initial velocity and mass flux of the mixture are directly correlated with each other, inversely proportional to an increase in viscosity, except for the case in which a faster decompression rate is assumed. Taking into account up-to-date viscosity parameterization or input faster decompression rate, a much larger decrease in the average pressure along the conduit compared to previous studies is recorded, enhancing water exsolution and degassing. Disequilibrium degassing initiates only at very shallow conditions near the surface. Brittle fragmentation (i.e., depending on the strain rate criterion) in the pantelleritic Green Tuff eruption simulations is mainly a function of the initial temperature. In the case of the Etna 122 BC Plinian eruption, the viscosity strongly affects the magma ascent dynamics along the conduit. Using Confort 15, and therefore incorporating the most recent constitutive rheological parameterizations, we could calculate the mixture viscosity increase due to the presence of microlites. Results show that these seemingly low-viscosity magmas can explosively fragment in a brittle manner. Mass fluxes resulting from simulations which better represent the natural case (i.e., microlite-bearing) are consistent with values found in the literature for Plinian eruptions (~106 kg/s). The disequilibrium simulations, both for Green Tuff and Etna 122 BC eruptions, indicate that overpressure sufficient for fragmentation (if present) occurs only at very shallow conditions near the surface.

  20. New perspectives on the eruption of 1912 in the valley of ten thousand smokes, Katmai National Park, Alaska

    USGS Publications Warehouse

    Hildreth, W.

    1987-01-01

    New data extend our understanding of the 1912 eruption, its backfilled vent complex at Novarupta, and magma-storage systems beneath adjacent stratovolcanoes. Initial Plinian rhyolite fallout is confined to a narrow downwind sector, and its maximum thickness may occur as far as 13 km from source. In contrast, the partly contemporaneous rhyolite-rich ash flows underwent relatively low-energy emplacement, their generation evidently being decoupled from the high column. Flow veneers 1-13 m thick on near-vent ridge crests exhibit a general rhyolite-to-andesite sequence like that of the much thicker valley-confined ignimbrite into which they merge downslope. Lithics in both the initial Plinian and the ignimbrite are predominantly fragments of the Jurassic Naknek Formation, which extends from the surface to a depth of ca. 1500 m. Absence of lithics from the underlying sedimentary section limits to 100 m thick near source and 10 m thick 3 km away, which dip back into an inner vent <0.5 km wide, nested inside the earlier vent funnel of the ignimbrite. The dacite fallout is poor in Naknek lithics but contains abundant fragments of vitrophyre, most of which was vent-filling, densely welded tuff reejected during later phases of the 3-day eruption. Adjacent to the inner vent, a 225-m-high asymmetrical accumulation of coarse near-vent ejecta is stratigraphically continuous with the regional dacite fallout. Distensional faulting of its crest may reflect spreading related to compaction and welding. Nearby andesite-dacite stratovolcanoes, i.e., Martin, Mageik, Trident, and Katmai, display at least 12 vents that define a linear volcanic front trending N65??E. The 1912 vent and adjacent dacite domes are disposed parallel to the front and ca. 4 km behind it. Mount Griggs, 10 km behind the front, is more potassic than other centers, taps isotopically more depleted source materials, and reflects a wholly independent magmatic plumbing system. Geochemical differences among the stratovolcanoes, characteristically small eruptive volumes ( < 0.1 to 0.4 km3), and the dominance of andesite and low-SiO2 dacite suggest complex crustal reservoirs, not large integrated magma chambers. Linear fractures just outside the 1912 vent strike nearly normal to the volcanic front and may reflect dike transport of magma previously stored beneath Trident 3-5 km away. Caldera collapse at Mount Katmai may have taken place in response to hydraulic transfer of Katmai magma toward Novarupta via reservoir components beneath Trident. The voluminous 1912 eruption (12-15 km3 DRE) was also unusual in producing high-silica rhyolite (6-9 km3 DRE), a composition rare in this arc and on volcanic fronts in general. Isotopic data indicate that rhyolite genesis involved little assimilation of sedimentary rocks, pre-Tertiary plutonic rocks, or hydrothermally altered rocks of any age. Trace-element data suggest nonetheless that the rhyolite contains a nontrivial crustal contribution, most likely partial melts of Late Cenozoic arc-intrusive rocks. Because the three compositions (77%, 66-64.5%, and 61.5-58.5% SiO2) that intermingled in 1912 vented both concurrently and repeatedly (after eruptive pauses hours in duration), the compositional gaps between them must have been intrinsic to the reservoir, not merely effects of withdrawal dynamics. ?? 1987 Springer-Verlag.

  1. Volatile Transport by Volcanic Plumes on Earth, Venus and Mars

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Self, Stephen; Baloga, Steve; Stofan, Ellen R.

    2012-01-01

    Explosive volcanic eruptions can produce sustained, buoyant columns of ash and gas in the atmosphere (Fig. 1). Large flood basalt eruptions may also include significant explosive phases that generate eruption columns. Such eruptions can transport volcanic volatiles to great heights in the atmosphere. Volcanic eruption columns can also redistribute chemical species within the atmosphere by entraining ambient atmosphere at low altitudes and releasing those species at much higher altitudes.

  2. Impact of explosive eruption scenarios at Vesuvius

    NASA Astrophysics Data System (ADS)

    Zuccaro, G.; Cacace, F.; Spence, R. J. S.; Baxter, P. J.

    2008-12-01

    In the paper the first attempt at the definition of a model to assess the impact of a range of different volcanic hazards on the building structures is presented. This theoretical approach has been achieved within the activities of the EXPLORIS Project supported by the EU. A time history for Sub-Plinian I eruptive scenario of the Vesuvius is assumed by taking advantage of interpretation of historical reports of volcanic crises of the past [Carafa, G. 1632. In opusculum de novissima Vesuvij conflagratione, epistola isagogica, 2 a ed. Napoli, Naples; Mascolo, G.B., 1634. De incendio Vesuvii excitato xvij. Kal. Ianuar. anno trigesimo primo sæculi Decimiseptimi libri X. Cum Chronologia superiorum incendiorum; & Ephemeride ultimi. Napoli; Varrone, S., 1634. Vesuviani incendii historiae libri tres. Napoli], numerical simulations [Neri, A., Esposti Ongaro, T., Macedonio, G., Gidaspow, D., 2003. Multiparticle simulation of collapsing volcanic columns and pyroclastic flows. J. Geophys. Res. Lett. 108, 2202. doi:10.1029/2001 JB000508; Macedonio, G., Costa, A., Longo, A., 2005. HAZMAP: a computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31,837-845; Costa, A., Macedonio, G., Folch, A., 2006. A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet. Sci. Lett. 241,634-647] and experts' elicitations [Aspinall, W.P., 2006. Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader, H.M. Coles, S.G. Connor, C.B. Connor, L.J. (Eds), Statistics in Volcanology. Geological Society of London on behalf of IAVCEI, pp.15-30; Woo, G., 1999. The Mathematics of Natural Catastrophes. Imperial College Press, London] from which the impact on the building structures is derived. This is achieved by an original definition of vulnerability functions for multi-hazard input and a dynamic cumulative damage model. Factors affecting the variability of the final scenario are highlighted. The results show the high sensitivity of hazard combinations in time and space distribution and address how to mitigate building vulnerability to subsequent eruptive phenomena [Baxter, P., Spence, R., Zuccaro, G., 2008-this issue. Risk mitigation and emergency measures at Vesuvius]. The first part of the work describes the numerical modelling and the methodology adopted to evaluate the resistance of buildings under the combined action of volcanic phenomena. Those considered here for this multi-hazard approach are limited to the following: earthquakes, pyroclastic flows and ash falls. Because of the lack of a systematic and extensive database of building damages observed after eruptions of such intensity of the past, approaches to this work must take a hybrid form of stochastic and deterministic analyses, taking into account written histories of volcanic eruptions and expertise from field geologists to build up a semi-deterministic model of the possible combinations of the above hazards that are situated both in time and space. Once a range of possible scenarios has been determined, a full stochastic method can be applied to find a sub-set of permutations and combinations of possible effects. This preliminary study of identification of the possible combination of the phenomena, subdividing them into those which are discrete and those which are continuous in time and space, enables consideration the vulnerability functions of the combinations to be feasible. In previous works [Spence, R., Brichieri-Colombi, N., Holdsworth, F., Baxter, P., Zuccaro, G., 2004a. Vesuvius: building vulnerability and human casualty estimation for a pyroclastic flow (25 pages). J. Volcanol. Geotherm. Res. 133, 321-343. ISSN 0377-0273; Spence, R., Zuccaro, G., Petrazzuoli, S., Baxter, P.J., 2004b. The resistance of buildings to pyroclastic flows: theoretical and experimental studies in relation to Vesuvius, ASCE Nat. Hazards Rev. 5, 48-50. ISSN 1527-6988; Spence, R., Kelman, I., Petrazzuoli, S., Zuccaro, G., 2005. Residential Buildings and Occupant Vulnerability to Tephra Fall. Nat. Hazards Earth Syst. Sci. vol. 5. European Geosciences Union, pp.1-18; Baxter, P.J., Cole, P.D., Spence, R., Zuccaro, G., Boyd, R., Neri, A., 2005. The impacts of pyroclastic density currents on buildings during the eruption of the Soufrière hills volcano, Montserrat. Bull. Volcanol. vol. 67,292-313] the authors investigated, by means of experimental and analytical methods, the limiting resistance of masonry and reinforced concrete buildings assuming each action separately. In this work the first attempt to estimate the response of the buildings to the volcanic seismic action or to the lateral dynamic pressure due to pyroclastic flow combined with an extra vertical load on the roof due to ash fall is performed. The results show that up to a certain limit of ash fall deposit, the increment of structure weight increases the resistance of a building to pyroclastic flow action while it reduces its seismic resistance. In particular the collapse of the top storey of R.C. buildings having large roofs could occur by accumulation of ash and a strong earthquake. Seismic and pyroclastic flow vulnerability of tall R.C. and masonry buildings with rigid floors is less sensitive to ash fall load combination. The model allows any sequence of events (earthquake, ash fall, pyroclastic flow) to be assumed and evaluates the spatial distribution of the cumulative impact at a given time. Single impact scenarios have been derived and mapped on a suitable grid into which the territory around Vesuvius has been subdivided. The buildings have been classified according to the constructional characteristics that mostly affect their response under the action of the phenomena; hence the vulnerability distribution of the buildings are assigned to each cell of the grid and by taking advantage from the combined vulnerability functions the impact is derived at time t. In the paper the following impact simulations are presented: single cases of selected seismic sequence during the unrest phase (Sub-Plinian I) ash fall damage distribution compatible to a Sub-Plinian I eruption pyroclastic flow cumulative damage scenarios for selected cases (Sub-Plinian I). The model also allows either Monte Carlo simulation to evaluate the most probable final scenario or maximisation of some parameter sensitive to Civil Protection preparedness. The analysis of the results derived for a Sub-Plinian I-like eruption has shown the importance of the seismic intensities released during the unrest phase that could interfere with the evacuation of the area and the huge number of partial collapses (roofs) due to ash fall.

  3. Late Pleistocene-Holocene volcanic activity in northern Victoria Land recorded in Ross Sea (Antarctica) marine sediments

    NASA Astrophysics Data System (ADS)

    Del Carlo, P.; Di Roberto, A.; Di Vincenzo, G.; Bertagnini, A.; Landi, P.; Pompilio, M.; Colizza, E.; Giordano, G.

    2015-05-01

    Eight pyroclastic fall deposits have been identified in cores of Late Pleistocene-Holocene marine sediments from the Ross Sea (Antarctica), and their components, granulometry and clast morphologies were analysed. Sedimentological, petrographic and geochemical analysis of clasts, with 40Ar-39Ar dating of alkali feldspar grains, indicate that during this period at least five explosive eruptions of mid to high intensity (plinian to subplinian) occurred, and that three of these eruptions took place from Mount Melbourne volcanic complex, between 137.1 ± 3.4 and 12 ka. Geochemical comparison of the studied tephra with micro- and crypto-tephra recovered from deep Antarctic ice cores and from nearby englacial tephra at Frontier Mountain indicates that eruptive activity in the Melbourne Volcanic Province of northern Victoria Land was intense during the Late Pleistocene-Holocene, but only a general area of provenance for the majority of the identified tephra can be identified.

  4. Spreading of Somma-Vesuvio Volcanic Complex: is the Hazard for Plinian Eruptions being reduced?

    NASA Astrophysics Data System (ADS)

    Borgia, A.; Tizzani, P.; Solaro, G.; Luongo, G.; Fusi, N.

    2003-12-01

    Contrary to what is the common knowledge, a detailed structural study of active faulting and rifting of the summit area of Somma-Vesuvio volcanic complex, combined with INSAR, levelling data and seismic profiling at sea suggests that the present-day long-term dynamic behaviour of the complex and of its summit caldera is characterized by volcanic spreading. The structural evolution is controlled by a number of asymmetric, intersecting leaf-grabens. The boundary faults of these grabens intersect at different angles the Somma caldera walls generating a set of wedge-horsts. While normal faulting characterizes the Somma caldera walls, the lavas of the past 150 years, infilling the caldera, have been rifted all around the southern, eastern and northern base of Vesuvio's cone, which, in turn, is being displaced seaward. Associated to the subsidence and extension of the summit area, relative uplift occurs along the coast; in addition, deformation of recent sediments 6-18 km offshore also indicate compression and uplift, which appears to be unrelated to regional tectonics. A preliminary evaluation indicates that rifting of the lavas is in the order of 1-2 mm/a with a southwestward average direction of displacement. Based on these data, we suggest that a wide sector of Somma-Vesuvio is spreading on its plastic sedimentary substratum, which have been identified by drilling. Volcanic spreading appears to have controlled the magmatic evolution and the energy decrease of major historic explosive eruptions since 79 AD. If our interpretation is correct, major plinian eruptions should not occur in the near future. On the other hand, rifting around the caldera suggests that volcanic activity could soon be renewed.

  5. Tocuila Mammoths, Basin of Mexico: Late Pleistocene-Early Holocene stratigraphy and the geological context of the bone accumulation

    NASA Astrophysics Data System (ADS)

    Gonzalez, Silvia; Huddart, David; Israde-Alcántara, Isabel; Dominguez-Vazquez, Gabriela; Bischoff, James

    2014-07-01

    We report new stratigraphic, tephrochronology and dating results from the Tocuila Mammoth site in the Basin of Mexico. At the site there is evidence for a thin meteorite airburst layer dated between 10,878 and 10,707 cal BC at the onset of the Younger Dryas (YD) cool period. The Upper Toluca Pumice (UTP) tephra marker, caused by a Plinian eruption of the Nevado de Toluca volcano, dated from 10,666 to 10,612 cal BC, is above that layer. The eruption must have caused widespread environmental disruption in the region with evidence of extensive reworking and channelling by the Lake Texcoco shoreline and contributed to the widespread death and/or extinction of megafaunal populations, as suggested by earlier authors, but the new work reinforces the view that both catastrophic events must have caused large environmental disruption in a short time period of around two hundred years. There is no evidence for megafauna (mammoths, sabre toothed cats, camels, bison, glyptodonts) after the UTP volcanic event and subsequent lahars in the Basin of Mexico. At Tocuila, although there are some in situ tephra markers in nearshore lake sediments, such as the Great Basaltic Ash (GBA) and the UTP Ash, there is evidence of much reworking of several tephra populations in various combinations. The mammoth bone accumulation is reworked in a lahar sequence (volcanic mudflow) derived from several source sediments but associated with the major UTP Plinian eruption. Paleoindian populations were also present in the Basin of Mexico during the YD period, where several Paleoindian skeletons were found associated with the UTP ash deposits, e.g. Metro Man, Chimalhuacan Man and Tlapacoya Man.

  6. Abrupt transitions during sustained explosive eruptions: Examples from the 1912 eruption of Novarupta, Alaska

    USGS Publications Warehouse

    Adams, N.K.; Houghton, Bruce F.; Hildreth, W.

    2006-01-01

    Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 ??m vesicle diameter and cumulative number densities ranging from 107-109 cm-3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h. ?? Springer-Verlag 2006.

  7. The Largest Holocene Eruption of the Central Andes Found

    NASA Astrophysics Data System (ADS)

    Fernandez-Turiel, J.; Rodriguez-Gonzalez, A.; Saavedra, J.; Perez-Torrado, F.; Carracedo, J.; Osterrieth, M.; Carrizo, J.; Esteban, G.

    2013-12-01

    We present new data and interpretation about a major eruption -spreading ˜110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in NW Argentina. This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. The environmental effects of this voluminous eruption are still noticeable, as evidenced by the high content of arsenic and other trace elements in the groundwaters of the Chacopampean Plain. The recognition of this significant volcanic event may shed new light on interpretations of critical changes observed in the mid-Holocene paleontological and archaeological records, and offers researchers an excellent, extensive regional chronostratigraphic marker for reconstructing mid-Holocene geological history over a wide geographical area of South America. More than 100 ashes were sampled in Argentina, Chile and Uruguay during different field campaigns. Ash samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), grain size distributions laser diffraction, and geochemically by electron microprobe (EMPA) and laser ablation-HR-ICP-MS. New and published 14C ages were calibrated to calendar years BP. The age of the most recent CBVC eruption is 4407-4093 cal y BP, indirectly dated by 14C of associated organic sediment within the lower part of a proximal fall deposit of this event (26°53'16.05"S-67°44'48.68"W). This is the youngest record of a major volcanic event in the Southern Puna. This age is consistent with other radiocarbon dates of organic matter in palaeosols underlying or overlying distal ash fall deposits. Based on their products, all of rhyolitic composition, we have distinguished 8 main episodes during the evolution of the most recent CBVC eruption: 1) the eruption began with a white rhyolite lava dome extrusion; 2) followed by a Plinian proximal and distal dispersal of purely fallout (˜110 km3, bulk volume); 3) the eruptive column collapsed, producing white co-ignimbrite lag breccia, ignimbrite flow deposits, and associated surge and ash cloud deposits (~1 km3); 4) a resurgent white rhyolite lava dome was extruded that 5) collapsed to produce several lateral blasts directed into the Cerro Blanco caldera that emplaced lithic-rich block-and-ash flow deposits; 6) a new pinkish rhyolite lava dome extruded and 7) also laterally collapsed forming new lithic-rich block-and-ash flow deposits within the same caldera; finally, 8) the development of a post-eruption geothermal field that produced white sinter deposits within the Cerro Blanco caldera. Financial support was provided by the QUECA Project (MINECO, CGL2011-23307).

  8. Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, U.S.A.

    USGS Publications Warehouse

    Bacon, C.R.

    1983-01-01

    New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber ??? 7000 yr B.P. The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone ??? 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation ??? 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until ??? 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between ??? 22,000 and ??? 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is ??? 25,000 yr old. These relatively silicic lavas commonly contain traces of hornblende and record early stages in the development of the climatic magma chamber. Some 15,000 to 40,000 yr were apparently needed for development of the climactic magma chamber, which had begun to leak rhyodacitic magma by 7015 ?? 45 yr B.P. Four rhyodacitic lava flows and associated tephras were emplaced from an arcuate array of vents north of the summit of Mount Mazama, during a period of ??? 200 yr before the climactic eruption. The climactic eruption began 6845 ?? 50 yr B.P. with voluminous airfall deposition from a high column, perhaps because ejection of ??? 4-12 km3 of magma to form the lava flows and tephras depressurized the top of the system to the point where vesiculation at depth could sustain a Plinian column. Ejecta of this phase issued from a single vent north of the main Mazama edifice but within the area in which the caldera later formed. The Wineglass Welded Tuff of Williams (1942) is the proximal featheredge of thicker ash-flow deposits downslope to the north, northeast, and east of Mount Mazama and was deposited during the single-vent phase, after collapse of the high column, by ash flows that followed topographic depressions. Approximately 30 km3 of rhyodacitic magma were expelled before collapse of the roof of the magma chamber and inception of caldera formation ended the single-vent phase. Ash flows of the ensuing ring-vent phase erupted from multiple vents as the caldera collapsed. These ash flows surmounted virtually all topographic barriers, caused significant erosion, and produced voluminous deposits zoned from rhyodacite to mafic andesite. The entire climactic eruption and caldera formation were over before the youngest rhyodacitic lava flow had cooled completely, because all the climactic deposits are cut by fumaroles that originated within the underlying lava, and part of the flow oozed down the caldera wall. A total of ??? 51-59 km3 of magma was ejected in the precursory and climactic eruptions,

  9. Evaluation of Kilauea Eruptions By Using Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Rahimi, K. E.; Bursik, M. I.

    2016-12-01

    Kilauea, on the island of Hawaii, is a large volcanic edifice with numerous named vents scattered across its surface. Halema`uma`u crater sits with Kilauea caldera, above the magma reservoir, which is the main source of lava feeding most vents on Kilauea volcano. Halema`uma`u crater produces basaltic explosive activity ranging from weak emission to sub-Plinian. Changes in the eruption style are thought to be due to the interplay between external water and magma (phreatomagmatic/ phreatic), or to segregation of gas from magma (magmatic) at shallow depths. Since there are three different eruption mechanisms (phreatomagmatic, phreatic, and magmatic), each eruption has its own isotope ratios. The aim of this study is to evaluate the eruption mechanism by using stable isotope analysis. Studying isotope ratios of D/H and δ18O within fluid inclusion and volcanic glass will provide an evidence of what driven the eruption. The results would be determined the source of water that drove an eruption by correlating the values with water sources (groundwater, rainwater, and magmatic water) since each water source has a diagnostic value of D/H and δ18O. These results will provide the roles of volatiles in eruptions. The broader application of this research is that these methods could help volcanologists forecasting and predicting the current volcanic activity by mentoring change in volatiles concentration within deposits.

  10. Three active volcanoes in China and their hazards

    NASA Astrophysics Data System (ADS)

    Wei, H.; Sparks, R. S. J.; Liu, R.; Fan, Q.; Wang, Y.; Hong, H.; Zhang, H.; Chen, H.; Jiang, C.; Dong, J.; Zheng, Y.; Pan, Y.

    2003-02-01

    The active volcanoes in China are located in the Changbaishan area, Jingbo Lake, Wudalianchi, Tengchong and Yutian. Several of these volcanoes have historical records of eruption and geochronological evidence of Holocene activity. Tianchi Volcano is a well-preserved Cenozoic polygenetic central volcano, and, due to its recent history of powerful explosive eruptions of felsic magmas, with over 100,000 people living on its flanks is a high-risk volcano. Explosive eruptions at 4000 and 1000 years BP involved plinian and ignimbrite phases. The Millennium eruption (1000 years BP) involved at least 20-30 km 3 of magma and was large enough to have a global impact. There are 14 Cenozoic monogenetic scoria cones and associated lavas with high-K basalt composition in the Wudalianchi volcanic field. The Laoheishan and Huoshaoshan cones and related lavas were formed in 1720-1721 and 1776 AD. There are three Holocene volcanoes, Dayingshan, Maanshan, and Heikongshan, among the 68 Quaternary volcanoes in the Tengchong volcanic province. Three of these volcanoes are identified as active, based on geothermal activity, geophysical evidence for magma, and dating of young volcanic rocks. Future eruptions of these Chinese volcanoes pose a significant threat to hundreds of thousands of people and are likely to cause substantial economic losses.

  11. Explosive eruptive record in the Katmai region, Alaska Peninsula: an overview

    USGS Publications Warehouse

    Fierstein, Judy

    2007-01-01

    At least 15 explosive eruptions from the Katmai cluster of volcanoes and another nine from other volcanoes on the Alaska Peninsula are preserved as tephra layers in syn- and post-glacial (Last Glacial Maximum) loess and soil sections in Katmai National Park, AK. About 400 tephra samples from 150 measured sections have been collected between Kaguyak volcano and Mount Martin and from Shelikof Strait to Bristol Bay (∼8,500 km2 ). Five tephra layers are distinctive and widespread enough to be used as marker horizons in the Valley of Ten Thousand Smokes area, and 140 radiocarbon dates on enclosing soils have established a time framework for entire soil–tephra sections to 10 ka; the white rhyolitic ash from the 1912 plinian eruption of Novarupta caps almost all sections. Stratigraphy, distribution and tephra characteristics have been combined with microprobe analyses of glass and Fe– Ti oxide minerals to correlate ash layers with their source vents. Microprobe analyses (typically 20–50 analyses per glass or oxide sample) commonly show oxide compositions to be more definitive than glass in distinguishing one tephra from another; oxides from the Kaguyak caldera-forming event are so compositionally coherent that they have been used as internal standards throughout this study. Other than the Novarupta and Trident eruptions of the last century, the youngest locally derived tephra is associated with emplacement of the Snowy Mountain summit dome (<250 14C years B.P.). East Mageik has erupted most frequently during Holocene time with seven explosive events (9,400 to 2,400 14C years B.P.) preserved as tephra layers. Mount Martin erupted entirely during the Holocene, with lava coulees (>6 ka), two tephras (∼3,700 and ∼2,700 14C years B.P.), and a summit scoria cone with a crater still steaming today. Mount Katmai has three times produced very large explosive plinian to sub-plinian events (in 1912; 12– 16 ka; and 23 ka) and many smaller pyroclastic deposits show that explosive activity has long been common there. Mount Griggs, fumarolically active and moderately productive during postglacial time (mostly andesitic lavas), has three nested summit craters, two of which are on top of a Holocene central cone. Only one ash has been found that is (tentatively) correlated with the most recent eruptive activity on Griggs (<3,460 14C years B.P.). Eruptions from other volcanoes NE and SW beyond the Katmai cluster represented in this area include: (1) coignimbrite ash from Kaguyak’s caldera-forming event (5,800 14C years B.P.); (2) the climactic event from Fisher caldera (∼9,100 14C years B.P.—tentatively correlated); (3) at least three eruptions most likely from Mount Peulik (∼700, ∼7,700 and ∼8,500 14C years B.P.); and (4) a phreatic fallout most likely from the Gas Rocks (∼2,300 14C years B.P.). Most of the radiocarbon dating has been done on loess, soil and peat enclosing this tephra. Ash correlations supported by stratigraphy and microprobe data are combined with radiocarbon dating to show that variably organics-bearing substrates can provide reliable limiting ages for ash layers, especially when data for several sites is available.>(<3,460 14C years B.P.).  Eruptions from other volcanoes NE and SW beyond the Katmai cluster represented in this area include: (1) coignimbrite ash from Kaguyak’s caldera-forming event (5,800 14C years B.P.); (2) the climactic event from Fisher caldera (∼9,100 14C years B.P.—tentatively correlated); (3) at least three eruptions most likely from Mount Peulik (∼700, ∼7,700 and ∼8,500 14C years B.P.); and (4) a phreatic fallout most likely from the Gas Rocks (∼2,300 14C years B.P.). Most of the radiocarbon dating has been done on loess, soil and peat enclosing this tephra. Ash correlations supported by stratigraphy and microprobe data are combined with radiocarbon dating to show that variably organics-bearing substrates can provide reliable limiting ages for ash layers, especially when data for several sites is available.

  12. Chronology and pyroclastic stratigraphy of the May 18, 1980, eruption of Mount St. Helens, Washington

    NASA Technical Reports Server (NTRS)

    Criswell, C. William

    1987-01-01

    The eruption of Mount St. Helens on May 18, 1980 can be subdivided into six phases: the paroxysmal phase I, the early Plinian phase II, the early ash flow phase III, the climactic phase IV, the late ash flow phase V, and phase VI, the activity of which consisted of a low-energy ash plume. These phases are correlated with stratigraphic subunits of ash-fall tephra and pyroclastic flow deposits. Sustained vertical discharge of phase II produced evolved dacite with high S/Cl ratios. Ash flow activity of phase III is attributed to decreases in gas content, indicated by reduced S/Cl ratios and increased clast density of the less evolved gray pumice. Climactic events are attributed to vent clearing and exhaustion of the evolved dacite.

  13. Eruption dynamics and explosive-effusive transitions during the 1400 cal BP eruption of Opala volcano, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.; Dufek, Josef; Ponomareva, Vera

    2018-05-01

    Deposits and pumice from the 1400 cal BP eruption of Opala volcano record activity that occurred at the explosive-effusive transition, resulting in intermittent, or stop-start, behavior, where explosive activity resumed following a pause. The eruption deposited distinctive, biotite-bearing rhyolite tephra across much of Kamchatka, and its stratigraphy consists of a lithic-rich pumice fall, overlain by pumice falls and pyroclastic density deposits, with the proportion of the latter increasing with height. This sequence repeats such that the middle of the total deposit is marked by a lithic-rich fall with abundant obsidian clasts. Notably, the eruptive pumice are poorly vesiculated, with vesicle textures that record fragmentation of a partially collapsed magmatic foam. The eruption vent, Baranii Amphitheater is filled with obsidian lavas of the same composition as the rhyolite tephra. Based upon the stratigraphic and compositional relations, we divide the eruption into four phases. Phase I initiated with eruption of a lithic-rich pumice fall, followed by eruption of Plinian falls and pyroclastic density currents. During Phase II, the eruption paused for at least 5-6 h; in this time, microlites nucleated and began to grow in the magma. Phase III essentially repeated the Phase I sequence. Obsidian lavas were emplaced during Phase IV. The pumice textures suggest that the magma ascended very near the threshold decompression rate for the transition between explosive (fast) and effusive (slow) behavior. The pause during Phase II likely occurred as decompression slowed enough for the magma to develop sufficient permeability for gas to escape resulting in collapse of the magmatic foam, stopping the eruption and temporarily sealing the conduit. After about 5-6 h, eruption resumed with, once again, magma decompressing very near the explosive-effusive transition. Phase III ended when the decompression rate slowed and lava dome emplacement began. Distributions of pumice and lithic clasts, and inclusion of data from previous workers, indicate minimum deposit volumes of 0.75 and 0.75-1.15 km3 (DRE) and eruption column heights of 18 and 20 km for Phases I and III, respectively. Phases I-III had a likely total duration of 60-80 h, including a pause in activity of 5-6 h during Phase II. This study demonstrates that analysis of vesicle textures from numerous pumice combined with stratigraphic data can reveal syn-eruptive changes in and links between magma permeability, decompression rate, and eruption style. OP-22-Pum is a typical Opala pumice. XRCT scans reveal that vesicles in pumice without obvious banding in hand sample are highly elongate and strongly aligned in different regions. The first half of the animation shows vesicles (white) and the second half shows the solid portions of the pumice (yellow). The field of view is 930 × 930 × 520 μm. OP-22-PumGlass is a pumice with alternating glassy and pumiceous domains. XRCT scans show that the glassy regions contain only small, sparse vesicles, whereas the pumiceous regions comprise elongate, aligned, and interconnected vesicles. The white domains are vesicles. The field of view is 1300 × 1950 × 520 μm.

  14. The longevity of lava dome eruptions: analysis of the global DomeHaz database

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Wolpert, R.; Calder, E.; Pallister, J. S.; Wright, H. M. N.

    2015-12-01

    The likely duration of ongoing volcanic eruptions is a topic of great interest to volcanologists, volcano observatories, and communities near volcanoes. Lava dome forming eruptions can last from days to centuries, and can produce violent, difficult-to-forecast activity including vulcanian to plinian explosions and pyroclastic density currents. Periods of active dome extrusion are often interspersed with periods of relative quiescence, during which extrusion may slow or pause altogether, but persistent volcanic unrest continues. This contribution focuses on the durations of these longer-term unrest phases, hereafter eruptions, that include periods of both lava extrusion and quiescence. A new database of lava dome eruptions, DomeHaz, provides characteristics of 228 eruptions at 127 volcanoes; for which 177 have duration information. We find that while 78% of dome-forming eruptions do not continue for more than 5 years, the remainder can be very long-lived. The probability distributions of eruption durations are shown to be heavy-tailed and vary by magma composition. For this reason, eruption durations are modeled with generalized Pareto distributions whose governing parameters depend on each volcano's composition and eruption duration to date. Bayesian predictive distributions and associated uncertainties are presented for the remaining duration of ongoing eruptions of specified composition and duration to date. Forecasts of such natural events will always have large uncertainties, but the ability to quantify such uncertainty is key to effective communication with stakeholders and to mitigation of hazards. Projections are made for the remaining eruption durations of ongoing eruptions, including those at Soufrière Hills Volcano, Montserrat and Sinabung, Indonesia. This work provides a quantitative, transferable method and rationale on which to base long-term planning decisions for dome forming volcanoes of different compositions, regardless of the quality of an individual volcano's eruptive record, by leveraging a global database.

  15. The Somma Vesuvius stress field induced by regional tectonics: evidences from seismological and mesostructural data

    NASA Astrophysics Data System (ADS)

    Bianco, F.; Castellano, M.; Milano, G.; Ventura, G.; Vilardo, G.

    1998-06-01

    A detailed structural and geophysical study of the Somma-Vesuvius volcanic complex was carried out by integrating mesostructural measurements, focal mechanisms and shear-wave splitting analysis. Fault-slip and focal mechanism analysis indicate that the volcano is affected by NW-SE-, NE-SW-trending oblique-slip faults and by E-W-trending normal faults. Magma chamber(s) responsible for plinian/sub-plinian eruptions (i.e. A.D. 79 and 1631) formed inside the area bounded by E-W-trending normal faults. The post-1631 fissural eruptions (i.e. 1794 and 1861) occurred along the main oblique-slip fault segments. The movements of the Vesuvius faults are mainly related to the regional stress field. A local stress field superposed to the regional one is also present but evidences of magma or gravity induced stresses are lacking. The local stress field acts inside the caldera area being related to fault reactivation processes. The present-day Vesuvius seismic activity is due to both regional and local stress fields. Shear-wave splitting analysis reveals an anisotropic volume due to stress induced cracks NW-SE aligned by faulting processes. Since the depth extent of the anisotropic volume is at least 6 km b.s.l., we deduce the NW-SE-trending oblique-slip fault system represents the main discontinuity on which lies the volcano. This discontinuity is responsible for the morphological lowering of the edifice in its southwestern side.

  16. Ultra-distal fine ash occurrences of the Icelandic Askja-S Plinian eruption deposits in Southern Carpathian lakes: New age constraints on a continental scale tephrostratigraphic marker

    NASA Astrophysics Data System (ADS)

    Kearney, R.; Albert, P. G.; Staff, R. A.; Pál, I.; Veres, D.; Magyari, E.; Bronk Ramsey, C.

    2018-05-01

    Here we present the results of the first cryptotephra investigation of two Late glacial-Holocene lake records from the Southern Carpathian Mountains in Romania, Lake Brazi and Lake Lia. The discovery of an important Icelandic tephrostratigraphic marker, the Askja-S, in the sedimentary records of both sites significantly extends the known ash dispersal from this Plinian eruption. Bayesian age-depth modelling of available radiocarbon (14C) data from both sedimentary records allows us to further refine the depositional age of this ultra-distal tephra. In combination with age constraints on the tephra from other well-dated European sites, we produce an updated age for this key tephrostratigraphic marker of 10,824 ± 97 cal yrs BP (95.4% range). The Askja-S tephra is stratigraphically positioned after the palaeoenvironmental proxy response to the Preboreal Oscillation at both sites. The widespread distribution of this tephra across Europe offers the potential to assess spatio-temporal variability of this climatic signal. The discovery of the Askja-S in lake records from the Southern Carpathians highlights the likelihood of finding other ultra-distal (Icelandic) cryptotephra marker layers within the region. Additionally, given the location of the Carpathian region, it offers the opportunity to further enhance and integrate tephrostratigraphic frameworks of north-western Europe with those of the Mediterranean and Anatolia regions, which will enable a more precise comparison of palaeoenvironmental archives across Europe.

  17. Hierarchy of facies of pyroclastic flow deposits generated by Laacher See type eruptions

    NASA Astrophysics Data System (ADS)

    Freundt, A.; Schmincke, H.-U.

    1985-04-01

    The upper Quaternary pyroclastic flow deposits of Laacher See volcano show compositional and structural facies variations on four different scales: (1) eruptive units of pyroclastic flows, composed of many flow units; (2) depositional cycles of as many as five flow units; flow units containing (3) regional intraflow-unit facies; and (4) local intraflow-unit subfacies. These facies can be explained by successively overlapping processes beginning in the magma column and ending with final deposition. The pyroclastic flow deposits thus reflect major aspects of the eruptive history of Laacher See volcano: (a) drastic changes in eruptive mechanism due to increasing access of water to the magma chamber and (b) change in chemical composition and crystal and gas content as evacuation of a compositionally zoned magma column progressed. The four scales of facies result from four successive sets of processes: (1) differentiation in the magma column and external factors governing the mechanism of eruption; (2) temporal variations of factors inducing eruption column collapse; (3) physical conditions in the eruption column and the way in which its collapse proceeds; and (4) interplay of flow-inherent and morphology-induced transport mechanics.

  18. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    NASA Astrophysics Data System (ADS)

    Banks, Norman G.; Koyanagi, Robert Y.; Sinton, John M.; Honma, Kenneth T.

    1984-10-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10°E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 × 10 6 m 3 in volume (75 × 10 6 m 3 of magma) on land and at least 70-100 × 60 6 m 3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in late 1981 and early 1982, but these were of lesser magnitude than the 15 May 1981 event. The 15 May lava is predominantly aa and ranges from 3 to > 30 m in thickness. In composition, it is a high-alumina basalt with small (< 1 mm long) phenocrysts of plagioclase and clinopyroxene (7%) that is more or less typical of basalt of the northern Marianas volcanoes. It contains slightly more SiO 2 (52%), K 2O, TiO 2, and less Al 2O 3 and CaO than does the basalt of the last eruptive event of Mount Pagan Volcano in 1925. Gas analyses indicate that a large portion of air was introduced into the vent system through the porous volcanic edifice and that the carbon gases were not in equilibrium with the magma or each other.

  19. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    USGS Publications Warehouse

    Banks, N.G.; Koyanagi, R.Y.; Sinton, J.M.; Honma, K.T.

    1984-01-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10??E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 ?? 106 m3 in volume (75 ?? 106 m3 of magma) on land and at least 70-100 ?? 606 m3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in late 1981 and early 1982, but these were of lesser magnitude than the 15 May 1981 event. The 15 May lava is predominantly aa and ranges from 3 to > 30 m in thickness. In composition, it is a high-alumina basalt with small (< 1 mm long) phenocrysts of plagioclase and clinopyroxene (7%) that is more or less typical of basalt of the northern Marianas volcanoes. It contains slightly more SiO2 (52%), K2O, TiO2, and less Al2O3 and CaO than does the basalt of the last eruptive event of Mount Pagan Volcano in 1925. Gas analyses indicate that a large portion of air was introduced into the vent system through the porous volcanic edifice and that the carbon gases were not in equilibrium with the magma or each other. ?? 1984.

  20. Transient numerical model of magma ascent dynamics: application to the explosive eruptions at the Soufrière Hills Volcano

    NASA Astrophysics Data System (ADS)

    La Spina, G.; de'Michieli Vitturi, M.; Clarke, A. B.

    2017-04-01

    Volcanic activity exhibits a wide range of eruption styles, from relatively slow effusive eruptions that produce lava flows and lava domes, to explosive eruptions that can inject large volumes of fragmented magma and volcanic gases high into the atmosphere. Although controls on eruption style and scale are not fully understood, previous research suggests that the dynamics of magma ascent in the shallow subsurface (< 10 km depth) may in part control the transition from effusive to explosive eruption and variations in eruption style and scale. Here we investigate the initial stages of explosive eruptions using a 1D transient model for magma ascent through a conduit based on the theory of the thermodynamically compatible systems. The model is novel in that it implements finite rates of volatile exsolution and velocity and pressure relaxation between the phases. We validate the model against a simple two-phase Riemann problem, the Air-Water Shock Tube problem, which contains strong shock and rarefaction waves. We then use the model to explore the role of the aforementioned finite rates in controlling eruption style and duration, within the context of two types of eruptions at the Soufrière Hills Volcano, Montserrat: Vulcanian and sub-Plinian eruptions. Exsolution, pressure, and velocity relaxation rates all appear to exert important controls on eruption duration. More significantly, however, a single finite exsolution rate characteristic of the Soufrière Hills magma composition is able to produce both end-member eruption durations observed in nature. The duration therefore appears to be largely controlled by the timescales available for exsolution, which depend on dynamic processes such as ascent rate and fragmentation wave speed.

  1. Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history

    NASA Astrophysics Data System (ADS)

    Thordarson, T.; Larsen, G.

    2007-01-01

    The large-scale volcanic lineaments in Iceland are an axial zone, which is delineated by the Reykjanes, West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ), which is growing in length by propagation to the southwest through pre-existing crust. These zones are connected across central Iceland by the Mid-Iceland Belt (MIB). Other volcanically active areas are the two intraplate belts of Öræfajökull (ÖVB) and Snæfellsnes (SVB). The principal structure of the volcanic zones are the 30 volcanic systems, where 12 are comprised of a fissure swarm and a central volcano, 7 of a central volcano, 9 of a fissure swarm and a central domain, and 2 are typified by a central domain alone. Volcanism in Iceland is unusually diverse for an oceanic island because of special geological and climatological circumstances. It features nearly all volcano types and eruption styles known on Earth. The first order grouping of volcanoes is in accordance with recurrence of eruptions on the same vent system and is divided into central volcanoes (polygenetic) and basalt volcanoes (monogenetic). The basalt volcanoes are categorized further in accordance with vent geometry (circular or linear), type of vent accumulation, characteristic style of eruption and volcanic environment (i.e. subaerial, subglacial, submarine). Eruptions are broadly grouped into effusive eruptions where >95% of the erupted magma is lava, explosive eruptions if >95% of the erupted magma is tephra (volume calculated as dense rock equivalent, DRE), and mixed eruptions if the ratio of lava to tephra occupy the range in between these two end-members. Although basaltic volcanism dominates, the activity in historical time (i.e. last 11 centuries) features expulsion of basalt, andesite, dacite and rhyolite magmas that have produced effusive eruptions of Hawaiian and flood lava magnitudes, mixed eruptions featuring phases of Strombolian to Plinian intensities, and explosive phreatomagmatic and magmatic eruptions spanning almost the entire intensity scale; from Surtseyan to Phreatoplinian in case of "wet" eruptions and Strombolian to Plinian in terms of "dry" eruptions. In historical time the magma volume extruded by individual eruptions ranges from ˜1 m 3 to ˜20 km 3 DRE, reflecting variable magma compositions, effusion rates and eruption durations. All together 205 eruptive events have been identified in historical time by detailed mapping and dating of events along with extensive research on documentation of eruptions in historical chronicles. Of these 205 events, 192 represent individual eruptions and 13 are classified as "Fires", which include two or more eruptions defining an episode of volcanic activity that lasts for months to years. Of the 159 eruptions verified by identification of their products 124 are explosive, effusive eruptions are 14 and mixed eruptions are 21. Eruptions listed as reported-only are 33. Eight of the Fires are predominantly effusive and the remaining five include explosive activity that produced extensive tephra layers. The record indicates an average of 20-25 eruptions per century in Iceland, but eruption frequency has varied on time scale of decades. An apparent stepwise increase in eruption frequency is observed over the last 1100 years that reflects improved documentation of eruptive events with time. About 80% of the verified eruptions took place on the EVZ where the four most active volcanic systems (Grímsvötn, Bárdarbunga-Veidivötn, Hekla and Katla) are located and 9%, 5%, 1% and 0.5% on the RVZ-WVZ, NVZ, ÖVB, and SVB, respectively. Source volcano for ˜4.5% of the eruptions is not known. Magma productivity over 1100 years equals about 87 km 3 DRE with basaltic magma accounting for about 79% and intermediate and acid magma accounting for 16% and 5%, respectively. Productivity is by far highest on the EVZ where 71 km 3 (˜82%) were erupted, with three flood lava eruptions accounting for more than one half of that volume. RVZ-WVZ accounts for 13% of the magma and the NWZ and the intraplate belts for 2.5% each. Collectively the axial zone (RVZ, WVZ, NVZ) has only erupted 15-16% of total magma volume in the last 1130 years.

  2. Eruptive history of a low-frequency and low-output rate Pleistocene volcano, Ciomadul, South Harghita Mts., Romania

    NASA Astrophysics Data System (ADS)

    Szakács, Alexandru; Seghedi, Ioan; Pécskay, Zoltán; Mirea, Viorel

    2015-02-01

    Based on a new set of K-Ar age data and detailed field observations, the eruptive history of the youngest volcano in the whole Carpathian-Pannonian region was reconstructed. Ciomadul volcano is a dacitic dome complex located at the southeastern end of the Călimani-Gurghiu-Harghita Neogene volcanic range in the East Carpathians. It consists of a central group of extrusive domes (the Ciomadul Mare and Haramul Mare dome clusters and the Köves Ponk dome) surrounded by a number of isolated peripheral domes, some of them strongly eroded (Bálványos, Puturosul), and others topographically well preserved (Haramul Mic, Dealul Mare). One of the domes (Dealul Cetăţii) still preserves part of its original breccia envelope. A large number of bread-crust bombs found mostly along the southern slopes of the volcano suggest that the dome-building activity at Ciomadul was punctuated by short Vulcanian-type explosive events. Two late-stage explosive events that ended the volcanic activity of Ciomadul left behind two topographically well-preserved craters disrupting the central group of domes: the larger-diameter, shallower, and older Mohoş phreatomagmatic crater and the smaller, deeper and younger Sf. Ana (sub)Plinian crater. Phreatomagmatic products of the Mohoş center, including accretionary lapilli-bearing base-surge deposits and poorly sorted airfall deposits with impact sags, are known close to the eastern crater rim. A key section studied in detail south of Băile Tuşnad shows the temporal succession of eruptive episodes related to the Sf. Ana (sub)Plinian event, as well as relationships with the older dome-building stages. The age of this last eruptive event is loosely constrained by radiocarbon dating of charcoal pieces and paleosoil organic matter at ca. 27-35 ka. The age of the Mohoş eruption is not constrained, but we suggest that it is closely related to the Sf. Ana eruption. The whole volcanic history of Ciomadul spans over ca. 1 Myr, starting with the building up of peripheral domes and then concentrating in its central part. Ciomadul appears as a small-volume (ca. 8.74 km3) and very low-frequency and low-output rate volcano (ca. 9 km3/Myr) at the terminus of a gradually diminishing and extinguishing volcanic range. A number of geodynamically active features strongly suggest that the magma plumbing system beneath Ciomadul is not completely frozen, so future activity cannot be ruled out.

  3. Paleo-geomorphic evolution of the Ciomadul volcano (East Carpathians, Romania) using integrated volcanological, stratigraphical and radiometric data

    NASA Astrophysics Data System (ADS)

    Karátson, Dávid; Wulf, Sabine; Veres, Daniel; Gertisser, Ralf; Telbisz, Tamás; Magyari, Enikö

    2016-04-01

    Ciomadul volcano is the youngest eruptive center of the Carpatho-Pannonian Region (CPR), located at the southernmost end of the Intra-Carpathian Volcanic Range, and within this, the Harghita Mountains in the East Carpathians. As a result of multi-disciplinary, ongoing studies (Karátson et al. 2013 and in review; Magyari et al. 2014; Veres et al. in prep.; Wulf et al. in review), we have obtained a number of constraints on the paleo-geomorphic evolution of the volcano. Our studies clarified that this volcano, a lava dome complex with a twin-crater (i.e. the older Mohos peat bog and the younger St. Ana lake), produced frequent explosive eruptions between 50 and 29 ky. As a result, a set of superimposed volcanic landforms were created, the chronology of which in some cases can be well constrained, in other cases further studies are required to infer their timing. Ciomadul evolved as a moderately explosive dacitic dome complex possibly for several hundred ka (see controversial chronology in Karátson et al. 2013, Harangi et al. 2015 and Szakács et al. 2015), resulting in a set of adjoining lava domes and a central complex. There is no evidence for crater-forming eruptions during that time, although the possibility of moderate explosions cannot be ruled out. Field relations show that the first exposive products are phreatomagmatic tuff series, called Turia type, dated at ca. 50 ka. These tephra units could be linked to the formation of a "Paleo-Mohos" crater, and possibly to the northern half-caldera rim which consists of massive lava dome rock and hosts Ciomadul Mare, the highest point of the volcano (1300 m). After this first explosive activity, volcanism seems to have migrated toward the W, at the site of the later St. Ana crater. Following plinian eruption(s) at ca. 47-43 ka, the explosive activity went dormant, and a lava dome might have grown up in a possibly small "Proto-St. Ana" crater. At 31-32 ka, a succession of violent magmatic explosive eruptions occurred, called "TGS" (Targu Seciuesc) eruptions. Noteworthy, these products can be pointed out from drilling in the Mohos crater, inactive by that time, the tuff units being intercalated between lacustrine deposits. The TGS eruptions, further shaping St. Ana crater, started with lava dome disruption and pumiceous block-and-ash flows, and possibly terminated by a plinian event distributing pumice fall to the SE. Finally, after some ka dormancy, the youngest eruption of Ciomadul, again of phreatomagmatic type, took place at ca. 29 ka ("Latest St. Ana" eruption). Its products can be also recovered from Mohos crater, and at the same time they drape the landscape to the S and E. That this eruption was a really violent, crater-forming event, accounting for the relatively large crater of present-day St. Ana (~1600 m), can be explained by the wide distribution of this latest tephra, identified as far as 350 km from vent near Odessa ('Roxolany tephra').

  4. Volcanoes in the Classroom: Simulating an Eruption Column

    NASA Astrophysics Data System (ADS)

    Harpp, K. S.; Geist, D. J.; Koleszar, A. M.

    2005-12-01

    Few students have the opportunity to witness volcanic eruptions first hand. Analog models of eruptive processes provide ways for students to apply basic physical principles when field observations are not feasible. We describe a safe simulation of violent volcanic explosions, one that can be carried out simply and easily as a demonstration for specialized volcanology classes, introductory classes, and science outreach programs. Volcanic eruptions are fundamentally gas-driven phenomena. Depressurization of volatiles dissolved in magma during ascent is the driving force behind most explosive eruptions. We have developed a demonstration whereby the instructor can initiate a gas-driven eruption, which produces a dramatic but safe explosion and eruptive column. First, one pours liquid nitrogen into a weighted, plastic soda bottle, which is then sealed and placed into a trashcan filled with water. As the liquid nitrogen boils, the pressure inside the bottle increases until the seal fails, resulting in an explosion. The expansive force propels a column of water vertically, to 10 or more meters. Students can operate the demonstration themselves and carry out a sequence of self-designed variations, changing the vent size and viscosity of the "magma", for instance. They can also vary the material used as "tephra", studying the effects of projectile density, column height, and wind direction on tephra distribution. The physical measurements that students collect, such as column height and tephra radius, can be used as the basis for problem sets that explore the dynamics of eruption columns. Possible calculations include ejection velocity, the pressure needed to propel the water column, and average vesicularity of the "magma". Students can then compare their results to observations from real volcanic eruptions. We find this to be an exceedingly effective demonstration of gas-driven liquid explosions and one that is safe if done properly. [NOTE: Please do NOT attempt this demonstration without full, detailed instructions and safety precautions, see website resource below].

  5. An ignimbrite caldera from the bottom up: Exhumed floor and fill of the resurgent Bonanza caldera, Southern Rocky Mountain volcanic field, Colorado

    USGS Publications Warehouse

    Lipman, Peter W.; Zimmerer, Matthew J.; McIntosh, William C.

    2015-01-01

    Among large ignimbrites, the Bonanza Tuff and its source caldera in the Southern Rocky Mountain volcanic field display diverse depositional and structural features that provide special insights concerning eruptive processes and caldera development. In contrast to the nested loci for successive ignimbrite eruptions at many large multicyclic calderas elsewhere, Bonanza caldera is an areally isolated structure that formed in response to a single ignimbrite eruption. The adjacent Marshall caldera, the nonresurgent lava-filled source for the 33.9-Ma Thorn Ranch Tuff, is the immediate precursor for Bonanza, but projected structural boundaries of two calderas are largely or entirely separate even though the western topographic rim of Bonanza impinges on the older caldera. Bonanza, source of a compositionally complex regional ignimbrite sheet erupted at 33.12 ± 0.03 Ma, is a much larger caldera system than previously recognized. It is a subequant structure ∼20 km in diameter that subsided at least 3.5 km during explosive eruption of ∼1000 km3 of magma, then resurgently domed its floor a similar distance vertically. Among its features: (1) varied exposure levels of an intact caldera due to rugged present-day topography—from Paleozoic and Precambrian basement rocks that are intruded by resurgent plutons, upward through precaldera volcanic floor, to a single thickly ponded intracaldera ignimbrite (Bonanza Tuff), interleaved landslide breccia, and overlying postcollapse lavas; (2) large compositional gradients in the Bonanza ignimbrite (silicic andesite to rhyolite ignimbrite; 60%–76% SiO2); (3) multiple alternations of mafic and silicic zones within a single ignimbrite, rather than simple upward gradation to more mafic compositions; (4) compositional contrasts between outflow sectors of the ignimbrite (mainly crystal-poor rhyolite to east, crystal-rich dacite to west); (5) similarly large compositional diversity among postcollapse caldera-fill lavas and resurgent intrusions; (6) brief time span for the entire caldera cycle (33.12 to ca. 33.03 Ma); (7) an exceptionally steep-sided resurgent dome, with dips of 40°–50° on west and 70°–80° on northeast flanks. Some near-original caldera morphology has been erosionally exhumed and remains defined by present-day landforms (western topographic rim, resurgent core, and ring-fault valley), while tilting and deep erosion provide three-dimensional exposures of intracaldera fill, floor, and resurgent structures. The absence of Plinian-fall deposits beneath proximal ignimbrites at Bonanza and other calderas in the region is interpreted as evidence for early initiation of pyroclastic flows, rather than lack of a high eruption column. Although the absence of a Plinian deposit beneath some ignimbrites elsewhere has been interpreted to indicate that abrupt rapid foundering of the magma-body roof initiated the eruption, initial caldera collapse began at Bonanza only after several hundred kilometers of rhyolitic tuff had erupted, as indicated by the minor volume of this composition in the basal intracaldera ignimbrite. Caldera-filling ignimbrite has been largely stripped from the southern and eastern flank of the Bonanza dome, exposing large areas of caldera-floor as a structurally coherent domed plate, bounded by ring faults with locations that are geometrically closely constrained even though largely concealed beneath valley alluvium. The structurally coherent floor at Bonanza contrasts with fault-disrupted floors at some well-exposed multicyclic calderas where successive ignimbrite eruptions caused recurrent subsidence. Floor rocks at Bonanza are intensely brecciated within ∼100 m inboard of ring faults, probably due to compression and crushing of the subsiding floor in proximity to steep inward-dipping faults. Upper levels of the floor are locally penetrated by dike-like crack fills of intracaldera ignimbrite, interpreted as dilatant fracture fills rather than ignimbrite vents. The resurgence geometry at Bonanza has implications for intracaldera-ignimbrite volume; this parameter may have been overestimated at some young calderas elsewhere, with bearing on outflow-intracaldera ratios and times of initial caldera collapse. Such features at Bonanza provide insights for interpreting calderas universally, with respect to processes of caldera collapse and resurgence, inception of subsidence in relation to progression of the ignimbrite eruption, complications with characterizing structural versus topographic margins of calderas, contrasts between intra- versus extracaldera ignimbrite, and limitations in assessing volumes of large caldera-forming eruptions. Bonanza provides a rare site where intact caldera margins and floor are exhumed and exposed, providing valuable perspectives for understanding younger similar calderas in some of the world’s most active and dangerous silicic provinces.

  6. Quantifying the condition of eruption column collapse during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Koyaguchi, Takehiro; Suzuki, Yujiro

    2016-04-01

    During an explosive eruption, a mixture of pyroclasts and volcanic gas forms a buoyant eruption column or a pyroclastic flow. Generation of a pyroclastic flow caused by eruption column collapse is one of the most hazardous phenomena during explosive volcanic eruptions. The quantification of column collapse condition (CCC) is, therefore, highly desired for volcanic hazard assessment. Previously the CCC was roughly predicted by a simple relationship between magma discharge rate and water content (e.g., Carazzo et al., 2008). When a crater is present above the conduit, because of decompression/compression process inside/above the crater, the CCC based on this relationship can be strongly modified (Woods and Bower, 1995; Koyaguchi et al., 2010); however, the effects of the crater on CCC has not been fully understood in a quantitative fashion. Here, we have derived a semi-analytical expression of CCC, in which the effects of the crater is taken into account. The CCC depends on magma properties, crater shape (radius, depth and opening angle) as well as the flow rate at the base of crater. Our semi-analytical CCC expresses all these dependencies by a single surface in a parameter space of the dimensionless magma discharge rate, the dimensionless magma flow rate (per unit area) and the ratio of the cross-sectional areas at the top and the base of crater. We have performed a systematic parameter study of three-dimensional (3D) numerical simulations of eruption column dynamics to confirm the semi-analytical CCC. The results of the 3D simulations are consistent with the semi-analytical CCC, while they show some additional fluid dynamical features in the transitional state (e.g., partial column collapse). Because the CCC depends on such many parameters, the scenario towards the generation of pyroclastic flow during explosive eruptions is considered to be diverse. Nevertheless, our semi-analytical CCC together with the existing semi-analytical solution for the 1D conduit flow model (Koyaguchi, 2005) allows us to intuitively and quantitatively understand how the eruption column dynamics approaches to the CCC as the crater radius increases during the waxing stage of an eruption, or as the magma chamber pressure decreases during the waning stage.

  7. Furthering the investigation of eruption styles through quantitative shape analyses of volcanic ash particles

    NASA Astrophysics Data System (ADS)

    Nurfiani, D.; Bouvet de Maisonneuve, C.

    2018-04-01

    Volcanic ash morphology has been quantitatively investigated for various aims such as studying the settling velocity of ash for modelling purposes and understanding the fragmentation processes at the origin of explosive eruptions. In an attempt to investigate the usefulness of ash morphometry for monitoring purposes, we analyzed the shape of volcanic ash particles through a combination of (1) traditional shape descriptors such as solidity, convexity, axial ratio and form factor and (2) fractal analysis using the Euclidean Distance transform (EDT) method. We compare ash samples from the hydrothermal eruptions of Iwodake (Japan) in 2013, Tangkuban Perahu (Indonesia) in 2013 and Marapi (Sumatra, Indonesia) in 2015, the dome explosions of Merapi (Java, Indonesia) in 2013, the Vulcanian eruptions of Merapi in 2010 and Tavurvur (Rabaul, Papaua New Guinea) in 2014, and the Plinian eruption of Kelud (Indonesia) in 2014. Particle size and shape measurements were acquired from a Particle Size Analyzer with a microscope camera attached to the instrument. Clear differences between dense/blocky particles from hydrothermal or dome explosions and vesicular particles produced by the fragmentation of gas-bearing molten magma are well highlighted by conventional shape descriptors and the fractal method. In addition, subtle differences between dense/blocky particles produced by hydrothermal explosions, dome explosions, or quench granulation during phreatomagmatic eruptions can be evidenced with the fractal method. The combination of shape descriptors and fractal analysis is therefore potentially able to distinguish between juvenile and non-juvenile magma, which is of importance for eruption monitoring.

  8. Volcanic eruption volume flux estimations from very long period infrasound signals

    NASA Astrophysics Data System (ADS)

    Yamada, Taishi; Aoyama, Hiroshi; Nishimura, Takeshi; Iguchi, Masato; Hendrasto, Muhamad

    2017-01-01

    We examine very long period infrasonic signals accompanying volcanic eruptions near active vents at Lokon-Empung volcano in Indonesia, Aso, Kuchinoerabujima, and Kirishima volcanoes in Japan. The excitation of the very long period pulse is associated with an explosion, the emerging of an eruption column, and a pyroclastic density current. We model the excitation of the infrasound pulse, assuming a monopole source, to quantify the volume flux and cumulative volume of erupting material. The infrasound-derived volume flux and cumulative volume can be less than half of the video-derived results. A largely positive correlation can be seen between the infrasound-derived volume flux and the maximum eruption column height. Therefore, our result suggests that the analysis of very long period volcanic infrasound pulses can be helpful in estimating the maximum eruption column height.

  9. Chlorine as a geobarometer tool: Application to the explosive eruptions of the Volcanic Campanian District (Mount Somma-Vesuvius, Phlegrean Fields, Ischia)

    NASA Astrophysics Data System (ADS)

    Balcone-Boissard, Hélène; Boudon, Georges; Zdanowicz, Géraldine; Orsi, Giovanni; Civetta, Lucia; Webster, Jim D.; Cioni, Raffaello; D'Antonio, Massimo

    2016-04-01

    One of the current stakes in modern volcanology is the definition of magma storage conditions which has direct implications on the eruptive style and thus on the associated risks and the management of likely related crisis. In alkaline differentiated magmas, chlorine (Cl), contrary to H2O, occurs as a minor volatile species but may be used as a geobarometer. Numerous experimental studies on Cl solubility have highlighted its saturation conditions in silicate melts. The NaCl-H2O system is characterized by immiscibility under wide ranges of pressure, temperature and NaCl content (< 200 MPa, < 1000°C). The addition of the silicate melt to the system does not rule out this property. These P-T conditions are very common for alkaline magmas evolving in shallow reservoirs, and they strongly affect the evolution of sin-eruptive magmatic melts and fluids. In alkali magmas, the Cl concentration in the exsolved fluid phase may increase with that of Cl in the silicate melt. Yet this system becomes strongly non-Henryan at high Cl concentration, depending on P-T conditions: the exsolved fluid phase unmixes to form a low-density, Cl-poor and H2O-rich vapour phase, and a dense hypersaline brine. In such a subcritical domain, as the composition of both vapour phase and brine is fixed, also the Cl concentration in the silicate melt is invariant, as expected from the Gibb's phase rule. The Cl buffer value will depend on the silicate melt composition, being higher in alkali-rich melts. In addition, we also underline the importance of considering the general HCOSClF system to well decipher pressure information from Cl buffering effect. As the equilibrium between the silicate melt and the fluid phase is generally inherited from conditions established in the reservoir rather than during magma ascent, Cl buffering effect can be evidenced through the analysis of the residual glass. Here we applied systematically this methodology to the explosive eruptions of the three threatening volcanoes of the Neapolitan area: Mount Somma-Vesuvius, Phlegrean Fields and Ischia. We have analysed the products of the representative explosive eruptions of each volcano, including Plinian, sub-Plinian and strombolian events. We have focussed our research on the earliest emitted, most evolved products of each eruption, likely representing the shallower, fluid-saturated portion of the reservoir. As the studied eruptions cover the entire eruptive history of each volcanic system, the results allow better constraining the evolution through time of the shallow plumbing system. We highlighted for Mount Somma - Vesuvius two magma ponding zones, at ~170-200 MPa and ~105-115 MPa, alternatively active in time. For Phlegrean Fields, we evidence a progressive deepening of the shallow reservoirs, from the Campanian Ignimbrite (30-50 MPa) to the Monte Nuovo eruption (115 MPa). Only one eruption was studied for Ischia, the Cretaio eruption, that shows a reservoir at 140 MPa. The results on pressure are in large agreement with literature. The Cl geobarometer may help scientists to define the reservoir dynamics through time and provide strong constraints on pre-eruptive conditions, of utmost importance for the interpretation of the monitoring data and the identification of precursory signals.

  10. Katmai volcanic cluster and the great eruption of 1912

    USGS Publications Warehouse

    Hildreth, W.; Fierstein, J.

    2000-01-01

    In June 1912, the world's largest twentieth century eruption broke out through flat-lying sedimentary rocks of Jurassic age near the base of Trident volcano on the Alaska Peninsula. The 60 h ash-flow and Plinian eruptive sequence excavated and subsequently backfilled with ejecta a flaring funnel-shaped vent since called Novarupta. The vent is adjacent to a cluster of late Quaternary stratocones and domes that have released about 140 km3 of magma in the past 150 k.y. Although the 1912 vent is closest to the Trident group and is also close to Mageik and Griggs volcanoes, it was the summit of Mount Katmai, 10 km east of Novarupta, that collapsed during the eruption to form a 5.5 km3 caldera. Many earthquakes, including 14 in the range M 6-7, took place during and after the eruption, releasing 250 times more seismic energy than the 1991 caldera-forming eruption of the Philippine volcano, Pinatubo. The contrast in seismic behavior may reflect the absence of older caldera faults at Mount Katmai, lack of upward (subsidence opposing) magma flow owing to lateral magma withdrawal in 1912, and the horizontally stratified structure of the thick shale-rich Mesozoic basement. The Katmai caldera compensates for only 40% of the 13 km3 of 1912 magma erupted, which included 7-8 km3 of slightly zoned high-silica rhyolite and 4.5 km3 of crystal-rich dacite that grades continuously into 1 km3 of crystal-rich andesite. We have now mapped, sampled, and studied the products of all 20 components of the Katmai volcanic cluster. Pyroxene dacite and silicic andesite predominate at all of them, and olivine andesite is also common at Griggs, Katmai, and Trident volcanoes, but basalt and rhyodacite have erupted only at Mount Katmai. Rhyolite erupted only in 1912 and is otherwise absent among Quaternary products of the cluster. Pleistocene products of Mageik and Trident and all products of Griggs are compositionally distinguishable from those of 1912 at Novarupta. Holocene products of Mount Martin and Trident are closer in composition to the andesite-dacite array of 1912, but they reveal consistent differences. The affinity of the 1912 suite is closest with the array of products erupted by the Southwest Katmai cone, the edifice that had produced the only pre-1912 rhyodacite as well as the largest prehistoric Plinian eruption in the cluster. It is doubtful that any 1912 magma had been stored beneath Novarupta or Trident, and there is no evidence that more than one magma chamber erupted in 1912. Despite a compositional gap separating the aphyric rhyolite from the very crystal-rich andesite-dacite continuum, isotopic and chemical affinities linking all the 1912 ejecta and the continuity of all those ejecta in magmatic temperature and oxygen fugacity suggest that the rhyolite originated principally by incremental upward expulsion of interstitial melt from subjacent andesite-dacite mush. A large reservoir of such hot crystal mush is required both as the residue of rhyolitic melt separation and as a proximate heat source to thermally sustain the nearly aphyric condition of the overlying rhyolite. A model is presented for a unitary zoned chamber beneath Mount Katmai.

  11. Chlorine as a geobarometer tool: Application to the large explosive eruptions of Vesuvius

    NASA Astrophysics Data System (ADS)

    Balcone-Boissard, Hélène; Boudon, Georges; Cioni, Raffaello; Zdanowicz, Géraldine; Orsi, Giovanni; Civetta, Lucia

    2015-04-01

    One of the current stakes in modern volcanology is the definition of magma storage conditions which has direct implications on the eruptive style and thus on the associated risks and the management of likely related crisis. In alkaline differentiated magmas, chlorine (Cl), contrary to H2O, occurs as a minor volatile species but may be used as a geobarometer. Numerous experimental studies on Cl solubility have highlighted its saturation conditions in alkaline silicate melts. The NaCl-H2O system is characterized by immiscibility under wide ranges of pressure, temperature and NaCl content (< 200 MPa, < 1000°C). The addition of the silicate melt to the system does not rule out this property. These P-T conditions are very common for alkaline magmas evolving in shallow reservoirs, and they strongly affect the evolution of sin-eruptive magmatic melts and fluids. In H2O-bearing systems, the Cl concentration in the exsolved H2O vapour phase may increase with that of Cl in the silicate melt. Yet this system becomes strongly non-Henryan at high Cl concentration, depending on P-T conditions: the exsolved fluid phase unmixes to form a low-density, Cl-poor and H2O -rich vapour phase, and a dense hypersaline brine. In such a subcritical domain, as the composition of both vapour phase and brine is fixed, also the Cl concentration in the silicate melt is invariant, as expected from the Gibb's phase rule. The Cl buffer value will depend on the silicate melt composition, being higher in alkali-rich melts. The achievement of the Cl buffer value is so explained by the equilibrium of the silicate melt with a two-phase fluid in the reservoir. As this equilibrium is generally inherited from conditions established in the reservoir rather than during magma ascent, Cl buffering effect can be evidenced through the analysis of the residual glass. Here we applied systematically this methodology to the large explosive eruptions of Monte Somma-Vesuvius: We have analysed the products of 13 explosive eruptions of Monte Somma-Vesuvius, including four Plinian (Pomici di Base, Mercato, Avellino, Pompeii), five sub-Plinian (Verdoline, AP1, AP2, Pollena, 1631 AD) and four violent strombolian to ash emission events (AP3, 1822, 1906, 1944). We have focussed our research on the earliest emitted, most evolved products of each eruption, likely representing the shallower, H2O-saturated portion of the reservoir. We highlighted two magma ponding zones, at ~170-200 MPa and ~105-115 MPa. We have also estimated maximum pre-eruptive H2O content for the different magma compositions, varying between 3.5 and 7 wt%. The results, in large agreement with literature, are very promising. The Cl geobarometer may help scientists to define the reservoir dynamics through time and provide strong constraints on pre-eruptive conditions, of outmost importance for the interpretation of the monitoring data and the identification of precursory signals.

  12. Preliminary investigation of the effects of eruption source parameters on volcanic ash transport and dispersion modeling using HYSPLIT

    NASA Astrophysics Data System (ADS)

    Stunder, B.

    2009-12-01

    Atmospheric transport and dispersion (ATD) models are used in real-time at Volcanic Ash Advisory Centers to predict the location of airborne volcanic ash at a future time because of the hazardous nature of volcanic ash. Transport and dispersion models usually do not include eruption column physics, but start with an idealized eruption column. Eruption source parameters (ESP) input to the models typically include column top, eruption start time and duration, volcano latitude and longitude, ash particle size distribution, and total mass emission. An example based on the Okmok, Alaska, eruption of July 12-14, 2008, was used to qualitatively estimate the effect of various model inputs on transport and dispersion simulations using the NOAA HYSPLIT model. Variations included changing the ash column top and bottom, eruption start time and duration, particle size specifications, simulations with and without gravitational settling, and the effect of different meteorological model data. Graphical ATD model output of ash concentration from the various runs was qualitatively compared. Some parameters such as eruption duration and ash column depth had a large effect, while simulations using only small particles or changing the particle shape factor had much less of an effect. Some other variations such as using only large particles had a small effect for the first day or so after the eruption, then a larger effect on subsequent days. Example probabilistic output will be shown for an ensemble of dispersion model runs with various model inputs. Model output such as this may be useful as a means to account for some of the uncertainties in the model input. To improve volcanic ash ATD models, a reference database for volcanic eruptions is needed, covering many volcanoes. The database should include three major components: (1) eruption source, (2) ash observations, and (3) analyses meteorology. In addition, information on aggregation or other ash particle transformation processes would be useful.

  13. Rhyolitic components of the Michipicoten greenstone belt, Ontario: Evidence for late Archaen intracontinental rifts or convergent plate margins in the Canadian Shield?

    NASA Technical Reports Server (NTRS)

    Sylvester, P. J.; Attoh, K.; Schulz, K. J.

    1986-01-01

    Rhyolitic rocks often are the dominant felsic end member of the biomodal volcanic suites that characterize many late Archean greenstone belts of the Canadian Shield. The rhyolites primarily are pyroclastic flows (ash flow tuffs) emplaced following plinian eruptions, although deposits formed by laval flows and phreatomagmatic eruptions also are presented. Based both on measured tectono-stratigraphic sections and provenance studies of greenstone belt sedimentary sequences, the rhyolites are believed to have been equal in abundance to associated basaltic rocks. In many recent discussions of the tectonic setting of late Archean Canadian greenstone belts, rhyolites have been interpreted as products of intracontinental rifting . A study of the tectono-stratigraphic relationships, rock associations and chemical characteristics of the particularly ell-exposed late Archean rhyolites of the Michipicoten greenstone belt, suggests that convergent plate margin models are more appropriate.

  14. Syneruptive deep magma transfer and shallow magma remobilization during the 2011 eruption of Shinmoe-dake, Japan—Constraints from melt inclusions and phase equilibria experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Yasuda, Atsushi; Hokanishi, Natsumi; Kaneko, Takayuki; Nakada, Setsuya; Fujii, Toshitsugu

    2013-05-01

    The 2011 Shinmoe-dake eruption started with a phreatomagmatic eruption (Jan 19), followed by climax sub-Plinian events and subsequent explosions (Jan 26-28), lava accumulation in the crater (end of January), and vulcanian eruptions (February-April). We have studied a suite of ejecta to investigate the magmatic system beneath the volcano and remobilization processes in the silicic magma mush. Most of the ejecta, including brown and gray colored pumice clasts (Jan 26-28), ballistically ejected dense lava (Feb 1), and juvenile particles in ash from the phreatomagmatic and vulcanian events are magma mixing products (SiO2 = 57-58 wt.%; 960-980 °C). Mixing occurred between silicic andesite (SA) and basaltic andesite (BA) magmas at a fixed ratio (40%-30% SA and 60%-70% BA). The SA magma had SiO2 = 62-63 wt.% and a temperature of 870 °C, and contains 43 vol.% phenocrysts of pyroxene, plagioclase, and Fe-Ti oxide. The BA magma had SiO2 = 55 wt.% and a temperature of 1030 °C, and contains 9 vol.% phenocrysts of olivine and plagioclase. The SA magma partly erupted without mixing as white parts of pumices and juvenile particles. The two magmatic end-members crystallized at different depths, requiring the presence of two separate magma reservoirs; shallower SA reservoir and deeper BA reservoir. An experimental study reveals that the SA magma had been stored at a pressure of 125 MPa, corresponding to a depth of 5 km. The textures and forms of phenocrysts from the BA magma indicate rapid crystallization directly related to the 2011 eruptive activity. The wide range of H2O contents of olivine melt inclusions (5.5-1.6 wt.%) indicates that rapid crystallization was induced by decompression, with olivine crystallization first (≤ 250 MPa), followed by plagioclase addition. The limited occurrence of olivine melt inclusions trapped at depths of < 5 km is consistent with the proposed magma system model, because olivine crystallization ceased after magma mixing. Our petrological model is consistent with a geophysical model that explains whole crustal deformation as being due to a single source located 7-8 km northwest of the Shinmoe-dake summit. However, even the shallowest estimated source of this deformation (7.5-6.2 km) is deeper than the SA reservoir, which thus requires a contribution of deeper BA magmas to the observed deformation. Remobilization of mush-like SA magma occurred in two stages before the early sub-Plinian event. Firstly, precursor mixing with BA magma and associated heating occurred (925-871 °C; stage-1 of ≥ 350 h), followed by final mixing with BA magma (stage-2). MgO profiles of magnetite phenocrysts define timescales of 0.7-15.2 h from this final mixing to eruption. The mixed and heated magmas, and stagnant mush that existed in the SA reservoir in the precursor stage, were finally erupted together. Magnetite phenocrysts in the Feb 18 ash reveal the occurrence of continuous erosion of the stagnant mush during the course of the 2011 eruptive activity.

  15. Relationship between eruption plume heights and seismic source amplitudes of eruption tremors and explosion events

    NASA Astrophysics Data System (ADS)

    Mori, A.; Kumagai, H.

    2016-12-01

    It is crucial to analyze and interpret eruption tremors and explosion events for estimating eruption size and understanding eruption phenomena. Kumagai et al. (EPS, 2015) estimated the seismic source amplitudes (As) and cumulative source amplitudes (Is) for eruption tremors and explosion events at Tungurahua, Ecuador, by the amplitude source location (ASL) method based on the assumption of isotropic S-wave radiation in a high-frequency band (5-10 Hz). They found scaling relations between As and Is for eruption tremors and explosion events. However, the universality of these relations is yet to be verified, and the physical meanings of As and Is are not clear. In this study, we analyzed the relations between As and Is for eruption tremors and explosion events at active volcanoes in Japan, and estimated As and Is by the ASL method. We obtained power-law relations between As and Is, in which the powers were different between eruption tremors and explosion events. These relations were consistent with the scaling relations at Tungurahua volcano. Then, we compared As with maximum eruption plume heights (H) during eruption tremors analyzed in this study, and found that H was proportional to 0.21 power of As. This relation is similar to the plume height model based on the physical process of plume rise, which indicates that H is proportional to 0.25 power of volumetric flow rate for plinian eruptions. This suggests that As may correspond to volumetric flow rate. If we assume a seismic source with volume changes and far-field S-wave, As is proportional to the source volume rate. This proportional relation and the plume height model give rise to the relation that H is proportional to 0.25 power of As. These results suggest that we may be able to estimate plume heights in realtime by estimating As during eruptions from seismic observations.

  16. Contrasting styles of welding observed in the proximal Askja 1875 eruption deposits II: Local welding

    NASA Astrophysics Data System (ADS)

    Carey, R. J.; Houghton, B. F.; Thordarson, T.

    2008-03-01

    As an alternative to classical welding models of fall deposits due to the progressive accumulation of hot tephra which then weld, we describe here welded deposits on the northern 1875 caldera rim of Askja volcano that have welded due to the influence of hot, discrete spatter bombs impacting into and supplying heat to a halo of surrounding tephra. This style of welding we term 'local welding' in contrast to 'regional welding' which is described elsewhere [Carey, R.J., Houghton, B.F., Thordarson, T., 2008. Contrasting styles of welding observed in the proximal Askja 1875 eruption deposits I: Regional welding. J. Volcanol. Geotherm. Res. 171, 1-19. doi:10.1016/j.jvolgeores.2007.11.020]. Locally welded deposits are associated with the rhyolitic Plinian phase of the 1875 eruption of Askja volcano. Two distinct welding units (W1 and W2) are interbedded with Plinian fall on the northern caldera rim, and grade outwards to weakly dispersed non-welded fall. Spatter bombs are found in both welding units but vary in their characteristic sizes and internal features. In the W1 unit simple bombs with homogeneous internal characteristics up to ˜ 60 cm in diameter are found. In the W2 unit, large discrete spatter bombs with complex internal features range up to 9 m in diameter. We describe here two case studies showing the effects of a) single small spatter bombs; b) multiple small spatter bombs and c) large discrete spatter bombs varying in size. Vertical and lateral profiles through welding zones reveal that the primary controls on local welding are the availability of supplied or added heat and the loading capacity of the spatter bomb. Local welding grades are much higher than that of regional welding, as the combined effects of heat, compaction and insulation can provide suitable conditions which lead to dense welding and, proximal to the spatter bomb, rheomorphic flowage. If heating and loading exceed the critical requirement for welding, porosity loss via matrix welding and vesicle collapse occurs to a point where further strain must be accommodated as shearing and ductile flowage. The spatter bombs are found only within the weakly dispersed welding units and are the final erupted products of each fountaining phase. Their low viscosities are evident by their deformation on impact and fluidal forms, and hold some important clues to eruption dynamics in the shallow conduit and vent regions.

