Rahman, Md. Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D. W.; Labrique, Alain B.; Rashid, Mahbubur; Christian, Parul; West, Keith P.
2017-01-01
Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 − -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset. PMID:29261760
Kabir, Alamgir; Rahman, Md Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D W; Labrique, Alain B; Rashid, Mahbubur; Christian, Parul; West, Keith P
2017-01-01
Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 - -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset.
Partial least squares (PLS) analysis offers a number of advantages over the more traditionally used regression analyses applied in landscape ecology, particularly for determining the associations among multiple constituents of surface water and landscape configuration. Common dat...
Kernel analysis of partial least squares (PLS) regression models.
Shinzawa, Hideyuki; Ritthiruangdej, Pitiporn; Ozaki, Yukihiro
2011-05-01
An analytical technique based on kernel matrix representation is demonstrated to provide further chemically meaningful insight into partial least squares (PLS) regression models. The kernel matrix condenses essential information about scores derived from PLS or principal component analysis (PCA). Thus, it becomes possible to establish the proper interpretation of the scores. A PLS model for the total nitrogen (TN) content in multiple Thai fish sauces is built with a set of near-infrared (NIR) transmittance spectra of the fish sauce samples. The kernel analysis of the scores effectively reveals that the variation of the spectral feature induced by the change in protein content is substantially associated with the total water content and the protein hydration. Kernel analysis is also carried out on a set of time-dependent infrared (IR) spectra representing transient evaporation of ethanol from a binary mixture solution of ethanol and oleic acid. A PLS model to predict the elapsed time is built with the IR spectra and the kernel matrix is derived from the scores. The detailed analysis of the kernel matrix provides penetrating insight into the interaction between the ethanol and the oleic acid.
Partial least squares (PLS) analysis offers a number of advantages over the more traditionally used regression analyses applied in landscape ecology to study the associations among constituents of surface water and landscapes. Common data problems in ecological studies include: s...
Zhang, Yan; Zou, Hong-Yan; Shi, Pei; Yang, Qin; Tang, Li-Juan; Jiang, Jian-Hui; Wu, Hai-Long; Yu, Ru-Qin
2016-01-01
Determination of benzo[a]pyrene (BaP) in cigarette smoke can be very important for the tobacco quality control and the assessment of its harm to human health. In this study, mid-infrared spectroscopy (MIR) coupled to chemometric algorithm (DPSO-WPT-PLS), which was based on the wavelet packet transform (WPT), discrete particle swarm optimization algorithm (DPSO) and partial least squares regression (PLS), was used to quantify harmful ingredient benzo[a]pyrene in the cigarette mainstream smoke with promising result. Furthermore, the proposed method provided better performance compared to several other chemometric models, i.e., PLS, radial basis function-based PLS (RBF-PLS), PLS with stepwise regression variable selection (Stepwise-PLS) as well as WPT-PLS with informative wavelet coefficients selected by correlation coefficient test (rtest-WPT-PLS). It can be expected that the proposed strategy could become a new effective, rapid quantitative analysis technique in analyzing the harmful ingredient BaP in cigarette mainstream smoke. Copyright © 2015 Elsevier B.V. All rights reserved.
Dinç, Erdal; Ertekin, Zehra Ceren
2016-01-01
An application of parallel factor analysis (PARAFAC) and three-way partial least squares (3W-PLS1) regression models to ultra-performance liquid chromatography-photodiode array detection (UPLC-PDA) data with co-eluted peaks in the same wavelength and time regions was described for the multicomponent quantitation of hydrochlorothiazide (HCT) and olmesartan medoxomil (OLM) in tablets. Three-way dataset of HCT and OLM in their binary mixtures containing telmisartan (IS) as an internal standard was recorded with a UPLC-PDA instrument. Firstly, the PARAFAC algorithm was applied for the decomposition of three-way UPLC-PDA data into the chromatographic, spectral and concentration profiles to quantify the concerned compounds. Secondly, 3W-PLS1 approach was subjected to the decomposition of a tensor consisting of three-way UPLC-PDA data into a set of triads to build 3W-PLS1 regression for the analysis of the same compounds in samples. For the proposed three-way analysis methods in the regression and prediction steps, the applicability and validity of PARAFAC and 3W-PLS1 models were checked by analyzing the synthetic mixture samples, inter-day and intra-day samples, and standard addition samples containing HCT and OLM. Two different three-way analysis methods, PARAFAC and 3W-PLS1, were successfully applied to the quantitative estimation of the solid dosage form containing HCT and OLM. Regression and prediction results provided from three-way analysis were compared with those obtained by traditional UPLC method. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Soo Yee; Mediani, Ahmed; Maulidiani, Maulidiani; Khatib, Alfi; Ismail, Intan Safinar; Zawawi, Norhasnida; Abas, Faridah
2018-01-01
Neptunia oleracea is a plant consumed as a vegetable and which has been used as a folk remedy for several diseases. Herein, two regression models (partial least squares, PLS; and random forest, RF) in a metabolomics approach were compared and applied to the evaluation of the relationship between phenolics and bioactivities of N. oleracea. In addition, the effects of different extraction conditions on the phenolic constituents were assessed by pattern recognition analysis. Comparison of the PLS and RF showed that RF exhibited poorer generalization and hence poorer predictive performance. Both the regression coefficient of PLS and the variable importance of RF revealed that quercetin and kaempferol derivatives, caffeic acid and vitexin-2-O-rhamnoside were significant towards the tested bioactivities. Furthermore, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) results showed that sonication and absolute ethanol are the preferable extraction method and ethanol ratio, respectively, to produce N. oleracea extracts with high phenolic levels and therefore high DPPH scavenging and α-glucosidase inhibitory activities. Both PLS and RF are useful regression models in metabolomics studies. This work provides insight into the performance of different multivariate data analysis tools and the effects of different extraction conditions on the extraction of desired phenolics from plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Hart, Brian K.; Griffiths, Peter R.
1998-06-01
Partial least squares (PLS) regression has been evaluated as a robust calibration technique for over 100 hazardous air pollutants (HAPs) measured by open path Fourier transform infrared (OP/FT-IR) spectrometry. PLS has the advantage over the current recommended calibration method of classical least squares (CLS), in that it can look at the whole useable spectrum (700-1300 cm-1, 2000-2150 cm-1, and 2400-3000 cm-1), and detect several analytes simultaneously. Up to one hundred HAPs synthetically added to OP/FT-IR backgrounds have been simultaneously calibrated and detected using PLS. PLS also has the advantage in requiring less preprocessing of spectra than that which is required in CLS calibration schemes, allowing PLS to provide user independent real-time analysis of OP/FT-IR spectra.
NASA Astrophysics Data System (ADS)
Luna, Aderval S.; Gonzaga, Fabiano B.; da Rocha, Werickson F. C.; Lima, Igor C. A.
2018-01-01
Laser-induced breakdown spectroscopy (LIBS) analysis was carried out on eleven steel samples to quantify the concentrations of chromium, nickel, and manganese. LIBS spectral data were correlated to known concentrations of the samples using different strategies in partial least squares (PLS) regression models. For the PLS analysis, one predictive model was separately generated for each element, while different approaches were used for the selection of variables (VIP: variable importance in projection and iPLS: interval partial least squares) in the PLS model to quantify the contents of the elements. The comparison of the performance of the models showed that there was no significant statistical difference using the Wilcoxon signed rank test. The elliptical joint confidence region (EJCR) did not detect systematic errors in these proposed methodologies for each metal.
NASA Astrophysics Data System (ADS)
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-04-01
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-03-13
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
NASA Astrophysics Data System (ADS)
de Oliveira, Isadora R. N.; Roque, Jussara V.; Maia, Mariza P.; Stringheta, Paulo C.; Teófilo, Reinaldo F.
2018-04-01
A new method was developed to determine the antioxidant properties of red cabbage extract (Brassica oleracea) by mid (MID) and near (NIR) infrared spectroscopies and partial least squares (PLS) regression. A 70% (v/v) ethanolic extract of red cabbage was concentrated to 9° Brix and further diluted (12 to 100%) in water. The dilutions were used as external standards for the building of PLS models. For the first time, this strategy was applied for building multivariate regression models. Reference analyses and spectral data were obtained from diluted extracts. The determinate properties were total and monomeric anthocyanins, total polyphenols and antioxidant capacity by ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonate)) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. Ordered predictors selection (OPS) and genetic algorithm (GA) were used for feature selection before PLS regression (PLS-1). In addition, a PLS-2 regression was applied to all properties simultaneously. PLS-1 models provided more predictive models than did PLS-2 regression. PLS-OPS and PLS-GA models presented excellent prediction results with a correlation coefficient higher than 0.98. However, the best models were obtained using PLS and variable selection with the OPS algorithm and the models based on NIR spectra were considered more predictive for all properties. Then, these models provided a simple, rapid and accurate method for determination of red cabbage extract antioxidant properties and its suitability for use in the food industry.
Divya, O; Mishra, Ashok K
2007-05-29
Quantitative determination of kerosene fraction present in diesel has been carried out based on excitation emission matrix fluorescence (EEMF) along with parallel factor analysis (PARAFAC) and N-way partial least squares regression (N-PLS). EEMF is a simple, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. Calibration models consisting of varying compositions of diesel and kerosene were constructed and their validation was carried out using leave-one-out cross validation method. The accuracy of the model was evaluated through the root mean square error of prediction (RMSEP) for the PARAFAC, N-PLS and unfold PLS methods. N-PLS was found to be a better method compared to PARAFAC and unfold PLS method because of its low RMSEP values.
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
Balabin, Roman M; Smirnov, Sergey V
2011-04-29
During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.
Balss, Karin M; Long, Frederick H; Veselov, Vladimir; Orana, Argjenta; Akerman-Revis, Eugena; Papandreou, George; Maryanoff, Cynthia A
2008-07-01
Multivariate data analysis was applied to confocal Raman measurements on stents coated with the polymers and drug used in the CYPHER Sirolimus-eluting Coronary Stents. Partial least-squares (PLS) regression was used to establish three independent calibration curves for the coating constituents: sirolimus, poly(n-butyl methacrylate) [PBMA], and poly(ethylene-co-vinyl acetate) [PEVA]. The PLS calibrations were based on average spectra generated from each spatial location profiled. The PLS models were tested on six unknown stent samples to assess accuracy and precision. The wt % difference between PLS predictions and laboratory assay values for sirolimus was less than 1 wt % for the composite of the six unknowns, while the polymer models were estimated to be less than 0.5 wt % difference for the combined samples. The linearity and specificity of the three PLS models were also demonstrated with the three PLS models. In contrast to earlier univariate models, the PLS models achieved mass balance with better accuracy. This analysis was extended to evaluate the spatial distribution of the three constituents. Quantitative bitmap images of drug-eluting stent coatings are presented for the first time to assess the local distribution of components.
Xie, Chuanqi; He, Yong
2016-01-01
This study was carried out to use hyperspectral imaging technique for determining color (L*, a* and b*) and eggshell strength and identifying cracked chicken eggs. Partial least squares (PLS) models based on full and selected wavelengths suggested by regression coefficient (RC) method were established to predict the four parameters, respectively. Partial least squares-discriminant analysis (PLS-DA) and RC-partial least squares-discriminant analysis (RC-PLS-DA) models were applied to identify cracked eggs. PLS models performed well with the correlation coefficient (rp) of 0.788 for L*, 0.810 for a*, 0.766 for b* and 0.835 for eggshell strength. RC-PLS models also obtained the rp of 0.771 for L*, 0.806 for a*, 0.767 for b* and 0.841 for eggshell strength. The classification results were 97.06% in PLS-DA model and 88.24% in RC-PLS-DA model. It demonstrated that hyperspectral imaging technique has the potential to be used to detect color and eggshell strength values and identify cracked chicken eggs. PMID:26882990
Xu, Yun; Muhamadali, Howbeer; Sayqal, Ali; Dixon, Neil; Goodacre, Royston
2016-10-28
Partial least squares (PLS) is one of the most commonly used supervised modelling approaches for analysing multivariate metabolomics data. PLS is typically employed as either a regression model (PLS-R) or a classification model (PLS-DA). However, in metabolomics studies it is common to investigate multiple, potentially interacting, factors simultaneously following a specific experimental design. Such data often cannot be considered as a "pure" regression or a classification problem. Nevertheless, these data have often still been treated as a regression or classification problem and this could lead to ambiguous results. In this study, we investigated the feasibility of designing a hybrid target matrix Y that better reflects the experimental design than simple regression or binary class membership coding commonly used in PLS modelling. The new design of Y coding was based on the same principle used by structural modelling in machine learning techniques. Two real metabolomics datasets were used as examples to illustrate how the new Y coding can improve the interpretability of the PLS model compared to classic regression/classification coding.
Zhang, Hong-guang; Lu, Jian-gang
2016-02-01
Abstract To overcome the problems of significant difference among samples and nonlinearity between the property and spectra of samples in spectral quantitative analysis, a local regression algorithm is proposed in this paper. In this algorithm, net signal analysis method(NAS) was firstly used to obtain the net analyte signal of the calibration samples and unknown samples, then the Euclidean distance between net analyte signal of the sample and net analyte signal of calibration samples was calculated and utilized as similarity index. According to the defined similarity index, the local calibration sets were individually selected for each unknown sample. Finally, a local PLS regression model was built on each local calibration sets for each unknown sample. The proposed method was applied to a set of near infrared spectra of meat samples. The results demonstrate that the prediction precision and model complexity of the proposed method are superior to global PLS regression method and conventional local regression algorithm based on spectral Euclidean distance.
Locally-Based Kernal PLS Smoothing to Non-Parametric Regression Curve Fitting
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Korsmeyer, David (Technical Monitor)
2002-01-01
We present a novel smoothing approach to non-parametric regression curve fitting. This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert space. It is our concern to apply the methodology for smoothing experimental data where some level of knowledge about the approximate shape, local inhomogeneities or points where the desired function changes its curvature is known a priori or can be derived based on the observed noisy data. We propose locally-based kernel PLS regression that extends the previous kernel PLS methodology by incorporating this knowledge. We compare our approach with existing smoothing splines, hybrid adaptive splines and wavelet shrinkage techniques on two generated data sets.
Application of near-infrared spectroscopy for the rapid quality assessment of Radix Paeoniae Rubra
NASA Astrophysics Data System (ADS)
Zhan, Hao; Fang, Jing; Tang, Liying; Yang, Hongjun; Li, Hua; Wang, Zhuju; Yang, Bin; Wu, Hongwei; Fu, Meihong
2017-08-01
Near-infrared (NIR) spectroscopy with multivariate analysis was used to quantify gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra, and the feasibility to classify the samples originating from different areas was investigated. A new high-performance liquid chromatography method was developed and validated to analyze gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra as the reference. Partial least squares (PLS), principal component regression (PCR), and stepwise multivariate linear regression (SMLR) were performed to calibrate the regression model. Different data pretreatments such as derivatives (1st and 2nd), multiplicative scatter correction, standard normal variate, Savitzky-Golay filter, and Norris derivative filter were applied to remove the systematic errors. The performance of the model was evaluated according to the root mean square of calibration (RMSEC), root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV), and correlation coefficient (r). The results show that compared to PCR and SMLR, PLS had a lower RMSEC, RMSECV, and RMSEP and higher r for all the four analytes. PLS coupled with proper pretreatments showed good performance in both the fitting and predicting results. Furthermore, the original areas of Radix Paeoniae Rubra samples were partly distinguished by principal component analysis. This study shows that NIR with PLS is a reliable, inexpensive, and rapid tool for the quality assessment of Radix Paeoniae Rubra.
Newman, J; Egan, T; Harbourne, N; O'Riordan, D; Jacquier, J C; O'Sullivan, M
2014-08-01
Sensory evaluation can be problematic for ingredients with a bitter taste during research and development phase of new food products. In this study, 19 dairy protein hydrolysates (DPH) were analysed by an electronic tongue and their physicochemical characteristics, the data obtained from these methods were correlated with their bitterness intensity as scored by a trained sensory panel and each model was also assessed by its predictive capabilities. The physiochemical characteristics of the DPHs investigated were degree of hydrolysis (DH%), and data relating to peptide size and relative hydrophobicity from size exclusion chromatography (SEC) and reverse phase (RP) HPLC. Partial least square regression (PLS) was used to construct the prediction models. All PLS regressions had good correlations (0.78 to 0.93) with the strongest being the combination of data obtained from SEC and RP HPLC. However, the PLS with the strongest predictive power was based on the e-tongue which had the PLS regression with the lowest root mean predicted residual error sum of squares (PRESS) in the study. The results show that the PLS models constructed with the e-tongue and the combination of SEC and RP-HPLC has potential to be used for prediction of bitterness and thus reducing the reliance on sensory analysis in DPHs for future food research. Copyright © 2014 Elsevier B.V. All rights reserved.
Barimani, Shirin; Kleinebudde, Peter
2017-10-01
A multivariate analysis method, Science-Based Calibration (SBC), was used for the first time for endpoint determination of a tablet coating process using Raman data. Two types of tablet cores, placebo and caffeine cores, received a coating suspension comprising a polyvinyl alcohol-polyethylene glycol graft-copolymer and titanium dioxide to a maximum coating thickness of 80µm. Raman spectroscopy was used as in-line PAT tool. The spectra were acquired every minute and correlated to the amount of applied aqueous coating suspension. SBC was compared to another well-known multivariate analysis method, Partial Least Squares-regression (PLS) and a simpler approach, Univariate Data Analysis (UVDA). All developed calibration models had coefficient of determination values (R 2 ) higher than 0.99. The coating endpoints could be predicted with root mean square errors (RMSEP) less than 3.1% of the applied coating suspensions. Compared to PLS and UVDA, SBC proved to be an alternative multivariate calibration method with high predictive power. Copyright © 2017 Elsevier B.V. All rights reserved.
Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A
2014-08-01
Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.
Hordge, LaQuana N; McDaniel, Kiara L; Jones, Derick D; Fakayode, Sayo O
2016-05-15
The endocrine disruption property of estrogens necessitates the immediate need for effective monitoring and development of analytical protocols for their analyses in biological and human specimens. This study explores the first combined utility of a steady-state fluorescence spectroscopy and multivariate partial-least-square (PLS) regression analysis for the simultaneous determination of two estrogens (17α-ethinylestradiol (EE) and norgestimate (NOR)) concentrations in bovine serum albumin (BSA) and human serum albumin (HSA) samples. The influence of EE and NOR concentrations and temperature on the emission spectra of EE-HSA EE-BSA, NOR-HSA, and NOR-BSA complexes was also investigated. The binding of EE with HSA and BSA resulted in increase in emission characteristics of HSA and BSA and a significant blue spectra shift. In contrast, the interaction of NOR with HSA and BSA quenched the emission characteristics of HSA and BSA. The observed emission spectral shifts preclude the effective use of traditional univariate regression analysis of fluorescent data for the determination of EE and NOR concentrations in HSA and BSA samples. Multivariate partial-least-squares (PLS) regression analysis was utilized to correlate the changes in emission spectra with EE and NOR concentrations in HSA and BSA samples. The figures-of-merit of the developed PLS regression models were excellent, with limits of detection as low as 1.6×10(-8) M for EE and 2.4×10(-7) M for NOR and good linearity (R(2)>0.994985). The PLS models correctly predicted EE and NOR concentrations in independent validation HSA and BSA samples with a root-mean-square-percent-relative-error (RMS%RE) of less than 6.0% at physiological condition. On the contrary, the use of univariate regression resulted in poor predictions of EE and NOR in HSA and BSA samples, with RMS%RE larger than 40% at physiological conditions. High accuracy, low sensitivity, simplicity, low-cost with no prior analyte extraction or separation required makes this method promising, compelling, and attractive alternative for the rapid determination of estrogen concentrations in biomedical and biological specimens, pharmaceuticals, or environmental samples. Published by Elsevier B.V.
Koch, Cosima; Posch, Andreas E; Goicoechea, Héctor C; Herwig, Christoph; Lendl, Bernhard
2014-01-07
This paper presents the quantification of Penicillin V and phenoxyacetic acid, a precursor, inline during Pencillium chrysogenum fermentations by FTIR spectroscopy and partial least squares (PLS) regression and multivariate curve resolution - alternating least squares (MCR-ALS). First, the applicability of an attenuated total reflection FTIR fiber optic probe was assessed offline by measuring standards of the analytes of interest and investigating matrix effects of the fermentation broth. Then measurements were performed inline during four fed-batch fermentations with online HPLC for the determination of Penicillin V and phenoxyacetic acid as reference analysis. PLS and MCR-ALS models were built using these data and validated by comparison of single analyte spectra with the selectivity ratio of the PLS models and the extracted spectral traces of the MCR-ALS models, respectively. The achieved root mean square errors of cross-validation for the PLS regressions were 0.22 g L(-1) for Penicillin V and 0.32 g L(-1) for phenoxyacetic acid and the root mean square errors of prediction for MCR-ALS were 0.23 g L(-1) for Penicillin V and 0.15 g L(-1) for phenoxyacetic acid. A general work-flow for building and assessing chemometric regression models for the quantification of multiple analytes in bioprocesses by FTIR spectroscopy is given. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
da Silva, Fabiana E B; Flores, Érico M M; Parisotto, Graciele; Müller, Edson I; Ferrão, Marco F
2016-03-01
An alternative method for the quantification of sulphametoxazole (SMZ) and trimethoprim (TMP) using diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) and partial least square regression (PLS) was developed. Interval Partial Least Square (iPLS) and Synergy Partial Least Square (siPLS) were applied to select a spectral range that provided the lowest prediction error in comparison to the full-spectrum model. Fifteen commercial tablet formulations and forty-nine synthetic samples were used. The ranges of concentration considered were 400 to 900 mg g-1SMZ and 80 to 240 mg g-1 TMP. Spectral data were recorded between 600 and 4000 cm-1 with a 4 cm-1 resolution by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The proposed procedure was compared to high performance liquid chromatography (HPLC). The results obtained from the root mean square error of prediction (RMSEP), during the validation of the models for samples of sulphamethoxazole (SMZ) and trimethoprim (TMP) using siPLS, demonstrate that this approach is a valid technique for use in quantitative analysis of pharmaceutical formulations. The selected interval algorithm allowed building regression models with minor errors when compared to the full spectrum PLS model. A RMSEP of 13.03 mg g-1for SMZ and 4.88 mg g-1 for TMP was obtained after the selection the best spectral regions by siPLS.
Katsarov, Plamen; Gergov, Georgi; Alin, Aylin; Pilicheva, Bissera; Al-Degs, Yahya; Simeonov, Vasil; Kassarova, Margarita
2018-03-01
The prediction power of partial least squares (PLS) and multivariate curve resolution-alternating least squares (MCR-ALS) methods have been studied for simultaneous quantitative analysis of the binary drug combination - doxylamine succinate and pyridoxine hydrochloride. Analysis of first-order UV overlapped spectra was performed using different PLS models - classical PLS1 and PLS2 as well as partial robust M-regression (PRM). These linear models were compared to MCR-ALS with equality and correlation constraints (MCR-ALS-CC). All techniques operated within the full spectral region and extracted maximum information for the drugs analysed. The developed chemometric methods were validated on external sample sets and were applied to the analyses of pharmaceutical formulations. The obtained statistical parameters were satisfactory for calibration and validation sets. All developed methods can be successfully applied for simultaneous spectrophotometric determination of doxylamine and pyridoxine both in laboratory-prepared mixtures and commercial dosage forms.
NASA Astrophysics Data System (ADS)
Talebpour, Zahra; Tavallaie, Roya; Ahmadi, Seyyed Hamid; Abdollahpour, Assem
2010-09-01
In this study, a new method for the simultaneous determination of penicillin G salts in pharmaceutical mixture via FT-IR spectroscopy combined with chemometrics was investigated. The mixture of penicillin G salts is a complex system due to similar analytical characteristics of components. Partial least squares (PLS) and radial basis function-partial least squares (RBF-PLS) were used to develop the linear and nonlinear relation between spectra and components, respectively. The orthogonal signal correction (OSC) preprocessing method was used to correct unexpected information, such as spectral overlapping and scattering effects. In order to compare the influence of OSC on PLS and RBF-PLS models, the optimal linear (PLS) and nonlinear (RBF-PLS) models based on conventional and OSC preprocessed spectra were established and compared. The obtained results demonstrated that OSC clearly enhanced the performance of both RBF-PLS and PLS calibration models. Also in the case of some nonlinear relation between spectra and component, OSC-RBF-PLS gave satisfactory results than OSC-PLS model which indicated that the OSC was helpful to remove extrinsic deviations from linearity without elimination of nonlinear information related to component. The chemometric models were tested on an external dataset and finally applied to the analysis commercialized injection product of penicillin G salts.
Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis.
Nespeca, Maurilio Gustavo; Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, José Eduardo
2018-01-01
Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10), 50% (T50), and 85% (T85) recovery; cetane index; and biodiesel content) through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the multivariate regression method, partial least square (PLS). For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000-650 cm -1 . The use of the multivariate filters, generalized least squares weighting (GLSW) and orthogonal signal correction (OSC), was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS), backward interval PLS (BiPLS), and genetic algorithm (GA). The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time.
Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis
Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, José Eduardo
2018-01-01
Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10), 50% (T50), and 85% (T85) recovery; cetane index; and biodiesel content) through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the multivariate regression method, partial least square (PLS). For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000–650 cm−1. The use of the multivariate filters, generalized least squares weighting (GLSW) and orthogonal signal correction (OSC), was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS), backward interval PLS (BiPLS), and genetic algorithm (GA). The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time. PMID:29629209
Filgueiras, Paulo R; Terra, Luciana A; Castro, Eustáquio V R; Oliveira, Lize M S L; Dias, Júlio C M; Poppi, Ronei J
2015-09-01
This paper aims to estimate the temperature equivalent to 10% (T10%), 50% (T50%) and 90% (T90%) of distilled volume in crude oils using (1)H NMR and support vector regression (SVR). Confidence intervals for the predicted values were calculated using a boosting-type ensemble method in a procedure called ensemble support vector regression (eSVR). The estimated confidence intervals obtained by eSVR were compared with previously accepted calculations from partial least squares (PLS) models and a boosting-type ensemble applied in the PLS method (ePLS). By using the proposed boosting strategy, it was possible to identify outliers in the T10% property dataset. The eSVR procedure improved the accuracy of the distillation temperature predictions in relation to standard PLS, ePLS and SVR. For T10%, a root mean square error of prediction (RMSEP) of 11.6°C was obtained in comparison with 15.6°C for PLS, 15.1°C for ePLS and 28.4°C for SVR. The RMSEPs for T50% were 24.2°C, 23.4°C, 22.8°C and 14.4°C for PLS, ePLS, SVR and eSVR, respectively. For T90%, the values of RMSEP were 39.0°C, 39.9°C and 39.9°C for PLS, ePLS, SVR and eSVR, respectively. The confidence intervals calculated by the proposed boosting methodology presented acceptable values for the three properties analyzed; however, they were lower than those calculated by the standard methodology for PLS. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Qi, Cathy Huaqing; Marley, Scott C.
2009-01-01
The study examined whether item bias is present in the "Preschool Language Scale-4" (PLS-4). Participants were 440 children (3-5 years old; 86% English-speaking Hispanic and 14% European American) who were enrolled in Head Start programs. The PLS-4 items were analyzed for differential item functioning (DIF) using logistic regression and…
NASA Astrophysics Data System (ADS)
Al-Harrasi, Ahmed; Rehman, Najeeb Ur; Mabood, Fazal; Albroumi, Muhammaed; Ali, Liaqat; Hussain, Javid; Hussain, Hidayat; Csuk, René; Khan, Abdul Latif; Alam, Tanveer; Alameri, Saif
2017-09-01
In the present study, for the first time, NIR spectroscopy coupled with PLS regression as a rapid and alternative method was developed to quantify the amount of Keto-β-Boswellic Acid (KBA) in different plant parts of Boswellia sacra and the resin exudates of the trunk. NIR spectroscopy was used for the measurement of KBA standards and B. sacra samples in absorption mode in the wavelength range from 700-2500 nm. PLS regression model was built from the obtained spectral data using 70% of KBA standards (training set) in the range from 0.1 ppm to 100 ppm. The PLS regression model obtained was having R-square value of 98% with 0.99 corelationship value and having good prediction with RMSEP value 3.2 and correlation of 0.99. It was then used to quantify the amount of KBA in the samples of B. sacra. The results indicated that the MeOH extract of resin has the highest concentration of KBA (0.6%) followed by essential oil (0.1%). However, no KBA was found in the aqueous extract. The MeOH extract of the resin was subjected to column chromatography to get various sub-fractions at different polarity of organic solvents. The sub-fraction at 4% MeOH/CHCl3 (4.1% of KBA) was found to contain the highest percentage of KBA followed by another sub-fraction at 2% MeOH/CHCl3 (2.2% of KBA). The present results also indicated that KBA is only present in the gum-resin of the trunk and not in all parts of the plant. These results were further confirmed through HPLC analysis and therefore it is concluded that NIRS coupled with PLS regression is a rapid and alternate method for quantification of KBA in Boswellia sacra. It is non-destructive, rapid, sensitive and uses simple methods of sample preparation.
Cao, Hui; Li, Yao-Jiang; Zhou, Yan; Wang, Yan-Xia
2014-11-01
To deal with nonlinear characteristics of spectra data for the thermal power plant flue, a nonlinear partial least square (PLS) analysis method with internal model based on neural network is adopted in the paper. The latent variables of the independent variables and the dependent variables are extracted by PLS regression firstly, and then they are used as the inputs and outputs of neural network respectively to build the nonlinear internal model by train process. For spectra data of flue gases of the thermal power plant, PLS, the nonlinear PLS with the internal model of back propagation neural network (BP-NPLS), the non-linear PLS with the internal model of radial basis function neural network (RBF-NPLS) and the nonlinear PLS with the internal model of adaptive fuzzy inference system (ANFIS-NPLS) are compared. The root mean square error of prediction (RMSEP) of sulfur dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 16.96%, 16.60% and 19.55% than that of PLS, respectively. The RMSEP of nitric oxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 8.60%, 8.47% and 10.09% than that of PLS, respectively. The RMSEP of nitrogen dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 2.11%, 3.91% and 3.97% than that of PLS, respectively. Experimental results show that the nonlinear PLS is more suitable for the quantitative analysis of glue gas than PLS. Moreover, by using neural network function which can realize high approximation of nonlinear characteristics, the nonlinear partial least squares method with internal model mentioned in this paper have well predictive capabilities and robustness, and could deal with the limitations of nonlinear partial least squares method with other internal model such as polynomial and spline functions themselves under a certain extent. ANFIS-NPLS has the best performance with the internal model of adaptive fuzzy inference system having ability to learn more and reduce the residuals effectively. Hence, ANFIS-NPLS is an accurate and useful quantitative thermal power plant flue gas analysis method.
Improved Quantitative Analysis of Ion Mobility Spectrometry by Chemometric Multivariate Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraga, Carlos G.; Kerr, Dayle; Atkinson, David A.
2009-09-01
Traditional peak-area calibration and the multivariate calibration methods of principle component regression (PCR) and partial least squares (PLS), including unfolded PLS (U-PLS) and multi-way PLS (N-PLS), were evaluated for the quantification of 2,4,6-trinitrotoluene (TNT) and cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) in Composition B samples analyzed by temperature step desorption ion mobility spectrometry (TSD-IMS). The true TNT and RDX concentrations of eight Composition B samples were determined by high performance liquid chromatography with UV absorbance detection. Most of the Composition B samples were found to have distinct TNT and RDX concentrations. Applying PCR and PLS on the exact same IMS spectra used for themore » peak-area study improved quantitative accuracy and precision approximately 3 to 5 fold and 2 to 4 fold, respectively. This in turn improved the probability of correctly identifying Composition B samples based upon the estimated RDX and TNT concentrations from 11% with peak area to 44% and 89% with PLS. This improvement increases the potential of obtaining forensic information from IMS analyzers by providing some ability to differentiate or match Composition B samples based on their TNT and RDX concentrations.« less
NASA Astrophysics Data System (ADS)
Hemmateenejad, Bahram; Rezaei, Zahra; Khabnadideh, Soghra; Saffari, Maryam
2007-11-01
Carbamazepine (CBZ) undergoes enzyme biotransformation through epoxidation with the formation of its metabolite, carbamazepine-10,11-epoxide (CBZE). A simple chemometrics-assisted spectrophotometric method has been proposed for simultaneous determination of CBZ and CBZE in plasma. A liquid extraction procedure was operated to separate the analytes from plasma, and the UV absorbance spectra of the resultant solutions were subjected to partial least squares (PLS) regression. The optimum number of PLS latent variables was selected according to the PRESS values of leave-one-out cross-validation. A HPLC method was also employed for comparison. The respective mean recoveries for analysis of CBZ and CBZE in synthetic mixtures were 102.57 (±0.25)% and 103.00 (±0.09)% for PLS and 99.40 (±0.15)% and 102.20 (±0.02)%. The concentrations of CBZ and CBZE were also determined in five patients using the PLS and HPLC methods. The results showed that the data obtained by PLS were comparable with those obtained by HPLC method.
NASA Astrophysics Data System (ADS)
Chen, Hui; Tan, Chao; Lin, Zan; Wu, Tong
2018-01-01
Milk is among the most popular nutrient source worldwide, which is of great interest due to its beneficial medicinal properties. The feasibility of the classification of milk powder samples with respect to their brands and the determination of protein concentration is investigated by NIR spectroscopy along with chemometrics. Two datasets were prepared for experiment. One contains 179 samples of four brands for classification and the other contains 30 samples for quantitative analysis. Principal component analysis (PCA) was used for exploratory analysis. Based on an effective model-independent variable selection method, i.e., minimal-redundancy maximal-relevance (MRMR), only 18 variables were selected to construct a partial least-square discriminant analysis (PLS-DA) model. On the test set, the PLS-DA model based on the selected variable set was compared with the full-spectrum PLS-DA model, both of which achieved 100% accuracy. In quantitative analysis, the partial least-square regression (PLSR) model constructed by the selected subset of 260 variables outperforms significantly the full-spectrum model. It seems that the combination of NIR spectroscopy, MRMR and PLS-DA or PLSR is a powerful tool for classifying different brands of milk and determining the protein content.
NASA Astrophysics Data System (ADS)
Gholizadeh, H.; Robeson, S. M.
2015-12-01
Empirical models have been widely used to estimate global chlorophyll content from remotely sensed data. Here, we focus on the standard NASA empirical models that use blue-green band ratios. These band ratio ocean color (OC) algorithms are in the form of fourth-order polynomials and the parameters of these polynomials (i.e. coefficients) are estimated from the NASA bio-Optical Marine Algorithm Data set (NOMAD). Most of the points in this data set have been sampled from tropical and temperate regions. However, polynomial coefficients obtained from this data set are used to estimate chlorophyll content in all ocean regions with different properties such as sea-surface temperature, salinity, and downwelling/upwelling patterns. Further, the polynomial terms in these models are highly correlated. In sum, the limitations of these empirical models are as follows: 1) the independent variables within the empirical models, in their current form, are correlated (multicollinear), and 2) current algorithms are global approaches and are based on the spatial stationarity assumption, so they are independent of location. Multicollinearity problem is resolved by using partial least squares (PLS). PLS, which transforms the data into a set of independent components, can be considered as a combined form of principal component regression (PCR) and multiple regression. Geographically weighted regression (GWR) is also used to investigate the validity of spatial stationarity assumption. GWR solves a regression model over each sample point by using the observations within its neighbourhood. PLS results show that the empirical method underestimates chlorophyll content in high latitudes, including the Southern Ocean region, when compared to PLS (see Figure 1). Cluster analysis of GWR coefficients also shows that the spatial stationarity assumption in empirical models is not likely a valid assumption.
Ramírez, J; Górriz, J M; Segovia, F; Chaves, R; Salas-Gonzalez, D; López, M; Alvarez, I; Padilla, P
2010-03-19
This letter shows a computer aided diagnosis (CAD) technique for the early detection of the Alzheimer's disease (AD) by means of single photon emission computed tomography (SPECT) image classification. The proposed method is based on partial least squares (PLS) regression model and a random forest (RF) predictor. The challenge of the curse of dimensionality is addressed by reducing the large dimensionality of the input data by downscaling the SPECT images and extracting score features using PLS. A RF predictor then forms an ensemble of classification and regression tree (CART)-like classifiers being its output determined by a majority vote of the trees in the forest. A baseline principal component analysis (PCA) system is also developed for reference. The experimental results show that the combined PLS-RF system yields a generalization error that converges to a limit when increasing the number of trees in the forest. Thus, the generalization error is reduced when using PLS and depends on the strength of the individual trees in the forest and the correlation between them. Moreover, PLS feature extraction is found to be more effective for extracting discriminative information from the data than PCA yielding peak sensitivity, specificity and accuracy values of 100%, 92.7%, and 96.9%, respectively. Moreover, the proposed CAD system outperformed several other recently developed AD CAD systems. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Alaoui, G.; Leger, M.; Gagne, J.; Tremblay, L.
2009-05-01
The goal of this work was to evaluate the capability of infrared reflectance spectroscopy for a fast quantification of the elemental and molecular compositions of sedimentary and particulate organic matter (OM). A partial least-squares (PLS) regression model was used for analysis and values were compared to those obtained by traditional methods (i.e., elemental, humic and HPLC analyses). PLS tools are readily accessible from software such as GRAMS (Thermo-Fisher) used in spectroscopy. This spectroscopic-chemometric approach has several advantages including its rapidity and use of whole unaltered samples. To predict properties, a set of infrared spectra from representative samples must first be fitted to form a PLS calibration model. In this study, a large set (180) of sediments and particles on GFF filters from the St. Lawrence estuarine system were used. These samples are very heterogenous (e.g., various tributaries, terrigenous vs. marine, events such as landslides and floods) and thus represent a challenging test for PLS prediction. For sediments, the infrared spectra were obtained with a diffuse reflectance, or DRIFT, accessory. Sedimentary carbon, nitrogen, humic substance contents as well as humic substance proportions in OM and N:C ratios were predicted by PLS. The relative root mean square error of prediction (%RMSEP) for these properties were between 5.7% (humin content) and 14.1% (total humic substance yield) using the cross-validation, or leave-one out, approach. The %RMSEP calculated by PLS for carbon content was lower with the PLS model (7.6%) than with an external calibration method (11.7%) (Tremblay and Gagné, 2002, Anal. Chem., 74, 2985). Moreover, the PLS approach does not require the extraction of POM needed in external calibration. Results highlighted the importance of using a PLS calibration set representative of the unknown samples (e.g., same area). For filtered particles, the infrared spectra were obtained using a novel approach based on attenuated total reflectance, or ATR, allowing the direct analysis of the filters. In addition to carbon and nitrogen contents, amino acid and muramic acid (a bacterial biomarker) yields were predicted using PLS. Calculated %RMSEP varied from 6.4% (total amino acid content) to 18.6% (muramic acid content) with cross-validation. PLS regression modeling does not require a priori knowledge of the spectral bands associated with the properties to be predicted. In turn, the spectral regions that give good PLS predictions provided valuable information on band assignment and geochemical processes. For instance, nitrogen and humin contents were greatly determined by an absorption band caused by aluminosilicate OH group. This supports the idea that OM-clay interactions, important in humin formation and OM preservation, are mediated by nitrogen-containing groups.
Mechanisms behind the estimation of photosynthesis traits from leaf reflectance observations
NASA Astrophysics Data System (ADS)
Dechant, Benjamin; Cuntz, Matthias; Doktor, Daniel; Vohland, Michael
2016-04-01
Many studies have investigated the reflectance-based estimation of leaf chlorophyll, water and dry matter contents of plants. Only few studies focused on photosynthesis traits, however. The maximum potential uptake of carbon dioxide under given environmental conditions is determined mainly by RuBisCO activity, limiting carboxylation, or the speed of photosynthetic electron transport. These two main limitations are represented by the maximum carboxylation capacity, V cmax,25, and the maximum electron transport rate, Jmax,25. These traits were estimated from leaf reflectance before but the mechanisms underlying the estimation remain rather speculative. The aim of this study was therefore to reveal the mechanisms behind reflectance-based estimation of V cmax,25 and Jmax,25. Leaf reflectance, photosynthetic response curves as well as nitrogen content per area, Narea, and leaf mass per area, LMA, were measured on 37 deciduous tree species. V cmax,25 and Jmax,25 were determined from the response curves. Partial Least Squares (PLS) regression models for the two photosynthesis traits V cmax,25 and Jmax,25 as well as Narea and LMA were studied using a cross-validation approach. Analyses of linear regression models based on Narea and other leaf traits estimated via PROSPECT inversion, PLS regression coefficients and model residuals were conducted in order to reveal the mechanisms behind the reflectance-based estimation. We found that V cmax,25 and Jmax,25 can be estimated from leaf reflectance with good to moderate accuracy for a large number of species and different light conditions. The dominant mechanism behind the estimations was the strong relationship between photosynthesis traits and leaf nitrogen content. This was concluded from very strong relationships between PLS regression coefficients, the model residuals as well as the prediction performance of Narea- based linear regression models compared to PLS regression models. While the PLS regression model for V cmax,25 was fully based on the correlation to Narea, the PLS regression model for Jmax,25 was not entirely based on it. Analyses of the contributions of different parts of the reflectance spectrum revealed that the information contributing to the Jmax,25 PLS regression model in addition to the main source of information, Narea, was mainly located in the visible part of the spectrum (500-900 nm). Estimated chlorophyll content could be excluded as potential source of this extra information. The PLS regression coefficients of the Jmax,25 model indicated possible contributions from chlorophyll fluorescence and cytochrome f content. In summary, we found that the main mechanism behind the estimation of V cmax,25 and Jmax,25 from leaf reflectance observations is the correlation to Narea but that there is additional information related to Jmax,25 mainly in the visible part of the spectrum.
Martelo-Vidal, M J; Vázquez, M
2014-09-01
Spectral analysis is a quick and non-destructive method to analyse wine. In this work, trans-resveratrol, oenin, malvin, catechin, epicatechin, quercetin and syringic acid were determined in commercial red wines from DO Rías Baixas and DO Ribeira Sacra (Spain) by UV-VIS-NIR spectroscopy. Calibration models were developed using principal component regression (PCR) or partial least squares (PLS) regression. HPLC was used as reference method. The results showed that reliable PLS models were obtained to quantify all polyphenols for Rías Baixas wines. For Ribeira Sacra, feasible models were obtained to determine quercetin, epicatechin, oenin and syringic acid. PCR calibration models showed worst reliable of prediction than PLS models. For red wines from mencía grapes, feasible models were obtained for catechin and oenin, regardless the geographical origin. The results obtained demonstrate that UV-VIS-NIR spectroscopy can be used to determine individual polyphenolic compounds in red wines. Copyright © 2014 Elsevier Ltd. All rights reserved.
Francisco, Fabiane Lacerda; Saviano, Alessandro Morais; Almeida, Túlia de Souza Botelho; Lourenço, Felipe Rebello
2016-05-01
Microbiological assays are widely used to estimate the relative potencies of antibiotics in order to guarantee the efficacy, safety, and quality of drug products. Despite of the advantages of turbidimetric bioassays when compared to other methods, it has limitations concerning the linearity and range of the dose-response curve determination. Here, we proposed to use partial least squares (PLS) regression to solve these limitations and to improve the prediction of relative potencies of antibiotics. Kinetic-reading microplate turbidimetric bioassays for apramacyin and vancomycin were performed using Escherichia coli (ATCC 8739) and Bacillus subtilis (ATCC 6633), respectively. Microbial growths were measured as absorbance up to 180 and 300min for apramycin and vancomycin turbidimetric bioassays, respectively. Conventional dose-response curves (absorbances or area under the microbial growth curve vs. log of antibiotic concentration) showed significant regression, however there were significant deviation of linearity. Thus, they could not be used for relative potency estimations. PLS regression allowed us to construct a predictive model for estimating the relative potencies of apramycin and vancomycin without over-fitting and it improved the linear range of turbidimetric bioassay. In addition, PLS regression provided predictions of relative potencies equivalent to those obtained from agar diffusion official methods. Therefore, we conclude that PLS regression may be used to estimate the relative potencies of antibiotics with significant advantages when compared to conventional dose-response curve determination. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Krepper, Gabriela; Romeo, Florencia; Fernandes, David Douglas de Sousa; Diniz, Paulo Henrique Gonçalves Dias; de Araújo, Mário César Ugulino; Di Nezio, María Susana; Pistonesi, Marcelo Fabián; Centurión, María Eugenia
2018-01-01
Determining fat content in hamburgers is very important to minimize or control the negative effects of fat on human health, effects such as cardiovascular diseases and obesity, which are caused by the high consumption of saturated fatty acids and cholesterol. This study proposed an alternative analytical method based on Near Infrared Spectroscopy (NIR) and Successive Projections Algorithm for interval selection in Partial Least Squares regression (iSPA-PLS) for fat content determination in commercial chicken hamburgers. For this, 70 hamburger samples with a fat content ranging from 14.27 to 32.12 mg kg- 1 were prepared based on the upper limit recommended by the Argentinean Food Codex, which is 20% (w w- 1). NIR spectra were then recorded and then preprocessed by applying different approaches: base line correction, SNV, MSC, and Savitzky-Golay smoothing. For comparison, full-spectrum PLS and the Interval PLS are also used. The best performance for the prediction set was obtained for the first derivative Savitzky-Golay smoothing with a second-order polynomial and window size of 19 points, achieving a coefficient of correlation of 0.94, RMSEP of 1.59 mg kg- 1, REP of 7.69% and RPD of 3.02. The proposed methodology represents an excellent alternative to the conventional Soxhlet extraction method, since waste generation is avoided, yet without the use of either chemical reagents or solvents, which follows the primary principles of Green Chemistry. The new method was successfully applied to chicken hamburger analysis, and the results agreed with those with reference values at a 95% confidence level, making it very attractive for routine analysis.
Krepper, Gabriela; Romeo, Florencia; Fernandes, David Douglas de Sousa; Diniz, Paulo Henrique Gonçalves Dias; de Araújo, Mário César Ugulino; Di Nezio, María Susana; Pistonesi, Marcelo Fabián; Centurión, María Eugenia
2018-01-15
Determining fat content in hamburgers is very important to minimize or control the negative effects of fat on human health, effects such as cardiovascular diseases and obesity, which are caused by the high consumption of saturated fatty acids and cholesterol. This study proposed an alternative analytical method based on Near Infrared Spectroscopy (NIR) and Successive Projections Algorithm for interval selection in Partial Least Squares regression (iSPA-PLS) for fat content determination in commercial chicken hamburgers. For this, 70 hamburger samples with a fat content ranging from 14.27 to 32.12mgkg -1 were prepared based on the upper limit recommended by the Argentinean Food Codex, which is 20% (ww -1 ). NIR spectra were then recorded and then preprocessed by applying different approaches: base line correction, SNV, MSC, and Savitzky-Golay smoothing. For comparison, full-spectrum PLS and the Interval PLS are also used. The best performance for the prediction set was obtained for the first derivative Savitzky-Golay smoothing with a second-order polynomial and window size of 19 points, achieving a coefficient of correlation of 0.94, RMSEP of 1.59mgkg -1 , REP of 7.69% and RPD of 3.02. The proposed methodology represents an excellent alternative to the conventional Soxhlet extraction method, since waste generation is avoided, yet without the use of either chemical reagents or solvents, which follows the primary principles of Green Chemistry. The new method was successfully applied to chicken hamburger analysis, and the results agreed with those with reference values at a 95% confidence level, making it very attractive for routine analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia
2017-06-05
Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs. Copyright © 2017 Elsevier B.V. All rights reserved.
Siebers, Nina; Kruse, Jens; Eckhardt, Kai-Uwe; Hu, Yongfeng; Leinweber, Peter
2012-07-01
Cadmium (Cd) has a high toxicity and resolving its speciation in soil is challenging but essential for estimating the environmental risk. In this study partial least-square (PLS) regression was tested for its capability to deconvolute Cd L(3)-edge X-ray absorption near-edge structure (XANES) spectra of multi-compound mixtures. For this, a library of Cd reference compound spectra and a spectrum of a soil sample were acquired. A good coefficient of determination (R(2)) of Cd compounds in mixtures was obtained for the PLS model using binary and ternary mixtures of various Cd reference compounds proving the validity of this approach. In order to describe complex systems like soil, multi-compound mixtures of a variety of Cd compounds must be included in the PLS model. The obtained PLS regression model was then applied to a highly Cd-contaminated soil revealing Cd(3)(PO(4))(2) (36.1%), Cd(NO(3))(2)·4H(2)O (24.5%), Cd(OH)(2) (21.7%), CdCO(3) (17.1%) and CdCl(2) (0.4%). These preliminary results proved that PLS regression is a promising approach for a direct determination of Cd speciation in the solid phase of a soil sample.
Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi
2012-01-01
The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.
NASA Astrophysics Data System (ADS)
Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-01
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.
Towards molecular design using 2D-molecular contour maps obtained from PLS regression coefficients
NASA Astrophysics Data System (ADS)
Borges, Cleber N.; Barigye, Stephen J.; Freitas, Matheus P.
2017-12-01
The multivariate image analysis descriptors used in quantitative structure-activity relationships are direct representations of chemical structures as they are simply numerical decodifications of pixels forming the 2D chemical images. These MDs have found great utility in the modeling of diverse properties of organic molecules. Given the multicollinearity and high dimensionality of the data matrices generated with the MIA-QSAR approach, modeling techniques that involve the projection of the data space onto orthogonal components e.g. Partial Least Squares (PLS) have been generally used. However, the chemical interpretation of the PLS-based MIA-QSAR models, in terms of the structural moieties affecting the modeled bioactivity has not been straightforward. This work describes the 2D-contour maps based on the PLS regression coefficients, as a means of assessing the relevance of single MIA predictors to the response variable, and thus allowing for the structural, electronic and physicochemical interpretation of the MIA-QSAR models. A sample study to demonstrate the utility of the 2D-contour maps to design novel drug-like molecules is performed using a dataset of some anti-HIV-1 2-amino-6-arylsulfonylbenzonitriles and derivatives, and the inferences obtained are consistent with other reports in the literature. In addition, the different schemes for encoding atomic properties in molecules are discussed and evaluated.
Determination of butter adulteration with margarine using Raman spectroscopy.
Uysal, Reyhan Selin; Boyaci, Ismail Hakki; Genis, Hüseyin Efe; Tamer, Ugur
2013-12-15
In this study, adulteration of butter with margarine was analysed using Raman spectroscopy combined with chemometric methods (principal component analysis (PCA), principal component regression (PCR), partial least squares (PLS)) and artificial neural networks (ANNs). Different butter and margarine samples were mixed at various concentrations ranging from 0% to 100% w/w. PCA analysis was applied for the classification of butters, margarines and mixtures. PCR, PLS and ANN were used for the detection of adulteration ratios of butter. Models were created using a calibration data set and developed models were evaluated using a validation data set. The coefficient of determination (R(2)) values between actual and predicted values obtained for PCR, PLS and ANN for the validation data set were 0.968, 0.987 and 0.978, respectively. In conclusion, a combination of Raman spectroscopy with chemometrics and ANN methods can be applied for testing butter adulteration. Copyright © 2013 Elsevier Ltd. All rights reserved.
An improved partial least-squares regression method for Raman spectroscopy
NASA Astrophysics Data System (ADS)
Momenpour Tehran Monfared, Ali; Anis, Hanan
2017-10-01
It is known that the performance of partial least-squares (PLS) regression analysis can be improved using the backward variable selection method (BVSPLS). In this paper, we further improve the BVSPLS based on a novel selection mechanism. The proposed method is based on sorting the weighted regression coefficients, and then the importance of each variable of the sorted list is evaluated using root mean square errors of prediction (RMSEP) criterion in each iteration step. Our Improved BVSPLS (IBVSPLS) method has been applied to leukemia and heparin data sets and led to an improvement in limit of detection of Raman biosensing ranged from 10% to 43% compared to PLS. Our IBVSPLS was also compared to the jack-knifing (simpler) and Genetic Algorithm (more complex) methods. Our method was consistently better than the jack-knifing method and showed either a similar or a better performance compared to the genetic algorithm.
Quantification of brain lipids by FTIR spectroscopy and partial least squares regression
NASA Astrophysics Data System (ADS)
Dreissig, Isabell; Machill, Susanne; Salzer, Reiner; Krafft, Christoph
2009-01-01
Brain tissue is characterized by high lipid content. Its content decreases and the lipid composition changes during transformation from normal brain tissue to tumors. Therefore, the analysis of brain lipids might complement the existing diagnostic tools to determine the tumor type and tumor grade. Objective of this work is to extract lipids from gray matter and white matter of porcine brain tissue, record infrared (IR) spectra of these extracts and develop a quantification model for the main lipids based on partial least squares (PLS) regression. IR spectra of the pure lipids cholesterol, cholesterol ester, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, galactocerebroside and sulfatide were used as references. Two lipid mixtures were prepared for training and validation of the quantification model. The composition of lipid extracts that were predicted by the PLS regression of IR spectra was compared with lipid quantification by thin layer chromatography.
Greene, LaVana; Elzey, Brianda; Franklin, Mariah; Fakayode, Sayo O
2017-03-05
The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (K b ), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated K b and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81×10 -7 M for anthracene and 3.48×10 -8 M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a polarized light. Published by Elsevier B.V.
Vindimian, Éric; Garric, Jeanne; Flammarion, Patrick; Thybaud, Éric; Babut, Marc
1999-10-01
The evaluation of the ecotoxicity of effluents requires a battery of biological tests on several species. In order to derive a summary parameter from such a battery, a single endpoint was calculated for all the tests: the EC10, obtained by nonlinear regression, with bootstrap evaluation of the confidence intervals. Principal component analysis was used to characterize and visualize the correlation between the tests. The table of the toxicity of the effluents was then submitted to a panel of experts, who classified the effluents according to the test results. Partial least squares (PLS) regression was used to fit the average value of the experts' judgements to the toxicity data, using a simple equation. Furthermore, PLS regression on partial data sets and other considerations resulted in an optimum battery, with two chronic tests and one acute test. The index is intended to be used for the classification of effluents based on their toxicity to aquatic species. Copyright © 1999 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vindimian, E.; Garric, J.; Flammarion, P.
1999-10-01
The evaluation of the ecotoxicity of effluents requires a battery of biological tests on several species. In order to derive a summary parameter from such a battery, a single endpoint was calculated for all the tests: the EC10, obtained by nonlinear regression, with bootstrap evaluation of the confidence intervals. Principal component analysis was used to characterize and visualize the correlation between the tests. The table of the toxicity of the effluents was then submitted to a panel of experts, who classified the effluents according to the test results. Partial least squares (PLS) regression was used to fit the average valuemore » of the experts' judgments to the toxicity data, using a simple equation. Furthermore, PLS regression on partial data sets and other considerations resulted in an optimum battery, with two chronic tests and one acute test. The index is intended to be used for the classification of effluents based on their toxicity to aquatic species.« less
Random forest models to predict aqueous solubility.
Palmer, David S; O'Boyle, Noel M; Glen, Robert C; Mitchell, John B O
2007-01-01
Random Forest regression (RF), Partial-Least-Squares (PLS) regression, Support Vector Machines (SVM), and Artificial Neural Networks (ANN) were used to develop QSPR models for the prediction of aqueous solubility, based on experimental data for 988 organic molecules. The Random Forest regression model predicted aqueous solubility more accurately than those created by PLS, SVM, and ANN and offered methods for automatic descriptor selection, an assessment of descriptor importance, and an in-parallel measure of predictive ability, all of which serve to recommend its use. The prediction of log molar solubility for an external test set of 330 molecules that are solid at 25 degrees C gave an r2 = 0.89 and RMSE = 0.69 log S units. For a standard data set selected from the literature, the model performed well with respect to other documented methods. Finally, the diversity of the training and test sets are compared to the chemical space occupied by molecules in the MDL drug data report, on the basis of molecular descriptors selected by the regression analysis.
D'Archivio, Angelo Antonio; Incani, Angela; Ruggieri, Fabrizio
2011-01-01
In this paper, we use a quantitative structure-retention relationship (QSRR) method to predict the retention times of polychlorinated biphenyls (PCBs) in comprehensive two-dimensional gas chromatography (GC×GC). We analyse the GC×GC retention data taken from the literature by comparing predictive capability of different regression methods. The various models are generated using 70 out of 209 PCB congeners in the calibration stage, while their predictive performance is evaluated on the remaining 139 compounds. The two-dimensional chromatogram is initially estimated by separately modelling retention times of PCBs in the first and in the second column ((1) t (R) and (2) t (R), respectively). In particular, multilinear regression (MLR) combined with genetic algorithm (GA) variable selection is performed to extract two small subsets of predictors for (1) t (R) and (2) t (R) from a large set of theoretical molecular descriptors provided by the popular software Dragon, which after removal of highly correlated or almost constant variables consists of 237 structure-related quantities. Based on GA-MLR analysis, a four-dimensional and a five-dimensional relationship modelling (1) t (R) and (2) t (R), respectively, are identified. Single-response partial least square (PLS-1) regression is alternatively applied to independently model (1) t (R) and (2) t (R) without the need for preliminary GA variable selection. Further, we explore the possibility of predicting the two-dimensional chromatogram of PCBs in a single calibration procedure by using a two-response PLS (PLS-2) model or a feed-forward artificial neural network (ANN) with two output neurons. In the first case, regression is carried out on the full set of 237 descriptors, while the variables previously selected by GA-MLR are initially considered as ANN inputs and subjected to a sensitivity analysis to remove the redundant ones. Results show PLS-1 regression exhibits a noticeably better descriptive and predictive performance than the other investigated approaches. The observed values of determination coefficients for (1) t (R) and (2) t (R) in calibration (0.9999 and 0.9993, respectively) and prediction (0.9987 and 0.9793, respectively) provided by PLS-1 demonstrate that GC×GC behaviour of PCBs is properly modelled. In particular, the predicted two-dimensional GC×GC chromatogram of 139 PCBs not involved in the calibration stage closely resembles the experimental one. Based on the above lines of evidence, the proposed approach ensures accurate simulation of the whole GC×GC chromatogram of PCBs using experimental determination of only 1/3 retention data of representative congeners.