  17. Myth and catastrophic reality: using cosmogonic mythology to identify cosmic impacts and massive plinian eruptions in holocene South America.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masse, W. B.

    Major natural catastrophes (e.g., 'universal' floods, fire, darkness, and sky falling down) are prominently reflected in traditional South American creation myths, cosmology, religion, and worldview. We are now beginning to recognize that cosmogonic myths represent a rich and largely untapped data set concerning the most dramatic natural events and processes experienced by each cultural group during the past several thousand years. Observational details regarding specific catastrophes are encoded in myth storylines, typically cast in terms of supernatural characters and actions. Not only are the myths amenable to scientific analysis, but also some sets of myths encode multiple catastrophes in meaningfulmore » relative chronological order. The present study considers more than 4200 myths, including more than 260 'universal' catastrophe myths from cultural groups throughout South America. These myths are examined in light of available geological, paleoenvironmental, archeological, and documentary evidence. Our analysis reveals three possible ultra-plinian volcanic eruptions, two in Columbia and the other in the Gran Chaco, the latter likely associated with a poorly dated late Holocene eruption of Nuevo Mundo in central Bolivia. Our analysis also identifies a set of traditions likely linked with the well-known Campo del Cielo iron meteorite impact in northern Argentina originally hypothesized to have occurred around 4000 years ago. Intriguingly, these traditions strongly suggest that the Campo del Cielo impact triggered widespread mass fires in the Gran Chaco region and possibly in the Brazilian Highlands. Several other potential cosmic impacts, distinct from Campo del Cielo, are hinted at in the mythology of other locations in South America. The numerous catastrophe myths in the Gran Chaco region exhibit the most coherent chronological sequence of any South American region. The sequence begins with a 'Great Flood,' by far the most widespread catastrophe myth in South America, typically represented as the beginning of our modern world. The great flood is followed 'many generations' later by the 'Great Fire' (hypothesized as the Campo del Cielo impact) with the 'Great Darkness' and 'sky falling down' (hypothesized as the Nuevo Mundo eruption) being the most recent catastrophe, occurring 'many generations' after the great fire. We draw upon the physical record to suggest rough calendrical dates for these witnessed catastrophic events.« less

  18. Towards reconstruction of the lost Late Bronze Age intra-caldera island of Santorini, Greece.

    PubMed

    Karátson, Dávid; Gertisser, Ralf; Telbisz, Tamás; Vereb, Viktor; Quidelleur, Xavier; Druitt, Timothy; Nomikou, Paraskevi; Kósik, Szabolcs

    2018-05-04

    During the Late Bronze Age, the island of Santorini had a semi-closed caldera harbour inherited from the 22 ka Cape Riva Plinian eruption, and a central island referred to as 'Pre-Kameni' after the present-day Kameni Islands. Here, the size and age of the intracaldera island prior to the Late Bronze Age (Minoan) eruption are constrained using a photo-statistical method, complemented by granulometry and high-precision K-Ar dating. Furthermore, the topography of Late Bronze Age Santorini is reconstructed by creating a new digital elevation model (DEM). Pre-Kameni and other parts of Santorini were destroyed during the 3.6 ka Minoan eruption, and their fragments were incorporated as lithic clasts in the Minoan pyroclastic deposits. Photo-statistical analysis and granulometry of these lithics, differentiated by lithology, constrain the volume of Pre-Kameni to 2.2-2.5 km 3 . Applying the Cassignol-Gillot K-Ar dating technique to the most characteristic black glassy andesite lithics, we propose that the island started to grow at 20.2 ± 1.0 ka soon after the Cape Riva eruption. This implies a minimum long-term lava extrusion rate of ~0.13-0.14 km 3 /ky during the growth of Pre-Kameni.

  19. Computable general equilibrium modelling of economic impacts from volcanic event scenarios at regional and national scale, Mt. Taranaki, New Zealand

    NASA Astrophysics Data System (ADS)

    McDonald, G. W.; Cronin, S. J.; Kim, J.-H.; Smith, N. J.; Murray, C. A.; Procter, J. N.

    2017-12-01

    The economic impacts of volcanism extend well beyond the direct costs of loss of life and asset damage. This paper presents one of the first attempts to assess the economic consequences of disruption associated with volcanic impacts at a range of temporal and spatial scales using multi-regional and dynamic computable general equilibrium (CGE) modelling. Based on the last decade of volcanic research findings at Mt. Taranaki, three volcanic event scenarios (Tahurangi, Inglewood and Opua) differentiated by critical physical thresholds were generated. In turn, the corresponding disruption economic impacts were calculated for each scenario. Under the Tahurangi scenario (annual probability of 0.01-0.02), a small-scale explosive (Volcanic Explosivity Index (VEI) 2-3) and dome forming eruption, the economic impacts were negligible with complete economic recovery experienced within a year. The larger Inglewood sub-Plinian to Plinian eruption scenario event (VEI > 4, annualised probability of 0.003) produced significant impacts on the Taranaki region economy of 207 million (representing 4.0% of regional gross domestic product (GDP) 1 year after the event, 2007 New Zealand dollars), that will take around 5 years to recover. The Opua scenario, the largest magnitude volcanic hazard modelled, is a major flank collapse and debris avalanche event with an annual probability of 0.00018. The associated economic impacts of this scenario were 397 million (representing 7.7% of regional GDP 1 year after the event) with the Taranaki region economy suffering permanent structural changes. Our dynamic analysis illustrates that different economic impacts play out at different stages in a volcanic crisis. We also discuss the key strengths and weaknesses of our modelling along with potential extensions.

  20. Eruptive Source Parameters from Near-Source Gravity Waves Induced by Large Vulcanian eruptions

    NASA Astrophysics Data System (ADS)

    Barfucci, Giulia; Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Marchetti, Emanuele

    2016-04-01

    The sudden ejection of hot material from volcanic vent perturbs the atmosphere generating a broad spectrum of pressure oscillations from acoustic infrasound (<10 Hz) to gravity waves (<0.03 Hz). However observations of gravity waves excited by volcanic eruptions are still rare, mostly limited to large sub-plinian eruptions and frequently at large distance from the source (>100 km). Atmospheric Gravity waves are induced by perturbations of the hydrostatic equilibrium of the atmosphere and propagate within a medium with internal density stratification. They are initiated by mechanisms that cause the atmosphere to be displaced as for the injection of volcanic ash plume during an eruption. We use gravity waves to infer eruptive source parameters, such as mass eruption rate (MER) and duration of the eruption, which may be used as inputs in the volcanic ash transport and dispersion models. We present the analysis of near-field observations (<7 km) of atmospheric gravity waves, with frequencies of 0.97 and 1.15 mHz, recorded by a pressure sensors network during two explosions in July and December 2008 at Soufrière Hills Volcano, Montserrat. We show that gravity waves at Soufrière Hills Volcano originate above the volcanic dome and propagate with an apparent horizontal velocities of 8-10 m/s. Assuming a single mass injection point source model, we constrain the source location at ~3.5 km a.s.l., above the vent, duration of the gas thrust < 140 s and MERs of 2.6 and 5.4 x10E7 kg/s, for the two eruptive events. Source duration and MER derived by modeling Gravity Waves are fully compatible with others independent estimates from field observations. Our work strongly supports the use of gravity waves to model eruption source parameters and can have a strong impact on our ability to monitor volcanic eruption at a large distance and may have future application in assessing the relative magnitude of volcanic explosions.

  1. The A.D. 79 eruption as a future explosive scenario in the Vesuvian area: evaluation of associated risk

    NASA Astrophysics Data System (ADS)

    Lirer, Lucio; Munno, Rosalba; Postiglione, Immacolata; Vinci, Anna; Vitelli, Livia

    Due to the lack of an effective policy of planning and prevention, over the past decades the area around Mt. Vesuvio has undergone a steady increase in population and uncontrolled housing development. Consequently, it has become one of the most hazardous volcanic areas in the world. In order to mitigate the damage that the impact of an explosive event would cause in the area, the Department of Civil Defense has worked out an Emergency Management Plan using the A.D. 1631 subplinian eruption as the most probable short-term event. However, from 25 000 years B.P. to present, the activity of the Somma-Vesuvio volcano has shown a sequence of eight eruptive cycles, which always began with a strong plinian eruption. In this paper we utilize the A.D. 79 eruption as an example of a potential large explosive eruption that might occur again at Vesuvio. A detailed tephrostratigraphic analysis of the eruption products was processed by a multivariate statistical analysis. This analysis proved useful for identifying marker layers in the sequences, thus allowing the recognition of some major phases of synchronous deposition and hence the definition of the chronological and spatial evolution of the eruption. By combining this reconstruction with land-use maps, a scenario is proposed with time intervals in the eruptive sequence similar to those reported in Pliny's letter. Thus, it was calculated that, after 7h from the start of the eruption, a total area of approximately 300km2 would be covered with the eruption products. In the following 11h, a total area of approximately 500km2 would be involved. The third and last phase of deposition would not cause significant variation in the total area involved, but it would bring about an increase in the thickness of the pyroclastic deposits in the perivolcanic area.

  2. Temporal evolution of the Roccamonfina volcanic complex (Pleistocene), Central Italy

    NASA Astrophysics Data System (ADS)

    Rouchon, V.; Gillot, P. Y.; Quidelleur, X.; Chiesa, S.; Floris, B.

    2008-10-01

    The Roccamonfina volcanic complex (RVC), in southern Italy, is an Early to Middle Pleistocene stratovolcano sharing temporal and morphological characteristics with the Somma-Vesuvius and the Alban Hills; both being associated with high volcanic hazard for the cities of Naples and Rome, respectively. The RVC is important for the understanding of volcanic evolution in the Roman and Campanian volcanic provinces. We report a comprehensive study of its evolution based on morphological, geochemical and K-Ar geochronological data. The RVC was active from c.a. 550 ka to 150 ka. Its evolution is divided into five stages, defining a volcanic pulse recurrence time of c.a. 90-100 kyr. The two initial stages, consisted in the construction of two successive stratovolcanoes of the tephrite-phonolite, namely "High-K series". The first stage was terminated by a major plinian eruption emplacing the trachytic Rio Rava pumices at 439 ± 9 ka. At the end of the second stage, the last High-K series stratovolcano was destroyed by a large sector collapse and the emplacement of the Brown Leucitic Tuff (BLT) at 353 ± 5 ka. The central caldera of the RVC is the result of the overlapping of the Rio Rava and of the BLT explosions. The plinian eruption of the BLT is related to the emptying of a stratified, deep-seated HKS magma chamber during the upwelling of K series (KS) magma, marking a major geochemical transition and plumbing system re-organization. The following stage was responsible for the emplacement of the Lower White Trachytic Tuff at 331 ± 2 ka, and of basaltic-trachytic effusive products erupted through the main vent. The subsequent activity was mainly restricted to the emplacement of basaltic-shoshonitic parasitic cones and lava flows, and of minor subplinian deposits of the Upper White Trachytic Tuff between 275 and 230 ka. The northern crater is most probably a maar that formed by the phreatomagmatic explosion of the Yellow Trachytic Tuff at 230 ka. The latest stage of activity featured the edification of the central shoshonitic domes at c.a. 150 ka.

  3. Numerical models of volcanic eruption plumes: inter-comparison and sensitivity

    NASA Astrophysics Data System (ADS)

    Costa, Antonio; Suzuki, Yujiro; Folch, Arnau; Cioni, Raffaello

    2016-10-01

    The accurate description of the dynamics of convective plumes developed during explosive volcanic eruptions represents one of the most crucial and intriguing challenges in volcanology. Eruptive plume dynamics are significantly affected by complex interactions with the surrounding atmosphere, in the case of both strong eruption columns, rising vertically above the tropopause, and weak volcanic plumes, developing within the troposphere and often following bended trajectories. The understanding of eruptive plume dynamics is pivotal for estimating mass flow rates of volcanic sources, a crucial aspect for tephra dispersion models used to assess aviation safety and tephra fallout hazard. For these reasons, several eruption column models have been developed in the past decades, including the more recent sophisticated computational fluid dynamic models.

  4. Burial of Emperor Augustus' villa at Somma Vesuviana (Italy) by post-79 AD Vesuvius eruptions and reworked (lahars and stream flow) deposits

    NASA Astrophysics Data System (ADS)

    Perrotta, Annamaria; Scarpati, Claudio; Luongo, Giuseppe; Aoyagi, Masanori

    2006-11-01

    A new archaeological site of Roman Age has been recently found engulfed in the products of Vesuvius activity at Somma Vesuviana, on the northern flank of the Somma-Vesuvius, 5 km from the vent. A 9 m deep, 30 by 35 m trench has revealed a monumental edifice tentatively attributed to the Emperor Augustus. Different than Pompeii and Herculaneum sites which were completely buried in the catastrophic eruption of 79 AD, this huge roman villa survived the effects of the 79 AD plinian eruption as suggested by stratigraphic and geochronologic data. It was later completely engulfed in the products of numerous explosive volcanic eruptions ranging from 472 AD to 1631 AD, which were separated by reworked material and paleosols. The exposed burial sequence is comprised of seven stratigraphic units. Four units are composed exclusively of pyroclastic products each emplaced during a unique explosive event. Two units are composed of volcaniclastic material (stream flow and lahars) emplaced during quiescent periods of the volcano. Finally, one unit is composed of both pyroclastic and volcaniclastic deposits. One of the more relevant volcanological results of this study is the detailed reconstruction of the destructive events that buried the Emperor Augustus' villa. Stratigraphic evidence shows the absence of any deposit associated with the 79 AD eruption at this site and that the building was extensively damaged (sacked) before it was engulfed by the products of subsequent volcanic eruptions and lahars. The products of the 472 AD eruption lie directly on the roman structures. They consist of scoria fall layers intercalated with massive and stratified pyroclastic density current deposits that caused limited damage to the structure. The impact on the building of penecontemporaneous lahars was more important; these caused the collapse of some structures. The remaining part of the building was subsequently entombed by the products of explosive eruptions (e.g. 512/536 eruption, 1631 eruption) and mass flows.

  5. Catastrophic eruptions of the directed-blast type at Mount St. Helens, bezymianny and Shiveluch volcanoes

    USGS Publications Warehouse

    Bogoyavlenskaya, G.E.; Braitseva, O.A.; Melekestsev, I.V.; Kiriyanov, V. Yu; Dan, Miller C.

    1985-01-01

    This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955-1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (1017-1018 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less. The heat energy of all three eruptions is comparable: 1.3 ?? 1018, 3.8-4.8 ?? 1018 and 1 ?? 1017 J for Shiveluch, Bezymianny, and Mount St. Helens, respectively. ?? 1985.

  6. Stratigraphy of Late Pleistocene-Holocene pyroclastic deposits of Tacana Volcano, Mexico-Guatemala

    NASA Astrophysics Data System (ADS)

    Macias, J. L.; Arce, J. L.; Garcia-Palomo, A.; Mora, J. C.; Saucedo, R.; Hughes, S.; Scolamacchia, T.

    2005-12-01

    Tacana volcano (4,060 masl), the highest peak of the Tacana Volcanic Complex, is an acitve volcano located on the Mexico-Guatemala border. Tacana resumed phreatic activity in 1950 and again in 1986. After this last event, the volcano became the locus of attention of authorities and local scientists began to study the complex. Tacana's stratigraphic record has been studied using radiocarbon dating and these indicate that the volcano has been very active in the past producing at least 12 explosive eruptions during the last 40 ka years as follow: a) Four partial dome destruction events with the generation of block-and-ash flow deposits at 40, 28, <26, and 16 ka. b) Four small-volume phreatomagmatic events that emplaced dilute density currents at 10.6, 7.5, 6, and 2.5 ka. c) Four eruptions that emplaced pumice-rich fall deposits, three of them widely dispersed towards the NE flank of the volcano in Guatemala and dated at ~32, <24 and <14 ka, and finally a 0.8 ka fall deposit restricted to the crater vicinity that might represent the youngest magmatic eruption of the volcano. Although refining of these stratigraphic sequence is still underway, the eruptive chronology of Tacana volcano cleary indicates that explosive eruptions producing plinian fall and pyroclastic density currents have taken place every 1 to 8 ka years. This record constrasts with the small phreatic eruptions that occur 1-2 per century. So, this indicates that Tacana volcano is more active than previously considered and these results must be considered for future researches on hazards maps and mitigation.

  7. A new high resolution total magnetic intensity data set of the Laacher See Volcano in the East-Eifel volcanic field, Germany

    NASA Astrophysics Data System (ADS)

    Goepel, A.; Queitsch, M.; Lonschinski, M.; Eitner, A.; Meisel, M.; Reißig, S.; Engelhardt, J.; Büchel, G.; Kukowski, N.

    2012-04-01

    The Laacher See Volcano (LSV) is part of the Quaternary East-Eifel volcanic field (EVF) located in the western part of Germany, where at least 103 eruptive centers have been identified. The Laacher See volcano explosively erupted about 6.3 km3 of phonolitic magma during a dominantly phreato-plinian eruption at about 12,900 BP. Despite numerous previous studies the eruptive history of LSV is not fully unveiled. For a better understanding of the eruptive history of LSV several geophysical methods, including magnetic, gravimetric and bathymetric surveys have been applied on and around Laacher See Volcano. Here we focus on the magnetic and bathymetric data. The presented high resolution magnetic data covering an area of about 25 km2 (20,000 sample points) and were collected using ground based proton magnetometers (GEM Systems GSM-19TGW, Geometrics G856) during several field campaigns. In addition, a magnetic survey on the lake was done using a non-magnetic boat as platform. The bathymetric survey was conducted on profiles (total length of 235 km) using an echo sounder GARMIN GPSMap 421. Depth data were computed to a bathymetric model on a 10 m spaced regular grid. A joint interpretation of magnetic, morphologic and bathymetric data allows us to search for common patterns which can be associated with typical volcanic features. From our data at least one new eruptive center and lava flow could be identified. Furthermore, the new data suggest that previously identified lava flows have not been accurately located.

  8. Seismic time-frequency analysis of the recent 2015 eruptive activity of Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D. M.; Nava Pichardo, F. A.; Reyes Dávila, G. A.; Arámbula-Mendoza, R.; Martínez Fierros, A.; Ramírez Vázquez, A.; González Amezcua, M.

    2015-12-01

    Volcán de Colima is an andesitic stratovolcano located in western Mexico. It is considered the most active volcano in Mexico, with activity characterized mainly by intermittent effusive and explosive episodes. On July 10th-12th 2015, Volcán de Colima underwent its most intense eruptive phase since its Plinian eruption in 1913. A partial collapse of the dome and of the crater wall generated several pyroclastic flows, the largest of which reached almost 10 km to the south of the volcano. Lava flows along with incandescent rockfalls descended through various flanks of the volcanic edifice. Ashfall affected people up to 40 km from the volcano's summit. Inhabitants from the small villages closest to the volcano were evacuated and authorities sealed off a 12 km area. We present an overview of the seismic activity that preceded and accompanied this eruptive phase, with data from the closest broadband and short period seismic stations of the Volcán de Colima monitoring network. We focus on the search of temporal information within the spectral content of the seismic signals. We first employ common time-frequency representations such as Fourier and wavelet transforms, but we also apply more recent techniques proposed for the analysis of non-stationary signals, such as empirical mode decomposition and the synchrosqueezing transform. We present and discuss the performances of these various methods characterizing and quantifying spectral changes which could be used to forecast future eruptive events and to evaluate the course of volcanic processes during ongoing eruptions.

  9. Role of large flank-collapse events on magma evolution of volcanoes. Insights from the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Villemant, Benoît; Friant, Anne Le; Paterne, Martine; Cortijo, Elsa

    2013-08-01

    Flank-collapse events are now recognized as common processes of destruction of volcanoes. They may occur several times on a volcanic edifice pulling out varying volumes of material from km3 to thousands of km3. In the Lesser Antilles Arc, a large number of flank-collapse events were identified. Here, we show that some of the largest events are correlated to significant variations in erupted magma compositions and eruptive styles. On Montagne Pelée (Martinique), magma production rate has been sustained during several thousand years following a 32 ka old flank-collapse event. Basic and dense magmas were emitted through open-vent eruptions that generated abundant scoria flows while significantly more acidic magmas were produced before the flank collapse. The rapid building of a new cone increased the load on magma bodies at depth and the density threshold. Magma production rate decreased and composition of the erupted products changed to more acidic compared to the preceding period of activity. These low density magma generated plinian and dome-forming eruptions up to the Present. In contrast at Soufrière Volcanic Centre of St. Lucia and at Pitons du Carbet in Martinique, the flank-collapses have an opposite effect: in both cases, the acidic magmas erupted immediately after the flank-collapses. These magmas are highly porphyritic (up to 60% phenocrysts) and much more viscous than the magmas erupted before the flank-collapses. They have been generally emplaced as voluminous and uptight lava domes (called “the Pitons”). Such magmas could not ascent without a significant decrease of the threshold effect produced by the volcanic edifice loading before the flank-collapse.

  10. The pumice raft-forming 2012 Havre submarine eruption was effusive

    NASA Astrophysics Data System (ADS)

    Manga, Michael; Fauria, Kristen E.; Lin, Christina; Mitchell, Samuel J.; Jones, Meghan; Conway, Chris E.; Degruyter, Wim; Hosseini, Behnaz; Carey, Rebecca; Cahalan, Ryan; Houghton, Bruce F.; White, James D. L.; Jutzeler, Martin; Soule, S. Adam; Tani, Kenichiro

    2018-05-01

    A long-standing conceptual model for deep submarine eruptions is that high hydrostatic pressure hinders degassing and acceleration, and suppresses magma fragmentation. The 2012 submarine rhyolite eruption of Havre volcano in the Kermadec arc provided constraints on critical parameters to quantitatively test these concepts. This eruption produced a >1 km3 raft of floating pumice and a 0.1 km3 field of giant (>1 m) pumice clasts distributed down-current from the vent. We address the mechanism of creating these clasts using a model for magma ascent in a conduit. We use water ingestion experiments to address why some clasts float and others sink. We show that at the eruption depth of 900 m, the melt retained enough dissolved water, and hence had a low enough viscosity, that strain-rates were too low to cause brittle fragmentation in the conduit, despite mass discharge rates similar to Plinian eruptions on land. There was still, however, enough exsolved vapor at the vent depth to make the magma buoyant relative to seawater. Buoyant magma was thus extruded into the ocean where it rose, quenched, and fragmented to produce clasts up to several meters in diameter. We show that these large clasts would have floated to the sea surface within minutes, where air could enter pore space, and the fate of clasts is then controlled by the ability to trap gas within their pore space. We show that clasts from the raft retain enough gas to remain afloat whereas fragments from giant pumice collected from the seafloor ingest more water and sink. The pumice raft and the giant pumice seafloor deposit were thus produced during a clast-generating effusive submarine eruption, where fragmentation occurred above the vent, and the subsequent fate of clasts was controlled by their ability to ingest water.

  11. Occurrence of Somma-Vesuvio fine ashes in the tephrostratigraphic record of Panarea, Aeolian Islands

    NASA Astrophysics Data System (ADS)

    Donatella, De Rita; Daniela, Dolfi; Corrado, Cimarelli

    2008-10-01

    Ash-rich tephra layers interbedded in the pyroclastic successions of Panarea island (Aeolian archipelago, Southern Italy) have been analyzed and related to their original volcanic sources. One of these tephra layers is particularly important as it can be correlated by its chemical and morphoscopic characteristics to the explosive activity of Somma-Vesuvio. Correlation with the Pomici di Base eruption, that is considered one of the largest explosive events causing the demolition of the Somma stratovolcano, seems the most probable. The occurrence on Panarea island of fine ashes related to this eruption is of great importance for several reasons: 1) it allows to better constrain the time stratigraphy of the Panarea volcano; 2) it provides a useful tool for tephrochronological studies in southern Italy and finally 3) it allows to improve our knowledge on the distribution of the products of the Pomici di Base eruption giving new insights on the dispersion trajectories of fine ashes from plinian plumes. Other exotic tephra layers interbedded in the Panarea pyroclastic successions have also been found. Chemical and sedimentological characteristics of these layers allow their correlation with local vents from the Aeolian Islands thus constraining the late explosive activity of Panarea dome.

  12. Revised chronostratigraphy of recurrent ignimbritic eruptions in Dominica (Lesser Antilles arc): Implications on the behavior of the magma plumbing system

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Solaro, Clara; Martel, Caroline

    2017-09-01

    Ignimbritic eruptions represent catastrophic events due to the magma volume involved and the related consequences on Earth's environment in relation with the released gases and the tephra dispersal. Dominica has been recognized as hosting one of the major ignimbritic eruptions of the last 200 ky in the Lesser Antilles arc, called the Roseau Tuff. But more recent works have evidenced several pumiceous events instead of a single large one. Here we propose a revised chronostratigraphy of the explosive activity that occurred in the last tens of thousands years based on three field trips, new 14C ages, detailed lithological and geochemical investigations, in particular a precise characterization of trace element glass chemistry. This eruptive history reconstruction is mainly based on outcrops along the coast and in the valley, since the luxury vegetation in the center of the island mostly precludes sections close to the central volcanic centers. We thus confirm that the Roseau event has been overestimated and that we may recognize five main ignimbritic events: Grande Savane, Layou ( 51 ka), Grand Bay, Roseau ( 33 ka), Grand Fond ( 24 ka). We discuss the possible volcanic center at their origin, in addition to correlations with some Plinian events of lower magnitude that were identified in the Roseau valley and in the southern part of Dominica. This study may help to better constrain the eruptive history of the most active volcanic island of the Lesser Antilles arc, which has important implications on hazard mitigation.

  13. Skirt clouds associated with the soufriere eruption of 17 april 1979.

    PubMed

    Barr, S

    1982-06-04

    A fortuitous and dramatic photograph of the Soufriere eruption column of 17 April 1979 displays a series of highly structured skirt clouds. The gentle distortion of thin, quasi-horizontal layers of moist air has been documented in meteorological situations. It is proposed that at St. Vincent subhorizontal layers of moist air were intensely deformed by the rapidly rising eruption column and were carried to higher altitudes, where they condensed to form the skirt clouds.

  14. Numerical modeling of tephra fallout from the 1913 eruption of Volcan de Colima (Mexico): insights into the limits of the geologic record

    NASA Astrophysics Data System (ADS)

    Connor, C.; Connor, L.

    2013-05-01

    A crucial problem at most volcanoes involves the reconstruction of past eruptions from the geologic record. Rapid erosion of many volcanic terrains means that even geologically recent eruptions can leave a relatively sparse record. Here we consider the tephra-stratigraphic record of the 1913 eruption of Volcan de Colima, a recent but greatly eroded tephra fallout deposit. A total of 37 stratigraphic sections of the 1913 deposit have been analyzed for thickness, granulometry and geochemistry. The 1913 scoria are hornblende and two-pyroxene andesites with approximately 58 wt% SiO2, providing a distinct geochemical and petrographic signature from earlier (1818) and later (1961) tephra fallout deposits. A computer algorithm and code, Tephra2, is used to model the thickness variation of the deposit observed at these 37 localities using the advection-diffusion equation and to model the particle size distribution at each locality. Based on models of the particle size distribution, we estimate a median particle size for the deposit to be approximately -0.15 phi. We find model eruption height of approximately 18 km amsl and total erupted mass of 4-6e7 kg to best fit the observed tephra-stratigraphy. This volume and column height agree well with estimates from integrating the interpolated isopach map and maximum clast analysis. When historical reports of tephra accumulation are included in an alternative model, finer median particle size (2 phi), higher columns (25 km amsl) and greater total eruption mass (1-10e8 kg) are inferred, but with much greater uncertainty. The differences between these models suggest that either significant segregation by particle size as a function of height occurred in the 1913 eruption column, or the distal tephra fallout was associated with co-pyroclastic flow plumes ascending to great height, rather than direct deposition from the eruption column. This analysis highlights potential bias in eruption magnitude estimates from using only proximal deposits, which are the most likely preserved.

  15. Diverse Water-Magma Interactions In The Conduit And Column During The 2008 Okmok Eruption, Alaska

    NASA Astrophysics Data System (ADS)

    Ort, M. H.; Unema, J. A.; Neal, C. A.; Larsen, J. F.; Schaefer, J. R.

    2015-12-01

    Ground, surface, and atmospheric water affected the Okmok (central Aleutians, Alaska) 2008 eruption in diverse ways. An initial 16-km-high column produced a widespread coarse fallout. Explosion breccias and lithic-rich fallout overlie this deposit proximally, topped by an ash with abundant accretionary lapilli and ash pellets. After this, a water-rich flood, likely from ejected lake water, left deposits in the eastern caldera. Pyroclastic density currents traveled northward in the caldera, leaving both coarse-ash dune forms and massive unsorted deposits. We interpret these to mark vent opening or widening, with diverse currents forming in different sectors due to directed explosions and partial column collapse. The rest of the eruption was characterized by water-rich ash and steam columns 1-4 km high, with brief <9-km-high periods. Several vents formed during the eruption; one enlarged a pre-existing lake and others formed a new lake, a small tuff ring, and a 300-m-high tuff cone. Surface water, shallow groundwater in coarse sediments, and atmospheric water were abundantly available throughout the eruption. Cone D Lake (13.6 Mm3 volume) drained into the North vent 7-10 days into the eruption, with massive groundwater and sediment removal. Nearby pit craters have no ejecta; surficial lava collapsed when underlying sediments were removed. The eruption column was typically gray or white, rarely black, and ashfall dominates the deposits at all localities, reflecting efficient fragmentation and deposition. Scrubbing of the plume by erupted and atmospheric water caused rapid deposition of the ash, so deposits thin rapidly away from the vent. Laminae and thin lenses dominate the deposits outside the caldera whereas some intracaldera deposits are massive beds up to several decimeters thick. Wind-blown ash-laden mist made low-angle ripples and discontinuous laminae; ash rain deposited continuous laminae. A capping vesicular ash (Av soil horizon) formed as a water-saturation front trapped air in the ash. These observations highlight how water affected fragmentation, transport, and deposition during the 2008 Okmok eruption.

  16. The oligocene Lund Tuff, Great Basin, USA: A very large volume monotonous intermediate

    USGS Publications Warehouse

    Maughan, L.L.; Christiansen, E.H.; Best, M.G.; Gromme, C.S.; Deino, A.L.; Tingey, D.G.

    2002-01-01

    Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (> 1000 km3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite-dacite-andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff - one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province - provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates. The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km3. It was emplaced 29.02 ?? 0.04 Ma in and around the coeval White Rock caldera which has an unextended north-south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase > quartz ??? hornblende > biotite > Fe-Ti oxides ??? sanidine > titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63-71 wt% SiO2) is poorly correlated with phenocryst abundance. These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We postulate that convective mixing in a sill-like magma chamber precluded development of a zoned chamber with a rhyolitic top or of a zoned pyroclastic deposit. Chemical variations in the Lund Tuff are consistent with equilibrium crystallization of a parental dacitic magma followed by eruptive mixing of compositionally diverse crystals and high-silica rhyolite vitroclasts during evacuation and emplacement. This model contrasts with the more systematic withdrawal from a bottle-shaped chamber in which sidewall crystallization creates a marked vertical compositional gradient and a substantial volume of capping-evolved rhyolite magma. Eruption at exceptionally high discharge rates precluded development of an underlying plinian deposit. The generation of the monotonous intermediate Lund magma and others like it in the middle Tertiary of the western USA reflects an unusually high flux of mantle-derived mafic magma into unusually thick and warm crust above a subducting slab of oceanic lithosphere. ?? 2002 Elsevier Science B.V. All rights reserved.

  17. Ozone depletion following future volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  18. Social and environmental impact of volcaniclastic flows related to 472 AD eruption at Vesuvius from stratigraphic and geoarcheological data

    NASA Astrophysics Data System (ADS)

    Di Vito, Mauro A.; de Vita, Sandro; Rucco, Ilaria; Bini, Monica; Zanchetta, Giovanni; Aurino, Paola; Cesarano, Mario; Ebanista, Carlo; Rosi, Mauro; Ricciardi, Giovanni

    2017-04-01

    There is a growing number of evidences in the surrounding plain of Somma-Vesuvius volcano which indicate that along with primary volcanic processes (i.e. fallout, pyroclastic density currents) the syn-eruptive and post-eruptive volcaniclastic remobilization has severely impacted the ancient civilizations, which flourished in the area. This represents an important starting point for understanding the future hazard related to a potential (and not remote) renewal of volcanic activity of the Campaniana volcanoes. We present geoarcheological and stratigraphic data obtained from the analysis of more than 160 sections in the Campanian plain showing the widespread impact of volcaniclastic debris flows and floods originated from the rapid remobilization of the products of the AD 472 eruption of Somma-Vesuvius, both on the environment and on the human landscape. This eruption was one of the two sub-Plinian historical events of Somma Vesuvius. This event largely impacted the northern and eastern territory surrounding the volcano with deposition of a complex sequence of pyroclastic-fallout and -current deposits. These sequences were variably affected by syn- and post-eruptive mobilization both along the Somma-Vesuvius slopes and the Apennine valleys with the emplacement of thick mud- and debris-flows which strongly modified the preexisting paleogeography of the Plain with irretrievable damages to the agricultural and urban landscape. The multidisciplinary approach to the study of the sequences permitted to reconstruct the palaeoenvironment before the eruption and the timing of the emplacement of both pyroclastic and volcanoclastic deposits. The preexisting landscape was characterized by intense human occupation, although showing strong evidences of degradation and abandonment due to the progressive decline of the Roman Empire. The impact of volcaniclastic flows continued for decades after the eruption as highlighted in the studied sequences by stratigraphic and archaeologic data. In fact the volcanoclastic flows emplacement continued at least until the following AD 512 eruption of Somma-Vesuvius, and likely contributed to the final decline of the Roman civilization in the area.

  19. Measuring the speed of magma ascent during explosive eruptions of Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    Ferguson, D. J.; Ruprecht, P.; Plank, T. A.; Hauri, E. H.; Gonnermann, H. M.; Houghton, B. F.; Swanson, D. A.

    2014-12-01

    The size and intensity of volcanic eruptions is controlled by a combination of the physical properties of magmas and the conditions of magma ascent. At basaltic volcanoes, where relatively fluid magmas are erupted, sustained explosive eruptions vary widely in style, from Hawaiian fountains erupted 10s to 100s of meter high to large Plinian type events, involving >20 km high eruption plumes. Decompression of magmas leads to volatile saturation and bubble growth, however it remains disputed how the dynamics of shallow ascent and degassing might control this disparate eruptive behaviour, or whether factors such as the initial volatile content exert the primary control on eruption style. A key issue is that the physical conditions of magma ascent, which may significantly impact eruptive dynamics, remain largely unconstrained by observational data. Here we quantify two primary variables - decompression rates and volatile contents - for magmas from three contrasting eruptions of Kīlauea volcano, Hawaii, using microanalysis and modelling of volatile diffusion along small melt tubes or embayments found in olivine crystals carried by the ascending magmas. During ascent decreasing solubility causes dissolved volatiles to diffuse along the embayment towards growing bubbles at the crystal edge. By modelling the diffusion of H2O, CO2 and S we obtain decompression rates, and indirectly ascent velocities, for the rising magma. For Hawaiian style fountaining events we obtain ascent rates of 0.05-0.07 MPa s-1 (~1 m s-1), whereas for a more intense subplinian eruption we obtain a notably faster rate of 0.29 MPa s-1 (>10m s-1). The timescales of melt transport from the storage region during these eruptions varied from around 3 to 40 minutes. We find no link between pre-eruptive volatile contents and eruption intensity, rather our results suggest that the eventual size of sustained explosive basaltic eruptions is likely governed by factors affecting the ascent velocity of melts in the volcanic conduit. The observed decompression rates are consistent with measured discharge rates, and with models predicting greater magma chamber overpressure for larger eruptions. Ascent rates may also further modulate dynamic processes in the volcanic conduit, such as the flow regime and bubble expansion, and consequently eruptive intensity.

  20. Shallow velocity structure across the Mariana arc

    NASA Astrophysics Data System (ADS)

    Tait, S.; Kaminski, E. C.; Carazzo, G.; Limare, A.

    2016-12-01

    Atmospheric injection of volcanic ash during explosive eruptions is controlled by the dynamics of a volcanic column and associated umbrella cloud, which are subject to a wind field, and are connected by a turbulent fountain which initiates horizontal spreading at the neutral buoyancy level. We present a new theoretical and experimental study of an axisymmetric turbulent umbrella cloud intruding horizontally at its neutral buoyancy level into a static environment linearly stratified in density. The intrusion is fed by a constant horizontal volume flux (Q0) at a finite radius (R0), where it has a constant thickness (2H0). The characteristics of the fountain (R0, H0, Q0) derive from a vertical forced plume (source momentum and buoyancy fluxes Mi , Fi) and environmental stratification N. Buoyancy drives horizontal flow but, despite high Reynolds number, impedes entrainment of ambient fluid into the umbrella cloud. Turbulent stresses are nevertheless crucial in the momentum balance. Our theory highlights the vertical profiles of density and velocity within the current of which we present experimental measurements. Initially, current buoyancy is opposed by the inertia of the ambient fluid, and current radius (RN(t)) grows linearly in time. Subsequently, turbulent drag opposes buoyancy, and the current breaks down into two parts: i) between the source and a transition radius (R0T(t)), a steady region where current thickness (2H) and mean velocity (U) are time-independent and decreasing functions of r ; ii), a contiguous unsteady « frontal » region, between the transition radius and the front (RTN), in which the current thickens. The theory predicts current shape and an asymptotic spreading behaviour (RN t^5/9) which agree well with experimental data. Our analysis of satellite observations of several sustained plinian events including the Pinatubo 1991 climactic eruption shows that both the initial and asymptotic spreading regimes predicted by the model are present.

  1. The Dynamics of Volcanic Umbrella Clouds

    NASA Astrophysics Data System (ADS)

    Tait, S.; Kaminski, E. C.; Carazzo, G.; Limare, A.

    2017-12-01

    Atmospheric injection of volcanic ash during explosive eruptions is controlled by the dynamics of a volcanic column and associated umbrella cloud, which are subject to a wind field, and are connected by a turbulent fountain which initiates horizontal spreading at the neutral buoyancy level. We present a new theoretical and experimental study of an axisymmetric turbulent umbrella cloud intruding horizontally at its neutral buoyancy level into a static environment linearly stratified in density. The intrusion is fed by a constant horizontal volume flux (Q0) at a finite radius (R0), where it has a constant thickness (2H0). The characteristics of the fountain (R0, H0, Q0) derive from a vertical forced plume (source momentum and buoyancy fluxes Mi , Fi) and environmental stratification N. Buoyancy drives horizontal flow but, despite high Reynolds number, impedes entrainment of ambient fluid into the umbrella cloud. Turbulent stresses are nevertheless crucial in the momentum balance. Our theory highlights the vertical profiles of density and velocity within the current of which we present experimental measurements. Initially, current buoyancy is opposed by the inertia of the ambient fluid, and current radius (RN(t)) grows linearly in time. Subsequently, turbulent drag opposes buoyancy, and the current breaks down into two parts: i) between the source and a transition radius (R0T(t)), a steady region where current thickness (2H) and mean velocity (U) are time-independent and decreasing functions of r ; ii), a contiguous unsteady « frontal » region, between the transition radius and the front (RTN), in which the current thickens. The theory predicts current shape and an asymptotic spreading behaviour (RN t^5/9) which agree well with experimental data. Our analysis of satellite observations of several sustained plinian events including the Pinatubo 1991 climactic eruption shows that both the initial and asymptotic spreading regimes predicted by the model are present.

  2. Key Lessons and New Directions from Pinatubo 1991

    NASA Astrophysics Data System (ADS)

    Pallister, J. S.; Newhall, C. G.

    2016-12-01

    Regional earthquakes can facilitate magma ascent. Basaltic magma was squeezed upward as the 1990 Luzon earthquake compressed the lower crust beneath Pinatubo. Such earthquakes usually don't lead to eruptions, but they can. Intrusion beneath a volcano can induce seismicity on nearby pre-existing faults. Examples include Pinatubo, Soufrière Hills, and Guagua Pichincha (White and McCausland, 2016). Mixing of fresh and pre-existing magma is perhaps the single most common immediate eruption trigger. Research since Pinatubo 1991 shows repeated resupply and mixing at many volcanoes. Sulfur and other volatiles can accumulate many times in excess of saturation. Accumulation for centuries may favor but not guarantee a plinian eruption (Winson, 2014), because a pre-existing volatile phase can expand instantly upon decompression. Precursory phenomena aren't necessarily diagnostic of the size of an eruption. Unrest at Pinatubo started like that before small eruptions, and didn't indicate a giant eruption until several days into VEI 3-scale conduit-clearing eruptions. Time from onset to climax may be minutes, hours, or days or, rarely, longer; but the final ramp to paroxysm tends to be short. Together, petrology and geophysics image subsurface plumbing of volcanoes. Such images are most convincing when equilibrium pressures coincide with seismic and geodetic evidence. Post-eruption events can be even more damaging and troublesome than eruptions themselves. Sediment yields can remain elevated for decades (Major et al., 2000; Gran et al 2005, among others). Geologic history gives a basis for estimating type and magnitude of future eruptions. Unless or until the character of unrest indicates one type of eruption or another, use geologic history to guide evacuation. Many geologic events are missing from the geologic record: The rich record of observed events at Pinatubo vs. today's stratigraphy shows that only a fraction are preserved. At a long-dormant volcano, expect scepticism and mobilize every resource to overcome it. Use eruption videos and develop personal trust with decision makers. There is no time to lose. Use probabilities to guide scientific discussion, to discuss worst cases in context, and to indicate uncertainties. Increasingly, probabilities are being used to quantify hazard and risk.

  3. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    NASA Astrophysics Data System (ADS)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS-NH-2015-81] through the Natural Hazard Mitigation Research Group funded by Ministry of Public Safety and Security of Korean government.

  4. Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon

    USGS Publications Warehouse

    Klug, C.; Cashman, K.; Bacon, C.

    2002-01-01

    The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the ???7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities (???5??10-13 m2) and a narrower permeability range (5-50??10-13 m2) than clasts from pyroclastic-flow deposits (0.2-330??10-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 ??m for the fall deposit clasts and 0.25-1 ??m for clasts from the pyroclastic flows. High vesicle number densities (???109 cm-3) in all clasts suggest that bubble nucleation occured rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D.value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by bubble growth, coalescence and permeability development. This sequence of events is best explained by nucleation in response to a downward-propagating decompression wave, followed by rapid bubble growth and coalescence prior to magma disruption by fragmentation. The heterogeneity of vesicle sizes and shapes, and the absence of differential expansion across individual clasts, suggest that post-fragmentation expansion played a limited role in the development of pumice structure. The higher vesicle number densities and lower permeabilities of pyroclastic-flow clasts indicate limited coalescence and suggest that fragmentation occurred shortly after decompression. Either increased eruption velocities or increased depth of fragmentation accompanying caldera collapse could explain compression of the pre-fragmentation vesiculation interval.

  5. Seismic and infrasonic source processes in volcanic fluid systems

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.

    Volcanoes exhibit a spectacular diversity in fluid oscillation processes, which lead to distinct seismic and acoustic signals in the solid earth and atmosphere. Volcano seismic waveforms contain rich information on the geometry of fluid migration, resonance effects, and transient and sustained pressure oscillations resulting from unsteady flow through subsurface cracks, fissures and conduits. Volcanic sounds contain information on shallow fluid flow, resonance in near-surface cavities, and degassing dynamics into the atmosphere. Since volcanoes have large spatial scales, the vast majority of their radiated atmospheric acoustic energy is infrasonic (<20 Hz). This dissertation presents observations from joint broadband seismic and infrasound array deployments at Mount St. Helens (MSH, Washington State, USA), Tungurahua (Ecuador), and Kilauea Volcano (Hawaii, USA), each providing data for several years. These volcanoes represent a broad spectrum of eruption styles ranging from hawaiian to plinian in nature. The catalogue of recorded infrasonic signals includes continuous broadband and harmonic tremor from persistent degassing at basaltic lava vents and tubes at Pu'u O'o (Kilauea), thousands of repetitive impulsive signals associated with seismic longperiod (0.5-5 Hz) events and the dynamics of the shallow hydrothermal system at MSH, rockfall signals from the unstable dacite dome at MSH, energetic explosion blast waves and gliding infrasonic harmonic tremor at Tungurahua volcano, and large-amplitude and long-duration broadband signals associated with jetting during vulcanian, subplinian and plinian eruptions at MSH and Tungurahua. We develop models for a selection of these infrasonic signals. For infrasonic long-period (LP) events at MSH, we investigate seismic-acoustic coupling from various buried source configurations as a means to excite infrasound waves in the atmosphere. We find that linear elastic seismic-acoustic transmission from the ground to atmosphere is inadequate to explain the observations, and propose that the signals may result from sudden containment failure of a pressurized hydrothermal crack. For the broadband eruption tremor signals, we propose that the infrasonic signals represent a low-frequency form of jet noise, analogous to the noise from man-made jet engines, but operating with larger spatial scales and consequently longer time-scales. For the persistent hawaiian tremor signals, we propose that bubble cloud oscillation in the upper section of a roiling magma conduit and vortex dynamics in the shallow degassing region act as broadband and harmonic tremor sources. We also consider infrasound propagation effects in a dynamic atmosphere and discuss their effects on recorded signals. This dissertation demonstrates that combined seismic and infrasonic data provide complementary perspectives on eruptive activity.

  6. Effects of Volcanic Eruptions on Stratospheric Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    2002-01-01

    The effects of the stratospheric sulfate aerosol layer associated with the Mt. Pinatubo volcano and future volcanic eruptions on the recovery of the ozone layer is studied with an interactive two-dimensional photochemical model. The time varying chlorine loading and the stratospheric cooling due to increasing carbon dioxide have been taken into account. The computed ozone and temperature changes associated with the Mt. Pinatubo eruption in 1991 agree well with observations. Long model runs out to the year 2050 have been carried out, in which volcanoes having the characteristics of the Mount Pinatubo volcano were erupted in the model at 10-year intervals starting in the year 2010. Compared to a non-volcanic run using background aerosol loading, transient reductions of globally averaged column ozone of 2-3 percent were computed as a result of each of these eruptions, with the ozone recovering to that computed for the non-volcanic case in about 5 years after the eruption. Computed springtime Arctic column ozone losses of from 10 to 18 percent also recovered to the non-volcanic case within 5 years. These results suggest that the long-term recovery of ozone would not be strongly affected by infrequent volcanic eruptions with a sulfur loading approximating Mt. Pinatubo. Sensitivity studies in which the Arctic lower stratosphere was forced to be 4 K and 10 K colder resulted in transient ozone losses of which also recovered to the non-volcanic case in 5 years. A case in which a volcano five times Mt. Pinatubo was erupted in the year 2010 led to maximum springtime column ozone losses of 45 percent which took 10 years to recover to the background case. Finally, in order to simulate a situation in which frequent smaller volcanic eruptions result in increasing the background sulfate loading, a simulation was made in which the background aerosol was increased by 10 percent per year. This resulted in a delay of the recovery of column ozone to 1980 values of more than 10 years.

  7. Early prediction of eruption site using lightning location data: Estimates of accuracy during past eruptions

    NASA Astrophysics Data System (ADS)

    Nína Petersen, Guðrún; Arason, Þórður; Bjornsson, Halldór

    2013-04-01

    Eruption of subglacial volcanoes may lead to catastrophic floods and therefore early determination of the exact eruption site may be critical to civil protection evacuation plans. Poor visibility due to weather or darkness often inhibit positive identification of exact eruption location for many hours. However, because of the proximity and abundance of water in powerful subglacial volcanic eruptions, they are probably always accompanied by early lightning activity in the volcanic column. Lightning location systems, designed for weather thunderstorm monitoring, based on remote detection of electromagnetic waves from lightning, can provide valuable real-time information on location of eruption site. Important aspect of such remote detection is its independence of weather, apart from thunderstorms close to the volcano. Individual lightning strikes can be 5-10 km in length and are sometimes tilted and to the side of the volcanic column. This adds to the lightning location uncertainty, which is often a few km. Furthermore, the volcanic column may be swayed by the local wind to one side. Therefore, location of a single lightning can be misleading but by calculating average location of many lightning strikes and applying wind correction a more accurate eruption site location can be obtained. In an effort to assess the expected accuracy, the average lightning locations during the past five volcanic eruptions in Iceland (1998-2011) were compared to the exact site of the eruption vent. Simultaneous weather thunderstorms might have complicated this analysis, but there were no signs of ordinary thunderstorms in Iceland during these eruptions. To identify a suitable wind correction, the vector wind at the 500 hPa pressure level (5-6 km altitude) was compared to mean lightning locations during the eruptions. The essential elements of a system, which predicts the eruption site during the first hour(s) of an eruption, will be described.

  8. Analysis of Distribution of Volcanoes around the Korean Peninsula and the Potential Effects on Korea

    NASA Astrophysics Data System (ADS)

    Choi, Eun-kyeong; Kim, Sung-wook

    2017-04-01

    Since the scale and disaster characteristics of volcanic eruptions are determined by their geological features, it is important not only to grasp the current states of the volcanoes in neighboring countries around the Korean Peninsula, but also to analyze the tectonic settings, tectonic regions, geological features, volcanic types, and eruption histories of these volcanoes. Volcanic data were based on the volcano information registered with the Global Volcanism Program at the Smithsonian Institute. We created a database of 289 volcanoes around Korea, Japan, China, Taiwan, and the Kamchatka area in Russia, and then identified a high-risk group of 29 volcanoes that are highly likely to affect the region, based on conditions such as volcanic activity, types of rock at risk of eruption, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) of 4 or more. We selected 29 hazardous volcanoes, including Baekdusan, Ulleungdo, and 27 Japanese volcanoes that can cause widespread ashfall on the Korean peninsula by potentially explosive eruptions. In addition, we identified ten volcanoes that should be given the highest priority, through an analysis of data available in literature, such as volcanic ash dispersion results from previous Japanese eruptions, the definition of a large-scale volcano used by Japan's Cabinet Office, and examination of cumulative magma layer volumes from Japan's quaternary volcanoes. We expect that predicting the extent of the spread of ash caused by this hazardous activity and analyzing its impact on the Korean peninsula will be help to predict volcanic ash damage as well as provide direction for hazard mitigation research. Acknowledgements This research was supported by a grant [MPSS-NH-2015-81] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  9. Tsunami deposits associated with the 7.3 ka caldera-forming eruption of the Kikai Caldera, insights for tsunami generation during submarine caldera-forming eruptions

    NASA Astrophysics Data System (ADS)

    Geshi, Nobuo; Maeno, Fukashi; Nakagawa, Shojiro; Naruo, Hideto; Kobayashi, Tetsuo

    2017-11-01

    Timing and mechanism of volcanic tsunamis will be a key to understand the dynamics of large-scale submarine explosive volcanism. Tsunami deposits associated with the VEI 7 eruption of the Kikai Caldera at 7.3 ka are found in the Yakushima and Kuchinoerabujima Islands, 40 km south -southeast of the caldera rim. The tsunami deposits distribute along the rivers in their northern coast up to 4.5 km from the river exit and up to 50 m above the present sea level. The tsunami deposits in the Yakushima area consist of pumice-bearing gravels in the lower part of the section (Unit I) and pumiceous conglomerate in the upper part (Unit II). The presence of rounded pebbles of sedimentary rocks, which characterize the beach deposit, indicates a run-up current from the coastal area. The rip-up clasts of the underlying paleosol in Unit I show strong erosion during the invasion of tsunami. Compositional similarity between the pumices in the tsunami deposit and the juvenile materials erupted in the early phase of the Akahoya eruption indicates the formation of tsunami deposit during the early phase of the eruption, which produced the initial Plinian pumice fall and the lower half of the Koya pyroclastic flow. Presence of the dense volcanic components (obsidians and lava fragments) besides pumices in the tsunami deposit supports that they were carried by the Koya pyroclastic flow, and not the pumices floating on the sea surface. Sequential relationship between the Koya pyroclastic flow and the tsunami suggests that the emplacement of the pyroclastic flow into the sea surrounding the caldera is the most probable mechanism of the tsunami.

  10. From pumice to obsidian: eruptive behaviors that produce tephra-flow dyads. II- The 114ka trachyte eruption at Pu'u Wa'awa'a (Hawai'i).

    NASA Astrophysics Data System (ADS)

    Shea, T.; Leonhardi, T. C.; Giachetti, T.; Larsen, J. F.; Lindoo, A. N.

    2014-12-01

    Associations of tephra and lava flow/domes produced by eruptions involving evolved magmas are a common occurrence in various types of volcanic settings (e.g. Pu'u Wa'awa'a ~114ka, Hawaii; South Mono ~AD625, California; Newberry Big Obsidian flow ~AD700, Oregon; Big Glass Mountain ~AD1100, California; Inyo ~AD1350, California, Chaitén AD2008-2009, Chile; Cordón Caulle AD2011-2012, Chile), ejecting up to a few cubic km of material (tephra+flow/dome). Most, if not all, of these eruptions have in common the paradoxical coexistence of (1) eruptive styles which are inferred to be sustained in nature (subplinian and plinian), with (2) a pulsatory behavior displayed by the resulting fall deposits, and (3) the coeval ejection of vesicular tephra and pyroclastic obsidian. Through two case studies, we explore this apparent set of paradoxes, and their significance in understanding transitions from explosive to effusive behavior. In this second case study (also cf. Shea et al., same session), we present new field, textural and geochemical data pertaining to the 114ka Pu'u Wa'awa'a trachyte eruption in Hawai'i. This large volume (>5 km3) event produced both a tephra cone (~1.6 km in diameter) and a thick (>250 m) lava flow, which have been largely covered by the more recent basaltic Mauna Loa and Hualalai lava flows. The trachyte tephra contains juvenile material displaying a large textural variety (pumice, scoria, obsidian, microcrystalline trachyte and banded-clasts), which can be linked with the extent of degassing and the formation of feldspar microlites. Notably, the abundance of microlites can be used to reconstruct an ascent and devolatilization history that accounts for all the seemingly contradictory observations.

  11. Phase petrology reveals shallow magma storage prior to large explosive silicic eruptions at Hekla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Weber, Gregor; Castro, Jonathan M.

    2017-05-01

    Understanding the conditions that culminate in explosive eruptions of silicic magma is of great importance for volcanic hazard assessment and crisis mitigation. However, geological records of active volcanoes typically show a wide range of eruptive behavior and magnitude, which can vary dramatically for individual eruptive centers. In order to evaluate possible future scenarios of eruption precursors, magmatic system variables for different eruption types need to be constrained. Here we use petrological experiments and microanalysis of crystals to clarify the P-T-x state under which rhyodacitic melts accumulated prior to the H3 eruption; the largest Holocene Plinian eruption of Hekla volcano in Iceland. Cobalt-buffered, H2O-saturated phase equilibrium experiments reproduce the natural H3 pumice phenocryst assemblage (pl > fa + cpx > ilm + mt > ap + zrc) and glass chemistry, at 850 ± 15°C and PH2O of 130 to 175 MPa, implying shallow crustal magma storage between 5 and 6.6 km. The systematics of FeO and anorthite (CaAl2Si2O8) content in plagioclase reveal that thermal gradients were more important than compositional mixing or mingling within this magma reservoir. As these petrological findings indicate magma storage much shallower than is currently thought of Hekla's mafic system, we use the constrained storage depth in combination with deformation modeling to forecast permissible surface uplift patterns that could stem from pre-eruptive magma intrusion. Using forward modeling of surface deformation above various magma storage architectures, we show that vertical surface displacements caused by silicic magma accumulation at ∼6 km depth would be narrower than those observed in recent mafic events, which are fed from a lower crustal storage zone. Our results show how petrological reconstruction of magmatic system variables can help link signs of pre-eruptive geophysical unrest to magmatic processes occurring in reservoirs at shallow depths. This will enhance our abilities to couple deformation measurements (e.g. InSAR and GPS) to petrological studies to better constrain potential precursors to volcanic eruptions.

  12. Ash turbidites from Southern Italy help understanding the parent eruptions and contributing to geodynamic evolution cadre of the Tyrrhenian sea

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico Maria

    2010-05-01

    Tephra layers intercalated in sedimentary successions are very interesting since they represent some instants of geodynamic evolution in a sedimentation basin. Furthermore, they can constitute deposits of explosive eruptions whose distal behaviour can be useful for studying the volcanoes activity, especially when pyroclastic deposits in proximal areas are absent. In the Craco area (Matera, Italy), thick ash turbidites intercalated in marine clays deposits have been recently recognized, which interest is related to the considerable cropping out thickness (1 to 5 m), freshness of the material and absence of sedimentary component. Petrography, sedimentology and chemistry of the deposits have been characterized with the aim of defining genesis and deposition of the material. The deposits are essentially made up of ashy pyroclasts, dominated by fresh acidic to intermediate glass, mostly in the form of shards, pumice fragments and groundmass fragments with vitrophyric texture. Rare crystals include Pl, Opx, Cpx, Hbl and Bt. 40Ar/39Ar geochronology on the amphibole dated one level to 2.24 ± 0.06 Ma, indicating the Late Pliocene. The grain size (fine ash) and textural features of the deposits are typical of pyroclastic fall deposits related to explosive eruptions with consequent upward projection of the fragmented material through Plinian columms. The columns turned eastward because of stratospheric winds and the material fell in a marine environment. It deposited on the slope of Pliocene basins in the frontal sector of the Southern Apennine chain. Structural features are the following: fining-upward gradation of the deposits with cross- and convolute laminations at the base and fine-grained massive beds at the top. They suggest that the primary pyroclastic fall deposits were mobilized as volcaniclastic turbidity currents towards a deeper environment. Glass and crystal compositions were investigated by SEM/EDS analysis. Petrographycal and chemical compositions of the volcaniclastic material is typical of a transitional high-K calc-alkaline series (basaltic andesite to rhyolite for the ash). The age and chemical composition constrain the provenance of the volcaniclastic Craco levels from the Southern Tyrrhenian domain, where a volcanic arc was probably active during the Pliocene. The hypothetical eruptive centres have been located at the northern termination of the arc, exactly in the Pontine islands area. Other neighbouring volcanic centres have been located on land in the Volturno plain. The integrated approach used in this work can be applied in the future to other tephra layers of Neogene successions for contributing to geodynamic evolution cadre of the Tyrrhenian sea.

  13. On the absence of InSAR-detected volcano deformation spanning the 1995-1996 and 1999 eruptions of Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Moran, S.C.; Kwoun, O.; Masterlark, Timothy; Lu, Z.

    2006-01-01

    Shishaldin Volcano, a large, frequently active basaltic-andesite volcano located on Unimak Island in the Aleutian Arc of Alaska, had a minor eruption in 1995–1996 and a VEI 3 sub-Plinian basaltic eruption in 1999. We used 21 synthetic aperture radar images acquired by ERS-1, ERS-2, JERS-1, and RADARSAT-1 satellites to construct 12 coherent interferograms that span most of the 1993–2003 time interval. All interferograms lack coherence within ∼5 km of the summit, primarily due to persistent snow and ice cover on the edifice. Remarkably, in the 5–15 km distance range where interferograms are coherent, the InSAR images show no intrusion- or withdrawal-related deformation at Shishaldin during this entire time period. However, several InSAR images do show deformation associated with a shallow ML 5.2 earthquake located ∼14 km west of Shishaldin that occurred 6 weeks before the 1999 eruption. We use a theoretical model to predict deformation magnitudes due to a volumetric expansion source having a volume equivalent to the 1999 erupted volume, and find that deformation magnitudes for sources shallower than 10 km are within the expected detection capabilities for interferograms generated from C-band ERS 1/2 and RADARSAT-1 synthetic aperture radar images. We also find that InSAR images cannot resolve relatively shallow deformation sources (1–2 km below sea level) due to spatial gaps in the InSAR images caused by lost coherence. The lack of any deformation, particularly for the 1999 eruption, leads us to speculate that magma feeding eruptions at the summit moves rapidly (at least 80m/day) from > 10 km depth, and that the intrusion–eruption cycle at Shishaldin does not produce significant permanent deformation at the surface.

  14. Variations in eruptive style and depositional processes of Neoproterozoic terrestrial volcano-sedimentary successions in the Hamid area, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalaf, Ezz El Din Abdel Hakim

    2013-07-01

    Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes.

  15. Infrasonic crackle and supersonic jet noise from the eruption of Nabro Volcano, Eritrea

    NASA Astrophysics Data System (ADS)

    Fee, David; Matoza, Robin S.; Gee, Kent L.; Neilsen, Tracianne B.; Ogden, Darcy E.

    2013-08-01

    The lowermost portion of an explosive volcanic eruption column is considered a momentum-driven jet. Understanding volcanic jets is critical for determining eruption column dynamics and mitigating volcanic hazards; however, volcanic jets are inherently difficult to observe due to their violence and opacity. Infrasound from the 2011 eruption of Nabro Volcano, Eritrea has waveform features highly similar to the "crackle" phenomenon uniquely produced by man-made supersonic jet engines and rockets and is characterized by repeated asymmetric compressions followed by weaker, gradual rarefactions. This infrasonic crackle indicates that infrasound source mechanisms in sustained volcanic eruptions are strikingly similar to jet noise sources from heated, supersonic jet engines and rockets, suggesting that volcanologists can utilize the modeling and physical understandings of man-made jets to understand volcanic jets. The unique, distinctive infrasonic crackle from Nabro highlights the use of infrasound to remotely detect and characterize hazardous eruptions and its potential to determine volcanic jet parameters.

  16. Permeability During Magma Expansion and Compaction

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.

    2017-12-01

    Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.

  17. Changes in stratospheric ozone and temperature due to the eruptions of Mt. Pinatubo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, S.

    1993-01-08

    The impact of the Mt. Pinatubo eruptions on the total column ozone measured from the Nimbus 7 TOMS and the NOAA-11 SBUV/2 spectrometers has been studied. The ozone anomalies inferred from the two instruments agree within 1-2% in the presence of large volcanic clouds produced by Pinatubo. The Pinatubo eruptions took place on June 15-16, 1991 during the easterly phase of the quasi biennial oscillations (QBO) and as such present a different dynamical scenario for the changes in stratospheric ozone compared to the El Chichon eruptions which took place during the westerly phase of the QBO. Within a few monthsmore » after the eruptions, the total column ozone decreased by 5-6% in the tropics, 3 to 4% at mid-latitudes and 6-9% at high latitudes in the northern hemisphere. However, after the effects of QBO and interannual variability are taken into account, the decrease in the column ozone attributed to volcanic eruptions at these latitudes may not be more than 2-4% - a conclusion in general agreement with a similar study of the El Chichon effects on the stratospheric ozone. The most noticeable effect of the Pinatubo eruptions, as observed during the El Chichon period, is the breakdown of the phase relation between ozone and temperature. This is attributed to additional heating in the lower stratosphere caused by volcanic aerosols. 19 refs., 4 figs.« less

  18. The timing and intensity of column collapse during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Carazzo, Guillaume; Kaminski, Edouard; Tait, Stephen

    2015-02-01

    Volcanic columns produced by explosive eruptions commonly reach, at some stage, a collapse regime with associated pyroclastic density currents propagating on the ground. The threshold conditions for the entrance into this regime are mainly controlled by the mass flux and exsolved gas content at the source. However, column collapse is often partial and the controls on the fraction of total mass flux that feeds the pyroclastic density currents, defined here as the intensity of collapse, are unknown. To better understand this regime, we use a new experimental apparatus reproducing at laboratory scale the convecting and collapsing behavior of hot particle-laden air jets. We validate the predictions of a 1D theoretical model for the entrance into the regime of partial collapse. Furthermore, we show that where a buoyant plume and a collapsing fountain coexist, the intensity of collapse can be predicted by a universal scaling relationship. We find that the intensity of collapse in the partial collapse regime is controlled by magma gas content and temperature, and always exceeds 40%, independent of peak mass flux and total erupted volume. The comparison between our theoretical predictions and a set of geological data on historic and pre-historic explosive eruptions shows that the model can be used to predict both the onset and intensity of column collapse, hence it can be used for rapid assessment of volcanic hazards notably ash dispersal during eruptive crises.

  19. Magmatic history of mt. Vesuvius on the basis of new geochemical and isotopic data

    NASA Astrophysics Data System (ADS)

    Arienzo, I.; Civetta, L.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.; Giordano, F.; Orsi, G.

    2003-04-01

    Mt. Vesuvius is an active volcano famous for the AD 79 eruption that destroyed Pompeii, Herculaneum and Stabiae. Because of the intense urbanization around and on the volcano itself, volcanic risk is very high. Therefore, the knowledge of the structure and behaviour of the magmatic system is fundamental for both interpretation of any change in the dynamics of the volcano and eruption forecasting. We have produced new geochemical and isotopic data on rocks from a 240-m deep core drilled along the southern slope of the volcano. The investigated portion of the core includes lava flows aged between 39 and 20 ka. The obtained results, together with those already available for the younger than 20 ka activity, have allowed us to reconstruct the complex history of the magmatic system. Mt. Vesuvius magmas, originated in a mantle source variably contaminated by slab derived components, stagnate in a deep complex reservoir, located between 10 and 20 km of depth, where they differentiate and contaminate with continental crust. From the deep reservoir magmas discontinuously rise up to shallow reservoirs, where they differentiate, mingle and mix, feeding the volcanic activity. The shallow reservoirs are located at depth of about 3-5 km before Plinian eruptions, and of less than 1 km before strombolian activity.

  20. Recharge of an Unconfined Pumice Aquifer: Winter Rainfall Versus Snow Pack, South-central Oregon

    NASA Astrophysics Data System (ADS)

    Cummings, M. L.; Weatherford, J. M.; Eibert, D.

    2015-12-01

    Walker Rim study area, an uplifted fault block east of the Cascade Range, south-central Oregon, exceeds 1580 m elevation and includes Round Meadow-Sellers Marsh closed basin, and headwaters of Upper Klamath Basin, Deschutes Basin, and Christmas Lake Valley in the Great Basin. The water-bearing unit is 2.8 to 3.0 m thick Plinian pumice fall from the Holocene eruption of Mount Mazama, Cascade Range. The perched pumice aquifer is underlain by low permeability regolith and bedrock. Disruption of the internal continuity of the Plinian pumice fall by fluvial and lacustrine processes resulted in hydrogeologic environments that include fens, wet meadows, and areas of shallow water table. Slopes are low and surface and groundwater pathways follow patterns inherited from the pre-eruption landscape. Discharge for streams and springs and depth to water table measured in open-ended piezometers slotted in the pumice aquifer have been measured between March and October, WY 2011 through WY2015. Yearly occupation on same date has been conducted for middle April, June 1st, and end of October. WY2011 and WY2012 received more precipitation than the 30 year average while WY2014 was the third driest year in 30 years of record. WY2014 and WY2015 provide an interesting contrast. Drought conditions dominated WY2014 while WY2015 was distinct in that the normal cold-season snow pack was replaced by rainfall. Cumulative precipitation exceeded the 30-year average between October and March. The pumice aquifer of wet meadows and areas of shallow water table experienced little recharge in WY2015. Persistence of widespread diffuse discharge from fens declined by middle summer as potentiometric surfaces lowered into confining peat layers or in some settings into the pumice aquifer. Recharge of the perched pumice aquifer in rain-dominated WY2015 was similar to or less than in the snow-dominated drought of WY2014. Rain falling on frozen ground drove runoff rather than aquifer recharge.

  1. Water contents, temperatures and diversity of the magmas of the catastrophic eruption of Nevado del Ruiz, Colombia, November 13, 1985

    NASA Astrophysics Data System (ADS)

    Melson, William G.; Allan, James F.; Jerez, Deborah Reid; Nelen, Joseph; Calvache, Marta Lucia; Williams, Stanley N.; Fournelle, John; Perfit, Mike

    1990-07-01

    The petrology of the highly phyric two-pyroxene andesitic to dacitic pyroclastic rocks of the November 13, 1985 eruption of Nevado del Ruiz, Colombia, reveals evidence of: (1) increasingly fractionated bulk compositions with time; (2) tapping of a small magma chamber marginally zoned in regard to H 2O contents (1 to 4%), temperature (960-1090°C), and amount of residual melt (35 to 65%); (3) partial melting and assimilation of degassed zones in the hotter less dense interior of the magma chamber; (4) probable heating, thermal disruption and mineralogic and compositional contamination of the magma body by basaltic magma "underplating"; and (5) crustal contamination of the magmas during ascent and within the magma chamber. Near-crater fall-back or "spill-over" emitted in the middle of the eruptive sequence produced a small pyroclastic flow that became welded in its central and basal portions because of ponding and thus heat conservation on the flat glaciated summit near the Arenas crater. The heterogeneity of Ruiz magmas may be related to the comparatively small volume (0.03 km 3) of the eruption, nearly ten times less than the 0.2 km 3 of the Plinian phase of Mount St. Helens, and probable steep thermal and PH 2O gradients of a small source magma chamber, estimated at 300 m long and 100 m wide for an assumed ellipsoidal shape.

  2. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    USGS Publications Warehouse

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  3. A model for tropical-extratropical transport of volcanic ash in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1993-01-01

    Large nonspherical volcanic ash particles up to 30 micrometer in size were collected between 17-19 km altitude over the Northern Hemisphere at high latitudes between October 1988 and April 1990. These particles may be derived from minor Plinian eruptions in the tropics rather than from localized volcanic activity close to the collection region. Ash particles were injected into the lower equatorial stratosphere where they entered a regime of efficient transport just above the tropopause from the tropical region towards the northern extratropical region. Transport is enhanced by stable autorotation that generates a sufficient lift force to loft nonspherical ash with a rough surface during transport, and by the gradually decreasing altitude of the tropopause from the tropics to the polar regions.

  4. Impact of Future Volcanic Eruptions on Stratospheric Ozone

    NASA Astrophysics Data System (ADS)

    Wilmouth, D. M.; Klobas, J. E.; Weisenstein, D.; Anderson, J. G.; Salawitch, R. J.

    2017-12-01

    Due to the anthropogenic release of chlorine-containing chemicals such as chlorofluorocarbons into the atmosphere in the twentieth century, a large volcanic eruption occurring today would initiate chemical reactions that reduce the thickness of the ozone layer. In the future, when atmospheric levels of chlorine are reduced, large volcanic eruptions are instead expected to increase the thickness of the ozone layer, but important details relevant to this shift in volcanic impact are not well known. Here we use the AER-2D chemical transport model to simulate a Pinatubo-like volcanic eruption in contemporary and future atmospheres. In particular, we explore the sensitivity of column ozone to volcanic eruption for four different climate change scenarios over the remainder of this century and also establish the importance of bromine-containing very short-lived substances (VSLS) in determining whether future eruptions will lead to ozone depletion. We find that the ozone layer will be vulnerable to volcanic perturbation for considerably longer than previously believed. Finally, we consider the impact on column ozone of inorganic halogens being co-injected into the stratosphere following future explosive eruptions using realistic hydrogen halide to sulfur dioxide ratios.

  5. Tephrostratigraphy of the late Quaternary record from Lake Chalco, central México

    NASA Astrophysics Data System (ADS)

    Ortega-Guerrero, Beatriz; Caballero García, Lizeth; Linares-López, Carlos

    2018-01-01

    Lacustrine sequences in active volcanic settings preserve the record of fall-out products (tephras) from explosive volcanic activity from both proximal and distal sources. Sediments of Lake Chalco, located in the western part of the Trans Mexican Volcanic Belt, offer the opportunity to develop a detailed tephrostratigraphy of proximal and distal sources, and to provide stratigraphic marker horizons for the correlation of paleoclimate records. Here, we present major oxide glass and pumice data from 18 tephra layers interbedded in the lacustrine sediments of Chalco, from 11.5 to 31.3 cal ka BP. Tephra glass compositions range from basaltic trachyandesitic to rhyolitic. Two tephras were successfully correlated with the Tutti Frutti Plinian Eruption of Popocatépetl volcano; and two tephra layers from the Nevado de Toluca Plinian activity: the Upper Toluca Pumice and the Lower Toluca Pumice. Although the source of most of the tephras analyzed is unknown, their geochemical characterization, coupled with a robust chronology, contributes to establish a detailed tephrostratigraphy for the region. This tephra record also contributes to improving the estimated frequency of explosive volcanic activity for future hazards in the Basin of México and surrounding areas, where more than 29 million people live. Our findings estimate a recurrence interval of volcanic activity of ca. 1100 years in the interval between ca. 32 and 11.5 cal ka BP, shorter than previously estimated.

  6. Bubble Plumes at NW Rota-1 Submarine Volcano, Mariana Arc: Visualization and Analysis of Multibeam Water Column Data

    NASA Astrophysics Data System (ADS)

    Merle, S. G.; Chadwick, W. W.; Embley, R. W.; Doucet, M.

    2012-12-01

    During a March 2010 expedition to NW Rota-1 submarine volcano in the Mariana arc a new EM122 multibeam sonar system on the R/V Kilo Moana was used to repeatedly image bubble plumes in the water column over the volcano. The EM122 (12 kHz) system collects seafloor bathymetry and backscatter data, as well as acoustic return water column data. Previous expeditions to NW Rota-1 have included seafloor mapping / CTD tow-yo surveys and remotely operated vehicle (ROV) dives in 2004, 2005, 2006 and 2009. Much of the focus has been on the one main eruptive vent, Brimstone, located on the south side of the summit at a depth of ~440m, which has been persistently active during all ROV visits. Extensive degassing of CO2 bubbles have been observed by the ROV during frequent eruptive bursts from the vent. Between expeditions in April 2009 and March 2010 a major eruption and landslide occurred at NW Rota-1. ROV dives in 2010 revealed that after the landslide the eruptive vent had been reorganized from a single site to a line of vents. Brimstone vent was still active, but 4 other new eruptive vents had also emerged in a NW/SE line below the summit extending ~100 m from the westernmost to easternmost vents. During the ROV dives, the eruptive vents were observed to turn on and off from day to day and hour to hour. Throughout the 2010 expedition numerous passes were made over the volcano summit to image the bubble plumes above the eruptive vents in the water column, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar data set totals >95 hours of observations over a 12-day period. Generally, the ship drove repeatedly over the eruptive vents at a range of ship speeds (0.5-4 knots) and headings. In addition, some mid-water data was collected during three ROV dives when the ship was stationary over the vents. We used the FMMidwater software program (part of QPS Fledermaus) to visualize and analyze the data collected with this new mid-water technology. The data show that during some passes over the vent all 5 eruptive vents were contributing to the plume above the volcano, whereas on other passes only 1 vent was visible. However, it was common that multiple vents were active at any one time. The highest observed rise of a bubble plume in the water column came from the easternmost vent, with the main plume rising 415 meters from the vent to within 175 m of the surface. In some cases, wisps from the main plume rose to heights less than 100 m from the surface. This analysis shows that water column imaging multibeam sonar data can be used as a proxy to determine the level of eruptive activity above submarine volcanoes that have robust CO2 output. We plan to compare this data set to other data sets including hydrophone recordings, ADCP data and ROV visual observations.

  7. Magma wagging and whirling in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Liao, Yang; Bercovici, David; Jellinek, Mark

    2018-02-01

    Seismic tremor characterized by 0.5-7 Hz ground oscillations commonly occur before and during eruptions at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous characteristics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the absence of viscous damping, the magma column undergoes 'whirling' motion: the center of each horizontal section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new 'coiling' and 'uncoiling' column bending shapes with relatively higher and comparable rates of dissipation to the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics for different wagging patterns using the time-lag between seismic stations. We test our model by analyzing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion when the eruption was immediately impending.

  8. Reconstruction of total grain size distribution of the climactic phase of a long-lasting eruption: the example of the 2008-2013 Chaitén eruption

    NASA Astrophysics Data System (ADS)

    Alfano, Fabrizio; Bonadonna, Costanza; Watt, Sebastian; Connor, Chuck; Volentik, Alain; Pyle, David M.

    2016-07-01

    The 2008-2013 eruption of Chaitén Volcano (Chile) was a long-lasting eruption whose climactic phase (May 6, 2008) produced a sub-Plinian plume, with height ranging between 14 and 20 km that dispersed to the NE, reaching the Atlantic coast of Argentina. The erupted material was mainly of lithic origin (˜77 wt%), resulting in a unimodal total grain size distribution (TGSD) dominated by coarse ash (77 wt%), with Mdϕ of 2.7 and σϕ of 2.4. Lapilli clasts (>2 mm) dominate the proximal deposit within ~20 km of the vent, while coarse (63 μm-2 mm) and fine ash (<63 μm) sedimented as far as 800 km from vent, generating mostly poly-modal grain size distributions across the entire deposit. Given that most of the mass is sedimented in proximal areas, results show that possible contributions of later explosive events to the thickness of the distal deposit where layers are less distinguishable (>400 km) do not significantly affect the determination of the TGSD. In contrast, gaps in data sampling in the medial deposit (in particular the gap between 50 and 350 km from vent that coincides with shifts in sedimentation regimes) have large impacts on estimates of TGSD. Particle number distribution for this deposit is characterized by a high power-law exponent (3.0) following a trend very similar to the vesicle size distribution in the juvenile pyroclasts. Although this could be taken to indicate a bubble-driven fragmentation process, we suggest that fragmentation was more likely the result of a shear-driven process because of the predominance of non-vesicular products (lithics and obsidians) and the large fraction of coarse ash in the TGSD.