Kuligowski, Julia; Carrión, David; Quintás, Guillermo; Garrigues, Salvador; de la Guardia, Miguel
2011-01-01
The selection of an appropriate calibration set is a critical step in multivariate method development. In this work, the effect of using different calibration sets, based on a previous classification of unknown samples, on the partial least squares (PLS) regression model performance has been discussed. As an example, attenuated total reflection (ATR) mid-infrared spectra of deep-fried vegetable oil samples from three botanical origins (olive, sunflower, and corn oil), with increasing polymerized triacylglyceride (PTG) content induced by a deep-frying process were employed. The use of a one-class-classifier partial least squares-discriminant analysis (PLS-DA) and a rooted binary directed acyclic graph tree provided accurate oil classification. Oil samples fried without foodstuff could be classified correctly, independent of their PTG content. However, class separation of oil samples fried with foodstuff, was less evident. The combined use of double-cross model validation with permutation testing was used to validate the obtained PLS-DA classification models, confirming the results. To discuss the usefulness of the selection of an appropriate PLS calibration set, the PTG content was determined by calculating a PLS model based on the previously selected classes. In comparison to a PLS model calculated using a pooled calibration set containing samples from all classes, the root mean square error of prediction could be improved significantly using PLS models based on the selected calibration sets using PLS-DA, ranging between 1.06 and 2.91% (w/w).
NASA Astrophysics Data System (ADS)
Solimun
2017-05-01
The aim of this research is to model survival data from kidney-transplant patients using the partial least squares (PLS)-Cox regression, which can both meet and not meet the no-multicollinearity assumption. The secondary data were obtained from research entitled "Factors affecting the survival of kidney-transplant patients". The research subjects comprised 250 patients. The predictor variables consisted of: age (X1), sex (X2); two categories, prior hemodialysis duration (X3), diabetes (X4); two categories, prior transplantation number (X5), number of blood transfusions (X6), discrepancy score (X7), use of antilymphocyte globulin(ALG) (X8); two categories, while the response variable was patient survival time (in months). Partial least squares regression is a model that connects the predictor variables X and the response variable y and it initially aims to determine the relationship between them. Results of the above analyses suggest that the survival of kidney transplant recipients ranged from 0 to 55 months, with 62% of the patients surviving until they received treatment that lasted for 55 months. The PLS-Cox regression analysis results revealed that patients' age and the use of ALG significantly affected the survival time of patients. The factor of patients' age (X1) in the PLS-Cox regression model merely affected the failure probability by 1.201. This indicates that the probability of dying for elderly patients with a kidney transplant is 1.152 times higher than that for younger patients.
Optical scatterometry of quarter-micron patterns using neural regression
NASA Astrophysics Data System (ADS)
Bischoff, Joerg; Bauer, Joachim J.; Haak, Ulrich; Hutschenreuther, Lutz; Truckenbrodt, Horst
1998-06-01
With shrinking dimensions and increasing chip areas, a rapid and non-destructive full wafer characterization after every patterning cycle is an inevitable necessity. In former publications it was shown that Optical Scatterometry (OS) has the potential to push the attainable feature limits of optical techniques from 0.8 . . . 0.5 microns for imaging methods down to 0.1 micron and below. Thus the demands of future metrology can be met. Basically being a nonimaging method, OS combines light scatter (or diffraction) measurements with modern data analysis schemes to solve the inverse scatter issue. For very fine patterns with lambda-to-pitch ratios grater than one, the specular reflected light versus the incidence angle is recorded. Usually, the data analysis comprises two steps -- a training cycle connected the a rigorous forward modeling and the prediction itself. Until now, two data analysis schemes are usually applied -- the multivariate regression based Partial Least Squares method (PLS) and a look-up-table technique which is also referred to as Minimum Mean Square Error approach (MMSE). Both methods are afflicted with serious drawbacks. On the one hand, the prediction accuracy of multivariate regression schemes degrades with larger parameter ranges due to the linearization properties of the method. On the other hand, look-up-table methods are rather time consuming during prediction thus prolonging the processing time and reducing the throughput. An alternate method is an Artificial Neural Network (ANN) based regression which combines the advantages of multivariate regression and MMSE. Due to the versatility of a neural network, not only can its structure be adapted more properly to the scatter problem, but also the nonlinearity of the neuronal transfer functions mimic the nonlinear behavior of optical diffraction processes more adequately. In spite of these pleasant properties, the prediction speed of ANN regression is comparable with that of the PLS-method. In this paper, the viability and performance of ANN-regression will be demonstrated with the example of sub-quarter-micron resist metrology. To this end, 0.25 micrometer line/space patterns have been printed in positive photoresist by means of DUV projection lithography. In order to evaluate the total metrology chain from light scatter measurement through data analysis, a thorough modeling has been performed. Assuming a trapezoidal shape of the developed resist profile, a training data set was generated by means of the Rigorous Coupled Wave Approach (RCWA). After training the model, a second data set was computed and deteriorated by Gaussian noise to imitate real measuring conditions. Then, these data have been fed into the models established before resulting in a Standard Error of Prediction (SEP) which corresponds to the measuring accuracy. Even with putting only little effort in the design of a back-propagation network, the ANN is clearly superior to the PLS-method. Depending on whether a network with one or two hidden layers was used, accuracy gains between 2 and 5 can be achieved compared with PLS regression. Furthermore, the ANN is less noise sensitive, for there is only a doubling of the SEP at 5% noise for ANN whereas for PLS the accuracy degrades rapidly with increasing noise. The accuracy gain also depends on the light polarization and on the measured parameters. Finally, these results have been proven experimentally, where the OS-results are in good accordance with the profiles obtained from cross- sectioning micrographs.
Hegazy, Maha A; Lotfy, Hayam M; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-05
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparison of 3 Methods for Identifying Dietary Patterns Associated With Risk of Disease
DiBello, Julia R.; Kraft, Peter; McGarvey, Stephen T.; Goldberg, Robert; Campos, Hannia
2008-01-01
Reduced rank regression and partial least-squares regression (PLS) are proposed alternatives to principal component analysis (PCA). Using all 3 methods, the authors derived dietary patterns in Costa Rican data collected on 3,574 cases and controls in 1994–2004 and related the resulting patterns to risk of first incident myocardial infarction. Four dietary patterns associated with myocardial infarction were identified. Factor 1, characterized by high intakes of lean chicken, vegetables, fruit, and polyunsaturated oil, was generated by all 3 dietary pattern methods and was associated with a significantly decreased adjusted risk of myocardial infarction (28%–46%, depending on the method used). PCA and PLS also each yielded a pattern associated with a significantly decreased risk of myocardial infarction (31% and 23%, respectively); this pattern was characterized by moderate intake of alcohol and polyunsaturated oil and low intake of high-fat dairy products. The fourth factor derived from PCA was significantly associated with a 38% increased risk of myocardial infarction and was characterized by high intakes of coffee and palm oil. Contrary to previous studies, the authors found PCA and PLS to produce more patterns associated with cardiovascular disease than reduced rank regression. The most effective method for deriving dietary patterns related to disease may vary depending on the study goals. PMID:18945692
Akimoto, Yuki; Yugi, Katsuyuki; Uda, Shinsuke; Kudo, Takamasa; Komori, Yasunori; Kubota, Hiroyuki; Kuroda, Shinya
2013-01-01
Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that, in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12 cells.
Enhancement of partial robust M-regression (PRM) performance using Bisquare weight function
NASA Astrophysics Data System (ADS)
Mohamad, Mazni; Ramli, Norazan Mohamed; Ghani@Mamat, Nor Azura Md; Ahmad, Sanizah
2014-09-01
Partial Least Squares (PLS) regression is a popular regression technique for handling multicollinearity in low and high dimensional data which fits a linear relationship between sets of explanatory and response variables. Several robust PLS methods are proposed to accommodate the classical PLS algorithms which are easily affected with the presence of outliers. The recent one was called partial robust M-regression (PRM). Unfortunately, the use of monotonous weighting function in the PRM algorithm fails to assign appropriate and proper weights to large outliers according to their severity. Thus, in this paper, a modified partial robust M-regression is introduced to enhance the performance of the original PRM. A re-descending weight function, known as Bisquare weight function is recommended to replace the fair function in the PRM. A simulation study is done to assess the performance of the modified PRM and its efficiency is also tested in both contaminated and uncontaminated simulated data under various percentages of outliers, sample sizes and number of predictors.
Teoh, Shao Thing; Kitamura, Miki; Nakayama, Yasumune; Putri, Sastia; Mukai, Yukio; Fukusaki, Eiichiro
2016-08-01
In recent years, the advent of high-throughput omics technology has made possible a new class of strain engineering approaches, based on identification of possible gene targets for phenotype improvement from omic-level comparison of different strains or growth conditions. Metabolomics, with its focus on the omic level closest to the phenotype, lends itself naturally to this semi-rational methodology. When a quantitative phenotype such as growth rate under stress is considered, regression modeling using multivariate techniques such as partial least squares (PLS) is often used to identify metabolites correlated with the target phenotype. However, linear modeling techniques such as PLS require a consistent metabolite-phenotype trend across the samples, which may not be the case when outliers or multiple conflicting trends are present in the data. To address this, we proposed a data-mining strategy that utilizes random sample consensus (RANSAC) to select subsets of samples with consistent trends for construction of better regression models. By applying a combination of RANSAC and PLS (RANSAC-PLS) to a dataset from a previous study (gas chromatography/mass spectrometry metabolomics data and 1-butanol tolerance of 19 yeast mutant strains), new metabolites were indicated to be correlated with tolerance within certain subsets of the samples. The relevance of these metabolites to 1-butanol tolerance were then validated from single-deletion strains of corresponding metabolic genes. The results showed that RANSAC-PLS is a promising strategy to identify unique metabolites that provide additional hints for phenotype improvement, which could not be detected by traditional PLS modeling using the entire dataset. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Li, Yuanpeng; Li, Fucui; Yang, Xinhao; Guo, Liu; Huang, Furong; Chen, Zhenqiang; Chen, Xingdan; Zheng, Shifu
2018-08-05
A rapid quantitative analysis model for determining the glycated albumin (GA) content based on Attenuated total reflectance (ATR)-Fourier transform infrared spectroscopy (FTIR) combining with linear SiPLS and nonlinear SVM has been developed. Firstly, the real GA content in human serum was determined by GA enzymatic method, meanwhile, the ATR-FTIR spectra of serum samples from the population of health examination were obtained. The spectral data of the whole spectra mid-infrared region (4000-600 cm -1 ) and GA's characteristic region (1800-800 cm -1 ) were used as the research object of quantitative analysis. Secondly, several preprocessing steps including first derivative, second derivative, variable standardization and spectral normalization, were performed. Lastly, quantitative analysis regression models were established by using SiPLS and SVM respectively. The SiPLS modeling results are as follows: root mean square error of cross validation (RMSECV T ) = 0.523 g/L, calibration coefficient (R C ) = 0.937, Root Mean Square Error of Prediction (RMSEP T ) = 0.787 g/L, and prediction coefficient (R P ) = 0.938. The SVM modeling results are as follows: RMSECV T = 0.0048 g/L, R C = 0.998, RMSEP T = 0.442 g/L, and R p = 0.916. The results indicated that the model performance was improved significantly after preprocessing and optimization of characteristic regions. While modeling performance of nonlinear SVM was considerably better than that of linear SiPLS. Hence, the quantitative analysis model for GA in human serum based on ATR-FTIR combined with SiPLS and SVM is effective. And it does not need sample preprocessing while being characterized by simple operations and high time efficiency, providing a rapid and accurate method for GA content determination. Copyright © 2018 Elsevier B.V. All rights reserved.
Dealing with gene expression missing data.
Brás, L P; Menezes, J C
2006-05-01
Compared evaluation of different methods is presented for estimating missing values in microarray data: weighted K-nearest neighbours imputation (KNNimpute), regression-based methods such as local least squares imputation (LLSimpute) and partial least squares imputation (PLSimpute) and Bayesian principal component analysis (BPCA). The influence in prediction accuracy of some factors, such as methods' parameters, type of data relationships used in the estimation process (i.e. row-wise, column-wise or both), missing rate and pattern and type of experiment [time series (TS), non-time series (NTS) or mixed (MIX) experiments] is elucidated. Improvements based on the iterative use of data (iterative LLS and PLS imputation--ILLSimpute and IPLSimpute), the need to perform initial imputations (modified PLS and Helland PLS imputation--MPLSimpute and HPLSimpute) and the type of relationships employed (KNNarray, LLSarray, HPLSarray and alternating PLS--APLSimpute) are proposed. Overall, it is shown that data set properties (type of experiment, missing rate and pattern) affect the data similarity structure, therefore influencing the methods' performance. LLSimpute and ILLSimpute are preferable in the presence of data with a stronger similarity structure (TS and MIX experiments), whereas PLS-based methods (MPLSimpute, IPLSimpute and APLSimpute) are preferable when estimating NTS missing data.
USDA-ARS?s Scientific Manuscript database
A technique of using multiple calibration sets in partial least squares regression (PLS) was proposed to improve the quantitative determination of ammonia from open-path Fourier transform infrared spectra. The spectra were measured near animal farms, and the path-integrated concentration of ammonia...
Hacisalihoglu, Gokhan; Larbi, Bismark; Settles, A Mark
2010-01-27
The objective of this study was to explore the potential of near-infrared reflectance (NIR) spectroscopy to determine individual seed composition in common bean ( Phaseolus vulgaris L.). NIR spectra and analytical measurements of seed weight, protein, and starch were collected from 267 individual bean seeds representing 91 diverse genotypes. Partial least-squares (PLS) regression models were developed with 61 bean accessions randomly assigned to a calibration data set and 30 accessions assigned to an external validation set. Protein gave the most accurate PLS regression, with the external validation set having a standard error of prediction (SEP) = 1.6%. PLS regressions for seed weight and starch had sufficient accuracy for seed sorting applications, with SEP = 41.2 mg and 4.9%, respectively. Seed color had a clear effect on the NIR spectra, with black beans having a distinct spectral type. Seed coat color did not impact the accuracy of PLS predictions. This research demonstrates that NIR is a promising technique for simultaneous sorting of multiple seed traits in single bean seeds with no sample preparation.
Balabin, Roman M; Smirnov, Sergey V
2011-07-15
Melamine (2,4,6-triamino-1,3,5-triazine) is a nitrogen-rich chemical implicated in the pet and human food recalls and in the global food safety scares involving milk products. Due to the serious health concerns associated with melamine consumption and the extensive scope of affected products, rapid and sensitive methods to detect melamine's presence are essential. We propose the use of spectroscopy data-produced by near-infrared (near-IR/NIR) and mid-infrared (mid-IR/MIR) spectroscopies, in particular-for melamine detection in complex dairy matrixes. None of the up-to-date reported IR-based methods for melamine detection has unambiguously shown its wide applicability to different dairy products as well as limit of detection (LOD) below 1 ppm on independent sample set. It was found that infrared spectroscopy is an effective tool to detect melamine in dairy products, such as infant formula, milk powder, or liquid milk. ALOD below 1 ppm (0.76±0.11 ppm) can be reached if a correct spectrum preprocessing (pretreatment) technique and a correct multivariate (MDA) algorithm-partial least squares regression (PLS), polynomial PLS (Poly-PLS), artificial neural network (ANN), support vector regression (SVR), or least squares support vector machine (LS-SVM)-are used for spectrum analysis. The relationship between MIR/NIR spectrum of milk products and melamine content is nonlinear. Thus, nonlinear regression methods are needed to correctly predict the triazine-derivative content of milk products. It can be concluded that mid- and near-infrared spectroscopy can be regarded as a quick, sensitive, robust, and low-cost method for liquid milk, infant formula, and milk powder analysis. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Lin
2008-12-01
Partial least squares (PLS) regressions were applied to lunar highland and mare soil data characterized by the Lunar Soil Characterization Consortium (LSCC) for spectral estimation of the abundance of lunar soil chemical constituents FeO and Al2O3. The LSCC data set was split into a number of subsets including the total highland, Apollo 16, Apollo 14, and total mare soils, and then PLS was applied to each to investigate the effect of nonlinearity on the performance of the PLS method. The weight-loading vectors resulting from PLS were analyzed to identify mineral species responsible for spectral estimation of the soil chemicals. The results from PLS modeling indicate that the PLS performance depends on the correlation of constituents of interest to their major mineral carriers, and the Apollo 16 soils are responsible for the large errors of FeO and Al2O3 estimates when the soils were modeled along with other types of soils. These large errors are primarily attributed to the degraded correlation FeO to pyroxene for the relatively mature Apollo 16 soils as a result of space weathering and secondary to the interference of olivine. PLS consistently yields very accurate fits to the two soil chemicals when applied to mare soils. Although Al2O3 has no spectrally diagnostic characteristics, this chemical can be predicted for all subset data by PLS modeling at high accuracies because of its correlation to FeO. This correlation is reflected in the symmetry of the PLS weight-loading vectors for FeO and Al2O3, which prove to be very useful for qualitative interpretation of the PLS results. However, this qualitative interpretation of PLS modeling cannot be achieved using principal component regression loading vectors.
NASA Astrophysics Data System (ADS)
Zhang, Xuexi; Xiao, Zhi-Yan; Yin, Jianhua; Xia, Yang
2014-09-01
Fourier transform infrared imaging (FTIRI) combined with chemometrics can be used to detect the structure of bio-macromolecule, measure the concentrations of some components, and so on. In this study, FTIRI with Partial Least-Squares (PLS) regression was applied to study the concentration of two main components in bovine nasal cartilage (BNC), collagen and proteoglycan. An infrared spectrum library was built by mixing the collagen and chondroitin 6-sulfate (main of proteoglycan) at different ratios. Some pretreatments are needed for building PLS model. FTIR images were collected from BNC sections at 6.25μm and 25μm pixel size. The spectra extracted from BNC-FTIR images were imported into the PLS regression program to predict the concentrations of collagen and proteoglycan. These PLS-determined concentrations are agreed with the result in our previous work and biochemical analytical results. The prediction shows that the concentrations of collagen and proteoglycan in BNC are comparative on the whole. However, the concentration of proteoglycan is a litter higher than that of collagen, to some extent.
NASA Astrophysics Data System (ADS)
Tewari, Jagdish; Strong, Richard; Boulas, Pierre
2017-02-01
This article summarizes the development and validation of a Fourier transform near infrared spectroscopy (FT-NIR) method for the rapid at-line prediction of active pharmaceutical ingredient (API) in a powder blend to optimize small molecule formulations. The method was used to determine the blend uniformity end-point for a pharmaceutical solid dosage formulation containing a range of API concentrations. A set of calibration spectra from samples with concentrations ranging from 1% to 15% of API (w/w) were collected at-line from 4000 to 12,500 cm- 1. The ability of the FT-NIR method to predict API concentration in the blend samples was validated against a reference high performance liquid chromatography (HPLC) method. The prediction efficiency of four different types of multivariate data modeling methods such as partial least-squares 1 (PLS1), partial least-squares 2 (PLS2), principal component regression (PCR) and artificial neural network (ANN), were compared using relevant multivariate figures of merit. The prediction ability of the regression models were cross validated against results generated with the reference HPLC method. PLS1 and ANN showed excellent and superior prediction abilities when compared to PLS2 and PCR. Based upon these results and because of its decreased complexity compared to ANN, PLS1 was selected as the best chemometric method to predict blend uniformity at-line. The FT-NIR measurement and the associated chemometric analysis were implemented in the production environment for rapid at-line determination of the end-point of the small molecule blending operation. FIGURE 1: Correlation coefficient vs Rank plot FIGURE 2: FT-NIR spectra of different steps of Blend and final blend FIGURE 3: Predictions ability of PCR FIGURE 4: Blend uniformity predication ability of PLS2 FIGURE 5: Prediction efficiency of blend uniformity using ANN FIGURE 6: Comparison of prediction efficiency of chemometric models TABLE 1: Order of Addition for Blending Steps
Seasonal forecasting of high wind speeds over Western Europe
NASA Astrophysics Data System (ADS)
Palutikof, J. P.; Holt, T.
2003-04-01
As financial losses associated with extreme weather events escalate, there is interest from end users in the forestry and insurance industries, for example, in the development of seasonal forecasting models with a long lead time. This study uses exceedences of the 90th, 95th, and 99th percentiles of daily maximum wind speed over the period 1958 to present to derive predictands of winter wind extremes. The source data is the 6-hourly NCEP Reanalysis gridded surface wind field. Predictor variables include principal components of Atlantic sea surface temperature and several indices of climate variability, including the NAO and SOI. Lead times of up to a year are considered, in monthly increments. Three regression techniques are evaluated; multiple linear regression (MLR), principal component regression (PCR), and partial least squares regression (PLS). PCR and PLS proved considerably superior to MLR with much lower standard errors. PLS was chosen to formulate the predictive model since it offers more flexibility in experimental design and gave slightly better results than PCR. The results indicate that winter windiness can be predicted with considerable skill one year ahead for much of coastal Europe, but that this deteriorates rapidly in the hinterland. The experiment succeeded in highlighting PLS as a very useful method for developing more precise forecasting models, and in identifying areas of high predictability.
NASA Astrophysics Data System (ADS)
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
Párta, László; Zalai, Dénes; Borbély, Sándor; Putics, Akos
2014-02-01
The application of dielectric spectroscopy was frequently investigated as an on-line cell culture monitoring tool; however, it still requires supportive data and experience in order to become a robust technique. In this study, dielectric spectroscopy was used to predict viable cell density (VCD) at industrially relevant high levels in concentrated fed-batch culture of Chinese hamster ovary cells producing a monoclonal antibody for pharmaceutical purposes. For on-line dielectric spectroscopy measurements, capacitance was scanned within a wide range of frequency values (100-19,490 kHz) in six parallel cell cultivation batches. Prior to detailed mathematical analysis of the collected data, principal component analysis (PCA) was applied to compare dielectric behavior of the cultivations. PCA analysis resulted in detecting measurement disturbances. By using the measured spectroscopic data, partial least squares regression (PLS), Cole-Cole, and linear modeling were applied and compared in order to predict VCD. The Cole-Cole and the PLS model provided reliable prediction over the entire cultivation including both the early and decline phases of cell growth, while the linear model failed to estimate VCD in the later, declining cultivation phase. In regards to the measurement error sensitivity, remarkable differences were shown among PLS, Cole-Cole, and linear modeling. VCD prediction accuracy could be improved in the runs with measurement disturbances by first derivative pre-treatment in PLS and by parameter optimization of the Cole-Cole modeling.
NASA Astrophysics Data System (ADS)
Samadi-Maybodi, Abdolraouf; Darzi, S. K. Hassani Nejad
2008-10-01
Resolution of binary mixtures of vitamin B12, methylcobalamin and B12 coenzyme with minimum sample pre-treatment and without analyte separation has been successfully achieved by methods of partial least squares algorithm with one dependent variable (PLS1), orthogonal signal correction/partial least squares (OSC/PLS), principal component regression (PCR) and hybrid linear analysis (HLA). Data of analysis were obtained from UV-vis spectra. The UV-vis spectra of the vitamin B12, methylcobalamin and B12 coenzyme were recorded in the same spectral conditions. The method of central composite design was used in the ranges of 10-80 mg L -1 for vitamin B12 and methylcobalamin and 20-130 mg L -1 for B12 coenzyme. The models refinement procedure and validation were performed by cross-validation. The minimum root mean square error of prediction (RMSEP) was 2.26 mg L -1 for vitamin B12 with PLS1, 1.33 mg L -1 for methylcobalamin with OSC/PLS and 3.24 mg L -1 for B12 coenzyme with HLA techniques. Figures of merit such as selectivity, sensitivity, analytical sensitivity and LOD were determined for three compounds. The procedure was successfully applied to simultaneous determination of three compounds in synthetic mixtures and in a pharmaceutical formulation.
NASA Astrophysics Data System (ADS)
Ying, Yibin; Liu, Yande; Fu, Xiaping; Lu, Huishan
2005-11-01
The artificial neural networks (ANNs) have been used successfully in applications such as pattern recognition, image processing, automation and control. However, majority of today's applications of ANNs is back-propagate feed-forward ANN (BP-ANN). In this paper, back-propagation artificial neural networks (BP-ANN) were applied for modeling soluble solid content (SSC) of intact pear from their Fourier transform near infrared (FT-NIR) spectra. One hundred and sixty-four pear samples were used to build the calibration models and evaluate the models predictive ability. The results are compared to the classical calibration approaches, i.e. principal component regression (PCR), partial least squares (PLS) and non-linear PLS (NPLS). The effects of the optimal methods of training parameters on the prediction model were also investigated. BP-ANN combine with principle component regression (PCR) resulted always better than the classical PCR, PLS and Weight-PLS methods, from the point of view of the predictive ability. Based on the results, it can be concluded that FT-NIR spectroscopy and BP-ANN models can be properly employed for rapid and nondestructive determination of fruit internal quality.
Li, Wen-bing; Yao, Lin-tao; Liu, Mu-hua; Huang, Lin; Yao, Ming-yin; Chen, Tian-bing; He, Xiu-wen; Yang, Ping; Hu, Hui-qin; Nie, Jiang-hui
2015-05-01
Cu in navel orange was detected rapidly by laser-induced breakdown spectroscopy (LIBS) combined with partial least squares (PLS) for quantitative analysis, then the effect on the detection accuracy of the model with different spectral data ptetreatment methods was explored. Spectral data for the 52 Gannan navel orange samples were pretreated by different data smoothing, mean centralized and standard normal variable transform. Then 319~338 nm wavelength section containing characteristic spectral lines of Cu was selected to build PLS models, the main evaluation indexes of models such as regression coefficient (r), root mean square error of cross validation (RMSECV) and the root mean square error of prediction (RMSEP) were compared and analyzed. Three indicators of PLS model after 13 points smoothing and processing of the mean center were found reaching 0. 992 8, 3. 43 and 3. 4 respectively, the average relative error of prediction model is only 5. 55%, and in one word, the quality of calibration and prediction of this model are the best results. The results show that selecting the appropriate data pre-processing method, the prediction accuracy of PLS quantitative model of fruits and vegetables detected by LIBS can be improved effectively, providing a new method for fast and accurate detection of fruits and vegetables by LIBS.
Quantification of trace metals in infant formula premixes using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Cama-Moncunill, Raquel; Casado-Gavalda, Maria P.; Cama-Moncunill, Xavier; Markiewicz-Keszycka, Maria; Dixit, Yash; Cullen, Patrick J.; Sullivan, Carl
2017-09-01
Infant formula is a human milk substitute generally based upon fortified cow milk components. In order to mimic the composition of breast milk, trace elements such as copper, iron and zinc are usually added in a single operation using a premix. The correct addition of premixes must be verified to ensure that the target levels in infant formulae are achieved. In this study, a laser-induced breakdown spectroscopy (LIBS) system was assessed as a fast validation tool for trace element premixes. LIBS is a promising emission spectroscopic technique for elemental analysis, which offers real-time analyses, little to no sample preparation and ease of use. LIBS was employed for copper and iron determinations of premix samples ranging approximately from 0 to 120 mg/kg Cu/1640 mg/kg Fe. LIBS spectra are affected by several parameters, hindering subsequent quantitative analyses. This work aimed at testing three matrix-matched calibration approaches (simple-linear regression, multi-linear regression and partial least squares regression (PLS)) as means for precision and accuracy enhancement of LIBS quantitative analysis. All calibration models were first developed using a training set and then validated with an independent test set. PLS yielded the best results. For instance, the PLS model for copper provided a coefficient of determination (R2) of 0.995 and a root mean square error of prediction (RMSEP) of 14 mg/kg. Furthermore, LIBS was employed to penetrate through the samples by repetitively measuring the same spot. Consequently, LIBS spectra can be obtained as a function of sample layers. This information was used to explore whether measuring deeper into the sample could reduce possible surface-contaminant effects and provide better quantifications.
Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry.
Fernandez, Katherina; Agosin, Eduardo
2007-09-05
Tannin content and composition are critical quality components of red wines. No spectroscopic method assessing these phenols in wine has been described so far. We report here a new method using Fourier transform mid-infrared (FT-MIR) spectroscopy and chemometric techniques for the quantitative analysis of red wine tannins. Calibration models were developed using protein precipitation and phloroglucinolysis as analytical reference methods. After spectra preprocessing, six different predictive partial least-squares (PLS) models were evaluated, including the use of interval selection procedures such as iPLS and CSMWPLS. PLS regression with full-range (650-4000 cm(-1)), second derivative of the spectra and phloroglucinolysis as the reference method gave the most accurate determination for tannin concentration (RMSEC = 2.6%, RMSEP = 9.4%, r = 0.995). The prediction of the mean degree of polymerization (mDP) of the tannins also gave a reasonable prediction (RMSEC = 6.7%, RMSEP = 10.3%, r = 0.958). These results represent the first step in the development of a spectroscopic methodology for the quantification of several phenolic compounds that are critical for wine quality.
Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie
2018-01-01
Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber (Apostichopus japonicus) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China. PMID:29410795
Guo, Xiuhan; Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie
2018-01-01
Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber ( Apostichopus japonicus ) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China.