  9. Classifying the Sizes of Explosive Eruptions using Tephra Deposits: The Advantages of a Numerical Inversion Approach

    NASA Astrophysics Data System (ADS)

    Connor, C.; Connor, L.; White, J.

    2015-12-01

    Explosive volcanic eruptions are often classified by deposit mass and eruption column height. How well are these eruption parameters determined in older deposits, and how well can we reduce uncertainty using robust numerical and statistical methods? We describe an efficient and effective inversion and uncertainty quantification approach for estimating eruption parameters given a dataset of tephra deposit thickness and granulometry. The inversion and uncertainty quantification is implemented using the open-source PEST++ code. Inversion with PEST++ can be used with a variety of forward models and here is applied using Tephra2, a code that simulates advective and dispersive tephra transport and deposition. The Levenburg-Marquardt algorithm is combined with formal Tikhonov and subspace regularization to invert eruption parameters; a linear equation for conditional uncertainty propagation is used to estimate posterior parameter uncertainty. Both the inversion and uncertainty analysis support simultaneous analysis of the full eruption and wind-field parameterization. The combined inversion/uncertainty-quantification approach is applied to the 1992 eruption of Cerro Negro (Nicaragua), the 2011 Kirishima-Shinmoedake (Japan), and the 1913 Colima (Mexico) eruptions. These examples show that although eruption mass uncertainty is reduced by inversion against tephra isomass data, considerable uncertainty remains for many eruption and wind-field parameters, such as eruption column height. Supplementing the inversion dataset with tephra granulometry data is shown to further reduce the uncertainty of most eruption and wind-field parameters. We think the use of such robust models provides a better understanding of uncertainty in eruption parameters, and hence eruption classification, than is possible with more qualitative methods that are widely used.

  10. Eruptive dynamics during magma decompression: a laboratory approach

    NASA Astrophysics Data System (ADS)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of the expanding height of the silicone oil column with time after the decompression, due to the exsolution of the volatile argon and subsequent bubble growth. Contrastingly, autoclave-wall resolved shear strain of bubbles promotes rapid coalescence until a critical point when permeable outgassing is more efficient than continuing exsolution and bubble growth. At this point the column destabilizes and partially collapses. Collapse progresses until the top of the column is again impermeable and outgassing-driven column expansion resumes. This process repeats in cycles of growth, deformation, destabilization and densification until the melt is at equilibrium saturation with argon and the column collapses completely. We propose that direct observation of the timescales of growth and collapse of a decompressing, shearing column has important implications for decompression-driven rapid conduit ascent of low-viscosity, low-crystallinity magmas. Therefore, even at high exsolution rates, permeable outgassing can transiently retard magma ascent.

  11. Results of the eruptive column model inter-comparison study

    USGS Publications Warehouse

    Costa, Antonio; Suzuki, Yujiro; Cerminara, M.; Devenish, Ben J.; Esposti Ongaro, T.; Herzog, Michael; Van Eaton, Alexa; Denby, L.C.; Bursik, Marcus; de' Michieli Vitturi, Mattia; Engwell, S.; Neri, Augusto; Barsotti, Sara; Folch, Arnau; Macedonio, Giovanni; Girault, F.; Carazzo, G.; Tait, S.; Kaminski, E.; Mastin, Larry G.; Woodhouse, Mark J.; Phillips, Jeremy C.; Hogg, Andrew J.; Degruyter, Wim; Bonadonna, Costanza

    2016-01-01

    This study compares and evaluates one-dimensional (1D) and three-dimensional (3D) numerical models of volcanic eruption columns in a set of different inter-comparison exercises. The exercises were designed as a blind test in which a set of common input parameters was given for two reference eruptions, representing a strong and a weak eruption column under different meteorological conditions. Comparing the results of the different models allows us to evaluate their capabilities and target areas for future improvement. Despite their different formulations, the 1D and 3D models provide reasonably consistent predictions of some of the key global descriptors of the volcanic plumes. Variability in plume height, estimated from the standard deviation of model predictions, is within ~ 20% for the weak plume and ~ 10% for the strong plume. Predictions of neutral buoyancy level are also in reasonably good agreement among the different models, with a standard deviation ranging from 9 to 19% (the latter for the weak plume in a windy atmosphere). Overall, these discrepancies are in the range of observational uncertainty of column height. However, there are important differences amongst models in terms of local properties along the plume axis, particularly for the strong plume. Our analysis suggests that the simplified treatment of entrainment in 1D models is adequate to resolve the general behaviour of the weak plume. However, it is inadequate to capture complex features of the strong plume, such as large vortices, partial column collapse, or gravitational fountaining that strongly enhance entrainment in the lower atmosphere. We conclude that there is a need to more accurately quantify entrainment rates, improve the representation of plume radius, and incorporate the effects of column instability in future versions of 1D volcanic plume models.

  12. Ascent Rates of Rhyolitic Magma During the Opening Stages of Explosive Caldera-Forming Eruptions

    NASA Astrophysics Data System (ADS)

    Myers, M.; Wallace, P. J.; Wilson, C. J. N.; Watkins, J. M.; Liu, Y.; Morgan, D. J.

    2016-12-01

    We investigate the timescales of rhyolitic magma ascent for three supereruptions that show contrasting eruptive behavior at eruption onset: (1) the Bishop Tuff, CA where early fallout graded directly into climactic eruption, (2) the Oruanui eruption, Taupo NZ, which experienced a significant time break between the initial fallout and subsequent activity and (3) the Huckleberry Ridge, Yellowstone where initial activity was episodic, with eruptive pauses totaling days to weeks. During ascent, decompression causes volatile exsolution from the host melt, creating H2O and CO2 gradients in reentrants (REs; unsealed inclusions) that can be modeled to estimate ascent timescales1,2,3. Using a code1 refined to include an error minimization function, we present modeled ascent rates for REs from Huckleberry Ridge (n=10), Bishop (n=14), and Oruanui (n=4), measured using FTIR (20 μm resolution, 4-15 points per RE). Best-fit profiles for the Bishop REs give ascent rates of 0.6-30 m/s, which overlap with those of the Huckleberry (0.3-5.5 m/s), but extend to higher values. Although ascent rate and initial eruptive behavior are somewhat decoupled, there is an increase in the number of faster ascent rates and greater starting depths with higher stratigraphic height in the Huckleberry Ridge and Bishop fall deposits. Preliminary work on Oruanui REs indicates rates of 0.15-2.0 m/s, which overlie the lower end of the Bishop and Huckleberry REs, in agreement with previous data1. Overall, there is significant overlap between the three datasets (average 4±7 m/s). Our calculated ascent rates fall towards the lower end of ascent rates that have been estimated (5-40 m/s4) using theoretical and numerical modeling of conduit flow for Plinian rhyolitic eruptions below the fragmentation depth. 1 Liu Y et al. 2007: J Geophys Res 112, B06204; 2 Humphreys MCS et al. 2008: Earth Planet Sci Lett 270, 25; 3 Lloyd et al., 2014: J Volcanol Geotherm Res 283, 1; 4Rutherford MJ 2008: Rev Mineral Geochem 69, 241.

  13. An overview of the dynamics of the Volcanic Paroxysmal Explosive Activity, and related seismicity, at andesitic and dacitic volcanoes (1960-2010)

    NASA Astrophysics Data System (ADS)

    Zobin, Vyacheslav M.

    2018-05-01

    Understanding volcanic paroxysmal explosive activity requires the knowledge of many associated processes. An overview of the dynamics of paroxysmal explosive eruptions (PEEs) at andesitic and dacitic volcanoes occurring between 1960 and 2010 is presented here. This overview is based mainly on a description of the pre-eruptive and eruptive events, as well as on the related seismic measurements. The selected eruptions are grouped according to their Volcanic Explosivity Index (VEI). A first group includes three eruptions of VEI 5-6 (Mount St. Helens, 1980; El Chichón, 1982, and Pinatubo, 1991) and a second group includes three eruptions of VEI 3 (Usu volcano, 1977; Soufriere Hills Volcano (SHV), 1996, and Volcán de Colima, 2005). The PEEs of the first group have similarity in their developments that allows to propose a 5-stage scheme of their dynamics process. Between these stages are: long (more than 120 years) period of quiescence (stage 1), preliminary volcano-tectonic (VT) earthquake swarm (stage 2), period of phreatic explosions (stage 3) and then, PEE appearance (stage 4). It was shown also that the PEEs of this group during their Plinian stage "triggered" the earthquake sequences beneath the volcanic structures with the maximum magnitude of earthquakes proportional to the volume of ejecta of PEEs (stage 5). Three discussed PEEs of the second group with lower VEI developed in more individual styles, not keeping within any general scheme. Among these, one PEE (SHV) may be considered as partly following in development to the PEEs of the first group, having stages 1, 3 and 4. The PEEs of Usu volcano and of Volcán de Colima had no preliminary long-term stages of quiescence. The PEE at Usu volcano came just at the end of the preceding short swarm of VT earthquakes. At Volcán de Colima, no preceding swarm of VT occurred. This absence of any regularity in development of lower VEI eruptions may refer, among other reasons, to different conditions of opening of the magmatic conduit during these eruptions.

  14. Run-Up to the 1999 Sub-Plinian Eruption of Shishaldin Volcano Unveiled Using Petrologic and Seismic Approaches

    NASA Astrophysics Data System (ADS)

    Rasmussen, D. J.; Plank, T. A.; Roman, D. C.; Lough, A. C.; Stelling, P. L.; Bodnar, R. J.; Hauri, E. H.

    2016-12-01

    On April 19, 1999 Shishaldin volcano had its largest eruption in 200 years, which released 43 million m3 of basaltic ash. InSAR images reveal a lack of long-term deformation related to the eruption, which is behavior characteristic of Shishaldin and other open-conduit volcanoes in the region. One explanation for the absence of observable geodetic response at Shishaldin is that deep (>10 km bsl) magma ascends to shallow depths within months of the eruption (Moran et al., 2006 JVGR). Here we test this idea and investigate the run-up to this eruption by determining the locations of magmas and timing of recharge with petrologic and seismic approaches with the goal of informing interpretation of precursory signals used to evaluate volcanic risks and aiding in our understanding of open-conduit volcanism. We uncover magma storage depths using the pressures melt inclusion entrapment. Vapor saturation pressure modeling of Raman-reconstructed volatile contents of inclusions suggests most formed at <6 km depth, implying magmas resided within (or just below) the edifice prior to eruption. EMP-calibrated backscattered electron images of olivines distinguish two populations: a dominant population of evolved olivines (Fo60-70) that are reversely zoned and a second population containing more primitive olivines (Fo70-80) that are normally zoned. We recover mixing-to-eruption timescales through modeling Fe-Mg interdiffusion. Preliminary results show a wide range of timescales (days to months), but the majority are consistent with a significant mixing event in early 1999. We further investigate the timing of recharge by analyzing regional earthquakes for shear-wave splitting. We find that an increase in delay times between the fast and slow split S-wavelets had occurred between September 1998 and February 1999, accompanied by a 90° change in the polarization of fast S-wavelets, indicating magma intrusion by February 1999. These results indicate that, in this case, the repeat interval of InSAR measurements was not short enough to capture deformation that may have accompanied the eruption. This supports the idea that some open-conduit volcanoes have rapid recharge, and probably little long-term shallow storage.

  15. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Kristianto, E-mail: kris@vsi.esdm.go.id

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4{sup th}, 2011 and still continuously erupted until August 28{sup th}, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination ofmore » the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region.« less

  16. Rheology of phonolitic magmas - the case of the Erebus lava lake

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Neuville, Daniel R.; Moretti, Roberto; Kyle, Philip R.; Oppenheimer, Clive

    2015-02-01

    Long-lived active lava lakes are comparatively rare and are typically associated with low-viscosity basaltic magmas. Erebus volcano, Antarctica, is unique today in hosting a phonolitic lava lake. Phonolitic magmas can erupt explosively, as in the 79 CE Plinian eruption of Vesuvius volcano, Italy, and it is therefore important to understand their physical properties. The phonolite at Erebus has slightly higher silica content than that at Vesuvius yet its present activity is predominantly non-explosive. As a contribution to understanding such contrasting eruptive behaviour, we focus on the rheological differences between these comparable magmas. In particular, we evaluate the viscosity of the Erebus phonolite magma by integrating new experimental data within a theoretical and empirical framework. The resulting model enables estimation of the Erebus melt viscosity as a function of temperature, crystal and water concentrations, with an uncertainty of, at most, ± 0.45 log (Pa s). Using reported ranges for these parameters, we predict that the magma viscosity in the upper region of the plumbing system of Erebus ranges between 105 and 107 Pas. This is substantially higher than has been hitherto considered with significant implications for modelling the dynamics of the lava lake, conduit and magma reservoir system. Our analysis highlights the generic challenges encountered in calculation of magma viscosity and presents an approach that can be applied to other cases.

  17. The Magmatic Structure of Mt. Vesuvius: Isotopic and Thermal Constraints

    NASA Astrophysics Data System (ADS)

    Civetta, L.; D'Antonio, M.; de Lorenzo, S.; Gasparini, P.

    2002-12-01

    Mt. Vesuvius is an active volcano famous for the AD 79 eruption that destroyed Pompeii, Herculaneum and Stabiae. Because of the intense urbanization around and on the volcano, the risk today is very high. Therefore, the knowledge of the structure and behavior of the magmatic system is fundamental both for the interpretation of any change in the dynamics of the volcano and for prediction of eruptions. A review of available and new isotopic data on rocks from Mt. Vesuvius, together with mineralogical and geochemical data and recent geophysical results, allow us to constrain a thermal modeling that describes history and present state of Mt. Vesuvius magmatic system. This system is formed by a "deep", complex magmatic reservoir where mantle-derived magmas arrive, stagnate and differentiate. The reservoir extends discontinuously between 10 and 20 km of depth, is hosted in densely fractured crustal rocks, where magmas and crust can interact, and has been fed more than once since 400 ka. The hypothesis of crustal contamination is favored by the high temperatures reached by crustal rocks as a consequence of repetitive intrusions of magma. From the "deep" reservoir magmas of K-basaltic to K-tephritic to K-phonotephritic composition rise to shallow depths where they stagnate at 3-5 km of depth before plinian eruptions, and through crystallization and mixing processes with the residual portion of the feeding systems, generate isotopically and geochemically layered reservoirs. Alternatively, during "open conduit" conditions deep, volatile-rich magma batches rise from the "deep" reservoir to less than 1 km of depth and mix with the crystal-rich, volatile-poor resident magma, triggering eruptions.

  18. pXRF quantitative analysis of the Otowi Member of the Bandelier Tuff: Generating large, robust data sets to decipher trace element zonation in large silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Van Hoose, A. E.; Wolff, J.; Conrey, R.

    2013-12-01

    Advances in portable X-Ray fluorescence (pXRF) analytical technology have made it possible for high-quality, quantitative data to be collected in a fraction of the time required by standard, non-portable analytical techniques. Not only do these advances reduce analysis time, but data may also be collected in the field in conjunction with sampling. Rhyolitic pumice, being primarily glass, is an excellent material to be analyzed with this technology. High-quality, quantitative data for elements that are tracers of magmatic differentiation (e.g. Rb, Sr, Y, Nb) can be collected for whole, individual pumices and subsamples of larger pumices in 4 minutes. We have developed a calibration for powdered rhyolite pumice from the Otowi Member of the Bandelier Tuff analyzed with the Bruker Tracer IV pXRF using Bruker software and influence coefficients for pumice, which measures the following 19 oxides and elements: SiO2, TiO2, Al2O3, FeO*, MnO, CaO, K2O, P2O5, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, Ce, Pb, and Th. With this calibration for the pXRF and thousands of individual powdered pumice samples, we have generated an unparalleled data set for any single eruptive unit with known trace element zonation. The Bandelier Tuff of the Valles-Toledo Caldera Complex, Jemez Mountains, New Mexico, is divided into three main eruptive events. For this study, we have chosen the 1.61 Ma, 450 km3 Otowi Member as it is primarily unwelded and pumice samples are easily accessible. The eruption began with a plinian phase from a single source located near center of the current caldera and deposited the Guaje Pumice Bed. The initial Unit A of the Guaje is geochemically monotonous, but Units B through E, co-deposited with ignimbrite show very strong chemical zonation in trace elements, progressing upwards through the deposits from highly differentiated compositions (Rb ~350 ppm, Nb ~200 ppm) to less differentiated (Rb ~100 ppm, Nb ~50 ppm). Co-erupted ignimbrites emplaced during column collapse show similar trace element zonation. The eruption culminated in caldera collapse after transitioning from a single central vent to ring fracture vents. Ignimbrites deposited at this time have lithic breccias and chaotic geochemical profiles. The geochemical discrepancy between early and late deposits warrants detailed, high-resolution sampling and analysis in order to fully understand the dynamics behind zonation processes. Samples were collected from locations that circumvent the caldera and prepared and analyzed in the field and the laboratory with the pXRF. Approximately 2,000 pumice samples will complete this unprecedented data set, allowing detailed reconstruction of trace element zonation around all sides of the Valles Caldera. These data are then used to constrain models of magma chamber processes that produce trace element zonation and how it is preserved in the deposits after a catastrophic, caldera-forming eruption.

  19. Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania

    USGS Publications Warehouse

    Kervyn, M.; Ernst, G.G.J.; Keller, J.; Vaughan, R. Greg; Klaudius, J.; Pradal, E.; Belton, F.; Mattsson, H.B.; Mbede, E.; Jacobs, P.M.

    2010-01-01

    On September 4, 2007, after 25 years of effusive natrocarbonatite eruptions, the eruptive activity of Oldoinyo Lengai (OL), N Tanzania, changed abruptly to episodic explosive eruptions. This transition was preceded by a voluminous lava eruption in March 2006, a year of quiescence, resumption of natrocarbonatite eruptions in June 2007, and a volcano-tectonic earthquake swarm in July 2007. Despite the lack of ground-based monitoring, the evolution in OL eruption dynamics is documented based on the available field observations, ASTER and MODIS satellite images, and almost-daily photos provided by local pilots. Satellite data enabled identification of a phase of voluminous lava effusion in the 2 weeks prior to the onset of explosive eruptions. After the onset, the activity varied from 100 m high ash jets to 2–15 km high violent, steady or unsteady, eruption columns dispersing ash to 100 km distance. The explosive eruptions built up a ∼400 m wide, ∼75 m high intra-crater pyroclastic cone. Time series data for eruption column height show distinct peaks at the end of September 2007 and February 2008, the latter being associated with the first pyroclastic flows to be documented at OL. Chemical analyses of the erupted products, presented in a companion paper (Keller et al.2010), show that the 2007–2008 explosive eruptions are associated with an undersaturated carbonated silicate melt. This new phase of explosive eruptions provides constraints on the factors causing the transition from natrocarbonatite effusive eruptions to explosive eruptions of carbonated nephelinite magma, observed repetitively in the last 100 years at OL.

  20. The 1815 Tambora ash fall: implications for transport and deposition of distal ash on land and in the deep sea

    NASA Astrophysics Data System (ADS)

    Kandlbauer, Jessica; Carey, Steven N.; Sparks, R. Stephen J.

    2013-04-01

    Tambora volcano lies on the Sanggar Peninsula of Sumbawa Island in the Indonesian archipelago. During the great 1815 explosive eruption, the majority of the erupted pyroclastic material was dispersed and subsequently deposited into the Indian Ocean and Java Sea. This study focuses on the grain size distribution of distal 1815 Tambora ash deposited in the deep sea compared to ash fallen on land. Grain size distribution is an important factor in assessing potential risks to aviation and human health, and provides additional information about the ash transport mechanisms within volcanic umbrella clouds. Grain size analysis was performed using high precision laser diffraction for a particle range of 0.2 μm-2 mm diameter. The results indicate that the deep-sea samples provide a smooth transition to the land samples in terms of grain size distributions despite the different depositional environments. Even the very fine ash fraction (<10 μm) is deposited in the deep sea, suggesting vertical density currents as a fast and effective means of transport to the seafloor. The measured grain size distribution is consistent with an improved atmospheric gravity current sedimentation model that takes into account the finite duration of an eruption. In this model, the eruption time and particle fall velocity are the critical parameters for assessing the ash component depositing while the cloud advances versus the ash component depositing once the eruption terminates. With the historical data on eruption duration (maximum 24 h) and volumetric flow rate of the umbrella cloud (˜1.5-2.5 × 1011 m3/s) as input to the improved model, and assuming a combination of 3 h Plinian phase and 21 h co-ignimbrite phase, it reduces the mean deviation of the predicted versus observed grain size distribution by more than half (˜9.4 % to ˜3.7 %) if both ash components are considered.

  1. Late Pleistocene and Holocene Geology and Hazards at Glacier Peak Volcano, Washington

    NASA Astrophysics Data System (ADS)

    Vallance, J. W.; Van Eaton, A. R.; Ramsey, D. W.

    2015-12-01

    Recent fieldwork, improved radiocarbon dating, and mapping on recently acquired LiDAR base have better delineated timing, frequency, and style of volcanism at Glacier Peak. The work shows that, after Mount St. Helens, Glacier Peak is one of the most frequently active Cascade volcanoes. The volcano has erupted multiple times 13-14 ka, 5­-7 ka, 1-2.5 ka, and perhaps as recently as a few hundred years ago. The plinian eruptions of ~13.5 ka were much more voluminous than those of Mount St. Helens in 1980 and show that Glacier Peak is among the most explosive of Cascade volcanoes. These eruptions dispersed ash fallout hundreds of kilometers downwind in Idaho, Montana and Wyoming; produced a partly welded ignimbrite and a small debris avalanche; and caused lahars and flooding far across Puget Sound lowland. Numerous more recent eruptions during the periods 5-7 ka and 1-2.5 ka extruded lava domes whose hot rock avalanched across snow and ice to produce pyroclastic flows and lahars. These eruptions dispersed ash tens of to a hundred or more kilometers downwind. Resulting lahars and floods inundated as far as Puget Sound lowland. Glacier Peak is remote and hidden from most areas of the densely populated Puget Sound lowland; hence, it gets less attention than other prominent Cascade volcanoes like Mounts Rainier, Baker, and St. Helens. Despite its remote location, Glacier Peak poses substantial hazard because even small eruptions on ice-clad volcanoes can have devastating consequences. Distal threats include hazard to air traffic owing to ash plumes. Lahars and potential long-term sedimentation and flooding downstream pose threats to communities near rivers along Skagit and Stillaguamish River drainages. Farther downstream, sedimentation is likely to decrease channel capacity, increasing likelihood of floods. Lava flows, pyroclastic flows, and debris avalanches will threaten hikers in the wilderness near Glacier Peak.

  2. Evolution of the Pinatubo volcanic aerosol column above Pasadena, California observed with a mid-infrared backscatter lidar

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.

    1995-01-01

    The evolution of the volcanic debris plume originating from the June 1991 eruption of Mt. Pinatubo has been monitored since its genesis using a ground-based backscatter lidar facility sited at the Jet Propulsion Laboratory (JPL). Both absolute and relative pre- and post-Pinatubo backscatter observations are in accord with Mie scattering projections based on measured aerosol particle size distributions reported in the literature. The post-Pinatubo column-integrated backscatter coefficient peaked approximately 400 days after the eruption, and the observed upper boundary of the aerosol column subsided at a rate of approximately 200 m/mon.

  3. Quantify ash aggregation associated to the 26 April 1979 Saint Vincent de la Soufrière eruption

    NASA Astrophysics Data System (ADS)

    Poret, Matthieu; Costa, Antonio; Folch, Arnau

    2016-04-01

    The 26 April 1979 an eruption occurred at Saint Vincent de la Soufrière volcano, West Indies, generating an extended tephra fallout deposit from the slope of the volcano toward the South of the island. This event was observed and studied by Brazier et al. (1982). This study provided a few tens of field observations that allowed an estimation of the tephra loading map and other observations on volcanological parameters such as eruptive column height, duration and erupted volume. They also provided information related to aggregation that was significant during the eruption. Here, the field observations and the meteorological fields are used in order to reconstruct the tephra dispersal by using the Fall3D model. The main goal is to better quantify the total mass of fine ash that aggregated during the eruption providing important information and constraints on aggregation processes. The preliminary results show that field observations are well captured using the simplified aggregation parameterization proposed by Cornell et al. (1983) whereas accretionary lapilli can be described adding a second aggregate class (with a diameter of 2 mm, a density of 2000 kg/m3 and a sphericity of 1) representing only a few percentage of the total amount of tephra. Such percentage was estimated by an empirical approach best fitting field observation. The simulation that best fit the field observations gives an estimation of the column height of about 12.5 km above the vent, a mass eruption rate of 6.0d+6 kg/s and a total mass of 2.2d+9 kg erupted. To go further we will use these results within the 1-D cross-section averaged eruption column model named FPLUME-1.0 based on the Buoyant Plume Theory (BPT) that considers aggregation processes within the plume.

  4. Dissolved volatile concentrations in an ore-forming magma

    USGS Publications Warehouse

    Lowenstern, J. B.

    1994-01-01

    Infrared spectroscopic measurements of glass inclusions within quartz phenocrysts from the Plinian fallout of the 22 Ma tuff of Pine Grove show that the trapped silicate melt contained high concentrations of H2O and CO2. Intrusive porphyries from the Pine Grove system are nearly identical in age, composition, and mineralogy to the tephra, and some contain high-grade Mo mineralization. Assuming that the porphyry magmas originally contained similar abundances of volatile components as the erupted rocks, they would have been saturated with fluid at pressures far greater than those at which the porphyries were emplaced and mineralized. The data are consistent with formation of Climax-type Mo porphyry deposits by prolonged fluid flux from a large volume of relatively Mo-poor (1-5 ppm) magma. -from Author

  5. Large-magnitude Middle Ordovician volcanic ash falls in North America and Europe: Dimensions, emplacement and post-emplacement characteristics

    USGS Publications Warehouse

    Huff, W.D.; Kolata, Dennis R.; Bergstrom, Stig M.; Zhang, Y.-S.

    1996-01-01

    Middle Ordovician K-bentonites represent some of the largest known fallout ash deposits in the Phanerozoic Era. They cover minimally 2.2 ?? 106 km2 in eastern North America and 6.9 ?? 105 km2 in northwestern Europe, and represents the coeval accumulation of plinian and co-ignimbrite ash on both Laurentia and Baltica during the closure of the Iapetus Ocean. The three most widespread beds are the Deicke and Millbrig K-bentonites in North America and the Kinnekulle K-bentonite in northwestern Europe. The vents were located near the Laurentian margin of Iapetus on an arc or microplate undergoing collision with Laurentia. The volume of ash preserved in the stratigraphic record converted to dense rock equivalent (DRE) of silicic magma is minimally estimated to be 943 km3 for the Deicke, 1509 km3 for the Millbrig and 972 km3 for the Kinnekulle. The Millbrig and Kinnekulle beds are coeval and possibly equivalent, yielding a combined DRE volume of nearly 2500 km3. Some unknown but probably large amount of additional ash fell into oceanic regions of the Iapetus, but these areas became subducted and the ash is not preserved in the geologic record. The symmetry of the thickness contours is suggestive that one or more ash clouds interacting with equatorial stratospheric and tropospheric wind patterns dispersed pyroclastic material to both the northwest and southeast in terms of Ordovician paleogeography. Based on grain size measurements and thickness/area1/2 plots we conclude the three beds were each formed from co-ignimbrite or possibly phreatoplinian eruption columns. Analyses of melt inclusions in primary quartz crystals indicate the parental magma contained approximately 4% dissolved water at the time of the eruption. This water provided the explosive energy during the initial gas thrust phase. The implied fragmentation pressure on the magma would have reduced much of the ejecta to small particles, forming a deposit composed largely of single crystals and glassy dust. Conversion of the ash to K-bentonite resulted in a mass loss of approximately 35%, mostly in the form of Si with lesser amounts of Na and K.

  6. NO2 column changes induced by volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Johnston, Paul V.; Keys, J. Gordon; Mckenzie, Richard L.

    1994-01-01

    Nitrogen dioxide slant column amounts measured by ground-based remote sensing from Lauder, New Zealand (45 deg S) and Campbell Island (53 deg S) during the second half of 1991 and early 1992 show anomalously low values that are attributed to the effects of volcanic eruptions. It is believed that the eruptions of Mount Pinatubo in the Philippines in June 1991 and possibly Mount Hudson in Chile in August 1991 are responsible for the stratospheric changes, which first became apparent in July 1991. The effects in the spring of 1991 are manifested as a reduction in the retrieved NO2 column amounts from normal levels by 35 to 45 percent, and an accompanying increase in the overnight decay of NO2. The existence of an accurate long-term record of column NO2 from the Lauder site enables us to quantify departures from the normal seasonal behavior with some confidence. Simultaneous retrievals of column ozone agree well with Dobson measurements, confirming that only part of the NO2 changes can be attributed to a modification of the scattering geometry by volcanic aerosols. Other reasons for the observed behavior are explored, including the effects of stratospheric temperature increases resulting from the aerosol loading and the possible involvement of heterogeneous chemical processes.

  7. Human Footprints in Relation to the 1790 Eruption of Kilauea

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.; Rausch, J.

    2008-12-01

    In 1790, a party of warriors and their families was decimated by an explosive eruption of Kilauea; fatality estimates range from about 80 to 5,405. In 1920, thousands of footprints made by barefoot walkers in wet accretionary lapilli ash were found within a few kilometers southwest of Kilauea's summit. In 1921, Jaggar related the footprints to survivors or rescuers of the 1790 eruption, mainly because he assumed that few people visited the supposedly forbidden area except in 1790. Archaeologists from Hawai'i Volcanoes National Park recently questioned whether the footprints were made at that time and by warriors, citing a wide range of directions that people were walking and evidence of extensive human use of the area. Forensic and anthropologic studies indicate that a human foot is about 15 percent of an individual's height. A man's foot may be slightly more that 15 percent, a women's slightly less, but nonetheless the height can be estimated to within a few centimeters. We measured the heel-big toe length of more than 400 footprints and calculated an average height of 1.5 m, including some children only a little more than 1 m tall. Few calculated heights are 1.75 m or more. Early Europeans described Hawaiian warriors as tall, one missionary estimating an average height of 1.78 m. A footprint may be larger than a foot, particularly in slippery, wet ash, so our estimates of heights are probably somewhat too large. The data indicate that most of the footprints were made by women and children, not by men, much less warriors. We traced the footprint-bearing ash into the tephra section on the southwest side of Kilauea's caldera. It occurs high in the section, resting on older explosive deposits. Its surface is indented by small lithic lapilli, which fell into the ash while it was still wet; a few even landed in footprints. The lithic lapilli are at the edge of a thick block and lapilli deposit that fell from a high eruption column; the column reached well into the jet stream, because its fallout was mainly dispersed east-southeastward by westerlies, a wind direction found only at high altitudes in Hawai'i. Surges associated with the high eruption column swept over the southwest and west rims of the caldera. These relations indicate that the accretionary lapilli (footprints) ash was an early stage of a powerful eruption involving both high columns and lithic surges. Hawaiian oral tradition says that the 1790 eruption was large, and Jaggar calculated a column height probably greater than 9 km (30,000 ft) based on observations of a pillar (eruption column) seen over Mauna Loa when viewed from the north. This is about halfway through the jet stream. Our work found two deposits of the late 1700s dispersed east of Kilauea's summit. The younger was probably erupted in 1790. A reconstruction of events in 1790 suggests that the accretionary lapilli ash fell early in the eruption, blown southwestward into areas where family groups, mainly women and children, were chipping glass from old pahoehoe for tools. They probably sought shelter while the ash was falling. but once it stopped, they slogged through the mud, leaving footprints in the 2-cm-thick deposit.. Meanwhile, the warriors and their families, camped at Kilauea's summit (supposedly for 3 days) waiting for the eruption to end, saw the sky clear following the ash eruption and started walking southwestward along the west side of the summit area. Then the most powerful stage of the eruption began, sending surges westward across the path of the doomed group, killing many. Afterwards, any survivors or rescuers who walked on the accretionary lapilli ash, by now dry, left no footprints that are preserved.

  8. Calbuco Volcano Erupts in Southern Chile

    NASA Image and Video Library

    2015-04-24

    Calbuco Volcano in southern Chile has erupted for the first time since 1972, with the last major eruption occurring in 1961 that sent ash columns 12-15 kilometers high. This image was taken by the Suomi NPP satellite's VIIRS instrument in a high resolution infrared channel around 0515Z on April 23, 2015. Credit: NOAA/NASA/NPP/VIIRS

  9. Reconstruction of the 2014 eruption sequence of Ontake Volcano from recorded images and interviews

    NASA Astrophysics Data System (ADS)

    Oikawa, Teruki; Yoshimoto, Mitsuhiro; Nakada, Setsuya; Maeno, Fukashi; Komori, Jiro; Shimano, Taketo; Takeshita, Yoshihiro; Ishizuka, Yoshihiro; Ishimine, Yasuhiro

    2016-05-01

    A phreatic eruption at Mount Ontake (3067 m) on September 27, 2014, led to 64 casualties, including missing people. In this paper, we clarify the eruption sequence of the 2014 eruption from recorded images (photographs and videos obtained by climbers) and interviews with mountain guides and workers in mountain huts. The onset of eruption was sudden, without any clear precursory surface phenomena (such as ground rumbling or strong smell of sulfide). Our data indicate that the eruption sequence can be divided into three phases. Phase 1: The eruption started with dry pyroclastic density currents (PDCs) caused by ash column collapse. The PDCs flowed down 2.5 km SW and 2 km NW from the craters. In addition, PDCs moved horizontally by approximately 1.5 km toward N and E beyond summit ridges. The temperature of PDCs at the summit area partially exceeded 100 °C, and an analysis of interview results suggested that the temperature of PDCs was mostly in the range of 30-100 °C. At the summit area, there were violent falling ballistic rocks. Phase 2: When the outflow of PDCs stopped, the altitude of the eruption column increased; tephra with muddy rain started to fall; and ambient air temperature decreased. Falling ballistic rocks were almost absent during this phase. Phase 3: Finally, muddy hot water flowed out from the craters. These models reconstructed from observations are consistent with the phreatic eruption models and typical eruption sequences recorded at similar volcanoes.

  10. Tephra layers from Holocene lake sediments of the Sulmona Basin, central Italy: implications for volcanic activity in Peninsular Italy and tephrostratigraphy in the central Mediterranean area

    NASA Astrophysics Data System (ADS)

    Giaccio, B.; Messina, P.; Sposato, A.; Voltaggio, M.; Zanchetta, G.; Galadini, F.; Gori, S.; Santacroce, R.

    2009-12-01

    We present a new tephrostratigraphic record from the Holocene lake sediments of the Sulmona basin, central Italy. The Holocene succession is represented by whitish calcareous mud that is divided into two units, SUL2 (ca 32 m thick) and SUL1 (ca 8 m thick), for a total thickness of ca 40 m. These units correspond to the youngest two out of six sedimentary cycles recognised in the Sulmona basin that are related to the lake sedimentation since the Middle Pleistocene. Height concordant U series age determinations and additional chronological data constrain the whole Holocene succession to between ca 8000 and 1000 yrs BP. This includes a sedimentary hiatus that separates the SUL2 and SUL1 units, which is roughly dated between <2800 and ca 2000 yrs BP. A total of 31 and 6 tephra layers were identified within the SUL2 and SUL1 units, respectively. However, only 28 tephra layers yielded fresh micro-pumices or glass shards suitable for chemical analyses using a microprobe wavelength dispersive spectrometer. Chronological and compositional constraints suggest that 27 ash layers probably derive from the Mt. Somma-Vesuvius Holocene volcanic activity, and one to the Ischia Island eruption of the Cannavale tephra (2920 ± 450 cal yrs BP). The 27 ash layers compatible with Mt. Somma-Vesuvius activity are clustered in three different time intervals: from ca 2000 to >1000; from 3600 to 3100; and from 7600 to 4700 yrs BP. The first, youngest cluster, comprises six layers and correlates with the intense explosive activity of Mt. Somma-Vesuvius that occurred after the prominent AD 79 Pompeii eruption, but only the near-Plinian event of AD 472 has been tentatively recognised. The intermediate cluster (3600-3100 yrs BP) starts with tephra that chemically and chronologically matches the products from the "Pomici di Avellino" eruption (ca 3800 ± 200 yrs BP). This is followed by eight further layers, where the glasses exhibit chemical features that are similar in composition to the products from the so-called "Protohistoric" or AP eruptions; however, only the distal equivalents of three AP events (AP3, AP4 and AP6) are tentatively designated. Finally, the early cluster (7600-4700 yrs BP) comprises 12 layers that contain evidence of a surprising, previously unrecognised, activity of the Mt. Somma-Vesuvius volcano during its supposed period of quiescence, between the major Plinian "Pomici di Mercato" (ca 9000 yrs BP) and "Pomici di Avellino" eruptions. Alternatively, since at present there is no evidence of a similar significant activity in the proximal area of this well-known volcano, a hitherto unknown origin of these tephras cannot be role out. The results of the present study provide new data that enrich our previous knowledge of the Holocene tephrostratigraphy and tephrochronology in central Italy, and a new model for the recent explosive activity of the Peninsular Italy volcanoes and the dispersal of the related pyroclastic deposits.

  11. Theory for Deducing Volcanic Activity From Size Distributions in Plinian Pyroclastic Fall Deposits

    NASA Astrophysics Data System (ADS)

    Iriyama, Yu; Toramaru, Atsushi; Yamamoto, Tetsuo

    2018-03-01

    Stratigraphic variation in the grain size distribution (GSD) of plinian pyroclastic fall deposits reflects volcanic activity. To extract information on volcanic activity from the analyses of deposits, we propose a one-dimensional theory that provides a formula connecting the sediment GSD to the source GSD. As the simplest case, we develop a constant-source model (CS model), in which the source GSD and the source height are constant during the duration of release of particles. We assume power laws of particle radii for the terminal fall velocity and the source GSD. The CS model can describe an overall (i.e., entire vertically variable) feature of the GSD structure of the sediment. It is shown that the GSD structure is characterized by three parameters, that is, the duration of supply of particles to the source scaled by the fall time of the largest particle, ts/tM, and the power indices of the terminal fall velocity p and of the source GSD q. We apply the CS model to samples of the Worzel D ash layer and compare the sediment GSD structure calculated by using the CS model to the observed structure. The results show that the CS model reproduces the overall structure of the observed GSD. We estimate the duration of the eruption and the q value of the source GSD. Furthermore, a careful comparison of the observed and calculated GSDs reveals new interpretation of the original sediment GSD structure of the Worzel D ash layer.

  12. Dynamics of gas-driven eruptions: Experimental simulations using CO2-H2O-polymer system

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue; Sturtevant, B.; Stolper, E. M.

    1997-02-01

    We report exploratory experiments simulating gas-driven eruptions using the CO2-H2O system at room temperature as an analog of natural eruptive systems. The experimental apparatus consists of a test cell and a large tank. Initially, up to 1.0 wt% of CO2 is dissolved in liquid water under a pressure of up to 735 kPa in the test cell. The experiment is initiated by suddenly reducing the pressure of the test cell to a typical tank pressure of 10 kPa. The following are the main results: (1) The style of the process depends on the decompression ratio. There is a threshold decompression ratio above which rapid eruption occurs. (2) During rapid eruption, there is always fragmentation at the liquid-vapor interface. Fragmentation may also occur in the flow interior. (3) Initially, the top of the erupting column ascends at a constant acceleration (instead of constant velocity). (4) Average bubble radius grows as t2/3. (5) When viscosity is 20 times that of pure water or greater, a static foam may be stable after expansion to 97% vesicularity. The experiments provide several insights into natural gas-driven eruptions, including (1) the interplay between bubble growth and ascent of the erupting column must be considered for realistic modeling of bubble growth during gas-driven eruptions, (2) buoyant rise of the bubbly magma is not necessary during an explosive volcanic eruption, and (3) CO2-driven limnic eruptions can be explosive. The violence increases with the initial CO2 content dissolved in water.

  13. Scientists vs. Vesuvius: limits of volcanology

    NASA Astrophysics Data System (ADS)

    Carlino, Stefano; Somma, Renato

    2014-05-01

    Recently, Italian newspapers reported the statements of Japanese and American volcanologists which declared the high hazard related to the future occurrence of catastrophic eruption at Vesuvius. Is this a reliable picture from scientific point of view? The evaluation of volcanic hazard is based on a general statistical law for which the chances of an eruptive event increase when energy decreases. This law is constructed on the basis of empirical data. Thus, the possibility that a plinian-like eruption occurs, for each volcano, is rare and further reduced for worst-case scenario. However, empirical data are not supported by a robust scientific theory, experimentally verifiable through an exact forecast of a long-term eruption, both in time limits and in energy. Today, the lack of paradigms able to predict in a deterministic way such a complex phenomena, limit the field of the scientists that cannot go further evaluations of a purely probabilistic nature. From this point of view volcanology cannot be considered an hard quantitative Science. The declaration according to which Vesuvius, sooner or later, will produce a catastrophic eruption, yet apparently obvious if we consider the very high degree of urbanization, is not supported by any experimentally verifiable theory. Therefore, the statement according to which Vesuvius next eruptive event will be catastrophic is false. In probabilistic terms, it is actually the least possible scenario. Recognizing the cognitive limits in this research field means to encourage research itself towards the determination of more solid paradigms, in order to get more exact forecasts about such complex phenomena. The scientific compromise of defining risk scenarios, rather than deterministic evaluations about future eruptive events, precisely reflects the limits of research that have to be contemplated even by Civil Protection. Having considered these limits, every risk scenario, even the most conservative, will be ineffective in absence of an adequate political program about the reduction of the exposed value of the area and the systemic risk. In such a context, the Vesuvius area, the recent enlargement of the red zone could not represent an effective method of defence from natural disasters.

  14. Dynamics and Deposits of Coignimbrite Plumes

    NASA Astrophysics Data System (ADS)

    Engwell, Samantha; de'Michieli Vitturi, Mattia; Esposti Ongaro, Tomaso; Neri, Augusto

    2014-05-01

    Fine ash in the atmosphere poses a significant hazard, with potentially disastrous consequences for aviation and, on deposition, health and infrastructure. Fine-grained particles form a large proportion of ejecta in Plinian volcanic clouds. However, another common, but poorly studied phenomena exists whereby large amounts of fine ash are injected into the atmosphere. Coignimbrite plumes form as material is elutriated from the top of pyroclastic density currents. The ash in these plumes is considerably finer grained than that in Plinian plumes and can be distributed over thousands of kilometres in the atmosphere. Despite their significance, very little is known regarding coignimbrite plume formation and dispersion, predominantly due to the poor preservation of resultant deposits. As a result, consequences of coignimbrite plume formation are usually overlooked when conducting hazard and risk analysis. In this study, deposit characteristics and numerical models of plumes are combined to investigate the conditions required for coignimbrite plume formation. Coignimbrite deposits from the Campanian Ignimbrite eruption (Magnitude 7.7, 39 ka) are well sorted and very fine, with a mode of between 30 and 50 microns, and a significant component of respirable ash (less than 10 microns). Analogous distributions are found for coignimbrite deposits from Tungurahua 2006 and Volcan de Colima (2004-2006), amongst others, regardless of magnitude, type or chemistry of eruption. These results indicate that elutriation processes are the dominant control on coignimbrite grainsize distribution. To further investigate elutriation and coignimbrite plume dynamics, the numerical plume model of Bursik (2001) is applied. Model sensitivity analysis demonstrates that neutral buoyancy conditions (required for the formation of the plume) are controlled by a balance between temperature and gas mass flux in the upper most parts of the pyroclastic density current. In addition, results emphasize the importance of entrainment into the established plume, a process that is still poorly defined. The numerical results, and the consistent fine grained nature of ash in the deposits, highlight the importance of physical dynamics in the parent pyroclastic density currents for coignimbrite plume formation and stress the need for tailored methods to investigate hazard and risk from such events. Bursik, M. Effect of wind on the rise height of volcanic plumes. Geophysical Research Letters, 28(18), 3621-3624, 2001.

  15. Determination of the total grain size distribution in a vulcanian eruption column, and its implications to stratospheric aerosol perturbation

    NASA Technical Reports Server (NTRS)

    Murrow, P. J.; Rose, W. I., Jr.; Self, S.

    1980-01-01

    The total grain distribution of tephra from the eruption by the Fuego volcano in Guatemala on Oct. 14, 1974 was determined by grain size analysis. The region within each isopach has a grain distribution which was weighted proportionally to its percentage volume; the total distribution had a median grain size of 0.6 mm and a sorting coefficient of 2.3. The ash composed of fine particles did not fall in the volcano area as part of the recognizable tephra blanket; the eruption column reached well into the stratosphere to the height of 10-12 km above sea level, with mass flux rate estimated altitudes of 18-23 km

  16. Hazard maps of Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events (rockfall) and pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Colima Volcano by the State Civil & Fire Protection Unit of Jalisco, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

  17. Combined effects of total grain-size distribution and crosswind on the rise of eruptive volcanic columns

    NASA Astrophysics Data System (ADS)

    Girault, F.; Carazzo, G.; Tait, S.; Kaminski, E.

    2016-10-01

    The maximum height of an explosive volcanic column, H, depends on the 1/4th power of the eruptive mass flux, Q, and on the 3/4th power of the stratification of the atmosphere, N. Expressed as scaling laws, this relationship has made H a widely used proxy to estimate Q. Two additional effects are usually included to produce more accurate and robust estimates of Q based on H: particle sedimentation from the volcanic column, which depends on the total grain-size distribution (TGSD) and the atmospheric crosswind. Both coarse TGSD and strong crosswind have been shown to decrease strongly the maximum column height, and TGSD, which also controls the effective gas content in the column, influences the stability of the column. However, the impact of TGSD and of crosswind on the dynamics of the volcanic column are commonly considered independently. We propose here a steady-state 1D model of an explosive volcanic column rising in a windy atmosphere that explicitly accounts for particle sedimentation and wind together. We consider three typical wind profiles: uniform, linear, and complex, with the same maximum wind velocity of 15 m s- 1. Subject to a uniform wind profile, the calculations show that the maximum height of the plume strongly decreases for any TGSD. The effect of TGSD on maximum height is smaller for uniform and complex wind profiles than for a linear profile or without wind. The largest differences of maximum heights arising from different wind profiles are observed for the largest source mass fluxes (> 107 kg s- 1) for a given TGSD. Compared to no wind conditions, the field of column collapse is reduced for any wind profile and TGSD at the vent, an effect that is the strongest for small mass fluxes and coarse TGSD. Provided that the maximum plume height and the wind profile are known from real-time observations, the model predicts the mass discharge rate feeding the eruption for a given TGSD. We apply our model to a set of eight historical volcanic eruptions for which all the required information is known. Taking into account the measured wind profile and the actual TGSD at the vent substantially improves (by ≈ 30%) the agreement between the mass discharge rate calculated from the model based on plume height and the field observation of deposit mass divided by eruption duration, relative to a model taking into account TGSD only. This study contributes to the improvement of the characterization of volcanic source term required as input to larger scale models of ash and aerosol dispersion.

  18. Comparison of Galunggung1982-83 and Eyjafjalla-2010 Eruptions: definition of eruption dynamics from 3D Ash Surface Morphology

    NASA Astrophysics Data System (ADS)

    Aydar, E.; Höskuldsson, A.; Ersoy, O.; Gourgaud, A.

    2012-04-01

    We consider that all works, concepts on aviation safety, security codes, establishment of warning systems etc begin in 1982, when two commercial jumbo jets en route to Australia across Indonesia suffered loss of engine thrust from ingesting volcanic ash from the erupting Galunggung Volcano, Java, and descended more than 20,000 ft before the engines could be restarted (Casadevall, 1991). It is not the only incident of this kind but this Galunggung eruption had a pionner character attracting attention on aviation safety against volcanic eruptions in international community. As the needs for precautions on aviation safety against volcanic ash encounters began with Galunggung 1982 eruption and as we all concerned by the measures taken by ICAO due to Eyjafjallajökull-2010 eruption, we aimed to investigate this last huge airspace perturbing eruption and compare the volcanic ashes produced by those two eruptions. Volcanic ash characterization should be most important parameter to understand how the eruption concerned unrolled. Galunggung 1982-83 eruption was exceptionally long, lasting about nine months between 5 April 1982-8 January 1983). During this well known eruption, the composition of the erupted magma evolved from andesite (58% SiO2) to Mg-rich basalt (47% SiO2), while the style of the eruption changed drastically through time (Katili and Sudrdajat, 1984; Sudrajat and Tilling, 1984; Gourgaud et al., 1989 gourgaud etal 2000). Paralel to chemical changes and water consumption, eruption dynamic was also changed and occured in three eruption phases with different eruptive styles as an initial Vulcanian phase (5 April-13 May), a phreatomagmatic phase (17 May-28 October) and a Strombolian phase (3 November-8 January), have been recognized (Katili and Sudradjat,1984). We examined the surficial morphological features of proximal tephra collected from Galunggung and Eyjafjalla volcanoes. Surface texture and morphology of volcanic ash particles change according to various fragmentation mechanisms. Several common types of ashes produced during phreatomagmatic fragmentation process bear blocky-equant, mosslike, plate-like and drop or spherical shapes, besides, magmatic fragmentation leads to the formation of vesiculated fragments. We applied some quantitative statistical parameters for surface descriptors of volcanic ashes such as "Average roughness of profile (Ra), Maximum valley height of roughness profile (Rv), profile irregularities of roughness profile, Surface Area (SA), Volume (V), Fractal Dimension of Roughness (DAS)". We compared quantitative morphological data acquired from both eruptions. The grain size distribution of Eyjafjalla-2010 eruption, ash surface morphology, tephras types and textural parameters exhibit that magma input was important during the first phase (14-16 April) than following days. First phase ashes have either tubular vesicles as classically known for plinian deposits or curviplanar cut vesicles and some brittle fracturations, characteristics of phreatomagmatism. Interestingly, coarse fragmentation happened after the first phase. There is great similarities between two eruptions, but in reverse sens that in Galunggung, the eruption started with vulcanian style then phreatomatism and lasted with strombolian activity. Besides in Eyjafjalla-2010, eruptive phase started with basaltic activities at the North, then phreatomagmatism and toward the end a slight vulcanian style happened.

  19. Elastostatic effects around a magma reservoir and pathway due to historic earthquakes: a case study of Mt. Fuji, Japan

    NASA Astrophysics Data System (ADS)

    Hosono, Masaki; Mitsui, Yuta; Ishibashi, Hidemi; Kataoka, Jun

    2016-12-01

    We discuss elastostatic effects on Mt. Fuji, the tallest volcano in Japan, due to historic earthquakes in Japan. The 1707 Hoei eruption, which was the most explosive historic eruption of Mt. Fuji, occurred 49 days after the Hoei earthquake (Mw 8.7) along the Nankai Trough. It was previously suggested that the Hoei earthquake induced compression of a basaltic magma reservoir and unclamping of a dike-intruded region at depth, possibly triggering magma mixing and the subsequent Plinian eruption. Here, we show that the 1707 Hoei earthquake was a special case of induced volumetric strain and normal stress changes around the magma reservoir and pathway of Mt. Fuji. The 2011 Tohoku earthquake (Mw 9), along the Japan Trench, dilated the magma reservoir. It has been proposed that dilation of a magma reservoir drives the ascent of gas bubbles with magma and further depressurization, leading to a volcanic eruption. In fact, seismicity notably increased around Mt. Fuji during the first month after the 2011 Tohoku earthquake, even when we statistically exclude aftershocks, but the small amount of strain change (< 1 μ strain) may have limited the ascent of magma. For many historic earthquakes, the magma reservoir was compressed and the magma pathway was wholly clamped. This type of interaction has little potential to mechanically trigger the deformation of a volcano. Thus, Mt. Fuji may be less susceptible to elastostatic effects because of its location relative to the sources of large tectonic earthquakes. As an exception, a possible local earthquake in the Fujikawa-kako fault zone could induce a large amount of magma reservoir dilation beneath the southern flank of Mt. Fuji.

  20. Sakurajima volcano: a physico-chemical study of the health consequences of long-term exposure to volcanic ash

    NASA Astrophysics Data System (ADS)

    Hillman, S. E.; Horwell, C. J.; Densmore, A. L.; Damby, D. E.; Fubini, B.; Ishimine, Y.; Tomatis, M.

    2012-05-01

    Regular eruptions from Sakurajima volcano, Japan, repeatedly cover local urban areas with volcanic ash. The frequency of exposure of local populations to the ash led to substantial concerns about possible respiratory health hazards, resulting in many epidemiological and toxicological studies being carried out in the 1980s. However, very few mineralogical data were available for determination of whether the ash was sufficiently fine to present a respiratory hazard. In this study, we review the existing studies and carry out mineralogical, geochemical and toxicological analyses to address whether the ash from Sakurajima has the potential to cause respiratory health problems. The results show that the amount of respirable (<4 μm) material produced by the volcano is highly variable in different eruptions (1.1-18.8 vol.%). The finest samples derive from historical, plinian eruptions but considerable amounts of respirable material were also produced from the most recent vulcanian eruptive phase (since 1955). The amount of cristobalite, a crystalline silica polymorph which has the potential to cause chronic respiratory diseases, is ~3-5 wt.% in the bulk ash. Scanning electron microscope and transmission electron microscope imaging showed no fibrous particles similar to asbestos particles. Surface reactivity tests showed that the ash did not produce significant amounts of highly reactive hydroxyl radicals (0.09-1.35 μmol m-2 at 30 min.) in comparison to other volcanic ash types. A basic toxicology assay to assess the ability of ash to rupture the membrane of red blood cells showed low propensity for haemolysis. The findings suggest that the potential health hazard of the ash is low, but exposure and respiratory conditions should still be monitored given the high frequency and durations of exposure.

  1. Are local communities prepared to face a future volcanic emergency at Vesuvius?

    NASA Astrophysics Data System (ADS)

    Carlino, S.; Somma, R.; Mayberry, G. C.

    2009-04-01

    The Vesuvius represents, undoubtedly, the icon of volcanic threats, since more than 600,000 people live very close to the volcano. This image is strengthened by the presence of the archaeological ruins of Pompeii and Herculaneum, buried by the 79 A.D. plinian eruption, testifying nowadays the highly destructive impact on humans, buildings and environments. Nevertheless, many young people live in the Vesuvian area show an inadequate preparedness to face the next eruption. This is inferred by the results of a multiple choice questionnaire, distributed to 400 high-school students in three municipalities located close to the volcano during the 2007. The questionnaire was aimed to understand the level of risk perception and preparedness of at-risk communities during the current quiescent period. The interviewed students show high levels of fear, poor perceived ability to protect themselves from the effects of a future eruption, and insufficient knowledge of the National Emergency Plan for Vesuvian Area (NEPVA). This result suggests that, during a future eruption of Vesuvius, there may not be enough time to educate the large number of people living near the volcano about how to appropriately respond. The lack of knowledge about NEPVA is a sign of the absence of well-tested communication strategies and effective information dissemination in the study area. This lack of knowledge also means there is little interest in participating in risk-reduction activities. The inadequate risk education and preparedness of respondents implies that a strong effort is needed to improve communication strategies in order to facilitate successful evacuations. Therefore, it is important to take advantage of the present period of quiescence at Vesuvius to increase the risk perception of youth in local communities. In the absence of adequate preparedness measures, an evacuation could become "enforced" or even worse, a "failure."

  2. Chronology, morphology and stratigraphy of pumiceous pyroclastic-flow (ignimbrite) deposits from the eruption of Mount St. Helens on 18 May 1983

    NASA Technical Reports Server (NTRS)

    Criswell, C. W.; Elston, W. E.

    1984-01-01

    Between 1217 and 1620 hours (PDT), on May 18, 1980, the magmatic eruption column of Mount St. Helens formed an ash fountain and pyroclastic flows dominated the eruption process over tephra ejection. Eurption-rate pulsations generally increased to a maximum at 1600 to 1700 hrs. After 1620 hrs, the eruption assumed an open-vent discharge with strong, vertical ejection of tephra. Relative eruption rates (relative mass flux rates) of the pyroclastic flows were determined by correlating sequential photographs and SLAR images, obtained during the eruption, with stratigraphy and surface morphology of the deposits.

  3. Magma storage constrains by compositional zoning of plagioclase from dacites of the caldera forming eruptions of Vetrovoy Isthmus and Lvinaya Past’ Bay (Iturup Island, Kurile Islands)

    NASA Astrophysics Data System (ADS)

    Maksimovich, I. A.; Smirnov, S. Z.; Kotov, A. A.; Timina, T. Yu; Shevko, A. V.

    2017-12-01

    The Vetrovoy Isthmus and the Lvinaya Past’ Bay on the Iturup island (Kuril island arc) are the results of large Plinian eruptions of compositionally similar dacitic magmas. This study is devoted to a comparative analysis of the storage and crystallization conditions for magma reservoirs, which were a source of large-scale explosive eruptions. The plagioclase is most informative mineral in studying of the melt evolution. The studied plagioclases possess a complex zoning patterns, which are not typical for silicic rocks in island-arc systems. It was shown that increase of Ca in the plagioclase up to unusually high An95 is related to increase of H2O pressure in both volcanic magma chambers. The study revealed that minerals of the Vetrovoy Isthmus and Lvinaya Past’ crystallized from compositionally similar melts. Despite the compositional similarity of the melts, the phenocryst assemblage of the Lvinaya Past’ differs from the Vetrovoy Isthmus by the presence of the amphibole, which indicates that the pressure in the magmatic chamber exceeded 1-2 kbar at a 4-6 wt. % of H2O in the melt. The rocks of the Vetrovoy Isthmus do not contain amphibole phenocrysts, but melt and fluid inclusions assemblages in plagioclase demonstrate that the magma degassed in the course of evolution. This is an indication that the pressure did not exceed significantly 1-2 kbar.

  4. Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height

    NASA Technical Reports Server (NTRS)

    Woods, Andrew W.; Self, Stephen

    1992-01-01

    Satellite images of large volcanic explosions reveal that the tops of volcanic eruptions columns are much cooler than the surrounding atmosphere. It is proposed that this effect occurs whenever a mixture of hot volcanic ash and entrained air ascends sufficiently high into a stably stratified atmosphere. Although the mixture is initially very hot, it expands and cools as the ambient pressure decreases. It is shown that cloud-top undercoolings in excess of 20 C may develop in clouds that penetrate the stratosphere, and it is predicted that, for a given cloud-top temperature, variations in the initial temperature of 100-200 C may correspond to variations in the column height of 5-10 km. It is deduced that the present practice of converting satellite-based measurements of the temperature at the top of volcanic eruptions columns to estimates of the column height will produce rather inaccurate results and should therefore be discontinued.

  5. On-and offshore tephrostratigraphy and -chronology of the southern Central American Volcanic Arc (CAVA)

    NASA Astrophysics Data System (ADS)

    Schindlbeck, J. C.; Kutterolf, S.; Hemming, S. R.; Wang, K. L.

    2015-12-01

    Including the recently drilled CRISP sites (IODP Exp. 334&344) the deep sea drilling programs have produced 69 drill holes at 29 Sites during 9 Legs at the Central American convergent margin, where the Cocos plate subducts beneath the Caribbean plate. The CAVA produced numerous plinian eruptions in the past. Although abundant in the marine sediments, information and data regarding large late Cenozoic explosive eruptions from Costa Rica, Nicaragua, Honduras, El Salvador, and Guatemala remain very sparse and discontinuous on land. We have established a tephrostratigraphy from recent through Miocene times from the unique archive of ODP/IODP sites offshore Central America in which we identify tephra source regions by geochemical fingerprinting using major and trace element glass shard compositions. Here we present first order correlations of ­~500 tephra layers between multiple holes at a single site as well as between multiple sites. We identified ashes supporting Costa Rican (~130), Nicaraguan (17) and Guatemalan (27) sources as well as ~150 tephra layers from the Galápagos hotspot. Within our marine record we also identified well-known marker beds such as the Los Chocoyos tephra from Atitlán Caldera in Guatemala and the Tiribi Tuff from Costa Rica but also correlations to 15 distinct deposits from known Costa Rican and Nicaraguan eruptions within the last 4.1 Ma. These correlations, together with new radiometric age dates, provide the base for an improved tephrochronostratigraphy in this region. Finally, the new marine record of explosive volcanism offshore southern CAVA provides insights into the eruptive history of long-living volcanic complexes (e.g., Barva, Costa Rica) and into the distribution and frequency of large explosive eruptions from the Galápagos hotspot. The integrated approach of Ar/Ar age dating, correlations with on land deposits from CAVA, biostratigraphic ages and sediment accumulation rates improved the age models for the drilling sites.

  6. The volcanic history of Volcán Alcedo, Galápagos Archipelago: a case study of rhyolitic oceanic volcanism

    USGS Publications Warehouse

    Geist, Dennis J.; Howard, Keith A.; Jellinek, A. Mark; Rayder, Scott

    1994-01-01

    Volcán Alcedo is one of the seven western Galápagos shields and is the only active Galápagos volcano known to have erupted rhyolite as well as basalt. The volcano stands 4 km above the sea floor and has a subaerial volume of 200 km3, nearly all of which is basalt. As Volcán Alcedo grew, it built an elongate domal shield, which was partly truncated during repeated caldera-collapse and partial-filling episodes. An outward-dipping sequence of basalt flows at least 250 m thick forms the steepest (to 33°) flanks of the volcano and is not tilted; thus a constructional origin for the steep upper flanks is favored. About 1 km3 of rhyolite erupted late in the volcano's history from at least three vents and in 2–5 episodes. The most explosive of these produced a tephra blanket that covers the eastern half of the volcano. Homogeneous rhyolitic pumice is overlain by dacite-rhyolite commingled pumice, with no stratigraphic break. The tephra is notable for its low density and coarse grain size. The calculated height of the eruption plume is 23–30 km, and the intensity is estimated to have been 1.2x108 kg/s. Rhyolitic lavas vented from the floor of the caldera and from fissures along the rim overlie the tephra of the plinian phase. The age of the rhyolitic eruptions is ≤120 ka, on the basis of K-Ar ages. Between ten and 20 basaltic lava flows are younger than the rhyolites. Recent faulting resulted in a moat around part of the caldera floor. Alcedo most resently erupted sometime between 1946 and 1960 from its southern flank. Alcedo maintains an active, transient hydrothermal system. Acoustic and seismic activity in 1991 is attributed to the disruption of the hydrothermal system by a regional-scale earthquake.

  7. Peak flow responses to landscape disturbances caused by the cataclysmic 1980 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Major, Jon J.; Mark, Linda E.

    2006-01-01

    Years of discharge measurements that precede and follow the cataclysmic 1980 eruption of Mount St. Helens, Washington, provide an exceptional opportunity to examine the responses of peak flows to abrupt, widespread, devastating landscape disturbance. Multiple basins surrounding Mount St. Helens (300–1300 km2 drainage areas) were variously disturbed by: (1) a debris avalanche that buried 60 km2 of valley; (2) a lateral volcanic blast and associated pyroclastic flow that destroyed 550 km2 of mature forest and blanketed the landscape with silt-capped lithic tephra; (3) debris flows that reamed riparian corridors and deposited tens to hundreds of centimeters of gravelly sand on valley floors; and (4) a Plinian tephra fall that blanketed areas proximal to the volcano with up to tens of centimeters of pumiceous silt, sand, and gravel. The spatially complex disturbances produced a variety of potentially compensating effects that interacted with and influenced hydrological responses. Changes to water transfer on hillslopes and to flow storage and routing along channels both enhanced and retarded runoff. Rapid post-eruption modifications of hillslope surface textures, adjustments of channel networks, and vegetation recovery, in conjunction with the complex nature of the eruptive impacts and strong seasonal variability in regional climate hindered a consistent or persistent shift in peak discharges. Overall, we detected a short-lived (5–10 yr) increase in the magnitudes of autumn and winter peak flows. In general, peak flows were larger, and moderate to large flows (>Q2 yr) were more substantively affected than predicted by early modeling efforts. Proportional increases in the magnitudes of both small and large flows in basins subject to severe channel disturbances, but not in basins subject solely to hillslope disturbances, suggest that eruption-induced modifications to flow efficiency along alluvial channels that have very mobile beds differentially affected flows of various magnitudes and likely played a prominent, and additional, role affecting the nature of the hydrological response.

  8. The eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru)

    NASA Astrophysics Data System (ADS)

    Samaniego, Pablo; Rivera, Marco; Mariño, Jersy; Guillou, Hervé; Liorzou, Céline; Zerathe, Swann; Delgado, Rosmery; Valderrama, Patricio; Scao, Vincent

    2016-09-01

    We have reconstructed the eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru) on the basis of extensive fieldwork, and a large dataset of geochronological (40K-40Ar, 14C and 3He) and geochemical (major and trace element) data. This volcanic complex is composed of two successive edifices that have experienced discontinuous volcanic activity from Middle Pleistocene to Holocene times. The Ampato compound volcano consists of a basal edifice constructed over at least two cone-building stages dated at 450-400 ka and 230-200 ka. After a period of quiescence, the Ampato Upper edifice was constructed firstly during an effusive stage (80-70 ka), and then by the formation of three successive peaks: the Northern, Southern (40-20 ka) and Central cones (20-10 ka). The Southern peak, which is the biggest, experienced large explosive phases, resulting in deposits such as the Corinta plinian fallout. During the Holocene, eruptive activity migrated to the NE and constructed the mostly effusive Sabancaya edifice. This cone comprised many andesitic and dacitic blocky lava flows and a young terminal cone, mostly composed of pyroclastic material. Most samples from the Ampato-Sabancaya define a broad high-K magmatic trend composed of andesites and dacites with a mineral assemblage of plagioclase, amphibole, biotite, ortho- and clino-pyroxene, and Fe-Ti oxides. A secondary trend also exists, corresponding to rare dacitic explosive eruptions (i.e. Corinta fallout and flow deposits). Both magmatic trends are derived by fractional crystallisation involving an amphibole-rich cumulate with variable amounts of upper crustal assimilation. A marked change in the overall eruptive rate has been identified between Ampato ( 0.1 km3/ka) and Sabancaya (0.6-1.7 km3/ka). This abrupt change demonstrates that eruptive rates have not been homogeneous throughout the volcano's history. Based on tephrochronologic studies, the Late Holocene Sabancaya activity is characterised by strong vulcanian events, although its erupted volume remained low and only produced a local impact through ash fallout. We have identified at least 6 eruptions during the last 4-5 ka, including the historical AD 1750-1784 and 1987-1998 events. On the basis of this recurrent low-to-moderate explosive activity, Sabancaya must be considered active and a potentially threatening volcano.

  9. Understanding the monotonous life of open vent mafic volcanoes

    NASA Astrophysics Data System (ADS)

    Costa Rodriguez, F.; Ruth, D. C. S.; Bornas, M.; Rivera, D. J. V. I.

    2016-12-01

    Mafic open vent volcanoes display prominent degassing plumes during quiescence but also erupt frequently, every few months or years. Their small and mildly explosive eruptions (<0.1 km3, VEI 2-3) typically produce the same magma composition and phenocryst content for decades (e.g. Arenal, Mayon, Llaima). This monotonous activity may be punctuated by subplinian or plinian events every hundred years or so. What processes drive the repetitive eruptions of the same magma composition for decades at these volcanoes? We address this question with a new dataset of nine historical eruptions that span the last 100 years of Mayon volcano (Philippines). All samples are basaltic andesitic (SiO2 55 wt%, 4 wt% MgO) with high phenocryst contents (50 ± 7 vol %). Plag shows numerous dissolution and sieve textures and alternating changes of composition (mainly An55 to An85). Opx (Mg# 60-86) and Cpx (Mg# 66-86) phenocrysts typically consist of low Mg/Fe subrounded cores with dissolution zones mantled by higher Mg/Fe rims. The low Mg/Fe cores ( 1000 ±15 °C) crystallized about 30 °C lower than the high Mg/Fe rims ( 1030 ±20 °C). H concentrations in pyroxenes and previously reported melt inclusion volatile contents indicate that the magma reservoir system extends at least to 5 km depth. Mg/Fe pyroxene zoning and diffusion modeling suggests that mafic magma intrusion in a shallow, crystal-rich and more evolved reservoir has occurred repeatedly. The time scale for this process is the same for all 9 events, starting about 2 years prior and continuing up to eruption. We estimate the relative proportions of injecting to resident magma that vary from about 0.2 to 0.7, probably reflecting the local crystal-melt interaction during intrusion. The near constant magma composition is probably the result of buffering of new incoming magma by a crystal-rich upper reservoir, and erupted magmas are physical mixtures. However, we do not find evidence of large-scale crystal recycling from one eruption to another, implying the resetting of the system after each event. The recurrent eruptions and intrusions could be driven by the near continuous degassing of the volcano that induces a mass imbalance which leads to magma movement from depth to the shallow system [e.g., 1]. [1] Girona et al. (2016). Science Reports doi:10.1038/srep18212

  10. Fluid and Melt Inclusions as a tool to understand two high risk volcanic systems: Vesuvius and Campi Flegrei

    NASA Astrophysics Data System (ADS)

    De Vivo, B.

    2017-12-01

    In the Campania region (Southern Italy) major active volcanic systems occur in the greater metropolitan area of Naples: Mt. Somma-Vesuvius (SV) and the Campi Flegrei (CF). These volcanic systems have been studied for centuries, yet significant differences of opinions exist about their origins and behaviors. Here, I present some alternative views on issues based on more than 25 years of research, focusing the attention on role played by fluids and magmas based on fluid inclusions (FI) and melt inclusions (MI). In particular, FI and MI data from the Neapolitan volcanoes provide valuable information on the nature of fluid and melt phases trapped during the late evolutionary stages of the alkaline magmatic rocks; such data from past eruptions might be applied to predict the imminence of volcanic eruptions and help protect the population from such hazards. In my and my collaborator studies, FI and MI data have been also used to address the problem of bradyseism in the CF. Using FI and MI, to explain the bradyseism phenomena at CF, my collaborators and I described a new model that involves only hydrothermal fluids of magmatic or meteoric/marine origin with no direct involvement of the magma, other than as a heat source to explain the ground deformation. My collaborators and I explain the bradyseism as a purely hydrothermal model, using processes in porphyry systems as an analogue to those of the CF. SV activity is characterized by cyclic events, and in terms of volcanic risk assessment, a crucial aspect to understand is when a potential next explosive eruption might occur. Evaluating volcanic hazards requires knowledge of the processes that trigger eruptions and the nature and timing of geophysical/geochemical signals related to these processes. One approach to addressing this need is to link observable signals to pre-eruptive magmatic events deduced from studies of erupted magmas. I believe that a way to work in this direction is to determine the residence time, through MI diffusion profiles, of crystals in the magma chamber before an explosive event. I think that working on the crystals residence time of the many plinian eruptions we know to have occurred in SV history, could help us to understand better the relationships between tectonic, regional, event and explosive eruptions.

  11. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse

    2010-01-01

    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  12. Reconstruction of 23 November 2013 Etna Eruption Source Parameters through a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Poret, Matthieu; Costa, Antonio; Corradini, Stefano; Merucci, Luca; Andronico, Daniele; Vulpiani, Gianfranco; Cristaldi, Antonio

    2017-04-01

    On 23 November 2013, Mt. Etna erupted producing the 17th paroxysmal episode of 2013. The eruption generated a buoyant plume that reached more than 10 km a.s.l. The volcanic cloud was dispersed by a wind oriented north-eastwards which drove the erupted tephra over an extending area starting from the slopes of the volcano (scoria and lapilli) to the Calabria and up to Puglia region (ash particles). The field samples were collected in proximal area but also in Calabria ( 160 km) and tephra sedimentation was reported in Salento, in Puglia region ( 400 km). Another source of information is the transmission of a pilot who reported the presence of volcanic ash over the Adriatic sea ( 30 km southwards the Albanian coasts) between 10.9 and 11.5 km a.s.l. on 23 November 2013 at 13:50 which likely corresponds to the top of the volcanic cloud made of aerosol and gas. This study aims at reconstructing the Eruption Source Parameters (ESP) of the paroxysm phase such as, the eruptive column height, the eruption duration, the Mass Eruption Rate (MER), the Total Erupted Mass (TEM), and the Total Grain-Size Distribution (TGSD) making use of a multidisciplinary approach. Tephra dispersal simulations were performed using the model Fall3D constraining the results against field deposits, ground-based Radar measurements, and the satellite (MSG-Seviri) retrievals. The three sets of observations are complementary covering the full range of the erupted particle sizes from centimetre to micrometre particles, allowing for a robust assessment of the ESP. Indeed, among the multidisciplinary procedure, the field observations helped to approximate the erupted mass and the coarse fraction of the TGSD, whereas the radar measurements provided an estimation of eruptive column height and MER, and the satellite was crucial to quantify the fine ash fraction (i.e. PM10) by tracking the evolution of the plume and its mass. The best-fit results are in agreement with previous estimations recently published the literature and return a column height of 11.3 km a.s.l., a MER of 2.9×106 kg/s, a TEM of 8.2×109 kg, and a PM10 content of 2.0% with respect to the TEM. Results were also compared with the AERONET aerosol network to investigate the ultra-fine ash (i.e. few microns). Keywords: Etna, Tephra dispersal modelling, Bulk granulometry, Aviation hazard, PM10

  13. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    NASA Astrophysics Data System (ADS)

    Prata, Fred; Woodhouse, Mark; Huppert, Herbert E.; Prata, Andrew; Thordarson, Thor; Carn, Simon

    2017-09-01

    The separation of volcanic ash and sulfur dioxide (SO2) gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21-28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs) occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  14. Water-magma interaction and plume processes in the 2008 Okmok eruption, Alaska

    USGS Publications Warehouse

    Unema, Joel; Ort, Michael H.; Larsen, Jessica D; Neal, Christina; Schaefer, Janet R.

    2016-01-01

    Eruptions of similar explosivity can have divergent effects on the surroundings due to differences in the behavior of the tephra in the eruption column and atmosphere. Okmok volcano, located on Umnak Island in the eastern Aleutian Islands, erupted explosively between 12 July and 19 August 2008. The basaltic andesitic eruption ejected ∼0.24 km3dense rock equivalent (DRE) of tephra, primarily directed to the northeast of the vent area. The first 4 h of the eruption produced dominantly coarse-grained tephra, but the following 5 wk of the eruption deposited almost exclusively ash, much of it very fine and deposited as ash pellets and ashy rain and mist. Meteorological storms combined with abundant plume water to efficiently scrub ash from the eruption column, with a rapid decrease in deposit thickness with distance from the vent. Grain-size analysis shows that the modes (although not their relative proportions) are very constant throughout the deposit, implying that the fragmentation mechanisms did not vary much. Grain-shape features consistent with molten fuel-coolant interaction are common. Surface and groundwater drainage into the vents provided the water for phreatomagmatic fragmentation. The available water (water that could reach the vent area during the eruption) was ∼2.8 × 1010 kg, and the erupted magma totaled ∼7 × 1011 kg, which yield an overall water:magma mass ratio of ∼0.04, but much of the water was not interactive. Although magma flux dropped from 1 × 107 kg/s during the initial 4 h to 1.8 × 105 kg/s for the remainder of the eruption, most of the erupted material was ejected during the lower-mass-flux period due to its much greater length, and this tephra was dominantly deposited within 10 km downwind of the vent. This highlights the importance of ash scrubbing in the evaluation of hazards from explosive eruptions.

  15. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    USGS Publications Warehouse

    Kieffer, S.W.

    1984-01-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding bubbles of steam cause transient vibrations of the fluid column. The frequency of the events is determined by the length of the water column and the speed of sound of the fluid in the conduit when these events occur; damping is controlled by the characteristic and hydraulic impedances, which depend on the above parameters, as well as on the recharge rate of the fluid. Two periods of reduced seismicity (of a few tens of seconds to nearly a minute in duration) occur during the recharge cycle, apparently when the water rises rapidly through the narrow regions of the conduit, causing a sudden pressure increase that temporarily suppresses steam bubble formation. A period of decreased seismicity also precedes preplay or an eruption; this appears to be the time when rising steam bubbles move into a zone of boiling that is acoustically decoupled from the wall of the conduit because of the acoustic impedance mismatch between boiling water (??c ??? 103 g cm-2 s-1) and rock (??c ??? 3 ?? 105 g cm2 s-1). Sustained harmonic tremor occurs during the first one to one-and-a-half minutes of an eruption of Old Faithful, but is not detectable in the succeeding minutes of the eruption. The eruption tremor is caused by hydraulic transients propagating within a sublayer of unvesiculated water that underlies the erupting two-phase liquid-vapor mixture. The resonant frequencies of the fluid column decrease to about 1 Hz when all of the water in the conduit has been converted to a water-steam mixture. Surges are observed in the flow at this frequency, but the resonance has not been detected seismically, possibly because the two-phase erupting fluid is seismically decoupled from the rock on which seismometers are placed. If Old Faithful is an analogue for volcanic seismicity, this study shows that because the frequency of tremor depends on the acoustic properties of the fluid and on conduit dimensions, both properties must be considered in analysis of tremor in volcanic regions. Because magma sound

  16. A-Train Satellite Observations of Recent Explosive Eruptions in Iceland and Chile

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Yang, K.; Prata, A. J.

    2012-04-01

    The past few years have seen remarkable levels of explosive volcanic activity in Iceland and Chile, with four significant eruptions at Chaitén (May 2008), Eyjafjallajökull (April 2010), Grimsvötn (May 2011) and Cordón Caulle (June 2011 - ongoing). The tremendous disruption and economic impact of the Eyjafjallajökull eruption is well known, but each of these events had a significant impact on aviation, sometimes at great distances from the volcano. As of late 2011, volcanic ash from Cordón Caulle was still affecting airports in southern South America, highlighting the potential for extended disruption during long-lived eruptions. Serendipitously, this period of elevated volcanic activity has coincided with an era of unprecedented availability of satellite remote sensing data pertinent to volcanic cloud studies. In particular, NASA's A-Train satellite constellation (including the Aqua, CloudSat, CALIPSO, and Aura satellites) has been flying in formation since 2006, providing synergistic, multi- and hyper-spectral, passive and active observations. Measurements made by A-Train sensors include total column sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric residence are particularly valuable, as the fallout, segregation and stratification of material in this period determines the concentration and altitude of constituents that remain to be advected downwind. This represents the eruption 'source term' essential for ash dispersion modeling, and hence for aviation hazard mitigation. In this presentation we show how A-Train data have improved our understanding of the composition, structure and dynamics of volcanic eruption clouds, using examples from the recent Icelandic and Chilean eruptions. These events span a range of compositions and eruptive styles, including highly silicic, SO2-poor eruptions (Chaitén and Cordón Caulle), magma-ice interaction (Eyjafjallajökull and Grimsvötn), stratospheric eruption columns (Chaitén, Grimsvötn), and persistent, weak tropospheric plumes (Eyjafjallajökull). In each case, satellite remote sensing played a crucial role in characterizing the eruption, monitoring variations in intensity and tracking the dispersion of volcanic cloud constituents. We also describe plans for advanced SO2 and ash retrieval algorithms that will exploit the synergy between UV and IR sensors in the A-Train for improved quantification of ash and SO2 loading by volcanic eruptions.

  17. Magmatic evolution of the Ilopango Caldera, El Salvador, Central America

    NASA Astrophysics Data System (ADS)

    Zezin, D.; Mann, C. P.; Hernández, W.; Stix, J.

    2010-12-01

    The Ilopango caldera (16 x 13 km) is an active, long-lived magmatic system, erupting voluminous amounts of pyroclastic material numerous times over the course of its evolution. The caldera is presently water filled and the most recent activity is a dome growth event in 1880. Established age constraints from extracaldera pyroclastic sequences, indicate caldera forming events occur ~ every 10,000 years over the last 40,000 years. The most recent pyroclastic eruption (TBJ) is constrained to A.D. 429 erupting 70 km3 DRE of pyroclastic material. We combine major element and trace element chemistry with 40Ar/39Ar age constraints of the intracaldera domes and intracaldera pyroclastic deposits to extent the caldera history. The intracaldera domes are andesitic to rhyolitic in composition (57 - 76 wt. % SiO2), some with basaltic enclaves (54 wt. % SiO2) and pyroclastic units observed inside the caldera (San Agustín Pumice Breccia) are dacitic to rhyolitic in composition (69 -75 wt. % SiO2). Formation of an intracaldera andesitic dome at 359±7.9 ka provides a minimum age of caldera formation and extends the caldera history back ~ 320 ka years. The variable composition of the intracaldera domes, the presence of mafic enclaves in the dome lavas, mafic clasts in the TB4 plinian fall, mafic banding in the TB3 and TB2, attest to the obvious involvement of a more mafic magma The highly evolved compositions of the pyroclastic units and the volume of erupted material, point towards a large evolving magma reservoir at depth. The mafic magma may replenish the subsurface reservoir and act as a catalyst for volcanic eruption. The presence of an intracaldera lake, the regularity with which the volcano erupts and the presence of a more mafic magma are the ingredients for a catastrophic disaster. The Ilopango caldera, located 10 km to the east of the capital city of San Salvador (~ 1.5 million people) poses a threat both locally and globally as demonstrated 1600 years ago as it devastated the Early Classic Mayan civilization.

  18. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.

    2008-07-01

    An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair, Yemen, on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (a.s.l.), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude agrees with CALIPSO aerosol observations to within 1 2 km. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.

  19. Observations of the loss of stratospheric NO2 following volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Coffey, M. T.; Mankin, William G.

    1993-01-01

    Observations of stratospheric column amounts of nitrogen dioxide (NO2), nitric oxide (NO) and nitric acid (HNO3) have been made following major eruptions of the El Chichon and Mt. Pintatubo volcanoes. Midlatitude abundances of NO2 and NO were reduced by as much as 70% in the months following the appearance of the volcanic aerosols as compared to volcanically quite periods. There are heterogeneous reactions which could occur on the volcanic aerosols to convert NO2 into HNO3 but no commensurate increase in HNO3 column amounts was observed at the times of NO2 decrease.

  20. Radiographic visualization of magma dynamics in an erupting volcano.

    PubMed

    Tanaka, Hiroyuki K M; Kusagaya, Taro; Shinohara, Hiroshi

    2014-03-10

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures.

  1. How Did Ca. 300 Years of Explosive Activity at Kilauea End?

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.

    2013-12-01

    Kilauea experienced ~300 years of frequent explosive eruptions following caldera collapse in about 1500 CE, producing the Keanakāko';i Tephra. The first 200 years were dominated by juvenile-rich phreatomagmatic eruptions, and the next 100 years by lithic-rich phreatomagmatic and phreatic explosive events. For most of this time, the caldera was deep enough (≥600 m) to allow magma and hot rock to interact with external water at and below the water table. This situation changed after the deadly 1790 eruption. The first eruption was magmatic, involving high fountaining that deposited pumice across >25 km2 south of the caldera. The pumice is hard to find today; it was mostly eroded away soon after deposition and is found only in protected areas along drainages and next to obstacles. The deposit has a consistent internal stratigraphy regardless of its thickness (maximum of 12 cm): lower third mostly achneliths (Pele's hair and tears), upper two- thirds pumice bombs and lapilli. The fountaining, the first purely magmatic event since reticulite erupted in ca. 1500, probably signifies a rising magma column and early filling of the caldera. The next eruption was phreatic, depositing fine lithic ash a few millimeters thick across >45 km2 south of the caldera. It may record withdrawal of the magma column and collapse of part of the caldera floor to or below the water table. The magma column rose soon thereafter, and its free surface was above the water table for some time. This event is recorded by Pele's hair deposited on the lithic ash across >30 km2 south of the caldera. The hair forms a jackstraw mat <1 mm thick. Nothing coarser than hair is present, so it is probably not a product of tall fountains. An analog might be the open-vent activity at Halema';uma';u today, where spatter from the magma free-surface (a lava lake) produces Pele's hair that blows kilometers downwind, forming a paper-thin deposit that glistens in the sun like golden grain. Phreatic activity followed, depositing small lapilli now embedded in the hair and lithic ash. This was perhaps a vent-opening event for a dominantly phreatomagmatic eruption. The deposit of this eruption, mostly lithic but with scattered fluidal lapilli, is 0.5-2 cm thick and inversely graded across a depositional area of >40 km2 south of the caldera. Mean grain size along the dispersal axis decreases from 7 mm on the rim of the caldera to 2 mm 7 km south of the caldera, where the deposit disappears into forest. This subplinian eruption records interaction of groundwater with both conduit wallrock and magma, probably during renewed collapse. A few ballistic blocks fell near the caldera soon thereafter, recording separate explosive events after the main eruption. The last Keanakāko';i eruption, erupted some time before 1823, was a lava fountain that deposited golden pumice up to 3 m thick west of the caldera. The eruption clearly indicates that the caldera was filling and on its way to its present status. Thus the ca. 300 years of explosive activity ended with a bumpy transition from a deep to a relatively full caldera. The duration of the transition is unknown but shorter than about 30 years. During that time, at least two small collapses interrupted a generally rising magma column, which finally gained the upper hand and culminated in the mostly effusive activity of Kilauea ever since.

  2. The Variable Climate Impact of Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Graf, H.

    2011-12-01

    The main effect of big volcanic eruptions in the climate system is due to their efficient transport of condensable gases and their precursors into the stratosphere. There the formation of aerosols leads to effects on atmospheric radiation transfer inducing a reduction of incoming solar radiation by reflection (i.e. cooling of the Earth surface) and absorption of near infrared radiation (i.e. heating) in the aerosol laden layers. In the talk processes determining the climate effect of an eruption will be illustrated by examples, mainly from numerical modelling. The amount of gases released from a magma during an eruption and the efficiency of their transport into very high altitudes depends on the geological setting (magma type) and eruption style. While mid-sized eruption plumes of Plinian style quickly can develop buoyancy by entrainment of ambient air, very large eruptions with high magma flux rates often tend to collapsing plumes and co-ignimbrite style. These cover much bigger areas and are less efficient in entraining ambient air. Vertical transport in these plumes is chaotic and less efficient, leading to lower neutral buoyancy height and less gas and particles reaching high stratospheric altitudes. Explosive energy and amount of released condensable gases are not the only determinants for the climatic effect of an eruption. The effect on shortwave radiation is not linear with the amount of aerosols formed since according to the Lambert-Beer Law atmospheric optical depth reaches a saturation limit with increased absorber concentration. In addition, if more condensable gas is available for aerosol growth, particles become larger and this affects their optical properties to less reflection and more absorption. Larger particles settle out faster, thus reducing the life time of the aerosol disturbance. Especially for big tropical eruptions the strong heating of the stratosphere in low latitudes leads to changes in atmospheric wave propagation by strengthened stratospheric zonal winds at polar latitudes in winter. This causes circulation anomalies in the troposphere resulting in advective warming of Northern Hemisphere continents, especially of Eurasia. While immediate, direct effects of volcanic aerosols normally vanish within few years with the removal of the aerosol, changes induced in slowly varying components of the climate system (ocean, sea ice) can be traced for decades especially in the high latitudes of the North Atlantic. For the strength and sometimes even the sign of the volcano related climate anomalies the background state of the climate system can be relevant.

  3. Dual polarisation C-band weather radar imagery of the 6 August 2012 Te Maari Eruption, Mount Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Crouch, John F.; Pardo, Natalia; Miller, Craig A.

    2014-10-01

    The 6 August 2012 eruption of Mt. Tongariro from Upper Te Maari Crater in the central North Island of New Zealand was the first volcanic eruption observed by an operational weather radar in New Zealand, and is believed to be one of only a small number of eruptions observed by a dual-polarisation radar worldwide. The eruption was also observed by a GeoNet webcam, and detailed ash deposit studies have permitted analysis of the plume characteristics. A combination of radar and webcam imagery show 5 pulses within the first 13 min of the eruption, and also the subsequent ash transport downwind. Comparison with ash samples show the radar was likely detecting ash particles down to about 0.5 mm diameter. The maximum plume height estimated by the radar is 7.8 ± 1.0 km above mean sea level (amsl), although it is possible this may be a slight under estimation if very small ash particles not detected by the radar rose higher and comprised the very top of the plume. The correlation coefficient and differential reflectivity fields that are additionally measured by the dual polarisation radar provide extra information about the structure and composition of the eruption column and ash cloud. The correlation coefficient easily discriminates between the eruption column and the ash plume, and provides some information about the diversity of ash particle size within both the ash plume and the subsequent detached ash cloud drifting downwind. The differential reflectivity shows that the larger ash particles are falling with a horizontal orientation, and indicates that ice nucleation and aggregation of fine ash particles was probably occurring at high altitudes within 20-25 min of the eruption.

  4. Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta, Alaska

    USGS Publications Warehouse

    Houghton, Bruce F.; Wilson, C.J.N.; Fierstein, J.; Hildreth, W.

    2004-01-01

    Proximal (<3 km) deposits from episodes II and III of the 60-h-long Novarupta 1912 eruption exhibit a very complex stratigraphy, the result of at least four transport regimes and diverse depositional mechanisms. They contrast with the relatively simple stratigraphy (and inferred emplacement mechanisms) for the previously documented, better known, medial-distal fall deposits and the Valley of Ten Thousand Smokes ignimbrite. The proximal products include alternations and mixtures of both locally and regionally dispersed fall ejecta, and numerous thin complex deposits of pyroclastic density currents (PDCs) with no regional analogs. The locally dispersed component of the fall deposits forms sector-confined wedges of material whose thicknesses halve radially from and concentrically about the vent over distances of 100-300 m (cf. several kilometers for the medial-distal fall deposits). This locally dispersed fall material (and many of the associated PDC deposits) is rich in andesitic and banded pumices and richer in shallow-derived wall-rock lithics in comparison with the coeval medial fall units of almost entirely dacitic composition. There are no marked contrasts in grain size in the near-vent deposits, however, between locally and widely dispersed beds, and all samples of the proximal fall deposits plot as a simple continuation of grain size trends for medial-distal samples. Associated PDC deposits form a spectrum of facies from fines-poor, avalanched beds through thin-bedded, landscape-mantling beds to channelized lobes of pumice-block-rich ignimbrite. The origins of the Novarupta near-vent deposits are considered within a spectrum of four transport regimes: (1) sustained buoyant plume, (2) fountaining with co-current flow, (3) fountaining with counter-current flow, and (4) direct lateral ejection. The Novarupta deposits suggest a model where buoyant, stable, regime-1 plumes characterized most of episodes II and III, but were accompanied by transient and variable partitioning of clasts into the other three regimes. Only one short period of vent blockage and cessation of the Plinian plume occurred, separating episodes II and III, which was followed by a single PDC interpreted as an overpressured "blast" involving direct lateral ejection. In contrast, regimes 2 and 3 were reflected by spasmodic sedimentation from the margins of the jet and perhaps lower plume, which were being strongly affected by short-lived instabilities. These instabilities in turn are inferred to be associated with heterogeneities in the mixture of gas and pyroclasts emerging from the vent. Of the parameters that control explosive eruptive behavior, only such sudden and asymmetrical changes in the particle concentration could operate on time scales sufficiently short to explain the rapid changes in the proximal 1912 products. ?? Springer-Verlag 2003.

  5. Geochemistry and volatile content of magmas feeding explosive eruptions at Telica volcano (Nicaragua)

    NASA Astrophysics Data System (ADS)

    Robidoux, P.; Rotolo, S. G.; Aiuppa, A.; Lanzo, G.; Hauri, E. H.

    2017-07-01

    Telica volcano, in north-west Nicaragua, is a young stratovolcano of intermediate magma composition producing frequent Vulcanian to phreatic explosive eruptions. The Telica stratigraphic record also includes examples of (pre)historic sub-Plinian activity. To refine our knowledge of this very active volcano, we analyzed major element composition and volatile content of melt inclusions from some stratigraphically significant Telica tephra deposits. These include: (1) the Scoria Telica Superior (STS) deposit (2000 to 200 years Before Present; Volcanic Explosive Index, VEI, of 2-3) and (2) pyroclasts from the post-1970s eruptive cycle (1982; 2011). Based on measurements with nanoscale secondary ion mass spectrometry, olivine-hosted (forsterite [Fo] > 80) glass inclusions fall into 2 distinct clusters: a group of H2O-rich (1.8-5.2 wt%) inclusions, similar to those of nearby Cerro Negro volcano, and a second group of CO2-rich (360-1700 μg/g CO2) inclusions (Nejapa, Granada). Model calculations show that CO2 dominates the equilibrium magmatic vapor phase in the majority of the primitive inclusions (XCO2 > 0.62-0.95). CO2, sulfur (generally < 2000 μg/g) and H2O are lost to the vapor phase during deep decompression (P > 400 MPa) and early crystallization of magmas. Chlorine exhibits a wide concentration range (400-2300 μg/g) in primitive olivine-entrapped melts (likely suggesting variable source heterogeneity) and is typically enriched in the most differentiated melts (1000-3000 μg/g). Primitive, volatile-rich olivine-hosted melt inclusions (entrapment pressures, 5-15 km depth) are exclusively found in the largest-scale Telica eruptions (exemplified by STS in our study). These eruptions are thus tentatively explained as due to injection of deep CO2-rich mafic magma into the shallow crustal plumbing system. More recent (post-1970), milder (VEI 1-2) eruptions, instead, do only exhibit evidence for low-pressure (P < 50-60 MPa), volatile-poor (H2O < 0.3-1.7 wt%; CO2 < 23-308 μg/g) magmatic conditions. These are manifested as andesitic magmas, recording multiple magma mixing events, in pyroxene inclusions. We propose that post-1970s eruptions are possibly related to the high viscosity of resident magma in shallow plumbing system (< 2.4 km), due to crystallization and degassing.

  6. The extimated presence of differentiated higly explosive magmas beneath Vesuvius and Campi Flegrei: evidence from geochemical and textural studies.

    NASA Astrophysics Data System (ADS)

    Pappalardo, Lucia; Mastrolorenzo, Giuseppe

    2010-05-01

    Highly catastrophic explosive eruptions are supplied by Si-rich magmas, generated at shallower level in crust by the evolution of mantle liquids. The timescale of these evolution processes is a crucial factor, because of its control on the length of volcano repose interval leading to high explosive events. Campi Flegrei and Somma-Vesuvius alkaline volcanic systems, located respectively at few kilometers west and east of Neapolitan metropolitan area, produced a variety of eruptions ranging from not explosive lava flows and domes to highly destructive eruptions. Both these high risk volcanoes are in repose time since the last eruption occurred in the 1538 and 1944 BP, respectively. Since that time, the volcanoes experienced fumarolic activity, low level of seismicity with rare earthquakes swarms, as well as two bradyseismic crisis (1969-1972 and 1982-1984) localized in the center of Campi Flegrei caldera, that generated a net uplift of 3.5 m around the town of Pozzuoli. A wide low velocity layer interpreted as an extended magmatic body has been detected at 8-10 km depth beneath these volcanoes by seismic data. The capability of this reservoir to erupt explosively again strongly depends on magma differentiation degree, therefore the knowledge of the time lapse necessary at not explosive mafic liquids to differentiate toward explosive magmas is very crucial to predict the size of a possible short-term future eruption in Campanian area. Our petrologic data indicate that a multi-depth supply system was active under the Campanian Plain since 39 ka. Fractional crystallization during magma cooling associated with upward migration of less dense evolved liquids appears to be the prevalent differentiation process. Our results indicate that huge steam exolution occurred during the late stage of trachyte and phonolite crystallization thus accounting for the high Volcanic Explosivity Index (VEI) of eruptions supplied by these melts. Moreover our CSD data on phenocrysts reveal rapid crystallization and differentiation time for alkaline Campanian magmas (in the order of decades to few centuries). This evidence implies that the 400 km2 partial melting zone detected by tomography study at 8-10 km depth beneath Vesuvius and Campi Flegrei, should consist of differentiated magma already capable to produce also large scale (plinian) explosive events in case of renewal of the activity from the present closed-conduit state.

  7. Tephra from the 1979 soufriere explosive eruption.

    PubMed

    Sigurdsson, H

    1982-06-04

    The explosive phase of the 1979 Soufriere eruption produced 37.5 x 10(6) cubic meters (dense-rock equivalent) of tephra, consisting of about 40 percent juvenile basaltic andesite and 60 percent of a nonjuvenile component derived from the fragmentation of the 1971-1972 lava island during phreatomagmatic explosions. The unusually fine grain size, poor sorting, and bimodality of the land deposit are attributed to particle aggregation and the formation of accretionary lapilli in a wet eruption column.

  8. A new contribution to the Late Quaternary tephrostratigraphy of the Mediterranean: Aegean Sea core LC21

    NASA Astrophysics Data System (ADS)

    Satow, C.; Tomlinson, E. L.; Grant, K. M.; Albert, P. G.; Smith, V. C.; Manning, C. J.; Ottolini, L.; Wulf, S.; Rohling, E. J.; Lowe, J. J.; Blockley, S. P. E.; Menzies, M. A.

    2015-06-01

    Tephra layers preserved in marine sediments can contribute to the reconstruction of volcanic histories and potentially act as stratigraphic isochrons to link together environmental records. Recent developments in the detection of volcanic ash (tephra) at levels where none is macroscopically visible (so-called 'crypto-tephra') have greatly enhanced the potential of tephrostratigraphy for synchronising environmental and archaeological records by expanding the areas over which tephras are found. In this paper, crypto-tephra extraction techniques allow the recovery of 8 non-visible tephra layers to add to the 9 visible layers in a marine sediment core (LC21) from the SE Aegean Sea to form the longest, single core record of volcanic activity in the Aegean Sea. Using a novel, shard-specific methodology, sources of the tephra shards are identified on the basis of their major and trace element single-shard geochemistry, by comparison with geochemical data from proximal Mediterranean volcanic stratigraphies. The results indicate that the tephra layers are derived from 14 or 15 separate eruptions in the last ca 161 ka BP: 9 from Santorini; 2 or 3 from Kos, Yali, or Nisyros; 2 from the Campanian province; and one from Pantelleria. The attributions of these tephra layers indicate that 1) inter-Plinian eruptions from Santorini may have produced regionally significant tephra deposits, 2) marine tephrostratigraphies can provide unique and invaluable data to eruptive histories for island volcanoes, and 3) tephra from both Pantelleria and Campania may be used to correlate marine records from the Aegean Sea to those from the Tyrrhenian, Adriatic and Ionian Seas.

  9. Preliminary report on the July 10-11, 2015 eruption at Volcán de Colima: Pyroclastic density currents with exceptional runouts and volume

    NASA Astrophysics Data System (ADS)

    Capra, L.; Macías, J. L.; Cortés, A.; Dávila, N.; Saucedo, R.; Osorio-Ocampo, S.; Arce, J. L.; Gavilanes-Ruiz, J. C.; Corona-Chávez, P.; García-Sánchez, L.; Sosa-Ceballos, G.; Vázquez, R.

    2016-01-01

    On July 10-11, 2015 an eruption occurred at Colima volcano produced 10.5 km long pyroclastic density currents (PDCs) along the Montegrande, and 6.5 km long along the San Antonio ravines. The summit dome was destroyed and a new crater excavated and breached to the south. This new breach connects to a narrow channel that descends along Colima's southern flank and was used by a subsequent lava flow. The Montegrande PDCs represent the longest and hottest flow of this type recorded during the past 30 years but are still smaller in comparison to the 15-km long PDCs produced during the 1913 Plinian eruption. Data obtained from field reconnaissance, lahar monitoring stations, and satellite imagery suggest that at least six PDCs occurred. The two largest PDCs (H/L 0.2) were able to surmount topographic barriers or bends. Based on field reconnaissance and digital elevation models extracted from SPOT satellite imageries we estimate a minimum volume for the valley-pond and distal fan deposits of 4.5 × 106 m3. After one week, the deposits were still hot with burning trees on the surface and millimeter-sized holes from which fumes were emanating. The juvenile components of the deposits consist of gray dense blocks and vesicular dark-gray blocks and bombs with bread-crust textures and cooling joints. The mineral association of these rocks consists of plagioclase + clinopyroxene + orthopyroxene + FeTi-oxides ± olivine and resorbed hornblende in a dark glassy matrix that corresponds to an andesitic composition.

  10. Radiographic visualization of magma dynamics in an erupting volcano

    PubMed Central

    Tanaka, Hiroyuki K. M.; Kusagaya, Taro; Shinohara, Hiroshi

    2014-01-01

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures. PMID:24614612

  11. Volcanic stratigraphy and geochemistry of the Soufrière Volcanic Centre, Saint Lucia with implications for volcanic hazards

    NASA Astrophysics Data System (ADS)

    Lindsay, Jan M.; Trumbull, Robert B.; Schmitt, Axel K.; Stockli, Daniel F.; Shane, Phil A.; Howe, Tracy M.

    2013-05-01

    The Soufrière Volcanic Complex (SVC), Saint Lucia, represents one of the largest silicic centres in the Lesser Antilles arc. It comprises extensive pumiceous pyroclastic flow deposits, lava flows as well as Peléan-style domes and dome collapse block-and-ash-flow deposits. These deposits occur within and around the Qualibou Depression, a ~ 10-km diameter wide sector collapse structure. To date, vent locations for SVC pyroclastic deposits and their relationship to the sector collapse have been unclear because of limited stratigraphic correlation and few radiometric ages. In this study we reconstruct the geologic history of the SVC in light of new and recently published (U-Th)/He, U-Th and U-Pb zircon chronostratigraphic data, aided by mineralogical and geochemical correlation. Compositionally, SVC deposits are monotonous medium-K, calc-alkaline rocks with 61.6 to 67.7 wt.% SiO2 and display similar trace element abundances. Combined U-Th and (U-Th)/He zircon dating together with 14C ages and mineral fingerprinting reveals significant explosive eruptions at 640, 515, 265, 104, 60 and 40 ka (producing deposits previously grouped together as the "Choiseul" unit) and at 20 ka (Belfond unit). The mineralogically and geochemically distinct Belfond unit is a large, valley-filling pumiceous pyroclastic flow deposit distributed to the north, northeast, south and southeast of the Qualibou Depression that was probably deposited during a single plinian eruption. The unit previously referred to as ‘Choiseul tuff' is much less well defined. The typical Choiseul unit comprises a series of yellowish-white, crystal-poor, non-welded pumiceous pyroclastic deposits cropping out to the north and southeast of the Qualibou depression; however its age is poorly constrained. A number of other units previously mapped as Choiseul can be distinguished based on age, and in some cases mineral and whole rock chemistry. Pyroclastic deposits at Micoud (640 ± 19 ka), Bellevue (264 ± 8 ka), Anse John (104 ± 4 ka) and La Pointe (59.8 ± 2.1 ka), Anse Noir and Piaye were all previously grouped with or associated with the Choiseul tuff (all uncertainties 1σ). We suggest that these units represent individual periods of activity spanning a range of ages, whereas Choiseul pumice at the type locality has yielded a (U-Th)/He zircon age of 515 ± 19 ka. Their overall geochemical and mineralogical similarities with the Choiseul at the type locality suggest that they might have all originated from the same centre. Morne Tabac (532 ± 21 ka) is a dome truncated by the depression escarpment, whereas Morne Bonin (273 ± 15 ka), Gros Piton and Petit Piton (71 ± 3 ka and 109 ± 4 ka, resp.), Belfond (13.6 ± 0.4 ka) and Terre Blanche (15.3 ± 0.4 ka) are domes within the Qualibou Depression. Belfond and Terre Blanche have whole rock geochemistry and mineral assemblages similar to the Belfond pyroclastic flow deposit, thus possibly representing late-erupted degassed portions of the magma that produced the Belfond pyroclastics. The geochemical characteristics and similar zircon age distributions of the silicic lava domes and pyroclastics of the SVC suggest that these share a common magma source beneath the Qualibou depression. The distribution of the pyroclastic flows and the wide range in their eruption ages makes it unlikely that these were erupted during caldera-forming activity, and we instead invoke a series of smaller-volume explosive eruptions from the area of the current depression, the earliest of which occurred from a large proto-Qualibou edifice that subsequently underwent sector collapse. Activity from this proto-Qualibou centre may have ceased sometime between 38 and 59 ka ago, it therefore seems unlikely given our present understanding that there will be another eruption from the southern central highland region. However, the young dome-forming activity in the Qualibou depression may have occurred in or close to the Holocene, and there have been dome collapse events and explosion craters formed since then. A new dome eruption or renewed activity at a dome within the depression, growing in the style of the ongoing Soufrière Hills lava dome on the nearby island of Montserrat, is possible; as is a future plinian eruption from this area. Such an eruption would not only have a devastating impact on Saint Lucia, but would also have significant regional and global impacts.

  12. The 2010 Eyja eruption evolution by using IR satellite sensors measurements: retrieval comparison and insights into explosive volcanic processes

    NASA Astrophysics Data System (ADS)

    Piscini, A.; Corradini, S.; Merucci, L.; Scollo, S.

    2010-12-01

    The 2010 April-May Eyja eruption caused an unprecedented disruption to economic, political and cultural activities in Europe and across the world. Because of the harming effects of fine ash particles on aircrafts, many European airports were in fact closed causing millions of passengers to be stranded, and with a worldwide airline industry loss estimated of about 2.5 billion Euros. Both security and economical issues require robust and affordable volcanic cloud retrievals that may be really improved through the intercomparison among different remote sensing instruments. In this work the Thermal InfraRed (TIR) measurements of different polar and geostationary satellites instruments as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR) and the Spin Enhanced Visible and Infrared Imager (SEVIRI), have been used to retrieve the volcanic ash and SO2 in the entire eruption period over Iceland. The ash retrievals (mass, AOD and effective radius) have been carried out by means of the split window BTD technique using the channels centered around 11 and 12 micron. The least square fit procedure is used for the SO2 retrieval by using the 7.3 and 8.7 micron channels. The simulated TOA radiance Look-Up Table (LUT) needed for both the ash and SO2 column abundance retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. Further, the volcanic plume column altitude and ash density have been computed and compared, when available, with ground observations. The results coming from the retrieval of different IR sensors show a good agreement over the entire eruption period. The column height, the volcanic ash and the SO2 emission trend confirm the indentified different phases occurred during the Eyja eruption. We remark that the retrieved volcanic plume evolution can give important insights into eruptive dynamics during long-lived explosive activity.

  13. When does eruption run-up begin? Multidisciplinary insight from the 1999 eruption of Shishaldin volcano

    NASA Astrophysics Data System (ADS)

    Rasmussen, Daniel J.; Plank, Terry A.; Roman, Diana C.; Power, John A.; Bodnar, Robert J.; Hauri, Erik H.

    2018-03-01

    During the run-up to eruption, volcanoes often show geophysically detectable signs of unrest. However, there are long-standing challenges in interpreting the signals and evaluating the likelihood of eruption, especially during the early stages of volcanic unrest. Considerable insight can be gained from combined geochemical and geophysical studies. Here we take such an approach to better understand the beginning of eruption run-up, viewed through the lens of the 1999 sub-Plinian basaltic eruption of Shishaldin volcano, Alaska. The eruption is of interest due to its lack of observed deformation and its apparent long run-up time (9 months), following a deep long-period earthquake swarm. We evaluate the nature and timing of recharge by examining the composition of 138 olivine macrocrysts and 53 olivine-hosted melt inclusions and through shear-wave splitting analysis of regional earthquakes. Magma mixing is recorded in three crystal populations: a dominant population of evolved olivines (Fo60-69) that are mostly reversely zoned, an intermediate population (Fo69-76) with mixed zonation, and a small population of normally zoned more primitive olivines (Fo76-80). Mixing-to-eruption timescales are obtained through modeling of Fe-Mg interdiffusion in 78 olivines. The large number of resultant timescales provides a thorough record of mixing, demonstrating at least three mixing events: a minor event ∼11 months prior to eruption, overlapping within uncertainty with the onset of deep long-period seismicity; a major event ∼50 days before eruption, coincident with a large (M5.2) shallow earthquake; and a final event about a week prior to eruption. Shear-wave splitting analysis shows a change in the orientation of the local stress field about a month after the deep long-period swarm and around the time of the M5.2 event. Earthquake depths and vapor saturation pressures of Raman-reconstructed melt inclusions indicate that the recharge magma originated from depths of at least 20 km, and that mixing with a shallow magma or olivine cumulates occurred in or just below the edifice (<3 km depth). Deformation was likely outside the spatial and temporal resolution of the satellite measurements. Prior to eruption magma was stored over a large range of depths (∼0-2.5 km below the summit), suggesting a shallow, vertical reservoir that could provide another explanation for the lack of detectable deformation. The earliest sign of unrest (deep long-period seismicity) coincides temporally with magmatic activity (magma mixing and a change in the local stress state), possibly indicating the beginning of eruption run-up. The more immediate run-up began with the major recharge event ∼50 days prior to eruption, after which the signs of unrest became continuous. This timescale is long compared to the seismic run-up to other basaltic eruptions (typically hours to days). Other volcanoes classified as open-system, based on their lack of precursory deformation, also tend to have relatively long run-up durations, which may be related to the time required to fill the shallow reservoir with magmas sourced from greater depth.

  14. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner

    1984-09-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H 2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding bubbles of steam cause transient vibrations of the fluid column. The frequency of the events is determined by the length of the water column and the speed of sound of the fluid in the conduit when these events occur; damping is controlled by the characteristic and hydraulic impedances, which depend on the above parameters, as well as on the recharge rate of the fluid. Two periods of reduced seismicity (of a few tens of seconds to nearly a minute in duration) occur during the recharge cycle, apparently when the water rises rapidly through the narrow regions of the conduit, causing a sudden pressure increase that temporarily suppresses steam bubble formation. A period of decreased seismicity also precedes preplay or an eruption; this appears to be the time when rising steam bubbles move into a zone of boiling that is acoustically decoupled from the wall of the conduit because of the acoustic impedance mismatch between boiling water ( ρ c ˜ 10 3g cm -2 s -1) and rock ( ρ c ˜ 3 × 10 5g cm 2 s -1). Sustained harmonic tremor occurs during the first one to one-and-a-half minutes of an eruption of Old Faithful, but is not detectable in the succeeding minutes of the eruption. The eruption tremor is caused by hydraulic transients propagating within a sublayer of unvesiculated water that underlies the erupting two-phase liquid—vapor mixture. The resonant frequencies of the fluid column decrease to about 1 Hz when all of the water in the conduit has been converted to a water—steam mixture. Surges are observed in the flow at this frequency, but the resonance has not been detected seismically, possibly because the two-phase erupting fluid is seismically decoupled from the rock on which seismometers are placed. If Old Faithful is an analogue for volcanic seismicity, this study shows that because the frequency of tremor depends on the acoustic properties of the fluid and on conduit dimensions, both properties must be considered in analysis of tremor in volcanic regions. Because magma sound speed can vary over nearly two orders of magnitude as it changes from an undersaturated liquid into a saturated two-phase mixture, tremor frequency might vary by this magnitude and very broad-band seismographs may be required if tremor is to be monitored as magma goes from an undersaturated liquid to a vesiculated froth. Cessation of fluid-induced seismicity may indicate that the processes that drive the transients cease, but it is also possible that the processes that drive the transients continue but the fluid properties change so that the fluid becomes acoustically decoupled from the rock on which seismometers are placed.

  15. A stress-controlled mechanism for the intensity of very large magnitude explosive eruptions

    NASA Astrophysics Data System (ADS)

    Costa, A.; Gottsmann, J.; Melnik, O.; Sparks, R. S. J.

    2011-10-01

    Large magnitude explosive eruptions are the result of the rapid and large-scale transport of silicic magma stored in the Earth's crust, but the mechanics of erupting teratonnes of silicic magma remain poorly understood. Here, we demonstrate that the combined effect of local crustal extension and magma chamber overpressure can sustain linear dyke-fed explosive eruptions with mass fluxes in excess of 10 10 kg/s from shallow-seated (4-6 km depth) chambers during moderate extensional stresses. Early eruption column collapse is facilitated with eruption duration of the order of few days with an intensity of at least one order of magnitude greater than the largest eruptions in the 20th century. The conditions explored in this study are one way in which high mass eruption rates can be achieved to feed large explosive eruptions. Our results corroborate geological and volcanological evidences from volcano-tectonic complexes such as the Sierra Madre Occidental (Mexico) and the Taupo Volcanic Zone (New Zealand).

  16. The Grainsize Characteristics of Coignimbrite Deposits

    NASA Astrophysics Data System (ADS)

    Engwell, Samantha; Eychenne, Julia

    2015-04-01

    Due to their long atmospheric residence time, identifying the source and understanding the dispersion processes of fine-grained ash is of great importance when considering volcanic hazard and risk. An exceptionally efficient mechanism to supply large volumes of fine-grained ash to the stratosphere is the formation of co-ignimbrite plumes. Such plumes form as air is entrained at the top of propagating pyroclastic density currents, allowing a neutrally buoyant package of gas and ash to loft to high altitudes, consequently dispersing over large areas. The study of ash deposits on land and in deep sea cores has demonstrated that such events have played a major role during ignimbrite-forming eruptions, including the Tambora 1815, the Minoan (Santorini), the Campanian Ignimbrite, and the Younger Toba Tuff eruptions, as well as during more recent, pyroclastic flow-forming, intermediate sized eruptions (Vulcanian to Plinian in style), e.g. Mount St. Helens 1980, Fugen-dake (Unzen) 1991, Pinatubo 1991, Montserrat 1997 and Tungurahua 2006 eruptions. Published, as well as new results from the study of co-ignimbrite deposits, show that co-ignimbrite plumes can rise to high altitudes into the atmosphere (the co-ignimbrite plumes from the May 18, 1980 Mount St Helens blast and the Campanian Ignimbrite eruptions reached 30 - 35 km a.s.l,), potentially distribute enormous volumes of ash (the 75 ka Toba eruption and the Minoan eruption of Santorini settled >800 km3 and >25 km3 of co-ignimbrite ash, respectively), and contribute much of the ash to very large (60±6 vol% of the Campanian fallout deposit 130 to 900 km from vent), as well as intermediate size (up to 58 wt% and 52 wt% in the 2006 Tungurahua and May 18, 1980 Mount St. Helens fallout deposits, respectively) explosive eruptions. Comparison of new data with those from the published record shows that co-ignimbrite deposits are strikingly similar, regardless of eruption conditions, and have distinct grain size characteristics. The deposits are very fine grained (< 100 microns), have unimodal grain size distributions skewed towards the fines, and are more poorly sorted in medial to distal areas than tephra fall deposits from vent-derived plumes at the same distance. Deposits from a single eruption show constant grain size over hundreds to thousands of kilometres, except for a slight coarsening close to source in some cases. In intermediate size eruptions, co-ignimbrite ash often settles synchronously to vent-derived tephra, leading to bimodal grain size fallout deposits. These observations highlight the propensity of the ash to remain in the atmosphere for extended periods of time, and pose important questions regarding how the ash is deposited, and especially the role of aggregation. The uniformity of co-ignimbrite ash means that, with regards to real-time dispersion modelling during an eruption, few assumptions are required for the initial grain size, however depositional assumptions utilised when modelling vent-derived plume dispersion, may not be able to accurately reproduce co-ignimbrite depositional patterns.

  17. Eruptive mechanism at Volcán de Colima: Interpreting transitions between styles

    NASA Astrophysics Data System (ADS)

    Varley, N.; James, M. R.; Hutchison, W.; Arámbula, R.; Reyes, G.

    2013-05-01

    In January 2013 eruptions resumed at Volcán de Colima, the previous activity having ceased in June 2011. This period represented the quietest the volcano has been since before the previous episode commenced in 1998. The new eruptive episode is showing differences compared to the 1998-2011 period, which are presenting a challenge to interpret. Lower gases fluxes coupled with lower fumaroles temperatures are consistent with the decreasing trend of volatile-contents but the two larger Vulcanian eruptions in January produced pyroclastic density currents with a greater degree of fragmentation than previous events. A dome has been growing within the newly formed crater within the previous dome. The 1998-2011 eruption included five periods of effusive activity, with little variation in composition. Domes grew with effusion rates covering more than 2 orders of magnitude. Both explosive and effusive activity was centred at multiple locations within the summit crater. The SO2 flux showed a general declining trend throughout this period and 2005 included the largest pyroclastic flows witnessed since the last Plinian eruption in 1913. Swarms of small amplitude long period events were detected prior to each larger eruption, these have been again witnessed in 2013. The characteristics of the swarms is being compared, the generation of events being related to brittle fracturing along the conduit margin. The episode terminated in June 2011 with an explosion which removed the upper portion of the most recent and extended period of dome growth, which was at a very slow rate from January 2007. Automated 3D computer vision reconstruction techniques (structure-from-motion and multi-view stereo, SfM-MVS) have permitted the estimation of dome volumes from 1 m resolution digital elevation models. A small decrease in volume (0.4×105 m3) was detected prior to the explosion, which was related to the formation of steps in the dome surface, related to localized zones of weakness. For the explosion, the region of greatest volume loss was observed to be not coincident with the assumed location of the conduit, suggesting and that heterogeneity within the dome was important during the June explosion. Analysis of thermal images taken during flights has permitted the detailed modelling of the dome emplacement processes. The onset of rockfalls on the W side once it reached the crater rim provoked a change in emplacement style from endogenic to exogenic. Monitoring the activity during the recent eruption has produced a wealth of data making it an excellent case study for modelling transitions between different regimes and the generating mechanism for Vulcanian explosions.

  18. Determining pre-eruptive compositions of late Paleozoic magma from kaolinized volcanic ashes: Analysis of glass inclusions in quartz microphenocrysts from tonsteins

    NASA Astrophysics Data System (ADS)

    Webster, James D.; Congdon, Roger D.; Lyons, Paul C.

    1995-02-01

    Glass inclusions in quartz microphenocrysts were analyzed for major and minor elements by electron microprobe and H, Li, Be, B, Rb, Sr, Y, Nb, Mo, Sn, Cs, Ce, Th, and U by ion microprobe. The phenocrysts and inclusions occur as fresh relicts in about eleven strongly kaolinized, air-fall volcanic ash units (tonsteins) that outcrop in five states located in the central Appalachian basin; the ashes were erupted during the Pennsylvanian. Even though the whole-rock tonstein samples are extremely altered, the glass trapped in quartz microphenocrysts preserves pre-eruptive melt compositions, and, consequently, the inclusions are useful for determining compositions of source magmas and identifying geochemical trends indicative of magmatic evolution. Interpretation of inclusion compositions indicates the strongly altered tonsteins were derived from potassium-enriched, metaluminous to mildly peraluminous magma(s). The tonsteins can be divided into two groups on the basis of trapped melt compositions: older tonsteins that have inclusions with high Sr and normative quartz contents and comparatively low concentrations of U, Th, Rb, Y, Cs, Nb, F, and Cl (±Be) and younger tonsteins whose inclusions contain low Sr and normative quartz and high concentrations of U, Th, Rb, Y, Cs, Nb, F, and Cl (±Be). In general, as concentrations of Sr decreased, the magmatic abundances of Rb, Y, Cs, Nb, U, Th, Cl, and F (±Be) increased. The associated magma or magmas were highly evolved, volatile enriched, and contained Rb, Nb, and Y abundances characteristic of continental within-plate granites; compositions ranged from high-silica rhyolite to topaz rhyolite. Pre-eruptive volatile abundances in the source magma(s) were generally high but also highly variable. Chlorine contents of melt(s) ranged from 0.02-0.23 wt%, and F ranged from 0.01-0.7 wt%. Concentrations of H 2O in melt(s) ranged from 1.6-6.5 wt%. The high pre-eruptive H 2O contents are consistent with large eruptive volumes indicating the precursor rhyolites, which weathered to tonsteins, were a result of plinian eruptions. Even though pre-eruptive water concentrations exhibit no recognizable trends with any elements studied, magmatic evolution appears to have been a strong function of F and H 2O in melt(s); the thermal stabilities of quartz and feldspar were controlled by F and H 2O activities at pressures of approximately 0.5-1 kbar.

  19. NanoSIMS results from olivine-hosted melt embayments: Magma ascent rate during explosive basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Lloyd, Alexander S.; Ruprecht, Philipp; Hauri, Erik H.; Rose, William; Gonnermann, Helge M.; Plank, Terry

    2014-08-01

    The explosivity of volcanic eruptions is governed in part by the rate at which magma ascends and degasses. Because the time scales of eruptive processes can be exceptionally fast relative to standard geochronometers, magma ascent rate remains difficult to quantify. Here we use as a chronometer concentration gradients of volatile species along open melt embayments within olivine crystals. Continuous degassing of the external melt during magma ascent results in diffusion of volatile species from embayment interiors to the bubble located at their outlets. The novel aspect of this study is the measurement of concentration gradients in five volatile elements (CO2, H2O, S, Cl, F) at fine-scale (5-10 μm) using the NanoSIMS. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. We focus on four 100-200 μm, olivine-hosted embayments erupted on October 17, 1974 during the sub-Plinian eruption of Volcán de Fuego. H2O, CO2, and S all decrease toward the embayment outlet bubble, while F and Cl increase or remain roughly constant. Compared to an extensive melt inclusion suite from the same day of the eruption, the embayments have lost both H2O and CO2 throughout the entire length of the embayment. We fit the profiles with a 1-D numerical diffusion model that allows varying diffusivities and external melt concentrations as a function of pressure. Assuming a constant decompression rate from the magma storage region at approximately 220 MPa to the surface, H2O, CO2 and S profiles for all embayments can be fit with a relatively narrow range in decompression rates of 0.3-0.5 MPa/s, equivalent to 11-17 m/s ascent velocity and an 8 to 12 minute duration of magma ascent from ~ 10 km depth. A two stage decompression model takes advantage of the different depth ranges over which CO2 and H2O degas, and produces good fits given an initial stage of slow decompression (0.05-0.3 MPa/s) at high pressure (> 145 MPa), with similar decompression rates to the single-stage model for the shallower stage. The magma ascent rates reported here are among the first for explosive basaltic eruptions and demonstrate the potential of the embayment method for quantifying magmatic timescales associated with eruptions of different vigor.

  20. Volcanic plume height measured by seismic waves based on a mechanical model

    USGS Publications Warehouse

    Prejean, Stephanie G.; Brodsky, Emily E.

    2011-01-01

    In August 2008 an unmonitored, largely unstudied Aleutian volcano, Kasatochi, erupted catastrophically. Here we use seismic data to infer the height of large eruptive columns such as those of Kasatochi based on a combination of existing fluid and solid mechanical models. In so doing, we propose a connection between a common, observable, short-period seismic wave amplitude to the physics of an eruptive column. To construct a combined model, we estimate the mass ejection rate of material from the vent on the basis of the plume height, assuming that the height is controlled by thermal buoyancy for a continuous plume. Using the estimated mass ejection rate, we then derive the equivalent vertical force on the Earth through a momentum balance. Finally, we calculate the far-field surface waves resulting from the vertical force. The model performs well for recent eruptions of Kasatochi and Augustine volcanoes if v, the velocity of material exiting the vent, is 120-230 m s-1. The consistency between the seismically inferred and measured plume heights indicates that in these cases the far-field ~1 s seismic energy radiated by fluctuating flow in the volcanic jet during the eruption is a useful indicator of overall mass ejection rates. Thus, use of the model holds promise for characterizing eruptions and evaluating ash hazards to aircraft in real time on the basis of far-field short-period seismic data. This study emphasizes the need for better measurements of eruptive plume heights and a more detailed understanding of the full spectrum of seismic energy radiated coeruptively.

  1. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.

    2008-02-01

    An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude - thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (asl), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude and width agree mostly within 1-2 km with CALIPSO observations of stratospheric aerosol produced from the SO2. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.

  2. Constraining particle size-dependent plume sedimentation from the 17 June 1996 eruption of Ruapehu Volcano, New Zealand, using geophysical inversions

    NASA Astrophysics Data System (ADS)

    Klawonn, M.; Frazer, L. N.; Wolfe, C. J.; Houghton, B. F.; Rosenberg, M. D.

    2014-03-01

    Weak subplinian-plinian plumes pose frequent hazards to populations and aviation, yet many key parameters of these particle-laden plumes are, to date, poorly constrained. This study recovers the particle size-dependent mass distribution along the trajectory of a well-constrained weak plume by inverting the dispersion process of tephra fallout. We use the example of the 17 June 1996 Ruapehu eruption in New Zealand and base our computations on mass per unit area tephra measurements and grain size distributions at 118 sample locations. Comparisons of particle fall times and time of sampling collection, as well as observations during the eruption, reveal that particles smaller than 250 μm likely settled as aggregates. For simplicity we assume that all of these fine particles fell as aggregates of constant size and density, whereas we assume that large particles fell as individual particles at their terminal velocity. Mass fallout along the plume trajectory follows distinct trends between larger particles (d≥250 μm) and the fine population (d<250 μm) that are likely due to the two different settling behaviors (aggregate settling versus single-particle settling). In addition, we computed the resulting particle size distribution within the weak plume along its axis and find that the particle mode shifts from an initial 1φ mode to a 2.5φ mode 10 km from the vent and is dominated by a 2.5 to 3φ mode 10-180 km from vent, where the plume reaches the coastline and we do not have further field constraints. The computed particle distributions inside the plume provide new constraints on the mass transport processes within weak plumes and improve previous models. The distinct decay trends between single-particle settling and aggregate settling may serve as a new tool to identify particle sizes that fell as aggregates for other eruptions.

  3. Implications of new stratigraphic data on volcanic hazard assessment for Nisyros volcano, Greece

    NASA Astrophysics Data System (ADS)

    Volentik, A.; Vanderkluysen, L.; Principe, C.; Hernandez, J.; Hunziker, J. C.

    2003-04-01

    The active quaternary Nisyros volcano, at the eastern end of the Aegean volcanic arc, is composed of a succession of lava flows, tephra layers and interbedded epiclastic deposits. The volcano is topped by a recent caldera, on average 4 km in diameter and 200 m in depth. A detailed geological map including 35 stratigraphic units (lava flows, tephra layers and epiclastic deposits) has been recently completed at the 1:10'000 scale, based on new stratigraphical data. Based on the identification of new plinian sequences (Lakki and Melisseri pyroclastic series) in the lowermost section of the reconstructed stratigraphical succession, on the re-interpretation of previously described deposits and on the discovery of eruptive facies, we construct a set of hazard maps for volcanic events at Nisyros. Sequences of sub-marine lavas to subaerial epiclastites combined with the occurrence of a marine terrace deposit in the north-western sector of the island highlight the potential for rapid vertical movements, in particular in the area of Mandraki. A period of intense off-centred strombolian to phreatomagmatic activity occurred in quite recent times on Nisyros along the major tectonic trends (N^o030, No070, N^o120 and N^o340), building up several scoria cones and tuff cones all around the island. A number of these tectonic trends are still active, as demonstrated by faults cutting through recent deposits (including the youngest deposits of the hydrothermal eruptions, inside the present caldera of Nisyros). This implies that not only intra-caldera phreatic eruptions, but also potential magmatic eruption may occur along the island’s major zones of weakness, with increased hazards where magma/water interaction may take place. Finally a newly recognized debris avalanche deposit (the so-called Vunàri debris avalanche), affecting a wide sector in the northern part of the island, unveils a new type of volcanic hazard on Nisyros, related to flank collapse and destruction of the volcanic edifice.

  4. Geology and radiocarbon ages of Tláloc, Tlacotenco, Cuauhtzin, Hijo del Cuauhtzin, Teuhtli, and Ocusacayo monogenetic volcanoes in the central part of the Sierra Chichinautzin, México

    NASA Astrophysics Data System (ADS)

    Siebe, Claus; Arana-Salinas, Lilia; Abrams, Michael

    2005-03-01

    Tláloc, Tlacotenco, Cuauhtzin, Hijo del Cuauhtzin, Teuhtli, and Ocusacayo monogenetic volcanoes located within the Sierra del Chichinautzin Volcanic Field (SCVF) at the southern margin of Mexico City were studied to further refine attendant volcanic hazards in this heavily populated region. Based on fieldwork and Landsat imagery interpretation, a geologic map was produced, morphometric parameters characterizing the cones and lava flows were determined, and the areal extent and volumes of erupted products were estimated. The longest lava flow was produced by Tlacotenco and reached 9.5 km from its source; total areas covered by lava flows from each eruption range between 12.8 km 2 (Tlacotenco) and 54.4 km 2 (Tláloc); and total erupted volumes range between 0.26 and 1.36 km 3 per volcano. Radiocarbon measurements of a paleosol underneath an ash layer from the Tláloc scoria cone yielded an age of 6200 years BP, while charcoal found within block-and-ash flow and lahar deposits from Cuauhtzin dome yielded ages of 7360 and 8225 years BP, respectively. The Tlacotenco dacite lava flow overlies Popocatépetl's Tutti Frutti Plinian pumice fall deposit dated at 14,000 years BP and is therefore younger than this prominent stratigraphic marker. On the other hand, Teuhtli and Hijo del Cuauhtzin scoria cones and the Ocusacayo andesite lava flows are overlain by the Tutti Frutti and therefore older than 14,000 years BP. These new dates together with other published dates for scoria cones in the SCVF imply that the previously determined recurrence interval during the Holocene for monogenetic eruptions in the SCVF of <1700 years [Siebe, C., Rodríguez-Lara, V., Schaaf, P., Abrams, M., 2004a. Radiocarbon ages of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico_City: implications for archaeology and future hazards. Bull. Volcanol. 66, 203-225.] needs to be corrected to <1250 years. This means that the time of quiescence since the last eruption of the SCVF (1670 years BP) exceeds that of the estimated recurrence interval during the Holocene.

  5. Formation of obsidian pyroclasts by sintering of ash particles in the volcanic conduit

    NASA Astrophysics Data System (ADS)

    Gardner, James E.; Llewellin, Edward W.; Watkins, James M.; Befus, Kenneth S.

    2017-02-01

    The ranges in intensity and style of volcanic eruptions, from highly explosive Plinian eruptions to quiescent lava extrusions, depend on the style and efficiency of gas loss from ascending magma. Obsidian pyroclasts - small, glassy pieces of quenched magma found in some volcanic tephra beds - may preserve valuable information about magma degassing in their vesicle textures and volatile contents. Accurate interpretation of their textures and volatiles, however, requires understanding the mechanism of formation of the pyroclasts. Obsidian pyroclasts from the ca. 1325-1350 C.E. North Mono eruption of Mono Craters (CA, USA) were analyzed and found to have H2O and CO2 contents indicating that they were formed at pressures in the approximate range of 3-40 MPa. Many also contain domains with differing vesicle textures, separated by boundaries containing xenocrystic material, indicating that they are composed of smaller fragments that have sutured together. More than half of the pyroclasts analyzed contained small (∼10 μm), highly distorted vesicles, with multi-cuspate morphology, interpreted as the remnants of interstitial gas trapped amongst sintered fragments of melt/glass. Rounded vesicles are also common and are interpreted to result from surface tension-driven relaxation of the distorted vesicles. Calculated timescales of sintering and relaxation are consistent with timescales for pyroclast formation indicated by H2O re-equilibration within the heterogeneous pyroclasts. This sintering model for the origin of obsidian pyroclasts is further supported by the observation that spherical vesicles are found mainly in H2O-rich pyroclasts, and distorted vesicles mainly in H2O-poor pyroclasts. We conclude that obsidian pyroclasts generated during the North Mono eruption were formed by cycles of fragmentation, sintering/suturing, and relaxation, over a very wide range of depths within the conduit; we find no evidence to support pumice (foam) collapse as the formation mechanism. Similar textures, and the occurrence of xenolithic material, in obsidian pyroclasts in other eruptions suggest that sintering may be generally responsible for the origin of obsidian pyroclasts. Our conceptual model indicates that volatile contents in obsidian pyroclasts reflect both degassing of bubbly magma and the composition of gas trapped between sintering particles.

  6. Lava emplacements at Shiveluch volcano (Kamchatka) from June 2011 to September 2014 observed by TanDEM-X SAR-Interferometry

    NASA Astrophysics Data System (ADS)

    Heck, Alexandra; Kubanek, Julia; Westerhaus, Malte; Gottschämmer, Ellen; Heck, Bernhard; Wenzel, Friedemann

    2016-04-01

    As part of the Ring of Fire, Shiveluch volcano is one of the largest and most active volcanoes on Kamchatka Peninsula. During the Holocene, only the southern part of the Shiveluch massive was active. Since the last Plinian eruption in 1964, the activity of Shiveluch is characterized by periods of dome growth and explosive eruptions. The recent active phase began in 1999 and continues until today. Due to the special conditions at active volcanoes, such as smoke development, danger of explosions or lava flows, as well as poor weather conditions and inaccessible area, it is difficult to observe the interaction between dome growth, dome destruction, and explosive eruptions in regular intervals. Consequently, a reconstruction of the eruption processes is hardly possible, though important for a better understanding of the eruption mechanism as well as for hazard forecast and risk assessment. A new approach is provided by the bistatic radar data acquired by the TanDEM-X satellite mission. This mission is composed of two nearly identical satellites, TerraSAR-X and TanDEM-X, flying in a close helix formation. On one hand, the radar signals penetrate clouds and partially vegetation and snow considering the average wavelength of about 3.1 cm. On the other hand, in comparison with conventional InSAR methods, the bistatic radar mode has the advantage that there are no difficulties due to temporal decorrelation. By interferometric evaluation of the simultaneously recorded SAR images, it is possible to calculate high-resolution digital elevation models (DEMs) of Shiveluch volcano and its surroundings. Furthermore, the short recurrence interval of 11 days allows to generate time series of DEMs, with which finally volumetric changes of the dome and of lava flows can be determined, as well as lava effusion rates. Here, this method is used at Shiveluch volcano based on data acquired between June 2011 and September 2014. Although Shiveluch has a fissured topography with steep slopes, DEMs with a resolution of about 6 m can be calculated and the changes caused by volcanic activity can successfully be derived and quantified.

  7. The Uwekahuna Ash Member of the Puna Basalt: product of violent phreatomagmatic eruptions at Kilauea volcano, Hawaii, between 2800 and 2100 14C years ago

    USGS Publications Warehouse

    Dzurisin, D.; Lockwood, J.P.; Casadevall, T.J.; Rubin, M.

    1995-01-01

    Kilauea volcano's reputation for relatively gentle effusive eruptions belies a violent geologic past, including several large phreatic and phreatomagmatic eruptions that are recorded by Holocene pyroclastic deposits which mantle Kilauea's summit area and the southeast flank of adjacent Mauna Loa volcano. The most widespread of these deposits is the Uwekahuna Ash Member, a basaltic surge and fall deposit emplaced during two or more eruptive episodes separated by a few decades to several centuries. It is infered that the eruptions which produced the Uwekahuna were driven by water interacting with a fluctuating magma column. The volume, extent and character of the Uwekahuna deposits underscore the hazards posed by relatively infrequent but potentially devastating explosive eruptions at Kilauea, as well as at other basaltic volcanoes. -from Authors

  8. Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy

    USGS Publications Warehouse

    Rolandi, G.; Bellucci, F.; Heizler, M.T.; Belkin, H.E.; de Vivo, B.

    2003-01-01

    The Campanian Plain is an 80 x 30 km region of southern Italy, bordered by the Apennine Chain, that has experienced subsidence during the Quaternary. This region, volcanologically active in the last 600 ka, has been identified as the Campanian Volcanic Zone (CVZ). The products of three periods of trachytic ignimbrite volcanism (289-246 ka, 157 ka and 106 ka) have been identified in the Apennine area in the last 300 ka. These deposits probably represent distal ash flow units of ignimbrite eruptions which occurred throughout the CVZ. The resulting deposits are interstratified with marine sediments indicating that periods of repeated volcano-tectonic emergence and subsidence may have occurred in the past. The eruption, defined as the Campanian Ignimbrite (CI), with the largest volume (310 km3), occurred in the CVZ 39 ka ago. The products of the CI eruption consist of two units (unit-1 and unit-2) formed from a single compositionally zoned magma body. Slightly different in composition, three trachytic melts constitute the two units. Unit-1 type A is an acid trachyte, type B is a trachyte and type C of unit-2 is a mafic trachyte. The CI, vented from pre-existing neotectonic faults, formed during the Apennine uplift, Initially the venting of volatile-rich type A magma deposited the products to the N-NE of the CVZ. During the eruption, the Acerra graben already affected by a NE-SW fault system, was transected by E-W faults, forming a cross-graben that extended to the gulf of Naples. E-W faults were then further dislocated by NE-SW transcurrent movements. This additional collapse significantly influenced the deposition of the B-type magma of unit-1, and the C-type magma of unit-2 toward the E-SE and S, in the Bay of Naples. The pumice fall deposit underlying the CI deposits, until now thought to be associated with the CI eruption, is not a strict transition from plinian to CI-forming activity. It is derived instead from an independent source probably located near the Naples area. This initial volcanic activity is assumed to be a precursor to the CI trachytic eruptions, which vented along regional faults.

  9. Cristobalite in the 2011-13 Cordón Caulle Eruption (Chile)

    NASA Astrophysics Data System (ADS)

    Schipper, C.; Castro, J. M.; Tuffen, H.

    2013-12-01

    The volcanic formation of cristobalite and other silica polymorphs is of great concern from a public health perspective, because they are known carcinogens and pose prominent respiratory hazards. Cristobalite is common in volcanic domes and other products, but its mode of formation is not completely understood. Firstly, it is enigmatic that the low-pressure stability field of cristobalite lies outside normal volcanic temperature conditions. Secondly, it is unclear if crystobalite forms by devitrification of volcanic glass, or by precipitation from a locally (e.g., immediately adjacent to porous networks) or deeply (e.g., from depth within the conduit) derived vapour phase, or by an intimate and necessary combination of both of these processes. The 2011-13 eruption of Puyehue-Cordón Caulle (Chile) has provided an excellent opportunity to track cristobalite formation during the full progression of a rhyolite eruption. The eruption included a short opening Plinian phase, a protracted period of hybrid explosive-effusive activity that included the emplacement of a compound obsidian flow, and the endogenous advance of the obsidian flow after the magma supply had been cut off. Together, these yield an ideal framework and sample suite for testing hypotheses of cristobalite formation, because samples were produced in different phases of the eruption, and were all collected very fresh with little to no alteration or devitrification. Immediately noteworthy is the presence of vapour phase crystallization products lining the vesicles in samples from the obsidian lava flow. Examination by SEM shows these precipitates to be rich in prismatic cristobalite. The relative proportions of vapour phase precipitates appears to be correlated to the degree of interconnectivity of the lava's vesicle network; where sheared, coalesced and collapsed vesicle networks show little-to-no vapour phase precipitates, and isolated vesicles show intensive vapour phase crystallization. Theses textures immediately argue for cristobalite formation from a Si-saturated vapour phase, and since the samples are derived from lava lobes far from the vent, argue that the vapour was locally derived from within the flow. Ongoing quantification using various analytical tools (μ-cT; XRD; EBSD; ICPMS; SEM; EMPA; Cl-SEM) aim to pinpoint the timing and mechanisms of cristobalite formation during the progression of the Cordón Caulle eruption.

  10. Age, composition, and areal distribution of the Pliocene Lawlor Tuff, and three younger Pliocene tuffs, California and Nevada

    USGS Publications Warehouse

    Sarna-Wojcicki, Andrei M.; Deino, Alan L.; Fleck, Robert J.; McLaughlin, Robert J.; Wagner, David; Wan, Elmira; Wahl, David B.; Hillhouse, John W.; Perkins, Michael

    2011-01-01

    The Lawlor Tuff is a widespread dacitic tephra layer produced by Plinian eruptions and ash flows derived from the Sonoma Volcanics, a volcanic area north of San Francisco Bay in the central Coast Ranges of California, USA. The younger, chemically similar Huichica tuff, the tuff of Napa, and the tuff of Monticello Road sequentially overlie the Lawlor Tuff, and were erupted from the same volcanic field. We obtain new laser-fusion and incremental-heating 40Ar/39Ar isochron and plateau ages of 4.834 ± 0.011, 4.76 ± 0.03, ≤4.70 ± 0.03, and 4.50 ± 0.02 Ma (1 sigma), respectively, for these layers. The ages are concordant with their stratigraphic positions and are significantly older than those determined previously by the K-Ar method on the same tuffs in previous studies.Based on offsets of the ash-flow phase of the Lawlor Tuff by strands of the eastern San Andreas fault system within the northeastern San Francisco Bay area, total offset east of the Rodgers Creek–Healdsburg fault is estimated to be in the range of 36 to 56 km, with corresponding displacement rates between 8.4 and 11.6 mm/yr over the past ∼4.83 Ma.We identify these tuffs by their chemical, petrographic, and magnetic characteristics over a large area in California and western Nevada, and at a number of new localities. They are thus unique chronostratigraphic markers that allow correlation of marine and terrestrial sedimentary and volcanic strata of early Pliocene age for their region of fallout. The tuff of Monticello Road is identified only near its eruptive source.

  11. Volatile loss from melt inclusions in pyroclasts of differing sizes

    NASA Astrophysics Data System (ADS)

    Lloyd, Alexander S.; Plank, Terry; Ruprecht, Philipp; Hauri, Erik H.; Rose, William

    2013-01-01

    We have investigated the loss of H2O from olivine-hosted melt inclusions (MIs) by designing an experiment using tephra samples that cooled at different rates owing to their different sizes: ash, lapilli, and bomb samples that were deposited on the same day (10/17/74) of the sub-Plinian eruption of Volcán de Fuego in Guatemala. Ion microprobe, laser ablation-ICPMS, and electron probe analyses show that MIs from ash and lapilli record the highest H2O contents, up to 4.4 wt%. On the other hand, MIs from bombs indicate up to 30 % lower H2O contents (loss of ~1 wt% H2O) and 10 % post-entrapment crystallization of olivine. This evidence is consistent with the longer cooling time available for a bomb-sized clast, up to 10 min for a 3-4-cm radius bomb, assuming conductive cooling and the fastest H diffusivities measured in olivine (D~10-9 to 10-10 m2/s). On the other hand, several lines of evidence point to some water loss prior to eruption, during magma ascent and degassing in the conduit. Thus, results point to both slower post-eruptive cooling and slower magma ascent affecting MIs from bombs, leading to H2O loss over the timescale of minutes to hours. The important implication of this study is that a significant portion of the published data on H2O concentrations in olivine-hosted MIs may reflect unrecognized H2O loss via diffusion. This work highlights the importance of reporting clast and MI sizes in order to assess diffusive effects and the potential benefit of using water loss as a chronometer of magma ascent.

  12. Morphological analysis of Cerro Bravo Volcano, Central Andes of Colombia

    NASA Astrophysics Data System (ADS)

    Arango-Palacio, E.; Murcia, H. F.; Robayo, C.; Chica, P.; Piedrahita, D. A.; Aguilar-Casallas, C.

    2017-12-01

    Keywords: Cerro Bravo Volcano, Volcanic landforms, Craters. Cerro Bravo Volcano (CBV) belongs to the San Diego-Cerro Machín Volcano - Tectonic Province in the Central Andes of Colombia. CVB is located 150 km NW from Bogotá, the capital of Colombia, and 25 km E from Manizales city ( 350,00 inhabitants). The volcanic activity of CBV began at 50,000 years ago and has been characterized by produce effusive and explosive (subplinian to plinian) eruptions with dacitic and andesitic in composition products. The effusive activity is evidenced by lava flows and lava domes, while the explosive activity is evidenced by pyroclastic density current deposits and pyroclastic fall deposits; some secondary deposits such as debris avalanches and lahares has been also recognised. Currently, the CBV is considered as a hazard for the Manizales city. In order to characterise the volcanic edifice, a morphological analysis was carried out and a map was created from a digital elevations model (DEM) with 12.5 m resolution as well as aerial photographs. Thus, it was possible to associate the landforms with the evolution of the volcano. Based on this analysis, it was possible to identify the base and top of the CBV edifice as 2400 and 4020 m.a.s.l., respectively, with a diameter in its major axis of 5.8 km. The volcanic edifice has four main craters opening to the north. The craters are apart from each other by heights and distances between 120 m.a.s.l. and 1 km, respectively; this geomorphology is an evidence of different eruptive stages of the volcano construction. Morphological analysis has shown that some craters were created from explosive eruptions, however the different heights between each crater suggest the creation of lava domes and their collapse as a response of the final effusive activity.

  13. Gravity Survey at the Ceboruco Volcano Area (Nayarit, Mexico): a 3-D Model of the Subsurface Structure

    NASA Astrophysics Data System (ADS)

    Fernandez-Cordoba, Jhonattan; Zamora-Camacho, Araceli; Espindola, Juan Manuel

    2017-10-01

    Ceboruco volcano (-104°30', 21°7', 2150 m asl) is located in the western portion of the trans-Mexican volcanic belt and NW extreme of the Tepic-Zacoalco rift zone, a structure composed of a series of NNW-trending en echelon fault-bounded basins constituting the NE boundary between the north-American plate and the Jalisco block (JB). Ceboruco experimented a Plinian eruption about 1000 years ago and several more of different styles afterward; the last one in 1870 CE. This volcano poses a significant risk because of the relatively large population in its surroundings. Ceboruco has been studied by mostly from the point of view of petrology, geochemistry, and physical volcanology; however, no geophysical studies about its internal structure have been published. In this paper, we present the results of a gravimetric survey carried out in its surroundings and a model of the internal structure obtained from inversion of the data. The Ceboruco area is characterized by a negative Bouguer anomaly spanning the volcanic structure. The probable causative body modeled with the data of the survey is located about 1 km below mean sea level and has a volume of 163 km3. We propose that this body is the magma chamber from where the products of its eruptions in the last 1000 years ensued.

  14. The 2008 phreatomagmatic eruption of Okmok volcano, Aleutian Islands, Alaska: Chronology, deposits, and landform changes

    USGS Publications Warehouse

    Jessica Larsen,; Neal, Christina; Schaefer, Janet R.; Kaufman, Max; Lu, Zhong

    2015-01-01

    Okmok volcano, Aleutian Islands, Alaska, explosively erupted over a five-week period between July 12 and August 23, 2008. The eruption was predominantly phreatomagmatic, producing fine-grained tephra that covered most of northeastern Umnak Island. The eruption had a maximum Volcanic Explosivity Index (VEI) of 4, with eruption column heights up to 16 km during the opening phase. Several craters and a master tuff cone formed in the caldera as a result of phreatomagmatic explosions and accumulated tephra-fall and surge deposits. Ascending magma continuously interacted with an extensive shallow groundwater table in the caldera, resulting in the phreatomagmatic character of the eruption. Syneruptive explosion and collapse processes enlarged a pre-existing lake, created a second, entirely new lake, and formed new, deep craters. A field of ephemeral collapse pits and collapse escarpments formed where rapid groundwater withdrawal removed material from beneath capping lava flows. This was the first significant phreatomagmatic event in the U.S. since the Ukinrek Maars eruption in 1977.

  15. Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands)

    NASA Astrophysics Data System (ADS)

    White, James D. L.; Schmincke, Hans-Ulrich

    1999-12-01

    In 1949, a 5-week-long magmatic and phreatomagmatic eruption took place along the active volcanic ridge of La Palma (Canary Islands). Two vents, Duraznero and Hoyo Negro, produced significant pyroclastic deposits. The eruption began from Duraznero vent, which produced a series of deposits with an upward decrease in accidental fragments and increase in fluidal ash and spatter, together inferred to indicate decreasing phreatomagmatic interaction. Hoyo Negro erupted over a 2-week period, producing a variety of pyroclastic density currents and ballistic blocks and bombs. Hoyo Negro erupted within and modified an older crater having high walls on the northern to southeastern edges. Southwestern to western margins of the crater lay 50 to 100 m lower. Strongly contrasting deposits in the different sectors (N-SE vs. SW-W) were formed as a result of interaction between topography, weak eruptive columns and stratified pyroclastic density currents. Tephra ring deposits are thicker and coarser-grained than upper rim deposits formed along the higher edges of the crater, and beyond the crater margin, valley-confined deposits are thicker than more thinly bedded mantling deposits on higher topography. These differences indicate that the impact zone for the bulk of the collapsing, tephra-laden column lay within the crater and that the high crater walls inhibited escape of pyroclastic density currents to the north and east. The impact zone lay outside the low SW-W rims, however, thus allowing stratified pyroclastic density currents to move freely away from the crater in those directions, depositing thin sections (<30 cm) of well-bedded ash (mantling deposits) on ridges and thicker sections (1-3 m) of structureless ash beds in valleys and small basins. Such segregation of dense pyroclastic currents from more dilute ones at the crater wall is likely to be common for small eruptions from pre-existing craters and is an important factor to be taken into account in volcanic hazards assessments.

  16. A 400-year tree-ring chronology from the tropical treeline of North America.

    PubMed

    Biondi, F

    2001-05-01

    High-elevation sites in the tropics may be particularly sensitive to rapid climate change. By sampling treeline populations, I have developed the first extensive (> 300 years) tree-ring chronology in tropical North America. The site is Nevado de Colima, at the western end of the Mexican Neovolcanic Belt, and the species studied is Mexican mountain pine (Pinus hartwegii). Despite past logging in the area, 300 to 500-year old pines were found at 3600-3700 m elevation, about 300 m below the present treeline. The Nevado de Colima tree-ring chronology is well replicated from 1600 to 1997. Calibration with Colima climatic records points to summer monsoon precipitation as the strongest dendroclimatic signal. Most trees also exhibit extremely low growth in 1913 and 1914, following the January 1913 Plinian eruption of the Volcan de Colima. Because P. hartwegii is found on top of high mountains from Mexico to Guatemala, there is potential for developing a network of tropical treeline chronologies.

  17. Frequent but hidden eruptions of Adatara and Bandai volcanoes during the last 50,000 years unraveled by volcanic damlake sediments, northeast Japan

    NASA Astrophysics Data System (ADS)

    Kataoka, Kyoko; Nagahashi, Yoshitaka

    2017-04-01

    Adatara and Bandai volcanoes in the northeast Japan are very close to each other ( 18 km). Bandai volcano is well known for a large-scale debris avalanche following the phreatic eruption in AD1888 that took more than 400 fatalities. Eruptive history consists of at least 6 more debris avalanche events, 3 more phreatic eruptions, 6 lava flows, and 4 Vulcanian/sub-Plinian eruptions during the last 50,000 years revealed by subaerial proximal deposits. Whereas, the eruptive history of Adatara volcano comprises 6 Vulcanian and 5 phreatic eruptions during the last 10,000 years. The most recent eruption occurred in AD1899-1900. The studied sedimentary core (INW2012) was drilled out from Lake Inawashiro-ko, the largest dammed lake in Japan, that was formed by the 50 ka Okinajima debris avalanche event at Bandai volcano. The lake is 94 m deep, and drilling site is located at the central part of the lake ( 90 m deep). In the 28 m long core sequence, in contrast to background lake sediments deposited under a deep offshore environment, very frequent (70) intercalations of event layers are recognized. Eight types of event layers can be recognized: 1) gray muddy layer (Gm), 2) gray sandy layer (Gs), 3) brown muddy layer (Bm), 4) brown sandy layer (Bs), 5) olive-gray muddy layer, 6) pale-brown sandy layer, and 7) yellow sandy layer, and 8) 2011 earthquake-induced turbidite, based on the characteristics of sedimentary facies, petrography, grainsize, mineral assemblages (XRD) and vertical variation of chemistry (micro-XRF). There are many tephra-fall layers but most of them are extra-basinal origin, i.e., of other volcanoes than Adatara and Bandai. Gm is usually a few millimeters to centimeters thick, blue-gray color, homogenized, and finer than background sediments. Gs is accompanied with coarser subunits and thicker than Gm. Especially, Gm/Gs contain pyrite, sulfate minerals and smectite, and are characterized by high sulfur contents. Bm and Bs are 1 to 6 cm thick and are normally graded with a sharp erosive base. Fresh glass shards and organic material are commonly present. The gray units (Gm/Gs) can be correlated with muddy lahars (cohesive debris flows/mudflows) in the Sukawa River catchment of Adatara volcano. High-sulfur contents indicate syn- or post-eruptive lahars in relation with phreatic eruptions or degradation of hydrothermally altered source rocks nearby the crater. The brown units (Bm/Bs) are thicker than those of gray units that suggest more proximal origin. The fresh glass shards and chemistry of those shards in brown units are unlikely to be reworking of pre-existing old tephra deposits, and therefore the events are attributed to magmatic eruption-fed density currents from Bandai. Since depositional rates of background lake sediments are stable, the frequent eruption-related events both from Adatara and Bandai volcanoes can be well dated. These event deposits reveal unknown eruptive history of Adatara and Bandai as they were more active during the last 50,000 years than previously known. Appropriate evaluation for small-scale but high frequent eruptions and their risk assessments are necessary for Inawashiro Town (15,000 population) located at the foot/downstream of the volcanoes.

  18. Active Submarine Volcanoes and Electro-Optical Sensor Networks: The Potential of Capturing and Quantifying an Entire Eruptive Sequence at Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Kelley, D. S.; Proskurowski, G.; Fundis, A. T.; Kawka, O.

    2011-12-01

    The NE Pacific Regional Scale Nodes (RSN) component of the NSF Ocean Observatories Initiative is designed to provide unprecedented electrical power and bandwidth to the base and summit of Axial Seamount. The scientific community is engaged in identifying a host of existing and innovative observation and measurement techniques that utilize the high-power and bandwidth infrastructure and its real-time transmission capabilities. The cable, mooring, and sensor arrays will enable the first quantitative documentation of myriad processes leading up to, during, and following a submarine volcanic event. Currently planned RSN instrument arrays will provide important and concurrent spatial and temporal constraints on earthquake activity, melt migration, hydrothermal venting behavior and chemistry, ambient currents, microbial community structure, high-definition (HD) still images and HD video streaming from the vents, and water-column chemistry in the overlying ocean. Anticipated, but not yet funded, additions will include AUVs and gliders that continually document the spatial-temporal variations in the water column above the volcano and the distal zones. When an eruption appears imminent the frequency of sampling will be increased remotely, and the potential of repurposing the tracking capabilities of the mobile sensing platforms will be adapted to the spatial indicators of likely eruption activity. As the eruption begins mobile platforms will fully define the geometry, temperature, and chemical-microbial character of the volcanic plume as it rises into the thoroughly documented control volume above the volcano. Via the Internet the scientific community will be able to witness and direct adaptive sampling in response to changing conditions of plume formation. A major goal will be to document the eruptive volume and link the eruption duration to the volume of erupted magma. For the first time, it will be possible to begin to quantify the time-integrated output of an underwater volcanic eruption linked to the heat, chemical, and biological fluxes. In the late stages of the event, the dissipation of the "event plume" into the surrounding water column and the plume's migration patterns in the ambient regional flow will be tracked using specifically designed mobile sensor-platforms. The presence of these assets opens the potential for more immediate, coordinated, and thorough event responses than the community has previously been able to mount. Given the relative abundance of information on many variables in a verifiable and archived spatial and temporal context, and the rapidly evolving ability to conduct real-time genomic analyses, our community may be able to secure entirely novel organisms that are released into the overlying ocean only under well-characterized eruptive conditions.

  19. Plume and Pyroclast Dynamics Observed During a Submarine Explosive Eruption at NW Rota-1, Mariana arc

    NASA Astrophysics Data System (ADS)

    Deardorff, N.; Cashman, K. V.; Chadwick, W. W.; Embley, R. W.