NASA Astrophysics Data System (ADS)
Liu, Fei; He, Yong
2008-02-01
Visible and near infrared (Vis/NIR) transmission spectroscopy and chemometric methods were utilized to predict the pH values of cola beverages. Five varieties of cola were prepared and 225 samples (45 samples for each variety) were selected for the calibration set, while 75 samples (15 samples for each variety) for the validation set. The smoothing way of Savitzky-Golay and standard normal variate (SNV) followed by first-derivative were used as the pre-processing methods. Partial least squares (PLS) analysis was employed to extract the principal components (PCs) which were used as the inputs of least squares-support vector machine (LS-SVM) model according to their accumulative reliabilities. Then LS-SVM with radial basis function (RBF) kernel function and a two-step grid search technique were applied to build the regression model with a comparison of PLS regression. The correlation coefficient (r), root mean square error of prediction (RMSEP) and bias were 0.961, 0.040 and 0.012 for PLS, while 0.975, 0.031 and 4.697x10 -3 for LS-SVM, respectively. Both methods obtained a satisfying precision. The results indicated that Vis/NIR spectroscopy combined with chemometric methods could be applied as an alternative way for the prediction of pH of cola beverages.
Dinç, Erdal; Ustündağ, Ozgür; Baleanu, Dumitru
2010-08-01
The sole use of pyridoxine hydrochloride during treatment of tuberculosis gives rise to pyridoxine deficiency. Therefore, a combination of pyridoxine hydrochloride and isoniazid is used in pharmaceutical dosage form in tuberculosis treatment to reduce this side effect. In this study, two chemometric methods, partial least squares (PLS) and principal component regression (PCR), were applied to the simultaneous determination of pyridoxine (PYR) and isoniazid (ISO) in their tablets. A concentration training set comprising binary mixtures of PYR and ISO consisting of 20 different combinations were randomly prepared in 0.1 M HCl. Both multivariate calibration models were constructed using the relationships between the concentration data set (concentration data matrix) and absorbance data matrix in the spectral region 200-330 nm. The accuracy and the precision of the proposed chemometric methods were validated by analyzing synthetic mixtures containing the investigated drugs. The recovery results obtained by applying PCR and PLS calibrations to the artificial mixtures were found between 100.0 and 100.7%. Satisfactory results obtained by applying the PLS and PCR methods to both artificial and commercial samples were obtained. The results obtained in this manuscript strongly encourage us to use them for the quality control and the routine analysis of the marketing tablets containing PYR and ISO drugs. Copyright © 2010 John Wiley & Sons, Ltd.
Fadzillah, Nurrulhidayah Ahmad; Man, Yaakob bin Che; Rohman, Abdul; Rosman, Arieff Salleh; Ismail, Amin; Mustafa, Shuhaimi; Khatib, Alfi
2015-01-01
The authentication of food products from the presence of non-allowed components for certain religion like lard is very important. In this study, we used proton Nuclear Magnetic Resonance ((1)H-NMR) spectroscopy for the analysis of butter adulterated with lard by simultaneously quantification of all proton bearing compounds, and consequently all relevant sample classes. Since the spectra obtained were too complex to be analyzed visually by the naked eyes, the classification of spectra was carried out.The multivariate calibration of partial least square (PLS) regression was used for modelling the relationship between actual value of lard and predicted value. The model yielded a highest regression coefficient (R(2)) of 0.998 and the lowest root mean square error calibration (RMSEC) of 0.0091% and root mean square error prediction (RMSEP) of 0.0090, respectively. Cross validation testing evaluates the predictive power of the model. PLS model was shown as good models as the intercept of R(2)Y and Q(2)Y were 0.0853 and -0.309, respectively.
NASA Astrophysics Data System (ADS)
Dyar, M. D.; Carmosino, M. L.; Breves, E. A.; Ozanne, M. V.; Clegg, S. M.; Wiens, R. C.
2012-04-01
A remote laser-induced breakdown spectrometer (LIBS) designed to simulate the ChemCam instrument on the Mars Science Laboratory Rover Curiosity was used to probe 100 geologic samples at a 9-m standoff distance. ChemCam consists of an integrated remote LIBS instrument that will probe samples up to 7 m from the mast of the rover and a remote micro-imager (RMI) that will record context images. The elemental compositions of 100 igneous and highly-metamorphosed rocks are determined with LIBS using three variations of multivariate analysis, with a goal of improving the analytical accuracy. Two forms of partial least squares (PLS) regression are employed with finely-tuned parameters: PLS-1 regresses a single response variable (elemental concentration) against the observation variables (spectra, or intensity at each of 6144 spectrometer channels), while PLS-2 simultaneously regresses multiple response variables (concentrations of the ten major elements in rocks) against the observation predictor variables, taking advantage of natural correlations between elements. Those results are contrasted with those from the multivariate regression technique of the least absolute shrinkage and selection operator (lasso), which is a penalized shrunken regression method that selects the specific channels for each element that explain the most variance in the concentration of that element. To make this comparison, we use results of cross-validation and of held-out testing, and employ unscaled and uncentered spectral intensity data because all of the input variables are already in the same units. Results demonstrate that the lasso, PLS-1, and PLS-2 all yield comparable results in terms of accuracy for this dataset. However, the interpretability of these methods differs greatly in terms of fundamental understanding of LIBS emissions. PLS techniques generate principal components, linear combinations of intensities at any number of spectrometer channels, which explain as much variance in the response variables as possible while avoiding multicollinearity between principal components. When the selected number of principal components is projected back into the original feature space of the spectra, 6144 correlation coefficients are generated, a small fraction of which are mathematically significant to the regression. In contrast, the lasso models require only a small number (< 24) of non-zero correlation coefficients (β values) to determine the concentration of each of the ten major elements. Causality between the positively-correlated emission lines chosen by the lasso and the elemental concentration was examined. In general, the higher the lasso coefficient (β), the greater the likelihood that the selected line results from an emission of that element. Emission lines with negative β values should arise from elements that are anti-correlated with the element being predicted. For elements except Fe, Al, Ti, and P, the lasso-selected wavelength with the highest β value corresponds to the element being predicted, e.g. 559.8 nm for neutral Ca. However, the specific lines chosen by the lasso with positive β values are not always those from the element being predicted. Other wavelengths and the elements that most strongly correlate with them to predict concentration are obviously related to known geochemical correlations or close overlap of emission lines, while others must result from matrix effects. Use of the lasso technique thus directly informs our understanding of the underlying physical processes that give rise to LIBS emissions by determining which lines can best represent concentration, and which lines from other elements are causing matrix effects.
Quantitative determination of wool in textile by near-infrared spectroscopy and multivariate models.
Chen, Hui; Tan, Chao; Lin, Zan
2018-08-05
The wool content in textiles is a key quality index and the corresponding quantitative analysis takes an important position due to common adulterations in both raw and finished textiles. Conventional methods are maybe complicated, destructive, time-consuming, environment-unfriendly. Developing a quick, easy-to-use and green alternative method is interesting. The work focuses on exploring the feasibility of combining near-infrared (NIR) spectroscopy and several partial least squares (PLS)-based algorithms and elastic component regression (ECR) algorithms for measuring wool content in textile. A total of 108 cloth samples with wool content ranging from 0% to 100% (w/w) were collected and all the compositions are really existent in the market. The dataset was divided equally into the training and test sets for developing and validating calibration models. When using local PLS, the original spectrum axis was split into 20 sub-intervals. No obvious difference of performance can be seen for the local PLS models. The ECR model is comparable or superior to the other models due its flexibility, i.e., being transition state from PCR to PLS. It seems that ECR combined with NIR technique may be a potential method for determining wool content in textile products. In addition, it might have regulatory advantages to avoid time-consuming and environmental-unfriendly chemical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy.
Rohman, A; Sismindari; Erwanto, Y; Che Man, Yaakob B
2011-05-01
Meatball is one of the favorite foods in Indonesia. The adulteration of pork in beef meatball is frequently occurring. This study was aimed to develop a fast and non destructive technique for the detection and quantification of pork in beef meatball using Fourier transform infrared (FTIR) spectroscopy and partial least square (PLS) calibration. The spectral bands associated with pork fat (PF), beef fat (BF), and their mixtures in meatball formulation were scanned, interpreted, and identified by relating them to those spectroscopically representative to pure PF and BF. For quantitative analysis, PLS regression was used to develop a calibration model at the selected fingerprint regions of 1200-1000 cm(-1). The equation obtained for the relationship between actual PF value and FTIR predicted values in PLS calibration model was y = 0.999x + 0.004, with coefficient of determination (R(2)) and root mean square error of calibration are 0.999 and 0.442, respectively. The PLS calibration model was subsequently used for the prediction of independent samples using laboratory made meatball samples containing the mixtures of BF and PF. Using 4 principal components, root mean square error of prediction is 0.742. The results showed that FTIR spectroscopy can be used for the detection and quantification of pork in beef meatball formulation for Halal verification purposes. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Borràs, Eva; Ferré, Joan; Boqué, Ricard; Mestres, Montserrat; Aceña, Laura; Calvo, Angels; Busto, Olga
2016-08-01
Headspace-Mass Spectrometry (HS-MS), Fourier Transform Mid-Infrared spectroscopy (FT-MIR) and UV-Visible spectrophotometry (UV-vis) instrumental responses have been combined to predict virgin olive oil sensory descriptors. 343 olive oil samples analyzed during four consecutive harvests (2010-2014) were used to build multivariate calibration models using partial least squares (PLS) regression. The reference values of the sensory attributes were provided by expert assessors from an official taste panel. The instrumental data were modeled individually and also using data fusion approaches. The use of fused data with both low- and mid-level of abstraction improved PLS predictions for all the olive oil descriptors. The best PLS models were obtained for two positive attributes (fruity and bitter) and two defective descriptors (fusty and musty), all of them using data fusion of MS and MIR spectral fingerprints. Although good predictions were not obtained for some sensory descriptors, the results are encouraging, specially considering that the legal categorization of virgin olive oils only requires the determination of fruity and defective descriptors. Copyright © 2016 Elsevier B.V. All rights reserved.
Impact of multicollinearity on small sample hydrologic regression models
NASA Astrophysics Data System (ADS)
Kroll, Charles N.; Song, Peter
2013-06-01
Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.
Wang, Yonghua; Li, Yan; Wang, Bin
2007-01-01
Nicotine and a variety of other drugs and toxins are metabolized by cytochrome P450 (CYP) 2A6. The aim of the present study was to build a quantitative structure-activity relationship (QSAR) model to predict the activities of nicotine analogues on CYP2A6. Kernel partial least squares (K-PLS) regression was employed with the electro-topological descriptors to build the computational models. Both the internal and external predictabilities of the models were evaluated with test sets to ensure their validity and reliability. As a comparison to K-PLS, a standard PLS algorithm was also applied on the same training and test sets. Our results show that the K-PLS produced reasonable results that outperformed the PLS model on the datasets. The obtained K-PLS model will be helpful for the design of novel nicotine-like selective CYP2A6 inhibitors.
Melquiades, Fábio L; Thomaz, Edivaldo L
2016-05-01
An important aspect for the evaluation of fire effects in slash-and-burn agricultural system, as well as in wildfire, is the soil burn severity. The objective of this study is to estimate the maximum temperature reached in real soil burn events using energy dispersive X-ray fluorescence (EDXRF) as an analytical tool, combined with partial least square (PLS) regression. Muffle-heated soil samples were used for PLS regression model calibration and two real slash-and-burn soils were tested as external samples in the model. It was possible to associate EDXRF spectra alterations to the maximum temperature reached in the heat affected soils with about 17% relative standard deviation. The results are promising since the analysis is fast, nondestructive, and conducted after the burn event, although local calibration for each type of burned soil is necessary. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Jintao, Xue; Yufei, Liu; Liming, Ye; Chunyan, Li; Quanwei, Yang; Weiying, Wang; Yun, Jing; Minxiang, Zhang; Peng, Li
2018-01-01
Near-Infrared Spectroscopy (NIRS) was first used to develop a method for rapid and simultaneous determination of 5 active alkaloids (berberine, coptisine, palmatine, epiberberine and jatrorrhizine) in 4 parts (rhizome, fibrous root, stem and leaf) of Coptidis Rhizoma. A total of 100 samples from 4 main places of origin were collected and studied. With HPLC analysis values as calibration reference, the quantitative analysis of 5 marker components was performed by two different modeling methods, partial least-squares (PLS) regression as linear regression and artificial neural networks (ANN) as non-linear regression. The results indicated that the 2 types of models established were robust, accurate and repeatable for five active alkaloids, and the ANN models was more suitable for the determination of berberine, coptisine and palmatine while the PLS model was more suitable for the analysis of epiberberine and jatrorrhizine. The performance of the optimal models was achieved as follows: the correlation coefficient (R) for berberine, coptisine, palmatine, epiberberine and jatrorrhizine was 0.9958, 0.9956, 0.9959, 0.9963 and 0.9923, respectively; the root mean square error of validation (RMSEP) was 0.5093, 0.0578, 0.0443, 0.0563 and 0.0090, respectively. Furthermore, for the comprehensive exploitation and utilization of plant resource of Coptidis Rhizoma, the established NIR models were used to analysis the content of 5 active alkaloids in 4 parts of Coptidis Rhizoma and 4 main origin of places. This work demonstrated that NIRS may be a promising method as routine screening for off-line fast analysis or on-line quality assessment of traditional Chinese medicine (TCM).
Chang, Wen-Qi; Zhou, Jian-Liang; Li, Yi; Shi, Zi-Qi; Wang, Li; Yang, Jie; Li, Ping; Liu, Li-Fang; Xin, Gui-Zhong
2017-01-15
The elevation of free fatty acids (FFAs) has been regarded as a universal metabolic signature of excessive adipocyte lipolysis. Nowadays, in vitro lipolysis assay is generally essential for drug screening prior to the animal study. Here, we present a novel in vitro approach for lipolysis measurement combining UHPLC-Orbitrap and partial least squares (PLS) based analysis. Firstly, the calibration matrix was constructed by serial proportions of mixed samples (blended with control and model samples). Then, lipidome profiling was performed by UHPLC-Orbitrap, and 403 variables were extracted and aligned as dataset. Owing to the high resolution of Orbitrap analyzer and open source lipid identification software, 28 FFAs were further screened and identified. Based on the relative intensity of the screened FFAs, PLS regression model was constructed for lipolysis measurement. After leave-one-out cross-validation, ten principal components have been designated to build the final PLS model with excellent performances (RMSECV, 0.0268; RMSEC, 0.0173; R 2 , 0.9977). In addition, the high predictive accuracy (R 2 = 0.9907 and RMSEP = 0.0345) of the trained PLS model was also demonstrated using test samples. Finally, taking curcumin as a model compound, its antilipolytic effect on palmitic acid-induced lipolysis was successfully predicted as 31.78% by the proposed approach. Besides, supplementary evidences of curcumin induced modification in FFAs compositions as well as lipidome were given by PLS extended methods. Different from general biological assays, high resolution MS-based method provide more sophisticated information included in biological events. Thus, the novel biological evaluation model proposed here showed promising perspectives for drug evaluation or disease diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, L; Qin, X C; Lin, H C; Deng, K F; Luo, Y W; Sun, Q R; Du, Q X; Wang, Z Y; Tuo, Y; Sun, J H
2018-02-01
To analyse the relationship between Fourier transform infrared (FTIR) spectrum of rat's spleen tissue and postmortem interval (PMI) for PMI estimation using FTIR spectroscopy combined with data mining method. Rats were sacrificed by cervical dislocation, and the cadavers were placed at 20 ℃. The FTIR spectrum data of rats' spleen tissues were taken and measured at different time points. After pretreatment, the data was analysed by data mining method. The absorption peak intensity of rat's spleen tissue spectrum changed with the PMI, while the absorption peak position was unchanged. The results of principal component analysis (PCA) showed that the cumulative contribution rate of the first three principal components was 96%. There was an obvious clustering tendency for the spectrum sample at each time point. The methods of partial least squares discriminant analysis (PLS-DA) and support vector machine classification (SVMC) effectively divided the spectrum samples with different PMI into four categories (0-24 h, 48-72 h, 96-120 h and 144-168 h). The determination coefficient ( R ²) of the PMI estimation model established by PLS regression analysis was 0.96, and the root mean square error of calibration (RMSEC) and root mean square error of cross validation (RMSECV) were 9.90 h and 11.39 h respectively. In prediction set, the R ² was 0.97, and the root mean square error of prediction (RMSEP) was 10.49 h. The FTIR spectrum of the rat's spleen tissue can be effectively analyzed qualitatively and quantitatively by the combination of FTIR spectroscopy and data mining method, and the classification and PLS regression models can be established for PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Freye, Chris E; Fitz, Brian D; Billingsley, Matthew C; Synovec, Robert E
2016-06-01
The chemical composition and several physical properties of RP-1 fuels were studied using comprehensive two-dimensional (2D) gas chromatography (GC×GC) coupled with flame ionization detection (FID). A "reversed column" GC×GC configuration was implemented with a RTX-wax column on the first dimension ((1)D), and a RTX-1 as the second dimension ((2)D). Modulation was achieved using a high temperature diaphragm valve mounted directly in the oven. Using leave-one-out cross-validation (LOOCV), the summed GC×GC-FID signal of three compound-class selective 2D regions (alkanes, cycloalkanes, and aromatics) was regressed against previously measured ASTM derived values for these compound classes, yielding root mean square errors of cross validation (RMSECV) of 0.855, 0.734, and 0.530mass%, respectively. For comparison, using partial least squares (PLS) analysis with LOOCV, the GC×GC-FID signal of the entire 2D separations was regressed against the same ASTM values, yielding a linear trend for the three compound classes (alkanes, cycloalkanes, and aromatics), yielding RMSECV values of 1.52, 2.76, and 0.945 mass%, respectively. Additionally, a more detailed PLS analysis was undertaken of the compounds classes (n-alkanes, iso-alkanes, mono-, di-, and tri-cycloalkanes, and aromatics), and of physical properties previously determined by ASTM methods (such as net heat of combustion, hydrogen content, density, kinematic viscosity, sustained boiling temperature and vapor rise temperature). Results from these PLS studies using the relatively simple to use and inexpensive GC×GC-FID instrumental platform are compared to previously reported results using the GC×GC-TOFMS instrumental platform. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimizing methods for linking cinematic features to fMRI data.
Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia
2015-04-15
One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features. Copyright © 2015. Published by Elsevier Inc.
Delwiche, Stephen R; Reeves, James B
2010-01-01
In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various types of spectroscopy data.
Statistical process control of cocrystallization processes: A comparison between OPLS and PLS.
Silva, Ana F T; Sarraguça, Mafalda Cruz; Ribeiro, Paulo R; Santos, Adenilson O; De Beer, Thomas; Lopes, João Almeida
2017-03-30
Orthogonal partial least squares regression (OPLS) is being increasingly adopted as an alternative to partial least squares (PLS) regression due to the better generalization that can be achieved. Particularly in multivariate batch statistical process control (BSPC), the use of OPLS for estimating nominal trajectories is advantageous. In OPLS, the nominal process trajectories are expected to be captured in a single predictive principal component while uncorrelated variations are filtered out to orthogonal principal components. In theory, OPLS will yield a better estimation of the Hotelling's T 2 statistic and corresponding control limits thus lowering the number of false positives and false negatives when assessing the process disturbances. Although OPLS advantages have been demonstrated in the context of regression, its use on BSPC was seldom reported. This study proposes an OPLS-based approach for BSPC of a cocrystallization process between hydrochlorothiazide and p-aminobenzoic acid monitored on-line with near infrared spectroscopy and compares the fault detection performance with the same approach based on PLS. A series of cocrystallization batches with imposed disturbances were used to test the ability to detect abnormal situations by OPLS and PLS-based BSPC methods. Results demonstrated that OPLS was generally superior in terms of sensibility and specificity in most situations. In some abnormal batches, it was found that the imposed disturbances were only detected with OPLS. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, Peigen; Low, Mei Yin; Zhou, Weibiao
2018-01-01
In order to develop products that would be preferred by consumers, the effects of the chemical compositions of ready-to-drink green tea beverages on consumer liking were studied through regression analyses. Green tea model systems were prepared by dosing solutions of 0.1% green tea extract with differing concentrations of eight flavour keys deemed to be important for green tea aroma and taste, based on a D-optimal experimental design, before undergoing commercial sterilisation. Sensory evaluation of the green tea model system was carried out using an untrained consumer panel to obtain hedonic liking scores of the samples. Regression models were subsequently trained to objectively predict the consumer liking scores of the green tea model systems. A linear partial least squares (PLS) regression model was developed to describe the effects of the eight flavour keys on consumer liking, with a coefficient of determination (R 2 ) of 0.733, and a root-mean-square error (RMSE) of 3.53%. The PLS model was further augmented with an artificial neural network (ANN) to establish a PLS-ANN hybrid model. The established hybrid model was found to give a better prediction of consumer liking scores, based on its R 2 (0.875) and RMSE (2.41%). Copyright © 2017 Elsevier Ltd. All rights reserved.
Relationship between Composition and Toxicity of Motor Vehicle Emission Samples
McDonald, Jacob D.; Eide, Ingvar; Seagrave, JeanClare; Zielinska, Barbara; Whitney, Kevin; Lawson, Douglas R.; Mauderly, Joe L.
2004-01-01
In this study we investigated the statistical relationship between particle and semivolatile organic chemical constituents in gasoline and diesel vehicle exhaust samples, and toxicity as measured by inflammation and tissue damage in rat lungs and mutagenicity in bacteria. Exhaust samples were collected from “normal” and “high-emitting” gasoline and diesel light-duty vehicles. We employed a combination of principal component analysis (PCA) and partial least-squares regression (PLS; also known as projection to latent structures) to evaluate the relationships between chemical composition of vehicle exhaust and toxicity. The PLS analysis revealed the chemical constituents covarying most strongly with toxicity and produced models predicting the relative toxicity of the samples with good accuracy. The specific nitro-polycyclic aromatic hydrocarbons important for mutagenicity were the same chemicals that have been implicated by decades of bioassay-directed fractionation. These chemicals were not related to lung toxicity, which was associated with organic carbon and select organic compounds that are present in lubricating oil. The results demonstrate the utility of the PCA/PLS approach for evaluating composition–response relationships in complex mixture exposures and also provide a starting point for confirming causality and determining the mechanisms of the lung effects. PMID:15531438
Monitoring of chicken meat freshness by means of a colorimetric sensor array.
Salinas, Yolanda; Ros-Lis, José V; Vivancos, José-L; Martínez-Máñez, Ramón; Marcos, M Dolores; Aucejo, Susana; Herranz, Nuria; Lorente, Inmaculada
2012-08-21
A new optoelectronic nose to monitor chicken meat ageing has been developed. It is based on 16 pigments prepared by the incorporation of different dyes (pH indicators, Lewis acids, hydrogen-bonding derivatives, selective probes and natural dyes) into inorganic materials (UVM-7, silica and alumina). The colour changes of the sensor array were characteristic of chicken ageing in a modified packaging atmosphere (30% CO(2)-70% N(2)). The chromogenic array data were processed with qualitative (PCA) and quantitative (PLS) tools. The PCA statistical analysis showed a high degree of dispersion, with nine dimensions required to explain 95% of variance. Despite this high dimensionality, a tridimensional representation of the three principal components was able to differentiate ageing with 2-day intervals. Moreover, the PLS statistical analysis allows the creation of a model to correlate the chromogenic data with chicken meat ageing. The model offers a PLS prediction model for ageing with values of 0.9937, 0.0389 and 0.994 for the slope, the intercept and the regression coefficient, respectively, and is in agreement with the perfect fit between the predicted and measured values observed. The results suggest the feasibility of this system to help develop optoelectronic noses that monitor food freshness.
NASA Astrophysics Data System (ADS)
Liu, Yande; Ying, Yibin; Lu, Huishan; Fu, Xiaping
2004-12-01
This work evaluates the feasibility of Fourier transform near infrared (FT-NIR) spectrometry for rapid determining the total soluble solids content and acidity of apple fruit. Intact apple fruit were measured by reflectance FT-NIR in 800-2500 nm range. FT-NIR models were developed based on partial least square (PLS) regression and principal component regress (PCR) with respect to the reflectance and its first derivative, the logarithms of the reflectance reciprocal and its second derivative. The above regression models, related the FT-NIR spectra to soluble solids content (SSC), titratable acidity (TA) and available acidity (pH). The best combination, based on the prediction results, was PLS models with respect to the logarithms of the reflectance reciprocal. Predictions with PLS models resulted standard errors of prediction (SEP) of 0.455, 0.044 and 0.068, and correlation coefficients of 0.968, 0.728 and 0.831 for SSC, TA and pH, respectively. It was concluded that by using the FT-NIR spectrometry measurement system, in the appropriate spectral range, it is possible to nondestructively assess the maturity factors of apple fruit.
Riahi, Siavash; Hadiloo, Farshad; Milani, Seyed Mohammad R; Davarkhah, Nazila; Ganjali, Mohammad R; Norouzi, Parviz; Seyfi, Payam
2011-05-01
The accuracy in predicting different chemometric methods was compared when applied on ordinary UV spectra and first order derivative spectra. Principal component regression (PCR) and partial least squares with one dependent variable (PLS1) and two dependent variables (PLS2) were applied on spectral data of pharmaceutical formula containing pseudoephedrine (PDP) and guaifenesin (GFN). The ability to derivative in resolved overlapping spectra chloropheniramine maleate was evaluated when multivariate methods are adopted for analysis of two component mixtures without using any chemical pretreatment. The chemometrics models were tested on an external validation dataset and finally applied to the analysis of pharmaceuticals. Significant advantages were found in analysis of the real samples when the calibration models from derivative spectra were used. It should also be mentioned that the proposed method is a simple and rapid way requiring no preliminary separation steps and can be used easily for the analysis of these compounds, especially in quality control laboratories. Copyright © 2011 John Wiley & Sons, Ltd.
Partial least squares based identification of Duchenne muscular dystrophy specific genes.
An, Hui-bo; Zheng, Hua-cheng; Zhang, Li; Ma, Lin; Liu, Zheng-yan
2013-11-01
Large-scale parallel gene expression analysis has provided a greater ease for investigating the underlying mechanisms of Duchenne muscular dystrophy (DMD). Previous studies typically implemented variance/regression analysis, which would be fundamentally flawed when unaccounted sources of variability in the arrays existed. Here we aim to identify genes that contribute to the pathology of DMD using partial least squares (PLS) based analysis. We carried out PLS-based analysis with two datasets downloaded from the Gene Expression Omnibus (GEO) database to identify genes contributing to the pathology of DMD. Except for the genes related to inflammation, muscle regeneration and extracellular matrix (ECM) modeling, we found some genes with high fold change, which have not been identified by previous studies, such as SRPX, GPNMB, SAT1, and LYZ. In addition, downregulation of the fatty acid metabolism pathway was found, which may be related to the progressive muscle wasting process. Our results provide a better understanding for the downstream mechanisms of DMD.
Wang, Jun; Kliks, Michael M; Jun, Soojin; Jackson, Mel; Li, Qing X
2010-03-01
Quantitative analysis of glucose, fructose, sucrose, and maltose in different geographic origin honey samples in the world using the Fourier transform infrared (FTIR) spectroscopy and chemometrics such as partial least squares (PLS) and principal component regression was studied. The calibration series consisted of 45 standard mixtures, which were made up of glucose, fructose, sucrose, and maltose. There were distinct peak variations of all sugar mixtures in the spectral "fingerprint" region between 1500 and 800 cm(-1). The calibration model was successfully validated using 7 synthetic blend sets of sugars. The PLS 2nd-derivative model showed the highest degree of prediction accuracy with a highest R(2) value of 0.999. Along with the canonical variate analysis, the calibration model further validated by high-performance liquid chromatography measurements for commercial honey samples demonstrates that FTIR can qualitatively and quantitatively determine the presence of glucose, fructose, sucrose, and maltose in multiple regional honey samples.
Lee, Byeong-Ju; Kim, Hye-Youn; Lim, Sa Rang; Huang, Linfang; Choi, Hyung-Kyoon
2017-01-01
Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination according to cultivation age has been an important and practical issue. This study employed Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three different parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares regression (PLSR) models for discriminating ginseng samples were determined by selecting normalization methods, number of partial-least-squares (PLS) components, and variable influence on projection (VIP) cutoff values. The best prediction model for discriminating 5- and 6-year-old ginseng was developed using tap root, vector normalization applied after the second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest root-mean-square error of prediction value). In addition, for discriminating among the three parts of P. ginseng, optimized PLSR models were established using data sets obtained from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using FT-IR by selected normalization methods, number of PLS components, and VIP cutoff values.