    2007-12-01

    Strombolian submarine eruptions at 550-560 m water depth were observed in April, 2006 at NW Rota-1 volcano, Mariana arc. During six dives with the Jason II remotely operated vehicle observations made at close range documented a diverse and increasingly energetic range of activity. The initial dives observed lava extrusion followed by small, explosive bursts. Activity steadily increased to produce gas thrust jets, discrete thermals and eventually a sustained plume. Eruption video allowed analysis of submarine plume dynamics and depositional characteristics. Sustained plumes were white, billowy and coherent, measuring ~0.5-0.75m wide at their base and quickly spreading to >2m in diameter within ~2-3m above vent due to rapid seawater entrainment. Sustained, coherent plumes were observed rising >20-30m above the seafloor; the top of the plume was observed at ~490m b.s.l giving a total plume height of ~60-70m above the active vent. The initial ascent (<3-4 m) of plumes generated from explosive bursts was analyzed for ejection velocities (<4m/s), clast settling velocities (~0.38-0.72m/s), and changes in plume height and width. Gas thrust jets were determined to transition from momentum-driven plume rise to buoyancy-driven plumes, both visually and using rise velocities, at ~ 0.5-1 m above the vent. These data contrast with the dynamics of plumes generated in subaerial Strombolian eruptions, which maintain momentum-driven rise to ~ 100 meters (Patrick, 2007) above the vent, and illustrate the strong dampening effect of the overlying seawater. Ash and lapilli were observed falling out of the plume at heights >3-4m after being transported by the convecting plume and are assumed to have wider range of travel, vertically and laterally, and deposition. Most bomb-sized ejecta were carried vertically with the plume for 1-3m before falling out around the vent, indicating that the dense (~1700-2350 kg/m3) clasts were transported primarily within the momentum-driven part of the plume. These bomb-sized ejecta were deposited within ~1-2m from the vent with numerous clasts falling back into the vent. The average maximum bomb size increased over time from <13cm blocks during early phases of the dive sequence to ~30-70cm during the later, most energetic eruptions. The positive correlation of bomb size with mass eruption rate is opposite to that seen for highly explosive (plinian) eruptions and suggests that mass eruption rate at NW Rota-1 is determined primarily by gas flux (that is, the ability of the streaming gas phase to transport pyroclasts).

  20. Characterization of freshwater changes in lakes of Nahuel Huapi National Park produced by the 2011 Puyehue-Cordón Caulle eruption.

    PubMed

    Catán, Soledad Perez; Juarez, Natalia A; Bubach, Débora F

    2016-10-01

    This work supplies a characterization of the chemical properties, including data of dissolved major and minor components in surface and pore water collected in Argentinean lakes surrounding the impacted area of Puyehue-Cordón Caulle volcanic complex, in the 2011 eruption. The principal component analysis and Pollution Load Index were used for the identification of water changes by volcanic ashes deposited throughout 1 year of eruption. The element content between water column and pore water provided a direct evidence of the potential dissolution of the element. Many chemical transformations, after the pyroclastic material contacted with the freshwater, were observed such as large pH changes from 3.2 to 8.1, electrical conductivity of 28.9 to 457 μs/cm, and redox potential of 171 to 591 mV. The maximum concentrations measured of F, Al, and Hg were 600, 40, and 0.0382 μg/L respectively. These concentrations in water column were lower than the limit of aquatic life protection for chronic toxicity. The Pollution Load Index indicated very low pollution for sites far away from the volcano and moderated pollution in closely sites. The processes were stabilized at the end of the monitoring, 1 year after the eruption.

  1. View of New Guinea Volcano as seen from STS-64

    NASA Image and Video Library

    1994-09-20

    STS064-116-055 (20 Sept. 1994) --- Near the end of its mission, the crew aboard space shuttle Discovery was able to document the beginning of the second day of activity of the Rabaul volcano, on the east end of New Britain. On the morning of Sept. 19, 1994, two volcanic cones on the opposite sides of the 6-kilometer sea crater had begun to erupt with very little warning. Discovery flew just east of the eruption roughly 24 hours after it started and near the peak of its activity. The eruption, which sent a plume up to over 60,000 feet into the atmosphere, caused over 50,000 people to evacuate the area. Because winds were light at the time of the eruption, most of the ash was deposited in a region within 20 kilometers of the eruption zone. This photo shows the large white billowing eruption plume is carried in a westerly direction by the weak prevailing winds. At the base of the eruption column is a layer of yellow-brown ash being distributed by lower level winds. A sharp boundary moving outward from the center of the eruption in the lower cloud is a pulse of laterally-moving ash which results from a volcanic explosion. Geologists theorize that the large white column and the lower gray cloud are likely from the two main vents on each side of the harbor. The cloud-covered island in the foreground is New Ireland. The bay and harbor of Rabaul are covered with a layer of ash, possibly partly infilled with volcanic material. Matupit Island and the airport runway have disappeared into the bay. More than a meter of ash has fallen upon the city of Rabaul. Up to five vents were reported to have erupted at once, including the cones Vulcan and Tavurvur, which are opposites of the harbor as well as new vents below the bay. Half of the Vulcan cone has collapsed into the sea. The extra day in space due to bad weather at the landing site afforded the crew the opportunity for both still and video coverage of the event. Photo credit: NASA or National Aeronautics and Space Administration

  2. A metallogenic survey of alkalic rocks of Mt. Somma-Vesuvius volcano

    USGS Publications Warehouse

    Paone, A.; Ayuso, R.A.; de Vivo, B.

    2001-01-01

    Somma-Vesuvius is an alkaline volcano whose products (pumice, scoria and lava) have alkaline (Na2O+K2O) contents between 6 and 16 wt%, Mg number <50, SiO2 59-47 wt% and MgO 0-7.8 wt% (more than 50% of the samples have a content <2 wt%). Immobile-element ratios (Th/Yb, Ta/Yb, Ce/Yb) indicate a shoshonitic character, while the K2O content (4-10 wt%) is characteristic of ultrapotassic rocks. The behavior of selected metals is discussed by grouping them on the basis of the stratigraphic sequence and differentiating the volcanic activity between plinian and interplinian (Rolandi et al., 1998; Ayuso et al., 1998). This allows observation of the variation within each formation from 25.000y. BP to the last historic eruptive cycle (1631-1944 AD). The main processes to explain the wide distribution of the data presented are fractional crystallization of a mantle-derived magma, magma mixing, and contamination with heterogeneous lower and/or upper crust. Variation diagrams distinguish different behavior for groups of metals: Ag (0.01-0.2 ppm), Mo (1-8.8 ppm), W (1.3-13 ppm), Pb (16-250 ppm), Sb (0.2-2.6 ppm), Sc (0.2-61 ppm), Li (15-140 ppm) and Be (1-31 ppm) increase with increasing differentiation and tend to correlate with the incompatible trace elements (Th, Hf, etc). Cu (10-380 ppm), Au (2-143 ppb), Co (0.7-35.1 ppm) and Fe (1.3-6.2 wt%) decrease towards advanced stage of differentiation. Iron also identifies three magmatic groups. The ratio Fe3+/Fe2+ ranges between 0.2 and 1.8, and Fe2O3/ (Fe2O3+FeO) ranges between 0.2 and 0.8, giving rise to an oxidized environment; exceptions are in the samples belonging to the interplinian formations: I, II, medieval and 1631-1994 AD. Fluorine ranges between 0.1 and 0.4 wt% for the complete Mt. Somma-Vesuvius activity, except for the Ottaviano and Avellino plinian (0.8 wt%) events. Chlorine has a wider range, from 0.1 wt% to 1.6 wt%. Mt Somma-Vesuvius has some features similar to those of mineralized alkaline magmatic systems which coincide with the transition between subduction-related compression and extension-related to continental rifting. We infer that a prospective time for the formation of mineralization at Mt Somma-Vesuvius was during the 1631-1944 eruptive period.

  3. Hydrogen isotope investigation of amphibole and glass in dacite magmas erupted in 1980-1986 and 2005 at Mount St. Helens, Washington

    USGS Publications Warehouse

    Underwood, S.J.; Feeley, T.C.; Clynne, M.A.

    2013-01-01

    In active, shallow, sub-volcanic magma conduits the extent of the dehydrogenation–oxidation reaction in amphibole phenocrysts is controlled by energetic processes that cause crystal lattice damage or conditions that increase hydrogen diffusivity in magmatic phases. Amphibole phenocrysts separated from dacitic volcanic rocks erupted from 1980 to 1986 and in 2005 at Mount St. Helens (MSH) were analyzed for δD, water content and Fe3+/Fe2+, and fragments of glassy groundmass were analyzed for δD and water content. Changes in amphibole δD values through time are evaluated within the context of carefully observed volcanic eruption behavior and published petrological and geochemical investigations. Driving forces for amphibole dehydrogenation include increase in magma oxygen fugacity, decrease in amphibole hydrogen fugacity, or both. The phenocryst amphibole (δD value c. –57‰ and 2 wt % H2O) in the white fallout pumice of the May 18, 1980 plinian eruptive phase is probably little modified during rapid magma ascent up an ∼7 km conduit. Younger volcanic rocks incorporate some shallowly degassed dacitic magma from earlier pulses, based on amphibole phenocryst populations that exhibit varying degrees of dehydrogenation. Pyroclastic rocks from explosive eruptions in June–October 1980 have elevated abundances of mottled amphibole phenocrysts (peaking in some pyroclastic rocks erupted on July 22, 1980), and extensive amphibole dehydrogenation is linked to crystal damage from vesiculation and pyroclastic fountain collapse that increased effective hydrogen diffusion in amphibole. Multiple amphibole δD populations in many 1980 pyroclastic rocks combined with their groundmass characteristics (e.g. mixed pumice textures) support models of shallow mixing prior to, or during, eruption as new, volatile-rich magma pulses blended with more oxidized, degassed magma. Amphibole dehydrogenation is quenched at the top surface of MSH dacite lava lobes, but the diversity in the δDamph populations in original fresh lava flow surfaces may occur from blending magma domains with different ascent histories in the sub-volcanic environment immediately before eruption. Multi-stage open-system magma degassing operated in each parcel of magma rising toward the surface, whereas the magma below ∼7 km was a relatively closed system, at least to the October 1986 eruption based on the large population of minimally dehydrogenated, rim-free amphibole in the lavas. Magma degassing and possibly H isotope exchange with low-δD fluids around the roof zone may have accompanied the ∼1·5 km upward migration of the 1980 magma body. The low-δDamph (c. –188 to –122‰) oxy-amphibole phenocrysts in lava spines extruded in May 2005 reflect dehydrogenation as ascending viscous magma degassed and crystallized, and fractures that admitted oxygen into the hot solidified lava spine interior facilitated additional iron oxidation.

  4. Explosive processes during the 2015 eruption of Axial Seamount, as recorded by seafloor hydrophones

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.; Dziak, R. P.; Haxel, J.; Bohnenstiehl, D. R.; Garcia, C.

    2017-04-01

    Following the installation of the Ocean Observatories Initiative cabled array, the 2015 eruption of Axial Seamount, Juan de Fuca ridge, became the first submarine eruption to be captured in real time by seafloor seismic and acoustic instruments. This eruption also marked the first instance where the entire eruption cycle of a submarine volcano, from the previous eruption in 2011 to the end of the month-long 2015 event, was monitored continuously using autonomous ocean bottom hydrophones. Impulsive sounds associated with explosive lava-water interactions are identified within hydrophone records during both eruptions. Explosions within the caldera are acoustically distinguishable from those occurring in association with north rift lava flows erupting in 2015. Acoustic data also record a series of broadband diffuse events, occurring in the waning phase of the eruption, and are interpreted as submarine Hawaiian explosions. This transition from gas-poor to gas-rich eruptive activity coincides with an increase in water temperature within the caldera and with a decrease in the rate of deflation. The last recorded diffuse events coincide with the end of the eruption, represented by the onset of inflation. All the observed explosion signals couple strongly into the water column, and only weakly into the solid Earth, demonstrating the importance of hydroacoustic observations as a complement to seismic and geodetic studies of submarine eruptions.

  5. Quantifying distal dispersal and impact of volcanic ash from super-eruptions: an application to Campanian Ignimbrite

    NASA Astrophysics Data System (ADS)

    Costa, A.; Folch, A.; Macedonio, G.; Giaccio, B.; Isaia, R.; Smith, V. C.

    2012-04-01

    Distal and ultra-distal volcanic ash dispersal during a super-eruption was reconstructed for the first time, providing insights into eruption dynamics and the impact of these gigantic events. A novel computational methodology was applied to the ash fallout of the Campanian Ignimbrite (CI), the most powerful volcanic eruption in Europe in the last 200 kyrs. The method uses a 3D time-dependent computational ash dispersion model, an ensemble of wind fields, and hundreds of thickness observations of the CI tephra deposit. Results reveal that 250-300 km3 of fallout material was produced during the eruption, blanketing a region of ~3.7 million km2 with more than 5 mm of fine ash. The model also indicates that the column height was ~37-40 km, and the eruption lasted 2-4 days. The eruption would have caused a volcanic winter within the coldest and driest Heinrich event. Fluorine-bearing leachate from the volcanic ash and acid rain would have further affected food sources and severely impacted Late Middle Paleolithic groups in Southern and Eastern Europe.

  6. The largest volcanic eruptions on Earth

    NASA Astrophysics Data System (ADS)

    Bryan, Scott E.; Peate, Ingrid Ukstins; Peate, David W.; Self, Stephen; Jerram, Dougal A.; Mawby, Michael R.; Marsh, J. S. (Goonie); Miller, Jodie A.

    2010-10-01

    Large igneous provinces (LIPs) are sites of the most frequently recurring, largest volume basaltic and silicic eruptions in Earth history. These large-volume (> 1000 km 3 dense rock equivalent) and large-magnitude (> M8) eruptions produce areally extensive (10 4-10 5 km 2) basaltic lava flow fields and silicic ignimbrites that are the main building blocks of LIPs. Available information on the largest eruptive units are primarily from the Columbia River and Deccan provinces for the dimensions of flood basalt eruptions, and the Paraná-Etendeka and Afro-Arabian provinces for the silicic ignimbrite eruptions. In addition, three large-volume (675-2000 km 3) silicic lava flows have also been mapped out in the Proterozoic Gawler Range province (Australia), an interpreted LIP remnant. Magma volumes of > 1000 km 3 have also been emplaced as high-level basaltic and rhyolitic sills in LIPs. The data sets indicate comparable eruption magnitudes between the basaltic and silicic eruptions, but due to considerable volumes residing as co-ignimbrite ash deposits, the current volume constraints for the silicic ignimbrite eruptions may be considerably underestimated. Magma composition thus appears to be no barrier to the volume of magma emitted during an individual eruption. Despite this general similarity in magnitude, flood basaltic and silicic eruptions are very different in terms of eruption style, duration, intensity, vent configuration, and emplacement style. Flood basaltic eruptions are dominantly effusive and Hawaiian-Strombolian in style, with magma discharge rates of ~ 10 6-10 8 kg s -1 and eruption durations estimated at years to tens of years that emplace dominantly compound pahoehoe lava flow fields. Effusive and fissural eruptions have also emplaced some large-volume silicic lavas, but discharge rates are unknown, and may be up to an order of magnitude greater than those of flood basalt lava eruptions for emplacement to be on realistic time scales (< 10 years). Most silicic eruptions, however, are moderately to highly explosive, producing co-current pyroclastic fountains (rarely Plinian) with discharge rates of 10 9-10 11 kg s -1 that emplace welded to rheomorphic ignimbrites. At present, durations for the large-magnitude silicic eruptions are unconstrained; at discharge rates of 10 9 kg s -1, equivalent to the peak of the 1991 Mt Pinatubo eruption, the largest silicic eruptions would take many months to evacuate > 5000 km 3 of magma. The generally simple deposit structure is more suggestive of short-duration (hours to days) and high intensity (~ 10 11 kg s -1) eruptions, perhaps with hiatuses in some cases. These extreme discharge rates would be facilitated by multiple point, fissure and/or ring fracture venting of magma. Eruption frequencies are much elevated for large-magnitude eruptions of both magma types during LIP-forming episodes. However, in basalt-dominated provinces (continental and ocean basin flood basalt provinces, oceanic plateaus, volcanic rifted margins), large magnitude (> M8) basaltic eruptions have much shorter recurrence intervals of 10 3-10 4 years, whereas similar magnitude silicic eruptions may have recurrence intervals of up to 10 5 years. The Paraná-Etendeka province was the site of at least nine > M8 silicic eruptions over an ~ 1 Myr period at ~ 132 Ma; a similar eruption frequency, although with a fewer number of silicic eruptions is also observed for the Afro-Arabian Province. The huge volumes of basaltic and silicic magma erupted in quick succession during LIP events raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, and paths and rates of ascent from magma reservoirs to the surface. Available data indicate four end-member magma petrogenetic pathways in LIPs: 1) flood basalt magmas with primitive, mantle-dominated geochemical signatures (often high-Ti basalt magma types) that were either transferred directly from melting regions in the upper mantle to fissure vents at surface, or resided temporarily in reservoirs in the upper mantle or in mafic underplate thereby preventing extensive crustal contamination or crystallisation; 2) flood basalt magmas (often low-Ti types) that have undergone storage at lower ± upper crustal depths resulting in crustal assimilation, crystallisation, and degassing; 3) generation of high-temperature anhydrous, crystal-poor silicic magmas (e.g., Paraná-Etendeka quartz latites) by large-scale AFC processes involving lower crustal granulite melting and/or basaltic underplate remelting; and 4) rejuvenation of upper-crustal batholiths (mainly near-solidus crystal mush) by shallow intrusion and underplating by mafic magma providing thermal and volatile input to produce large volumes of crystal-rich (30-50%) dacitic to rhyolitic magma and for ignimbrite-producing eruptions, well-defined calderas up to 80 km diameter (e.g., Fish Canyon Tuff model), and which characterise of some silicic eruptions in silicic LIPs.

  7. Tracking Pyroclastic Flows at Soufrière Hills Volcano

    NASA Astrophysics Data System (ADS)

    Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Poggi, Pasquale; Williams, Carlisle; Marchetti, Emanuele; Delle Donne, Dario; Ulivieri, Giacomo

    2009-07-01

    Explosive volcanic eruptions typically show a huge column of ash and debris ejected into the stratosphere, crackling with lightning. Yet equally hazardous are the fast moving avalanches of hot gas and rock that can rush down the volcano's flanks at speeds approaching 280 kilometers per hour. Called pyroclastic flows, these surges can reach temperatures of 400°C. Fast currents and hot temperatures can quickly overwhelm communities living in the shadow of volcanoes, such as what happened to Pompeii and Herculaneum after the 79 C.E. eruption of Italy's Mount Vesuvius or to Saint-Pierre after Martinique's Mount Pelée erupted in 1902.

  8. Violent Explosive Eruptions in the Ararat Valley, Armenia and Associated Volcanic Hazards

    NASA Astrophysics Data System (ADS)

    Meliksetian, Khachatur; Savov, Ivan; Connor, Charles; Gevorgyan, Hripsime; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Jrbashyan, Ruben; Ghukasyan, Yura

    2016-04-01

    The Anatolian-Armenian-Iranian volcanically active orogenic plateau is located in the collision zone between the Arabian and Eurasian plates. The majority of regional geodynamic and petrologic models of collision-related magmatism use the model proposed by Keskin (2003), where volcanism is driven by Neo-Tethyan slab break-off, however an updated model by Neill et al. (2015) and Skolbeltsyn et al.(2014) comprise break-off of two slabs. One of the significant (and understudied) features of the regionally extensive collision zone volcanism is the diversity of eruption styles and also the presence of large number of highly explosive (Plinian) eruptions with VEI≥5 during the Middle-Upper Pleistocene. Geological records of the Ararat depression include several generations of thick low aspect ratio Quaternary ignimbrites erupted from Aragats volcano, as well as up to 3 m thick ash and pumice fall deposit from the Holocene-historically active Ararat volcano. The Ararat tephra fall deposit is studied at 12 newly discovered outcrops covering an area ˜1000 km2. It is noteworthy, that the Ararat tephra deposits are loose and unwelded and observed only in cross-sections in small depressions or in areas where they were rapidly covered by younger, colluvium deposits, presumably of Holocene age. Therefore, the spatial extent of the explosive deposits of Ararat is much bigger but not well preserved due to rapid erosion. Whole rock elemental, isotope (Sr, Nd) and mineral chemistry data demonstrate significant difference in the magma sources of the large Aragats and Ararat stratovolcanoes. Lavas and pyroclastic products of Aragats are high K calc-alkaline, and nearly always deprived from H2O rich phases such as amphibole. In contrasts lavas and pyroclastic products from Ararat are medium K calc-alkaline and volatile-rich (>4.6 wt% H2O and amphibole bearing) magmas. Here we shall attempt to reveal possible geochemical triggers of explosive eruptions in these volcanoes and assess volcanic hazards for the region of Ararat valley based on numerical simulations. Our work is important as Ararat Valley host the capital city of Yerevan (population ˜ 1.4 million) and also the currently operating Armenian Nuclear Power Plant at Metsamor. References Keskin,2003. GRL 30, 1-4; Neill et al., 2015 Chemical Geology, 403, p. 24-41; Skolbeltsyn et al. 2014. Tectonics 33, 207-221.

  9. Persistent growth of a young andesite lava cone: Bagana volcano, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Wadge, G.; McCormick Kilbride, B. T.; Edmonds, M.; Johnson, R. W.

    2018-05-01

    Bagana, an andesite lava cone on Bougainville Island, Papua New Guinea, is thought to be a very young central volcano. We have tested this idea by estimating the volumes of lava extruded over different time intervals (1-, 2-, 3-, 9-, 15-, 70-years) using digital elevation models (DEMs), mainly created from satellite data. Our results show that the long-term extrusion rate at Bagana, measured over years to decades, has remained at about 1.0 m3 s-1. We present models of the total edifice volume, and show that, if our measured extrusion rates are representative, the volcano could have been built in only 300 years. It could also possibly have been built at a slower rate during a longer, earlier period of growth. Six kilometres NNW of Bagana, an andesite-dacite volcano, Billy Mitchell, had a large, caldera-forming plinian eruption 437 years ago. We consider the possibility that, as a result of this eruption, the magma supply was diverted from Billy Mitchell to Bagana. It seems that Bagana is a rare example of a very youthful, polygenetic, andesite volcano. The characteristics of such a volcano, based on the example of Bagana, are: a preponderance of lava products over pyroclastic products, a high rate of lava extrusion maintained for decades, a very high rate of SO2 emission, evidence of magma batch fractionation and location in a trans-tensional setting at the end of an arc segment above a very steeply dipping and rapidly converging subduction zone.

  10. Volcanoes drive climate variability by emitting ozone weeks before eruptions, by forming lower stratospheric aerosols, by causing sustained ozone depletion, and by causing rapid changes in regional ozone concentrations affecting temperature and pressure differences driving atmospheric oscillations

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2016-12-01

    Total column ozone observed by satellite on February 19, 2010, increased 75% in a plume from Eyjafjallajökull volcano in southern Iceland eastward past Novaya Zemlya, extending laterally from northern Greenland to southern Norway (http://youtu.be/wJFZcPEfoR4). Contemporaneous ground deformation and rapidly increasing numbers of earthquakes imply magma began rising from a sill 4-6 km below the volcano, erupting a month later. Whether the ozone formed from the magma or from very hot gases rising through cracks in the ground is unclear. On February 20-22, 1991, similar increases in ozone were observed north of Pinatubo volcano before its initial eruption on April 2 (http://youtu.be/5y1PU2Qu3ag). Annual average total column ozone during the year of most moderate to large explosive volcanic eruptions since routine observations of ozone began in 1927 has been substantially higher than normal. Increased total column ozone absorbs more solar ultraviolet-B radiation, warming the ozone layer and cooling Earth. Most major volcanic eruptions form sulfuric-acid aerosols in the lower part of the ozone layer providing aqueous surfaces on which heterogeneous chemical reactions enhance ozone depletion. Within a year, aerosol droplets grew large enough to reflect and scatter high-frequency solar radiation, cooling Earth 0.5oC for 2-3 years. Temperature anomalies in the northern hemisphere rose 0.7oC in 28 years from 1970 to 1998 (HadCRUT4), while annual average ozone at Arosa dropped 27 DU because of manufactured CFC gases. Beginning in August 2014, temperature anomalies in the northern hemisphere rose another 0.6oC in less than two years apparently because of the 6-month eruption of Bárðarbunga volcano in central Iceland, the highest rate of basaltic lava extrusion since 1783. Large extrusions of basaltic lava are typically contemporaneous with the greatest periods of warming throughout Earth history. Ozone concentrations at Arosa change by season typically from 370 DU during March and April to 285 DU in October. Removing this seasonal change to calculate ozone anomaly and plotting against temperature anomaly, and climate oscillation indices such as NAM, NAO, ENSO, and SAM gives insight into the influence of volcanic eruptions on regional temperatures, pressures, winds, weather, and climate. WhyClimateChanges.com

  11. Reconstructing an Explosive Basaltic Eruption in the Pinacate Volcanic Field, NW Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Zawacki, E. E.; Clarke, A. B.; Arrowsmith, R.; Lynch, D. J.

    2017-12-01

    Tephra deposits from explosive volcanic eruptions provide a means to reconstruct eruption characteristics, such as column height and erupted volume. Parameters like these are essential in assessing the explosivity of past eruptions and associated volcanic hazards. We applied such methods to a basaltic tephra deposit from one of the youngest eruptions in the Pinacate volcanic field (NW Sonora, Mexico). This roughly circular tephra blanket extends 13 km E-W and 13 km N-S, and covers an area of at least 135 km2. The source vent of this eruption is hypothesized to be the Tecolote volcano (lat 31.877, long -113.362), which is dated to 27 ± 6 ka (40Ar/39Ar). Fifty-three pits were dug across the extent of the tephra deposit to measure its thickness, record stratigraphy, characterize grain size distribution, and determine maximum clast size. Isopleth and isopach maps were created from these data to determine the column height (>9 km), estimate mass eruption rate (>2.1x106 kg/s), and calculate the erupted volume (>4.2x10-2 km3). Stratigraphic descriptions support two distinct episodes of tephra production. Unit A is dispersed in an approximately circular pattern ( 6.5 km radius) with its center shifted to the east of the vent. The distribution of Unit B is oblate ( 9.5 km major axis, 4.5 km minor axis) and trends to the southeast of the vent. Lava samples were collected from each of the seven Tecolote flows for XRF and ICP-MS geochemical analyses. These samples were compared to geochemical signatures from a Tecolote bomb, tephra from Units A and B, and cinder from the La Laja cone, which is the youngest dated cone in the field at 12 ± 4 ka (40Ar/39Ar). The La Laja sample is geochemically distinct from all Tecolote samples, confirming that it did not contribute to the two tephra units. Tephra from Unit A and Unit B have distinct signatures and fit within the geochemical evolution of the Tecolote lavas, supporting two explosive episodes from the Tecolote volcano, which has two cones. To provide a stronger age constraint on the eruption, samples for optically stimulated luminescence (OSL) dating were collected from the sandy silt unit below the tephra in two pits. Data for these dates are being analyzed.

  12. Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor

    2015-02-01

    The Auckland Volcanic Field (AVF) comprises at least 52 monogenetic eruption centres dispersed over ˜360 km2. Eruptions have occurred sporadically since 250 ka, predominantly when glacio-eustatic sea levels were lower than today. Now that around 35 % of the field is covered by shallow water (up to 30 m depth), any eruption occurring in the present or near future within this area may display Surtseyan dynamics. The North Head tuff cone evidences eruptive dynamics caused by magma interaction with seawater. The first stages of the eruption comprise a phreatomagmatic phase that built a 48-m-high tuff cone. North Head tuff deposits contain few lithic fragments (<10 vol%) and are characterized by deposits from collapsing tephra jets and fall from relatively wet tephra columns. The conditions needed for this eruption existed between 128 and 116 ka, when the sea level in the Auckland area was at least 10-12 m above the pre-eruptive surface. The hazards associated with this type of eruption pose a risk to the densely populated coastal residential zones and the activities of one of the busiest harbours in New Zealand.

  13. Lava dome morphometry and geochronology of the youngest eruptive activity in Eastern Central Europe: Ciomadul (Csomád), East Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Karátson, D.; Telbisz, T.; Harangi, Sz.; Magyari, E.; Kiss, B.; Dunkl, I.; Veres, D.; Braun, M.

    2012-04-01

    Volcanic evolution of the Ciomadul (Csomád) lava dome complex, site of the youngest (Late Pleistocene, late Marine Isotope Stage 3) eruptive activity in the Carpathians, has been studied by advanced morphometry and radiometric (U/Pb, U/He and 14C) geochronology. The volcano produced alternating effusive and intermittent explosive eruptions from individual domes, typical of common andesitic-dacitic lava domes. A comparative morphometry shows steep ≥30° mean slopes of domes' upper flank and the Csomád domes fit well to the 100-200 ka domes worldwide. Morphometric ages obtained from the mean slope vs age precipitation correlation results in ≤100 ka ages. The morphometric approach is supported by U/Pb and U/He chronology: preliminary results of zircon dating indicate ages ranging between 200(250) and 30 ka. The youngest ages of the data set obtained both from lavas and pumiceous pyroclastics argue for a more or less coeval effusive and explosive volcanism. Based also on volcanological data, we propose vulcanian eruptions and explosive dome collapses especially toward the end of volcanic activity. Moreover, radiometric chronology suggests that, possibly subsequently to the peripheral domes, a central lava dome complex built up ≤100 ka ago. This dome complex, exhibiting even more violent, up to sub-plinian explosions, emplaced pumiceous pyroclastic flow and fall deposits as far as 17 km. We propose that the explosive activity produced caldera-forming eruptions as well, creating a half-caldera. This caldera rim is manifested by the asymmetric morphology of the central edifice: the present-day elevated ridge of Ciomadul Mare (Nagy Csomád), encompassing the twin craters of Mohoş (Mohos) peat bog and Sf. Ana (Szent [St.] Anna). These latter craters may have been formed subsequently, ca. ~100-30 ka ago, after the caldera formation. Drilling of lacustrine sediments in the St. Anna crater shows that beneath the Holocene gyttja several meters of Late Pleistocene sediment occurs. Although we did not reach the very bottom of the crater, radiometric dating of the lowest layer indicates that the formation of the crater exceeds 26,000 cal yr BP. This is in accordance with magnetic susceptibility curves and pollen results from the lake sediments, as well as the 31,450 cal yr BP radiocarbon age of the youngest dated eruption at Csomád. Research has been funded by Hungarian National Grants OTKA K68587 and NF101362.

  14. Water and CO2 content of melt inclusions from the high-silica rhyolite Bandelier Tuff super-eruptions, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Waelkens, C. M.; Gonzalez, C.; Martineau, D.; Goff, F. E.; Stix, J.

    2017-12-01

    Large silicic caldera-forming eruptions are some of the most destructive events on our planet, which makes silicic calderas important systems to study. Volatiles play an important role in determining the nature and behaviour of magmas, and can trigger eruptions when changes in volatile content and exsolution of fluid phases lead to overpressure in the magma chamber. A separate fluid phase will be exsolved if the magma is fluid saturated; whether the magma is fluid saturated depends on its H2O and CO2 content. We measured H2O and CO2 in melt inclusions of the Valles Caldera supervolcano system in New Mexico. This system had super-eruptions at 1.64 Ma and 1.25 Ma, depositing respectively the Lower (Otowi Member) and the Upper (Tshirege Member) Bandelier Tuff. Previous studies have reported H2O values for the Bandelier Tuff and the Cerro Toledo Formation - erupted between the two Bandelier super-eruptions from the same magma reservoir. We expanded this dataset and added CO2 analyses, which gives a more complete image of the volatile saturation state of the magma. Both H2O and CO2 were measured by transmission FTIR on doubly-polished melt inclusions hosted in quartz and feldspar crystals. While we found only limited variation within H2O contents, CO2 values were found to vary strongly. Our preliminary results indicate H2O values of 4 to 6 wt % throughout both the Lower and Upper Bandelier Tuff, consistent with previous studies. In contrast, we found CO2 values vary strongly, from below 50 ppm (maximum measured 60 ppm, minimum 7 ppm, median 33 ppm) in the base of the Lower Bandelier Tuff to 100 - 200 ppm CO2 (maximum measured 234 ppm, minimum 44, median 118 ppm) in the top of the basal Plinian fall deposit (Guaje Pumice). By the end of the Cerro Toledo Rhyolite and beginning of the Upper Bandelier, CO2 values in the magma were low again, around 50 ppm (maximum measured 91 ppm, minimum 23 ppm, median 42 ppm). No substantial difference is observed in H2O and CO2 values between the end of the Cerro Toledo Formation and beginning of the Upper Bandelier Tuff. We hypothesise that these variations in CO2 are related to the input of hotter, CO2-richer magma into the Bandelier magma chamber.

  15. Uranium-Series Isotopic Constraints on Recent Changes in the Eruptive Behaviour of Merapi Volcano, Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Gertisser, R.; Handley, H. K.; Reagan, M. K.; Berlo, K.; Barclay, J.; Preece, K.; Herd, R.

    2011-12-01

    Merapi volcano (Central Java) is one of the most active and deadly volcanoes in Indonesia. The 2010 eruption was the volcano's largest eruption since 1872 and erupted much more violently than expected. Prior to 2010, volcanic activity at Merapi was characterised by several months of slow dome growth punctuated by gravitational dome failures, generating small-volume pyroclastic density currents (Merapi-type nuées ardentes). The unforeseen, large-magnitude events in 2010 were different in many respects: pyroclastic density currents travelled > 15 km beyond the summit causing widespread devastation in proximal areas on Merapi's south flank and ash emissions from sustained eruption columns resulted in ash fall tens of kilometres away from the volcano. The 2010 events have proved that Merapi's relatively small dome-forming activity can be interrupted at relatively short notice by larger explosive eruptions, which appear more common in the geological record. We present new geochemical and Uranium-series isotope data for the volcanic products of both the 2006 and 2010 eruptions at Merapi to investigate the driving forces behind this unusual explosive behaviour and their timescales. An improved knowledge of these processes and of changes in the pre-eruptive magma system has important implications for the assessment of hazards and risks from future eruptive activity at Merapi.

  16. A-Train Observations of Young Volcanic Eruption Clouds

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Prata, F.; Yang, K.; Rose, W. I.

    2011-12-01

    NASA's A-Train satellite constellation (including Aqua, CloudSat, CALIPSO, and Aura) has been flying in formation since 2006, providing unprecedented synergistic observations of numerous volcanic eruption clouds in various stages of development. Measurements made by A-Train sensors include total column SO2 by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric residence are particularly valuable, as the fallout, segregation and stratification of material in this period determines the concentration and altitude of constituents that remain to be advected downwind. This represents the eruption 'source term' essential for dispersion modeling, and hence for aviation hazard mitigation. In this presentation we show examples of A-Train data collected during recent eruptions including Chaitén (May 2008), Kasatochi (August 2008), Redoubt (March 2009), Eyjafjallajökull (April 2010) and Cordón Caulle (June 2011). We interpret the observations using the canonical three-stage view of volcanic cloud development [e.g., Rose et al., 2000] from initial rapid ash fallout to far-field dispersion of fine ash, gas and aerosol, and results from numerical modeling of volcanic plumes [e.g., Textor et al., 2003] and discuss the degree to which the observations validate existing theory and models. We also describe plans for advanced SO2 and ash retrieval algorithms that will exploit the synergy between UV and IR sensors in the A-Train for improved quantification of ash and SO2 loading by volcanic eruptions.

  17. Trioctahedral micas in xenolithic ejecta from recent volcanism of the Somma-Vesuvius (Italy): Crystal chemistry and genetic inferences

    NASA Astrophysics Data System (ADS)

    Balassone, Giuseppina; Scordari, Fernando; Lacalamita, Maria; Schingaro, Emanuela; Mormone, Angela; Piochi, Monica; Petti, Carmela; Mondillo, Nicola

    2013-02-01

    This study reports the first crystal chemical database resulting from a detailed structural investigation of trioctahedral micas found in xenolithic ejecta produced during the AD 1631, 1872 and 1944 eruptions, three explosive episodes of recent volcanic period of Vesuvius volcano (Southern Italy). Three xenolith types were selected: metamorphic/metasomatic skarns, pyrometamorphic/hydrothermally altered nodules and mafic cumulates. They are related to different magma chemistry and effusive styles: from sub-plinian and most evolved (AD 1631 eruption) to violent strombolian with medium evolution degree (AD 1872 eruption) to vulcanian-effusive, least evolved (AD 1944 eruption) event, respectively. Both xenoliths and micas were investigated employing multiple techniques: the xenoliths were characterized by X-ray fluorescence, inductively-coupled plasma-mass spectrometry, optical microscopy, X-ray powder diffraction, and quantitative energy-dispersive microanalysis; the micas were studied by electron probe microanalysis and single crystal X-ray diffraction. The mica-bearing xenoliths show variable texture and mineralogical assemblage, clearly related to their different origin. Based on the major oxide chemistry, only one xenolithic sample falls in the skarn compositional field from the Somma-Vesuvius literature, some fall close to the skarns and cumulate fields, others plot close to the syenite/foidolite/essexite field. A subgroup of the selected ejecta does not fall or approach any of the compositional fields. Trace and rare earth element patterns show some petrological affinity between studied xenoliths and erupted magmas with typical Eu, Ta and Nb negative anomalies. Strongly depleted patterns were detected for the 1631 metamorphic/metasomatic skarns xenoliths. Three distinct mica groups were distinguished: 1) Mg-, Al-rich, low Ti-bearing, low to moderate F-bearing varieties (1631 xenolith), 2) Al-moderate, F- and Mg-rich, Ti-, Fe-poor varieties (1872 xenolith), and 3) Al-, Ti- and Fe-rich, F-poor phases (1944 xenolith). All the analyzed mica crystals are 1M polytypes with the expected space group C2/m. Micas from xenoliths of the 1631 Vesuvius eruption are phlogopites characterized by a combination of low extent of oxy-type and variable extent OH- → F- substitutions, as testified by the range of F concentration (from ~ 0.20 to 0.80 apfu). Micas from xenoliths of the 1872 Vesuvius eruption exhibit structural peculiarities typical of fluorophlogopites, i.e. OH- → F- substitution is predominant. Micas from the xenolith of the 1944 Vesuvius eruption display features typical of oxy-substituted micas. The variability of the crystal chemical features of the studied micas is consistent with the remarkable variation of their host rocks. Micas from 1631 nodules are related to metasomatic, skarn-type environment, deriving from the metamorphosed wall-rocks hosting the magma reservoir. The fluorophlogopites from the 1872 xenoliths testify for strongly dehydrated environmental conditions compared to those of the 1631 and 1944 hosts. Finally, magma storage condition at depth, associated to a decreasing aH2O may have promoted major oxy-type substitutions in 1944 biotites.

  18. Investigating Degassing in Felsic and Mafic Magmas by 3-D Imaging of Vesicle Pathways

    NASA Astrophysics Data System (ADS)

    Polacci, M.; Baker, D. R.; Piochi, M.; Mancini, L.

    2009-12-01

    Volatiles are the motor of volcanic eruptions. Studies of vesiculation in erupted products can provide information on how volatiles exsolve, grow and are lost from magmas as lava and tephra fragments bear the fingerprints of such processes in vesicle and crystal textures. We summarize here the results of a series of X-ray computed microtomographic experiments that were performed on about 70 volcanic specimens of mainly basaltic and trachytic compositions. A first sample suite comprises samples collected from explosive activity at persistently degassing basaltic volcanoes, namely Stromboli (Aeolian Islands), Etna (Eastern Sicily) and Ambrym (Vanuatu Islands); a second suite consists of pumice and scoria clasts from Plinian to Subplinian to Vulcanian eruptions that occurred in the Campi Flegrei caldera (Southern Italy). The tomographic images provide us with a complete 3-D view of our sampled material through which it is possible to reconstruct the geometry of the vesicle network and explore how gas was transported in the investigated magmas. We find that basaltic scoriae exhibit two types of vesicles: large (~ mm^3), coalescing vesicles with complex, convoluted shapes and small-to-intermediate sized (<~1x10^-3 mm^3), spherical to sub-spherical, poorly connected or isolated vesicles. The former vesicles were interpreted as percolation pathways for gas to flow non-explosively to the volcano crater and thought to sustain the persistent passive gas release that characterizes these volcanoes. The fact that such vesicles were found in products erupted from active basaltic volcanoes located in different tectonic settings and characterized by different explosivity strongly suggests that basaltic systems appear to follow a common degassing pathway. However, not all explosive basaltic rocks contain large, coalescing vesicles. Pumice clasts from the much more violent, dangerous and less frequent paroxysmal explosions at Stromboli do not have this type of vesicles, demonstrating that basaltic volcanoes develop different vesicle textures and therefore degassing dynamics with increasing explosive activity. Trachytic pumices from highly explosive eruptions display a much finer structure in comparison to scoriae having sub-spherical to slightly deformed large vesicles and a large population of small spherical vesicles (1x10^-3 - <1x10^-5 mm^3). These two vesicle textures were mainly ascribed to the rapid ascent of a supersaturated magma under closed-system degassing, in comparison to the open-system conditions of basaltic magmas. Large interconnected vesicles that form micro-cracks are, however, found in some denser pyroclasts from Campi Flegrei. This suggests that gas was percolating in the conduit system before the eruption and that open-system degassing may be an effective way through which gas is lost in a moderately violent manner at the crater surface in some explosive felsic eruptions. Ultimately this study reveals that 3-D imaging of volcanic rocks is an essential tool for investigating degassing conditions in erupted magmas.

  19. Calbuco Volcano Erupts in Southern Chile

    NASA Image and Video Library

    2015-04-24

    Calbuco Volcano in southern Chile has erupted for the first time since 1972, with the last major eruption occurring in 1961 that sent ash columns 12-15 kilometers high. This image was taken by the Suomi NPP satellite's VIIRS instrument in a high resolution infrared channel around 0515Z on April 23, 2015. Credit: NOAA/NASA/NPP/VIIRS Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Scanning Electron Microscopy and Petrography of Glassy Particles Produced by Lava Fountain Eruptions. Ph.D. Thesis - Final Report

    NASA Technical Reports Server (NTRS)

    Ladle, G. H.

    1978-01-01

    A conceptual model of a lava fountain consists of a vent, spatter ramparts, fountain column, downwind plume and associated pumice deposits. Glassy particles produced by lava fountain eruptions consist primarily of sideromelane glass and minor to moderate amounts of vesicles and crystals. Particles are classified on the basis of morphology as: (1) spherical, (2) elongate, (3) glass-coated mineral grain, (4) shard, (5) reticulite, (6) composite particle, and (7) lithic fragment.

  1. The May 2003 eruption of Anatahan volcano, Mariana Islands: Geochemical evolution of a silicic island-arc volcano

    USGS Publications Warehouse

    Wade, J.A.; Plank, T.; Stern, R.J.; Tollstrup, D.L.; Gill, J.B.; O'Leary, J. C.; Eiler, J.M.; Moore, R.B.; Woodhead, J.D.; Trusdell, F.; Fischer, T.P.; Hilton, David R.

    2005-01-01

    The first historical eruption of Anatahan volcano began on May 10, 2003. Samples of tephra from early in the eruption were analyzed for major and trace elements, and Sr, Nd, Pb, Hf, and O isotopic compositions. The compositions of these tephras are compared with those of prehistoric samples of basalt and andesite, also newly reported here. The May 2003 eruptives are medium-K andesites with 59-63 wt.% SiO2, and are otherwise homogeneous (varying less than 3% 2?? about the mean for 45 elements). Small, but systematic, chemical differences exist between dark (scoria) and light (pumice) fragments, which indicate fewer mafic and oxide phenocrysts in, and less degassing for, the pumice than scoria. The May 2003 magmas are nearly identical to other prehistoric eruptives from Anatahan. Nonetheless, Anatahan has erupted a wide range of compositions in the past, from basalt to dacite (49-66 wt.% SiO2). The large proportion of lavas with silicic compositions at Anatahan (> 59 wt.% SiO2) is unique within the active Mariana Islands, which otherwise erupt a narrow range of basalts and basaltic andesites. The silicic compositions raise the question of whether they formed via crystal fractionation or crustal assimilation. The lack of 87Sr/86Sr variation with silica content, the MORB-like ??18O, and the incompatible behavior of Zr rule out assimilation of old crust, altered crust, or zircon-saturated crustal melts, respectively. Instead, the constancy of isotopic and trace element ratios, and the systematic variations in REE patterns are consistent with evolution by crystal fractionation of similar parental magmas. Thus, Anatahan is a type example of an island-arc volcano that erupts comagmatic basalts to dacites, with no evidence for crustal assimilation. The parental magmas to Anatahan lie at the low 143Nd/144Nd, Ba/La, and Sm/La end of the spectrum of magmas erupted in the Marianas arc, consistent with 1-3 wt.% addition of subducted sediment to the mantle source, or roughly one third of the sedimentary column. The high Th/La in Anatahan magmas is consistent with shallow loss of the top 50 m of the sedimentary column during subduction. ?? 2005 Elsevier B.V. All rights reserved.

  2. New Guinea volcano (Rabaul) as seen from STS-64

    NASA Image and Video Library

    1994-09-29

    STS064-116-064 (20 Sept. 1994) --- Near the end of the mission, the crew aboard space shuttle Discovery was able to document the beginning of the second day of activity of the Rabaul volcano, on the east end of New Britain. On the morning of Sept. 19, 1994, two volcanic cones on the opposite sides of the 6-kilometer sea crater had begun to erupt with very little warning. Discovery flew just east of the eruption roughly 24 hours after it started and near the peak of its activity. New Ireland, the cloud-covered area in the foreground, lies just east of Rabaul harbor. The eruption, which sent a plume up to over 60,000 feet into the atmosphere, caused over 50,000 people to evacuate the area. Because winds were light at the time of the eruption, most of the ash was deposited in a region within 20 kilometers of the eruption zone. This photo shows the large white billowing eruption plume is carried in a westerly direction by the weak prevailing winds. At the base of the eruption column is a layer of yellow-brown ash being distributed by lower level winds. A sharp boundary moving outward from the center of the eruption in the lower cloud is a pulse of laterally-moving ash which results from a volcanic explosion. Geologists theorize that the large white column and the lower gray cloud are likely from the two main vents on each side of the harbor. The bay and harbor of Rabaul are covered with a layer of ash, possibly partly infilled with volcanic material. Matupit Island and the airport runway have disappeared into the bay. More than a meter of ash has fallen upon the city of Rabaul. Up to five vents were reported to have erupted at once, including the two cones Vulcan and Tavurvur, which are opposites of the harbor as well as new vents below the bay. Half of the Vulcan cone has collapsed into the sea. The extra day in space due to bad weather at the landing site afforded the crew the opportunity for both still and video coverage of the event. Photo credit: NASA or National Aeronautics and Space Administration

  3. Triton's geyser-like plumes: Discovery and basic characterization

    USGS Publications Warehouse

    Soderblom, L.A.; Kieffer, S.W.; Becker, T.L.; Brown, R.H.; Cook, A.F.; Hansen, C.J.; Johnson, T.V.; Kirk, R.L.; Shoemaker, E.M.

    1990-01-01

    At least four active geyser-like eruptions were discovered in Voyager 2 images of Triton, Neptune's large satellite. The two best documented eruptions occur as columns of dark material rising to an altitude of about 8 kilometers where dark clouds of material are left suspended to drift downwind over 100 kilometers. The radii of the rising columns appear to be in the range of several tens of meters to a kilometer. One model for the mechanism to drive the plumes involves heating of nitrogen ice in a sub-surface greenhouse environment; nitrogen gas pressurized by the solar heating explosively vents to the surface carrying clouds of ice and dark particles into the atmosphere. A temperature increase of less than 4 kelvins above the ambient surface value of 38 ?? 3 kelvins is more than adequate to drive the plumes to an 8-kilometer altitude. The mass flux in the trailing clouds is estimated to consist of up to 10 kilograms of fine dark particles per second or twice as much nitrogen ice and perhaps several hundred or more kilograms of nitrogen gas per second. Each eruption may last a year or more, during which on the order of a tenth of a cubic kilometer of ice is sublimed.

  4. Reconstructing the eruption magnitude and energy budgets for the pre-historic eruption of the monogenetic ˜5 ka Mt. Gambier Volcanic Complex, south-eastern Australia

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Cas, Raymond A. F.

    2013-12-01

    Understanding explosive volcanic eruptions, especially phreatomagmatic eruptions, their intensities and energy budgets is of major importance when it comes to risk and hazard studies. With only a few historic occurrences of phreatomagmatic activity, a large amount of our understanding comes from the study of pre-historic volcanic centres, which causes issues when it comes to preservation and vegetation. In this research, we show that using 3D geometrical modelling it is possible to obtain volume estimates for different deposits of a pre-historic, complex, monogenetic centre, the Mt. Gambier Volcanic Complex, south-eastern Australia. Using these volumes, we further explore the energy budgets and the magnitude of this eruption (VEI 4), including dispersal patterns (eruption columns varying between 5 and 10 km, dispersed towards north-east to south), to further our understanding of intraplate, monogenetic eruptions involving phreatomagmatic activity. We also compare which thermodynamic model fits best in the creation of the maar crater of Mt. Gambier: the major-explosion-dominated model or the incremental growth model. In this case, the formation of most of the craters can best be explained by the latter model.

  5. The Submarine Volcano Eruption off El Hierro Island: Effects on the Scattering Migrant Biota and the Evolution of the Pelagic Communities

    PubMed Central

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

  6. The submarine volcano eruption off El Hierro Island: effects on the scattering migrant biota and the evolution of the pelagic communities.

    PubMed

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community.

  7. Possible effects of volcanic eruptions on stratospheric minor constituent chemistry

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.; Butler, D. M.

    1979-01-01

    Although stratosphere penetrating volcanic eruptions have been infrequent during the last half century, periods have existed in the last several hundred years when such eruptions were significantly more frequent. Several mechanisms exist for these injections to affect stratospheric minor constituent chemistry, both on the long-term average and for short-term perturbations. These mechanisms are reviewed and, because of the sensitivity of current models of stratospheric ozone to chlorine perturbations, quantitative estimates are made of chlorine injection rates. It is found that, if chlorine makes up as much as 0.5 to 1% of the gases released and if the total gases released are about the same magnitude as the fine ash, then a major stratosphere penetrating eruption could deplete the ozone column by several percent. The estimate for the Agung eruption of 1963 is just under 1% an amount not excluded by the ozone record but complicated by the peak in atmospheric nuclear explosions at about the same time.

  8. Discovering Parameters for Ancient Mars Atmospheric Profiles by Modeling Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Meyer, A.; Clarke, A. B.; Van Eaton, A. R.; Mastin, L. G.

    2017-12-01

    Evidence of explosive volcanic deposits on Mars motivates questions about the behavior of eruption plumes in the Ancient and current Martian atmosphere. Early modeling studies suggested that Martian plumes may rise significantly higher than their terrestrial equivalents (Wilson and Head, 1994, Rev. Geophys., 32, 221-263). We revisit the issue using a steady-state 1-D model of volcanic plumes (Plumeria: Mastin, 2014, JGR, doi:10.1002/2013JD020604) along with a range of reasonable temperature and pressures. The model assumes perfect coupling of particles with the gas phase in the plume, and Stokes number analysis indicates that this is a reasonable assumption for particle diameters less than 5 mm to 1 micron. Our estimates of Knudsen numbers support the continuum assumption. The tested atmospheric profiles include an estimate of current Martian atmosphere based on data from voyager mission (Seif, A., Kirk, D.B., (1977) Geophys., 82,4364-4378), a modern Earth-like atmosphere, and several other scenarios based on variable tropopause heights and near-surface atmospheric density estimates from the literature. We simulated plume heights using mass eruption rates (MER) ranging from 1 x 103 to 1 x 1010 kg s-1 to create a series of new theoretical MER-plume height scaling relationships that may be useful for considering plume injection heights, climate impacts, and global-scale ash dispersal patterns in Mars' recent and ancient geological past. Our results show that volcanic plumes in a modern Martian atmosphere may rise up to three times higher than those on Earth. We also find that the modern Mars atmosphere does not allow eruption columns to collapse, and thus does not allow for the formation of column-collapse pyroclastic density currents, a phenomenon thought to have occurred in Mars' past based on geological observations. The atmospheric density at the surface, and especially the height of the tropopause, affect the slope of the MER-plume height curve and control whether or not column-collapse is possible.

  9. The STRATegy COLUMN for Precollege Science Teachers: Volcanic Activity.

    ERIC Educational Resources Information Center

    Metzger, Ellen Pletcher

    1995-01-01

    Describes resources for information and activities involving volcanoes. Includes an activity that helps students become familiar with the principal types of volcanoes and explores how the viscosity of magma affects the way a volcano erupts. (MKR)

  10. Modeling ash fall distribution from a Yellowstone supereruption

    USGS Publications Warehouse

    Mastin, Larry G.; Van Eaton, Alexa R.; Lowenstern, Jacob B.

    2014-01-01

    We used the volcanic ash transport and dispersion model Ash3d to estimate the distribution of ashfall that would result from a modern-day Plinian supereruption at Yellowstone volcano. The simulations required modifying Ash3d to consider growth of a continent-scale umbrella cloud and its interaction with ambient wind fields. We simulated eruptions lasting 3 days, 1 week, and 1 month, each producing 330 km3 of volcanic ash, dense-rock equivalent (DRE). Results demonstrate that radial expansion of the umbrella cloud is capable of driving ash upwind (westward) and crosswind (N-S) in excess of 1500 km, producing more-or-less radially symmetric isopachs that are only secondarily modified by ambient wind. Deposit thicknesses are decimeters to meters in the northern Rocky Mountains, centimeters to decimeters in the northern Midwest, and millimeters to centimeters on the East, West, and Gulf Coasts. Umbrella cloud growth may explain the extremely widespread dispersal of the ∼640 ka and 2.1 Ma Yellowstone tephra deposits in the eastern Pacific, northeastern California, southern California, and South Texas.

  11. Merapi 2010 eruption—Chronology and extrusion rates monitored with satellite radar and used in eruption forecasting

    USGS Publications Warehouse

    Pallister, John S.; Schneider, David; Griswold, Julia P.; Keeler, Ronald H.; Burton, William C.; Noyles, Christopher; Newhall, Christopher G.; Ratdomopurbo, Antonius

    2013-01-01

    Despite dense cloud cover, satellite-borne commercial Synthetic Aperture Radar (SAR) enabled frequent monitoring of Merapi volcano's 2010 eruption. Near-real-time interpretation of images derived from the amplitude of the SAR signals and timely delivery of these interpretations to those responsible for warnings, allowed satellite remote sensing for the first time to play an equal role with in situ seismic, geodetic and gas monitoring in guiding life-saving decisions during a major volcanic crisis. Our remotely sensed data provide an observational chronology for the main phase of the 2010 eruption, which lasted 12 days (26 October–7 November, 2010). Unlike the prolonged low-rate and relatively low explosivity dome-forming and collapse eruptions of recent decades at Merapi, the eruption began with an explosive eruption that produced a new summit crater on 26 October and was accompanied by an ash column and pyroclastic flows that extended 8 km down the flanks. This initial explosive event was followed by smaller explosive eruptions on 29 October–1 November, then by a period of rapid dome growth on 1–4 November, which produced a summit lava dome with a volume of ~ 5 × 106 m3. A paroxysmal VEI 4 magmatic eruption (with ash column to 17 km altitude) destroyed this dome, greatly enlarged the new summit crater and produced extensive pyroclastic flows (to ~ 16 km radial distance in the Gendol drainage) and surges during the night of 4–5 November. The paroxysmal eruption was followed by a period of jetting of gas and tephra and by a second short period (12 h) of rapid dome growth on 6 November. The eruption ended with low-level ash and steam emissions that buried the 6 November dome with tephra and continued at low levels until seismicity decreased to background levels by about 23 November. Our near-real-time commercial SAR documented the explosive events on 26 October and 4–5 November and high rates of dome growth (> 25 m3 s− 1). An event tree analysis for the previous 2006 Merapi eruption indicated that for lava dome extrusion rates > 1.2 m3 s− 1, the probability of a large (1872-scale) eruption was ~ 10%. Consequently, the order-of-magnitude greater rates in 2010, along with the explosive start of the eruption on 26 October, the large volume of lava accumulating at the summit by 4 November, and the rapid and large increases in seismic energy release, deformation and gas emissions were the basis for warnings of an unusually large eruption by the Indonesian Geological Agency's Center for Volcanology and Geologic Hazard Mitigation (CVGHM) and their Volcano Research and Technology Development Center (BPPTK) in Yogyakarta — warnings that saved thousands of lives.

  12. Correlations of volcanic ash texture with explosion earthquakes from vulcanian eruptions at Sakurajima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Miwa, T.; Toramaru, A.; Iguchi, M.

    2009-07-01

    We compare the texture of volcanic ash with the maximum amplitude of explosion earthquakes ( Aeq) for vulcanian eruptions from Sakurajima volcano. We analyze the volcanic ash emitted by 17 vulcanian eruptions from 1974 to 1987. Using a stereoscopic microscope, we classify the glassy particles into smooth surface particles (S-type particles) and non-smooth surface particles (NS-type particles) according to their surface conditions—gloss or non-gloss appearance—as an indicator of the freshness of the particles. S-type particles are further classified into V-type particles (those including vesicles) and NV-type particles (those without vesicles) by means of examinations under a polarized microscopic of polished thin sections. Cross-correlated examinations against seismological data show that: 1) the number fraction of S-type particles (S-fraction) has a positive correlation with Aeq, 2) the number ratio of NV-type particles to V-type particles (the N/V number ratio) has a positive correlation with Aeq, and 3) for explosions accompanied with BL-type earthquake swarms, the N/V number ratio has a negative correlation with the duration of the BL-Swarms. BL-Swarms refer to the phenomenon of numerous BL-type earthquakes occurring within a few days, prior to an increase in explosive activity [Kamo, K., 1978. Some phenomena before the summit crater eruptions at Sakura-zima volcano. Bull. Volcanol. Soc. Japan., 23, 53-64]. The positive correlation between the N/V number ratio and Aeq could indicate that a large amount of separated gas from fresh magma results in a large Aeq. Plagioclase microlite textual analysis of NV-type particles from five explosive events without BL-Swarms shows that the plagioclase microlite number density (MND) and the L/ W (length/width) ratio have a positive correlation with Aeq. A comparison between textural data (MND, L/ W ratio, crystallinity) and the result of a decompression-induced crystallization experiment [Couch, S., Sparks, R.S.J., Carroll, M.R., 2003. The kinetics of degassing-induced crystallization at Soufriere Hills volcano, Montserrat. J. Petrol., 44, 1477-1502.] suggests that a plagioclase microlite texture of volcanic ash from eruptions without BL-Swarms could be generated by a decompression of 100-160 MPa. If the MND is controlled by the water exsolution rate from melt, the positive correlation between the MND and Aeq may suggest that Aeq becomes large when the effective decompression is large and the water exsolution rate is high (from 6.2 × 10 - 5 to 1.9 × 10 - 4 wt.%/s). The estimated magma ascent rate ranges from 0.11 to 0.35 m/s, which is one order of magnitude faster than that of an effusive eruption, and one to three orders slower than those for a (sub-) plinian eruption. This suggests that the ascent rate of magma plays an important role in the occurrence of vulcanian eruptions. We propose a simple model for vulcanian eruptions at Sakurajima volcano that takes into account the correlation between the S-fraction and Aeq.

  13. Satellite Remote Sensing of the 2008 Chaitén Eruption (Invited)

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Prata, F.; Durant, A.; Rose, W. I.

    2010-12-01

    Prior to its first recorded explosive eruption in May 2008, Chaitén volcano was unmonitored. The former obscurity of Chaitén was such that the eruption was initially attributed to its larger, glaciated neighbor Minchinmávida upon sighting of the eruption column. Satellite remote sensing assets therefore played a crucial role in monitoring the early stages of the Chaitén eruption, revealing many unusual characteristics of the emissions [Carn et al., EOS, 90(24):205-206]. Although somewhat overshadowed by the major eruptions of Okmok and Kasatochi later the same year, the Chaitén eruption remains enigmatic for several reasons. It was the first explosive rhyolitic eruption since Novarupta (Alaska) in 1912, and the first to be observed from space. It generated eruption columns suffused with spectacular lightning. It also emplaced an extensive ash blanket on land over Chile and Argentina, which was mapped using satellite data (e.g., MODIS), permitting detailed analysis of the tephra deposits and assessments of eruption magnitude and the environmental impacts of ashfall [Watt et al., JGR, 2009]. The eruption serves as a prime example of the science benefits of coordinated satellite measurements from NASA’s A-Train spacecraft constellation, flying in formation since 2006. We focus on observations of the explosive eruption clouds generated in the 1-8 May, 2008 period. Measurements of SO2 emissions by several instruments, including the Ozone Monitoring Instrument (OMI) on the Aura satellite and the Atmospheric Infrared Sounder (AIRS) on Aqua, showed the Chaitén emissions to be remarkably SO2-poor, later corroborated by petrological analysis of melt inclusions in the erupted rhyolite [Lowenstern et al., this session]. Hyperspectral infrared (IR) measurements of the rhyolitic ash cloud from AIRS revealed that ash composition could be retrieved from IR spectra for the first time [Gangale et al., Remote Sens. Environ., 2009]. Ash mass loading measurements from AIRS can be combined with coincident aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO to derive ash concentrations in the Chaitén eruption clouds. We find notable differences in vertical extent between the volcanic clouds produced on 2, 6, and 8 May, which we compare to sedimentological characteristics of the deposit (e.g., spatial variation in mass deposition and particle size). Such a comparison is uniquely possible at Chaitén and may elucidate particle aggregation processes in volcanic clouds. We also show evidence for long-range transport of fine ash from Chaitén. Passive limb emission measurements by the Microwave Limb Sounder (MLS), also on the Aura satellite in the A-Train, provide some evidence for volcanic HCl emissions in the explosive eruption phase, which contributes to an evaluation of the Cl budget of the eruption [Lowenstern et al., this session]. MODIS thermal IR data collected since 2008 show a progressive reduction in IR radiance from the Chaitén lava dome, indicative of ongoing but declining activity at the volcano.

  14. Earth Observations taken by the Expedition 20 crew

    NASA Image and Video Library

    2009-06-12

    ISS020-E-009048 (12 June 2009) --- Sarychev Peak Volcano eruption, Kuril Islands, is featured in this image photographed by an Expedition 20 crew member on the International Space Station. A fortuitous orbit of the International Space Station allowed the astronauts this striking view of Sarychev volcano (Russia?s Kuril Islands, northeast of Japan) in an early stage of eruption on June 12, 2009. Sarychev Peak is one of the most active volcanoes in the Kuril Island chain and is located on the northwestern end of Matua Island. Prior to June 12, the last explosive eruption had occurred in 1989 with eruptions in 1986, 1976, 1954, and 1946 also producing lava flows. Ash from the June 2009 eruption has been detected 2407 kilometers ESE and 926 kilometers WNW of the volcano, and commercial airline flights are being diverted away from the region to minimize the danger of engine failures from ash intake. This detailed photograph is exciting to volcanologists because it captures several phenomena that occur during the earliest stages of an explosive volcanic eruption. The main column is one of a series of plumes that rose above Matua Island (48.1 degrees north latitude and 153.2 degrees east longitude) on June 12. The plume appears to be a combination of brown ash and white steam. The vigorously rising plume gives the steam a bubble-like appearance; the surrounding atmosphere has been shoved up by the shock wave of the eruption. The smooth white cloud on top may be water condensation that resulted from rapid rising and cooling of the air mass above the ash column, and is probably a transient feature (the eruption plume is starting to punch through). The structure also indicates that little to no shearing winds were present at the time to disrupt the plume. Another series of images, acquired 2-3 days after the start of eruptive activity, illustrate the effect of shearing winds on extent of the ash plumes across the Pacific Ocean. By contrast, a cloud of denser, gray ash ? most probably a pyroclastic flow -- appears to be hugging the ground, descending from the volcano summit. The rising eruption plume casts a shadow to the northwest of the island (bottom center). Brown ash at a lower altitude of the atmosphere spreads out above the ground at upper right. Low-level stratus clouds approach Matua Island from the east, wrapping around the lower slopes of the volcano. Only about 1.5 kilometers of the coastline of Matua Island (upper center) can be seen beneath the clouds and ash.

  15. Radar observations of the 2009 eruption of Redoubt Volcano, Alaska: Initial deployment of a transportable Doppler radar system for volcano-monitoring

    NASA Astrophysics Data System (ADS)

    Hoblitt, R. P.; Schneider, D. J.

    2009-12-01

    The rapid detection of explosive volcanic eruptions and accurate determination of eruption-column altitude and ash-cloud movement are critical factors in the mitigation of volcanic risks to aviation and in the forecasting of ash fall on nearby communities. The U.S. Geological Survey (USGS) deployed a transportable Doppler radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska, and it provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data that it captured during the Redoubt eruption. The volcano-monitoring Doppler radar operates in the C-band (5.36 cm) and has a 2.4-m parabolic antenna with a beam width of 1.6 degrees, a transmitter power of 330 watts, and a maximum effective range of 240 km. The entire disassembled system, including a radome, fits inside a 6-m-long steel shipping container that has been modified to serve as base for the antenna/radome, and as a field station for observers and other monitoring equipment. The radar was installed at the Kenai Municipal Airport, 82 km east of Redoubt and about 100 km southwest of Anchorage. In addition to an unobstructed view of the volcano, this secure site offered the support of the airport staff and the City of Kenai. A further advantage was the proximity of a NEXRAD Doppler radar operated by the Federal Aviation Administration. This permitted comparisons with an established weather-monitoring radar system. The new radar system first became functional on March 20, roughly a day before the first of nineteen explosive ash-producing events of Redoubt between March 21 and April 4. Despite inevitable start-up problems, nearly all of the events were observed by the radar, which was remotely operated from the Alaska Volcano Observatory office in Anchorage. The USGS and NEXRAD radars both detected the eruption columns and tracked the directions of drifting ash clouds. The USGS radar scanned a 45-degree sector centered on the volcano while NEXRAD scanned a full 360 degrees. The sector strategy scanned the volcano more frequently than the 360-degree strategy. Consequently, the USGS system detected event onset within less than a minute, while the NEXRAD required about 4 minutes. The observed column heights were as high as 20 km above sea level and compared favorably to those from NEXRAD. NEXRAD tracked ash clouds to greater distances than the USGS system. This experience shows that Doppler radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  16. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro

    PubMed Central

    Santana-Casiano, J. M.; González-Dávila, M.; Fraile-Nuez, E.; de Armas, D.; González, A. G.; Domínguez-Yanes, J. F.; Escánez, J.

    2013-01-01

    The shallow submarine eruption which took place in October 10th 2011, 1.8 km south of the island of El Hierro (Canary Islands) allowed the study of the abrupt changes in the physical-chemical properties of seawater caused by volcanic discharges. In order to monitor the evolution of these changes, seven oceanographic surveys were carried out over six months (November 2011-April 2012) from the beginning of the eruptive stage to the post-eruptive phase. Here, we present dramatic changes in the water column chemistry including large decreases in pH, striking effects on the carbonate system, decreases in the oxygen concentrations and enrichment of Fe(II) and nutrients. Our findings highlight that the same volcano which was responsible for the creation of a highly corrosive environment, affecting marine biota, has also provided the nutrients required for the rapid recuperation of the marine ecosystem. PMID:23355953

  17. The Unexpected Awakening of Chaitén Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Carn, Simon A.; Pallister, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo

    2009-06-01

    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.

  18. The Unexpected Awakening of Chaitén Volcano, Chile

    USGS Publications Warehouse

    Carn, Simon A.; Zogorski, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo

    2009-01-01

    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.

  19. Voluminous lava-like precursor to a major ash-flow tuff: Low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado

    USGS Publications Warehouse

    Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.

    2000-01-01

    The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (~5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40-60%) of juvenile clasts (to 3-4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5-10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75 x 35 km2 La Garita caldera and eruption of the Fish Canyon Tuff were probably triggered by destabilization of the chamber roof as magma was withdrawn during the Pagosa Peak eruption. (C) 2000 Elsevier Science B.V. All rights reserved.

  20. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records

    NASA Astrophysics Data System (ADS)

    Guillet, Sébastien; Corona, Christophe; Stoffel, Markus; Khodri, Myriam; Lavigne, Franck; Ortega, Pablo; Eckert, Nicolas; Sielenou, Pascal Dkengne; Daux, Valérie; Churakova (Sidorova), Olga V.; Davi, Nicole; Edouard, Jean-Louis; Zhang, Yong; Luckman, Brian H.; Myglan, Vladimir S.; Guiot, Joël; Beniston, Martin; Masson-Delmotte, Valérie; Oppenheimer, Clive

    2017-01-01

    The eruption of Samalas in Indonesia in 1257 ranks among the largest sulfur-rich eruptions of the Common Era with sulfur deposition in ice cores reaching twice the volume of the Tambora eruption in 1815. Sedimentological analyses of deposits confirm the exceptional size of the event, which had both an eruption magnitude and a volcanic explosivity index of 7. During the Samalas eruption, more than 40 km3 of dense magma was expelled and the eruption column is estimated to have reached altitudes of 43 km. However, the climatic response to the Samalas event is debated since climate model simulations generally predict a stronger and more prolonged surface air cooling of Northern Hemisphere summers than inferred from tree-ring-based temperature reconstructions. Here, we draw on historical archives, ice-core data and tree-ring records to reconstruct the spatial and temporal climate response to the Samalas eruption. We find that 1258 and 1259 experienced some of the coldest Northern Hemisphere summers of the past millennium. However, cooling across the Northern Hemisphere was spatially heterogeneous. Western Europe, Siberia and Japan experienced strong cooling, coinciding with warmer-than-average conditions over Alaska and northern Canada. We suggest that in North America, volcanic radiative forcing was modulated by a positive phase of the El Niño-Southern Oscillation. Contemporary records attest to severe famines in England and Japan, but these began prior to the eruption. We conclude that the Samalas eruption aggravated existing crises, but did not trigger the famines.

  1. Reconstructing the deadly eruptive events of 1790 CE at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Swanson, Don; Weaver, Samantha J; Houghton, Bruce F.

    2014-01-01

    A large number of people died during an explosive eruption of Kīlauea Volcano in 1790 CE. Detailed study of the upper part of the Keanakāko‘i Tephra has identified the deposits that may have been responsible for the deaths. Three successive units record shifts in eruption style that agree well with accounts of the eruption based on survivor interviews 46 yr later. First, a wet fall of very fine, accretionary-lapilli–bearing ash created a “cloud of darkness.” People walked across the soft deposit, leaving footprints as evidence. While the ash was still unconsolidated, lithic lapilli fell into it from a high eruption column that was seen from 90 km away. Either just after this tephra fall or during its latest stage, pulsing dilute pyroclastic density currents, probably products of a phreatic eruption, swept across the western flank of Kīlauea, embedding lapilli in the muddy ash and crossing the trail along which the footprints occur. The pyroclastic density currents were most likely responsible for the fatalities, as judged from the reported condition and probable location of the bodies. This reconstruction is relevant today, as similar eruptions will probably occur in the future at Kīlauea and represent its most dangerous and least predictable hazard.

  2. Multiple Origins of Pyroclastic Obsidian and Implications for Changes in the Dynamics of the 1300 BP eruption of Newberry Volcano, USA

    NASA Astrophysics Data System (ADS)

    Rust, A. C.; Cashman, K. V.

    2005-12-01

    Like many rhyolite tephras, the pyroclastic deposits of the 1300 B.P. eruption of Newberry Volcano, USA, contain minor amounts of obsidian. The H2O and CO2 contents and textures of these clasts vary considerably and provide information on eruption history and dynamics. Early in the eruption, obsidian probably derived from veins of vanguard magma or tuffisite that, together with wall rock fragments, were eroded and incorporated into the eruption column as the vent widened. Later, following a temporary cessation of activity, the proportion of obsidian to lithic fragments increased and new types of obsidian dominated, types that represent remnants of a shallow conduit plug and welded fallback material. Analysis of bubble geometries provide flow parameters and time scales operative for deformation within the shallow conduit. Furthermore, spatial variations in CO2 help constrain welding and wall rock assimilation time scales. Comparison of obsidian characteristics from the Newberry eruption with those of the well-studied Mono Craters eruption shows intriguing differences in obsidian formation that may relate to the nature of the conduit feeding the two events. From this comparison we conclude that obsidian is less likely to provide information on magmatic fragmentation than on time scales and mechanisms of pre-fragmentation magma ascent.

  3. A Chronology of Annual-Mean Effective Radii of Stratospheric Aerosols from Volcanic Eruptions During the Twentieth Century as Derived From Ground-based Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Strothers, Richard B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Stratospheric extinction can be derived from ground-based spectral photometric observations of the Sun and other stars (as well as from satellite and aircraft measurements, available since 1979), and is found to increase after large volcanic eruptions. This increased extinction shows a characteristic wavelength dependence that gives information about the chemical composition and the effective (or area weighted mean) radius of the particles responsible for it. Known to be tiny aerosols constituted of sulfuric acid in a water solution, the stratospheric particles at midlatitudes exhibit a remarkable uniformity of their column-averaged effective radii r(sub eff) in the first few months after the eruption. Considering the seven largest eruptions of the twentieth century, r(sub eff) at this phase of peak aerosol abundance is approx. 0.3 micrometers in all cases. A year later, r(sub eff) either has remained about the same size (almost certainly in the case of the Katmai eruption of 1912) or has increased to approx. 0.5 micrometers (definitely so for the Pinatubo eruption of 1991). The reasons for this divergence in aerosol growth are unknown.

  4. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    USGS Publications Warehouse

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  5. Definition of a mobilizing volume of sediment in a valley interested by volcanic eruption: Rio Blanco valley (Chile)

    NASA Astrophysics Data System (ADS)

    Oss-Cazzador, Daniele; Iroumé, Andrés; Picco, Lorenzo

    2016-04-01

    Volcanic explosive activity can strongly affect the riverine environments. Deposition of tephra, pyroclastic and hyperconcentrated flows along both the valley bottom and hillslopes can radically change the environmental morphology. Accumulation and transport of pyroclastic material can increase hazards and risks for anthropic activities. The aims of this research are to evaluate and quantify the amount of erodible sediment that can be transported along a gravel bed river affected by a volcanic eruption. The Rio Blanco valley (Chile) was upset by the plinian-type eruption of Chaiten volcano in 2008. The great amount of tephra released in the initial phase and the subsequent pyroclastic flows, accumulated up to 8 m of sediment over a great portion of the Rio Blanco valley. Using aerial photographs was possible to define the extension of vegetated zones affected by the eruption. The area was interested by a high mortality of vegetation, as confirmed by field surveys. Dendrometric measurements permitted to quantify the volume of wood and observe that renewal and herbal layer are almost absent, determining low soil cohesion and easier erosion by superficial and river erosion processes. Analysis of sediment accumulation allowed quantifying the volume of sediment that can be transported downstream. The analyses were carried out considering 7 km-long a reach, from the river mouth to the confluence between Caldera creek and Rio Blanco. After the eruption, was possible to define as a total area of about 2.19 km2 was affected by tephra deposition, the 40% (0,87 km2) was eroded by flows, while 60% (1,32 km2) is still present and composed by tephra, buried large wood (LW) and dead standing trees. Considering an average high of 5 m, the potential erodible sediment is around 6,5 x 106 m3, moreover there is a potential amount of about 7,3 x 104 m3 of LW that can be transported towards mouth. These analyses can be useful to better define the management plan for the river delta. In fact, in this area there is the Chaiten port, a fundamental structure for the human activities. These results can permit to better define the dragging activities and sediment abstraction. This research is funded within the Department of TESAF, University of Padua (Italy), and Chilean research Project FONDECYT 1141064 "Effects of vegetation on channel morphodynamics: a multiscale investigation in Chilean gravel-bed rivers".

  6. From field data to numerical models: application of the Box-Model to infer the dynamics of PDC generated during the AD 79 eruption of Somma-Vesuvio

    NASA Astrophysics Data System (ADS)

    Tadini, Alessandro; Neri, Augusto; Cioni, Raffaello; Bevilacqua, Andrea; Esposti Ongaro, Tomaso; Gurioli, Lucia

    2017-04-01

    The purpose of this work is to present a validation procedure for a physical and numerical model of Pyroclastic Density Currents (PDC) using feedbacks from well-known deposits emplaced by specific single eruptive units. The study is specifically focused on the PDCs generated during the overall famous AD 79 eruption of the Somma-Vesuvio volcano. To this purpose, values of the maximum runout, volumes and Total Grain Size Distributions have been estimated for two eruptive units (i.e. EU3pf and EU4; Cioni et al. 2000) of the AD 79 eruption. These units have been used to define the input volcanological parameters for testing the Box-Model of Dade and Huppert (1995), when reproducing one specific end-member of the complex spectrum of PDCs, that is the more dilute, turbulent part of the PDCs reconstructed in the Somma-Vesuvio record (stratified flows with concentration of solid particles in volume up to about 5%). The Box-Model is a kinematic approach, which calculates the flow density and velocity along time and the kinetic energy of the flow front. This can be compared with the potential energy needed to overcome topographic obstacles to estimate flow invasion across complex topographies. Validation of the model has been performed with respect to: i) the degree of overlapping between inundation areas given by the model and by field data; ii) the thickness of the deposit versus the thickness of the model output with distance; iii) the mass fractions of the different grain size classes with distance in the real deposit versus the model output. Several simulations have been performed considering i) polydisperse (with 10 grain size classes) and monodisperse (with the Mdφ values) systems; ii) a direct version (where the initial volume is released and the invasion area is computed) and an inverse version (where the initial collapsing volume is a function of an inundation area defined by the user); iii) axisymmetrical and asymmetrical collapses. Results allow to obtain first order estimates of the main variables characterizing the flow source and emplacement; among the two eruptive units chosen for model validation, the EU4 provided better results with only a minor empirical calibration of few parameters (i.e. settling velocity and initial volume fraction of solid particles), indicating that the Box Model can be suited to represent the kinematics of large (volume > 108 m^3, runout > 15 km) PDC at Somma-Vesuvio. Dade W. B., Huppert H. E. (1995) A box model for non-entraining, suspension-driven gravity surges on horizontal surfaces. Sedimentology 42 (3):453-470 Cioni R., Marianelli P., Santacroce R., Sbrana A. (2000). Plinian and subplinian eruptions. Encyclopedia of volcanoes. Academic, San Diego, 2000, 477-494.

  7. Magma dynamics within a basaltic conduit revealed by textural and compositional features of erupted ash: the December 2015 Mt. Etna paroxysms.

    PubMed

    Pompilio, Massimo; Bertagnini, Antonella; Del Carlo, Paola; Di Roberto, Alessio

    2017-07-06

    In December 2015, four violent explosive episodes from Mt. Etna's oldest summit crater, the Voragine, produced eruptive columns extending up to 15 km a.s.l. and significant fallout of tephra up to a hundred km from the vent. A combined textural and compositional study was carried out on pyroclasts from three of the four tephra deposits sampled on the volcano at 6 to 14 km from the crater. Ash fractions (Φ = 1-2) were investigated because these grain sizes preserve the magma properties unmodified by post- emplacement processes. Results were used to identify processes occurring in the conduit during each single paroxysm and to understand how they evolve throughout the eruptive period. Results indicate that the magmatic column is strongly heterogeneous, mainly with respect to microlite, vescicle content and melt composition. During each episode, the heterogeneities can develop at time scales as short as a few tens of hours, and differences between distinct episodes indicate that the time scale for completely refilling the system and renewing magma is in the same order of magnitude. Our data also confirm that the number and shape of microlites, together with melt composition, have a strong control on rheological properties and fragmentation style.

  8. The Askja volcano in North Iceland and its calderas

    NASA Astrophysics Data System (ADS)

    Thordarson, Thorvaldur; Hartley, Margaret; Höskuldsson, Ármann

    2013-04-01

    The Askja volcano is perhaps best known for the 28th-29th March 1875 caldera forming Plinian eruption, is an edifice that rises to 1510m above sea level and has a volume of ~140 km3. It is comprised of basaltic hyaloclastites, pillow lavas and interglacial lava sequences. The flanks are draped by numerous (>100) Holocene basaltic lava flows produced by flank eruptions as well as fissure eruptions related to the associated and encroaching Askja fissure swarm. In addition, Askja has produced at least four silicic eruptions in postglacial times. Three, the ~10 ka Skolli, ~2 Ka Askja and the March 1875 events, formed widespread tephra layers that extend well-beyond the shores of Iceland. The fourth eruption took place at ~3.5 ka producing silicic lava flows exposed in the walls of the recent Öskjuvatn caldera. Askja features three nested, semi-circular calderas. The main summit caldera has an average diameter of ~8 km (area, ~ 50 km2) and is at least 600 m deep (volume, ~ 30 km3), although now largely filled with 3-400 m thick succession of Holocene lavas (e.g. Brown et al., 1991). Some of the basaltic lava flows produced by eruptions within the caldera in the last 3 ka, including the lavas from the 1961 event, have flowed out of the caldera through the enigmatic structure Öskjuop (i.e. the caldera 'entrance'). Straight northeast of the main Askja caldera is the Kollur caldera which is ~4 km in diameter (area, ~13 km2). It is filled to the brim by Holocene lava flows and its southern end is dissected by the bounding faults of the main Askja caldera. Therefore, it thus must be older. The youngest one, the lake-filled Öskjuvatn caldera, is situated in the southeast corner of the main caldera. It is ~5 km in diameter (area, ~18 km2). The maximum depth of the caldera lake is 205 m and its rims rise >60 m above the lake surface, indicating a total depth of >260 m for the structure. Analysis of historical accounts shows that the Öskjuvatn caldera was not fully developed until 1932 (Hartley and Thordarson, 2012), while internal unconformities in the 28-29 March 1875 tephra deposit indicate that the initiation of the collapse coincides with onset of the eruption. This suggests that the formation of the Öskjuvatn caldera it took more than 50 years. These observations along with a new bathymetric map of the Öskjuvatn caldera will be presented and discussed. The age of the main Askja and Kollur calderas is unknown. It has been suggested that the main caldera formed in association with the ~10 ka Skolli eruption. However, its bounding ring-faults dissect mid- and late Holocene lavas, indicating that major movements on these faults during the Holocene. Also, the Holocene lava fill of the Kollur caldera implies postglacial age for that structure. Hence, the evidence indicate younger age and more complex growth history for these two calderas than predicted by previous studies. Hartley and Thordarson, 2012. JVGR 227-228: 85-101; Brown et al., 1991. Geology 19, 352-355.

  9. The Eruption Forecasting Information System (EFIS) database project

    NASA Astrophysics Data System (ADS)

    Ogburn, Sarah; Harpel, Chris; Pesicek, Jeremy; Wellik, Jay; Pallister, John; Wright, Heather

    2016-04-01

    The Eruption Forecasting Information System (EFIS) project is a new initiative of the U.S. Geological Survey-USAID Volcano Disaster Assistance Program (VDAP) with the goal of enhancing VDAP's ability to forecast the outcome of volcanic unrest. The EFIS project seeks to: (1) Move away from relying on the collective memory to probability estimation using databases (2) Create databases useful for pattern recognition and for answering common VDAP questions; e.g. how commonly does unrest lead to eruption? how commonly do phreatic eruptions portend magmatic eruptions and what is the range of antecedence times? (3) Create generic probabilistic event trees using global data for different volcano 'types' (4) Create background, volcano-specific, probabilistic event trees for frequently active or particularly hazardous volcanoes in advance of a crisis (5) Quantify and communicate uncertainty in probabilities A major component of the project is the global EFIS relational database, which contains multiple modules designed to aid in the construction of probabilistic event trees and to answer common questions that arise during volcanic crises. The primary module contains chronologies of volcanic unrest, including the timing of phreatic eruptions, column heights, eruptive products, etc. and will be initially populated using chronicles of eruptive activity from Alaskan volcanic eruptions in the GeoDIVA database (Cameron et al. 2013). This database module allows us to query across other global databases such as the WOVOdat database of monitoring data and the Smithsonian Institution's Global Volcanism Program (GVP) database of eruptive histories and volcano information. The EFIS database is in the early stages of development and population; thus, this contribution also serves as a request for feedback from the community.

  10. 2013 Mt. Etna Pyroclastic Activity through the ADCP Recordings of NEMO-SN1 Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Lo Bue, N.; Sgroi, T.; Giovinetti, G.; Marinaro, G.; Favali, P.

    2014-12-01

    The Acoustic Doppler Current Profiler (ADCP) is one of the most useful sensor used to measure speed and direction of sea currents in the water column. More often ADCPs are being also used to monitor concentration of suspended matter in rivers or in marine environments by the analysis of the acoustic backscatter intensity. In the framework of the European Research Infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org), its cabled node, the NEMO-SN1 multidisciplinary seafloor observatory, was deployed in the Western Ionian Sea (Southern Italy) at a depth of 2100 m, about 25 km off-shore Eastern Sicily close to the submarine slope of the Mt. Etna volcano. Starting from February 2013, the Mt. Etna was interested by thirteen different parossistic events producing intense eruption followed by pyroclastic fallout that reached distances of tens kilometres from the eruptive centre. Four of these events affected the ESE sector with a consequent fallout in the Western Ionian Sea and they were detected by NEMO-SN1. In fact, its scientific payload also included an ADCP (RDI WorkHorse 600 kHz) with the main aim to monitor the hydrodynamic conditions of about 30 metres of the water column above the station. Surprisingly, this sensor offered spectacular recordings of the Mt. Etna pyroclastic activity occurred on 2013 wich affected the ESE sector. This work aims to present new records of pyroclastic fallout associated to explosive events observed at sea bottom by the analysis of backscatter signal of the ADCP. A multidisciplinary approach taking into account the Mt. Etna eruptive activity as well as the local oceanographic dynamic is necessary to describe marine processes involved in volcanic ash sedimentation.

  11. Spain as an emergency air traffic hub during volcanic air fall events? Evidence of past volcanic ash air fall over Europe during the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Hardiman, Mark; Lane, Christine; Blockley, Simon P. E.; Moreno, Ana; Valero-Garcés, Blas; Ortiz, José E.; Torres, Trino; Lowe, John J.; Menzies, Martin A.

    2010-05-01

    Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints' of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plumes. The Eyjafjallajökull eruption has demonstrated that relatively small amounts of distal volcanic ash in the atmosphere can seriously disrupt aviation activity, with attendant economic and other consequences. It has raised fundamental questions about the likelihood of larger or more prolonged volcanic activity in the near future, and the possibility of even more serious consequences than those experienced recently. Given that there are several other volcanic centres that could cause such disruption in Europe (e.g. Campania and other volcanic centres in Italy; Aegean volcanoes), a key question is whether there are parts of Europe less prone to ash plumes and which could therefore operate as emergency air traffic hubs during times of ash dispersal. Although not generated to answer this question, the recent geological record might provide a basis for seeking the answer. For example, four palaeo-records covering the time frame of 8 - 40 Ka BP that are geographically distributed across Spain have been examined for non-visible distal ash content. All four have proved to be almost devoid of volcanic ash, which contrasts with results obtained from sites throughout central and northern Europe. This suggests that Spain has remained free of ashfall events throughout the late Pleistocene, or that any ash dispersal over Spain has been short-lived and/or infrequent. This appears to accord with the pattern of dispersal of Eyjafjallajökull ash clouds over April to May 2010. Most of the active period was characterised by low eruptive columns and the tropospheric dispersal of ash. Under these conditions, ash dispersal was multi-directional from eastern Europe to Greenland and beyond, but did not encroach on to the Iberian peninsula. In contrast, when the eruptive columns became more elevated and entrained in the jet stream, the dispersal directions were more uni-directional and passed over Iberia and North Africa. Thus the apparent lack of volcanic ash in Iberia (10 - 40ka) may have as much to do with eruptive column height and volcano location as with circulation patterns (tropospheric v. stratospheric). A more comprehensive assessment of geological records of non-visible ash layers in selected sites may hold the key to examining this matter more robustly.

  12. Using Spectroscopy to Infer the Eruption Style and Volatile History of Volcanic Tephras

    NASA Astrophysics Data System (ADS)

    McBride, M. J.; Horgan, B. H. N.; Rowe, M. C.; Wall, K. T.; Oxley, B. M.

    2017-12-01

    The interaction between volatiles and magma strongly influences volcanic eruption styles, and results in an increase in the glass component of volcanic tephra. On Earth, both phreatomagmatic and magmatic explosive eruptions create glassy tephras. Phreatomagmatic eruptions form abundant glass by quickly quenching lava through interaction with meteoric water while magmatic eruptions create less glass through slower cooling within larger pyroclasts or eruption columns. Wall et al. (2014) used X-ray diffraction (XRD) of diverse tephra samples to show that glass content correlates with eruption style, as magmatic samples contain less glass than phreatomagmatic samples. While use of XRD is limited to Earth and the Curiosity rover on Mars, orbital spectroscopy is much a more common technique in the exploration of terrestrial bodies. In this study, we evaluate whether or not spectroscopy can be used to infer eruption style and thus volatile history. Visible/near-infrared (VNIR) and thermal-infrared (TIR) spectra were collected of the Wall et al. (2014) tephra samples, and were analyzed for trends related to glass content and thus eruption style. VNIR spectra can detect glass at high abundances as well as hydrothermal alteration minerals produced during interactions with meteoric water. Using TIR, glass abundances can be derived by deconvolving the spectra with a standard spectral library; however, due to the non-unique spectral shape of glass, intermediate to high glass abundances in tephras are difficult to differentiate using TIR alone. Synthetic mixtures of glass and crystalline minerals verify these results. Therefore, the most effective method for determining glass abundance and thus eruption style from volcanic deposits is a combination of VNIR and TIR spectral analysis. Using standard planetary remote sensing instrumentation to infer eruption styles will provide a new window into the volcanic and volatile histories of terrestrial bodies.

  13. Shallow-water gaseohydrothermal plume studies after massive eruption at Panarea, Aeolian Islands, Italy

    NASA Astrophysics Data System (ADS)

    Tudino, T.; Bortoluzzi, G.; Aliani, S.

    2014-03-01

    Marine water dynamics in the near field of a massive gas eruption near Panarea (Aeolian Islands volcanic arc, SE Tyrrhenian Sea) is described. ADCP current-meters were deployed during the paroxysmal phase in 2002 and 2003 a few meters from the degassing vent, recording day-long time series. Datasets were sorted to remove errors and select good quality ensembles over the entire water column. Standard deviation of error velocity was considered a proxy for inhomogeneous velocity fields over beams. Time series intervals had been selected when the basic ADCP assumptions were fulfilled and random errors minimized. Backscatter data were also processed to identify bubbles in the water column with the aim of locating bubble-free ensembles. Reliable time series are selected combining these data. Two possible scenarios have been described: firstly, a highly dynamic situation with visible surface diverging rings of waves, entrainment on the lower part of the gas column, detrainment in the upper part and a stagnation line (SL) at mid depth where currents were close to zero and most of the gas bubbles spread laterally; secondly, a less dynamic situation with water entraining into the gas plume at all depths and no surface rings of diverging waves. Reasons for these different dynamics may be ascribed to changes in gas fluxes (one order of magnitude higher in 2002). Description of SL is important to quantify its position in the water column and timing for entrainment-detrainment, and it can be measured by ADCP and calculated from models.

  14. Will Mount Etna erupt before EGU General Assembly 2017?

    NASA Astrophysics Data System (ADS)

    Aloisi, Marco; Cannavo', Flavio; Palano, Mimmo

    2017-04-01

    Mount Etna has historically recorded a long and very various series of eruptions. The eruptions have mostly shown an episodic character, despite a near continuous supply of magma. In the last years, activity at Mount Etna seems to follow a recurrent pattern characterized by very similar "inflation/paroxysmal events/deflation" dynamic. The paroxysms occurred in December 2015 and May 2016, which involved the "Voragine" crater, can be considered among the most violent observed during the last two decades. These events showed high lava fountains, in the order of hundreds of meters in height, and eruption columns, several kilometres high. A new cycle, characterized by a clear similar inflation of the whole volcano edifice is currently underway. Here, we analyse these recent volcanic cycles and discuss about a) a possible upper bound for the inflation dynamic, above which a paroxysmal event occurs, b) the comparison of the models generating the considered lava fountains and c) a possible time-predictable model of the expected paroxysmal event.

  15. Reconstruction of the ashfall at Bezymyanny volcano during the eruption of December 24, 2006 by using a mesoscale model of the atmospheric transport of ash particles

    NASA Astrophysics Data System (ADS)

    Moiseenko, K. B.; Malik, N. A.

    2015-11-01

    Intensive volcanic eruptions of an explosive type are accompanied by release of a great amount of ash particles into the atmosphere. These particles are finely dispersed (<2 mm in size) products of magmatic melt fermentation, and their precipitation on the underlying surface is largely controlled by atmospheric transport. The present work proposes an approach to estimate the total released mass (TRM) of ash at minimal a priori data on dynamics of explosive process, on the basis of, first, direct numerical modeling of atmospheric transport and gravity precipitation of ash particles and, second, field observation data. To exemplify, the case study of the strong explosive eruption of Bezymyanny volcano on December 24, 2006 is considered (TRM > 3.8 Mt, height of eruptive column is 13-15 km above sea level). The results of the model calculations for this event are compared to independent TRM estimates by using standard methods based on the counting of precipitation areas.

  16. Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawaii

    USGS Publications Warehouse

    Orr, Tim R.; Thelen, Weston A.; Patrick, Matthew R.; Swanson, Donald A.; Wilson, David C.

    2012-01-01

    Ongoing eruptive activity at Kīlauea volcano’s (Hawai‘i) summit has been controlled in part by the evolution of its vent from a 35-m-diameter opening into a collapse crater 150 m across. Geologic observations, in particular from a network of webcams, have provided an unprecedented look at collapse crater development, lava lake dynamics, and shallow outgassing processes. These observations show unequivocally that the hundreds of transient outgassing bursts and weak explosive eruptions that have punctuated the vent’s otherwise nearly steady-state behavior, and that are associated with composite seismic events, were triggered by rockfalls from the vent walls onto the top of the lava column. While the process by which rockfalls drive the explosive bursts is not fully understood, we believe that it is initiated by the generation of a rebound splash, or Worthington jet, which then undergoes fragmentation. The external triggering of low-energy outgassing events by rockfalls represents a new class of small transient explosive eruptions.

  17. Diverse lavas from closely spaced volcanoes drawing from a common parent: Emmons Lake Volcanic Center, Eastern Aleutian Arc

    USGS Publications Warehouse

    Mangan, M.; Miller, T.; Waythomas, C.; Trusdell, F.; Calvert, A.; Layer, P.

    2009-01-01

    Emmons Lake Volcanic Center (ELVC) on the lower Alaskan Peninsula is one of the largest and most diverse volcanic centers in the Aleutian Arc. Since the Middle Pleistocene, eruption of ~ 350 km3 of basalt through rhyolite has produced a 30 km, arc front chain of nested calderas and overlapping stratovolcanoes. ELVC has experienced as many as five major caldera-forming eruptions, the most recent, at ~ 27 ka, produced ~ 50 km3 of rhyolitic ignimbrite and ash fall. These violent silicic events were interspersed with less energetic, but prodigious, outpourings of basalt through dacite. Holocene eruptions are mostly basaltic andesite to andesite and historically recorded activity includes over 40 eruptions within the last 200 yr, all from Pavlof volcano, the most active site in the Aleutian Arc. Geochemical and geophysical observations suggest that although all ELVC eruptions derive from a common clinopyroxene + spinel + plagioclase fractionating high-aluminum basalt parent in the lower crust, magma follows one of two closely spaced, but distinct paths to the surface. Under the eastern end of the chain, magma moves rapidly and cleanly through a relatively young (~ 28 ka), hydraulically connected dike plexus. Steady supply, short magma residence times, and limited interaction with crustal rocks preserve the geochemistry of deep crustal processes. Below the western part of the chain, magma moves haltingly through a long-lived (~ 500 ka) and complex intrusive column in which many generations of basaltic to andesitic melts have mingled and fractionated. Buoyant, silicic melts periodically separate from the lower parts of the column to feed voluminous eruptions of dacite and rhyolite. Mafic lavas record a complicated passage through cumulate zones and hydrous silicic residues as manifested by disequilibrium phenocryst textures, incompatible element enrichments, and decoupling of REEs and HFSEs ratios. Such features are absent in mafic lavas from the younger part of the chain, highlighting the importance of plumbing architecture and longevity in creating petrologic diversity. Supplemental Data include 156 major element (XRF) and 128 trace element (ICP-MS) whole-rock analyses, 23 new 40Ar/39Ar ages, a generalized geologic map with associated unit descriptions and field photographs, and photomicrographs of key petrographic features.

  18. Effects of the Mount Pinatubo eruption on the radiative and chemical processes in the troposphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Kinnison, Douglas E.; Grant, Keith E.; Connell, Peter S.; Wuebbles, Donald J.

    1994-01-01

    The Lawrence Livermore National Laboratory two-dimensional zonally-averaged chemical-radiative-transport model of the global atmosphere was used to study the effects of the 15 June 1991 eruption of the Mt. Pinatubo volcano on stratospheric processes. SAGE 2 time-dependent aerosol surface area density and optical extinction data were used as input into the model. By 22 December 1991, a maximum equatorial change of -1.8 percent in column ozone was derived from heterogeneous chemical processes that convert NO(x) into HNO3 on sulfuric acid aerosols. Radiative feedbacks from increased aerosol optical thickness independently changes column ozone by approximately -3.5 percent for the same period. This occurs from increasing the net heating of the lower stratosphere, which indirectly increases chemical reaction rates via their temperature dependence and from changes in actinic fluxes, which directly modify photodissociation rates. Including both heterogeneous and radiative effects changes column ozone by -5.5 percent. The model-derived change overestimates the decrease in column ozone relative to the TOMS instrument on the Nimbus 7 satellite. Maximum local ozone decreases of 12 percent were derived in the equatorial region, at 25 km. Model-derived column NO2 peaked (-14 percent) at 30 deg S in October 1991. The timing of the NO2 peak is consistent with observation, but the model underestimates the magnitude of the decrease. Local concentrations of NO(x) (NO + NO2), ClO(x) (Cl + ClO), and HO(x) (OH + HO2), in the lower stratosphere between 30 deg S and 30 deg N, were calculated to have changed by -40 percent, +100 to +160 percent, and +120 to +140 percent respectively.

  19. Sources of volcanic aerosols: Petrologic and volcanological constraints

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Haraldur

    1991-01-01

    Global climatic effects brought about by volcanism are related to the impact of volcanic gases and their derivative aerosols on the atmosphere, rather than the effects of volcanic ash. Evidence from both historic eruptions and polar ice cores indicate that volcanic sulfur gases are the dominant aerosol-forming component, resulting in produciton of a sulfuric acid-rich stratosphere aerosol that can have profound effects on the earth radiation budget over periods of a few years. Due to highly variable sulfur content of different magma types, the climatic effects do not relate simply to total erupted mass. There is a close relationship between volcanic sulfur yield to the atmospheric and hemispheric surface temperature decrease following an eruption, with up to 1 C surface temperature decrease indicated following a major volcanic event such as the 1815 Tambora eruption. While the erupted mass of HCl and HF is equal to or greater than that of sulfur gases in some volcanic events, the halogens do not form known aerosols nor are they abundant in ice core acidity layers. The early removal of halogens from eruption columns occurs by rain flushing and adsorption onto tephra particles, but the fate of halogens in the atmosphere following very large explosive eruptions is unknown. The CO2 flux to the atmosphere from volcanic eruptions is volumetrically one of the most important of the gas species, but owing to the huge size of the atmospheric reservoir of this gas, the volcanic contribution is likely to have negligible effects.

  20. The Fate of Volatiles in Subaqueous Explosive Eruptions: An Analysis of Steam Condensation in the Water Column

    NASA Astrophysics Data System (ADS)

    Cahalan, R. C.; Dufek, J.

    2015-12-01

    A model has been developed to determine the theoretical limits of steam survival in a water column during a subaqueous explosive eruption. Understanding the role of steam dynamics in particle transport and the evolution of the thermal budget is critical to addressing the first order questions of subaqueous eruption mechanics. Ash transport in subaqueous eruptions is initially coupled to the fate of volatile transport. The survival of steam bubbles to the water surface could enable non-wetted ash transport from the vent to a subaerial ash cloud. Current eruption models assume a very simple plume mixing geometry, that cold water mixes with the plume immediately after erupting, and that the total volume of steam condenses in the initial phase of mixing. This limits the survival of steam to within tens of meters above the vent. Though these assumptions may be valid, they are unproven, and the calculations based on them do not take into account any kinetic constraints on condensation. The following model has been developed to evaluate the limits of juvenile steam survival in a subaqueous explosive eruption. This model utilizes the analytical model for condensation of steam injected into a sub-cooled pool produced in Park et al. (2007). Necessary parameterizations require an iterative internal calculation of the steam saturation temperature and vapor density for each modeled time step. The contribution of volumetric expansion due to depressurization of a rising bubble is calculated and used in conjunction with condensation rate to calculate the temporal evolution of bubble volume and radius. Using steam bubble volume with the BBO equation for Lagrangian transport in a fluid, the bubble rise velocity is calculated and used to evaluate the rise distance. The steam rise model proves a useful tool to compare the effects of steam condensation, volumetric expansion, volume flux, and water depth on the dynamics of juvenile steam. The modeled results show that a sufficiently high volatile flux could lead to the survival of steam bubbles from >1km depths to the ocean surface, though low to intermediate fluxes lead to fairly rapid condensation. Building on this result we also present the results of simulations of multiphase steam jets and consider the likelihood of collapse inside a vapor envelope.

  1. Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a method for rapid detection of volcanic activity in real-time.

  2. Mechanism of explosive eruptions of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dvorak, J.J.

    1992-01-01

    A small explosive eruption of Kilauea Volcano, Hawaii, occurred in May 1924. The eruption was preceded by rapid draining of a lava lake and transfer of a large volume of magma from the summit reservoir to the east rift zone. This lowered the magma column, which reduced hydrostatic pressure beneath Halemaumau and allowed groundwater to flow rapidly into areas of hot rock, producing a phreatic eruption. A comparison with other events at Kilauea shows that the transfer of a large volume of magma out of the summit reservoir is not sufficient to produce a phreatic eruption. For example, the volume transferred at the beginning of explosive activity in May 1924 was less than the volumes transferred in March 1955 and January-February 1960, when no explosive activity occurred. Likewise, draining of a lava lake and deepening of the floor of Halemaumau, which occurred in May 1922 and August 1923, were not sufficient to produce explosive activity. A phreatic eruption of Kilauea requires both the transfer of a large volume of magma from the summit reservoir and the rapid removal of magma from near the surface, where the surrounding rocks have been heated to a sufficient temperature to produce steam explosions when suddenly contacted by groundwater. ?? 1992 Springer-Verlag.

  3. VESUVIUS PENTALOGUE: Interdisciplinary Science for Disaster Resilience and Sustainability of Populations Surrounding Vesuvius

    NASA Astrophysics Data System (ADS)

    Dobran, F.

    2015-12-01

    VESUVIUS PENTALOGUE is an elaboration of VESUVIUS 2000 scientific initiative aimed at volcanic risk reduction in the Vesuvius area. Its 5 building blocks are: (1) The current strategy of volcanic risk management (massive deportation of population) is both problematic and unacceptable. (2) A continuing close habitation of the population with the volcano should be the crucial cultural point to be pursued. This can be accomplished through a redefinition of the danger zone around Summa-Vesuvius as follows: (a) An exclusion nucleus should be established that prohibits all future human settlements and discourage the existing ones; (b) A resilience belt, housing most of the current population, should be established; (c) A sustainable area should be established beyond the resilience belt, allowing for both sustainable practices and temporary resettlements of the "resilience belt" citizens. (3) The built environment construction codes for the population of the danger zone should be established by utilizing Plinian eruption scenarios, scenario-based seismic hazard assessment and zonation, (c) dynamic structural analyses, (d) global volcanic simulations modeling of thermo-fluid dynamic eruption processes. (4) The volcanic risk information and education should involve an effective volcanic risk information campaign and active public preparedness strategy. This should be implemented for the exclusion nucleus, resilience belt, and sustainable area regions surrounding Summa-Vesuvius. A Volcanic Risk Education Safety Program should be implemented in all schools located within each of the above areas surrounding the volcano. (5)The political Authorities and the scientific community should produce a "memorandum of understanding" that univocally establishes an effective collaboration, and periodic progress reports that keep the populations informed on the improvements leading to the realization of the above objectives. For further details see www.gvess.org.

  4. Volcanic-aerosol-induced changes in stratospheric ozone following the eruption of Mount Pinatubo

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Browell, E. V.; Fishman, J.; Brackett, V. G.; Fenn, M. A.; Butler, C. F.; Nganga, D.; Minga, A.; Cros, B.; Mayor, S. D.

    1994-01-01

    Measurements of lower stratospheric ozone in the Tropics using electrochemical concentrations cell (ECC) sondes and the airborne UV Differential Absorption Lidar (DIAL) system after the eruption of Mt. Pinatubo are compared with the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and ECC sonde measurements from below the eruption to determine what changes have occurred as a result. Aerosol data from the Advanced Very High Resolution Radiometer (AVHRR) and the visible and IR wavelengths of the lidar system are used to examine the relationship between aerosols and ozone changes. Ozone decreases of 30 percent at altitudes between 19 and 26 km, partial column (16-28 km) decreases of about 27 D.U., and slight increases (5.4 D.U.) between 28 and 31 km are found in comparison with SAGE 2 climatological values.

  5. Melt-inclusion-hosted excess 40Ar in quartz crystals of the Bishop and Bandelier magma systems

    USGS Publications Warehouse

    Winick, J.A.; McIntosh, W.C.; Dunbar, N.W.

    2001-01-01

    40Ar/39Ar experiments on melt-inclusion-bearing quartz (MIBQ) from the Bishop and Bandelier Tuff Plinian deposits indicate high concentrations of excess 40Ar in melt inclusions. Two rhyolite glass melt inclusion populations are present in quartz; exposed melt inclusions and trapped melt inclusions. Air-abrasion mill grinding and hydrofluoric acid treatments progressively remove exposed melt inclusions while leaving trapped melt inclusions unaffected. Laser step-heating of MIBQ yields increasing apparent ages as a function of exposed melt inclusion removal, reflecting the higher nonatmospheric 40Ar concentrations hosted in trapped melt inclusions. Exposed melt inclusion-free MIBQ from the Bishop, Upper Bandelier, and Lower Bandelier Tufts yield total-gas ages of 3.70 ?? 1.00 Ma, 11.54 ?? 0.87 Ma, and 14.60 ?? 1.50 Ma, respectively. We interpret these old apparent ages as compelling evidence for the presence of excess 40Ar in MIBQ. Trapped melt inclusions in sanidine phenocrysts may contain excess 40Ar concentrations similar to those in MIBQ. This excess 40Ar has the potential to increase single-crystal laser-fusion ages of sanidine by tens of thousands of years, relative to the actual eruption age.

  6. Lack of impact of the El Hierro (Canary Islands) submarine volcanic eruption on the local phytoplankton community.

    PubMed

    Gómez-Letona, M; Arístegui, J; Ramos, A G; Montero, M F; Coca, J

    2018-03-16

    The eruption of a submarine volcano south of El Hierro Island (Canary Islands) in October 2011 led to major physical and chemical changes in the local environment. Large amounts of nutrients were found at specific depths in the water column above the volcano associated with suboxic layers resulting from the oxidation of reduced chemical species expelled during the eruptive phase. It has been suggested that the fertilization with these compounds enabled the rapid restoration of the ecosystem in the marine reserve south of the island once the volcanic activity ceased, although no biological evidence for this has been provided yet. To test the biological fertilization hypothesis on the pelagic ecosystem, we studied the evolution and variability in chlorophyll a, from in situ and remote sensing data, combined with information on phytoplankton and bacterial community structure during and after the eruptive episode. Remote sensing and in situ data revealed that no phytoplankton bloom took place neither during nor after the eruptive episode. We hypothesize that the fertilization by the volcano did not have an effect in the phytoplankton community due to the strong dilution of macro- and micronutrients caused by the efficient renewal of ambient waters in the zone.

  7. Volcanic ash leaching as a means of tracing the environmental impact of the 2011 Grímsvötn eruption, Iceland.

    PubMed

    Cabré, J; Aulinas, M; Rejas, M; Fernandez-Turiel, J L

    2016-07-01

    The Grímsvötn volcanic eruption, from 21 to 28 May, 2011, was the largest eruption of the Grímsvötn Volcanic System since 1873, with a Volcanic Explosivity Index (VEI) of magnitude 4. The main geochemical features of the potential environmental impact of the volcanic ash-water interaction were determined using two different leaching methods as proxies (batch and vertical flow-through column experiments). Ash consists of glass with minor amounts of plagioclase, clinopyroxene, diopside, olivine and iron sulphide; this latter mineral phase is very rare in juvenile ash. Ash grain morphology and size reflect the intense interaction of magma and water during eruption. Batch and column leaching tests in deionised water indicate that Na, K, Ca, Mg, Si, Cl, S and F had the highest potential geochemical fluxes to the environment. Release of various elements from volcanic ash took place immediately through dissolution of soluble salts from the ash surface. Element solubilities of Grímsvötn ash regarding bulk ash composition were <1 %. Combining the element solubilities and the total estimated mass of tephra (7.29 × 10(14) g), the total inputs of environmentally important elements were estimated to be 8.91 × 10(9) g Ca, 7.02 × 10(9) g S, 1.10 × 10(9) g Cl, 9.91 × 10(8) g Mg, 9.91 × 10(8) g Fe and 1.45 × 10(8) g P The potential environmental problems were mainly associated with the release of F (5.19 × 10(9) g).

  8. Alkalic marine tephra layers at ODP Site 1241 - Major explosive eruptions from an oceanic volcano in a pre-shield stage?

    NASA Astrophysics Data System (ADS)

    Schindlbeck, J. C.; Kutterolf, S.; Freundt, A.; Andrews, G. D. M.; Wang, K.-L.; Völker, D.; Werner, R.; Frische, M.; Hoernle, K.

    2016-12-01

    We report a series of fourteen marine tephra layers that are the products of large explosive eruptions of Subplinian to Plinian intensities and magnitudes (VEI > 4) from Cocos Island, Costa Rica. Cocos Island is a volcanic island in the eastern Central Pacific Ocean 500 km offshore Costa Rica, and is situated on the northwestern flank of the aseismic Cocos Ridge. Geochemical fingerprinting of Pleistocene ( 2.4-1.4 Ma) marine tephra layers from Ocean Drilling Project (ODP) Leg 202 Site 1241 using major and trace element compositions of volcanic glass shards demonstrates unequivocally their origin from Cocos Island rather than the Galápagos Archipelago or the Central American Volcanic Arc (CAVA). Cocos Island and the adjacent seamounts of the Cocos Island Province have alkalic compositions and formed on young (≤ 3 Ma) oceanic crust from an extinct spreading ridge bounded by a transform fault against the older and thicker crust of the aseismic Cocos Ridge. Cocos Island has six times the average volume of the adjacent seamounts although all appear to have formed during the 3-1.4 Ma time period. Cocos Island lies closest to the transform fault and we explain its excessive growth by melts rising from garnet-bearing mantle being deflected from the thick Cocos Ridge lithosphere toward the thinner lithosphere on the other side of the transform, thus enlarging the melt catchment area for Cocos Island compared to the seamounts farther away from the transform. This special setting favored growth above sea level and subaerial explosive eruptions even though the absence of appropriate compositions suggests that the entirely alkalic Cocos Island (and seamounts) never evolved through the productive tholeiitic shield stage typical of other Pacific Ocean islands, possibly because melt production rates remained too small. Conditions of magma generation and ascent resembled Hawaiian pre-shield volcanoes but persisted for much longer (< 1 m.y.) and formed evolved, trachytic magmas. Therefore Cocos Island may be a unique example for a volcanic ocean island that did not pass through the typical growth stages.

  9. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: Geochemical and Sr isotope evidence

    USGS Publications Warehouse

    Piochi, M.; Ayuso, R.A.; de Vivo, B.; Somma, R.

    2006-01-01

    New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma-Vesuvius in the last 8 ky BP. Contamination in the mid- to upper crust occurred repeatedly, after the magma chamber waxed with influx of new mantle- and crustal-derived magmas and fluids, and waned as a result of magma withdrawal and production of large and energetic plinian and subplinian eruptions. ?? 2005 Elsevier B.V. All rights reserved.

  10. 'Snake River (SR)-type' volcanism at the Yellowstone hotspot track: Distinctive products from unusual, high-temperature silicic super-eruptions

    USGS Publications Warehouse

    Branney, M.J.; Bonnichsen, B.; Andrews, G.D.M.; Ellis, B.; Barry, T.L.; McCurry, M.

    2008-01-01

    A new category of large-scale volcanism, here termed Snake River (SR)-type volcanism, is defined with reference to a distinctive volcanic facies association displayed by Miocene rocks in the central Snake River Plain area of southern Idaho and northern Nevada, USA. The facies association contrasts with those typical of silicic volcanism elsewhere and records unusual, voluminous and particularly environmentally devastating styles of eruption that remain poorly understood. It includes: (1) large-volume, lithic-poor rhyolitic ignimbrites with scarce pumice lapilli; (2) extensive, parallel-laminated, medium to coarse-grained ashfall deposits with large cuspate shards, crystals and a paucity of pumice lapilli; many are fused to black vitrophyre; (3) unusually extensive, large-volume rhyolite lavas; (4) unusually intense welding, rheomorphism, and widespread development of lava-like facies in the ignimbrites; (5) extensive, fines-rich ash deposits with abundant ash aggregates (pellets and accretionary lapilli); (6) the ashfall layers and ignimbrites contain abundant clasts of dense obsidian and vitrophyre; (7) a bimodal association between the rhyolitic rocks and numerous, coalescing low-profile basalt lava shields; and (8) widespread evidence of emplacement in lacustrine-alluvial environments, as revealed by intercalated lake sediments, ignimbrite peperites, rhyolitic and basaltic hyaloclastites, basalt pillow-lava deltas, rhyolitic and basaltic phreatomagmatic tuffs, alluvial sands and palaeosols. Many rhyolitic eruptions were high mass-flux, large volume and explosive (VEI 6-8), and involved H2O-poor, low-??18O, metaluminous rhyolite magmas with unusually low viscosities, partly due to high magmatic temperatures (900-1,050??C). SR-type volcanism contrasts with silicic volcanism at many other volcanic fields, where the fall deposits are typically Plinian with pumice lapilli, the ignimbrites are low to medium grade (non-welded to eutaxitic) with abundant pumice lapilli or fiamme, and the rhyolite extrusions are small volume silicic domes and coule??es. SR-type volcanism seems to have occurred at numerous times in Earth history, because elements of the facies association occur within some other volcanic fields, including Trans-Pecos Texas, Etendeka-Paran, Lebombo, the English Lake District, the Proterozoic Keewanawan volcanics of Minnesota and the Yardea Dacite of Australia. ?? Springer-Verlag 2007.

  11. The Multiphase Rheology of Andesitic Magmas from the 1.9ka Eruption of Turrialba Volcano (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Vona, A.; Di Piazza, A.; Romano, C.; De Astis, G.; Soto, G. J.

    2014-12-01

    We present a study of high-temperature, uniaxial deformation experiments of natural magma from an andesitic eruption of Turrialba volcano (1.9ka Plinian eruption). The aim of this work is to investigate the multiphase rheology (liquid+vesicles+crystals) of natural samples and the effect of vesicles and crystals on the magma viscosity. The experiments were performed using a high-temperature uniaxial Geocomp LoadTrac II press at dry atmospheric conditions and controlled deformation rates. Cores of natural sample (with Φcrys=0.20-0.30 and Φves=0.41-0.58) were deformed isothermally (790-870°C) at variable strain rates (VSR, from 10-6 to 10-4 s-1) and constant strain rate (CSR, 10-5 s-1). VSR were performed at low total amount of strain (e<0.10) to parameterize the flow behavior of these complex natural materials. The stress-strain rate relationships under flow conditions showed a linear trend between the applied stress and strain rate in the temperature interval investigated. All the samples display a steep linear trend, typical of Newtonian fluids (n index ~ 1), with a very small shear thinning behavior. CSR tests were performed at different total amount of strain (e=0.15-0.25-0.35). Strain hardening was observed with increasing deformation, resulting in an increase of apparent viscosity (up to 100.5 Pa s). This increase is related to the loss of total porosity (up to ΔΦves=0.15) due to compaction of the sample as indicated by post-run analyses . The measured multiphase rheology of Turrialba magmas was compared with literature models for both crystal- and bubble-bearing suspension. We calculate a difference of ~101 Pa s in magma apparent viscosity between high and low density samples, that coupled with a lateral temperature gradient inside the conduit of the volcano, could increase up to ~103 Pa s. The large difference in viscosity could be responsible of significant rheological contrasts, possibly resulting in strain localization and brittle fragmentation of magma.

  12. The Colima Volcano WebGIS: system acquisition, application and database development in an open-source environment

    NASA Astrophysics Data System (ADS)

    Manea, M.; Norini, G.; Capra, L.; Manea, V. C.

    2009-04-01

    The Colima Volcano is currently the most active Mexican volcano. After the 1913 plinian activity the volcano presented several eruptive phases that lasted few years, but since 1991 its activity became more persistent with vulcanian eruptions, lava and dome extrusions. During the last 15 years the volcano suffered several eruptive episodes as in 1991, 1994, 1998-1999, 2001-2003, 2004 and 2005 with the emplacement of pyroclastic flows. During rain seasons lahars are frequent affecting several infrastructures such as bridges and electric towers. Researchers from different institutions (Mexico, USA, Germany, Italy, and Spain) are currently working on several aspects of the volcano, from remote sensing, field data of old and recent deposits, structural framework, monitoring (rain, seismicity, deformation and visual observations) and laboratory experiments (analogue models and numerical simulations). Each investigation is focused to explain a single process, but it is fundamental to visualize the global status of the volcano in order to understand its behavior and to mitigate future hazards. The Colima Volcano WebGIS represents an initiative aimed to collect and store on a systematic basis all the data obtained so far for the volcano and to continuously update the database with new information. The Colima Volcano WebGIS is hosted on the Computational Geodynamics Laboratory web server and it is based entirely on Open Source software. The web pages, written in php/html will extract information from a mysql relational database, which will host the information needed for the MapBender application. There will be two types of intended users: 1) researchers working on the Colima Volcano, interested in this project and collaborating in common projects will be provided with open access to the database and will be able to introduce their own data, results, interpretation or recommendations; 2) general users, interested in accessing information on Colima Volcano will be provided with restricted access and will be able to visualize maps, images, diagrams, and current activity. The website can be visited at: http://www.geociencias.unam.mx/colima

  13. Contrasting eruption styles of the 147 Kimberlite, Fort à la Corne, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Lefebvre, Nathalie; Kurszlaukis, Stephan

    2008-06-01

    The Cretaceous Fort à la Corne (FALC) kimberlite field was active over a time span of ~ 20 Ma with contemporaneous terrestrial (Mannville Group) to marine (Lower Colorado Group) background sedimentation. Steep-sided pipes, craters and positive landform volcanoes such as scoria or tuff cones are thought to have formed during that period. The 147 Kimberlite is located in the SE section of the field's main cluster and is part of the large (~ 377.5 ha) Orion North volcanic complex. Based on logging of 25 drill cores, the morphology of the country rock/kimberlite interface suggests excavation of a complex crater field down to the upper portion of the Mannville Group sedimentary deposits. At least two types of volcaniclastic deposits are identified: a main kimberlite unit that is typically characterized by crustal xenolith-poor (1-2%), normal graded beds possibly deposited as turbidites in a subaqueous environment, originating from the nearby 148 tephra cone and infilling the adjacent 147 crater, and a second unit, located on the NE margin of the 147 Kimberlite, that represents a thick (~ 60 m) sequence of large (up to 22 m) sedimentary country rock blocks located at least 60 m above their original stratigraphic position. We suggest the following time sequence of events: Crater excavation as a consequence of a shallow magma fragmentation level within the uppermost country rock sequences, together with several closely spaced eruptive centres initially formed the complex, intercalated crater field. Subsequently, ongoing eruptions with a fragmentation level above the country rock produced the lithic fragment poor main infill of the 148 Kimberlite. Resedimentation from the outer flanks of the 148 tephra cone resulted in the deposition of turbidites in the 147 area. A consolidation phase solidified the lowermost portion of the main infill in 147. A subsequent explosion(s) occurred within the Mannville Group in the 147 area, ejecting large blocks of sedimentary country rocks and fracturing the overlying volcaniclastic main infill. Finally, blocks of the main infill tilted and possibly slumped into the subsidence structure developed above the emptied explosion chamber of 147. The different volcanic deposits reflect a change in eruption style and fragmentation level from highly explosive to spatter activity with little fragmentation potential. Cap rocks to build up the volatile overpressure necessary to blast the craters were not present at the time of emplacement. No diatremes were observed in the study area. Assuming that the magma properties remained constant over time, the change in eruption style has to be attributed to external factors, such as water access to the rising magma. The volcanic behaviour of the kimberlite magma appears to be comparable to that of other magmatic systems, both in eruptive style and production rate. No evidence was found for a high, possibly Plinian production rate or dispersion.

  14. Oxygen isotope composition of mafic magmas at Vesuvius

    NASA Astrophysics Data System (ADS)

    Dallai, L.; Cioni, R.; Boschi, C.; D'Oriano, C.

    2009-12-01

    The oxygen isotope composition of olivine and clinopyroxene from four plinian (AD 79 Pompeii, 3960 BP Avellino), subplinian (AD 472 Pollena) and violent strombolian (Middle Age activity) eruptions were measured to constrain the nature and evolution of the primary magmas of the last 4000 years of Mt. Vesuvius activity. A large set of mm-sized crystals was accurately separated from selected juvenile material of the four eruptions. Crystals were analyzed for their major and trace element compositions (EPMA, Laser Ablation ICP-MS), and for 18O/16O ratios. As oxygen isotope composition of uncontaminated mantle rocks on world-wide scale is well constrained (δ18Oolivine = 5.2 ± 0.3; δ18Ocpx = 5.6 ± 0.3 ‰), the measured values can be conveniently used to monitor the effects of assimilation/contamination of crustal rocks in the evolution of the primary magmas. Instead, typically uncontaminated mantle values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary magmas during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). Low δ18O values have been measured in olivine from Pompeii eruption (δ18Oolivine = 5.54 ± 0.03‰), whereas higher O-compositions are recorded in mafic minerals from pumices or scoria of the other three eruptions. Measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas, as also constrained by their trace element compositions. Data on melt inclusions hosted in crystals of these compositions have been largely collected in the past demonstrating that they crystallized from mafic melt, basaltic to tephritic in composition. Published data on volatile content of these melt inclusions reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting that crystal growth possibly occurred during magma ascent from the source region or in a shallow reservoir at about 8-10 km depth. Recently, experimental data have suggested massive carbonate assimilation (up to about 20%) to derive potassic alkali magmas from trachybasaltic melts. Accordingly, the δ18O variability and the trace element contents of the studied minerals suggest possible contamination of primary melts by an O-isotope enriched, REE-poor contaminant like the limestone of Vesuvius basement. The δ18Oolivine and δ18Ocpx of the studied minerals define variable degrees of carbonate assimilation and magma crystallization for the different eruptions, and possibly within the same eruption, and show evidence of oxygen isotope equilibrium at high temperature. However, energy-constrained AFC model suggest that carbonate contamination was limited. On the basis of our data, we suggest that interaction between magma and a fluxing, decarbonation-derived CO2 fluid may be partly accounted for the measured O-isotope compositions.

  15. Compositional zoning of the bishop tuff

    USGS Publications Warehouse

    Hildreth, W.; Wilson, C.J.N.

    2007-01-01

    Compositional data for >400 pumice clasts, organized according to eruptive sequence, crystal content, and texture, provide new perspectives on eruption and pre-eruptive evolution of the >4600 km3 of zoned rhyolitic magma ejected as the BishopTuff during formation of Long Valley caldera. Proportions and compositions of different pumice types are given for each ignimbrite package and for the intercalated plinian pumice-fall layers that erupted synchronously. Although withdrawal of the zoned magma was less systematic than previously realized, the overall sequence displays trends toward greater proportions of less evolved pumice, more crystals (0-5 24 wt %), and higher FeTi-oxide temperatures (714-818??C). No significant hiatus took place during the 6 day eruption of the BishopTuff, nearly all of which issued from an integrated, zoned, unitary reservoir. Shortly before eruption, however, the zoned melt-dominant portion of the chamber was invaded by batches of disparate lower-silica rhyolite magma, poorer in crystals than most of the resident magma but slightly hotter and richer in Ba, Sr, andTi. Interaction with resident magma at the deepest levels tapped promoted growth ofTi-rich rims on quartz, Ba-rich rims on sanidine, and entrapment of near-rim melt inclusions relatively enriched in Ba and CO2.Varied amounts of mingling, even in higher parts of the chamber, led to the dark gray and swirly crystal-poor pumices sparsely present in all ashflow packages. As shown by FeTi-oxide geothermometry, the zoned rhyolitic chamber was hottest where crystal-richest, rendering any model of solidification fronts at the walls or roof unlikely.The main compositional gradient (75-195 ppm Rb; 0.8-2.2 ppm Ta; 71-154 ppm Zr; 0.40-1.73% FeO*) existed in the melt, prior to crystallization of the phenocryst suite observed, which included zircon as much as 100 kyr older than the eruption.The compositions of crystals, though themselves largely unzoned, generally reflect magma temperature and the bulk compositional gradient, implying both that few crystals settled or were transported far and that the observed crystals contributed little to establishing that gradient. Upward increases in aqueous gas and dissolved water, combined with the adiabatic gradient (for the 5 km depth range tapped) and the roofward decline in liquidus temperature of the zoned melt, prevented significant crystallization against the roof, consistent with dominance of crystal-poor magma early in the eruption and lack of any roof-rind fragments among the Bishop ejecta, before or after onset of caldera collapse. A model of secular incremental zoning is advanced wherein numerous batches of crystal-poor melt were released from a mush zone (many kilometers thick) that floored the accumulating rhyolitic melt-rich body. Each batch rose to its own appropriate level in the melt-buoyancy gradient, which was selfsustaining against wholesale convective re-homogenization, while the thick mush zone below buffered it against disruption by the deeper (non-rhyolitic) recharge that augmented the mush zone and thermally sustained the whole magma chamber. Crystal-melt fractionation was the dominant zoning process, but it took place not principally in the shallow melt-rich body but mostly in the pluton-scale mush zone before and during batchwise melt extraction. ?? Published by Oxford University Press (2007).

  16. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema‘uma‘u Overlook vent, Kīlauea, Hawai‘i, USA

    USGS Publications Warehouse

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.

    2012-01-01

    From October 2008 until present, dozens of small impulsive explosive eruptions occurred from the Overlook vent on the southeast side of Halema‘uma‘u Crater, at Kīlauea volcano, USA. These eruptions were triggered by rockfalls from the walls of the volcanic vent and conduit onto the top of the lava column. Here we use microtextural observations and data from clasts erupted during the well-characterized 12 October 2008 explosive eruption at Halema‘uma‘u to extend existing models of eruption triggering. We present a potential mechanism for this eruption by combining microtextural observations with existing geophysical and visual data sets. We measure the size and number density of bubbles preserved in juvenile ejecta using 2D images and X-ray microtomography. Our data suggest that accumulations of large bubbles with diameters of >50μm to at least millimeters existed at shallow levels within the conduit prior to the 12 October 2008 explosion. Furthermore, a high number density of small bubbles <50 μm is measured in the clasts, implying very rapid nucleation of bubbles. Visual observations, combined with preexisting geophysical data, suggest that the impact of rockfalls onto the magma free surface induces pressure changes over short timescales that (1) nucleated new additional bubbles in the shallow conduit leading to high number densities of small bubbles and (2) expanded the preexisting bubbles driving upward acceleration. The trigger of eruption and bubble nucleation is thus external to the degassing system.

  17. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia

    PubMed Central

    Lavigne, Franck; Degeai, Jean-Philippe; Komorowski, Jean-Christophe; Guillet, Sébastien; Robert, Vincent; Lahitte, Pierre; Oppenheimer, Clive; Stoffel, Markus; Vidal, Céline M.; Surono; Pratomo, Indyo; Wassmer, Patrick; Hajdas, Irka; Hadmoko, Danang Sri; de Belizal, Edouard

    2013-01-01

    Polar ice core records attest to a colossal volcanic eruption that took place ca. A.D. 1257 or 1258, most probably in the tropics. Estimates based on sulfate deposition in these records suggest that it yielded the largest volcanic sulfur release to the stratosphere of the past 7,000 y. Tree rings, medieval chronicles, and computational models corroborate the expected worldwide atmospheric and climatic effects of this eruption. However, until now there has been no convincing candidate for the mid-13th century “mystery eruption.” Drawing upon compelling evidence from stratigraphic and geomorphic data, physical volcanology, radiocarbon dating, tephra geochemistry, and chronicles, we argue the source of this long-sought eruption is the Samalas volcano, adjacent to Mount Rinjani on Lombok Island, Indonesia. At least 40 km3 (dense-rock equivalent) of tephra were deposited and the eruption column reached an altitude of up to 43 km. Three principal pumice fallout deposits mantle the region and thick pyroclastic flow deposits are found at the coast, 25 km from source. With an estimated magnitude of 7, this event ranks among the largest Holocene explosive eruptions. Radiocarbon dates on charcoal are consistent with a mid-13th century eruption. In addition, glass geochemistry of the associated pumice deposits matches that of shards found in both Arctic and Antarctic ice cores, providing compelling evidence to link the prominent A.D. 1258/1259 ice core sulfate spike to Samalas. We further constrain the timing of the mystery eruption based on tephra dispersal and historical records, suggesting it occurred between May and October A.D. 1257. PMID:24082132

  18. Dynamics within geyser conduits, and sensitivity to environmental perturbations: insights from a periodic geyser in the El Tatio Geyser Field, Atacama Desert, Chile

    USGS Publications Warehouse

    Munoz-Saez, Carolina; Manga, Michael; Hurwitz, Shaul; Rudolph, Maxwell L.; Namiki, Atsuko; Wang, Chi-Yuen

    2015-01-01

    Despite more than 200 years of scientific study, the internal dynamics of geyser systems remain poorly characterized. As a consequence, there remain fundamental questions about what processes initiate and terminate eruptions, and where eruptions begin. Over a one-week period in October 2012, we collected down-hole measurements of pressure and temperature in the conduit of an exceptionally regular geyser (132 s/cycle) located in the Chilean desert. We identified four stages in the geyser cycle: (1) recharge of water into the conduit after an eruption, driven by the pressure difference between water in the conduit and in a deeper reservoir; (2) a pre-eruptive stage that follows the recharge and is dominated by addition of steam from below; (3) the eruption, which occurs by rapid boiling of a large mass of water at the top of the water column, and decompression that propagates boiling conditions downward; (4) a relaxation stage during which pressure and temperature decrease until conditions preceding the recharge stage are restored. Eruptions are triggered by the episodic addition of steam coming from depth, suggesting that the dynamics of the eruptions are dominated by geometrical and thermodynamic complexities in the conduit and reservoir. Further evidence favoring the dominance of internal processes in controlling periodicity is also provided by the absence of responses of the geyser to environmental perturbations (air pressure, temperature and probably also Earth tides).

  19. Stratigraphic and sedimetological study of relevant lahar deposits of La Lumbre ravine, Colima volcano (Mexico): preliminary results.

    NASA Astrophysics Data System (ADS)

    Sarocchi, D.; Rodriguez-Sedano, L. A.; Saucedo, R.; Capra, L.

    2009-04-01

    Volcán de Colima is the most active volcano of Mexico with more than fifty eruptions documented in the last four centuries. The great amount of pyroclastic material deposited in the volcano slopes represents a perfect source for an intense lahar activity. Despite the intense volcanic activity with production of explosive eruptions and pyroclastic flows, lahars are greatly the most dangerous phenomena at Volcán de Colima. Pyroclastic flows did not reach long distances, generally less than 5 km from the crater. In contrast, lahars travel long distances, up to 10 km, causing damage to infrastructure and being able to affect populated areas. For this reason in the last 100 years more than 350 people died for lahars in the Colima Volcanic Complex and only 8 lost their lives for pyroclastic flows in 1913 plinian eruption. "La Lumbre" ravine is a very important morphological feature in the western-southwestern sector of the volcano, there, it gathers the main drainage system and collects water from "El Playon", a wide intra-caldera basin delimited by the Volcán de Colima to the south and the "Paleofuego" caldera rim to the north. This ravine produced huge lahars such as the 1906 lahar which killed almost 325 people, or the lahars associated with the great 1913 eruption, other associated with de 1990-91 volcanic crisis, and is still very active, continuously remobilizing the 1998-99 pyroclastic flow deposits. In 2002 near the confluence between "La Lumbre" and "El Zarco" Ravine, a house was destroyed fortunately with no danger for people. In order to perform future accurate lahar numerical simulation and obtain reliable hazard study along this ravine, is very important to reconstruct the complex stratigraphy and understand which of such important deposits is related with the 1906, 1913 or 1991 eruptive crisis. For this reason we are performing a detailed stratigraphic study of the lahars sequence. We selected the best outcrops at different distances from the crater. In each site we obtained vertical granulometric sections in order to point out the presence of granulometric structures. Each unit was studied in order to obtain the total granulometric distribution at different depths, and of each sample we performed component analysis and clast shape study. Preliminary results point out the presence of almost three important lahar units that can be well followed along the ravine. All the studied deposits are related with no-cohesive lahars. The important thickness, the very coarse granulometry and the presence of abundant juvenile clasts, suggest that they are related with important volcanic crisis.

  20. Ionospheric disturbance excited by the 2015 Kuchinoerabu-jima, southwest Japan, eruption

    NASA Astrophysics Data System (ADS)

    Aoki, Y.; Nishida, K.; Nakashima, Y.; Heki, K.

    2015-12-01

    Vertical displacements excited by volcanic eruptions, earthquakes, or tsunamis excites pressure waves in the atmosphere. The excited oscillation propagates to ionosphere where solar radiation ionize a part of atmosphere, resulting in a disturbance of the total electron content (TEC). Where numerous studies have reported ionospheric disturbance excited by earthquakes or tsunamis, much smaller number of studies have investigated that excited by volcanic eruptions. This study reports on the ionospheric disturbance excited by the 2015 Kuchinoerabu-jima eruption observed by continuous GPS observations. The 2015 Kuchinoerabu-jima eruption is a phreatomagmatic eruption occurred on 29 May 2015. The eruption is explosive with a column height up to 10,000 meters above the vent. The disturbance of TEC started from about 10 minutes after the eruption at approximately 100 km from the volcano. The disturbance then propagates outward for about 10 minutes. The velocity of pressure wave is estimated to be about 500 m/s, consistent with the average acoustic velocity in the ionosphere. The dominant frequency of the observed disturbance is about 11 mHz, much higher than the eigenfrequencies of Earth's atmosphere, 3.7 mHz and 4.4 mHz. The dominant frequency observed here might be related to the dominant frequency of the acoustic wave excited by the eruption and the dissipation of the medium. While the ionospheric disturbance associated with the 2003 Soufrière Hills lasted more than an hour, that in this study lasted only up to a few minutes. This difference might correspond to the difference in time scale of the excitation. The pressure wave excited by the eruption is also recorded by broadband seismometers in the Japanese islands. Our goal is thus to gain more insights into the mechanics of lithosphere-atmosphere-ionosphere coupling as well that of the 2015 Kuchinoerabu-jima eruption consisent with both seismic and GPS observations.

  1. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands).

    PubMed

    Ferrera, Isabel; Arístegui, Javier; González, José M; Montero, María F; Fraile-Nuez, Eugenio; Gasol, Josep M

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed.

  2. Transient Changes in Bacterioplankton Communities Induced by the Submarine Volcanic Eruption of El Hierro (Canary Islands)

    PubMed Central

    Ferrera, Isabel; Arístegui, Javier; González, José M.; Montero, María F.; Fraile-Nuez, Eugenio; Gasol, Josep M.

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1–V3 regions for Bacteria and V3–V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70–200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed. PMID:25671714

  3. Eruptive history, current activity and risk estimation using geospatial information in the Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Camarena-Garcia, M.; Nunez-Cornu, F. J.; Flores-Peña, S.

    2013-12-01

    Colima volcano, also known as Volcan de Fuego (19 30.696 N, 103 37.026 W), is located on the border between the states of Jalisco and Colima, and is the most active volcano in Mexico. In January 20, 1913, Colima had its biggest explosion of the twentieth century, with VEI 4, after the volcano had been dormant for almost 40 years. In 1961, a dome reached the northeastern edge of the crater and started a new lava flow, and from this date maintains constant activity. In February 10, 1999, a new explosion occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching altitudes between 4,500 and 9,000 masl, further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events, ash emissions were generated in all directions reaching distances up to 100 km, slightly affecting the nearby villages: Tuxpan, Tonila, Zapotlan, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During 2005 to July 2013, this volcano has had an intense effusive-explosive activity; similar to the one that took place during the period of 1890 through 1905. That was before the Plinian eruption of 1913, where pyroclastic flows reached a distance of 15 km from the crater. In this paper we estimate the risk of Colima volcano through the analysis of the vulnerability variables, hazard and exposure, for which we use: satellite imagery, recurring Fenix helicopter over flights of the state government of Jalisco, the use of the images of Google Earth and the population census 2010 INEGI. With this information and data identified changes in economic activities, development, and use of land. The expansion of the agricultural frontier in the lower sides of the volcano Colima, and with the advancement of traditional crops of sugar cane and corn, increased the growth of avocado orchards and fruits like blueberries, raspberries, and blackberries within the radius of 15 km from the crater. The population dynamics in the Colima volcano area had a population of 552,954 inhabitants in 2010, and a growth at an annual rate of 1.6 percent of the total population. 60 percent of the populations live in 105 towns with a population less than 250 inhabitants. Also, the region showed an increase in vulnerability for the development of economic activities, supported by the highway, railway, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. With the use of geospatial information quantify the vulnerability, together with the hazard maps and exposure, enabled us to build the following volcanic risk maps: a) Exclusion areas and moderate hazard for explosive events (ballistic) and pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The geospatial database, a GIS mapping and current volcano monitoring, are the basis of the Operational Plan Colima Volcano. Civil Protection by the state of Jalisco and the updating of urban development plans of municipalities converge on the volcano. These instruments of land planning will help reduce volcanic risk in the region.

  4. An Approach to In-Situ Observations of Volcanic Plumes

    NASA Technical Reports Server (NTRS)

    Smythe, W. D.; Lopes, M. C.; Pieri, D. C.; Hall, J. L.

    2005-01-01

    Volcanoes have long been recognized as playing a dominant role in the birth, and possibly the death, of biological populations. They are possible sources of primordial gases, provide conditions sufficient for creating amino acids, strongly affect the heat balance in the atmosphere, and have been shown to sustain life (in oceanic vents.) Eruptions can have profound effects on local flora and fauna, and for very large eruptions, may alter global weather patterns and cause entire species to fail. Measurements of particulates, gases, and dynamics within a volcanic plume are critical to understanding both how volcanoes work and how plumes affect populations, environment, and aviation. Volcanic plumes and associated eruption columns are a miasma of toxic gases, corrosive condensates, and abrasive particulates that makes them hazardous to nearby populations and poses a significant risk to all forms of aviation. Plumes also provide a mechanism for sampling the volcanic interior, which, for hydrothermal environments, may host unique biological populations.

  5. Keeping watch over Colombia’s slumbering volcanoes

    USGS Publications Warehouse

    Ordoñez, Milton; López, Christian; Alpala, Jorge; Narváez, Lourdes; Arcos, Dario; Battaglia, Maurizio

    2015-01-01

    Located in the Central Cordillera (Colombian Andes), Nevado del Ruiz is a volcanic complex, topped by glaciers, rising 5,321 m above sea level. A relatively small explosive eruption from Ruiz's summit crater on November 13, 1985, generated an eruption column and sent a series of pyroclastic flows and surges across the volcano's ice-covered summit. Pumice and meltwater produced by the hot pyroclastic flows and surges swept into gullies and channels on the slopes of Ruiz as a series of lahars. Within two hours of the beginning of the eruption, lahars had traveled 100 km and left behind a wake of destruction: more than 25,000 people were killed (23,000 in the town of Armero and 2,000 in the town of Chinchiná), about 5,000 injured, and more than 5,000 homes destroyed along the Chinchiná, Gualí, and Lagunillas rivers.

  6. H2O Contents of Submarine and Subaerial Silicic Pyroclasts from Oomurodashi Volcano, Northern Izu-Bonin Arc

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Tani, K.; Nichols, A. R.

    2014-12-01

    Oomurodashi volcano is an active shallow submarine silicic volcano in the northern Izu-Bonin Arc, located ~20 km south of the inhabited active volcanic island of Izu-Oshima. Oomurodashi has a large (~20km diameter) flat-topped summit located at 100 - 150 metres below sea level (mbsl), with a small central crater, Oomuro Hole, located at ~200 mbsl. Surveys conducted during cruise NT12-19 of R/V Natsushima in 2012 using the remotely-operated vehicle (ROV) Hyper-Dolphin revealed that Oomuro Hole contains numerous active hydrothermal vents and that the summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with little biogenetic or manganese cover, suggesting recent eruption(s) from Oomuro Hole. Given the shallow depth of the volcano summit, such eruptions are likely to have generated subaerial eruption columns. A ~10ka pumiceous subaerial tephra layer on the neighbouring island of Izu-Oshima has a similar chemical composition to the submarine Oomurodashi rocks collected during the NT12-19 cruise and is thought to have originated from Oomurodashi. Here we present FTIR measurements of the H2O contents of rhyolitic pumice from both the submarine deposits sampled during ROV dives and the subaerial tephra deposit on Izu-Oshima, in order to assess magma degassing and eruption processes occurring during shallow submarine eruptions.

  7. Catalog of Tephra Samples from Kilauea's Summit Eruption, March-December 2008

    USGS Publications Warehouse

    Wooten, Kelly M.; Thornber, Carl R.; Orr, Tim R.; Ellis, Jennifer F.; Trusdell, Frank A.

    2009-01-01

    The opening of a new vent within Halema'uma'u Crater in March 2008 ended a 26-year period of no eruptive activity at the summit of Kilauea Volcano. It also heralded the first explosive activity at Kilauea's summit since 1924 and the first of eight discrete explosive events in 2008. At the onset of the eruption, the Hawaiian Volcano Observatory (HVO) initiated a rigorous program of sample collection to provide a temporally constrained suite of tephra samples for petrographic, geochemical, and isotopic studies. Petrologic studies help us understand conditions of magma generation at depth; processes related to transport, storage, and mixing of magma within the shallow summit region; and specific circumstances leading to explosive eruptions. This report provides a catalog of tephra samples erupted at Kilauea's summit from March 19, 2008, through the end of 2008. The Kilauea 2008 Summit Sample Catalog is tabulated in the accompanying Microsoft Excel file, of2009-1134.xls (four file types linked on right). The worksheet in this file provides sampling information and sample descriptions. Contextual information for this catalog is provided below and includes (1) a narrative of 2008 summit eruptive activity, (2) a description of sample collection methods, (3) a scheme for characterizing a diverse range in tephra lithology, and (4) an explanation of each category of sample information (column headers) in the Microsoft Excel worksheet.

  8. MASS ESTIMATES OF RAPIDLY MOVING PROMINENCE MATERIAL FROM HIGH-CADENCE EUV IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, David R.; Baker, Deborah; Van Driel-Gesztelyi, Lidia, E-mail: d.r.williams@ucl.ac.uk

    We present a new method for determining the column density of erupting filament material using state-of-the-art multi-wavelength imaging data. Much of the prior work on filament/prominence structure can be divided between studies that use a polychromatic approach with targeted campaign observations and those that use synoptic observations, frequently in only one or two wavelengths. The superior time resolution, sensitivity, and near-synchronicity of data from the Solar Dynamics Observatory's Advanced Imaging Assembly allow us to combine these two techniques using photoionization continuum opacity to determine the spatial distribution of hydrogen in filament material. We apply the combined techniques to SDO/AIA observationsmore » of a filament that erupted during the spectacular coronal mass ejection on 2011 June 7. The resulting 'polychromatic opacity imaging' method offers a powerful way to track partially ionized gas as it erupts through the solar atmosphere on a regular basis, without the need for coordinated observations, thereby readily offering regular, realistic mass-distribution estimates for models of these erupting structures.« less

  9. Nature and Intensity of the 22-23 April 2015 Eruptions of Volcán Calbuco, Chile, from Satellite, Lightning, and Field Observations

    NASA Astrophysics Data System (ADS)

    Van Eaton, A. R.; Amigo, A.; Bertin, D.; Mastin, L. G.; Giacosa, R.; Behnke, S. A.

    2015-12-01

    On 22 April 2015, Calbuco Volcano in southern Chile erupted for the first time in 43 years. The two primary phases of eruption, separated by a few hours, produced pyroclastic density currents, lahars, and spectacular vertical eruption columns that rose into the stratosphere. Clear weather conditions allowed the populated areas of Puerto Montt and Puerto Varas full view of the lightning-rich eruption, which was rapidly shared through social media. A wealth of remote-sensing data was also publically available in near real-time. We used this information to assess the eruption behavior by combining satellite-based umbrella growth rates, and the location and frequency of volcanic lightning. Umbrella expansion rates from GOES-13 satellite retrievals correspond to eruption rates of about 4x106 kg s-1 for the first eruptive phase and 6x106 kg s-1 for the second phase, following the approach of Pouget et al. (2013, JVGR, 258, 100-112). The location and timing of lightning flashes were obtained from the World Wide Lightning Location Network (WWLLN) Global Volcanic Lightning Monitor, which is updated approximately every minute (Ewert et al., 2010, Fall AGU Abstract AE31A-04). Interestingly, the onset of detected flashes was delayed by ~30 min after the start of each eruptive phase. Lighting provided a useful proxy for the waxing or waning intensity of the eruption, and helped identify the end of significant ash emissions. Using the 1-D volcanic plume model Plumeria, we have also simulated the vertical distribution of ash and ice in the plumes to examine potential causes of the extraordinary amount of volcanic lightning (1,094 flashes detected). Our analysis provides information on eruption timing, duration, and mass flow rate, which are necessary for ash dispersal modeling within hours of eruption. Results are also consistent with the field-based measurements of total erupted volume. We suggest that the combination of satellite-detected umbrella expansion rates with lightning data may provide a useful approach to constrain near real-time inputs for ash dispersal models and hazard warnings.

  10. Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece)

    PubMed Central

    Cadoux, Anita; Scaillet, Bruno; Bekki, Slimane; Oppenheimer, Clive; Druitt, Timothy H.

    2015-01-01

    The role of volcanogenic halogen-bearing (i.e. chlorine and bromine) compounds in stratospheric ozone chemistry and climate forcing is poorly constrained. While the 1991 eruption of Pinatubo resulted in stratospheric ozone loss, it was due to heterogeneous chemistry on volcanic sulfate aerosols involving chlorine of anthropogenic rather than volcanogenic origin, since co-erupted chlorine was scavenged within the plume. Therefore, it is not known what effect volcanism had on ozone in pre-industrial times, nor what will be its role on future atmospheres with reduced anthropogenic halogens present. By combining petrologic constraints on eruption volatile yields with a global atmospheric chemistry-transport model, we show here that the Bronze-Age ‘Minoan’ eruption of Santorini Volcano released far more halogens than sulfur and that, even if only 2% of these halogens reached the stratosphere, it would have resulted in strong global ozone depletion. The model predicts reductions in ozone columns of 20 to >90% at Northern high latitudes and an ozone recovery taking up to a decade. Our findings emphasise the significance of volcanic halogens for stratosphere chemistry and suggest that modelling of past and future volcanic impacts on Earth’s ozone, climate and ecosystems should systematically consider volcanic halogen emissions in addition to sulfur emissions. PMID:26206616

  11. Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece).

    PubMed

    Cadoux, Anita; Scaillet, Bruno; Bekki, Slimane; Oppenheimer, Clive; Druitt, Timothy H

    2015-07-24

    The role of volcanogenic halogen-bearing (i.e. chlorine and bromine) compounds in stratospheric ozone chemistry and climate forcing is poorly constrained. While the 1991 eruption of Pinatubo resulted in stratospheric ozone loss, it was due to heterogeneous chemistry on volcanic sulfate aerosols involving chlorine of anthropogenic rather than volcanogenic origin, since co-erupted chlorine was scavenged within the plume. Therefore, it is not known what effect volcanism had on ozone in pre-industrial times, nor what will be its role on future atmospheres with reduced anthropogenic halogens present. By combining petrologic constraints on eruption volatile yields with a global atmospheric chemistry-transport model, we show here that the Bronze-Age 'Minoan' eruption of Santorini Volcano released far more halogens than sulfur and that, even if only 2% of these halogens reached the stratosphere, it would have resulted in strong global ozone depletion. The model predicts reductions in ozone columns of 20 to >90% at Northern high latitudes and an ozone recovery taking up to a decade. Our findings emphasise the significance of volcanic halogens for stratosphere chemistry and suggest that modelling of past and future volcanic impacts on Earth's ozone, climate and ecosystems should systematically consider volcanic halogen emissions in addition to sulfur emissions.

  12. Dynamics and style transition of a moderate, Vulcanian-driven eruption at Tungurahua (Ecuador) in February 2014: pyroclastic deposits and hazard considerations

    NASA Astrophysics Data System (ADS)

    Romero, Jorge Eduardo; Douillet, Guilhem Amin; Vallejo Vargas, Silvia; Bustillos, Jorge; Troncoso, Liliana; Díaz Alvarado, Juan; Ramón, Patricio

    2017-06-01

    The ongoing eruptive cycle of Tungurahua volcano (Ecuador) since 1999 has been characterised by over 15 paroxysmal phases interrupted by periods of relative calm. Those phases included one Subplinian as well as several Strombolian and Vulcanian eruptions and they generated tephra fallouts, pyroclastic density currents (PDCs) and lava flows. The 1 February 2014 eruption occurred after 75 days of quiescence and only 2 days of pre-eruptive seismic crisis. Two short-lived Vulcanian explosions marked the onset of the paroxysmal phase, characterised by a 13.4 km eruptive column and the trigger of PDCs. After 40 min of paroxysm, the activity evolved into sporadic Strombolian explosions with discrete ash emissions and continued for several weeks. Both tephra fall and PDCs were studied for their dispersal, sedimentology, volume and eruption source parameters. At large scale, the tephra cloud dispersed toward the SSW. Based on the field data, two dispersal scenarios were developed forming either elliptical isopachs or proximally PDC-influenced isopachs. The minimum bulk tephra volumes are estimated to 4.55 × 106 m3, for an eruption size estimated at volcanic explosivity index (VEI) 2-3. PDCs, although of small volume, descended by nine ravines of the NNW flanks down to the base of the edifice. The 1 February 2014 eruptions show a similar size to the late 1999 and August 2001 events, but with a higher intensity (I 9-10) and shorter duration. The Vulcanian eruptive mechanism is interpreted to be related to a steady magma ascent and the rise in over-pressure in a blocked conduit (plug) and/or a depressurised solidification front. The transition to Strombolian style is well documented from the tephra fall componentry. In any of the interpretative scenarios, the short-lived precursors for such a major event as well as the unusual tephra dispersion pattern urge for renewed hazard considerations at Tungurahua.

  13. Multidisciplinary Studies of the 2015-2016 Eruption of Momotombo Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Roman, D. C.; La Femina, P. C.; Connor, C.; Connor, L.; Dixon, T. H.; Feineman, M. D.; Gallant, E.; Geirsson, H.; Glover, C.; Rinehart, J. M.; Ruiz, G.; Saballos, A.; Strauch, W.; Tenorio, V.; Wauthier, C.; Webley, P. W.; Wnuk, K.

    2016-12-01

    Momotombo volcano, Nicaragua, began erupting in December 2015 after 105 years of dormancy. Within weeks of the eruption onset, an international team of scientists began interdisciplinary studies investigating the geophysical and geochemical processes of the eruption. Our work included the installation of new seismic and geodetic networks, sampling of lava flows and ashes for geochemical and petrographic analyses, and the collection and analysis of space and ground-based radar data. Momotombo volcano has been seismically restless since at least the 1980's, when modern records are first available. Beginning in September 2013, discrete seismic swarms including events up to M4 and depths of 20 km occurred periodically. On April 10, 2014 an M6.1 earthquake occurred in Lake Managua displacing the southern flank of the volcano more than 5 cm as measured at a continuous GPS (cGPS) site. A major seismic swarm, which included an M4.7 earthquake, began on November 24, 2015, and culminated in gas and ash eruptions beginning at 7:49 am (local time) on December 1, 2015. By the evening of December 1, Momotombo was in strombolian eruption with columns to 1 km and a lava flow advancing down the northern flank. To date, there have been over 435 explosions as detected by seismic data and visually on webcam imagery, with the last explosion on April 7, 2016. Utilizing cGPS and episodic GPS observations and radar interferometry (InSAR), we did not detect any significant pre-, co-, or post-eruptive magmatic deformation. Lava samples collected from the 2015, 1905, and pre-1905 eruptions are all basaltic andesites with nearly identical major and trace element compositions, suggesting a long-lived magma body. Concentrations of metals and volatiles in ash leachates decrease over time in the first two days of the eruption. Our interdisciplinary studies allow for an integrated analysis of this strombolian eruption and its hazards.

  14. Modelling tephra dispersal and ash aggregation: The 26th April 1979 eruption, La Soufrière St. Vincent

    NASA Astrophysics Data System (ADS)

    Poret, M.; Costa, A.; Folch, A.; Martí, A.

    2017-11-01

    On the 26th April 1979, La Soufrière St. Vincent volcano (West Indies) erupted producing a tephra fallout that blanketed the main island and the neighboring Bequia Island, located southwards. Using deposit measurements and the available observations reported in Brazier et al. (1982), we estimated the optimal Eruption Source Parameters, such as the Mass Eruption Rate (MER), the Total Erupted Mass (TEM) and the Total Grain-Size Distribution (TGSD) by means of a computational inversion method. Tephra transport and deposition were simulated using the 3D Eulerian model FALL3D. The field-based TGSD reconstructed by Brazier et al. (1982) shows a bi-modal pattern having a coarse and a fine population with modes around 0.5 and 0.06 mm, respectively. A significant amount of aggregates was observed during the eruption. To quantify the relevance of aggregation processes on the bulk tephra deposit, we performed a comparative study in which we accounted for aggregation using three different schemes, computing ash aggregation within the plume under wet conditions, i.e. considering both the effects of air moisture and magmatic water, consistently with the eruptive phreatomagmatic eruption features. The sensitivity to the driving meteorological model (WRF/ARW) was also investigated by considering two different spatial resolutions (5 and 1 km) and model output frequencies. Results show that, for such short-lived explosive eruptions, high-resolution meteorological data are critical. Optimal results best-fitting all available observations indicate a column height of 12 km above the vent, a MER of 7.8 × 106 kg/s which, for an eruption duration of 370 s, gives a TEM of 2.8 × 109 kg. The optimal aggregate mean diameter obtained is 1.5Φ with a density of 350 kg/m3, contributing to 22% of the deposit mass.