Lim, Sa Rang; Huang, Linfang
2017-01-01
Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination according to cultivation age has been an important and practical issue. This study employed Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three different parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares regression (PLSR) models for discriminating ginseng samples were determined by selecting normalization methods, number of partial-least-squares (PLS) components, and variable influence on projection (VIP) cutoff values. The best prediction model for discriminating 5- and 6-year-old ginseng was developed using tap root, vector normalization applied after the second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest root-mean-square error of prediction value). In addition, for discriminating among the three parts of P. ginseng, optimized PLSR models were established using data sets obtained from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using FT-IR by selected normalization methods, number of PLS components, and VIP cutoff values. PMID:29049369
Kehimkar, Benjamin; Parsons, Brendon A; Hoggard, Jamin C; Billingsley, Matthew C; Bruno, Thomas J; Synovec, Robert E
2015-01-01
Recent efforts in predicting rocket propulsion (RP-1) fuel performance through modeling put greater emphasis on obtaining detailed and accurate fuel properties, as well as elucidating the relationships between fuel compositions and their properties. Herein, we study multidimensional chromatographic data obtained by comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC-TOFMS) to analyze RP-1 fuels. For GC × GC separations, RTX-Wax (polar stationary phase) and RTX-1 (non-polar stationary phase) columns were implemented for the primary and secondary dimensions, respectively, to separate the chemical compound classes (alkanes, cycloalkanes, aromatics, etc.), providing a significant level of chemical compositional information. The GC × GC-TOFMS data were analyzed using partial least squares regression (PLS) chemometric analysis to model and predict advanced distillation curve (ADC) data for ten RP-1 fuels that were previously analyzed using the ADC method. The PLS modeling provides insight into the chemical species that impact the ADC data. The PLS modeling correlates compositional information found in the GC × GC-TOFMS chromatograms of each RP-1 fuel, and their respective ADC, and allows prediction of the ADC for each RP-1 fuel with good precision and accuracy. The root-mean-square error of calibration (RMSEC) ranged from 0.1 to 0.5 °C, and was typically below ∼0.2 °C, for the PLS calibration of the ADC modeling with GC × GC-TOFMS data, indicating a good fit of the model to the calibration data. Likewise, the predictive power of the overall method via PLS modeling was assessed using leave-one-out cross-validation (LOOCV) yielding root-mean-square error of cross-validation (RMSECV) ranging from 1.4 to 2.6 °C, and was typically below ∼2.0 °C, at each % distilled measurement point during the ADC analysis.
Wei, Zhenbo; Wang, Jun; Ye, Linshuang
2011-08-15
A voltammetric electronic tongue (VE-tongue) was developed to discriminate the difference between Chinese rice wines in this research. Three types of Chinese rice wine with different marked ages (1, 3, and 5 years) were classified by the VE-tongue by principal component analysis (PCA) and cluster analysis (CA). The VE-tongue consisted of six working electrodes (gold, silver, platinum, palladium, tungsten, and titanium) in a standard three-electrode configuration. The multi-frequency large amplitude pulse voltammetry (MLAPV), which consisted of four segments of 1 Hz, 10 Hz, 100 Hz, and 1000 Hz, was applied as the potential waveform. The three types of Chinese rice wine could be classified accurately by PCA and CA, and some interesting regularity is shown in the score plots with the help of PCA. Two regression models, partial least squares (PLS) and back-error propagation-artificial neural network (BP-ANN), were used for wine age prediction. The regression results showed that the marked ages of the three types of Chinese rice wine were successfully predicted using PLS and BP-ANN. Copyright © 2011 Elsevier B.V. All rights reserved.
Üstündağ, Özgür; Dinç, Erdal; Özdemir, Nurten; Tilkan, M Günseli
2015-01-01
In the development strategies of new drug products and generic drug products, the simultaneous in-vitro dissolution behavior of oral dosage formulations is the most important indication for the quantitative estimation of efficiency and biopharmaceutical characteristics of drug substances. This is to force the related field's scientists to improve very powerful analytical methods to get more reliable, precise and accurate results in the quantitative analysis and dissolution testing of drug formulations. In this context, two new chemometric tools, partial least squares (PLS) and principal component regression (PCR) were improved for the simultaneous quantitative estimation and dissolution testing of zidovudine (ZID) and lamivudine (LAM) in a tablet dosage form. The results obtained in this study strongly encourage us to use them for the quality control, the routine analysis and the dissolution test of the marketing tablets containing ZID and LAM drugs.
Fernández-Novales, Juan; López, María-Isabel; González-Caballero, Virginia; Ramírez, Pilar; Sánchez, María-Teresa
2011-06-01
Volumic mass-a key component of must quality control tests during alcoholic fermentation-is of great interest to the winemaking industry. Transmitance near-infrared (NIR) spectra of 124 must samples over the range of 200-1,100-nm were obtained using a miniature spectrometer. The performance of this instrument to predict volumic mass was evaluated using partial least squares (PLS) regression and multiple linear regression (MLR). The validation statistics coefficient of determination (r(2)) and the standard error of prediction (SEP) were r(2) = 0.98, n = 31 and r(2) = 0.96, n = 31, and SEP = 5.85 and 7.49 g/dm(3) for PLS and MLR equations developed to fit reference data for volumic mass and spectral data. Comparison of results from MLR and PLS demonstrates that a MLR model with six significant wavelengths (P < 0.05) fit volumic mass data to transmittance (1/T) data slightly worse than a more sophisticated PLS model using the full scanning range. The results suggest that NIR spectroscopy is a suitable technique for predicting volumic mass during alcoholic fermentation, and that a low-cost NIR instrument can be used for this purpose.
NASA Astrophysics Data System (ADS)
Kang, Qian; Ru, Qingguo; Liu, Yan; Xu, Lingyan; Liu, Jia; Wang, Yifei; Zhang, Yewen; Li, Hui; Zhang, Qing; Wu, Qing
2016-01-01
An on-line near infrared (NIR) spectroscopy monitoring method with an appropriate multivariate calibration method was developed for the extraction process of Fu-fang Shuanghua oral solution (FSOS). On-line NIR spectra were collected through two fiber optic probes, which were designed to transmit NIR radiation by a 2 mm flange. Partial least squares (PLS), interval PLS (iPLS) and synergy interval PLS (siPLS) algorithms were used comparatively for building the calibration regression models. During the extraction process, the feasibility of NIR spectroscopy was employed to determine the concentrations of chlorogenic acid (CA) content, total phenolic acids contents (TPC), total flavonoids contents (TFC) and soluble solid contents (SSC). High performance liquid chromatography (HPLC), ultraviolet spectrophotometric method (UV) and loss on drying methods were employed as reference methods. Experiment results showed that the performance of siPLS model is the best compared with PLS and iPLS. The calibration models for AC, TPC, TFC and SSC had high values of determination coefficients of (R2) (0.9948, 0.9992, 0.9950 and 0.9832) and low root mean square error of cross validation (RMSECV) (0.0113, 0.0341, 0.1787 and 1.2158), which indicate a good correlation between reference values and NIR predicted values. The overall results show that the on line detection method could be feasible in real application and would be of great value for monitoring the mixed decoction process of FSOS and other Chinese patent medicines.
Wu, Sa; Zhang, Xin; Li, Zhi-Ming; Shi, Yan-Xia; Huang, Jia-Jia; Xia, Yi; Yang, Hang; Jiang, Wen-Qi
2013-01-01
Post-transplant lymphoproliferative disorder (PTLD) is a common complication of therapeutic immunosuppression after organ transplantation. Gene expression profile facilitates the identification of biological difference between Epstein-Barr virus (EBV) positive and negative PTLDs. Previous studies mainly implemented variance/regression analysis without considering unaccounted array specific factors. The aim of this study is to investigate the gene expression difference between EBV positive and negative PTLDs through partial least squares (PLS) based analysis. With a microarray data set from the Gene Expression Omnibus database, we performed PLS based analysis. We acquired 1188 differentially expressed genes. Pathway and Gene Ontology enrichment analysis identified significantly over-representation of dysregulated genes in immune response and cancer related biological processes. Network analysis identified three hub genes with degrees higher than 15, including CREBBP, ATXN1, and PML. Proteins encoded by CREBBP and PML have been reported to be interact with EBV before. Our findings shed light on expression distinction of EBV positive and negative PTLDs with the hope to offer theoretical support for future therapeutic study.
NASA Astrophysics Data System (ADS)
He, Anhua; Singh, Ramesh P.; Sun, Zhaohua; Ye, Qing; Zhao, Gang
2016-07-01
The earth tide, atmospheric pressure, precipitation and earthquake fluctuations, especially earthquake greatly impacts water well levels, thus anomalous co-seismic changes in ground water levels have been observed. In this paper, we have used four different models, simple linear regression (SLR), multiple linear regression (MLR), principal component analysis (PCA) and partial least squares (PLS) to compute the atmospheric pressure and earth tidal effects on water level. Furthermore, we have used the Akaike information criterion (AIC) to study the performance of various models. Based on the lowest AIC and sum of squares for error values, the best estimate of the effects of atmospheric pressure and earth tide on water level is found using the MLR model. However, MLR model does not provide multicollinearity between inputs, as a result the atmospheric pressure and earth tidal response coefficients fail to reflect the mechanisms associated with the groundwater level fluctuations. On the premise of solving serious multicollinearity of inputs, PLS model shows the minimum AIC value. The atmospheric pressure and earth tidal response coefficients show close response with the observation using PLS model. The atmospheric pressure and the earth tidal response coefficients are found to be sensitive to the stress-strain state using the observed data for the period 1 April-8 June 2008 of Chuan 03# well. The transient enhancement of porosity of rock mass around Chuan 03# well associated with the Wenchuan earthquake (Mw = 7.9 of 12 May 2008) that has taken its original pre-seismic level after 13 days indicates that the co-seismic sharp rise of water well could be induced by static stress change, rather than development of new fractures.
Carranco, Núria; Farrés-Cebrián, Mireia; Saurina, Javier
2018-01-01
High performance liquid chromatography method with ultra-violet detection (HPLC-UV) fingerprinting was applied for the analysis and characterization of olive oils, and was performed using a Zorbax Eclipse XDB-C8 reversed-phase column under gradient elution, employing 0.1% formic acid aqueous solution and methanol as mobile phase. More than 130 edible oils, including monovarietal extra-virgin olive oils (EVOOs) and other vegetable oils, were analyzed. Principal component analysis results showed a noticeable discrimination between olive oils and other vegetable oils using raw HPLC-UV chromatographic profiles as data descriptors. However, selected HPLC-UV chromatographic time-window segments were necessary to achieve discrimination among monovarietal EVOOs. Partial least square (PLS) regression was employed to tackle olive oil authentication of Arbequina EVOO adulterated with Picual EVOO, a refined olive oil, and sunflower oil. Highly satisfactory results were obtained after PLS analysis, with overall errors in the quantitation of adulteration in the Arbequina EVOO (minimum 2.5% adulterant) below 2.9%. PMID:29561820
NASA Astrophysics Data System (ADS)
Palou, Anna; Miró, Aira; Blanco, Marcelo; Larraz, Rafael; Gómez, José Francisco; Martínez, Teresa; González, Josep Maria; Alcalà, Manel
2017-06-01
Even when the feasibility of using near infrared (NIR) spectroscopy combined with partial least squares (PLS) regression for prediction of physico-chemical properties of biodiesel/diesel blends has been widely demonstrated, inclusion in the calibration sets of the whole variability of diesel samples from diverse production origins still remains as an important challenge when constructing the models. This work presents a useful strategy for the systematic selection of calibration sets of samples of biodiesel/diesel blends from diverse origins, based on a binary code, principal components analysis (PCA) and the Kennard-Stones algorithm. Results show that using this methodology the models can keep their robustness over time. PLS calculations have been done using a specialized chemometric software as well as the software of the NIR instrument installed in plant, and both produced RMSEP under reproducibility values of the reference methods. The models have been proved for on-line simultaneous determination of seven properties: density, cetane index, fatty acid methyl esters (FAME) content, cloud point, boiling point at 95% of recovery, flash point and sulphur.
On-line milk spectrometry: analysis of bovine milk composition
NASA Astrophysics Data System (ADS)
Spitzer, Kyle; Kuennemeyer, Rainer; Woolford, Murray; Claycomb, Rod
2005-04-01
We present partial least squares (PLS) regressions to predict the composition of raw, unhomogenised milk using visible to near infrared spectroscopy. A total of 370 milk samples from individual quarters were collected and analysed on-line by two low cost spectrometers in the wavelength ranges 380-1100 nm and 900-1700 nm. Samples were collected from 22 Friesian, 17 Jersey, 2 Ayrshire and 3 Friesian-Jersey crossbred cows over a period of 7 consecutive days. Transmission spectra were recorded in an inline flowcell through a 0.5 mm thick milk sample. PLS models, where wavelength selection was performed using iterative PLS, were developed for fat, protein, lactose, and somatic cell content. The root mean square error of prediction (and correlation coefficient) for the nir and visible spectrometers respectively were 0.70%(0.93) and 0.91%(0.91) for fat, 0.65%(0.5) and 0.47%(0.79) for protein, 0.36%(0.49) and 0.45%(0.43) for lactose, and 0.50(0.54) and 0.48(0.51) for log10 somatic cells.
Li, Shuifang; Zhang, Xin; Shan, Yang; Su, Donglin; Ma, Qiang; Wen, Ruizhi; Li, Jiaojuan
2017-03-01
Near-infrared spectroscopy (NIR) was used for qualitative and quantitative detection of honey adulterated with high-fructose corn syrup (HFCS) or maltose syrup (MS). Competitive adaptive reweighted sampling (CARS) was employed to select key variables. Partial least squares linear discriminant analysis (PLS-LDA) was adopted to classify the adulterated honey samples. The CARS-PLS-LDA models showed an accuracy of 86.3% (honey vs. adulterated honey with HFCS) and 96.1% (honey vs. adulterated honey with MS), respectively. PLS regression (PLSR) was used to predict the extent of adulteration in the honeys. The results showed that NIR combined with PLSR could not be used to quantify adulteration with HFCS, but could be used to quantify adulteration with MS: coefficient (R p 2 ) and root mean square of prediction (RMSEP) were 0.901 and 4.041 for MS-adulterated samples from different floral origins, and 0.981 and 1.786 for MS-adulterated samples from the same floral origin (Brassica spp.), respectively. Copyright © 2016. Published by Elsevier Ltd.
Tu, Yu-Kang; Davey Smith, George; Gilthorpe, Mark S.
2011-01-01
Due to a problem of identification, how to estimate the distinct effects of age, time period and cohort has been a controversial issue in the analysis of trends in health outcomes in epidemiology. In this study, we propose a novel approach, partial least squares (PLS) analysis, to separate the effects of age, period, and cohort. Our example for illustration is taken from the Glasgow Alumni cohort. A total of 15,322 students (11,755 men and 3,567 women) received medical screening at the Glasgow University between 1948 and 1968. The aim is to investigate the secular trends in blood pressure over 1925 and 1950 while taking into account the year of examination and age at examination. We excluded students born before 1925 or aged over 25 years at examination and those with missing values in confounders from the analyses, resulting in 12,546 and 12,516 students for analysis of systolic and diastolic blood pressure, respectively. PLS analysis shows that both systolic and diastolic blood pressure increased with students' age, and students born later had on average lower blood pressure (SBP: −0.17 mmHg/per year [95% confidence intervals: −0.19 to −0.15] for men and −0.25 [−0.28 to −0.22] for women; DBP: −0.14 [−0.15 to −0.13] for men; −0.09 [−0.11 to −0.07] for women). PLS also shows a decreasing trend in blood pressure over the examination period. As identification is not a problem for PLS, it provides a flexible modelling strategy for age-period-cohort analysis. More emphasis is then required to clarify the substantive and conceptual issues surrounding the definitions and interpretations of age, period and cohort effects. PMID:21556329
NASA Astrophysics Data System (ADS)
Jiang, Hui; Liu, Guohai; Mei, Congli; Yu, Shuang; Xiao, Xiahong; Ding, Yuhan
2012-11-01
The feasibility of rapid determination of the process variables (i.e. pH and moisture content) in solid-state fermentation (SSF) of wheat straw using Fourier transform near infrared (FT-NIR) spectroscopy was studied. Synergy interval partial least squares (siPLS) algorithm was implemented to calibrate regression model. The number of PLS factors and the number of subintervals were optimized simultaneously by cross-validation. The performance of the prediction model was evaluated according to the root mean square error of cross-validation (RMSECV), the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The measurement results of the optimal model were obtained as follows: RMSECV = 0.0776, Rc = 0.9777, RMSEP = 0.0963, and Rp = 0.9686 for pH model; RMSECV = 1.3544% w/w, Rc = 0.8871, RMSEP = 1.4946% w/w, and Rp = 0.8684 for moisture content model. Finally, compared with classic PLS and iPLS models, the siPLS model revealed its superior performance. The overall results demonstrate that FT-NIR spectroscopy combined with siPLS algorithm can be used to measure process variables in solid-state fermentation of wheat straw, and NIR spectroscopy technique has a potential to be utilized in SSF industry.
Jović, Ozren; Smrečki, Neven; Popović, Zora
2016-04-01
A novel quantitative prediction and variable selection method called interval ridge regression (iRR) is studied in this work. The method is performed on six data sets of FTIR, two data sets of UV-vis and one data set of DSC. The obtained results show that models built with ridge regression on optimal variables selected with iRR significantly outperfom models built with ridge regression on all variables in both calibration (6 out of 9 cases) and validation (2 out of 9 cases). In this study, iRR is also compared with interval partial least squares regression (iPLS). iRR outperfomed iPLS in validation (insignificantly in 6 out of 9 cases and significantly in one out of 9 cases for p<0.05). Also, iRR can be a fast alternative to iPLS, especially in case of unknown degree of complexity of analyzed system, i.e. if upper limit of number of latent variables is not easily estimated for iPLS. Adulteration of hempseed (H) oil, a well known health beneficial nutrient, is studied in this work by mixing it with cheap and widely used oils such as soybean (So) oil, rapeseed (R) oil and sunflower (Su) oil. Binary mixture sets of hempseed oil with these three oils (HSo, HR and HSu) and a ternary mixture set of H oil, R oil and Su oil (HRSu) were considered. The obtained accuracy indicates that using iRR on FTIR and UV-vis data, each particular oil can be very successfully quantified (in all 8 cases RMSEP<1.2%). This means that FTIR-ATR coupled with iRR can very rapidly and effectively determine the level of adulteration in the adulterated hempseed oil (R(2)>0.99). Copyright © 2015 Elsevier B.V. All rights reserved.
Hashimoto, Ryu-Ichiro; Itahashi, Takashi; Okada, Rieko; Hasegawa, Sayaka; Tani, Masayuki; Kato, Nobumasa; Mimura, Masaru
2018-01-01
Abnormalities in functional brain networks in schizophrenia have been studied by examining intrinsic and extrinsic brain activity under various experimental paradigms. However, the identified patterns of abnormal functional connectivity (FC) vary depending on the adopted paradigms. Thus, it is unclear whether and how these patterns are inter-related. In order to assess relationships between abnormal patterns of FC during intrinsic activity and those during extrinsic activity, we adopted a data-fusion approach and applied partial least square (PLS) analyses to FC datasets from 25 patients with chronic schizophrenia and 25 age- and sex-matched normal controls. For the input to the PLS analyses, we generated a pair of FC maps during the resting state (REST) and the auditory deviance response (ADR) from each participant using the common seed region in the left middle temporal gyrus, which is a focus of activity associated with auditory verbal hallucinations (AVHs). PLS correlation (PLS-C) analysis revealed that patients with schizophrenia have significantly lower loadings of a component containing positive FCs in default-mode network regions during REST and a component containing positive FCs in the auditory and attention-related networks during ADR. Specifically, loadings of the REST component were significantly correlated with the severities of positive symptoms and AVH in patients with schizophrenia. The co-occurrence of such altered FC patterns during REST and ADR was replicated using PLS regression, wherein FC patterns during REST are modeled to predict patterns during ADR. These findings provide an integrative understanding of altered FCs during intrinsic and extrinsic activity underlying core schizophrenia symptoms.
Statistical variation in progressive scrambling
NASA Astrophysics Data System (ADS)
Clark, Robert D.; Fox, Peter C.
2004-07-01
The two methods most often used to evaluate the robustness and predictivity of partial least squares (PLS) models are cross-validation and response randomization. Both methods may be overly optimistic for data sets that contain redundant observations, however. The kinds of perturbation analysis widely used for evaluating model stability in the context of ordinary least squares regression are only applicable when the descriptors are independent of each other and errors are independent and normally distributed; neither assumption holds for QSAR in general and for PLS in particular. Progressive scrambling is a novel, non-parametric approach to perturbing models in the response space in a way that does not disturb the underlying covariance structure of the data. Here, we introduce adjustments for two of the characteristic values produced by a progressive scrambling analysis - the deprecated predictivity (Q_s^{ast^2}) and standard error of prediction (SDEP s * ) - that correct for the effect of introduced perturbation. We also explore the statistical behavior of the adjusted values (Q_0^{ast^2} and SDEP 0 * ) and the sensitivity to perturbation (d q 2/d r yy ' 2). It is shown that the three statistics are all robust for stable PLS models, in terms of the stochastic component of their determination and of their variation due to sampling effects involved in training set selection.
Kim, So-Hyun; Cho, Somi K; Hyun, Sun-Hee; Park, Hae-Eun; Kim, Young-Suk; Choi, Hyung-Kyoon
2011-01-01
Guava leaves were classified and the free radical scavenging activity (FRSA) evaluated according to different harvest times by using the (1)H-NMR-based metabolomic technique. A principal component analysis (PCA) of (1)H-NMR data from the guava leaves provided clear clusters according to the harvesting time. A partial least squares (PLS) analysis indicated a correlation between the metabolic profile and FRSA. FRSA levels of the guava leaves harvested during May and August were high, and those leaves contained higher amounts of 3-hydroxybutyric acid, acetic acid, glutamic acid, asparagine, citric acid, malonic acid, trans-aconitic acid, ascorbic acid, maleic acid, cis-aconitic acid, epicatechin, protocatechuic acid, and xanthine than the leaves harvested during October and December. Epicatechin and protocatechuic acid among those compounds seem to have enhanced FRSA of the guava leaf samples harvested in May and August. A PLS regression model was established to predict guava leaf FRSA at different harvesting times by using a (1)H-NMR data set. The predictability of the PLS model was then tested by internal and external validation. The results of this study indicate that (1)H-NMR-based metabolomic data could usefully characterize guava leaves according to their time of harvesting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie; Orton, Christopher; Schwantes, Jon
Abstract—The Multi-Isotope Process (MIP) Monitor provides an efficient approach to monitoring the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of reprocessing streams in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor), initial enrichment, burn up, and cooling time. Simulated gamma spectra were used to develop and test threemore » fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type. Locally weighted PLS models were fitted on-the-fly to estimate continuous fuel characteristics. Burn up was predicted within 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment within approximately 2% RMSPE. This automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters and material diversions.« less
NASA Astrophysics Data System (ADS)
Suhandy, D.; Yulia, M.; Ogawa, Y.; Kondo, N.
2018-05-01
In the present research, an evaluation of using near infrared (NIR) spectroscopy in tandem with full spectrum partial least squares (FS-PLS) regression for quantification of degree of adulteration in civet coffee was conducted. A number of 126 ground roasted coffee samples with degree of adulteration 0-51% were prepared. Spectral data were acquired using a NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement in the range of 1300-2500 nm. The samples were divided into two groups calibration sample set (84 samples) and prediction sample set (42 samples). The calibration model was developed on original spectra using FS-PLS regression with full-cross validation method. The calibration model exhibited the determination coefficient R2=0.96 for calibration and R2=0.92 for validation. The prediction resulted in low root mean square error of prediction (RMSEP) (4.67%) and high ratio prediction to deviation (RPD) (3.75). In conclusion, the degree of adulteration in civet coffee have been quantified successfully by using NIR spectroscopy and FS-PLS regression in a non-destructive, economical, precise, and highly sensitive method, which uses very simple sample preparation.
NASA Astrophysics Data System (ADS)
Liu, Fei; He, Yong
2008-03-01
Three different chemometric methods were performed for the determination of sugar content of cola soft drinks using visible and near infrared spectroscopy (Vis/NIRS). Four varieties of colas were prepared and 180 samples (45 samples for each variety) were selected for the calibration set, while 60 samples (15 samples for each variety) for the validation set. The smoothing way of Savitzky-Golay, standard normal variate (SNV) and Savitzky-Golay first derivative transformation were applied for the pre-processing of spectral data. The first eleven principal components (PCs) extracted by partial least squares (PLS) analysis were employed as the inputs of BP neural network (BPNN) and least squares-support vector machine (LS-SVM) model. Then the BPNN model with the optimal structural parameters and LS-SVM model with radial basis function (RBF) kernel were applied to build the regression model with a comparison of PLS regression. The correlation coefficient (r), root mean square error of prediction (RMSEP) and bias for prediction were 0.971, 1.259 and -0.335 for PLS, 0.986, 0.763, and -0.042 for BPNN, while 0.978, 0.995 and -0.227 for LS-SVM, respectively. All the three methods supplied a high and satisfying precision. The results indicated that Vis/NIR spectroscopy combined with chemometric methods could be utilized as a high precision way for the determination of sugar content of cola soft drinks.
Orthogonal decomposition of left ventricular remodeling in myocardial infarction
Zhang, Xingyu; Medrano-Gracia, Pau; Ambale-Venkatesh, Bharath; Bluemke, David A.; Cowan, Brett R; Finn, J. Paul; Kadish, Alan H.; Lee, Daniel C.; Lima, Joao A. C.; Young, Alistair A.; Suinesiaputra, Avan
2017-01-01
Abstract Left ventricular size and shape are important for quantifying cardiac remodeling in response to cardiovascular disease. Geometric remodeling indices have been shown to have prognostic value in predicting adverse events in the clinical literature, but these often describe interrelated shape changes. We developed a novel method for deriving orthogonal remodeling components directly from any (moderately independent) set of clinical remodeling indices. Results: Six clinical remodeling indices (end-diastolic volume index, sphericity, relative wall thickness, ejection fraction, apical conicity, and longitudinal shortening) were evaluated using cardiac magnetic resonance images of 300 patients with myocardial infarction, and 1991 asymptomatic subjects, obtained from the Cardiac Atlas Project. Partial least squares (PLS) regression of left ventricular shape models resulted in remodeling components that were optimally associated with each remodeling index. A Gram–Schmidt orthogonalization process, by which remodeling components were successively removed from the shape space in the order of shape variance explained, resulted in a set of orthonormal remodeling components. Remodeling scores could then be calculated that quantify the amount of each remodeling component present in each case. A one-factor PLS regression led to more decoupling between scores from the different remodeling components across the entire cohort, and zero correlation between clinical indices and subsequent scores. Conclusions: The PLS orthogonal remodeling components had similar power to describe differences between myocardial infarction patients and asymptomatic subjects as principal component analysis, but were better associated with well-understood clinical indices of cardiac remodeling. The data and analyses are available from www.cardiacatlas.org. PMID:28327972
Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy
NASA Astrophysics Data System (ADS)
Jintao, Xue; Liming, Ye; Yufei, Liu; Chunyan, Li; Han, Chen
2017-05-01
This research was to develop a method for noninvasive and fast blood glucose assay in vivo. Near-infrared (NIR) spectroscopy, a more promising technique compared to other methods, was investigated in rats with diabetes and normal rats. Calibration models are generated by two different multivariate strategies: partial least squares (PLS) as linear regression method and artificial neural networks (ANN) as non-linear regression method. The PLS model was optimized individually by considering spectral range, spectral pretreatment methods and number of model factors, while the ANN model was studied individually by selecting spectral pretreatment methods, parameters of network topology, number of hidden neurons, and times of epoch. The results of the validation showed the two models were robust, accurate and repeatable. Compared to the ANN model, the performance of the PLS model was much better, with lower root mean square error of validation (RMSEP) of 0.419 and higher correlation coefficients (R) of 96.22%.
Li, Yi; Tseng, Yufeng J.; Pan, Dahua; Liu, Jianzhong; Kern, Petra S.; Gerberick, G. Frank; Hopfinger, Anton J.
2008-01-01
Currently, the only validated methods to identify skin sensitization effects are in vivo models, such as the Local Lymph Node Assay (LLNA) and guinea pig studies. There is a tremendous need, in particular due to novel legislation, to develop animal alternatives, eg. Quantitative Structure-Activity Relationship (QSAR) models. Here, QSAR models for skin sensitization using LLNA data have been constructed. The descriptors used to generate these models are derived from the 4D-molecular similarity paradigm and are referred to as universal 4D-fingerprints. A training set of 132 structurally diverse compounds and a test set of 15 structurally diverse compounds were used in this study. The statistical methodologies used to build the models are logistic regression (LR), and partial least square coupled logistic regression (PLS-LR), which prove to be effective tools for studying skin sensitization measures expressed in the two categorical terms of sensitizer and non-sensitizer. QSAR models with low values of the Hosmer-Lemeshow goodness-of-fit statistic, χHL2, are significant and predictive. For the training set, the cross-validated prediction accuracy of the logistic regression models ranges from 77.3% to 78.0%, while that of PLS-logistic regression models ranges from 87.1% to 89.4%. For the test set, the prediction accuracy of logistic regression models ranges from 80.0%-86.7%, while that of PLS-logistic regression models ranges from 73.3%-80.0%. The QSAR models are made up of 4D-fingerprints related to aromatic atoms, hydrogen bond acceptors and negatively partially charged atoms. PMID:17226934
Malegori, Cristina; Nascimento Marques, Emanuel José; de Freitas, Sergio Tonetto; Pimentel, Maria Fernanda; Pasquini, Celio; Casiraghi, Ernestina
2017-04-01
The main goal of this study was to investigate the analytical performances of a state-of-the-art device, one of the smallest dispersion NIR spectrometers on the market (MicroNIR 1700), making a critical comparison with a benchtop FT-NIR spectrometer in the evaluation of the prediction accuracy. In particular, the aim of this study was to estimate in a non-destructive manner, titratable acidity and ascorbic acid content in acerola fruit during ripening, in a view of direct applicability in field of this new miniaturised handheld device. Acerola (Malpighia emarginata DC.) is a super-fruit characterised by a considerable amount of ascorbic acid, ranging from 1.0% to 4.5%. However, during ripening, acerola colour changes and the fruit may lose as much as half of its ascorbic acid content. Because the variability of chemical parameters followed a non-strictly linear profile, two different regression algorithms were compared: PLS and SVM. Regression models obtained with Micro-NIR spectra give better results using SVM algorithm, for both ascorbic acid and titratable acidity estimation. FT-NIR data give comparable results using both SVM and PLS algorithms, with lower errors for SVM regression. The prediction ability of the two instruments was statistically compared using the Passing-Bablok regression algorithm; the outcomes are critically discussed together with the regression models, showing the suitability of the portable Micro-NIR for in field monitoring of chemical parameters of interest in acerola fruits. Copyright © 2016 Elsevier B.V. All rights reserved.
Ghasemi, Jahan B; Safavi-Sohi, Reihaneh; Barbosa, Euzébio G
2012-02-01
A quasi 4D-QSAR has been carried out on a series of potent Gram-negative LpxC inhibitors. This approach makes use of the molecular dynamics (MD) trajectories and topology information retrieved from the GROMACS package. This new methodology is based on the generation of a conformational ensemble profile, CEP, for each compound instead of only one conformation, followed by the calculation intermolecular interaction energies at each grid point considering probes and all aligned conformations resulting from MD simulations. These interaction energies are independent variables employed in a QSAR analysis. The comparison of the proposed methodology to comparative molecular field analysis (CoMFA) formalism was performed. This methodology explores jointly the main features of CoMFA and 4D-QSAR models. Step-wise multiple linear regression was used for the selection of the most informative variables. After variable selection, multiple linear regression (MLR) and partial least squares (PLS) methods used for building the regression models. Leave-N-out cross-validation (LNO), and Y-randomization were performed in order to confirm the robustness of the model in addition to analysis of the independent test set. Best models provided the following statistics: [Formula in text] (PLS) and [Formula in text] (MLR). Docking study was applied to investigate the major interactions in protein-ligand complex with CDOCKER algorithm. Visualization of the descriptors of the best model helps us to interpret the model from the chemical point of view, supporting the applicability of this new approach in rational drug design.
Song, Weiran; Wang, Hui; Maguire, Paul; Nibouche, Omar
2018-06-07
Partial Least Squares Discriminant Analysis (PLS-DA) is one of the most effective multivariate analysis methods for spectral data analysis, which extracts latent variables and uses them to predict responses. In particular, it is an effective method for handling high-dimensional and collinear spectral data. However, PLS-DA does not explicitly address data multimodality, i.e., within-class multimodal distribution of data. In this paper, we present a novel method termed nearest clusters based PLS-DA (NCPLS-DA) for addressing the multimodality and nonlinearity issues explicitly and improving the performance of PLS-DA on spectral data classification. The new method applies hierarchical clustering to divide samples into clusters and calculates the corresponding centre of every cluster. For a given query point, only clusters whose centres are nearest to such a query point are used for PLS-DA. Such a method can provide a simple and effective tool for separating multimodal and nonlinear classes into clusters which are locally linear and unimodal. Experimental results on 17 datasets, including 12 UCI and 5 spectral datasets, show that NCPLS-DA can outperform 4 baseline methods, namely, PLS-DA, kernel PLS-DA, local PLS-DA and k-NN, achieving the highest classification accuracy most of the time. Copyright © 2018 Elsevier B.V. All rights reserved.
Ono, Daiki; Bamba, Takeshi; Oku, Yuichi; Yonetani, Tsutomu; Fukusaki, Eiichiro
2011-09-01
In this study, we constructed prediction models by metabolic fingerprinting of fresh green tea leaves using Fourier transform near-infrared (FT-NIR) spectroscopy and partial least squares (PLS) regression analysis to objectively optimize of the steaming process conditions in green tea manufacture. The steaming process is the most important step for manufacturing high quality green tea products. However, the parameter setting of the steamer is currently determined subjectively by the manufacturer. Therefore, a simple and robust system that can be used to objectively set the steaming process parameters is necessary. We focused on FT-NIR spectroscopy because of its simple operation, quick measurement, and low running costs. After removal of noise in the spectral data by principal component analysis (PCA), PLS regression analysis was performed using spectral information as independent variables, and the steaming parameters set by experienced manufacturers as dependent variables. The prediction models were successfully constructed with satisfactory accuracy. Moreover, the results of the demonstrated experiment suggested that the green tea steaming process parameters could be predicted on a larger manufacturing scale. This technique will contribute to improvement of the quality and productivity of green tea because it can objectively optimize the complicated green tea steaming process and will be suitable for practical use in green tea manufacture. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Lakshmi, KS; Lakshmi, S
2010-01-01
Two chemometric methods were developed for the simultaneous determination of telmisartan and hydrochlorothiazide. The chemometric methods applied were principal component regression (PCR) and partial least square (PLS-1). These approaches were successfully applied to quantify the two drugs in the mixture using the information included in the UV absorption spectra of appropriate solutions in the range of 200-350 nm with the intervals Δλ = 1 nm. The calibration of PCR and PLS-1 models was evaluated by internal validation (prediction of compounds in its own designed training set of calibration) and by external validation over laboratory prepared mixtures and pharmaceutical preparations. The PCR and PLS-1 methods require neither any separation step, nor any prior graphical treatment of the overlapping spectra of the two drugs in a mixture. The results of PCR and PLS-1 methods were compared with each other and a good agreement was found. PMID:21331198
Lakshmi, Ks; Lakshmi, S
2010-01-01
Two chemometric methods were developed for the simultaneous determination of telmisartan and hydrochlorothiazide. The chemometric methods applied were principal component regression (PCR) and partial least square (PLS-1). These approaches were successfully applied to quantify the two drugs in the mixture using the information included in the UV absorption spectra of appropriate solutions in the range of 200-350 nm with the intervals Δλ = 1 nm. The calibration of PCR and PLS-1 models was evaluated by internal validation (prediction of compounds in its own designed training set of calibration) and by external validation over laboratory prepared mixtures and pharmaceutical preparations. The PCR and PLS-1 methods require neither any separation step, nor any prior graphical treatment of the overlapping spectra of the two drugs in a mixture. The results of PCR and PLS-1 methods were compared with each other and a good agreement was found.
Jiang, Hui; Liu, Guohai; Mei, Congli; Yu, Shuang; Xiao, Xiahong; Ding, Yuhan
2012-11-01
The feasibility of rapid determination of the process variables (i.e. pH and moisture content) in solid-state fermentation (SSF) of wheat straw using Fourier transform near infrared (FT-NIR) spectroscopy was studied. Synergy interval partial least squares (siPLS) algorithm was implemented to calibrate regression model. The number of PLS factors and the number of subintervals were optimized simultaneously by cross-validation. The performance of the prediction model was evaluated according to the root mean square error of cross-validation (RMSECV), the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The measurement results of the optimal model were obtained as follows: RMSECV=0.0776, R(c)=0.9777, RMSEP=0.0963, and R(p)=0.9686 for pH model; RMSECV=1.3544% w/w, R(c)=0.8871, RMSEP=1.4946% w/w, and R(p)=0.8684 for moisture content model. Finally, compared with classic PLS and iPLS models, the siPLS model revealed its superior performance. The overall results demonstrate that FT-NIR spectroscopy combined with siPLS algorithm can be used to measure process variables in solid-state fermentation of wheat straw, and NIR spectroscopy technique has a potential to be utilized in SSF industry. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmed, Shamim; Miorelli, Roberto; Calmon, Pierre; Anselmi, Nicola; Salucci, Marco
2018-04-01
This paper describes Learning-By-Examples (LBE) technique for performing quasi real time flaw localization and characterization within a conductive tube based on Eddy Current Testing (ECT) signals. Within the framework of LBE, the combination of full-factorial (i.e., GRID) sampling and Partial Least Squares (PLS) feature extraction (i.e., GRID-PLS) techniques are applied for generating a suitable training set in offine phase. Support Vector Regression (SVR) is utilized for model development and inversion during offine and online phases, respectively. The performance and robustness of the proposed GIRD-PLS/SVR strategy on noisy test set is evaluated and compared with standard GRID/SVR approach.
Experiences of stigma and discrimination of people with schizophrenia in India
Koschorke, Mirja; Padmavati, R.; Kumar, Shuba; Cohen, Alex; Weiss, Helen A.; Chatterjee, Sudipto; Pereira, Jesina; Naik, Smita; John, Sujit; Dabholkar, Hamid; Balaji, Madhumitha; Chavan, Animish; Varghese, Mathew; Thara, R.; Thornicroft, Graham; Patel, Vikram
2014-01-01
Stigma contributes greatly to the burden of schizophrenia and is a major obstacle to recovery, yet, little is known about the subjective experiences of those directly affected in low and middle income countries. This paper aims to describe the experiences of stigma and discrimination of people living with schizophrenia (PLS) in three sites in India and to identify factors influencing negative discrimination. The study used mixed methods and was nested in a randomised controlled trial of community care for schizophrenia. Between November 2009 and October 2010, data on four aspects of stigma experienced by PLS and several clinical variables were collected from 282 PLS and 282 caregivers and analysed using multivariate regression. In addition, in-depth-interviews with PLS and caregivers (36 each) were carried out and analysed using thematic analysis. Quantitative findings indicate that experiences of negative discrimination were reported less commonly (42%) than more internalised forms of stigma experience such as a sense of alienation (79%) and significantly less often than in studies carried out elsewhere. Experiences of negative discrimination were independently predicted by higher levels of positive symptoms of schizophrenia, lower levels of negative symptoms of schizophrenia, higher caregiver knowledge about symptomatology, lower PLS age and not having a source of drinking water in the home. Qualitative findings illustrate the major impact of stigma on ‘what matters most’ in the lives of PLS and highlight three key domains influencing the themes of 'negative reactions' and ‘negative views and feelings about the self’, i.e., ‘others finding out’, ‘behaviours and manifestations of the illness’ and ‘reduced ability to meet role expectations’. Findings have implications for conceptualising and measuring stigma and add to the rationale for enhancing psycho-social interventions to support those facing discrimination. Findings also highlight the importance of addressing public stigma and achieving higher level social and political structural change. PMID:25462616
Genisheva, Z; Quintelas, C; Mesquita, D P; Ferreira, E C; Oliveira, J M; Amaral, A L
2018-04-25
This work aims to explore the potential of near infrared (NIR) spectroscopy to quantify volatile compounds in Vinho Verde wines, commonly determined by gas chromatography. For this purpose, 105 Vinho Verde wine samples were analyzed using Fourier transform near infrared (FT-NIR) transmission spectroscopy in the range of 5435 cm -1 to 6357 cm -1 . Boxplot and principal components analysis (PCA) were performed for clusters identification and outliers removal. A partial least square (PLS) regression was then applied to develop the calibration models, by a new iterative approach. The predictive ability of the models was confirmed by an external validation procedure with an independent sample set. The obtained results could be considered as quite good with coefficients of determination (R 2 ) varying from 0.94 to 0.97. The current methodology, using NIR spectroscopy and chemometrics, can be seen as a promising rapid tool to determine volatile compounds in Vinho Verde wines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Meoded, Avner; Kwan, Justin Y.; Peters, Tracy L.; Huey, Edward D.; Danielian, Laura E.; Wiggs, Edythe; Morrissette, Arthur; Wu, Tianxia; Russell, James W.; Bayat, Elham; Grafman, Jordan; Floeter, Mary Kay
2013-01-01
Introduction Executive dysfunction occurs in many patients with amyotrophic lateral sclerosis (ALS), but it has not been well studied in primary lateral sclerosis (PLS). The aims of this study were to (1) compare cognitive function in PLS to that in ALS patients, (2) explore the relationship between performance on specific cognitive tests and diffusion tensor imaging (DTI) metrics of white matter tracts and gray matter volumes, and (3) compare DTI metrics in patients with and without cognitive and behavioral changes. Methods The Delis-Kaplan Executive Function System (D-KEFS), the Mattis Dementia Rating Scale (DRS-2), and other behavior and mood scales were administered to 25 ALS patients and 25 PLS patients. Seventeen of the PLS patients, 13 of the ALS patients, and 17 healthy controls underwent structural magnetic resonance imaging (MRI) and DTI. Atlas-based analysis using MRI Studio software was used to measure fractional anisotropy, and axial and radial diffusivity of selected white matter tracts. Voxel-based morphometry was used to assess gray matter volumes. The relationship between diffusion properties of selected association and commissural white matter and performance on executive function and memory tests was explored using a linear regression model. Results More ALS than PLS patients had abnormal scores on the DRS-2. DRS-2 and D-KEFS scores were related to DTI metrics in several long association tracts and the callosum. Reduced gray matter volumes in motor and perirolandic areas were not associated with cognitive scores. Conclusion The changes in diffusion metrics of white matter long association tracts suggest that the loss of integrity of the networks connecting fronto-temporal areas to parietal and occipital areas contributes to cognitive impairment. PMID:24052798
Klein-Júnior, Luiz C; Viaene, Johan; Tuenter, Emmy; Salton, Juliana; Gasper, André L; Apers, Sandra; Andries, Jan P M; Pieters, Luc; Henriques, Amélia T; Vander Heyden, Yvan
2016-09-09
Psychotria nemorosa is chemically characterized by indole alkaloids and displays significant inhibitory activity on butyrylcholinesterase (BChE) and monoamine oxidase-A (MAO-A), both enzymes related to neurodegenerative disorders. In the present study, 43 samples of P. nemorosa leaves were extracted and fractionated in accordance to previously optimized methods (see Part I). These fractions were analyzed by means of UPLC-DAD and assayed for their BChE and MAO-A inhibitory potencies. The chromatographic fingerprint data was first aligned using correlation optimized warping and Principal Component Analysis to explore the data structure was performed. Multivariate calibration techniques, namely Partial Least Squares (PLS1), PLS2 and Orthogonal Projections to Latent Structure (O-PLS1), were evaluated for modelling the activities as a function of the fingerprints. Since the best results were obtained with O-PLS1 model (RMSECV=9.3 and 3.3 for BChE and MAO-A, respectively), the regression coefficients of the model were analyzed and plotted relative to the original fingerprints. Four peaks were indicated as multifunctional compounds, with the capacity to impair both BChE and MAO-A activities. In order to confirm these results, a semi-prep HPLC technique was used and a fraction containing the four peaks was purified and evaluated in vitro. It was observed that the fraction exhibited an IC50 of 2.12μgmL(-1) for BChE and 1.07μgmL(-1) for MAO-A. These results reinforce the prediction obtained by O-PLS1 modelling. Copyright © 2016 Elsevier B.V. All rights reserved.
Locally Based Kernel PLS Regression De-noising with Application to Event-Related Potentials
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Tino, Peter
2002-01-01
The close relation of signal de-noising and regression problems dealing with the estimation of functions reflecting dependency between a set of inputs and dependent outputs corrupted with some level of noise have been employed in our approach.
NASA Astrophysics Data System (ADS)
Anggraeni, Anni; Arianto, Fernando; Mutalib, Abdul; Pratomo, Uji; Bahti, Husein H.
2017-05-01
Rare Earth Elements (REE) are elements that a lot of function for life, such as metallurgy, optical devices, and manufacture of electronic devices. Sources of REE is present in the mineral, in which each element has similar properties. Currently, to determining the content of REE is used instruments such as ICP-OES, ICP-MS, XRF, and HPLC. But in each instruments, there are still have some weaknesses. Therefore we need an alternative analytical method for the determination of rare earth metal content, one of them is by a combination of UV-Visible spectrophotometry and multivariate analysis, including Principal Component Analysis (PCA), Principal Component Regression (PCR), and Partial Least Square Regression (PLS). The purpose of this experiment is to determine the content of light and medium rare earth elements in the mineral monazite without chemical separation by using a combination of multivariate analysis and UV-Visible spectrophotometric methods. Training set created 22 variations of concentration and absorbance was measured using a UV-Vis spectrophotometer, then the data is processed by PCA, PCR, and PLSR. The results were compared and validated to obtain the mathematical equation with the smallest percent error. From this experiment, mathematical equation used PLS methods was better than PCR after validated, which has RMSE value for La, Ce, Pr, Nd, Gd, Sm, Eu, and Tb respectively 0.095; 0.573; 0.538; 0.440; 3.387; 1.240; 1.870; and 0.639.
Luoma, Pekka; Natschläger, Thomas; Malli, Birgit; Pawliczek, Marcin; Brandstetter, Markus
2018-05-12
A model recalibration method based on additive Partial Least Squares (PLS) regression is generalized for multi-adjustment scenarios of independent variance sources (referred to as additive PLS - aPLS). aPLS allows for effortless model readjustment under changing measurement conditions and the combination of independent variance sources with the initial model by means of additive modelling. We demonstrate these distinguishing features on two NIR spectroscopic case-studies. In case study 1 aPLS was used as a readjustment method for an emerging offset. The achieved RMS error of prediction (1.91 a.u.) was of similar level as before the offset occurred (2.11 a.u.). In case-study 2 a calibration combining different variance sources was conducted. The achieved performance was of sufficient level with an absolute error being better than 0.8% of the mean concentration, therefore being able to compensate negative effects of two independent variance sources. The presented results show the applicability of the aPLS approach. The main advantages of the method are that the original model stays unadjusted and that the modelling is conducted on concrete changes in the spectra thus supporting efficient (in most cases straightforward) modelling. Additionally, the method is put into context of existing machine learning algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Clegg, S. M.; Frydenvang, J.
2015-12-01
One of the primary challenges faced by the ChemCam instrument on the Curiosity Mars rover is developing a regression model that can accurately predict the composition of the wide range of target types encountered (basalts, calcium sulfate, feldspar, oxides, etc.). The original calibration used 69 rock standards to train a partial least squares (PLS) model for each major element. By expanding the suite of calibration samples to >400 targets spanning a wider range of compositions, the accuracy of the model was improved, but some targets with "extreme" compositions (e.g. pure minerals) were still poorly predicted. We have therefore developed a simple method, referred to as "submodel PLS", to improve the performance of PLS across a wide range of target compositions. In addition to generating a "full" (0-100 wt.%) PLS model for the element of interest, we also generate several overlapping submodels (e.g. for SiO2, we generate "low" (0-50 wt.%), "mid" (30-70 wt.%), and "high" (60-100 wt.%) models). The submodels are generally more accurate than the "full" model for samples within their range because they are able to adjust for matrix effects that are specific to that range. To predict the composition of an unknown target, we first predict the composition with the submodels and the "full" model. Then, based on the predicted composition from the "full" model, the appropriate submodel prediction can be used (e.g. if the full model predicts a low composition, use the "low" model result, which is likely to be more accurate). For samples with "full" predictions that occur in a region of overlap between submodels, the submodel predictions are "blended" using a simple linear weighted sum. The submodel PLS method shows improvements in most of the major elements predicted by ChemCam and reduces the occurrence of negative predictions for low wt.% targets. Submodel PLS is currently being used in conjunction with ICA regression for the major element compositions of ChemCam data.
Lu, Shao Hua; Li, Bao Qiong; Zhai, Hong Lin; Zhang, Xin; Zhang, Zhuo Yong
2018-04-25
Terahertz time-domain spectroscopy has been applied to many fields, however, it still encounters drawbacks in multicomponent mixtures analysis due to serious spectral overlapping. Here, an effective approach to quantitative analysis was proposed, and applied on the determination of the ternary amino acids in foxtail millet substrate. Utilizing three parameters derived from the THz-TDS, the images were constructed and the Tchebichef image moments were used to extract the information of target components. Then the quantitative models were obtained by stepwise regression. The correlation coefficients of leave-one-out cross-validation (R loo-cv 2 ) were more than 0.9595. As for external test set, the predictive correlation coefficients (R p 2 ) were more than 0.8026 and the root mean square error of prediction (RMSE p ) were less than 1.2601. Compared with the traditional methods (PLS and N-PLS methods), our approach is more accurate, robust and reliable, and can be a potential excellent approach to quantify multicomponent with THz-TDS spectroscopy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Orthogonal decomposition of left ventricular remodeling in myocardial infarction.
Zhang, Xingyu; Medrano-Gracia, Pau; Ambale-Venkatesh, Bharath; Bluemke, David A; Cowan, Brett R; Finn, J Paul; Kadish, Alan H; Lee, Daniel C; Lima, Joao A C; Young, Alistair A; Suinesiaputra, Avan
2017-03-01
Left ventricular size and shape are important for quantifying cardiac remodeling in response to cardiovascular disease. Geometric remodeling indices have been shown to have prognostic value in predicting adverse events in the clinical literature, but these often describe interrelated shape changes. We developed a novel method for deriving orthogonal remodeling components directly from any (moderately independent) set of clinical remodeling indices. Six clinical remodeling indices (end-diastolic volume index, sphericity, relative wall thickness, ejection fraction, apical conicity, and longitudinal shortening) were evaluated using cardiac magnetic resonance images of 300 patients with myocardial infarction, and 1991 asymptomatic subjects, obtained from the Cardiac Atlas Project. Partial least squares (PLS) regression of left ventricular shape models resulted in remodeling components that were optimally associated with each remodeling index. A Gram-Schmidt orthogonalization process, by which remodeling components were successively removed from the shape space in the order of shape variance explained, resulted in a set of orthonormal remodeling components. Remodeling scores could then be calculated that quantify the amount of each remodeling component present in each case. A one-factor PLS regression led to more decoupling between scores from the different remodeling components across the entire cohort, and zero correlation between clinical indices and subsequent scores. The PLS orthogonal remodeling components had similar power to describe differences between myocardial infarction patients and asymptomatic subjects as principal component analysis, but were better associated with well-understood clinical indices of cardiac remodeling. The data and analyses are available from www.cardiacatlas.org. © The Author 2017. Published by Oxford University Press.
Mabood, F; Boqué, R; Folcarelli, R; Busto, O; Jabeen, F; Al-Harrasi, Ahmed; Hussain, J
2016-05-15
In this study the effect of thermal treatment on the enhancement of synchronous fluorescence spectroscopic method for discrimination and quantification of pure extra virgin olive oil (EVOO) samples from EVOO samples adulterated with refined oil was investigated. Two groups of samples were used. One group was analyzed at room temperature (25 °C) and the other group was thermally treated in a thermostatic water bath at 75 °C for 8h, in contact with air and with light exposure, to favor oxidation. All the samples were then measured with synchronous fluorescence spectroscopy. Synchronous fluorescence spectra were acquired by varying the wavelength in the region from 250 to 720 nm at 20 nm wavelength differential interval of excitation and emission. Pure and adulterated olive oils were discriminated by using partial least-squares discriminant analysis (PLS-DA). It was found that the best PLS-DA models were those built with the difference spectra (75 °C-25 °C), which were able to discriminate pure from adulterated oils at a 2% level of adulteration of refined olive oils. Furthermore, PLS regression models were also built to quantify the level of adulteration. Again, the best model was the one built with the difference spectra, with a prediction error of 3.18% of adulteration. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mabood, F.; Boqué, R.; Folcarelli, R.; Busto, O.; Jabeen, F.; Al-Harrasi, Ahmed; Hussain, J.
2016-05-01
In this study the effect of thermal treatment on the enhancement of synchronous fluorescence spectroscopic method for discrimination and quantification of pure extra virgin olive oil (EVOO) samples from EVOO samples adulterated with refined oil was investigated. Two groups of samples were used. One group was analyzed at room temperature (25 °C) and the other group was thermally treated in a thermostatic water bath at 75 °C for 8 h, in contact with air and with light exposure, to favor oxidation. All the samples were then measured with synchronous fluorescence spectroscopy. Synchronous fluorescence spectra were acquired by varying the wavelength in the region from 250 to 720 nm at 20 nm wavelength differential interval of excitation and emission. Pure and adulterated olive oils were discriminated by using partial least-squares discriminant analysis (PLS-DA). It was found that the best PLS-DA models were those built with the difference spectra (75 °C-25 °C), which were able to discriminate pure from adulterated oils at a 2% level of adulteration of refined olive oils. Furthermore, PLS regression models were also built to quantify the level of adulteration. Again, the best model was the one built with the difference spectra, with a prediction error of 3.18% of adulteration.
Nazari, Seyed Saeed Hashemi; Mokhayeri, Yaser; Mansournia, Mohammad Ali; Khodakarim, Soheila; Soori, Hamid
2018-05-21
Some studies shed light on the association between dietary patterns and stroke, though, none of them applied reduced rank regression (RRR). Therefore, we sought to extract dietary patterns using RRR, and showed how well the extracted scores by RRR predict stroke in comparison to those scores produced by partial least squares (PLS) and principal components regression (PCR). Diet data at baseline with four response variables including body mass index (BMI), fibrinogen, IL-6, low-density lipoprotein (LDL) cholesterol were used to extract dietary patterns. Analyses were based on 5468 men and women aged 45-84 y who had no clinical cardiovascular diseases (CVD) from Multi-Ethnic Study of Atherosclerosis (MESA). Dietary patterns were created by three methods RRR, PLS, and PCR. The RRR1 was positively associated with stroke incidence in both models (for model 1 hazard ratio (HR): 7.49; 95% CI: 1.66, 33.69 P for trend = 0.01 and for model 2 HR: 6.83; 95% CI: 1.51, 30.87 for quintile 5 compared with the reference category P for trend = 0.02). The RRR1, PLS1, and PCR1 were high in fats and oils, poultry, tomatoes, fried potato and processed meat. Additionally, RRR1 and PLS1 were high in dark-yellow and cruciferous vegetables which negatively were correlated with the first dietary pattern. Mainly according to the RRR, we identified that a dietary pattern high in fats and oil, poultry, non-diet soda, processed meat, tomatoes, legumes, chicken, tuna and egg salad, fried potato and low in dark-yellow and cruciferous vegetables may increase the incidence of stroke.
Sills, Deborah L; Gossett, James M
2012-04-01
Fourier transform infrared, attenuated total reflectance (FTIR-ATR) spectroscopy, combined with partial least squares (PLS) regression, accurately predicted solubilization of plant cell wall constituents and NaOH consumption through pretreatment, and overall sugar productions from combined pretreatment and enzymatic hydrolysis. PLS regression models were constructed by correlating FTIR spectra of six raw biomasses (two switchgrass cultivars, big bluestem grass, a low-impact, high-diversity mixture of prairie biomasses, mixed hardwood, and corn stover), plus alkali loading in pretreatment, to nine dependent variables: glucose, xylose, lignin, and total solids solubilized in pretreatment; NaOH consumed in pretreatment; and overall glucose and xylose conversions and yields from combined pretreatment and enzymatic hydrolysis. PLS models predicted the dependent variables with the following values of coefficient of determination for cross-validation (Q²): 0.86 for glucose, 0.90 for xylose, 0.79 for lignin, and 0.85 for total solids solubilized in pretreatment; 0.83 for alkali consumption; 0.93 for glucose conversion, 0.94 for xylose conversion, and 0.88 for glucose and xylose yields. The sugar yield models are noteworthy for their ability to predict overall saccharification through combined pretreatment and enzymatic hydrolysis per mass dry untreated solids without a priori knowledge of the composition of solids. All wavenumbers with significant variable-important-for-projection (VIP) scores have been attributed to chemical features of lignocellulose, demonstrating the models were based on real chemical information. These models suggest that PLS regression can be applied to FTIR-ATR spectra of raw biomasses to rapidly predict effects of pretreatment on solids and on subsequent enzymatic hydrolysis. Copyright © 2011 Wiley Periodicals, Inc.
Bricklemyer, Ross S; Brown, David J; Turk, Philip J; Clegg, Sam M
2013-10-01
Laser-induced breakdown spectroscopy (LIBS) provides a potential method for rapid, in situ soil C measurement. In previous research on the application of LIBS to intact soil cores, we hypothesized that ultraviolet (UV) spectrum LIBS (200-300 nm) might not provide sufficient elemental information to reliably discriminate between soil organic C (SOC) and inorganic C (IC). In this study, using a custom complete spectrum (245-925 nm) core-scanning LIBS instrument, we analyzed 60 intact soil cores from six wheat fields. Predictive multi-response partial least squares (PLS2) models using full and reduced spectrum LIBS were compared for directly determining soil total C (TC), IC, and SOC. Two regression shrinkage and variable selection approaches, the least absolute shrinkage and selection operator (LASSO) and sparse multivariate regression with covariance estimation (MRCE), were tested for soil C predictions and the identification of wavelengths important for soil C prediction. Using complete spectrum LIBS for PLS2 modeling reduced the calibration standard error of prediction (SEP) 15 and 19% for TC and IC, respectively, compared to UV spectrum LIBS. The LASSO and MRCE approaches provided significantly improved calibration accuracy and reduced SEP 32-55% over UV spectrum PLS2 models. We conclude that (1) complete spectrum LIBS is superior to UV spectrum LIBS for predicting soil C for intact soil cores without pretreatment; (2) LASSO and MRCE approaches provide improved calibration prediction accuracy over PLS2 but require additional testing with increased soil and target analyte diversity; and (3) measurement errors associated with analyzing intact cores (e.g., sample density and surface roughness) require further study and quantification.