  15. Strombolian explosive styles and source conditions

    USGS Publications Warehouse

    Patrick, Matthew R.; Harris, Andrew J. L.; Ripepe, Maurizio; Dehn, Jonathan; Rothery, David A.; Calvari, Sonia

    2007-01-01

    Forward Looking Infrared Radiometer (FLIR) cameras offer a unique view of explosive volcanism by providing an image of calibrated temperatures. In this study, 344 eruptive events at Stromboli volcano, Italy, were imaged in 2001–2004 with a FLIR camera operating at up to 30 Hz. The FLIR was effective at revealing both ash plumes and coarse ballistic scoria, and a wide range of eruption styles was recorded. Eruptions at Stromboli can generally be classified into two groups: Type 1 eruptions, which are dominated by coarse ballistic particles, and Type 2 eruptions, which consist of an optically-thick, ash-rich plume, with (Type 2a) or without (Type 2b) large numbers of ballistic particles. Furthermore, Type 2a plumes exhibited gas thrust velocities (>15 m s−1 ) while Type 2b plumes were limited to buoyant velocities (<15 m s−1 ) above the crater rim. A given vent would normally maintain a particular gross eruption style (Type 1 vs. 2) for days to weeks, indicating stability of the uppermost conduit on these timescales. Velocities at the crater rim had a range of 3–101 m s−1 , with an overall mean value of 24 m s−1. Mean crater rim velocities by eruption style were: Type 1= 34 m s−1 , Type 2a=31 m s−1 , Type 2b=7 m s−1 . Eruption durations had a range of 6–41 s, with a mean of 15 s, similar among eruption styles. The ash in Type 2 eruptions originates from either backfilled material (crater wall slumping or ejecta rollback) or rheological changes in the uppermost magma column. Type 2a and 2b behaviors are shown to be a function of the overpressure of the bursting slug. In general, our imaging data support a broadening of the current paradigm for strombolian behavior, incorporating an uppermost conduit that can be more variable than is commonly considered.

  16. Volcanic Ashes Intercalated with Cultural Vestiges at Archaeological Sites from the Piedmont to the Amazon, Ecuador

    NASA Astrophysics Data System (ADS)

    Valverde, Viviana; Mothes, Patricia; Andrade, Daniel

    2014-05-01

    A mineralogical analysis was done on 70 volcanic ashes; 9 corresponding to proximal samples of seven volcanoes: Cotopaxi (4500 yBP), Guagua Pichincha (3300 yBP, 1000 yBP and 1660 yAD), Cuicocha (3100 yBP), Pululahua (2400 yBP), Ninahuilca (2350 yBP and 4600 yBP) and 61 to distal ashes collected at eight archaeological sites in the Coastal, Sierra and Amazon regions of Ecuador. Cultural vestiges are from Pre-ceramic, Formative, Regional Development and Integration periods, with the exception of a site denominated Hacienda Malqui, which also has Inca vestiges. The sampling process was done in collaboration with various archaeologists in 2011-2013. The volcanic ashes were washed, dried and divided in order to obtain a representative fraction and their later analysis with binocular microscope. The microscope analysis allowed determination of the characteristics of each component of volcanic ash. These main elements are: pumice fragments, minerals, volcanic glass, lithics and exogenous material (non volcanic). The petrographic analysis of distal volcanic ash layers at each archaeological site was correlated by their components and characteristics with proximal volcanic ashes of source volcanoes. Some correlations permitted obtaining a relative age for the layers of distal volcanic ash in the archaeological sites. The petrographic analysis showed a correlation between the archaeological sites of Las Mercedes - Los Naranjos, Rumipamba and El Condado (located west of Quito) with the eruptive activity of Guagua Pichincha volcano (3300 yBP, 1000 yBP and 1660 yAD) and Pululahua volcano (2400 yBP). Also, a correlation with eruptive activity of Ninahuilca (2350 yBP), Cotopaxi (4500 yBP) and Quilotoa (800 yBP) volcanoes at Hda. Malqui (60 km west of Latacunga) was provided by mineralogy of the respective ashes expulsed by these volcanoes. The ash layers at Cuyuja (50 km east of Quito) are mostly superficial; they are associated with Quilotoa's 800 yBP plinian. Finally at the Huapula and Pablo VI sites (in the western Amazon region of Ecuador), the reworked ashes are predominantly of Sangay volcano (in permanent eruptive activity since 1628). Finally, the work shared between archaeologists and volcanologists allowed us to discover more deposits of volcanic ashes at archaeological sites. These layers sometimes have more than 30 cm thickness in distal regions, such as the thick ash layer left by Pululahua's 2400 yBP eruption, a fact which helps us to comprehend the impact of volcanoes on past cultures.

  17. The 18 May 1980 eruption of Mount St. Helens: The nature of the eruption, with an atmospheric perspective

    NASA Technical Reports Server (NTRS)

    Rose, W. I., Jr.; Hoffman, M. F.

    1982-01-01

    Mount St. Helens erupted somewhat less than 0.5 cu km of magma (dense rock equivalent) on May 18, 1980. The May 18 event was usually violent. As much 35% of the volume of the airfall material fell outside of the 2.5 mm isopach, which encloses about 88,000 sq km. This extraordinary dispersive power was transmitted by an eruption column which reached heights of more than 20 km. There was a lateral blast (or surge) of unusually large dimensions associated with the onset of the eruption. The magma is dacitic in composition and had a low ( 500 ppm) sulfur content. Distal ashes contain much nonmagmatic (lithic) material, but smaller ( 50 microns m) particles are mostly finely divided magmatic dacite. The grain size distributions of the ash are multimodal, frequently with peaks at 90, 25, and 10 microns. The finer populations fell out faster than their terminal velocities as simple particles would suggest. It is inferred that large proportions of the fine ash fell out as composite particles. This condition greatly reduces the atmospheric burden of silicate particles. Some of the unusual aspects (violence, intense surges, multimodal grain size distributions, lithic content of the ashes) of the eruption may be due to its phreatomagmatic character. The hydrothermal system above the magma may have infiltrated the magma body at the onset of the eruption. An "overprint" of the geochemistry of this hydrothermal system on the geochemistry of the magmatic gas system is likely. One important feature is that reduced gas species may be much more abundant than in many eruptions. Another is that fine ash may form aggregates more readily.

  18. The 2003 phreatomagmatic eruptions of Anatahan volcano - Textural and petrologic features of deposits at an emergent island volcano

    USGS Publications Warehouse

    Pallister, J.S.; Trusdell, F.A.; Brownfield, I.K.; Siems, D.F.; Budahn, J.R.; Sutley, S.F.

    2005-01-01

    Stratigraphic and field data are used in conjunction with textural and chemical evidence (including data from scanning electron microscope, electron microprobe, X-ray fluorescence, X-ray diffraction, and instrumental neutron activation analysis) to establish that the 2003 eruption of Anatahan volcano was mainly phreatomagmatic, dominated by explosive interaction of homogeneous composition low-viscosity crystal-poor andesite magma with water. The hydromagmatic mode of eruption contributed to the significant height of initial eruptive columns and to the excavation and eruption of altered rock debris from the sub-volcanic hydrothermal system. Volatile contents of glass inclusions in equilibrium phenocrysts less abundances of these constituents in matrix glass times the estimated mass of juvenile magma indicate minimum emissions of 19 kt SO2 and 13 kt Cl. This petrologic estimate of SO2 emission is an order-of-magnitude less than an estimate from TOMS. Similarly, inferred magma volumes from the petrologic data are an order of magnitude greater than those modeled from deformation data. Both discrepancies indicate additional sources of volatiles, likely derived from a separate fluid phase in the magma. The paucity of near-source volcanic-tectonic earthquakes preceding the eruption, and the dominance of sustained long-period tremor are attributed to the ease of ascent of the hot low-viscosity andesite, followed by a shallow phreatomagmatic mode of eruption. Phreatomagmatic eruptions are probably more common at emergent tropical island volcanoes, where shallow fresh-water lenses occur at near-sea-level vents. These relations suggest that phreatomagmatic explosions contributed to the formation of many of the near-sea-level craters and possibly even to the small calderas at the other Mariana islands.

  19. Ground-based radar monitoring of volcanic ash: a novel approach for the estimation of the bulk microphysical parameters

    NASA Astrophysics Data System (ADS)

    Vulpiani, Gianfranco; Ripepe, Maurizio

    2017-04-01

    The detection and quantitative retrieval of ash plumes is of significant interest due to the environmental, climatic, and socioeconomic effects of ash fallout which might cause hardship and damages in areas surrounding volcanoes, representing a serious hazard to aircrafts. Real-time monitoring of such phenomena is crucial for initializing ash dispersion models. Ground-based and space-borne remote sensing observations provide essential information for scientific and operational applications. Satellite visible-infrared radiometric observations from geostationary platforms are usually exploited for long-range trajectory tracking and for measuring low-level eruptions. Their imagery is available every 10-30 min and suffers from a relatively poor spatial resolution. Moreover, the field of view of geostationary radiometric measurements may be blocked by water and ice clouds at higher levels and the observations' overall utility is reduced at night. Ground-based microwave weather radars may represent an important tool for detecting and, to a certain extent, mitigating the hazards presented by ash clouds. The possibility of monitoring in all weather conditions at a fairly high spatial resolution (less than a few hundred meters) and every few minutes after the eruption is the major advantage of using ground-based microwave radar systems. Ground-based weather radar systems can also provide data for estimating the ash volume, total mass, and height of eruption clouds. Previous methodological studies have investigated the possibility of using ground-based single- and dual-polarization radar system for the remote sensing of volcanic ash cloud. In the present work, methodology was revised to overcome some limitations related to the assumed microphysics. New scattering simulations based on the T-matrix solution technique were used to set up the parametric algorithms adopted to estimate the mass concentration and ash mean diameter. Furthermore, because quantitative estimation of the erupted materials in the proximity of the volcano's vent is crucial for initializing transportation models, a novel methodology for estimating a volcano eruption's mass discharge rate based on the combination of radar and a thermal camera was developed. We show how it is possible to calculate the mass flow using radar-derived ash concentration and particle diameter at the base of the eruption column using the exit velocity estimated by the thermal camera. The proposed procedure was tested on four Etna eruption episodes that occurred in December 2015 as observed by the available network of C and X band radar systems. The results are congruent with other independent methodologies and observations . The agreement between the total erupted mass derived by the retrieved MDR and the plume concentration can be considered as a self-consistent methodological assessment. Interestingly, the analysis of the polarimetric radar observations allowed us to derive some features of the ash plume, including the size of the eruption column and the height of the gas thrust region.

  20. The Evolution of Galápagos Volcanoes: An Alternative Perspective

    NASA Astrophysics Data System (ADS)

    Harpp, Karen S.; Geist, Dennis J.

    2018-05-01

    The older eastern Galápagos are different in almost every way from the historically active western Galápagos volcanoes. The western Galápagos volcanoes have steep upper slopes and are topped by large calderas, whereas none of the older islands has a caldera, an observation that is supported by recent gravity measurements. Moreover, the eastern islands tend to have been constructed by linear fissure systems and many are cut by faults. Most of the western volcanoes erupt evolved basalts with an exceedingly small range of Mg#, Lan/Smn, and Smn/Ybn. This is attributed to homogenization in a crustal-scale magmatic mush column, which is maintained in a thermochemical steady state, owing to high magma supply directly over the Galápagos mantle plume. The exceptions are volcanoes at the leading edge of the hotspot, which have yet to develop mush columns, and volcanoes that are waning in activity, because they are being carried away from the plume. In contrast, the eastern volcanoes erupt relatively primitive magmas, with a large range in Mg#, Lan/Smn, and Smn/Ybn. This is attributed to isolated, ephemeral magmatic plumbing systems supplied by smaller magmatic fluxes throughout their histories. Consequently, each batch of magma follows an independent course of evolution, owing to the low volume of hypersolidus material beneath these volcanoes. The magmatic flux to Galápagos volcanoes negatively correlates with the distance to the Galápagos Spreading Center (GSC). When the ridge was close to the plume, most of the plume-derived magma was directed to the ridge. Currently, the active volcanoes are much farther from the GSC, thus most of the plume-derived magma erupts on the Nazca Plate and can be focused beneath the large young shields. We define an intermediate sub-province comprising Rabida, Santiago and Pinzon volcanoes, which were most active about 1 Ma. They have all erupted dacites, rhyolites, and trachytes, similar to the dying stage of the western volcanoes, indicating that there was a relatively large volume of mush beneath them. Morphologically, however, they are more like the eastern volcanoes, and have erupted lavas with a large range in composition.

  1. Inter-comparison of three-dimensional models of volcanic plumes

    USGS Publications Warehouse

    Suzuki, Yujiro; Costa, Antonio; Cerminara, Matteo; Esposti Ongaro, Tomaso; Herzog, Michael; Van Eaton, Alexa; Denby, Leif

    2016-01-01

    We performed an inter-comparison study of three-dimensional models of volcanic plumes. A set of common volcanological input parameters and meteorological conditions were provided for two kinds of eruptions, representing a weak and a strong eruption column. From the different models, we compared the maximum plume height, neutral buoyancy level (where plume density equals that of the atmosphere), and level of maximum radial spreading of the umbrella cloud. We also compared the vertical profiles of eruption column properties, integrated across cross-sections of the plume (integral variables). Although the models use different numerical procedures and treatments of subgrid turbulence and particle dynamics, the inter-comparison shows qualitatively consistent results. In the weak plume case (mass eruption rate 1.5 × 106 kg s− 1), the vertical profiles of plume properties (e.g., vertical velocity, temperature) are similar among models, especially in the buoyant plume region. Variability among the simulated maximum heights is ~ 20%, whereas neutral buoyancy level and level of maximum radial spreading vary by ~ 10%. Time-averaging of the three-dimensional (3D) flow fields indicates an effective entrainment coefficient around 0.1 in the buoyant plume region, with much lower values in the jet region, which is consistent with findings of small-scale laboratory experiments. On the other hand, the strong plume case (mass eruption rate 1.5 × 109 kg s− 1) shows greater variability in the vertical plume profiles predicted by the different models. Our analysis suggests that the unstable flow dynamics in the strong plume enhances differences in the formulation and numerical solution of the models. This is especially evident in the overshooting top of the plume, which extends a significant portion (~ 1/8) of the maximum plume height. Nonetheless, overall variability in the spreading level and neutral buoyancy level is ~ 20%, whereas that of maximum height is ~ 10%. This inter-comparison study has highlighted the different capabilities of 3D volcanic plume models, and identified key features of weak and strong plumes, including the roles of jet stability, entrainment efficiency, and particle non-equilibrium, which deserve future investigation in field, laboratory, and numerical studies.

  2. Assessing eruption column height in ancient flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2017-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at ∼ 45 ° N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the ∼ 180km of known Roza fissure length could have supported ∼36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (∼ 66Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced climate on time scales of decades to centuries but the location (i.e., latitude) of the province and relevant paleoclimate is important and must be considered.

  3. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2015-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced climate on time scales of decades to centuries but the location (i.e., latitude) of the province and relevant paleoclimate is important and must be considered.

  4. Tracking the hidden growth of a lava flow field: the 2014-15 eruption of Fogo volcano (Cape Verde)

    NASA Astrophysics Data System (ADS)

    Silva, Sonia; Calvari, Sonia; Hernandez, Pedro; Perez, Nemesio; Ganci, Gaetana; Alfama, Vera; Barrancos, José; Cabral, Jeremias; Cardoso, Nadir; Dionis, Samara; Fernandes, Paulo; Melian, Gladys; Pereira, José; Semedo, Hélio; Padilla, German; Rodriguez, Fatima

    2017-04-01

    Fogo volcano erupted in 2014-15 producing an extensive lava flow field in the summit caldera that destroyed two villages, Portela and Bangaeira. The eruption started with powerful explosive activity, lava fountaining, and a substantial ash column accompanying the opening of an eruptive fissure. Lava flows spreading from the base of the eruptive fissure produced three arterial lava flows, spreading S (Flow 1), N-NW (Flow 2) and W (Flow 3). By a week after the start of the eruption, a master lava tube had already developed within the eruptive fissure and along Flow 2. When Flow 2 front stopped against the N caldera cliff, the whole flow field behind it inflated, and eventually its partial drainage produced a short tube that fed Flow 3, but no lava tube formed within Flow 1. Here we analyze the emplacement processes on the basis of observations carried out directly on the lava flow field and through satellite image, in order to unravel the key factors leading to the development of lava tubes. These tubes were responsible for the rapid expansion of lava for the 7.9 km length of the flow field, as well as the destruction of the Portela and Bangaeira villages. Comparing time-averaged effusion rates (TADR) obtained from satellite and Supply Rate (SR) derived from SO2 flux data, we estimate the amount and timing of the lava flow field endogenous growth, with the aim of developing a tool that could be used for risk mitigation at this and other volcanoes.

  5. Transport of Fine Ash Through the Water Column at Erupting Volcanoes - Monowai Cone, Kermadec-Tonga Arc

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Leybourne, M. I.; de Ronde, C. E.; Greene, R.; Faure, K.; Chadwick, W.; Dziak, R. P.; Lupton, J. E.; Lebon, G.

    2010-12-01

    Monowai cone is a large, active, basaltic stratovolcano, part of the submarine Monowai volcanic center (MVC) located at ~26°S on the Kermadec-Tonga arc. At other actively erupting submarine volcanoes, magma extrusions and hydrothermal vents have been located only near the summit of the edifice, generating plumes enriched with hydrothermal components and magmatic gasses that disperse into the ocean environment at, or shallower than, the summit depth. Plumes found deeper than summit depths are dominated by fresh volcaniclastic ash particles, devoid of hydrothermal tracers, emplaced episodically by down-slope gravity flows, and transport fine ash to 10’s of km from the active eruptions. A water column survey of the MVC in 2004 mapped intensely hydrothermal-magmatic plumes over the shallow (~130 m) summit of Monowai cone and widespread plumes around its flanks. Due to the more complex multiple parasitic cone and caldera structure of MVC, we analyzed the dissolved and particulate components of the flank plumes for evidence of additional sources. Although hydrothermal plumes exist within the adjacent caldera, none of the parasitic cones on Monowai cone or elsewhere within the MVC were hydrothermally or volcanically active. The combination of an intensely enriched summit plume, sulfur particles and bubbles at the sea surface, and ash-dominated flank plumes indicate Monowai cone was actively erupting at the time of the 2004 survey. Monowai cone is thus the fourth erupting submarine volcano we have encountered, and all have had deep ash plumes distributed around their flanks [the others are: Kavachi (Solomon Island arc), NW Rota-1 (Mariana arc) and W Mata (NE Lau basin)]. These deep ash plumes are a syneruptive phenomenon, but it is unknown how they are related to eruptive style and output, or to the cycles of construction and collapse that occur on the slopes of submarine volcanoes. Repeat multibeam bathymetric surveys have documented two large-scale sector collapse events at Monowai and one at NW Rota-1, as well as constructional deposits extending down the flanks of these volcanoes. Acoustic records at Monowai and NW Rota-1 suggest sector collapse events are infrequent while eruptions, and the resulting supply of depositional material, have been nearly continuous. The sector collapse events occurred at times remote from our plume surveys, so, large landslide events are not a prerequisite for the presence of deep ash plumes. Despite a wide range of summit depths (<10 m at Kavachi to 1500 m at W Mata), lava types (basaltic-andesite, boninite, and basalt), and eruptive styles (Surtseyan, Strombolian, and effusive flows with active pillow formation), the deep particle plumes at each of these volcanoes are remarkably similar in their widespread distribution (to 10’s of km from the summit and at multiple depths down the flanks) and composition (dominantly fresh volcanic ash). Moderate eruption rates, lava-seawater interaction and steep slopes below an eruptive vent may be sufficient to initiate the transport of fine ash into the ocean environment and distal sediments via these types of plumes.

  6. Explosive Eruption of Aphyric Rhyolitic Liquid During May 2008 from Chaitén Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Lowenstern, J. B.; Sisson, T. W.; Pallister, J.; Lara, L.; Muñoz, J.

    2008-12-01

    Rhyolitic liquid erupted as Plinian fallout in May 2008 from Chaitén volcano represents a near-aphyric hydrous melt extracted and erupted rapidly from a source region deeper than at least four kilometers. We studied pumice lumps (to 18 cm) most likely erupted between May 2 and 9 but collected later from a strand line of beach near the port of Chaitén, 30 km south of the volcano. Most lumps have fibrous tube vesicles; the largest lump has a density of 0.80 g/cm3. Crystals compose less than 0.1 vol percent dense-rock equivalent. Rare phenocrysts, 0.5 to 1.0 mm in maximum diameter, are all subhedral and dominated by plagioclase, with lesser ferrohypersthene, amphibole and titanomagnetite. Backscatter imaging of grain mounts also revealed accessory apatite, zircon and pyrrhotite. No microlites were found in the matrix glass from these samples. A whole-rock analysis gives SiO2 = 75.9 wt.%, TiO2 = 0.27, Al2O3 = 13.5, FeOt = 1.30, MnO = 0.05, MgO = 0.27, CaO = 1.43, Na2O = 4.11, K2O= 3.11 and P2O5 = 0.07. Trace-element concentrations indicate that the rhyolite is not highly evolved, with moderate Rb (105 ppm) and U (3.33 ppm), and higher Sr concentrations (153 ppm) than would be typical of highly fractionated liquids. The magma chemical composition is very similar to a rhyolite dome erupted 5.6-9.4 ka at Chaitén (Naranjo and Stern, 2004; Stern et al. 2002). Electron probe analysis shows that plagioclase grains are mainly ~ An40, with rare cores as calcic as An80. Orthopyroxenes are nearly all ~ En50. Amphiboles are far more aluminous than expected for crystals forming from a shallow high-silica rhyolite magma: their Al2O3 ranges from 10.8 to 13.8 wt.%. Though the amphiboles are not euhedral, they also lack marginal reaction rinds or other evidence of breakdown due to decompression and consequent dehydration. We interpret mineral and glass compositions and textures to indicate that the magma was extracted from an intermediate-composition crystal-rich (e.g., 40-70 %) mush. The few (subhedral) phenocrysts are unlikely to have grown from the rhyolitic melt after its extraction, and instead derive from the mush zone. Published experimental phase equilibria (Costa et al., 2004) demonstrate that similar high-silica liquid can coexist with the observed phenocryst compositions in a granodioritic bulk composition with >4 % H2O in the melt at temperatures of 860 ± 20°C. The hydrous nature of the extracted rhyolitic melt likely requires that the mush had not previously reached its solidus, and thus had not lost water through plutonic consolidation and degassing. After extraction of the crystal-poor rhyolitic liquid from its source, the resident amphiboles would have started to decompose had they resided for more than a few days at depths less than ~ 4 km prior to eruption. Later erupted magmas, including the currently growing lava dome may have experienced different ascent histories. Costa, F., et al., 2004, J. Petrol., v. 45, p. 855-881.; Naranjo, J.A.and Stern, C.R. 2004. Rev. Geol. Chile v. 31, No.2, 225-240.; Stern, C.R. et al., 2002, Anal. Inst. Patagonia, v. 30, 167-174.

  7. A Ground Penetrating Radar (GPR) Survey of KIilbourne Hole, Southern New Mexico: Implication for Paleohydrology and Near Surface Geophysical Exploration of Mars and the Moon

    NASA Astrophysics Data System (ADS)

    Rhodes, N.; Hurtado, J. M.

    2013-05-01

    Features such as the Home Plate plateau on Mars, a suspected remnant of a phreatomagmatic eruption, can reveal important information about paleohydrologic conditions. The types and sizes of pyroclastic rocks produced by a phreatomagmatic eruption are indicative of the behavior of the explosion and the characteristics of the groundwater reservoir. Analysis of the pyroclast size distribution can be used to determine magma volatile content. We conduct an analysis of pyroclast size distribution using Ground Penetrating Radar (GPR) to make a quantitative estimate of the presence of past groundwater at Kilbourne Hole, a well-known phreatomagmatic crater located in southern Dona Ana County, New Mexico. As basaltic magma intruded the groundwater reservoir in the mid-Pleistocene, the water vaporized and caused a phreatomagmatic explosion that excavated the 2-km wide and 200-m deep depression. The pyroclastic units produced during a phreatomagmatic explosion are proportional to the size and the duration of the explosion and the size of the groundwater reservoir such that the wetter the eruption, the stronger the explosion. In a violent volcanic eruption, magma changes from a liquid into solid fragments and the explosion releases kinetic energy (Ek) by ejecting liquid water, vapor water (with mass Mw) and solid fragments (with mass Mf) at an ejection velocity (Ve). In order to determine Mw, we must know Ve. The relationship between Ve and the distance from center of the eruption (R) is such that Ve exponentially decreases with time (t) and R. A numerical model relating pyroclast size and Ve for material ejected in Hawaiian and Plinian eruptions shows that clast size also exponentially decreases with decreasing Ve. Based on these relationships, we use GPR to map the ejected clast size distribution as a function of distance from the edge of Kilbourne Hole in an effort to determine Ve and Mw. GPR surveys were performed in January 2012 and January 2013 using a Noggins 250 MHz radar system. We designed the surveys to detect volcanic bombs in the shallow subsurface and to map radial variations in their sizes. Six GPR lines were extended radially in each cardinal direction from the rim of Kilbourne Hole, and, as a control, fifteen short GPR lines were performed along an accessible cliff where visible volcanic bombs and blocks are exposed. We are able to visualize 58 bombs and blocks along one of the six GPR lines within the maximum penetration depth of 2.4-3.2 m. From the resulting GPR profiles, we measured the width and the length of the bombs. The largest dimension of each bomb was plotted against distance from crater rim, and the obtained exponential relationship between bomb size and distance will be applied to a numerical model of ejecta dispersal from transient volcanic explosions to solve for Ve and Mw. This case study at Kilbourne Hole serves as a planetary analog for similar surveys that could be done on Mars and on the Moon.

  8. Volcanic Ash Cloud Altitude retrievals from passive satellite sensors: the 03-09 December 2015 Etna eruption.

    NASA Astrophysics Data System (ADS)

    corradini, stefano; merucci, luca; guerrieri, lorenzo; pugnaghi, sergio; mcgarragh, greg; carboni, elisa; ventress, lucy; grainger, roy; scollo, simona; pardini, federica; zaksek, klemen; langmann, baerbel; bancalá, severin; stelitano, dario

    2016-04-01

    The volcanic ash cloud altitude is one of the most important parameter needed for the volcanic ash cloud estimations (mass, effective radius and optical depth). It is essential by modelers to initialize the ash cloud transportation models, and by volcanologists to give insights into eruption dynamics. Moreover, it is extremely important in order to reduce the disruption to flights as a result of volcanic activity whilst still ensuring safe travel. In this work, the volcanic ash cloud altitude is computed from remote sensing passive satellite data (SEVIRI, MODIS, IASI and MISR) by using the most of the existing retrieval techniques. A novel approach, based on the CO2 slicing procedure, is also shown. The comparisons among different techniques are presented and advantages and drawbacks emphasized. As test cases Etna eruptions in the period between 03 and 09 December 2015 are considered. During this time four lava fountain events occurred at the Voragine crater, forming eruption columns higher than 12 km asl and producing copious tephra fallout on volcano flanks. These events, among the biggest of the last 20 years, produced emissions that reached the stratosphere and produced a circum-global transport throughout the northern hemisphere.

  9. Ash production by attrition in volcanic conduits and plumes.

    PubMed

    Jones, T J; Russell, J K

    2017-07-17

    Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (<15 min) thereby rapidly raising the fractal dimension of tephra deposits. Furthermore, a new metric, the Entropy of Information, is introduced to quantify the degree of attrition (secondary fragmentation) from grain size data. Attrition elevates fine ash production which, in turn, has consequences for eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.

  10. The 2010 Eyjafjallajokull Eruptions: The NASA Applied Sciences Perspective for Aviation

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Haynes, J. A.; Trepte, C. R.; Krotkov, N. A.; Krueger, A. J.

    2010-12-01

    The volcanic ash from the eruption of the Eyjafjallajokull volcano in Iceland which began on March 17, 2010 was closely monitored by NASA Earth Observing System satellites. A wide variety of applications and techniques developed by the NASA Science Mission Directorate’s Applied Science Program were employed. These included information from imager data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua and Terra spacecraft. Horizontal distribution of the ash cloud and column amount of volcanic sufur dioxide gas was accurately mapped by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. Highly precise retrievals of the vertical distribution of volcanic aerosols were obtained by the Caliop instrument onboard the Calipso satellite. The Multi-angle Imaging SpectroRadiometer (MISR) satellite also provided stereo-derived plume heights at 1km horizontal and ~0.5km vertical resolutions. All of this information was employed to assist in airspace management during the eruptive period. It will continue to be used to improve dispersion models and procedures for dealing with volcanic ash.

  11. Popocatepetl Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Popocatepetl Volcano, almost 30 miles south of Mexico City, erupted yesterday (December 18, 2000) in what authorities are calling its most spectacular eruption since 800 A.D. This morning, Popocatepetl (pronounced poh-poh-kah-TEH-peh-til) continued spewing red-hot rocks as well as a column of smoke and ash about 2.5 miles high into the atmosphere. This true-color image of the volcano was acquired today by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the OrbView-2 satellite. In this image, Popocatepetl's plume (greyish pixels) can be seen blowing southward, away from Mexico City. There is a large cloud bank (bright white pixels) just to the east of the volcanic plume. Although Popocatepetl has been active since 1994-when it awoke from a 70-year slumber-this most recent eruption is most concerning to the greater Mexico City region's 20 million residents. The volcano demonstrated what it can do in 800 A.D. when it belched forth enough lava to fill many of the valleys in the surrounding region. Earlier, scientists warned the citizens of Mexico that there is a dome of lava at the base of the volcano that is causing pressure to build inside. They are concerned that, if it continues to build unabated, this pressure could cause even larger eruptions in the future. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  12. Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano

    NASA Astrophysics Data System (ADS)

    Jordan, Nina J.; Rotolo, Silvio G.; Williams, Rebecca; Speranza, Fabio; McIntosh, William C.; Branney, Michael J.; Scaillet, Stéphane

    2018-01-01

    A new, pre-Green Tuff (46 ka) volcanic stratigraphy is presented for the peralkaline Pantelleria Volcano, Italy. New 40Ar/39Ar and paleomagnetic data are combined with detailed field studies to develop a comprehensive stratigraphic reconstruction of the island. We find that the pre-46 ka succession is characterised by eight silica-rich peralkaline (trachyte to pantellerite) ignimbrites, many of which blanketed the entire island. The ignimbrites are typically welded to rheomorphic, and are commonly associated with lithic breccias and/or pumice deposits. They record sustained radial pyroclastic density currents fed by low pyroclastic fountains. The onset of ignimbrite emplacement is typically preceded (more rarely followed) by pumice fallout with limited dispersal, and some eruptions lack any associated pumice fall deposit, suggesting the absence of tall eruption columns. Particular attention is given to the correlation of well-developed lithic breccias in the ignimbrites, interpreted as probable tracers of caldera collapses. They record as many as five caldera collapse events, in contrast to the two events reported to date. Inter-ignimbrite periods are characterised by explosive and effusive eruptions with limited dispersal, such as small pumice cones, as well as pedogenesis. These periods have similar characteristics as the current post-Green Tuff activity on the island, and, while not imminent, it is reasonable to postulate the occurrence of another ignimbrite-forming eruption sometime in the future.

  13. A contribution to the hazards assessment at Copahue volcano (Argentina-Chile) by facies analysis of a recent pyroclastic density current deposit

    NASA Astrophysics Data System (ADS)

    Balbis, C.; Petrinovic, I. A.; Guzmán, S.

    2016-11-01

    We recognised and interpreted a recent pyroclastic density current (PDC) deposit at the Copahue volcano (Southern Andes), through a field survey and a sedimentological study. The relationships between the behaviour of the PDCs, the morphology of the Río Agrio valley and the eruptive dynamics were interpreted. We identified two lithofacies in the deposit that indicate variations in the eruptive dynamics: i) the opening of the conduit and the formation of a highly explosive eruption that formed a diluted PDC through the immediate collapse of the eruptive column; ii) a continued eruption which followed immediately and records the widening of the conduit, producing a dense PDC. The eruption occurred in 2000 CE, was phreatomagmatic (VEI ≤ 2), with a vesiculation level above 4000 m depth and fragmentation driven by the interaction of magma with an hydrothermal system at ca. 1500 m depth. As deduced from the comparison between the accessory lithics of this deposit and those of the 2012 CE eruption, the depth of onset of vesiculation and fragmentation level in this volcano is constant in depth. In order to reproduce the distribution pattern of this PDC's deposit and to simulate potential PDC's forming-processes, we made several computational modelling from "denser" to "more diluted" conditions. The latter fairly reproduces the distribution of the studied deposit and represents perhaps one of the most dangerous possible scenarios of the Copahue volcanic activity. PDCs occurrence has been considered in the last volcanic hazards map as a low probability process; evidences found in this contribution suggest instead to include them as more probable and thus very important for the hazards assessment of the Copahue volcano.

  14. On the use of remote infrasound and seismic stations to constrain eruptive sequences

    NASA Astrophysics Data System (ADS)

    Caudron, C.; Taisne, B.; Garces, M. A.

    2014-12-01

    The Kelud eruption was one of the strongest volcanic eruption of the decade. The eruption occurred on the 13th of February 2014 and ejected volcanic ash up to 20 km of altitude. The eruption also destroyed most of the instruments deployed in the near field. Therefore, not much information could be unraveled from the local volcano monitoring system. An explosion was clearly captured at many infrasound stations of the IMS network (and in Singapore), making it one of the biggest volcanic events recorded by the network. The high intensity, deep frequency, and infrasonic detection range of >10,000 km is characteristic of an eruptive column that injects ash into aircraft cruising altitudes and is an evident threat to aviation. The explosion signal was particularly rich in very long periods (~ 200s) and could be resolved as two distinct pulses at some sites. Interestingly, many broadband seismic instruments also recorded this event as far as 5000 kilometers. By inspecting the seismic data of the instruments located closer to the edifice (~ 150 km), we could clearly distinguish two different pulses separated by 17 minutes, followed by the arrival of very low frequencies (thanks to the coupling between ground and atmosphere). One pulse vs two pulses might have strong implications for the subsequent ash modelling. Due to the violence of the events, 4 stations out of 5 were destructed and the remaining one was saturated. This illustrates that data streams from broadband seismometers and infrasound sensors located at safe distances are extremely useful for deciphering the dynamic of the eruption and its implication in term of local, regional and global impact.

  15. Eruption of Trident Volcano, Katmai National Monument, Alaska, February-June 1953

    USGS Publications Warehouse

    Snyder, George L.

    1954-01-01

    Trident Volcano, one of several 'extinct' volcanoes in Katmai National Monument, erupted on February 15, 1953. Observers in a U. S. Navy plane, 50 miles away, and in King Salmon, 75 miles away, reported an initial column of smoke that rose to an estimated 30, 000 feet. Thick smoke and fog on the succeeding 2 days prevented observers from identifying the erupting volcano or assessing the severity of the eruption. It is almost certain, however, that during the latter part of this foggy period, either Mount Martin or Mount Mageik, or both, were also erupting sizable ash clouds nearby. The first close aerial observations were made in clear weather on February 18. At this time a thick, blocky lava flow was seen issuing slowly from a new vent at an altitude of 3,600 feet on the southwest flank of Trident Volcano. Other volcanic orifices in the area were only steaming mildly on this and succeeding days. Observations made in the following weeks from Naval aircraft patrolling the area indicated that both gas and ash evolution and lava extrusion from the Trident vent were continuing without major interruption. By March 11 an estimated 80-160 million cubic yards of rock material had been extruded. Air photographs taken in April and June show that the extrusion of lava had continued intermittently and, by June 17, the volume of the pile was perhaps 300-400 million cubic yards of rock material. Ash eruptions also apparently occurred sporadically during this period, the last significant surge taking place June 30. No civilian or military installations have been endangered by this eruption at the date of writing.

  16. Merapi's lava dome splitting explosion on 18 November 2013 observed by lidar and digital image correlation analysis.

    NASA Astrophysics Data System (ADS)

    Darmawan, Herlan; Walter, Thomas; Nikkhoo, Mehdi; Richter, Nicole

    2015-04-01

    After the 2010 Merapi eruption, the lava dome in the summit of the volcano was firstly growing and then subject to gradual cooling and contraction. In November 2013, a major phreatomagmatic explosion occurred, which caused an eruption column rising over 2 km high and destroyed a number of monitoring instruments in the near field. Bombs were thrown out over 1 km distance. The eruption produced volcanic ash and very fine materials. Deformation data from tilt or EDM showed no wide inflation or deflation associated with this eruption. In addition, high resolution TerraSAR-X data analysis also showed no edifice-wide deformation (Walter et al., 2015). Here we further examine two datasets to determine the morphologic and structural effects of this eruption. First we exploit fixed installed monitoring cameras and use a digital image correlation method to investigate geometric changes before and after the eruption. Second we acquired a high resolution terrestrial Lidar data set after the explosion and compared this another lidar data set acquired before. The result shows details on the splitted dome, the volume of the eruption and thickness of the deposits, and suggests that a new block at the front of the dome is inherently unstable and might break off to form a block and ash flow in the near future. Reference: TR Walter, Subandriyo J, Kirbani S, Bathke H, Suryanto W, Aisyah N, Darmawan H, Jousset P, Lühr BG, Dahm T (2015) Volcano-tectonic control of Merapi's lava dome splitting: The November 2013 fracture observed from high resolution TerraSAR-X data. Tectonophysics 639, 12 January 2015, Pages 23-33. doi:10.1016/j.tecto.2014.11.007

  17. NanoSIMS results from olivine-hosted melt embayments: Modeling ascent rate in explosive basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Lloyd, A. S.; Plank, T.; Ruprecht, P.; Hauri, E. H.; Gonnermann, H. M.; Rose, W. I.

    2012-12-01

    A critical parameter governing the explosivity of volcanic eruptions is the rate at which magma ascends and degases, because this affects bubble nucleation, coalescence, and ultimately fragmentation. Although several methods have been used to determine magma ascent rates, it remains a poorly constrained parameter for most eruptions. One promising method employs diffusion modeling of H2O and CO2 concentration gradients in melt embayments/open melt inclusions [1,2]. Here we utilize the fine spatial resolution of the nanoSIMS to obtain concentration gradients for five volatile species, improving upon previous efforts that were more limited in spatial resolution (FTIR, [1]) and in number of volatile analytes (H2O only by BSE, [2]). Focusing on explosive basaltic eruptions, for which very little is known about ascent rates, we chose ash and lapilli samples from the Oct 1974 sub-plinian eruption of Volcán de Fuego. Glassy, olivine-hosted embayments with evidence of outlet bubbles were analyzed by nanoSIMS at a minimum distance between spots of 15 μm. Major element zonation in the embayments was investigated by EMP, and high resolution BSE images were captured to complement the nanoSIMS spot measurements for H2O (as in [2]). We report analyses for 5 embayments that vary in length from 100 to 350 μm. Low-solubility volatiles (CO2, H2O, S) decrease towards the embayment outlet, consistent with diffusive reequilibration with the more-degassed surrounding melt. High-solubility volatiles (Cl, F) increase towards the outlet, apparently behaving as magmaphile elements. Major elements exhibit constant concentrations along the embayment, except for a 20-50 μm wide zone near the embayment outlet, perhaps representing a boundary layer at the outlet bubble, where concentrations vary consistent with olivine and clinopyroxene microlite growth. BSE grayscale values are thus affected by both H2O diffusion and major element zonation at the embayment outlet, and cannot be used to estimate H2O concentration gradients [2]. Forward modeling of CO2 and H2O profiles takes into account temperature- and composition-dependent diffusivities and a closed-system degassing path for the exterior magma (as observed in melt inclusions from the same sample). Assuming a constant decompression rate from 200 MPa and an initial composition of 600 ppm CO2 and 4.3 wt% H2O at 1030°C, models yield preliminary results with very rapid ascent times (100 s, or 2 MPa/s). A two-stage model, however, allows slower decompression during CO2 exsolution (0.1 MPa/s) and faster ascent when H2O begins to exsolve (1.5 MPa/s), for total ascent times on the order of 10 to 20 minutes. This example highlights the additional constraints that come from measuring multiple diffusing species. [1] Liu et al, JGR, 2007 [2] Humphreys et al, EPSL, 2008.

  18. Evaluation of Redoubt Volcano's sulfur dioxide emissions by the Ozone Monitoring Instrument

    USGS Publications Warehouse

    Lopez, Taryn; Carn, Simon A.; Werner, Cynthia A.; Fee, David; Kelly, Peter; Doukas, Michael P.; Pfeffer, Melissa; Webley, Peter; Cahill, Catherine F.; Schneider, David

    2013-01-01

    The 2009 eruption of Redoubt Volcano, Alaska, provided a rare opportunity to compare satellite measurements of sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) with airborne SO2 measurements by the Alaska Volcano Observatory (AVO). Herein we: (1) compare OMI and airborne SO2 column density values for Redoubt's tropospheric plume, (2) calculate daily SO2 masses from Mount Redoubt for the first three months of the eruption, (3) develop simple methods to convert daily measured SO2 masses into emission rates to allow satellite data to be directly integrated with the airborne SO2 emissions dataset, (4) calculate cumulative SO2 emissions from the eruption, and (5) evaluate OMI as a monitoring tool for high-latitude degassing volcanoes. A linear correlation (R2 ~ 0.75) is observed between OMI and airborne SO2 column densities. OMI daily SO2 masses for the sample period ranged from ~ 60.1 kt on 24 March to below detection limit, with an average daily SO2 mass of ~ 6.7 kt. The highest SO2 emissions were observed during the initial part of the explosive phase and the emissions exhibited an overall decreasing trend with time. OMI SO2 emission rates were derived using three methods and compared to airborne measurements. This comparison yields a linear correlation (R2 ~ 0.82) with OMI-derived emission rates consistently lower than airborne measurements. The comparison results suggest that OMI's detection limit for high latitude, springtime conditions varies from ~ 2000 to 4000 t/d. Cumulative SO2 masses calculated from daily OMI data for the sample period are estimated to range from 542 to 615 kt, with approximately half of this SO2 produced during the explosive phase of the eruption. These cumulative masses are similar in magnitude to those estimated for the 1989–90 Redoubt eruption. Strong correlations between daily OMI SO2 mass and both tephra mass and acoustic energy during the explosive phase of the eruption suggest that OMI data may be used to infer relative eruption size and explosivity. Further, when used in conjunction with complementary datasets, OMI daily SO2 masses may be used to help distinguish explosive from effusive activity and identify changes in lava extrusion rates. The results of this study suggest that OMI is a useful volcano monitoring tool to complement airborne measurements, capture explosive SO2 emissions, and provide high temporal resolution SO2 emissions data that can be used with interdisciplinary datasets to illuminate volcanic processes.

  19. Voluminous juvenile lithic fragments in the pumice-fall deposit of the 1108 eruption of Asama volcano: Evidence of repeated compaction and fragmentation in the shallow conduit

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Kichise, T.; Yasui, M.; Nagahashi, Y.; Yoshida, T.

    2010-12-01

    The pumice-fall deposit of the 1108 eruption of Asama volcano, central Japan, contains a large amount of lithic fragments (up to 40 wt%) that are angular, dense, and juvenile. The deposit consists of eight sublayers, comprising three thick layers of pumice (1.0-1.4 g/cm3) containing 5-40 wt% lithic fragments (1.4-2.7 g/cm3) interbedded with two thin pumiceous layers, two thin layers of lapilli-sized lithic fragments, and a volcanic ash layer. The average volume of each sublayer is ~0.01 km3. The large volume of lithic fragments and their occurrence throughout the deposit show that their source lava plugs formed and fragmented continuously during the eruption. The lithic fragments are not coated with vesicular matrix, indicating that the fragments were entrained into mist flows of the eruption columns; i.e., after the magma fragmentation that produced the pumice clasts. The plagioclase microlites in the lithic fragments have a range (55-75 mol%) and frequency distribution of anorthite content similar to those in the pumices, indicating that the lithic fragments and pumices have a similar history of decompression from the magma reservoir to the shallow conduit. The groundmass of the pumices has a porosity approximately ranging from 40% to 60% and positive correlation with groundmass crystallinity; this is consistent with an interpretation that magma with higher porosity is more decompressed and thus crystallized in the shallower conduit. The highest crystallinity of the pumice, of which the groundmass porosity is ca. 60%, coincides with the lowest crystallinity of the lithic fragments. In addition, the pore connectivity of the pumice increases (with increasing porosity) steeply at a groundmass porosity of ca. 60%. These petrographical observations strongly suggest that the lithic fragments are the collapsed and compacted products of magma foam (at a groundmass porosity of ca. 60%) just before it fragmented to become pumices. The lithic fragments often have mosaic texture with healed cracks, suggesting that they were formed by repeated shear-induced fragmentation and welding. The average water contents of the glasses in the groundmass of the lithic fragments and pumices are 0.35 and 0.54 wt%, respectively, corresponding to approximate quench depths of 200 and 300 m, respectively. The average volume of the erupted lithic fragments in each sublayer is equivalent to the volume of a magma plug with a diameter of 200 m and depth of 200 m, which is almost equal to the present crater size of Asama. These genetic and occurrence relations between the lithic fragments and pumices indicate that the magma ascent condition of the 1108 eruption was near the bifurcation boundary between the formations of the lava plug via foam compaction and the eruption column via magma fragmentation. Therefore, the magma ascent rate of the 1108 eruption could be used as a rough criterion for predicting the eruption styles in the future volcanic crisis of Asama.

  20. Search for possible relationship between volcanic ash particles and thunderstorm lightning activity

    NASA Astrophysics Data System (ADS)

    Várai, A.; Vincze, M.; Lichtenberger, J.; Jánosi, I. M.

    2011-12-01

    Explosive volcanic eruptions that eject columns of ash from the crater often generate lightning discharges strong enough to be remotely located by very low frequency radio waves. A fraction of volcanic ash particles can stay and disperse long enough to have an effect on weather phenomena days later such as thunderstorms and lightnings. In this work we report on lightning activity analysis over Europe following two recent series of volcanic eruptions in order to identify possible correlations between ash release and subsequent thunderstorm flash frequency. Our attempts gave negative results which can be related to the fact that we have limited information on local atmospheric variables of high enough resolution, however lightning frequency is apparently determined by very local circumstances.

  1. Emergence of healing in the Antarctic ozone layer

    NASA Astrophysics Data System (ADS)

    Solomon, Susan; Ivy, Diane J.; Kinnison, Doug; Mills, Michael J.; Neely, Ryan R.; Schmidt, Anja

    2016-07-01

    Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or “healing”) is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption.

  2. Multiphase flow modeling and simulation of explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Neri, Augusto

    Recent worldwide volcanic activity, such as eruptions at Mt. St. Helens, Washington, in 1980, Mt. Pinatubo, Philippines, in 1991, as well as the ongoing eruption at Montserrat, West Indies, highlighted again the complex nature of explosive volcanic eruptions as well as the tremendous risk associated to them. In the year 2000, about 500 million people are expected to live under the shadow of an active volcano. The understanding of pyroclastic dispersion processes produced by explosive eruptions is, therefore, of primary interest, not only from the scientific point of view, but also for the huge worldwide risk associated with them. The thesis deals with an interdisciplinary research aimed at the modeling and simulation of explosive volcanic eruptions by using multiphase thermo-fluid-dynamic models. The first part of the work was dedicated to the understanding and validation of recently developed kinetic theory of two-phase flow. The hydrodynamics of fluid catalytic cracking particles in the IIT riser were simulated and compared with lab experiments. Simulation results confirm the validity of the kinetic theory approach. Transport of solids in the riser is due to dense clusters. On a time-average basis the bottom of the riser and the walls are dense, in agreement with IIT experimental data. The low frequency of oscillation (about 0.2 Hz) is also in agreement with data. The second part of the work was devoted to the development of transient two-dimensional multiphase and multicomponent flow models of pyroclastic dispersion processes. In particular, the dynamics of ground-hugging high-speed and high-temperature pyroclastic flows generated by the collapse of volcanic columns or by impulsive discrete explosions, was investigated. The model accounts for the mechanical and thermal non-equilibrium between a multicomponent gas phase and N different solid phases representative of pyroclastic particles of different sizes. Pyroclastic dispersion dynamics describes the formation of the initial vertical jet, the column collapse, and the building of the pyroclastic fountain, followed by the generation of radially spreading pyroclastic flows. The development of thermal convective instabilities in the flow lead to the formation of co-ignimbritic or phoenix clouds. Simulation results strongly highlight the importance of the multiphase flow formulation of the mixture. Large particles tend to segregate and sediment along the ground, whereas fine particles tend to form ascending buoyant plumes. Mixtures rich in fine grained particles produce larger runout of the flow and larger ascending plumes than mixtures rich in coarse particles. Simulation results appear to be qualitatively in agreement with field observations, but require to be fully validated by the simulation of well-known test cases.

  3. Modeling Potential Tephra Dispersal at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Hooper, D.; Franklin, N.; Adams, N.; Basu, D.

    2006-12-01

    Quaternary basaltic volcanoes exist within 20 km [12 mi] of the potential radioactive waste repository at Yucca Mountain, Nevada, and future basaltic volcanism at the repository is considered a low-probability, potentially high-consequence event. If radioactive waste was entrained in the conduit of a future volcanic event, tephra and waste could be transported in the resulting eruption plume. During an eruption, basaltic tephra would be dispersed primarily according to the height of the eruption column, particle-size distribution, and structure of the winds aloft. Following an eruption, contaminated tephra-fall deposits would be affected by surface redistribution processes. The Center for Nuclear Waste Regulatory Analyses developed the computer code TEPHRA to calculate atmospheric dispersion and subsequent deposition of tephra and spent nuclear fuel from a potential eruption at Yucca Mountain and to help prepare the U.S. Nuclear Regulatory Commission to review a potential U.S. Department of Energy license application. The TEPHRA transport code uses the Suzuki model to simulate the thermo-fluid dynamics of atmospheric tephra dispersion. TEPHRA models the transport of airborne pyroclasts based on particle diffusion from an eruption column, horizontal diffusion of particles by atmospheric and plume turbulence, horizontal advection by atmospheric circulation, and particle settling by gravity. More recently, TEPHRA was modified to calculate potential tephra deposit distributions using stratified wind fields based on upper atmosphere data from the Nevada Test Site. Wind data are binned into 1-km [0.62-mi]-high intervals with coupled distributions of wind speed and direction produced for each interval. Using this stratified wind field and discretization with respect to height, TEPHRA calculates particle fall and lateral displacement for each interval. This implementation permits modeling of split wind fields. We use a parallel version of the code to calculate expected tephra and high-level waste accumulation at specified points on a two-dimensional spatial grid, thereby simulating a three- dimensional initial deposit. To assess subsequent tephra and high-level waste redistribution and resuspension, modeling grids were devised to measure deposition in eolian and fluvial source regions. The eolian grid covers an area of 2,600 km2 [1,000 mi2] and the fluvial grid encompasses 318 km2 [123 mi2] of the southernmost portion of the Fortymile Wash catchment basin. Because each realization is independent, distributions of tephra and high-level waste reflect anticipated variations in source-term and transport characteristics. This abstract is an independent product of the Center for Nuclear Waste Regulatory Analyses and does not necessarily reflect the view or regulatory position of the U.S. Nuclear Regulatory Commission.

  4. Volatile contents of magmas from the Deccan and Columbia River provinces: implications for atmospheric gas release from flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Self, S.; Blake, S.; Sharma, K.; Widdowson, M.

    2008-12-01

    Sulphur (S) and chlorine (Cl) contents of magmas from the Mesozoic Deccan basalt province have been measured directly on rare, preserved glass inclusions within crystals and on glassy selvages in these ancient lava flows (Self et al., 2008). Lava flows of the Deccan Traps, India, were emplaced around 66-65 Ma ago. S and Cl concentrations range from high values of ~ 1400 ppm S and 500 ppm Cl in inclusions down to a few hundred ppm in lava selvages. The data indicate that the basaltic magmas of certain (and by implication, many) Deccan eruptions would have emitted up to 0.15 wt % SO2 and up to 0.03 wt % HCl, using an approach that accounts for the variable degree of melt evolution. Such values imply atmospheric releases of ~ 4 Tg of SO2 (and 0.8 Tg HCl) per cubic kilometer (km) of basaltic lava erupted, with most of this being released above the vents. Although eruptive volumes of individual Deccan flood basalt lava fields are not known, the SO2 masses released are indicated to be around 4000 Tg for a 1000 cubic km eruption. Similar, to slightly higher, values for S and Cl have been recently obtained by the same method on two other lava flow fields besides the already-studied Roza lava (Thordarson and Self, 1996) from the 15 Ma Columbia River flood basalt province (CRB) in the Pacific NW of the USA. Volumes of individual eruptive units are known for the CRB (those studied are from 1300-2600 cubic km) and it can be shown that the studied eruptions released SO2 masses in the range 8,000 to 12000 Tg, depending upon flow-field volume. In some cases, the vent areas for these eruptions can be explored. Understanding the eruptive style indicated by proximal deposits will help in future modeling of the atmospheric behavior of the eruption columns, and in heights attained. These results provide a solid basis for interpretation and modeling of the environmental impact of gas releases from past flood basalt activity, which has long been assumed to have been severe. The significance of flood basalt volcanism is that the erupted volumes, and hence the potential environmental pollution caused by the gases released, were immense on a scale compared to smaller-scale historic and Quaternary basaltic eruptive activity.

  5. Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores)

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Hildenbrand, A.; Marques, F. O.; Weiss, B.; Boulesteix, T.; Hübscher, C.; Lüdmann, T.; Costa, A. C. G.; Catalão, J. C.

    2015-08-01

    The evolution of volcanic islands is generally marked by fast construction phases alternating with destruction by a variety of mass-wasting processes. More specifically, volcanic islands located in areas of intense regional deformation can be particularly prone to gravitational destabilisation. The island of S. Miguel (Azores) has developed during the last 1 Myr inside the active Terceira Rift, a major tectonic structure materializing the present boundary between the Eurasian and Nubian lithospheric plates. In this work, we depict the evolution of the island, based on high-resolution DEM data, stratigraphic and structural analyses, high-precision K-Ar dating on separated mineral phases, and offshore data (bathymetry and seismic profiles). The new results indicate that: (1) the oldest volcanic complex (Nordeste), composing the easternmost part of the island, was dominantly active between ca. 850 and 750 ka, and was subsequently affected by a major south-directed flank collapse. (2) Between at least 500 ka and 250 ka, the landslide depression was massively filled by a thick lava succession erupted from volcanic cones and domes distributed along the main E-W collapse scar. (3) Since 250 kyr, the western part of this succession (Furnas area) was affected by multiple vertical collapses; associated plinian eruptions produced large pyroclastic deposits, here dated at ca. 60 ka and less than 25 ka. (4) During the same period, the eastern part of the landslide scar was enlarged by retrogressive erosion, producing the large Povoação valley, which was gradually filled by sediments and young volcanic products. (5) The Fogo volcano, in the middle of S. Miguel, is here dated between ca. 270 and 17 ka, and was affected by, at least, one southwards flank collapse. (6) The Sete Cidades volcano, in the western end of the island, is here dated between ca. 91 and 13 ka, and experienced mutliple caldera collapses; a landslide to the North is also suspected from the presence of a subtle morphologic scar covered by recent lava flows erupted from alignments of basaltic strombolian cones. The predominance of the N150° and N75° trends in the island suggest that the tectonics of the Terceira Rift controlled the location and the distribution of the volcanism, and to some extent the various destruction events.

  6. Explosive origin of silicic lava: Textural and δD-H2O evidence for pyroclastic degassing during rhyolite effusion

    NASA Astrophysics Data System (ADS)

    Castro, Jonathan M.; Bindeman, Ilya N.; Tuffen, Hugh; Ian Schipper, C.

    2014-11-01

    A long-standing challenge in volcanology is to explain why explosive eruptions of silicic magma give way to lava. A widely cited idea is that the explosive-to-effusive transition manifests a two-stage degassing history whereby lava is the product of non-explosive, open-system gas release following initial explosive, closed-system degassing. Direct observations of rhyolite eruptions indicate that effusive rhyolites are in fact highly explosive, as they erupt simultaneously with violent volcanic blasts and pyroclastic fountains for months from a common vent. This explosive and effusive overlap suggests that pyroclastic processes play a key role in rendering silicic magma sufficiently degassed to generate lava. Here we use precise H-isotope and magmatic H2O measurements and textural evidence to demonstrate that effusion results from explosion(s)-lavas are the direct product of brittle deformation that fosters batched degassing into transient pyroclastic channels (tuffisites) that repetitively and explosively vent from effusing lava. Our measurements show, specifically that D/H ratios and H2O contents of a broad suite of explosive and effusive samples from Chaitén volcano (hydrous bombs, Plinian pyroclasts, tuffisite veins, and lava) define a single and continuous degassing trend that links wet explosive pyroclasts (∼ 1.6 wt.% H2O, δD = - 76.4 ‰) to dry obsidian lavas (∼ 0.13 wt.% H2O, δD = - 145.7 ‰). This geochemical pattern is best fit with batched degassing model that comprises small repeated closed-system degassing steps followed by pulses of vapour extraction. This degassing mechanism is made possible by the action of tuffisite veins, which, by tapping already vesicular or brecciated magma, allow batches of exsolved gas to rapidly and explosively escape from relatively isolated closed-system domains and large tracts of conduit magma by giving them long-range connectivity. Even though tuffisite veins render magma degassed and capable of effusing, they are nonetheless the avenues of violent gas and particle transport and thus have the potential to drive explosions when they become blocked or welded shut. Thus the effusion of silicic lava, traditionally thought to be relatively benign process, presents a particularly hazardous form of explosive volcanism.

  7. Seismic tremors and magma wagging during explosive volcanism.

    PubMed

    Jellinek, A Mark; Bercovici, David

    2011-02-24

    Volcanic tremor is a ubiquitous feature of explosive eruptions. This oscillation persists for minutes to weeks and is characterized by a remarkably narrow band of frequencies from about 0.5 Hz to 7 Hz (refs 1-4). Before major eruptions, tremor can occur in concert with increased gas flux and related ground deformation. Volcanic tremor is thus of particular value for eruption forecasting. Most models for volcanic tremor rely on specific properties of the geometry, structure and constitution of volcanic conduits as well as the gas content of the erupting magma. Because neither the initial structure nor the evolution of the magma-conduit system will be the same from one volcano to the next, it is surprising that tremor characteristics are so consistent among different volcanoes. Indeed, this universality of tremor properties remains a major enigma. Here we employ the contemporary view that silicic magma rises in the conduit as a columnar plug surrounded by a highly vesicular annulus of sheared bubbles. We demonstrate that, for most geologically relevant conditions, the magma column will oscillate or 'wag' against the restoring 'gas-spring' force of the annulus at observed tremor frequencies. In contrast to previous models, the magma-wagging oscillation is relatively insensitive to the conduit structure and geometry, which explains the narrow band of tremor frequencies observed around the world. Moreover, the model predicts that as an eruption proceeds there will be an upward drift in both the maximum frequency and the total signal frequency bandwidth, the nature of which depends on the explosivity of the eruption, as is often observed.

  8. Impact of Improvements in Volcanic Implementation on Atmospheric Chemistry and Climate in the GISS-E2 Model

    NASA Technical Reports Server (NTRS)

    Tsigaridis, Kostas; LeGrande, Allegra; Bauer, Susanne

    2015-01-01

    The representation of volcanic eruptions in climate models introduces some of the largest errors when evaluating historical simulations, partly due to the crude model parameterizations. We will show preliminary results from the Goddard Institute for Space Studies (GISS)-E2 model comparing traditional highly parameterized volcanic implementation (specified Aerosol Optical Depth, Effective Radius) to deploying the full aerosol microphysics module MATRIX and directly emitting SO2 allowing us the prognosically determine the chemistry and climate impact. We show a reasonable match in aerosol optical depth, effective radius, and forcing between the full aerosol implementation and reconstructions/observations of the Mt. Pinatubo 1991 eruption, with a few areas as targets for future improvement. This allows us to investigate not only the climate impact of the injection of volcanic aerosols, but also influences on regional water vapor, O3, and OH distributions. With the skill of the MATRIX volcano implementation established, we explore (1) how the height of the injection column of SO2 influence atmospheric chemistry and climate response, (2) how the initial condition of the atmosphere influences the climate and chemistry impact of the eruption with a particular focus on how ENSO and QBO and (3) how the coupled chemistry could mitigate the climate signal for much larger eruptions (i.e. the 1258 eruption, reconstructed to be approximately 10x Pinatubo). During each sensitivity experiment we assess the impact on profiles of water vapor, O3, and OH, and assess how the eruption impacts the budget of each.

  9. New insights on lithofacies architecture, sedimentological characteristics and volcanological evolution of pre-caldera (> 22 ka), multi-phase, scoria- and spatter-cones at Somma-Vesuvius

    NASA Astrophysics Data System (ADS)

    Sparice, Domenico; Scarpati, Claudio; Perrotta, Annamaria; Mazzeo, Fabio Carmine; Calvert, Andrew T.; Lanphere, Marvin A.

    2017-11-01

    Pre-caldera (> 22 ka) lateral activity at Somma-Vesuvius is related to scoria- and spatter-cone forming events of monogenetic or polygenetic nature. A new stratigraphic, sedimentological, textural and lithofacies investigation was performed on five parasitic cones (Pollena cones, Traianello cone, S. Maria a Castello cone and the recently found Terzigno cone) occurring below the Pomici di Base (22 ka) Plinian products emplaced during the first caldera collapse at Somma-Vesuvius. A new Ar/Ar age of 23.6 ± 0.3 ka obtained for the Traianello cone as well as the absence of a paleosol or reworked material between the S. Maria a Castello cone and the Pomici di Base deposits suggest that such cone-forming eruptions occurred near the upper limit of the pre-caldera period (22-39 ky). The stratigraphy of three of these eccentric cones (Pollena cones and Traianello cone) exhibits erosion surfaces, exotic tephras, volcaniclastic layers, paleosols, unconformity and paraconformity between superimposed eruptive units revealing their multi-phase, polygenetic evolution related to activation of separate vents and periods of quiescence. Such eccentric cones have been described as composed of scoria deposits and pure effusive lavas by previous authors. Lavas are here re-interpreted as welded horizons (lava-like) composed of coalesced spatter fragments whose pyroclastic nature is locally revealed by relicts of original fragments and remnants of clast outlines. These welded horizons show, locally, rheomorphic structures allowing to define them as emplaced as clastogenic lava flows. The lava-like facies is transitional, upward and downward, to less welded facies composed of agglutinated to unwelded spatter horizons in which clasts outlines are increasingly discernible. Such textural characteristics and facies variation are consistent with a continuous fall deposition of Hawaiian fire-fountains episodes alternated with Strombolian phases emplacing loose scoria deposits. High enrichment factor values, measured in the scoria deposits, imply the ejection of large proportion of ash even during Strombolian events.

  10. Element variations in rhyolitic magma resulting from gas transport

    NASA Astrophysics Data System (ADS)

    Berlo, K.; Tuffen, H.; Smith, V. C.; Castro, J. M.; Pyle, D. M.; Mather, T. A.; Geraki, K.

    2013-11-01

    Tuffisite veins are glass-filled fractures formed when magma fragments during degassing within the conduit. These veins form transient channels through which exsolved gases can escape from magma. The purpose of this study is to determine the extent to which chemical heterogeneity within the melt results from gas transport, and assess how this can be used to study magma degassing. Two tuffisite veins from contrasting rhyolitic eruptions at Torfajökull (Iceland) and Chaitén (Chile) were studied in detail. The tuffisite vein from Torfajökull is from a shallow dissected conduit (∼70 ka) that fed a degassed lava flow, while the sample from Chaitén was a bomb ejected during the waning phases of Plinian activity in May 2008. The results of detailed in situ chemical analyses (synchrotron XRF, FTIR, LA-ICP-MS) show that in both veins larger vesiculated fragments are enriched in volatile elements (Torfajökull: H, Li, Cl; Chaitén: Li, Cl, Cu, Zn, As, Sn, Sb) compared to the host, while the surrounding smaller particles are depleted in the Torfajökull vein (Li, Cl, Zn, Br, Rb, Pb), but enriched in the Chaitén vein (K, Cu, Zn, As, Mo, Sb, Pb). The lifespans of both veins and the fluxes of gas and particles through them can be estimated using diffusion profiles and enrichment factors. The Torfajökull vein had a longer lifespan (∼a day) and low particle velocities (∼cm/s), while the Chaitén vein was shorter lived (<1 h) with a high gas velocity (∼m/s). These differences are consistent with the contrasting eruption mechanisms (effusive vs. explosive). The amount of magma that degassed through the Chaitén vein is more than ten times the volume of the vein itself, requiring the vein to tap into pre-exsolved gas pockets. This study highlights that tuffisite veins are highly efficient gas pathways and thereby impart chemical diversity in volatile elements on the melt.

  11. A First: Detailed Tracking of an Erupting Undersea Volcano and its Impacts on the Overlying Ocean via a Submarine Electro-Optical Sensor Network.

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.

    2016-02-01

    The scientifically diverse and technologically advanced cabled array component of the NSF's Ocean Observatories Initiative consists of 900 km of electro-optical fiber deployed from Pacific City, OR, across active portions of the Juan de Fuca (JdF) tectonic plate, and upward into the overlying ocean. This array, completed in 2014 on time and under budget, enables real-time, high-bandwidth, 2-way communication with seafloor and water column sensor arrays across: 1. the Cascadia accretionary prism, 2. the JdF spreading center, and, 3. portions of the overlying NE Pacific. Oceanographic processes in coastal waters, the California Current, and up to 400 km offshore, are captured by six remote-controlled, profiling moorings covering full-ocean depths. Currently, 6 primary nodes, 17 junction boxes, and 85% of 150 instruments are transmitting data ashore to the Internet via the Pacific NW Gigapop (http://www.pnwgp.net/). All data are archived at the U. of Washington, pending completion of the OOI CyberInfrastructure in October 2015. In 2014, community requests to access data to assess inflation at Axial Seamount, resulted in NSF releasing real-time data from 7 seismometers and 3 pressure sensors (IRIS: http://www.iris.edu/hq/). On April 20-22, 90 participants, met in Seattle to explore scientific responses to an eruption (http://novae.ocean.washington.edu). On April 24, Axial did erupt; seismic events rose dramatically to many hundreds/hour the Axial caldera floor dropped 2.4 m in 16 hours and water temperatures rose by 0.7°C, then declined in 3 weeks to normal values. Water-borne acoustic signals indicated seafloor activity along the rift zone north of Axial. Water column observations also indicated that a large plume of hydrothermal fluid was released during the eruptions. Follow-on field programs documented a 127 m thick lava flow on the northern rift, and a thin eruption within the caldera. These events signal a new era in Ocean Sciences as instantaneous Internet access to events far offshore begin allowing interactive responses to complex processes unfolding within our ocean. The attached figure shows the contact between 3.5 month old lava (black) and a much older flow.

  12. Global dimming and brightening versus atmospheric column transparency, Europe, 1906-2007

    NASA Astrophysics Data System (ADS)

    Ohvril, Hanno; Teral, Hilda; Neiman, Lennart; Kannel, Martin; Uustare, Marika; Tee, Mati; Russak, Viivi; Okulov, Oleg; Jõeveer, Anne; Kallis, Ain; Ohvril, Tiiu; Terez, Edward I.; Terez, Galina A.; Gushchin, Gennady K.; Abakumova, Galina M.; Gorbarenko, Ekaterina V.; Tsvetkov, Anatoly V.; Laulainen, Nels

    2009-05-01

    Multiannual changes in atmospheric column transparency based on measurements of direct solar radiation allow us to assess various tendencies in climatic changes. Variability of the atmospheric integral (broadband) transparency coefficient, calculated according to the Bouguer-Lambert law and transformed to a solar elevation of 30°, is used for two Russian locations, Pavlovsk and Moscow, one Ukrainian location, Feodosiya, and three Estonian locations, Tartu, Tõravere, and Tiirikoja, covering together a 102-year period, 1906-2007. The comparison of time series revealed significant parallelism. Multiannual trends demonstrate decrease in transparency during the postwar period until 1983/1984. The trend ends with a steep decline of transparency after a series of four volcanic eruptions of Soufriere (1979), Saint Helens (1980), Alaid (1981), and El Chichón (1982). From 1984/1985 to 1990 the atmosphere remarkably restored its clarity, which almost reached again the level of the 1960s. Following the eruption of Mount Pinatubo (June 1991), there was the most significant reduction in column transparency of the postwar period. However, from the end of 1990s, the atmosphere in all considered locations is characterized with high values of transparency. The clearing of the atmosphere (from 1993) evidently indicates a decrease in the content of aerosol particles and, besides the decline of volcanic activity, may therefore be also traced to environmentally oriented changes in technology (pollution prevention), to general industrial and agricultural decline in the territory of the former USSR and Eastern Europe after deep political changes in 1991, and in part to migration of some industries out of Europe.

  13. Onset of a basaltic explosive eruption from Kīlauea’s summit in 2008: Chapter 19

    USGS Publications Warehouse

    Carey, Rebecca J.; Swavely, Lauren; Swanson, Don; Houghton, Bruce F.; Orr, Tim R.; Elias, Tamar; Sutton, Andrew; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    The onset of a basaltic eruption at the summit of Kīlauea volcano in 2008 is recorded in the products generated during the first three weeks of the eruption and suggests an evolution of both the physical properties of the magma and also lava lake levels and vent wall stability. Ash componentry and the microtextures of the early erupted lapilli products reveal that the magma was largely outgassed, perhaps in the preceding weeks to months. An increase in the juvenile:lithic ratio and size of ash collected from March 23 to April 3 records an increasing level of the magma within the conduit. After April 3 until the explosive eruption of April 9, a trend of decreasing juvenile:lithic ratio suggests that vent wall collapses were more frequent, possibly because lava level increased and destabilized the overhanging wall [Orr et al. 2013]. Despite increasing lake height, the microtextural characteristics of the lapilli suggest that the outgassed end-member was still being tapped between March 26 and April 8. The April 9 rockfall triggered an explosive eruption that produced a new component in the eruption deposits not seen in the preceding weeks; microvesicular juvenile lapilli, the first evidence of an actively vesiculating magma. Two additional dense end-member pyroclast types were also erupted during the April 9 explosion, likely related to outgassed magma with longer residence times than the microvesicular magma. We link these pyroclasts to a stagnant viscous crust at the top of the magma column or to convecting, downwelling magma. Our study of ash componentry and the textures of juvenile lapilli suggests that the April 9 explosive event effectively cleared the conduit of largely outgassed magma. The degassing processes during this eruption are complex and varied: in the period of persistent degassing during March 26-April 8 small resident bubbles at shallow levels in the lava lake were coupled to the magma whereas large bubbles ascended, expanded and fragmented. During the rockfall- triggered explosion of April 9, all bubbles were coupled to the host magma on the timescale of decompression, but additional exsolution, decompression and expansion of deeper, more gas-rich resident magma likely occurred [cf. Carey et al. 2012]. Where external conditions play a significant role in eruption dynamics, e.g., by triggering eruptions, vesiculation and degassing dynamics can be expected to be complex.

  14. A new approach to investigate an eruptive paroxysmal sequence using camera and strainmeter networks: Lessons from the 3-5 December 2015 activity at Etna volcano

    NASA Astrophysics Data System (ADS)

    Bonaccorso, A.; Calvari, S.

    2017-10-01

    Explosive sequences are quite common at basaltic and andesitic volcanoes worldwide. Studies aimed at short-term forecasting are usually based on seismic and ground deformation measurements, which can be used to constrain the source region and quantify the magma volume involved in the eruptive process. However, during single episodes of explosive sequences, integration of camera remote sensing and geophysical data are scant in literature, and the total volume of pyroclastic products is not determined. In this study, we calculate eruption parameters for four powerful lava fountains occurring at the main and oldest Mt. Etna summit crater, Voragine, between 3 and 5 December 2015. These episodes produced impressive eruptive columns and plume clouds, causing lapilli and ash fallout to more than 100 km away. We analyse these paroxysmal events by integrating the images recorded by a network of monitoring cameras and the signals from three high-precision borehole strainmeters. From the camera images we calculated the total erupted volume of fluids (gas plus pyroclastics), inferring amounts from 1.9 ×109 m3 (first event) to 0.86 ×109 m3 (third event). Strain changes recorded during the first and most powerful event were used to constrain the depth of the source. The ratios of strain changes recorded at two stations during the four lava fountains were used to constrain the pyroclastic fraction for each eruptive event. The results revealed that the explosive sequence was characterized by a decreasing trend of erupted pyroclastics with time, going from 41% (first event) to 13% (fourth event) of the total erupted pyroclastic volume. Moreover, the volume ratio fluid/pyroclastic decreased markedly in the fourth and last event. To the best of our knowledge, this is the first time ever that erupted volumes of both fluid and pyroclastics have been estimated for an explosive sequence from a monitoring system using permanent cameras and high precision strainmeters. During future explosive paroxysmal sequences this new approach might help in monitoring their evolution also to understand when/if they are going to finish. Knowledge of the total gas and pyroclastic fractions erupted during each lava fountain episode would improve our understanding of their processes and eruptive behaviour.

  15. Don't Forget Kīlauea: Explosive Hazards at an Ocean Island Basaltic Volcano

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.; Houghton, B. F.

    2015-12-01

    Kīlauea alternates between periods of high and low magma supply rate, each period lasting centuries. The low rate is only a few percent of the high rate. High supply rate, typified by the past 200 years, leads to frequent lava flows, elevated SO2 emission, and relatively low-hazard Hawaiian-style explosive activity (lava fountains, spattering). Periods of low magma supply are very different. They accompany formation and maintenance of a deep caldera, the floor of which is at or below the water table, and are characterized by phreatomagmatic and phreatic explosive eruptions largely powered by external water. The low magma supply rate results in few lava flows and reduced SO2 output. Studies of explosive deposits from the past two periods of low magma supply (~200 BCE-1000 CE and ~1500-1800 CE) indicate that VEIs calculated from isopach maps can range up to a low 3. Clast-size studies suggest that subplinian column heights can reach >10 km (most recently in 1790), though more frequent column heights are ~5-8 km. Pyroclastic density currents (PDCs) present severe proximal hazards; a PDC in 1790 killed a few hundred people in an area of Hawaíi Volcanoes National Park today visited by 5000 people daily. Ash in columns less than about 5 km a.s.l. is confined to the trade-wind regime and advects southwest. Ash in higher columns enters the jet stream and is transported east and southeast of the summit caldera. Recurrence of such column heights today would present aviation hazards, which, for an isolated state dependent on air transport, could have especially deleterious economic impact. There is currently no way to estimate when a period of low magma supply, a deep caldera, and powerful explosive activity will return. Hazard assessments must take into account the cyclic nature of Kīlauea's eruptive activity, not just its present status; consequently, assessments for periods of high and low magma supply rates should be made in parallel to cover all eventualities.

  16. 210Pb and 210Po Abundances in Dacites Erupted May, 2003 From Anatahan Volcano: Implications for the Time-scales of Magma Generation and Degassing

    NASA Astrophysics Data System (ADS)

    Reagan, M. K.; Matthew, W.; Brian, H.

    2003-12-01

    Six samples of dacite pumice and scoria erupted in May, 2003 and collected from a number of sites around Anathan by Tobias Fischer and David Hilton were analyzed for 210Po activities on three occasions between early June and the time of this writing. With two exceptions, all scoria and pumice samples have 210Po activities that plot on a single growth curve indicating initial (210Po)=0.15 +/-0.07 (1σ ) dpm/g and (210Pb)=1.08+/-0.20 dpm/g. More precise values for these initial activities will be presented at the meeting after further analyses are performed in November. Preliminary alpha spectrometry analyses for U and Th, and ICPMS analyses distributed by Terry Plank suggest that the average (238U) is about 0.53 dpm/g. Equilibrium (228Th)/( 232Th) ratios indicate that these samples do not have excess 228Ra. Assuming that (210Pb )< (226Ra) because of minor degassing of 210Pb (see Gauthier and Condomines, 1999, EPSL, v. 172), the degassing efficiency factor for 210Po is greater than or equal to about 0.85, which is identical to the value calculated for a basaltic andesitic lava from Arenal volcano in Costa Rica (Gill et al., 1985, GRL, v. 12). This is surprising, as the May 10 plinian eruption of Anatahan should have resulted in more closed-system degassing than a lava eruption. This and the similar 210Po values for the scoria and pumice samples suggest that the shallow-level degassing history has little impact on the efficiency of polonium degassing. The scoria and pumice samples from sample 8-1e both have significant excesses of 210Po over the calculated initial (210Pb) value for the other samples. These excesses were partially leachable, indicating that 210Po was sublimated onto these samples, and that these ejecta resided in the vent before being ejected and redeposited The high inferred (226Ra)/( 230Th) for the Anatahan dacites despite the nearly equilibrium (238U)/( 230Th) value measured for one sample contrasts with the values for these ratios in more mafic Mariana samples, which are characterized by a direct correlation between radium and uranium excesses (Turner et al., 2001, Science, v. 292). Assuming that these trends hold up after additional analysis, the most straightforward interpretation of our alpha spectrometry data is that the dacite was generated by distillation of more mafic intrusives over a period of time that is significant compared to the half-life of 230Th, and that radium was added to the dacite recently either by inmixing a Ra-enriched basalt or a crust-derived fluid.

  17. Preliminary Numerical Simulations of Nozzle Formation in the Host Rock of Supersonic Volcanic Jets

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.; Ogden, D. E.; Glatzmaier, G. A.