Domain-Invariant Partial-Least-Squares Regression.
Nikzad-Langerodi, Ramin; Zellinger, Werner; Lughofer, Edwin; Saminger-Platz, Susanne
2018-05-11
Multivariate calibration models often fail to extrapolate beyond the calibration samples because of changes associated with the instrumental response, environmental condition, or sample matrix. Most of the current methods used to adapt a source calibration model to a target domain exclusively apply to calibration transfer between similar analytical devices, while generic methods for calibration-model adaptation are largely missing. To fill this gap, we here introduce domain-invariant partial-least-squares (di-PLS) regression, which extends ordinary PLS by a domain regularizer in order to align the source and target distributions in the latent-variable space. We show that a domain-invariant weight vector can be derived in closed form, which allows the integration of (partially) labeled data from the source and target domains as well as entirely unlabeled data from the latter. We test our approach on a simulated data set where the aim is to desensitize a source calibration model to an unknown interfering agent in the target domain (i.e., unsupervised model adaptation). In addition, we demonstrate unsupervised, semisupervised, and supervised model adaptation by di-PLS on two real-world near-infrared (NIR) spectroscopic data sets.
Lopes, Marta B; Calado, Cecília R C; Figueiredo, Mário A T; Bioucas-Dias, José M
2017-06-01
The monitoring of biopharmaceutical products using Fourier transform infrared (FT-IR) spectroscopy relies on calibration techniques involving the acquisition of spectra of bioprocess samples along the process. The most commonly used method for that purpose is partial least squares (PLS) regression, under the assumption that a linear model is valid. Despite being successful in the presence of small nonlinearities, linear methods may fail in the presence of strong nonlinearities. This paper studies the potential usefulness of nonlinear regression methods for predicting, from in situ near-infrared (NIR) and mid-infrared (MIR) spectra acquired in high-throughput mode, biomass and plasmid concentrations in Escherichia coli DH5-α cultures producing the plasmid model pVAX-LacZ. The linear methods PLS and ridge regression (RR) are compared with their kernel (nonlinear) versions, kPLS and kRR, as well as with the (also nonlinear) relevance vector machine (RVM) and Gaussian process regression (GPR). For the systems studied, RR provided better predictive performances compared to the remaining methods. Moreover, the results point to further investigation based on larger data sets whenever differences in predictive accuracy between a linear method and its kernelized version could not be found. The use of nonlinear methods, however, shall be judged regarding the additional computational cost required to tune their additional parameters, especially when the less computationally demanding linear methods herein studied are able to successfully monitor the variables under study.
NASA Astrophysics Data System (ADS)
Chen, Hua-cai; Chen, Xing-dan; Lu, Yong-jun; Cao, Zhi-qiang
2006-01-01
Near infrared (NIR) reflectance spectroscopy was used to develop a fast determination method for total ginsenosides in Ginseng (Panax Ginseng) powder. The spectra were analyzed with multiplicative signal correction (MSC) correlation method. The best correlative spectra region with the total ginsenosides content was 1660 nm~1880 nm and 2230nm~2380 nm. The NIR calibration models of ginsenosides were built with multiple linear regression (MLR), principle component regression (PCR) and partial least squares (PLS) regression respectively. The results showed that the calibration model built with PLS combined with MSC and the optimal spectrum region was the best one. The correlation coefficient and the root mean square error of correction validation (RMSEC) of the best calibration model were 0.98 and 0.15% respectively. The optimal spectrum region for calibration was 1204nm~2014nm. The result suggested that using NIR to rapidly determinate the total ginsenosides content in ginseng powder were feasible.
Shimizu, Yu; Yoshimoto, Junichiro; Takamura, Masahiro; Okada, Go; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2017-01-01
In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area. PMID:28700672
NASA Astrophysics Data System (ADS)
Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A. C.; Huck, Christian W.; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro
2017-03-01
This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section.
Kernel PLS-SVC for Linear and Nonlinear Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Matthews, Bryan
2003-01-01
A new methodology for discrimination is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by support vector machines for classification. Close connection of orthonormalized PLS and Fisher's approach to linear discrimination or equivalently with canonical correlation analysis is described. This gives preference to use orthonormalized PLS over principal component analysis. Good behavior of the proposed method is demonstrated on 13 different benchmark data sets and on the real world problem of the classification finger movement periods versus non-movement periods based on electroencephalogram.
Ferragina, A.; de los Campos, G.; Vazquez, A. I.; Cecchinato, A.; Bittante, G.
2017-01-01
The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict “difficult-to-predict” dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm−1 were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from calibration to external validation methods, and in moving from PLS and MPLS to Bayesian methods, particularly Bayes A and Bayes B. The maximum R2 value of validation was obtained with Bayes B and Bayes A. For the FA, C10:0 (% of each FA on total FA basis) had the highest R2 (0.75, achieved with Bayes A and Bayes B), and among the technological traits, fresh cheese yield R2 of 0.82 (achieved with Bayes B). These 2 methods have proven to be useful instruments in shrinking and selecting very informative wavelengths and inferring the structure and functions of the analyzed traits. We conclude that Bayesian models are powerful tools for deriving calibration equations, and, importantly, these equations can be easily developed using existing open-source software. As part of our study, we provide scripts based on the open source R software BGLR, which can be used to train customized prediction equations for other traits or populations. PMID:26387015
Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao Yongni; He Yong; Mao Jingyuan
Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters,such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) ofmore » 0.9451 and root-mean-square error of prediction(RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique.« less
NASA Astrophysics Data System (ADS)
Isingizwe Nturambirwe, J. Frédéric; Perold, Willem J.; Opara, Umezuruike L.
2016-02-01
Near infrared (NIR) spectroscopy has gained extensive use in quality evaluation. It is arguably one of the most advanced spectroscopic tools in non-destructive quality testing of food stuff, from measurement to data analysis and interpretation. NIR spectral data are interpreted through means often involving multivariate statistical analysis, sometimes associated with optimisation techniques for model improvement. The objective of this research was to explore the extent to which genetic algorithms (GA) can be used to enhance model development, for predicting fruit quality. Apple fruits were used, and NIR spectra in the range from 12000 to 4000 cm-1 were acquired on both bruised and healthy tissues, with different degrees of mechanical damage. GAs were used in combination with partial least squares regression methods to develop bruise severity prediction models, and compared to PLS models developed using the full NIR spectrum. A classification model was developed, which clearly separated bruised from unbruised apple tissue. GAs helped improve prediction models by over 10%, in comparison with full spectrum-based models, as evaluated in terms of error of prediction (Root Mean Square Error of Cross-validation). PLS models to predict internal quality, such as sugar content and acidity were developed and compared to the versions optimized by genetic algorithm. Overall, the results highlighted the potential use of GA method to improve speed and accuracy of fruit quality prediction.
Linear and nonlinear methods in modeling the aqueous solubility of organic compounds.
Catana, Cornel; Gao, Hua; Orrenius, Christian; Stouten, Pieter F W
2005-01-01
Solubility data for 930 diverse compounds have been analyzed using linear Partial Least Square (PLS) and nonlinear PLS methods, Continuum Regression (CR), and Neural Networks (NN). 1D and 2D descriptors from MOE package in combination with E-state or ISIS keys have been used. The best model was obtained using linear PLS for a combination between 22 MOE descriptors and 65 ISIS keys. It has a correlation coefficient (r2) of 0.935 and a root-mean-square error (RMSE) of 0.468 log molar solubility (log S(w)). The model validated on a test set of 177 compounds not included in the training set has r2 0.911 and RMSE 0.475 log S(w). The descriptors were ranked according to their importance, and at the top of the list have been found the 22 MOE descriptors. The CR model produced results as good as PLS, and because of the way in which cross-validation has been done it is expected to be a valuable tool in prediction besides PLS model. The statistics obtained using nonlinear methods did not surpass those got with linear ones. The good statistic obtained for linear PLS and CR recommends these models to be used in prediction when it is difficult or impossible to make experimental measurements, for virtual screening, combinatorial library design, and efficient leads optimization.
Passos, Cláudia P; Cardoso, Susana M; Barros, António S; Silva, Carlos M; Coimbra, Manuel A
2010-02-28
Fourier transform infrared (FTIR) spectroscopy has being emphasised as a widespread technique in the quick assess of food components. In this work, procyanidins were extracted with methanol and acetone/water from the seeds of white and red grape varieties. A fractionation by graded methanol/chloroform precipitations allowed to obtain 26 samples that were characterised using thiolysis as pre-treatment followed by HPLC-UV and MS detection. The average degree of polymerisation (DPn) of the procyanidins in the samples ranged from 2 to 11 flavan-3-ol residues. FTIR spectroscopy within the wavenumbers region of 1800-700 cm(-1) allowed to build a partial least squares (PLS1) regression model with 8 latent variables (LVs) for the estimation of the DPn, giving a RMSECV of 11.7%, with a R(2) of 0.91 and a RMSEP of 2.58. The application of orthogonal projection to latent structures (O-PLS1) clarifies the interpretation of the regression model vectors. Moreover, the O-PLS procedure has removed 88% of non-correlated variations with the DPn, allowing to relate the increase of the absorbance peaks at 1203 and 1099 cm(-1) with the increase of the DPn due to the higher proportion of substitutions in the aromatic ring of the polymerised procyanidin molecules. Copyright 2009 Elsevier B.V. All rights reserved.
Peng, Jiangtao; Peng, Silong; Xie, Qiong; Wei, Jiping
2011-04-01
In order to eliminate the lower order polynomial interferences, a new quantitative calibration algorithm "Baseline Correction Combined Partial Least Squares (BCC-PLS)", which combines baseline correction and conventional PLS, is proposed. By embedding baseline correction constraints into PLS weights selection, the proposed calibration algorithm overcomes the uncertainty in baseline correction and can meet the requirement of on-line attenuated total reflectance Fourier transform infrared (ATR-FTIR) quantitative analysis. The effectiveness of the algorithm is evaluated by the analysis of glucose and marzipan ATR-FTIR spectra. BCC-PLS algorithm shows improved prediction performance over PLS. The root mean square error of cross-validation (RMSECV) on marzipan spectra for the prediction of the moisture is found to be 0.53%, w/w (range 7-19%). The sugar content is predicted with a RMSECV of 2.04%, w/w (range 33-68%). Copyright © 2011 Elsevier B.V. All rights reserved.
Determination of total phenolic compounds in compost by infrared spectroscopy.
Cascant, M M; Sisouane, M; Tahiri, S; Krati, M El; Cervera, M L; Garrigues, S; de la Guardia, M
2016-06-01
Middle and near infrared (MIR and NIR) were applied to determine the total phenolic compounds (TPC) content in compost samples based on models built by using partial least squares (PLS) regression. The multiplicative scatter correction, standard normal variate and first derivative were employed as spectra pretreatment, and the number of latent variable were optimized by leave-one-out cross-validation. The performance of PLS-ATR-MIR and PLS-DR-NIR models was evaluated according to root mean square error of cross validation and prediction (RMSECV and RMSEP), the coefficient of determination for prediction (Rpred(2)) and residual predictive deviation (RPD) being obtained for this latter values of 5.83 and 8.26 for MIR and NIR, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Whelan, Jessica; Craven, Stephen; Glennon, Brian
2012-01-01
In this study, the application of Raman spectroscopy to the simultaneous quantitative determination of glucose, glutamine, lactate, ammonia, glutamate, total cell density (TCD), and viable cell density (VCD) in a CHO fed-batch process was demonstrated in situ in 3 L and 15 L bioreactors. Spectral preprocessing and partial least squares (PLS) regression were used to correlate spectral data with off-line reference data. Separate PLS calibration models were developed for each analyte at the 3 L laboratory bioreactor scale before assessing its transferability to the same bioprocess conducted at the 15 L pilot scale. PLS calibration models were successfully developed for all analytes bar VCD and transferred to the 15 L scale. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
Moscetti, Roberto; Sturm, Barbara; Crichton, Stuart Oj; Amjad, Waseem; Massantini, Riccardo
2018-05-01
The potential of hyperspectral imaging (500-1010 nm) was evaluated for monitoring of the quality of potato slices (var. Anuschka) of 5, 7 and 9 mm thickness subjected to air drying at 50 °C. The study investigated three different feature selection methods for the prediction of dry basis moisture content and colour of potato slices using partial least squares regression (PLS). The feature selection strategies tested include interval PLS regression (iPLS), and differences and ratios between raw reflectance values for each possible pair of wavelengths (R[λ 1 ]-R[λ 2 ] and R[λ 1 ]:R[λ 2 ], respectively). Moreover, the combination of spectral and spatial domains was tested. Excellent results were obtained using the iPLS algorithm. However, features from both datasets of raw reflectance differences and ratios represent suitable alternatives for development of low-complex prediction models. Finally, the dry basis moisture content was high accurately predicted by combining spectral data (i.e. R[511 nm]-R[994 nm]) and spatial domain (i.e. relative area shrinkage of slice). Modelling the data acquired during drying through hyperspectral imaging can provide useful information concerning the chemical and physicochemical changes of the product. With all this information, the proposed approach lays the foundations for a more efficient smart dryer that can be designed and its process optimized for drying of potato slices. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Multivariate analysis of gamma spectra to characterize used nuclear fuel
Coble, Jamie; Orton, Christopher; Schwantes, Jon
2017-01-17
The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less
Multivariate analysis of gamma spectra to characterize used nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie; Orton, Christopher; Schwantes, Jon
The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less
Balabin, Roman M; Lomakina, Ekaterina I
2011-04-21
In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.
Identification and topographical characterisation of microbial nanowires in Nostoc punctiforme.
Sure, Sandeep; Torriero, Angel A J; Gaur, Aditya; Li, Lu Hua; Chen, Ying; Tripathi, Chandrakant; Adholeya, Alok; Ackland, M Leigh; Kochar, Mandira
2016-03-01
Extracellular pili-like structures (PLS) produced by cyanobacteria have been poorly explored. We have done detailed topographical and electrical characterisation of PLS in Nostoc punctiforme PCC 73120 using transmission electron microscopy (TEM) and conductive atomic force microscopy (CAFM). TEM analysis showed that N. punctiforme produces two separate types of PLS differing in their length and diameter. The first type of PLS are 6-7.5 nm in diameter and 0.5-2 µm in length (short/thin PLS) while the second type of PLS are ~20-40 nm in diameter and more than 10 µm long (long/thick PLS). This is the first study to report long/thick PLS in N. punctiforme. Electrical characterisation of these two different PLS by CAFM showed that both are electrically conductive and can act as microbial nanowires. This is the first report to show two distinct PLS and also identifies microbial nanowires in N. punctiforme. This study paves the way for more detailed investigation of N. punctiforme nanowires and their potential role in cell physiology and symbiosis with plants.
Adedipe, Oluwatosin E; Johanningsmeier, Suzanne D; Truong, Van-Den; Yencho, G Craig
2016-03-02
This study investigated the ability of near-infrared spectroscopy (NIRS) to predict acrylamide content in French-fried potato. Potato flour spiked with acrylamide (50-8000 μg/kg) was used to determine if acrylamide could be accurately predicted in a potato matrix. French fries produced with various pretreatments and cook times (n = 84) and obtained from quick-service restaurants (n = 64) were used for model development and validation. Acrylamide was quantified using gas chromatography-mass spectrometry, and reflectance spectra (400-2500 nm) of each freeze-dried sample were captured on a Foss XDS Rapid Content Analyzer-NIR spectrometer. Partial least-squares (PLS) discriminant analysis and PLS regression modeling demonstrated that NIRS could accurately detect acrylamide content as low as 50 μg/kg in the model potato matrix. Prediction errors of 135 μg/kg (R(2) = 0.98) and 255 μg/kg (R(2) = 0.93) were achieved with the best PLS models for acrylamide prediction in Russet Norkotah French-fried potato and multiple samples of unknown varieties, respectively. The findings indicate that NIRS can be used as a screening tool in potato breeding and potato processing research to reduce acrylamide in the food supply.
Chemometric studies on potential larvicidal compounds against Aedes aegypti.
Scotti, Luciana; Scotti, Marcus Tullius; Silva, Viviane Barros; Santos, Sandra Regina Lima; Cavalcanti, Sócrates C H; Mendonça, Francisco J B
2014-03-01
The mosquito Aedes aegypti (Diptera, Culicidae) is the vector of yellow and dengue fever. In this study, chemometric tools, such as, Principal Component Analysis (PCA), Consensus PCA (CPCA), and Partial Least Squares Regression (PLS), were applied to a set of fifty five active compounds against Ae. aegypti larvae, which includes terpenes, cyclic alcohols, phenolic compounds, and their synthetic derivatives. The calculations were performed using the VolSurf+ program. CPCA analysis suggests that the higher weight blocks of descriptors were SIZE/SHAPE, DRY, and H2O. The PCA was generated with 48 descriptors selected from the previous blocks. The scores plot showed good separation between more and less potent compounds. The first two PCs accounted for over 60% of the data variance. The best model obtained in PLS, after validation leave-one-out, exhibited q(2) = 0.679 and r(2) = 0.714. External prediction model was R(2) = 0.623. The independent variables having a hydrophobic profile were strongly correlated to the biological data. The interaction maps generated with the GRID force field showed that the most active compounds exhibit more interaction with the DRY probe.
Henrique, C M; Teófilo, R F; Sabino, L; Ferreira, M M C; Cereda, M P
2007-05-01
Cassava starches are widely used in the production of biodegradable films, but their resistance to humidity migration is very low. In this work, commercial cassava starch films were studied and classified according to their physicochemical properties. A nondestructive method for water vapor permeability determination, which combines with infrared spectroscopy and multivariate calibration, is also presented. The following commercial cassava starches were studied: pregelatinized (amidomax 3550), carboxymethylated starch (CMA) of low and high viscosities, and esterified starches. To make the films, 2 different starch concentrations were evaluated, consisting of water suspensions with 3% and 5% starch. The filmogenic solutions were dried and characterized for their thickness, grammage, water vapor permeability, water activity, tensile strength (deformation force), water solubility, and puncture strength (deformation). The minimum thicknesses were 0.5 to 0.6 mm in pregelatinized starch films. The results were treated by means of the following chemometric methods: principal component analysis (PCA) and partial least squares (PLS) regression. PCA analysis on the physicochemical properties of the films showed that the differences in concentration of the dried material (3% and 5% starch) and also in the type of starch modification were mainly related to the following properties: permeability, solubility, and thickness. IR spectra collected in the region of 4000 to 600 cm(-1) were used to build a PLS model with good predictive power for water vapor permeability determination, with mean relative errors of 10.0% for cross-validation and 7.8% for the prediction set.
NASA Astrophysics Data System (ADS)
Mabood, Fazal; Boqué, Ricard; Folcarelli, Rita; Busto, Olga; Al-Harrasi, Ahmed; Hussain, Javid
2015-05-01
We have investigated the effect of thermal treatment on the discrimination of pure extra virgin olive oil (EVOO) samples from EVOO samples adulterated with sunflower oil. Two groups of samples were used. One group was analyzed at room temperature (25 °C) and the other group was thermally treated in a thermostatic water bath at 75 °C for 8 h, in contact with air and with light exposure, to favor oxidation. All samples were then measured with synchronous fluorescence spectroscopy. Fluorescence spectra were acquired by varying the excitation wavelength in the region from 250 to 720 nm. In order to optimize the differences between excitation and emission wavelengths, four constant differential wavelengths, i.e., 20 nm, 40 nm, 60 nm and 80 nm, were tried. Partial least-squares discriminant analysis (PLS-DA) was used to discriminate between pure and adulterated oils. It was found that the 20 nm difference was the optimal, at which the discrimination models showed the best results. The best PLS-DA models were those built with the difference spectra (75-25 °C), which were able to discriminate pure from adulterated oils at a 2% level of adulteration. Furthermore, PLS regression models were built to quantify the level of adulteration. Again, the best model was the one built with the difference spectra, with a prediction error of 1.75% of adulteration.
Li, Min; Zhang, Lu; Yao, Xiaolong; Jiang, Xingyu
2017-01-01
The emerging membrane introduction mass spectrometry technique has been successfully used to detect benzene, toluene, ethyl benzene and xylene (BTEX), while overlapped spectra have unfortunately hindered its further application to the analysis of mixtures. Multivariate calibration, an efficient method to analyze mixtures, has been widely applied. In this paper, we compared univariate and multivariate analyses for quantification of the individual components of mixture samples. The results showed that the univariate analysis creates poor models with regression coefficients of 0.912, 0.867, 0.440 and 0.351 for BTEX, respectively. For multivariate analysis, a comparison to the partial-least squares (PLS) model shows that the orthogonal partial-least squares (OPLS) regression exhibits an optimal performance with regression coefficients of 0.995, 0.999, 0.980 and 0.976, favorable calibration parameters (RMSEC and RMSECV) and a favorable validation parameter (RMSEP). Furthermore, the OPLS exhibits a good recovery of 73.86 - 122.20% and relative standard deviation (RSD) of the repeatability of 1.14 - 4.87%. Thus, MIMS coupled with the OPLS regression provides an optimal approach for a quantitative BTEX mixture analysis in monitoring and predicting water pollution.
Partial least squares for efficient models of fecal indicator bacteria on Great Lakes beaches
Brooks, Wesley R.; Fienen, Michael N.; Corsi, Steven R.
2013-01-01
At public beaches, it is now common to mitigate the impact of water-borne pathogens by posting a swimmer's advisory when the concentration of fecal indicator bacteria (FIB) exceeds an action threshold. Since culturing the bacteria delays public notification when dangerous conditions exist, regression models are sometimes used to predict the FIB concentration based on readily-available environmental measurements. It is hard to know which environmental parameters are relevant to predicting FIB concentration, and the parameters are usually correlated, which can hurt the predictive power of a regression model. Here the method of partial least squares (PLS) is introduced to automate the regression modeling process. Model selection is reduced to the process of setting a tuning parameter to control the decision threshold that separates predicted exceedances of the standard from predicted non-exceedances. The method is validated by application to four Great Lakes beaches during the summer of 2010. Performance of the PLS models compares favorably to that of the existing state-of-the-art regression models at these four sites.
Miller, Arthur L.; Weakley, Andrew Todd; Griffiths, Peter R.; Cauda, Emanuele G.; Bayman, Sean
2017-01-01
In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry. In this study, the FT-IR spectra of 66 coal dust samples from active mines were used, and the RCS was quantified by using: (1) an ordinary least squares (OLS) calibration approach that utilizes standard silica material as done in the Mine Safety and Health Administration's P7 method; and (2) a partial least squares (PLS) regression approach. Both were capable of accounting for kaolinite, which can confound the IR analysis of silica. The OLS method utilized analytical standards for silica calibration and kaolin correction, resulting in a good linear correlation with P7 results and minimal bias but with the accuracy limited by the presence of kaolinite. The PLS approach also produced predictions well-correlated to the P7 method, as well as better accuracy in RCS prediction, and no bias due to variable kaolinite mass. Besides decreased sensitivity to mineral or substrate confounders, PLS has the advantage that the analyst is not required to correct for the presence of kaolinite or background interferences related to the substrate, making the method potentially viable for automated RCS prediction in the field. This study demonstrated the efficacy of FT-IR transmission spectrometry for silica determination in coal mine dusts, using both OLS and PLS analyses, when kaolinite was present. PMID:27645724
Miller, Arthur L; Weakley, Andrew Todd; Griffiths, Peter R; Cauda, Emanuele G; Bayman, Sean
2017-05-01
In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry. In this study, the FT-IR spectra of 66 coal dust samples from active mines were used, and the RCS was quantified by using: (1) an ordinary least squares (OLS) calibration approach that utilizes standard silica material as done in the Mine Safety and Health Administration's P7 method; and (2) a partial least squares (PLS) regression approach. Both were capable of accounting for kaolinite, which can confound the IR analysis of silica. The OLS method utilized analytical standards for silica calibration and kaolin correction, resulting in a good linear correlation with P7 results and minimal bias but with the accuracy limited by the presence of kaolinite. The PLS approach also produced predictions well-correlated to the P7 method, as well as better accuracy in RCS prediction, and no bias due to variable kaolinite mass. Besides decreased sensitivity to mineral or substrate confounders, PLS has the advantage that the analyst is not required to correct for the presence of kaolinite or background interferences related to the substrate, making the method potentially viable for automated RCS prediction in the field. This study demonstrated the efficacy of FT-IR transmission spectrometry for silica determination in coal mine dusts, using both OLS and PLS analyses, when kaolinite was present.
Igne, Benoît; Drennen, James K; Anderson, Carl A
2014-01-01
Changes in raw materials and process wear and tear can have significant effects on the prediction error of near-infrared calibration models. When the variability that is present during routine manufacturing is not included in the calibration, test, and validation sets, the long-term performance and robustness of the model will be limited. Nonlinearity is a major source of interference. In near-infrared spectroscopy, nonlinearity can arise from light path-length differences that can come from differences in particle size or density. The usefulness of support vector machine (SVM) regression to handle nonlinearity and improve the robustness of calibration models in scenarios where the calibration set did not include all the variability present in test was evaluated. Compared to partial least squares (PLS) regression, SVM regression was less affected by physical (particle size) and chemical (moisture) differences. The linearity of the SVM predicted values was also improved. Nevertheless, although visualization and interpretation tools have been developed to enhance the usability of SVM-based methods, work is yet to be done to provide chemometricians in the pharmaceutical industry with a regression method that can supplement PLS-based methods.
NASA Technical Reports Server (NTRS)
Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.
2010-01-01
The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.
Zhou, Yan; Cao, Hui
2013-01-01
We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.
Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg
2015-03-01
Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.
NASA Astrophysics Data System (ADS)
Boucher, Thomas F.; Ozanne, Marie V.; Carmosino, Marco L.; Dyar, M. Darby; Mahadevan, Sridhar; Breves, Elly A.; Lepore, Kate H.; Clegg, Samuel M.
2015-05-01
The ChemCam instrument on the Mars Curiosity rover is generating thousands of LIBS spectra and bringing interest in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibrations that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical composition. Here, LIBS spectral data are analyzed using linear regression methods including partial least squares (PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso), elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear regression methods including kernel principal component regression (K-PCR), polynomial kernel support vector regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100 samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests were employed to evaluate the statistical significance of differences among the nine models using their predicted residual sum of squares (PRESS) to make comparisons. For MgO, SiO2, Fe2O3, CaO, and MnO, the sparse models outperform all the others except for linear SVR, while for Na2O, K2O, TiO2, and P2O5, the sparse methods produce inferior results, likely because their emission lines in this energy range have lower transition probabilities. The strong performance of the sparse methods in this study suggests that use of dimensionality-reduction techniques as a preprocessing step may improve the performance of the linear models. Nonlinear methods tend to overfit the data and predict less accurately, while the linear methods proved to be more generalizable with better predictive performance. These results are attributed to the high dimensionality of the data (6144 channels) relative to the small number of samples studied. The best-performing models were SVR-Lin for SiO2, MgO, Fe2O3, and Na2O, lasso for Al2O3, elastic net for MnO, and PLS-1 for CaO, TiO2, and K2O. Although these differences in model performance between methods were identified, most of the models produce comparable results when p ≤ 0.05 and all techniques except kNN produced statistically-indistinguishable results. It is likely that a combination of models could be used together to yield a lower total error of prediction, depending on the requirements of the user.
Jović, Ozren
2016-12-15
A novel method for quantitative prediction and variable-selection on spectroscopic data, called Durbin-Watson partial least-squares regression (dwPLS), is proposed in this paper. The idea is to inspect serial correlation in infrared data that is known to consist of highly correlated neighbouring variables. The method selects only those variables whose intervals have a lower Durbin-Watson statistic (dw) than a certain optimal cutoff. For each interval, dw is calculated on a vector of regression coefficients. Adulteration of cold-pressed linseed oil (L), a well-known nutrient beneficial to health, is studied in this work by its being mixed with cheaper oils: rapeseed oil (R), sesame oil (Se) and sunflower oil (Su). The samples for each botanical origin of oil vary with respect to producer, content and geographic origin. The results obtained indicate that MIR-ATR, combined with dwPLS could be implemented to quantitative determination of edible-oil adulteration. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdel Hameed, Eman A.; Abdel Salam, Randa A.; Hadad, Ghada M.