    2006-12-01

    Recognizing the difficulty in quantitatively predicting how a vent changes during an explosive eruption, Kieffer (Kieffer, S.W., Rev. Geophys. 27, 1989) developed the theory of fluid dynamic nozzles for volcanism, utilizing a highly developed predictive scheme used extensively in aerodynamics for design of jet and rocket nozzles. Kieffer's work shows that explosive eruptions involve flow from sub to supersonic conditions through the vent and that these conditions control the erosion of the vent to nozzle shapes and sizes that maximize mass flux. The question remains how to predict the failure and erosion of vent host rocks by a high-speed, multiphase, compressible fluid that represents an eruption column. Clearly, in order to have a quantitative model of vent dynamics one needs a robust computational method for a turbulent, compressible, multiphase fluid. Here we present preliminary simulations of fluid flowing from a high-pressure reservoir through an eroding conduit and into the atmosphere. The eruptive fluid is modeled as an ideal gas, the host rock as a simple incompressible fluid with sandstone properties. Although these simulations do not yet include the multiphase dynamics of the eruptive fluid or the solid mechanics of the host rock, the evolution of the host rock into a supersonic nozzle is clearly seen. Our simulations show shock fronts both above the conduit, where the gas has expanded into the atmosphere, and within the conduit itself, thereby influencing the dynamics of the jet decompression.

  18. Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount

    NASA Astrophysics Data System (ADS)

    C´e, J.-L.; Stoffers, P.; McMurtry, G.; Richnow, H.; Puteanus, D.; Sedwick, P.

    1991-11-01

    In January 1989 we observed submarine eruptions on the summit of Macdonald volcano during a French-German diving programme with the IFREMER submersible Cyana. Gas-streaming of large amounts of CH 4, CO 2 and SO 2 from summit vents, inferred from water column anomalies and observed by submersible, was accompanied on the sea surface by steam bursts, turbulence, red-glowing gases, and black bubbles comprising volcanic ash, sulphur and sulphides. Chloride depletion of water sampled on the floor of an actively degassing summit crater suggests either boiling and phase separation or additions of magmatic water vapour. Submersible observations, in-situ sampling and shipboard geophysical and hydrographic measurements show that the hydrothermal system of this hotspot volcano is distinguished by the influence of magmatic gases released from its shallow summit.

  19. A microanalytical perspective on late stage conduit dynamics at Tungurahua and Cotopaxi Volcanoes, Ecuador

    NASA Astrophysics Data System (ADS)

    Swarr, G. J.; Garman, K. A.; Harpp, K. S.; Dufek, J.; Geist, D.

    2009-12-01

    Late-stage conduit dynamics can strongly influence the explosivity and eruption mechanisms of volatile rich magmas. Magmatic viscosity can affect bubble coalescence, differential magma-gas flow, and fragmentation style. We have examined the products of recent eruptions of an intermediate style of volcanism that produces pyroclastic density currents (PDCs) fed from low eruption columns. These boiling-over style eruptions were observed during the 2006 eruption of Tungurahua and were inferred from the deposits of the 1877 eruption of Cotopaxi. In the 2006 eruption of Tungurahua at least 56 PDCs were recorded; on the basis of observations during the eruptions, all the PDCs were attributed to the boiling over process. In eruptions from both volcanoes, juvenile bombs appear throughout the deposit, often concentrated in levees and in flow lobes. These bombs can be large (5 to 15 decimeters in diameter) and have a fragile bread-crust exterior. The majority of the smaller bombs from the Tungurahua deposits (1 to 5 decimeters in diameter) are flattened and highly vesicular with large vesicles up to 15 mm in diameter. The centers of the largest bombs (up to 1.8 meters across), however, are denser, lacking vesicles larger than 2 mm. At Cotopaxi the juvenile bombs have a similar size and density to those at Tungurahua, but lack large vesicles, instead having a relatively high abundance of vesicles less than 1 mm in diameter. Larger vesicles (up to 3 mm in diameter) are concentrated in frothy, brown to green regions in Cotopaxi deposits. Viscosity calculated using major element contents of the juvenile bombs suggests that those from Tungurahua may be more viscous than those at Cotopaxi by as much as 20 percent. We will examine the differences in bomb color, density, and crystal content at the microscopic level using LA-ICP-MS to determine small scale chemical variations. We propose that these differences at Tungurahua and Cotopaxi reflect subtle differences in magma viscosity and conduit dynamics, and that they have the potential to provide insight into the boiling-over PDC generation mechanism.

  20. SO2 plume height retrieval from direct fitting of GOME-2 backscattered radiance measurements

    NASA Astrophysics Data System (ADS)

    van Gent, J.; Spurr, R.; Theys, N.; Lerot, C.; Brenot, H.; Van Roozendael, M.

    2012-04-01

    The use of satellite measurements for SO2 monitoring has become an important aspect in the support of aviation control. Satellite measurements are sometimes the only information available on SO2 concentrations from volcanic eruption events. The detection of SO2 can furthermore serve as a proxy for the presence of volcanic ash that poses a possible hazard to air traffic. In that respect, knowledge of both the total vertical column amount and the effective altitude of the volcanic SO2 plume is valuable information to air traffic control. The Belgian Institute for Space Aeronomy (BIRA-IASB) hosts the ESA-funded Support to Aviation Control Service (SACS). This system provides Volcanic Ash Advisory Centers (VAACs) worldwide with near real-time SO2 and volcanic ash data, derived from measurements from space. We present results from our algorithm for the simultaneous retrieval of total vertical columns of O3 and SO2 and effective SO2 plume height from GOME-2 backscattered radiance measurements. The algorithm is an extension to the GODFIT direct fitting algorithm, initially developed at BIRA-IASB for the derivation of improved total ozone columns from satellite data. The algorithm uses parameterized vertical SO2 profiles which allow for the derivation of the peak height of the SO2 plume, along with the trace gas total column amounts. To illustrate the applicability of the method, we present three case studies on recent volcanic eruptions: Merapi (2010), Grímsvotn (2011), and Nabro (2011). The derived SO2 plume altitude values are validated with the trajectory model FLEXPART and with aerosol altitude estimations from the CALIOP instrument on-board the NASA A-train CALIPSO platform. We find that the effective plume height can be obtained with a precision as fine as 1 km for moderate and strong volcanic events. Since this is valuable information for air traffic, we aim at incorporating the plume height information in the SACS system.

  1. A multidisciplinary approach for high-resolution reconstruction of the eruptive past of La Soufrière (Guadeloupe) over the last 12 000 years: Implications for hazards assessment.

    NASA Astrophysics Data System (ADS)

    Legendre, Yoann; Komorowski, Jean-Christophe; Boudon, Georges

    2010-05-01

    La Soufrière de Guadeloupe is a dangerous andesitic composite volcano characterized over the last 12 000 years by numerous phreatic eruptions that alternate with few magmatic eruptions, including the last magmatic and best-studied "Soufrière" subplinian eruption in 1530 AD, and unusually numerous flank-collapse events. Field analysis of the deposits provide constraints for values of the physical input parameters for simple models which provide with first-order simulation of eruptive phenomena, and from which quantitative probabilistic hazard maps can be elaborated in which epistemic and aleatory uncertainty can be incorporated and quantified. The study of yesterday's eruptions provide key insights for elaborating realistic simulations and describing potential eruptive scenarios for tomorrow's eruptions. However hazard assessment is biased towards eruptions of significant magnitude that produce extensive, and relatively thick deposits. Nevertheless, eruptions of moderate magnitude which are often more frequent, can significantly affect vulnerable island communities living at short distances from the vent. However, their deposits are ephemeral in the geologic record on account of intense erosion from tropical rainfall, important soil development and erosion by the emplacement of recurrent pyroclastic density currents, debris avalanches, and mudflows. We have developed a novel approach by using a manual sediment corer to obtain undisturbed sedimentary eruptive archives in sheltered zones on the volcano where a longer eruption record has been preserved. We describe two such cores (6.32 and 6.64 m long) that extend over at least 8700 years and that contain several thin tephra layers missing at the outcrop scale. We combine these new data with the analysis of more than 120 stratigraphic sections on outcrops studied over the last decade to provide a new eruptive chronology for La Soufriere volcano over the last 12 000 years. This chronology is robustly constrained by 105 new 14C age dates of wood, charcoal, and paleosoil samples that complete the existing 14C database (total of about 261 dates). A multidisciplinary analysis (sedimentology, lithology, microtextures, magnetic susceptibility) of the sediment cores and field data has allowed us to identify hidden, and missing eruptions, and to re-interpret mis-identified eruptions. For the last 12 000 years we have identified at least 5 distinct new pumice fallout deposits, some of which are associated with pumice pyroclastic flow deposits. We also identified several deposits formed by magmatic turbulent pyroclastic density currents (blasts) mostly associated with flank-collapse events. Thus, the number of Holocene magmatic eruptions has significantly increased compared to previous knowledge. More over we have identified eruptive sequences that consist of a diverse range of phenomena including edifice-collapse, associated laterally directed explosions (blasts), pumice fallout with column-collapse and dome growth similar to the AD1530 most recent magmatic eruption. The magmatic eruptive rate could be twice as important with 11-13 magmatic eruptions in 12 000 years, a rate of about 0.92-1.08 magmatic eruption by 1000 years. This new data will allow a better determination of the recurrence, magnitude, intensity, and the spatio-temporal evolution of deposit types that define different eruptive scenarios. Hence, this high-resolution reconstruction of the eruptive past will provide the basis for an improved probabilistic hazard and risk assessment for La Soufrière of Guadeloupe, a dangerous volcano, currently experiencing prolongued unrest since 1992.

  2. Aerosol-associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.; Fishman, Jack; Brackett, Vincent G.; Veiga, Robert E.; Nganga, Dominique; Minga, A.; Cros, Bernard; Butler, Carolyn F.; Fenn, Marta A.

    1994-01-01

    The large amount of sulfuric acid aerosol formed in the stratosphere by conversion of sulfur dioxide emitted by the eruption of Mount Pinatubo (15.14 deg N, 120.35 deg E) in the Philippines around June 15, 1991, has had a pronounced effect on lower stratospheric ozone in the tropics. Measurements of stratospheric ozone in the tropics using electrochemical concentration cell (ECC) sondes before and after the eruption and the airborne UV differential absorption lidar (DIAL) system after the eruption are compared with Stratospheric Aerosol and Gas Experiment II (SAGE II) measurements from several years before the eruption and ECC sonde measurements from the year prior to the eruption to determine the resulting changes. Ozone decreases of up to 33 % compared with SAGE II climatological values were found to be directly correlated with altitude regions of enhanced aerosol loading in the 16- to 28-km range. A maximum partial-column decrease of 29 +/- Dobson units (DU) was found over the 16- to 28-km range in September 1991 along with small increases (to 5.9 +/- 2 DU) from 28 to 31.5 km. A large decrease of ozone was also found at 4 deg to 8 deg S from May to August 1992, with a maximum decrease of 33 +/- 7 DU found above Brazzaville in July. Aerosol data form the visible channel of the advanced very high resolution radiometer (AVHRR) and the visible wavelength of the UV DIAL system were used to examine the relationship between aerosol (surface area) densities and ozone changes. The tropical stratospheric ozone changes we observed in 1991 and 1992 are likely be explained by a combination of dynamical (vertical transport) perturbations, radiative perturbations on ozone photochemistry, and heterogeneous chemistry.

  3. The Augustine magmatic system as revealed by seismic tomography and relocated earthquake hypocenters from 1994 through 2009

    USGS Publications Warehouse

    Syracuse, E.M.; Thurber, C.H.; Power, J.A.

    2011-01-01

    We incorporate 14 years of earthquake data from the Alaska Volcano Observatory with data from a 1975 controlled-source seismic experiment to obtain the three-dimensional P and S wave velocity structure and the first high-precision earthquake locations at Augustine Volcano to be calculated in a fully three-dimensional velocity model. Velocity tomography shows two main features beneath Augustine: a narrow, high-velocity column beneath the summit, extending from ???2 km depth to the surface, and elevated velocities on the south flank. Our relocation results allow a thorough analysis of the spatio-temoral patterns of seismicity and the relationship to the magmatic and eruptive activity. Background seismicity is centered beneath the summit at an average depth of 0.6 km above sea level. In the weeks leading to the January 2006 eruption of Augustine, seismicity focused on a NW-SE line along the trend of an inflating dike. A series of drumbeat earthquakes occurred in the early weeks of the eruption, indicating further magma transport through the same dike system. During the six months following the onset of the eruption, the otherwise quiescent region 1 to 5 km below sea level centered beneath the summit became seismically active with two groups of earthquakes, differentiated by frequency content. The deep longer-period earthquakes occurred during the eruption and are interpreted as resulting from the movement of magma toward the summit, and the post-eruptive shorter-period earthquakes may be due to the relaxation of an emptied magma tube. The seismicity subsequently returned to its normal background rates and patterns. Copyright 2011 by the American Geophysical Union.

  4. Cryptoachneliths: Hidden glassy ash in composite spheroidal lapilli

    NASA Astrophysics Data System (ADS)

    Carracedo Sánchez, M.; Arostegui, J.; Sarrionandia, F.; Larrondo, E.; Gil Ibarguchi, J. I.

    2010-09-01

    Cryptoachneliths, perceptible by means of electron microscopy but unresolved under the optical microscope, occur unnoticed inside spheroidal lapilli of ultrabasic composition of the Cabezo Segura volcano (Calatrava volcanic province, Spain). The cryptoachneliths are glassy spherical particles that have compositions of Al-rich silicate with minor amounts of Fe, Ca and other elements. The smallest cryptoachneliths of < 1 μm in diameter (nanoachneliths) joined by coalescence to form microspheres > 1 μm (microachneliths) and homogeneous less regular masses of similar composition. Nano and microachneliths welded each other or to other types of volcanic particles (crystals, crystal fragments, spinning droplets, cognate lithic clasts, etc.) to form spheroidal lapilli and even bomb size clasts within proximal fall deposits of the Cabezo Segura volcano. The welding processes took place inside the eruptive column, previous to the fall of the spheroidal lapilli on top of the volcanic cone. The presence of the cryptoachneliths implies that lapilli and even bomb size tephra within deposits formed during explosive eruptions of low-viscosity basic to ultrabasic magmas should be carefully examined in order to establish key parameters of eruption dynamics, like size, amount and distribution of juvenile fine particles.

  5. Base surge in recent volcanic eruptions

    USGS Publications Warehouse

    Moore, J.G.

    1967-01-01

    A base surge, first identified at the Bikini thermonuclear undersea explosion, is a ring-shaped basal cloud that sweeps outward as a density flow from the base of a vertical explosion column. Base surges are also common in shallow underground test explosions and are formed by expanding gases which first vent vertically and then with continued expansion rush over the crater lip (represented by a large solitary wave in an underwater explosion), tear ejecta from it, and feed a gas-charged density flow, which is the surge cloud. This horizontally moving cloud commonly has an initial velocity of more than 50 meters per second and can carry clastic material many kilometers. Base surges are a common feature of many recent shallow, submarine and phreatic volcanic eruptions. They transport ash, mud, lapilli, and blocks with great velocity and commonly sandblast and knock down trees and houses, coat the blast side with mud, and deposit ejecta at distances beyond the limits of throw-out trajectories. Close to the eruption center, the base surge can erode radial channels and deposit material with dune-type bedding. ?? 1967 Stabilimento Tipografico Francesco Giannini & Figli.

  6. A Sulfur Trigger for the 2017 Phreatomagmatic Eruption of Poás Volcano, Costa Rica? Insights from MultiGAS and Drone-based Gas Monitoring

    NASA Astrophysics Data System (ADS)

    de Moor, M. J.; Aiuppa, A.; Avard, G.; Diaz, J. A.; Corrales, E.; Rüdiger, J.; D´Arcy, F.; Fischer, T. P.; Stix, J.; Alan, A.

    2017-12-01

    In April 2017 Poás volcano entered its first magmatic eruption period of the 21st century. The initial explosive blasts produced eruption columns up to 4 km in height, destroyed the pre-existing dome that was emplaced during the last magmatic eruption in the 1950s, and showered the tourist observation deck with bombs. Over the following months, the hyperacid crater lake dried out and a transition from phreatomagmatic to strombolian activity was observed. Two vents now dominate the activity. The main vent (old dome site) produces gas, ash, and scoria. A second vent is located in the dried-out lake bed and produces a peculiar canary-yellow gas plume. A fixed MultiGAS instrument installed in the crater bottom recorded large changes in gas composition prior to the explosive eruptions. The station recorded a dramatic increase in SO2/CO2 from an average of 0.04 for March 2017 to an average of 7.4 the day before the first explosive eruption that occurred at 18:30 on 12 April. A simultaneous rapid decrease in H2S/SO2 from 2.7 to <0.01 was observed prior to the eruptions. The MultiGAS station stopped transmitting data after 2 days of explosive eruptions. We since developed new methods for measuring gas compositions and SO2 fluxes using drones, allowing continued gas monitoring despite dangerous conditions. Extremely high SO2/CO2 of 33 was measured with drone-based miniaturized MultiGAS ("miniGAS") in May 2017, and the ratio has since dropped to 3, which are more typical values of high temperature magmatic gases at Poás. The SO2 flux from Poás was at record low levels (< 5 T/d) in late 2016 and early 2017. Drone-based SO2 DOAS ("DROAS") measurements indicate high SO2 fluxes from Poas of >2000 T/d since the explosive eruptions, indicating a strong magmatic source and open conduits. We attribute the unusually S-rich gas compositions observed at Poás prior to and during the initial eruptions to combustion of previously deposited hydrothermal sulfur. The very low gas flux from the system prior to the explosive eruptions suggests that this sulfur may have played a role in hydrothermal sealing, leading to pressurization of the magmatic-hydrothermal system and ultimately triggering phreatomagmatic eruptions and "top down" remobilization of previously emplaced magma.

  7. An Erupting Active Region Filament: Three-Dimensional Trajectory and Hydrogen Column Density

    NASA Astrophysics Data System (ADS)

    Penn, M. J.

    2000-05-01

    From 15:33-16:02 UT on 13 June 1998 observations of an erupting filament as it crossed solar disk center were obtained with the NSO/KPVT and SoHO/CDS instruments as part of the SoHO Joint Observing Program 70. Context observations show that this event was the eruption of the north-east section of a small active region filament associated with NOAA 8237, that the photospheric magnetic field was changing in this active region from 12 through 14 June 1998, that a coronal Moreton-wave disk event occurred, as well as a white-light CME off the south-west solar limb. The NSO/KPVT imaging spectroscopy sho the He I 1083 nm absorption line blue-shifted to velocities of between 200 and 300 km s-1. The true solar trajectory of the eruption is obtained by using the projected solar coordinates and by integrating the Doppler velocity. The filament travels with a total velocity of about 300 km s-1 along a path inclined roughly 49 degrees to the solar surface and rises to a height of just over 1.5 solar radii. The KPVT data show no Stokes V profiles in the Doppler shifted He I 1083 nm absorption to a limit of roughly 3 x 10-3 times the continuum intensity. The SoHO/CDS data scanned the center of the KPVT FOV using seven EUV lines; Doppler shifted filament emission is seen in six lines from representing temperatures from about 2 x 104K through 1 x 106K. Bound-free continuum absorption from H I, free from confusion from foreground emission and line emission, is seen as the filament obscures underlying chromospheric emission. A fit to the wavelength dependence of the absorption from five lines between 55.5 to 63.0 nm yields a column density ξ HI = 1.7 x 1018cm-2. Spatial maps show that this filament absorption is more confined than the regions which show emission. This work was made possible by 1997 and 1999 SoHO Guest Investigator awards NASA #W-19,142 Basic and NASA NAG5-8004.

  8. Catalog of Mount St. Helens 2004-2007 Dome Samples with Major- and Trace-Element Chemistry

    USGS Publications Warehouse

    Thornber, Carl R.; Pallister, John S.; Rowe, Michael C.; McConnell, Siobhan; Herriott, Trystan M.; Eckberg, Alison; Stokes, Winston C.; Cornelius, Diane Johnson; Conrey, Richard M.; Hannah, Tammy; Taggart, Joseph E.; Adams, Monique; Lamothe, Paul J.; Budahn, James R.; Knaack, Charles M.

    2008-01-01

    Sampling and analysis of eruptive products at Mount St. Helens is an integral part of volcano monitoring efforts conducted by the U.S. Geological Survey?s Cascades Volcano Observatory (CVO). The objective of our eruption sampling program is to enable petrological assessments of pre-eruptive magmatic conditions, critical for ascertaining mechanisms for eruption triggering and forecasting potential changes in eruption behavior. This report provides a catalog of near-vent lithic debris and new dome-lava collected during 34 intra-crater sampling forays throughout the October 2004 to October 2007 (2004?7) eruptive interval at Mount St. Helens. In addition, we present comprehensive bulk-rock geochemistry for a time-series of representative (2004?7) eruption products. This data, along with that in a companion report on Mount St. Helens 2004 to 2006 tephra by Rowe and others (2008), are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, eds., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data. The suite of rock samples related to the 2004?7 eruption of Mount St. Helens and presented in this catalog are archived at the David A. Johnson Cascades Volcano Observatory, Vancouver, Wash. The Mount St. Helens 2004?7 Dome Sample Catalogue with major- and trace-element geochemistry is tabulated in 3 worksheets of the accompanying Microsoft Excel file, of2008-1130.xls. Table 1 provides location and sampling information. Table 2 presents sample descriptions. In table 3, bulk-rock major and trace-element geochemistry is listed for 44 eruption-related samples with intra-laboratory replicate analyses of 19 dacite lava samples. A brief overview of the collection methods and lithology of dome samples is given below as an aid to deciphering the dome sample catalog. This is followed by an explanation of the categories of sample information (column headers) in Tables 1 and 2. A summary of the analytical methods used to obtain the geochemical data in this report introduces the presentation of major- and trace-element geochemistry of 2004?7 Mount St. Helens dome samples in table 3. Intra-laboratory results for the USGS AGV-2 standard are presented (tables 4 and 5), which demonstrate the compatibility of chemical data from different sources.

  9. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Witham, Claire S.; Theys, Nicolas; Richards, Nigel A. D.; Thordarson, Thorvaldur; Szpek, Kate; Feng, Wuhu; Hort, Matthew C.; Woolley, Alan M.; Jones, Andrew R.; Redington, Alison L.; Johnson, Ben T.; Hayward, Chris L.; Carslaw, Kenneth S.

    2014-12-01

    Volcanic eruptions take place in Iceland about once every 3 to 5 years. Ash emissions from these eruptions can cause significant disruption to air traffic over Europe and the North Atlantic as is evident from the 2010 eruption of Eyjafjallajökull. Sulfur dioxide (SO2) is also emitted by volcanoes, but there are no criteria to define when airspace is considered hazardous or nonhazardous. However, SO2 is a well-known ground-level pollutant that can have detrimental effects on human health. We have used the United Kingdom Met Office's NAME (Numerical Atmospheric-dispersion Modelling Environment) model to simulate SO2 mass concentrations that could occur in European and North Atlantic airspace for a range of hypothetical explosive eruptions in Iceland with a probability to occur about once every 3 to 5 years. Model performance was evaluated for the 2010 Eyjafjallajökull summit eruption against SO2 vertical column density retrievals from the Ozone Monitoring Instrument and in situ measurements from the United Kingdom Facility for Airborne Atmospheric Measurements research aircraft. We show that at no time during the 2010 Eyjafjallajökull eruption did SO2 mass concentrations at flight altitudes violate European air quality standards. In contrast, during a hypothetical short-duration explosive eruption similar to Hekla in 2000 (emitting 0.2 Tg of SO2 within 2 h, or an average SO2 release rate 250 times that of Eyjafjallajökull 2010), simulated SO2 concentrations are greater than 1063 µg/m3 for about 48 h in a small area of European and North Atlantic airspace. By calculating the occurrence of aircraft encounters with the volcanic plume of a short-duration eruption, we show that a 15 min or longer exposure of aircraft and passengers to concentrations ≥500 µg/m3 has a probability of about 0.1%. Although exposure of humans to such concentrations may lead to irritations to the eyes, nose and, throat and cause increased airway resistance even in healthy individuals, the risk is very low. However, the fact that volcanic ash and sulfur species are not always collocated and that passenger comfort could be compromised might be incentives to provide real-time information on the presence or absence of volcanic SO2. Such information could aid aviation risk management during and after volcanic eruptions.

  10. May 2011 eruption of Telica Volcano, Nicaragua: Multidisciplinary observations

    NASA Astrophysics Data System (ADS)

    Witter, M. R.; Geirsson, H.; La Femina, P. C.; Roman, D. C.; Rodgers, M.; Muñoz, A.; Morales, A.; Tenorio, V.; Chavarria, D.; Feineman, M. D.; Furman, T.; Longley, A.

    2011-12-01

    Telica volcano, an andesitic stratovolcano in north-western Nicaragua, erupted in May 2011. The eruption, produced ash but no lava and required the evacuation of over 500 people; no injuries were reported. We present the first detailed report of the eruption, using information from the TElica Seismic ANd Deformation (TESAND) network, that provides real-time data, along with visual observations, ash leachate analysis, and fumarole temperature measurements. Telica is located in the Maribios mountain range. It is one of the most active volcanoes in Nicaragua and has frequent small explosions and rare large (VEI 4) eruptions, with the most recent sizable eruptions (VEI 2) occurring in 1946 and 1999. The 2011 eruption is the most explosive since 1999. The eruption consisted of a series of ash explosions, with the first observations from May 8, 2011 when local residents reported ash fall NE of the active crater. Popping sounds could be heard coming from the crater on May 10. On May 13, the activity intensified and continued with some explosions every day for about 2 weeks. The well-defined plumes originated from the northern part of the crater. Ash fall was reported 4 km north of the active crater on May 14. The largest explosion at 2:54 pm (local time) on May 21 threw rocks from the crater and generated a column 2 km in height. Fresh ash samples were collected on May 16, 18, and 21 and preliminary inspection shows that the majority of the material is fragmented rock and crystalline material, i.e. not juvenile. Ash leachates (ash:water = 1:25) contain a few ppb As, Se, and Cd; tens of ppb Co and Ni; and up to a few hundred ppb Cu and Zn. Telica typically has hundreds of small seismic events every day, even when the volcano is not erupting. The TESAND network detected an increase in the rate and magnitude of seismic activity, with a maximum magnitude of 3.3. Elevated fumarole temperatures at locations near the active vent were also observed throughout the May 2011 eruption. Temperature measurements taken on May 26 recorded a maximum of 539°C. Ten continuous GPS stations running on and close to the volcano showed little deformation, suggesting that substantial quantities of new magma were not displaced beneath the volcanic edifice.

  11. Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex

    NASA Astrophysics Data System (ADS)

    Vogel, Sebastian; Märker, Michael

    2010-05-01

    SSP1.4 Understanding mixed siliciclastic-volcaniclastic depositional systems and their relationships with geodynamics or GD2.3/CL4.14/GM5.8/MPRG22/SSP3.5 Reconstruction of ancient continents: Dating and characterization of paleosurfaces Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex Sebastian Vogel[1] & Michael Märker[1] [1] Heidelberg Academy of Sciences and Humanities c/o University of Tübingen, Rümelinstraße 19-23, D-72070 Tübingen, Germany. Within the geoarchaeological research project "Reconstruction of the Ancient Cultural Landscape of the Sarno River Plain" undertaken by the German Archaeological Institute in cooperation with the Heidelberg Academy of Sciences and Humanities/University of Tübingen a methodology was developed to model the spatial dispersion of volcanic deposits of Somma-Vesuvius volcanic complex since its Plinian eruption AD 79. Eventually, this was done to reconstruct the paleo-topography and paleo-environment of the Sarno River plain before the eruption AD 79. We collected, localized and digitized more than 1,800 core drillings to gain a representative network of stratigraphical information covering the entire plain. Besides other stratigraphical data including the characteristics of the pre-AD 79 stratum, the depth to the pre-AD 79 paleo-surface was identified from the available drilling documentation. Instead of applying a simple interpolation of the drilling data, we reconstructed the pre-AD 79 paleo-surface with a sophisticated geostatistical methodology using a machine based learning approach based on classification and regression trees. We hypothesize that the present-day topography reflects the ancient topography, because the eruption of AD 79 coated the ancient topography, leaving ancient physiographic elements of the Sarno River plain still recognizable in the present-day topography. Therefore, a high resolution, present-day digital elevation model (DEM) was generated. A detailed terrain analysis yielded 15 different primary and secondary topographic indices of the present-day DEM. Then, a classification and regression model was generated combining the present-day topographic indices to predict the depth of the pre-AD 79 surface. This model was calibrated with the measured depth of the pre-AD 79 surface from the drilling data. To gain a pre-AD 79 digital elevation model (DEM) the modeled depth of the pre-AD 79 surface was subtracted from the present-day DEM. To reconstruct some paleo-environmental features, such as the paleo-coast and the paleo-river network and its flood plain, the modeled pre-AD 79 DEM was compared with the classified characteristic of the pre-AD 79 stratum, identified from the drilling documentation. It is the first time that the paleo-topography and paleo-environmental features of the Sarno River basin were systematically reconstructed using a detailed database of input variables and sophisticated data mining technologies. Keywords: Sarno River Basin, Roman paleo-topography, paleo-environment, stratigraphical core drillings, Classification and Regression Trees

  12. Transforming Ocean Sciences in the Northeast Pacific: NSF's Ocean Observatories Initiative Cabled Array is Now Operational

    NASA Astrophysics Data System (ADS)

    Kelley, D. S.

    2016-02-01

    In July-August, 2015 the first operations and maintenance cruise was successfully completed for the high power and bandwidth underwater cabled component of the National Science Foundation's Ocean Observatories Initiative: the Cabled Array. This system includes 900 km of backbone cable and 7 Primary Nodes, which provide 8 kW power and 10 Gbs bandwidth to myriad seafloor instruments (Manalang et al., this meeting) and instrumented full water column moorings (McRae et al., this meeting). Over 33,000 m of extension cables connected to 17 secondary junction boxes support >100 instruments now streaming data live to shore. In concert, this array forms: 1) the most advanced observatory along the global mid-ocean ridge network were 20 instruments and a state-of-the-art mooring system are providing new insights into volcanic and overlying water column processes at Axial Seamount (which erupted April 2015, see Delaney et al., this meeting); and 2) an extensive, technologically-advanced coastal observatory spanning 80 m to 2900 m water depths off Newport, OR. Here, cabled, instrumented moorings, with up to 18 instruments each, and associated seafloor arrays provide real-time, coregistered geophysical, biogeochemical, and physical measurements at unprecedented temporal and spatial resolution. Nearly 1.5 years of continuous data (see Knuth et al., this meeting), two-way communication capabilities that allow responses to events, and continuing real-time data flow, will allow the community to investigate in ways never before possible earthquakes along the Cascadia margin with impacts on fluid flow and release of methane into the hydrosphere, underwater eruptions resulting in perturbations to hydrothermal systems, associated biological communities, and overlying water column properties, and linkages among biogeochemical and physical processes along the Cascadia margin.

  13. Emergence of healing in the Antarctic ozone layer.

    PubMed

    Solomon, Susan; Ivy, Diane J; Kinnison, Doug; Mills, Michael J; Neely, Ryan R; Schmidt, Anja

    2016-07-15

    Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or "healing") is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption. Copyright © 2016, American Association for the Advancement of Science.

  14. Possible Intercontinental Dispersal of Microorganisms from a Paleolake Toba in Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Chesner, C. A.; Barbee, O. A.

    2014-12-01

    Geochemical fingerprinting of glass shards and minerals have clearly demonstrated that ash from the 74 ka Toba eruption was distributed over a vast area including parts of the Indian Ocean, South China Sea, Indian sub-continent, and eastern Africa. The great dispersal has been attributed to eruption column height, co-ignimbrite ash, shard morphology, and volume of the Youngest Toba Tuff (YTT) eruption. New evidence suggests that another contributing factor may have been a phreatomagmatic component of the eruption whereby portions of the YTT interacted with a paleolake Toba during the eruption. This evidence consists of an accretionary lapilli ash fall bed at the base of the YTT, friable lake sediment lithic fragments found within the proximal YTT ignimbrite, and organic remains in distal ash exposures. Notably, diatom frustules and sponge spicules similar to those that occur in post-YTT lacustrine sediments at Toba have now been identified in the proximal YTT ash fall bed and ignimbrite, as well as distal ash exposures in Malaysia and India. Our findings support the observations of J.B.Scrivenor (1930, 1943) who first described such microfossil occurrences in the Toba ash from sites in Malaysia, and speculated that they may have originated from Toba. Species characterization is currently underway to determine if the microflora/faunal assemblages of the Malaysian and Indian ashes are consistent with a Toba source. The preliminary results of our study lends further credence to Van Eaton et al.'s (2013) suggestion that microbiological cargo carried by phreatomagmatic tephra can provide a new tool in deciphering volcanological, paleoenvironmental, and biologic dispersal models.

  15. Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Schneider, David J.; Hoblitt, Richard P.

    2013-01-01

    The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  16. Three Dimensional Volcanic Plume Simulations on Early Mars

    NASA Astrophysics Data System (ADS)

    Fisher, M. A.; Kobs-Nawotniak, S. E.

    2016-12-01

    Current explosive volcanic plume models for early Mars are thought to overestimate plume height by tens of kilometers. They are based on 1D empirical terrestrial plume models, which determine plume rise using Morton-style convection. Not only do these models fail to account for turbulent mixing processes, but the Martian versions also violate assumptions regarding the speed of sound, radial expansion, and availability of ambient air for entrainment. Since volcanically derived volatiles are hypothesized to have increased early Martian warming, it is vital to understand how high these volatiles can be injected into the atmosphere. Active Tracer High-resolution Atmospheric Model (ATHAM; Oberhuber et al., 1998) is a 3D plume simulator that circumvents the underlying assumptions of the current Martian plume models by solving the Navier-Stokes equations. Martian-ATHAM (M-ATHAM) simulates Martian volcanic eruptions by replacing terrestrial planetary and atmospheric conditions with those appropriate for early Mars. In particular we evaluate three different atmospheric compositions with unique temperature and density profiles: 99.5% CO2/0.5% SO2 and 85% CO2/15% H2 representing a "warm and wet" climate and 100% CO2 representing a "cold and wet" climate. We evaluated for mass eruption rates from 10^3 kg/s to 10^10 kg/s using the Idaho National Laboratory's supercomputer Falcon in order determine what conditions produced stable eruption columns. Of the three different atmospheric compositions, 100% CO2 and 99.5% CO2/0.5% SO2 produced stable plumes for the same mass eruption rates whereas the 85% CO2/15% H2 atmosphere produced stable plumes for a slightly higher range of mass eruption rates. The tallest plumes were produced by 85% CO2/15% H2 atmosphere, producing plumes 5% taller than the revised empirical models, suggesting closer agreement than previously assumed under certain conditions. In comparison to terrestrial plumes, all early Martian plumes needed higher mass eruption rates to become positively buoyant, but could sustain stable plumes at higher mass eruption rates than terrestrial eruptions.

  17. Observation and modeling of hydrothermal response to the 2015 eruption at Axial Seamount, Northeast Pacific: An OOI Cabled Observatory case study

    NASA Astrophysics Data System (ADS)

    Xu, G.; Chadwick, W. W., Jr.; Wilcock, W. S. D.; Bemis, K. G.; Nooner, S. L.; Sasagawa, G. S.; Zumberge, M. A.; Delaney, J. R.

    2017-12-01

    The 2015 eruption at Axial Seamount, an active volcano at a depth of 1500 m in the Northeast Pacific, marked the first time a seafloor eruption was detected and monitored by a cabled observatory - the Cabled Array operated by Ocean Observatories Initiative (OOI). Following the eruption, eight cabled and non-cabled instruments recorded a temperature increase across the southern half of the caldera and neighboring areas. These temperature signals were very different from those observed after the 2011 and 1998 Axial eruptions. The 2015 temperature increase occurred later (3.5 days after deflation started versus 6-18 hours) and had a larger amplitude ( 0.7°C versus 0.2-0.5°C), a much slower increase and decay and smaller short-term fluctuations. Most remarkably, the 2015 temperature signals were synchronous and uniform across the 3 x 4.5 km2 area covered by the eight instruments. We hypothesize that the eruption triggered the release of a hydrothermal brine stored in the crust. In this interpretation, the observed temperature increases were due to a dense, bottom-hugging layer of warm salty water that was created when hot brine in the crust was flushed out after the dike intersected the zone where the brine was stored. In the absence of near-bottom salinity observations, we test this hypothesis by using a numerical model of ocean flow and transport to simulate the thermal response within the vicinity of the caldera following a brine injection. We set up the model with realistic background flows, hydrography, and seafloor topography. We simulate brine release as seafloor heat and salt inputs at locations inferred from seismic and geologic observations. Comparison of model bottom temperature with measurements shows a reasonable match. If our interpretation is correct, this is the first time that the release of a hydrothermal brine has been observed due to a submarine eruption. Prior to the next eruption, the Cabled Array observatory should be enhanced to improve the monitoring of the water column in the caldera.

  18. The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei Caldera (Italy)

    NASA Astrophysics Data System (ADS)

    di Vito, Mauro Antonio; Arienzo, Ilenia; Braia, Giuseppe; Civetta, Lucia; D'Antonio, Massimo; di Renzo, Valeria; Orsi, Giovanni

    2011-04-01

    The Averno 2 eruption (3,700 ± 50 a B.P.) was an explosive low-magnitude event characterized by magmatic and phreatomagmatic explosions, generating mainly fall and surge beds, respectively. It occurred in the Western sector of the Campi Flegrei caldera (Campanian Region, South Italy) at the intersection of two active fault systems, oriented NE and NW. The morphologically complex crater area, largely filled by the Averno lake, resulted from vent activation and migration along the NE-trending fault system. The eruption generated a complex sequence of pyroclastic deposits, including pumice fall deposits in the lower portion, and prevailing surge beds in the intermediate-upper portion. The pyroclastic sequence has been studied through stratigraphical, morphostructural and petrological investigations, and subdivided into three members named A through C. Member A was emplaced during the first phase of the eruption mainly by magmatic explosions which generated columns reaching a maximum height of 10 km. During this phase the eruption reached its climax with a mass discharge rate of 3.2 106 kg/s. Intense fracturing and fault activation favored entry of a significant amount of water into the system, which produced explosions driven by variably efficient water-magma interaction. These explosions generated wet to dry surge deposits that emplaced Member B and C, respectively. Isopachs and isopleths maps, as well as areal distribution of ballistic fragments and facies variation of surge deposits allow definition of four vents that opened along a NE oriented, 2 km long fissure. The total volume of magma extruded during the eruption has been estimated at about 0.07 km3 (DRE). The erupted products range in composition from initial, weakly peralkaline alkali-trachyte, to last-emplaced alkali-trachyte. Isotopic data and modeling suggest that mixing occurred during the Averno 2 eruption between a more evolved, less radiogenic stored magma, and a less evolved, more radiogenic magma that entered the shallow reservoir to trigger the eruption. The early phases of the eruption, during which the vent migrated from SW to the center of the present lake, were fed by the more evolved, uppermost magma, while the following phases extruded the less evolved, lowermost magma. Integration of the geological and petrological results suggests that the Averno 2 complex eruption was fed from a dyke-shaped shallow reservoir intruded into the NE-SW fault system bordering to the west the La Starza resurgent block, within the caldera floor.

  19. The 2012-2014 eruptive cycle of Copahue Volcano, Southern Andes. Magmatic-Hydrothermal system interaction and manifestations.

    NASA Astrophysics Data System (ADS)

    Morales, Sergio; Alarcón, Alex; Basualto, Daniel; Bengoa, Cintia; Bertín, Daniel; Cardona, Carlos; Córdova, Maria; Franco, Luis; Gil, Fernando; Hernandez, Erasmo; Lara, Luis; Lazo, Jonathan; Mardones, Cristian; Medina, Roxana; Peña, Paola; Quijada, Jonathan; San Martín, Juan; Valderrama, Oscar

    2015-04-01

    Copahue Volcano (COPV), in Southern Andes of Chile, is an andesitic-basaltic stratovolcano, which is located on the western margin of Caviahue Caldera. The COPV have a NE-trending fissure with 9 aligned vents, being El Agrio the main currently active vent, with ca. 400 m in diameter. The COPV is placed into an extensive hydrothermal system which has modulated its recent 2012-2014 eruptive activity, with small phreatic to phreatomagmatic eruptions and isolated weak strombolian episodes and formation of crater lakes inside the main crater. Since 2012, the Southern Andes Volcano Observatory (OVDAS) carried out the real-time monitoring with seismic broadband stations, GPS, infrasound sensors and webcams. In this work, we report pre, sin, and post-eruptive seismic activity of the last two main eruptions (Dec, 2012 and Oct, 2014) both with different seismic precursors and superficial activity, showing the second one a particularly appearance of seismic quiescence episodes preceding explosive activity, as an indicator of interaction between magmatic-hydrothermal systems. The first episode, in late 2012, was characterized by a low frequency (0.3-0.4 Hz and 1.0-1.5 Hz) continuous tremor which increased gradually from background noise level amplitude to values of reduced displacement (DR), close to 50 cm2 at the peak of the eruption, reaching an eruptive column of ~1.5 km height. After few months of recording low energy seismicity, a sequence of low frequency, repetitive and low energy seismic events arose, with a frequency of occurrence up to 300 events/hour. Also, the VLP earthquakes were added to the record probably associated with magma intrusion into a deep magmatic chamber during all stages of eruptive process, joined to the record of VT seismicity during the same period, which is located throughout the Caviahue Caldera area. Both kind of seismic patterns were again recorded in October 2014, being the precursor of the new eruptive cycle at this time as well as the deformation of the volcanic edifice detected by GPS network. In this new eruptive process, the record of tremor was followed by particular seismic quiescence, as precursors of explosive activity which evolved from low acoustic energy signals toward more energetic signals with impulsive first arrivals and strong attenuation, joined to night incandescence in the main vent without evident juvenile material ejected, which could be associated to the temporal depression of the hydrothermal system located in the volcano system. The recent eruptive episode at Copahue Volcano is a good example of the complex temporal evolution of the interaction between magmatic and hydrothermal systems.

  20. Sulfur, Chlorine and Fluorine Degassing and Atmospheric Loading by the Roza eruption, Columbia River Basalt Group, Washington

    NASA Technical Reports Server (NTRS)

    Thordarson, Th.; Self, S

    1996-01-01

    In this study we attempt to quantify the amount of S, Cl and F released by the 1300 cu km Roza member (approximately 14.7 Ma) of the Columbia River Basalt Group, which was produced by a moderate-size flood basalt eruption in the mid-Miocene. Our results are the first indication of the potential atmospheric SO2 yield from a flood basalt eruption, and indicate the mechanism by which flood basalt eruptions may have seriously affected the environment. Glass inclusions in phenocrysts and quenched glass in products from various stages of the eruption were analyzed for concentrations of S, Cl and F and major elements. Glass inclusions contain 1965 +/- 110 ppm S, 295 +/- 65 ppm Cl and 1310 +/- 110 ppm F. Groundmass glass of Roza dike selvages contains considerably lower concentrations: 1110 +/- 90 ppm S, 245 +/- 30 ppm Cl and 1020 +/- 25 ppm F. Scoria clasts from near vent deposits contain 665 +/- 75 ppm S, 175 +/- 5 ppm Cl and 950 +/- 20 ppm F, and the groundmass glass of lava selvages contains 520 +/- 30 ppm S, 190 +/- 30 ppm Cl and 890 +/- 55 ppm F. In crystalline lava, the concentrations are 195 ppm S, 100 ppm Cl and 830 ppm F. Volatile element concentrations in these samples represent the progress of degassing through the eruption and can be used to estimate the potential amount of the volatiles S, Cl and F released by the magma into the atmosphere, as well as to evaluate the amount liberated by various phases of the eruption. The total amount of volatiles released by the Roza eruption is estimated to have been approximately 12,420 MtSO2, approximately 710 MtHCI and approximately 1780 MtHF. The Roza magma liberated approximately 9620 MtSO, (77% of the total volatile mass released), approximately 400 MtHCI (56%) and approximately 1450 MtHF (81%) at the vents and lofted by the eruption columns to altitudes of 7-13 km. Degassing of the lava is estimated to have released an additional approximately 2810 MtSO2, approximately 310 MtHCI and approximately 330 MtHF. The Roza eruption is likely to have lasted for approximately 10 years, indicating an annual H2SO4-mass loading of approximately 1800 Mt. Thus, the atmospheric perturbations associated with the Roza eruption may have been of the magnitude predicted for a severe "nuclear" or "volcanic" winter, but lasting up to a decade or more.

  1. Explosive volcanism lessons learned from Mentos and soda eruptions

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Rust, A. C.; Cashman, K. V.

    2006-12-01

    When hard Mentos candies are dropped into a bottle of carbonated beverage, the resultant rapid CO2 exsolution and gas expansion causes an impressive soda `eruption'. We explore the ways in which this simple example can be used to demonstrate explosive volcanic processes. Through hands-on experiments, students can vary the type of candy, the type of beverage, and the shape of the vent (by making a hole in the cap of the soda bottle) to understand the processes that are influencing the height and duration of the eruption column. The activity can be tailored to demonstrate basic principles of gas exsolution and expansion for young students, but can also be extended to more complex principles of heterogeneous bubble nucleation and decreasing surface tension for college students. We present results from Mentos and soda experiments by a group of college freshman in the elementary education program (with no real science background). We compare students' resultant understanding of the similarities and differences between volcanic eruptions and the experiments with the results from a similar activity performed by a group of graduate geology students. The Mentos and soda reaction is dramatic. Video clips of people, young and old, trying this experiment across the world can be found on the world wide web. We suggest that the popularity of this demonstration be used to help teach fundamental concepts in both volcanology and scientific experimentation.

  2. Preliminary SAGE Simulations of Volcanic Jets Into a Stratified Atmosphere

    NASA Astrophysics Data System (ADS)

    Peterson, A. H.; Wohletz, K. H.; Ogden, D. E.; Gisler, G. R.; Glatzmaier, G. A.

    2007-12-01

    The SAGE (SAIC Adaptive Grid Eulerian) code employs adaptive mesh refinement in solving Eulerian equations of complex fluid flow desirable for simulation of volcanic eruptions. The goal of modeling volcanic eruptions is to better develop a code's predictive capabilities in order to understand the dynamics that govern the overall behavior of real eruption columns. To achieve this goal, we focus on the dynamics of underexpended jets, one of the fundamental physical processes important to explosive eruptions. Previous simulations of laboratory jets modeled in cylindrical coordinates were benchmarked with simulations in CFDLib (Los Alamos National Laboratory), which solves the full Navier-Stokes equations (includes viscous stress tensor), and showed close agreement, indicating that adaptive mesh refinement used in SAGE may offset the need for explicit calculation of viscous dissipation.We compare gas density contours of these previous simulations with the same initial conditions in cylindrical and Cartesian geometries to laboratory experiments to determine both the validity of the model and the robustness of the code. The SAGE results in both geometries are within several percent of the experiments for position and density of the incident (intercepting) and reflected shocks, slip lines, shear layers, and Mach disk. To expand our study into a volcanic regime, we simulate large-scale jets in a stratified atmosphere to establish the code's ability to model a sustained jet into a stable atmosphere.

  3. Reconstructing the Lethal Part of the 1790 Eruption at Kilauea

    NASA Astrophysics Data System (ADS)

    Swanson, D.; Weaver, S. J.; Houghton, B. F.

    2011-12-01

    The most lethal known eruption from a volcano in the United States took place in November 1790 at Kilauea, killing perhaps 400-800 people (estimates range widely) who were crossing the summit on their way to a distant battle site. The eruption culminated ca. 300 years of sporadic explosive activity after the formation of Kilauea Caldera in about 1500. No contemporary account exists of the 1790 activity, but an eruption plume was observed from Kawaihae, 100 km NW of Kilauea, that probably was 10 km or higher. We are attempting to piece together the lethal event from a study of the 1790 and enclosing deposits and by using published accounts, written several decades later, based on interviews with survivors or others with knowledge of the tragedy. Determining what deposits actually formed in November 1790 is crucial. The best tie to that date is a deposit of phreatomagmatic lithic lapilli and ash that occurs SE of the caldera and must have been advected by high-level (>~10 km) westerly winds rather than low-level NE trade winds. It is the only contender for deposits from the high column observed in 1790. Small lapilli from the high column fell onto, and sank deeply into, a 3-5-cm-thick accretionary lapilli layer that was wet and likely no more than a few hours old. The wet ash occurs south of the caldera, where the lithic lapilli fell into it, and is also found west of the caldera in the saddle between Kilauea and Mauna Loa, where the victims were probably walking along a main foot trail still visible today. A lithic pyroclastic surge swept across the saddle, locally scouring away the wet accretionary lapilli layer but generally leaving a deposit <1 to 15 cm thick on the ash and embedding 1-cm lithic lapilli deeply within it. This indicates that the surge also erupted in November 1790, while the underlying ash was still wet. Though scattered ballistic blocks later fell in the area, the surge left the youngest continuous deposit on the west flank of Kilauea. An account written in 1843 by Rev. Sheldon Dibble describes the dead victims as lying on the surface or "sitting upright clasping with dying grasp their wives and children," not buried by ash or battered by falling debris, and "thoroughly scorched" but "in no place deeply burnt." These gruesome details suggest that the surge engulfed the victims, some of whom were clasping one another to keep from being blown away. The surge deposit covers an area of 12-15 sq km on the western flank of Kilauea between the Hawaiian Volcano Observatory (HVO) and the main highway around the island. The fatalities probably took place in this area, now visited daily by 5000 travelers to Hawai`i Volcanoes National Park. Several human footprints, barely discernible through the thin surge deposit, indent the surface of the accretionary lapilli ash near HVO. Do they record someone's last footsteps? We do not yet know when the eruption started or how many units older than the accretionary lapilli ash were also erupted in 1790. But we think we have identified the lethal surge of the eruption, and it is sobering to realize that it overwhelmed the place where this abstract is being written 221 years later.

  4. Chronology of the 2014 volcanic eruption on the island of Fogo, Cape Verde

    NASA Astrophysics Data System (ADS)

    Silva, Sónia; Cardoso, Nadir; Alfama, Vera; Cabral, Jeremias; Semedo, Helio; Pérez, Nemesio M.; Dionis, Samara; Hernández, Pedro A.; Barrancos, José; Melián, Gladys V.; Pereira, José Manuel; Rodríguez, Fátima

    2015-04-01

    Twenty seven historical eruptions have ocurred at Fogo Island since its discovery and settlement (Ribeiro, 1960; Torres et al., 1997). This summary covers the events of the 27th eruption, which started on November 23, 2014, in Cha das Caldeiras, Fogo Island, along a NNE-SSW fissure on the east flank of the 1995 Pico Novo vent with the appearance of four eruptive vents and emissions of gases, pyroclastic rocks and lava. The eruptive column reached an estimated altitude of 6000 m, with aa lavas spilled over and ash fall in Cha das Caldeiras and other locations in the islands of Fogo and Brava (which lies 17km from Fogo). The Hawaiian style fissural stage originated about seven craters with gas and lava emission, that formed two lava flows of aa and pahoehoe style who started the destruction of Portela village, with average speeds of 1-3 meters/hour to 8-10 meters/hour with faster paces up to 1 meter/3 minutes, with thicknesses ranging between 1.5 meters to 10 meters, and temperatures of around 800 ° C. The Strombolian stage, gave rise to a main crater (from the coalescence of small craters) and three small craters or emmision vents, which released aa lava flows with development of lava fronts from one or two lava tubes at the base of the volcanic cone which also reached maximum lengths of 300 to 500 meters at estimated speeds of 20-30 meters/minute to 8-10 meters/minute, that destroyed the Portela and Bangaeira villages. Loud explosions and strong rumbling was also heard at the eruption site. A pahoehoe lava flow developed to the Ilhéu de Losna site, at an average speed of 1 meter/2minutes and a width of about 3 m which was divided into two fronts (north and south of this location) having buried all crop fields (vineyards and other crops) and some houses. The eruption is ongoing in the main vent, with the emission of gases and ash (dark color fumaroles), scorias, spatter and ballistics up to 30-40 feet high, forming eruptive columns with height of 200-1000 meters. Day, S. J., Heleno da Silva, S. I. N., and Fonseca, J. F. B. D.: A past giant lateral collapse and present-day flank instability of Fogo, Cape Verde Islands, J. Volcanol. Geotherm. Res., 94, 191-218, 1999. Foeken, J., Day, S., and Stuart, F.: Cosmogenic 3He exposure dating of the Quaternary basalts from Fogo, Cape Verdes: Implications for rift zone and magmatic reorganisation, Quaternary Geochron., 4, 37-49, doi:10.1016/j.quageo.2008.07.002, 2009. Ribeiro, O.: A ilha do Fogo e as suas erupções, 12a edição, Memórias, Série Geográfica, J. Inv. Ultramar, 1960. Torres, P.C., Madeira, J., Silva, L.C., Silveira, A.B., Serralheiro, A. & Mota Gomes, A. (1997) - Carta geológica das erupções históricas da ilha do Fogo: revisão e actualização, in "A erupção vulcânica de 1995 na ilha do Fogo, Cabo Verde", Lisboa, 119-132.

  5. The Atmospheric Impact of the 1991 Mount Pinatubo Eruption

    NASA Technical Reports Server (NTRS)

    Self, Stephen; Zhao, Jing-Xia; Holasek, Rick E.; Torres, Ronnie C.; King, Alan J.

    1993-01-01

    The 1991 eruption of Pinatubo produced about 5 cubic kilometers of dacitic magma and may be the second largest volcanic eruption of the century. Eruption columns reached 40 kilometers in altitude and emplaced a giant umbrella cloud in the middle to lower stratosphere that injected about 17 megatons of SO2, slightly more than twice the largest yielded by the 1982 eruption of El Chichon, Mexico. The SO2 formed sulfate aerosols that produced the largest perturbation to the stratospheric aerosol layer since the eruption of Krakatau in 1883. The aerosol cloud spread rapidly around the Earth in about 3 weeks and attained global coverage by about 1 year after the eruption. Peak local midvisible optical depths of up to 0.4 were measured in late 1992, and globally averaged values were about 0.1 to 0.15 for 2 years. The large aerosol cloud caused dramatic decreases in the amount of net radiation reaching the Earth's surface, producing a climate forcing that was two times stronger than the aerosols of El Chichon. Effects on climate were an observed surface cooling in the northern hemisphere of up to 0.5 to 0.6 C, equivalent to a hemispheric-wide reduction in net radiation of 4 watts per square meter and a cooling of perhaps as large as -0.4 C over large parts of the earth in 1992-93. Climate models seem to have predicted the cooling with a reasonable degree of accuracy. The Pinatubo climate forcing was stronger than the opposite warming of either the El Nino event or anthropogenic greenhouse gases in the period 1991-93. As a result of the presence of the aerosol particles, midlatitude ozone concentrations reached their lowest levels on record during 1992-93, the southern hemisphere 'ozone hole' increased in 1992 to an unprecedented size and ozone depletion rates were observed to be faster than ever before recorded. The atmospheric impact of the Pinatubo eruption has been profound, and it has sparked a lively interest in the role that volcanic aerosols play in climate change. This event has shown that a powerful eruption providing a 15 to 20 megaton release of SO2 into the stratosphere can produce sufficient aerosols to offset the present global warming trends and severely impact the ozone budget.

  6. The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma

    USGS Publications Warehouse

    Pallister, John S.; Diefenbach, Angela K.; Burton, William C.; Munoz, Jorge; Griswold, Julia P.; Lara, Luis E.; Lowenstern, Jacob B.; Valenzuela, Carolina E.

    2013-01-01

    We use geologic field mapping and sampling, photogrammetric analysis of oblique aerial photographs, and digital elevation models to document the 2008-2009 eruptive sequence at Chaitén Volcano and to estimate volumes and effusion rates for the lava dome. We also present geochemical and petrologic data that contribute to understanding the source of the rhyolite and its unusually rapid effusion rates. The eruption consisted of five major phases: 1. An explosive phase (1-11 May 2008); 2. A transitional phase (11-31 May 2008) in which low-altitude tephra columns and simultaneous lava extrusion took place; 3. An exogenous lava flow phase (June-September 2008); 4. A spine extrusion and endogenous growth phase (October 2008-February 2009); and 5. A mainly endogenous growth phase that began after the collapse of a prominent Peléean spine on 19 February 2009 and continued until the end of the eruption (late 2009 or possibly earliest 2010). The 2008-2009 rhyolite lava dome has a total volume of approximately 0.8 km3. The effusion rate averaged 66 m3s-1 during the first two weeks and averaged 45 m3s-1 for the first four months of the eruption, during which 0.5 km3 of rhyolite lava was erupted. These are among the highest rates measured world-wide for historical eruptions of silicic lava. Chaitén’s 2008-2009 lava is phenocryst-poor obsidian and microcrystalline rhyolite with 75.3±0.3% SiO2. The lava was erupted at relatively high temperature and is remarkably similar in composition and petrography to Chaitén’s pre-historic rhyolite. The rhyolite’s normative composition plots close to that of low pressure (100-200 MPa) minimum melts in the granite system, consistent with estimates of approximately 5 to 10 km source depths based on phase equilibria and geodetic studies. Calcic plagioclase, magnesian orthopyroxene and aluminous amphibole among the sparse phenocrysts suggest derivation of the rhyolite by melt extraction from a more mafic magmatic mush. High temperature and relatively low viscosity enabled rapid magma ascent and high effusion rates during the dome-forming phases of the 2008-2009 eruption.

  7. A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios

    NASA Astrophysics Data System (ADS)

    González-Mellado, A. O.; de La Cruz-Reyna, S.

    2010-11-01

    The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4-150 km from the eruptive source. The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available graphic interface. The model has been tested, with available data from some recent eruptions in México, and permits to generate ash-fall deposit scenarios from new situations, or to recreate past situations, or to superimpose scenarios from eruptions of other volcanoes. The results may be displayed as thickness vs. distance plots, or as deposit-thickness scenarios superimposed on a regional map by means of a visual computer simulator based on a user-friendly built-in computer graphic interface.

  8. The Baia-Fondi di Baia eruption at Campi Flegrei: stratigraphy and dynamics of a multi-stage caldera reactivation event

    NASA Astrophysics Data System (ADS)

    Pistolesi, Marco; Bertagnini, Antonella; Di Roberto, Alessio; Isaia, Roberto; Vona, Alessandro; Cioni, Raffaello; Giordano, Guido

    2017-09-01

    The Baia-Fondi di Baia eruption is one of the sporadic events that have occurred in the western sector of the Campi Flegrei caldera. It dates back to 9525-9696 bp and opened Epoch 2 of the caldera activity after a 1000-year-long period of quiescence. Although relatively small in terms of erupted volume with respect to most of the events of the past 15 ka, the Baia-Fondi di Baia eruption was characterized by a complex series of events, which have led to different interpretations in the literature. We present a detailed stratigraphic study of 40 outcrops in a sector of about 90 km2, coupled with sedimentological (grain size, componentry), physical (density, vesicularity), textural, and compositional analyses of the erupted deposits. Based on these data, we interpret the stratigraphic succession as being related to two distinct eruptive episodes (Baia and Fondi di Baia). These were separated by a short time interval, and each was characterized by different eruptive phases. The Baia eruptive episode started in a shallow-water environment with an explosive vent-opening phase that formed a breccia deposit (Unit I), rapidly followed by alternating fallout activity and dense, pyroclastic density current deposits generation (Unit II). Sedimentological features and pumice textural analyses suggest that deposition of Unit II coincided with the intensity peak of the eruption, with the fallout deposit being characterized by a volume of 0.06 ± 0.008 km3 (corresponding to a total erupted mass of 4.06 ± 0.5 × 1010 kg), a column height of 17 km, and a corresponding mass flow rate of 1.8 × 107 kg s-1. The associated tephra also shows the highest vesicularity (up to 81 vol.%) the highest vesicle number density (1.01 × 108 cm-3) and decompression rate (0.69 MPa s-1). This peak phase waned to turbulent, surge-like activity possibly associated with Vulcanian explosions and characterized by progressively lower intensity, as shown by density/vesicularity and textural properties of the erupted juvenile material (Unit III). This first eruptive episode was followed by a short quiescence, interrupted by the onset of a second eruptive episode (Fondi di Baia) whose vent opening deposited a breccia bed (Unit IV) which at some key outcrops directly overlies the fallout deposit of Unit II. The final phase of the Fondi di Baia episode strongly resembles Unit II, although sedimentological (presence of obsidian clasts which are absent in the Baia deposits) and textural (lower vesicularity, vesicle number density, and decompression rate values) features, together with a more limited dispersal, suggest that this phase of the eruption had a lower intensity. The large range of groundmass glass compositions, associated with variable proportions of highly (phonolitic-trachytic) and mildly (tephriphonolitic-latitic) evolved end-members in the erupted products, also suggests that these eruptive episodes were fed by at least two different magma batches that interacted during the different phases, with an increase of tephriphonolitic-latitic magma occurring during the Fondi di Baia stage.

  9. Ground based NO2 and O3 measurements by visible spectrometer at Syowa Base (69 deg S), Antarctica

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Matthews, W. A.; Johnston, Paul V.; Hayashi, M.; Koike, M.; Iwasaka, Y.; Shimizu, A.; Budiyono, A.; Yamanouchi, T.; Aoki, S.

    1994-01-01

    The column amounts of NO2 and ozone have been measured using visible spectroscopy at Syowa Base (69 deg S) since March 1990. Ozone was also measured at the same location with a Dobson spectrometer as well as ozonesondes being flown regularly. The characteristic features of the seasonal and diurnal variations of NO2 are presented. The column ozone values from the visible spectrometers are compared with the Dobson data. The very low values of NO2 in midwinter and early spring are consistent with the conditions predicted to be needed for heterogeneous ozone destruction in early spring. In late spring and summer of 1991, NO2 amounts were considerably smaller than in 1990, presumably due to the effect of Mt. Pinatubo eruption.

  10. The basal fallout and surge deposits of the mafic ignimbrite-forming Villa Senni Eruption Unit, (Colli Albani volcano, Italy)

    NASA Astrophysics Data System (ADS)

    Vinkler, A.; Ort, M. H.; Giordano, G.

    2009-12-01

    The Villa Senni Eruption Unit (350ka) represents the youngest large caldera-forming eruption of the Colli Albani volcano near Rome (Italy). The Colli Albani magma is marked by very undersaturated chemistry (tephritic to K-foiditic) and low viscosity. The total volume of the Villa Senni Eruption Unit is estimated at > 50 km3 and 30 km3 DRE (Watkins et al., 2002). The unit includes a sequence of a basal fallout/surge deposit, two main ignimbrites emplaced during the same eruptive event, a series of breccia deposits positioned between the two ignimbrites, and a rarely preserved final fallout. The basal surge and fallout sequence may help answer questions regarding the beginning of a large mafic ignimbrite eruption. The entire surge and fallout deposit is 190 cm thick at the caldera wall, consisting of 19 individual, parallel to faintly cross-stratified layers. The deposit distally thins to 25 cm at 18 km east of the caldera and to 2.5 cm at 21 km NW of the caldera. The eruption started with fine ash surges showing cross-stratification at proximal locations and being vesicular distally. The deposit consists mainly of juvenile clasts, which are angular, poorly vesicular, and rich in leucite microlites (~80 µm). Clasts around 100-150 μm show signs of magma-water interaction: quench fracturing: conchoidal and step fractures, smooth surfaces, adhering clasts and melt film. These features are present in several thin alternating surge and fall sequences at the base of the deposit. The lithic clasts in these first deposits are concentrated in layers, indicating pulsatory behavior of the eruption. Upward, the deposit consists of thicker, coarse ash to lapilli fallout layers from more sustained columns. The juvenile clasts in these deposits are more irregular, with higher vesicularity (but less than 50%) and smaller leucite microlites (~60 μm). The uppermost part of the basal fallout/surge deposit shows features transitional to the first large ignimbrite: fallout deposits alternate with poorly sorted flow units, with an increase in free leucite crystals and lithic content, with more abundant deep lithic clasts and a further leucite microlite size decrease (~20 μm) , which could indicate an accelerating magma in the conduit. We think that external factors, such as magma-water interaction and consequent gas explosions, triggered the highly explosive Villa Senni Eruption. Low vesicularity of the early juvenile clasts suggests the magma was relatively low in volatiles at the outset and did not start as a gas-driven eruption. Later in the eruption, the high ascent rate and fast decompression of the magma sustained a large explosive eruption.

  11. The chemical and radiative effects of the Mount Pinatubo eruption

    NASA Technical Reports Server (NTRS)

    Kinneson, Douglas E.; Grant, Keith E.; Connell, Peter S.; Rotman, Douglas A.; Wuebbles, Donald J.

    1994-01-01

    To clarify the mechanisms leading to effects on stratospheric ozone, time-dependent stratospheric aerosol and gas experiment II (SAGE II) and cryogenic limb array elaton spectrometer (CLAES) aerosol optical extinction data and SAGE II surface area density are used as parameters in a two-dimensional (2-D) zonally averaged chemical radiative transport model. The model was integrated with time from before the eruption through December 1993. The modeled impact on global ozone results from increased rates of heterogeneous reactions on sulfate aerosols and from the increased radiative heating and scattering caused by these aerosols. When the aerosol heating is allowed to modify the temperature distribution, the maximum change calculated in equatorial column ozone is -1.6%. The calculated equatorial temperature change and peak local ozone change in October 1991 are +6K and -4%, respectively. When aerosol heating perturbs the circulation in the model, the maximum change in equatorial column ozone is -6%. Increased heterogeneous processing on sulfate aerosols is calculated to have changed equatorial column ozone in late 1991 by -1.5%. Global column ozone in the model in 1992 and 1993 changed by -2.8% and -2.4%, respectively. The relationship of ozone-controlling processes in the lower stratosphere is altered as well; HO(x) becomes the most important catalytic cycle, followed by ClO(x) and NO(x). This is driven by significant changes in trace gas concentrations. In October 1991, lower stratospheric, equatorial NO(x) decreased by 40%, ClO(x) increased by 60%, and HO(x) increased by 25%. When the effect of heterogeneous chemical processing on sulfate aerosols is combined with aerosol heating, modifying either circulation or temperature, dramatically different ozone fingerprints with time and latitude are predicted. Model-derived changes in the equatorial region in column ozone best represented the observed data when perturbed circulation was combined with heterogeneous chemical effects. However, at high latitudes, the increased ozone production from the strengthening of the mean circulation tends to cancel the heterogeneous reduction of ozone. This is not in good agreement with observed data, especially in 1992 and 1993. When the circulation is held fixed and the temperature allowed to change, and heterogeneous chemical effects are included, the equatorial ozone decrease predicted was too small for 1991. However, the mid- to high-latitude decrease in 1992 and 1993 is in better agreement with observed data.

  12. Optical properties of volcanic ash: improving remote sensing observations.

    NASA Astrophysics Data System (ADS)

    Whelley, Patrick; Colarco, Peter; Aquila, Valentina; Krotkov, Nickolay; Bleacher, Jake; Garry, Brent; Young, Kelsey; Rocha Lima, Adriana; Martins, Vanderlei; Carn, Simon

    2016-04-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation.

  13. Deep crustal melt plumbing of Bárðarbunga volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Hudson, T. S.; White, R. S.; Greenfield, T.; Ágústsdóttir, T.; Brisbourne, A.; Green, R. G.

    2017-09-01

    Understanding magmatic plumbing within the Earth's crust is important for understanding volcanic systems and improving eruption forecasting. We discuss magma plumbing under Bárðarbunga volcano, Iceland, over a 4 year period encompassing the largest Icelandic eruption in 230 years. Microseismicity extends through the usually ductile region of the Earth's crust, from 7 to 22 km depth in a subvertical column. Moment tensor solutions for an example earthquake exhibits opening tensile crack behavior. This is consistent with the deep (>7 km) seismicity being caused by the movement of melt in the normally aseismic crust. The seismically inferred melt path from the mantle source is offset laterally from the center of the Bárðarbunga caldera by 12 km, rather than lying directly beneath it. It is likely that an aseismic melt feed also exists directly beneath the caldera and is aseismic due to elevated temperatures and pervasive partial melt under the caldera.

  14. ‘Column on column’ structures as indicators of lava/ice interaction, Ruapehu andesite volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Spörli, K. B.; Rowland, J. V.

    2006-10-01

    Lava flows of the Mangawhero Formation (ca. 15-60 ka) on Ruapehu volcano erupted during the last glaciation. In a distal flow lobe at Tukino, on the east side of the mountain, small secondary columns (10-20 cm thick) have formed on the sides of large, rectangular, primary (0.5-3 m thick) cooling columns. Thick (10 m+) zones of such small columns form a lateral and basal outer rind of the lobe. As they do not mark glassy zones of quenching, these secondary columns are interpreted as being formed by a second cooling event at temperatures below the boundary between the low creep and elastic regimes (˜ 600 °C) by rapid influx of copious amounts of water. Temperature drops deduced from extensional strains of the two sets of columns were used to gauge the viability of such a two-stage process. Absence of reliable data on andesite contraction coefficients was overcome by using a sliding scale to assess a large range of values. The estimates indicate that two-stage chilling is feasible. After flowing across relatively ice-poor terrain, the lava flow must have interacted with a valley glacier that provided water for further chilling the already formed primary columns and formation of the outer rind small columns. Given this evidence for lava/ice interaction, it is likely that prominent, thick flows elsewhere in the Mangawhero Formation may have been constrained to their ridge-top locations by ice conditions similar to those described by Lescinsky and Sisson [Lescinsky, D.T., Sisson, T.W., 1998. Ridge-forming, ice-bounded lava flows at Mount Rainier, Washington. Geology, 26, 351-354].

  15. The violent Strombolian eruption of 10 ka Pelado shield volcano, Sierra Chichinautzin, Central Mexico

    NASA Astrophysics Data System (ADS)

    Lorenzo-Merino, A.; Guilbaud, M.-N.; Roberge, J.

    2018-03-01

    Pelado volcano is a typical example of an andesitic Mexican shield with a summital scoria cone. It erupted ca. 10 ka in the central part of an elevated plateau in what is today the southern part of Mexico City. The volcano forms a roughly circular, 10-km wide lava shield with two summital cones, surrounded by up to 2.7-m thick tephra deposits preserved up to a distance of 3 km beyond the shield. New cartographic, stratigraphic, granulometric, and componentry data indicate that Pelado volcano was the product of a single, continuous eruption marked by three stages. In the early stage, a > 1.5-km long fissure opened and was active with mild explosive activity. Intermediate and late stages were mostly effusive and associated with the formation of a 250-m high lava shield. Nevertheless, during these stages, the emission of lava alternated and/or coexisted with highly explosive events that deposited a widespread tephra blanket. In the intermediate stage, multiple vents were active along the fissure, but activity was centered at the main cone during the late stage. The final activity was purely effusive. The volcano emitted > 0.9 km3 dense-rock equivalent (DRE) of tephra and up to 5.6 km3 DRE of lavas. Pelado shares various features with documented "violent Strombolian" eruptions, including a high fragmentation index, large dispersal area, occurrence of plate tephra, high eruptive column, and simultaneous explosive and effusive activity. Our results suggest that the associated hazards (mostly tephra fallout and emplacement of lava) would seriously affect areas located up to 25 km from the vent for fallout and 5 km from the vent for lava, an important issue for large cities built near or on potentially active zones, such as Mexico City.

  16. Natural origin arsenic in aquatic organisms from a deep oligotrophic lake under the influence of volcanic eruptions.

    PubMed

    Juncos, Romina; Arcagni, Marina; Rizzo, Andrea; Campbell, Linda; Arribére, María; Guevara, Sergio Ribeiro

    2016-02-01

    Volcanic eruptions are recognized sources of toxic elements to freshwater, including arsenic (As). In order to study the short term changes in the bioaccumulation of naturally occurring As by aquatic organisms in Lake Nahuel Huapi (Argentina), located close to the Puyehue-Cordón Caulle volcanic complex (PCCVC), we described As concentrations at different trophic levels and food web transfer patterns in three sites of the lake prior to the last PCCVC eruption (June 2011), and compared As concentrations in biota before and after the eruption. The highest As concentrations and greater variations both between sites and position in the water column, were observed in phytoplankton (3.9-64.8 µg g(-1) dry weight, DW) and small zooplankton (4.3-22.3 µg g(-1) DW). The pattern of As accumulation in aquatic organisms (whole body or muscle) was: primary producers (phytoplankton) > scrapper mollusks (9.3-15.3 µg g(-1) DW) > filter feeding mollusks (5.4-15.6 µg g(-1) DW) > omnivorous invertebrates (0.4-9.2 µg g(-1) DW) > zooplankton (1.2-3.5 µg g(-1) DW) > fish (0.2-1.9 µg g(-1) DW). We observed As biodilution in the whole food web, and in salmonids food chains, feeding on fish prey; but biomagnification in the food chain of creole perch, feeding on benthic crayfish. The impact of the 2011 PCCVC eruption on the As levels of biota was more evident in pelagic-associated organisms (zooplankton and planktivorous fish), but only in the short term, suggesting a brief high bioavailability of As in water after ash deposition. In benthic organisms As variations likely responded to shift in diet due to coverage of the littoral zone with ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. NASA's MISR Spots Alaskan Volcano's Latest Eruption

    NASA Image and Video Library

    2017-06-02

    The tiny Aleutian island of Bogoslof in Alaska, erupting regularly since December 2016, produced fresh activity on Sunday, May 28, 2017. Bogoslof is a stratovolcano fueled by the subduction of the Pacific Plate under the North American Plate and forms part of the larger Aleutian Arc, which includes more than 60 volcanoes on the Aleutian Islands and the Aleutian Range on the Alaska mainland. Previous to its recent period of activity, Bogoslof had last erupted in 1992, and its above-water surface area was a mere 0.11 square miles (0.29 square kilometers). As of March 11, the most recent data available, the area of the island had tripled to 0.38 square miles (0.98 square kilometers). The event on May 28 produced an ash cloud that reached 40,000 feet (12 km) in altitude, causing the Alaskan Volcano Observatory to issue a red alert for air travel in the area. Volcanic ash can cause major damage to aircraft engines, and the region is close to several major air routes between North America and Asia. On May 28, 2017, at approximately 2:23 p.m. local time, NASA's Terra satellite passed over Bogoslof, less than 10 minutes after the eruption began. MISR has nine cameras that view Earth at different angles. It takes slightly less than seven minutes for all nine cameras to view the same location on Earth. An animation made from the images from the nine MISR cameras, captured between 2:19 and 2:26 p.m., demonstrates how the angled views give a glimpse of the underside of the growing plume of volcanic ash, showing the eruption column widening into the cloud at the top. The animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21655

  18. The 1793 eruption of San Martín Tuxtla volcano, Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Espíndola, J. M.; Zamora-Camacho, A.; Godinez, M. L.; Schaaf, P.; Rodríguez, S. R.

    2010-11-01

    San Martín Tuxtla (N18.562°; W95.199°, 1659 masl) is a basaltic volcano located in southern Veracruz, a Mexican State bordering the Gulf of Mexico. It rises in a volcanic field strewn with monogenetic volcanic cones, maars and three other large volcanoes mostly dormant since the late Pliocene: Santa Marta, San Martín Pajapan and Cerro El Vigía. The latest eruptive event of San Martín occurred in 1793 and was described by Don José Mariano Moziño, a naturalist under the commission of the Viceroy of the then New Spain. In this work we present results of the study of this eruption based on historical accounts and field observations. We identified an ash deposit around the volcano related to the 1793 eruption, mapped its distribution and determined its granulometric, petrographic and geochemical characteristics. These studies suggest that the volcano began its activity with explosive phreatomagmatic explosions, which were followed by Strombolian activity; this period lasting from March to October 1793. The activity continued with an effusive phase that lasted probably 2 years. The eruption covered an area of about 480 km 2 with at least 1 cm of ash; the fines reaching distances greater than 300 km from the crater. A total mass of about 2.5 × 10 14 g was ejected and the volcanic columns probably reached altitudes of the order of 10 km during the most explosive phases. The lava emitted formed a coulee that descended the northern flank of the volcano and has an approximate volume of 2.0 × 10 7 m 3.

  19. A study of the total atmospheric sulfur dioxide load using ground-based measurements and the satellite derived Sulfur Dioxide Index

    NASA Astrophysics Data System (ADS)

    Georgoulias, A. K.; Balis, D.; Koukouli, M. E.; Meleti, C.; Bais, A.; Zerefos, C.

    We present characteristics of the sulfur dioxide (SO 2) loading over Thessaloniki, Greece, and seven other selected sites around the world using SO 2 total column measurements from Brewer spectrophotometers together with satellite estimates of the Version 8 TOMS Sulfur Dioxide Index (SOI) over the same locations, retrieved from Nimbus 7 TOMS (1979-1993), Earth Probe TOMS (1996-2003) and OMI/Aura (2004-2006). Traditionally, the SOI has been used to quantify the SO 2 quantities emitted during great volcanic eruptions. Here, we investigate whether the SOI can give an indication of the total SO 2 load for areas and periods away from eruptive volcanic activity by studying its relative changes as a correlative measure to the SO 2 total column. We examined time series from Thessaloniki and another seven urban and non-urban stations, five in the European Union (Arosa, De Bilt, Hohenpeissenberg, Madrid, Rome) and two in India (Kodaikanal, New Delhi). Based on the Brewer data, Thessaloniki shows high SO 2 total columns for a European Union city but values are still low if compared to highly affected regions like those in India. For the time period 1983-2006 the SO 2 levels above Thessaloniki have generally decreased with a rate of 0.028 Dobson Units (DU) per annum, presumably due to the European Union's strict sulfur control policies. The seasonal variability of the SO 2 total column exhibits a double peak structure with two maxima, one during winter and the second during summer. The winter peak can be attributed to central heating while the summer peak is due to synoptic transport from sources west of the city and sources in the north of Greece. A moderate correlation was found between the seasonal levels of Brewer total SO 2 and SOI for Thessaloniki, Greece ( R = 0.710-0.763) and Madrid, Spain ( R = 0.691) which shows that under specific conditions the SOI might act as an indicator of the SO 2 total load.

  20. Sustained effects of volcanic ash on biofilm stoichiometry, enzyme activity and community composition in North- Patagonia streams.

    PubMed

    Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz

    2018-04-15

    Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event. Copyright © 2017 Elsevier B.V. All rights reserved.

Top