2015-04-01
Chemometric-assisted spectrophotometric methods and high performance liquid chromatography (HPLC) were developed for the simultaneous determination of the seven most commonly prescribed β-blockers (atenolol, sotalol, metoprolol, bisoprolol, propranolol, carvedilol and nebivolol). Principal component regression PCR, partial least square PLS and PLS with previous wavelength selection by genetic algorithm (GA-PLS) were used for chemometric analysis of spectral data of these drugs. The compositions of the mixtures used in the calibration set were varied to cover the linearity ranges 0.7-10 μg ml-1 for AT, 1-15 μg ml-1 for ST, 1-15 μg ml-1 for MT, 0.3-5 μg ml-1 for BS, 0.1-3 μg ml-1 for PR, 0.1-3 μg ml-1 for CV and 0.7-5 μg ml-1 for NB. The analytical performances of these chemometric methods were characterized by relative prediction errors and were compared with each other. GA-PLS showed superiority over the other applied multivariate methods due to the wavelength selection. A new gradient HPLC method had been developed using statistical experimental design. Optimum conditions of separation were determined with the aid of central composite design. The developed HPLC method was found to be linear in the range of 0.2-20 μg ml-1 for AT, 0.2-20 μg ml-1 for ST, 0.1-15 μg ml-1 for MT, 0.1-15 μg ml-1 for BS, 0.1-13 μg ml-1 for PR, 0.1-13 μg ml-1 for CV and 0.4-20 μg ml-1 for NB. No significant difference between the results of the proposed GA-PLS and HPLC methods with respect to accuracy and precision. The proposed analytical methods did not show any interference of the excipients when applied to pharmaceutical products.
Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass.
Dabros, Michal; Dennewald, Danielle; Currie, David J; Lee, Mark H; Todd, Robert W; Marison, Ian W; von Stockar, Urs
2009-02-01
This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole-Cole and PLS models, the latter technique giving more satisfactory results.
Kinoshita, Kodzue; Kuze, Noko; Kobayashi, Toshio; Miyakawa, Etsuko; Narita, Hiromitsu; Inoue-Murayama, Miho; Idani, Gen'ichi; Tsenkova, Roumiana
2016-01-01
For promoting in situ conservation, it is important to estimate the density distribution of fertile individuals, and there is a need for developing an easy monitoring method to discriminate between physiological states. To date, physiological state has generally been determined by measuring hormone concentration using radioimmunoassay or enzyme immunoassay (EIA) methods. However, these methods have rarely been applied in situ because of the requirements for a large amount of reagent, instruments, and a radioactive isotope. In addition, the proper storage of the sample (including urine and feces) on site until analysis is difficult. On the other hand, near infrared (NIR) spectroscopy requires no reagent and enables rapid measurement. In the present study, we attempted urinary NIR spectroscopy to determine the estrogen levels of orangutans in Japanese zoos and in the Danum Valley Conservation Area, Sabah, Malaysia. Reflectance NIR spectra were obtained from urine stored using a filter paper. Filter paper is easy to use to store dried urine, even in the wild. Urinary estrogen and creatinine concentrations measured by EIA were used as the reference data of partial least square (PLS) regression of urinary NIR spectra. High accuracies (R(2) > 0.68) were obtained in both estrogen and creatinine regression models. In addition, the PLS regressions in both standards showed higher accuracies (R(2) > 0.70). Therefore, the present study demonstrates that urinary NIR spectra have the potential to estimate the estrogen and creatinine concentrations.
Nondestructive evaluation of soluble solid content in strawberry by near infrared spectroscopy
NASA Astrophysics Data System (ADS)
Guo, Zhiming; Huang, Wenqian; Chen, Liping; Wang, Xiu; Peng, Yankun
This paper indicates the feasibility to use near infrared (NIR) spectroscopy combined with synergy interval partial least squares (siPLS) algorithms as a rapid nondestructive method to estimate the soluble solid content (SSC) in strawberry. Spectral preprocessing methods were optimized selected by cross-validation in the model calibration. Partial least squares (PLS) algorithm was conducted on the calibration of regression model. The performance of the final model was back-evaluated according to root mean square error of calibration (RMSEC) and correlation coefficient (R2 c) in calibration set, and tested by mean square error of prediction (RMSEP) and correlation coefficient (R2 p) in prediction set. The optimal siPLS model was obtained with after first derivation spectra preprocessing. The measurement results of best model were achieved as follow: RMSEC = 0.2259, R2 c = 0.9590 in the calibration set; and RMSEP = 0.2892, R2 p = 0.9390 in the prediction set. This work demonstrated that NIR spectroscopy and siPLS with efficient spectral preprocessing is a useful tool for nondestructively evaluation SSC in strawberry.
Thermal-to-visible face recognition using partial least squares.
Hu, Shuowen; Choi, Jonghyun; Chan, Alex L; Schwartz, William Robson
2015-03-01
Although visible face recognition has been an active area of research for several decades, cross-modal face recognition has only been explored by the biometrics community relatively recently. Thermal-to-visible face recognition is one of the most difficult cross-modal face recognition challenges, because of the difference in phenomenology between the thermal and visible imaging modalities. We address the cross-modal recognition problem using a partial least squares (PLS) regression-based approach consisting of preprocessing, feature extraction, and PLS model building. The preprocessing and feature extraction stages are designed to reduce the modality gap between the thermal and visible facial signatures, and facilitate the subsequent one-vs-all PLS-based model building. We incorporate multi-modal information into the PLS model building stage to enhance cross-modal recognition. The performance of the proposed recognition algorithm is evaluated on three challenging datasets containing visible and thermal imagery acquired under different experimental scenarios: time-lapse, physical tasks, mental tasks, and subject-to-camera range. These scenarios represent difficult challenges relevant to real-world applications. We demonstrate that the proposed method performs robustly for the examined scenarios.
Ferragina, A; de los Campos, G; Vazquez, A I; Cecchinato, A; Bittante, G
2015-11-01
The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict "difficult-to-predict" dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm(-1) were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from calibration to external validation methods, and in moving from PLS and MPLS to Bayesian methods, particularly Bayes A and Bayes B. The maximum R(2) value of validation was obtained with Bayes B and Bayes A. For the FA, C10:0 (% of each FA on total FA basis) had the highest R(2) (0.75, achieved with Bayes A and Bayes B), and among the technological traits, fresh cheese yield R(2) of 0.82 (achieved with Bayes B). These 2 methods have proven to be useful instruments in shrinking and selecting very informative wavelengths and inferring the structure and functions of the analyzed traits. We conclude that Bayesian models are powerful tools for deriving calibration equations, and, importantly, these equations can be easily developed using existing open-source software. As part of our study, we provide scripts based on the open source R software BGLR, which can be used to train customized prediction equations for other traits or populations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Andrade, Letícia; Farhat, Imad A; Aeberhardt, Kasia; Bro, Rasmus; Engelsen, Søren Balling
2009-02-01
The influence of temperature on near-infrared (NIR) and nuclear magnetic resonance (NMR) spectroscopy complicates the industrial applications of both spectroscopic methods. The focus of this study is to analyze and model the effect of temperature variation on NIR spectra and NMR relaxation data. Different multivariate methods were tested for constructing robust prediction models based on NIR and NMR data acquired at various temperatures. Data were acquired on model spray-dried limonene systems at five temperatures in the range from 20 degrees C to 60 degrees C and partial least squares (PLS) regression models were computed for limonene and water predictions. The predictive ability of the models computed on the NIR spectra (acquired at various temperatures) improved significantly when data were preprocessed using extended inverted signal correction (EISC). The average PLS regression prediction error was reduced to 0.2%, corresponding to 1.9% and 3.4% of the full range of limonene and water reference values, respectively. The removal of variation induced by temperature prior to calibration, by direct orthogonalization (DO), slightly enhanced the predictive ability of the models based on NMR data. Bilinear PLS models, with implicit inclusion of the temperature, enabled limonene and water predictions by NMR with an error of 0.3% (corresponding to 2.8% and 7.0% of the full range of limonene and water). For NMR, and in contrast to the NIR results, modeling the data using multi-way N-PLS improved the models' performance. N-PLS models, in which temperature was included as an extra variable, enabled more accurate prediction, especially for limonene (prediction error was reduced to 0.2%). Overall, this study proved that it is possible to develop models for limonene and water content prediction based on NIR and NMR data, independent of the measurement temperature.
Determination of cellulose I crystallinity by FT-Raman spectroscopy
Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph
2009-01-01
Two new methods based on FT-Raman spectroscopy, one simple, based on band intensity ratio, and the other, using a partial least-squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in semicrystalline cellulose I samples was determined based on univariate regression that was first developed using the...
We present here the application of PLS regression to predicting surface water total phosphorous, total ammonia and Escherichia coli from landscape metrics. The amount of variability in surface water constituents explained by each model reflects the composition of the contributi...
The Extent and Prediction of Heavy Metal Pollution in Soils of Shahrood and Damghan, Iran.
Sakizadeh, Mohamad; Mirzaei, Rouhollah; Ghorbani, Hadi
2015-12-01
The levels of 12 heavy metals (Ag, Ba, Be, Cd, Co, Cr, Cu, Ni, Pb, Tl, V, Zn) were considered in 229 soil samples in Semnan Province, Iran. To discriminate between natural and anthropogenic inputs of heavy metals, factor analysis was used. Seven factors accounting for 90.5 % of the total variance were extracted. The mining and agricultural activities along with geogenic sources have been attributed as the main causes of the levels of heavy metals in the study area. The partial least squares regression was utilized to predict the level of soil pollution index (SPI) considering the concentrations of 12 heavy metals. The eigenvectors from the first three PLS represented more than 98 % of the overall variance. The correlation coefficient between the observed and predicted SPI was 0.99 indicating the high efficiency of this method. The resultant coefficient of determination for three PLS components was 0.984 confirming the predictive ability of this method.
Baratieri, Sabrina C; Barbosa, Juliana M; Freitas, Matheus P; Martins, José A
2006-01-23
A multivariate method of analysis of nystatin and metronidazole in a semi-solid matrix, based on diffuse reflectance NIR measurements and partial least squares regression, is reported. The product, a vaginal cream used in the antifungal and antibacterial treatment, is usually, quantitatively analyzed through microbiological tests (nystatin) and HPLC technique (metronidazole), according to pharmacopeial procedures. However, near infrared spectroscopy has demonstrated to be a valuable tool for content determination, given the rapidity and scope of the method. In the present study, it was successfully applied in the prediction of nystatin (even in low concentrations, ca. 0.3-0.4%, w/w, which is around 100,000 IU/5g) and metronidazole contents, as demonstrated by some figures of merit, namely linearity, precision (mean and repeatability) and accuracy.
Basatnia, Nabee; Hossein, Seyed Abbas; Rodrigo-Comino, Jesús; Khaledian, Yones; Brevik, Eric C; Aitkenhead-Peterson, Jacqueline; Natesan, Usha
2018-04-29
Coastal lagoon ecosystems are vulnerable to eutrophication, which leads to the accumulation of nutrients from the surrounding watershed over the long term. However, there is a lack of information about methods that could accurate quantify this problem in rapidly developed countries. Therefore, various statistical methods such as cluster analysis (CA), principal component analysis (PCA), partial least square (PLS), principal component regression (PCR), and ordinary least squares regression (OLS) were used in this study to estimate total organic matter content in sediments (TOM) using other parameters such as temperature, dissolved oxygen (DO), pH, electrical conductivity (EC), nitrite (NO 2 ), nitrate (NO 3 ), biological oxygen demand (BOD), phosphate (PO 4 ), total phosphorus (TP), salinity, and water depth along a 3-km transect in the Gomishan Lagoon (Iran). Results indicated that nutrient concentration and the dissolved oxygen gradient were the most significant parameters in the lagoon water quality heterogeneity. Additionally, anoxia at the bottom of the lagoon in sediments and re-suspension of the sediments were the main factors affecting internal nutrient loading. To validate the models, R 2 , RMSECV, and RPDCV were used. The PLS model was stronger than the other models. Also, classification analysis of the Gomishan Lagoon identified two hydrological zones: (i) a North Zone characterized by higher water exchange, higher dissolved oxygen and lower salinity and nutrients, and (ii) a Central and South Zone with high residence time, higher nutrient concentrations, lower dissolved oxygen, and higher salinity. A recommendation for the management of coastal lagoons, specifically the Gomishan Lagoon, to decrease or eliminate nutrient loadings is discussed and should be transferred to policy makers, the scientific community, and local inhabitants.
Wu, Xia; Zhu, Jian-Cheng; Zhang, Yu; Li, Wei-Min; Rong, Xiang-Lu; Feng, Yi-Fan
2016-08-25
Potential impact of lipid research has been increasingly realized both in disease treatment and prevention. An effective metabolomics approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) along with multivariate statistic analysis has been applied for investigating the dynamic change of plasma phospholipids compositions in early type 2 diabetic rats after the treatment of an ancient prescription of Chinese Medicine Huang-Qi-San. The exported UPLC/Q-TOF-MS data of plasma samples were subjected to SIMCA-P and processed by bioMark, mixOmics, Rcomdr packages with R software. A clear score plots of plasma sample groups, including normal control group (NC), model group (MC), positive medicine control group (Flu) and Huang-Qi-San group (HQS), were achieved by principal-components analysis (PCA), partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA). Biomarkers were screened out using student T test, principal component regression (PCR), partial least-squares regression (PLS) and important variable method (variable influence on projection, VIP). Structures of metabolites were identified and metabolic pathways were deduced by correlation coefficient. The relationship between compounds was explained by the correlation coefficient diagram, and the metabolic differences between similar compounds were illustrated. Based on KEGG database, the biological significances of identified biomarkers were described. The correlation coefficient was firstly applied to identify the structure and deduce the metabolic pathways of phospholipids metabolites, and the study provided a new methodological cue for further understanding the molecular mechanisms of metabolites in the process of regulating Huang-Qi-San for treating early type 2 diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
De Girolamo, A; Lippolis, V; Nordkvist, E; Visconti, A
2009-06-01
Fourier transform near-infrared spectroscopy (FT-NIR) was used for rapid and non-invasive analysis of deoxynivalenol (DON) in durum and common wheat. The relevance of using ground wheat samples with a homogeneous particle size distribution to minimize measurement variations and avoid DON segregation among particles of different sizes was established. Calibration models for durum wheat, common wheat and durum + common wheat samples, with particle size <500 microm, were obtained by using partial least squares (PLS) regression with an external validation technique. Values of root mean square error of prediction (RMSEP, 306-379 microg kg(-1)) were comparable and not too far from values of root mean square error of cross-validation (RMSECV, 470-555 microg kg(-1)). Coefficients of determination (r(2)) indicated an "approximate to good" level of prediction of the DON content by FT-NIR spectroscopy in the PLS calibration models (r(2) = 0.71-0.83), and a "good" discrimination between low and high DON contents in the PLS validation models (r(2) = 0.58-0.63). A "limited to good" practical utility of the models was ascertained by range error ratio (RER) values higher than 6. A qualitative model, based on 197 calibration samples, was developed to discriminate between blank and naturally contaminated wheat samples by setting a cut-off at 300 microg kg(-1) DON to separate the two classes. The model correctly classified 69% of the 65 validation samples with most misclassified samples (16 of 20) showing DON contamination levels quite close to the cut-off level. These findings suggest that FT-NIR analysis is suitable for the determination of DON in unprocessed wheat at levels far below the maximum permitted limits set by the European Commission.
Fadzlillah, Nurrulhidayah Ahmad; Rohman, Abdul; Ismail, Amin; Mustafa, Shuhaimi; Khatib, Alfi
2013-01-01
In dairy product sector, butter is one of the potential sources of fat soluble vitamins, namely vitamin A, D, E, K; consequently, butter is taken into account as high valuable price from other dairy products. This fact has attracted unscrupulous market players to blind butter with other animal fats to gain economic profit. Animal fats like mutton fat (MF) are potential to be mixed with butter due to the similarity in terms of fatty acid composition. This study focused on the application of FTIR-ATR spectroscopy in conjunction with chemometrics for classification and quantification of MF as adulterant in butter. The FTIR spectral region of 3910-710 cm⁻¹ was used for classification between butter and butter blended with MF at various concentrations with the aid of discriminant analysis (DA). DA is able to classify butter and adulterated butter without any mistakenly grouped. For quantitative analysis, partial least square (PLS) regression was used to develop a calibration model at the frequency regions of 3910-710 cm⁻¹. The equation obtained for the relationship between actual value of MF and FTIR predicted values of MF in PLS calibration model was y = 0.998x + 1.033, with the values of coefficient of determination (R²) and root mean square error of calibration are 0.998 and 0.046% (v/v), respectively. The PLS calibration model was subsequently used for the prediction of independent samples containing butter in the binary mixtures with MF. Using 9 principal components, root mean square error of prediction (RMSEP) is 1.68% (v/v). The results showed that FTIR spectroscopy can be used for the classification and quantification of MF in butter formulation for verification purposes.
Nishii, Takashi; Genkawa, Takuma; Watari, Masahiro; Ozaki, Yukihiro
2012-01-01
A new selection procedure of an informative near-infrared (NIR) region for regression model building is proposed that uses an online NIR/mid-infrared (mid-IR) dual-region spectrometer in conjunction with two-dimensional (2D) NIR/mid-IR heterospectral correlation spectroscopy. In this procedure, both NIR and mid-IR spectra of a liquid sample are acquired sequentially during a reaction process using the NIR/mid-IR dual-region spectrometer; the 2D NIR/mid-IR heterospectral correlation spectrum is subsequently calculated from the obtained spectral data set. From the calculated 2D spectrum, a NIR region is selected that includes bands of high positive correlation intensity with mid-IR bands assigned to the analyte, and used for the construction of a regression model. To evaluate the performance of this procedure, a partial least-squares (PLS) regression model of the ethanol concentration in a fermentation process was constructed. During fermentation, NIR/mid-IR spectra in the 10000 - 1200 cm(-1) region were acquired every 3 min, and a 2D NIR/mid-IR heterospectral correlation spectrum was calculated to investigate the correlation intensity between the NIR and mid-IR bands. NIR regions that include bands at 4343, 4416, 5778, 5904, and 5955 cm(-1), which result from the combinations and overtones of the C-H group of ethanol, were selected for use in the PLS regression models, by taking the correlation intensity of a mid-IR band at 2985 cm(-1) arising from the CH(3) asymmetric stretching vibration mode of ethanol as a reference. The predicted results indicate that the ethanol concentrations calculated from the PLS regression models fit well to those obtained by high-performance liquid chromatography. Thus, it can be concluded that the selection procedure using the NIR/mid-IR dual-region spectrometer combined with 2D NIR/mid-IR heterospectral correlation spectroscopy is a powerful method for the construction of a reliable regression model.
Predicting heavy metal concentrations in soils and plants using field spectrophotometry
NASA Astrophysics Data System (ADS)
Muradyan, V.; Tepanosyan, G.; Asmaryan, Sh.; Sahakyan, L.; Saghatelyan, A.; Warner, T. A.
2017-09-01
Aim of this study is to predict heavy metal (HM) concentrations in soils and plants using field remote sensing methods. The studied sites were an industrial town of Kajaran and city of Yerevan. The research also included sampling of soils and leaves of two tree species exposed to different pollution levels and determination of contents of HM in lab conditions. The obtained spectral values were then collated with contents of HM in Kajaran soils and the tree leaves sampled in Yerevan, and statistical analysis was done. Consequently, Zn and Pb have a negative correlation coefficient (p <0.01) in a 2498 nm spectral range for soils. Pb has a significantly higher correlation at red edge for plants. A regression models and artificial neural network (ANN) for HM prediction were developed. Good results were obtained for the best stress sensitive spectral band ANN (R2 0.9, RPD 2.0), Simple Linear Regression (SLR) and Partial Least Squares Regression (PLSR) (R2 0.7, RPD 1.4) models. Multiple Linear Regression (MLR) model was not applicable to predict Pb and Zn concentrations in soils in this research. Almost all full spectrum PLS models provide good calibration and validation results (RPD>1.4). Full spectrum ANN models are characterized by excellent calibration R2, rRMSE and RPD (0.9; 0.1 and >2.5 respectively). For prediction of Pb and Ni contents in plants SLR and PLS models were used. The latter provide almost the same results. Our findings indicate that it is possible to make coarse direct estimation of HM content in soils and plants using rapid and economic reflectance spectroscopy.
NASA Astrophysics Data System (ADS)
Glavanović, Siniša; Glavanović, Marija; Tomišić, Vladislav
2016-03-01
The UV spectrophotometric methods for simultaneous quantitative determination of paracetamol and tramadol in paracetamol-tramadol tablets were developed. The spectrophotometric data obtained were processed by means of partial least squares (PLS) and genetic algorithm coupled with PLS (GA-PLS) methods in order to determine the content of active substances in the tablets. The results gained by chemometric processing of the spectroscopic data were statistically compared with those obtained by means of validated ultra-high performance liquid chromatographic (UHPLC) method. The accuracy and precision of data obtained by the developed chemometric models were verified by analysing the synthetic mixture of drugs, and by calculating recovery as well as relative standard error (RSE). A statistically good agreement was found between the amounts of paracetamol determined using PLS and GA-PLS algorithms, and that obtained by UHPLC analysis, whereas for tramadol GA-PLS results were proven to be more reliable compared to those of PLS. The simplest and the most accurate and precise models were constructed by using the PLS method for paracetamol (mean recovery 99.5%, RSE 0.89%) and the GA-PLS method for tramadol (mean recovery 99.4%, RSE 1.69%).
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang; ...
2017-04-03
Here, the feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validationmore » results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.« less
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang
Here, the feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validationmore » results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.« less
Application of visible and near-infrared spectroscopy to classification of Miscanthus species.
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang; Shi, Chunhai; Chen, Liang; Yu, Bin; Yi, Zili; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko; Sacks, Erik J; Peng, Junhua
2017-01-01
The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
Shi, Chunhai; Chen, Liang; Yu, Bin; Yi, Zili; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko; Sacks, Erik J.; Peng, Junhua
2017-01-01
The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species. PMID:28369059
Devrim, Burcu; Dinç, Erdal; Bozkir, Asuman
2014-01-01
Diphenhydramine hydrochloride (DPH), a histamine H1-receptor antagonist, is widely used as antiallergic, antiemetic and antitussive drug found in many pharmaceutical preparations. In this study, a new reconstitutable syrup formulation of DPH was prepared because it is more stable in solid form than that in liquid form. The quantitative estimation of the DPH content of a reconstitutable syrup formulation in the presence of pharmaceutical excipients, D-sorbitol, sodium citrate, sodium benzoate and sodium EDTA is not possible by the direct absorbance measurement. Therefore, a signal processing approach based on continuous wavelet transform was used to determine the DPH in the reconstitutable syrup formulations and to eliminate the effect of excipients on the analysis. The absorption spectra of DPH in the range of 5.0-40.0 μg/mL were recorded between 200-300 nm. Various wavelet families were tested and Biorthogonal1.1 continuous wavelet transform (BIOR1.1-CWT) was found to be optimal signal processing family to get fast and desirable determination results and to overcome excipient interference effects. For a comparison of the experimental results obtained by partial least squares (PLS) and principal component regression (PCR) methods were applied to the quantitative prediction of DPH in the mentioned samples. The validity of the proposed BIOR1.1-CWT, PLS and PCR methods were achieved analyzing the prepared samples containing the mentioned excipients and using standard addition technique. It was observed that the proposed graphical and numerical approaches are suitable for the quantitative analysis of DPH in samples including excipients.
Lafuente, Victoria; Herrera, Luis J; Pérez, María del Mar; Val, Jesús; Negueruela, Ignacio
2015-08-15
In this work, near infrared spectroscopy (NIR) and an acoustic measure (AWETA) (two non-destructive methods) were applied in Prunus persica fruit 'Calrico' (n = 260) to predict Magness-Taylor (MT) firmness. Separate and combined use of these measures was evaluated and compared using partial least squares (PLS) and least squares support vector machine (LS-SVM) regression methods. Also, a mutual-information-based variable selection method, seeking to find the most significant variables to produce optimal accuracy of the regression models, was applied to a joint set of variables (NIR wavelengths and AWETA measure). The newly proposed combined NIR-AWETA model gave good values of the determination coefficient (R(2)) for PLS and LS-SVM methods (0.77 and 0.78, respectively), improving the reliability of MT firmness prediction in comparison with separate NIR and AWETA predictions. The three variables selected by the variable selection method (AWETA measure plus NIR wavelengths 675 and 697 nm) achieved R(2) values 0.76 and 0.77, PLS and LS-SVM. These results indicated that the proposed mutual-information-based variable selection algorithm was a powerful tool for the selection of the most relevant variables. © 2014 Society of Chemical Industry.
Rapid detection of talcum powder in tea using FT-IR spectroscopy coupled with chemometrics
Li, Xiaoli; Zhang, Yuying; He, Yong
2016-01-01
This paper investigated the feasibility of Fourier transform infrared transmission (FT-IR) spectroscopy to detect talcum powder illegally added in tea based on chemometric methods. Firstly, 210 samples of tea powder with 13 dose levels of talcum powder were prepared for FT-IR spectra acquirement. In order to highlight the slight variations in FT-IR spectra, smoothing, normalize and standard normal variate (SNV) were employed to preprocess the raw spectra. Among them, SNV preprocessing had the best performance with high correlation of prediction (RP = 0.948) and low root mean square error of prediction (RMSEP = 0.108) of partial least squares (PLS) model. Then 18 characteristic wavenumbers were selected based on a hybrid of backward interval partial least squares (biPLS) regression, competitive adaptive reweighted sampling (CARS) algorithm and successive projections algorithm (SPA). These characteristic wavenumbers only accounted for 0.64% of the full wavenumbers. Following that, 18 characteristic wavenumbers were used to build linear and nonlinear determination models by PLS regression and extreme learning machine (ELM), respectively. The optimal model with RP = 0.963 and RMSEP = 0.137 was achieved by ELM algorithm. These results demonstrated that FT-IR spectroscopy with chemometrics could be used successfully to detect talcum powder in tea. PMID:27468701
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.
Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using themore » leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.« less
Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph
2010-01-01
Two new methods based on FTâRaman spectroscopy, one simple, based on band intensity ratio, and the other using a partial least squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in cellulose I samples was determined based on univariate regression that was first developed using the Raman band...
Shao, Limin; Griffiths, Peter R; Leytem, April B
2010-10-01
The automated quantification of three greenhouse gases, ammonia, methane, and nitrous oxide, in the vicinity of a large dairy farm by open-path Fourier transform infrared (OP/FT-IR) spectrometry at intervals of 5 min is demonstrated. Spectral pretreatment, including the automated detection and correction of the effect of interrupting the infrared beam, is by a moving object, and the automated correction for the nonlinear detector response is applied to the measured interferograms. Two ways of obtaining quantitative data from OP/FT-IR data are described. The first, which is installed in a recently acquired commercial OP/FT-IR spectrometer, is based on classical least-squares (CLS) regression, and the second is based on partial least-squares (PLS) regression. It is shown that CLS regression only gives accurate results if the absorption features of the analytes are located in very short spectral intervals where lines due to atmospheric water vapor are absent or very weak; of the three analytes examined, only ammonia fell into this category. On the other hand, PLS regression works allowed what appeared to be accurate results to be obtained for all three analytes.
Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C
2018-06-29
A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.
Bhatt, Chet R; Jain, Jinesh C; Goueguel, Christian L; McIntyre, Dustin L; Singh, Jagdish P
2018-01-01
Laser-induced breakdown spectroscopy (LIBS) was used to detect rare earth elements (REEs) in natural geological samples. Low and high intensity emission lines of Ce, La, Nd, Y, Pr, Sm, Eu, Gd, and Dy were identified in the spectra recorded from the samples to claim the presence of these REEs. Multivariate analysis was executed by developing partial least squares regression (PLS-R) models for the quantification of Ce, La, and Nd. Analysis of unknown samples indicated that the prediction results of these samples were found comparable to those obtained by inductively coupled plasma mass spectrometry analysis. Data support that LIBS has potential to quantify REEs in geological minerals/ores.
Local classification: Locally weighted-partial least squares-discriminant analysis (LW-PLS-DA).
Bevilacqua, Marta; Marini, Federico
2014-08-01
The possibility of devising a simple, flexible and accurate non-linear classification method, by extending the locally weighted partial least squares (LW-PLS) approach to the cases where the algorithm is used in a discriminant way (partial least squares discriminant analysis, PLS-DA), is presented. In particular, to assess which category an unknown sample belongs to, the proposed algorithm operates by identifying which training objects are most similar to the one to be predicted and building a PLS-DA model using these calibration samples only. Moreover, the influence of the selected training samples on the local model can be further modulated by adopting a not uniform distance-based weighting scheme which allows the farthest calibration objects to have less impact than the closest ones. The performances of the proposed locally weighted-partial least squares-discriminant analysis (LW-PLS-DA) algorithm have been tested on three simulated data sets characterized by a varying degree of non-linearity: in all cases, a classification accuracy higher than 99% on external validation samples was achieved. Moreover, when also applied to a real data set (classification of rice varieties), characterized by a high extent of non-linearity, the proposed method provided an average correct classification rate of about 93% on the test set. By the preliminary results, showed in this paper, the performances of the proposed LW-PLS-DA approach have proved to be comparable and in some cases better than those obtained by other non-linear methods (k nearest neighbors, kernel-PLS-DA and, in the case of rice, counterpropagation neural networks). Copyright © 2014 Elsevier B.V. All rights reserved.
Song, Seung Yeob; Lee, Young Koung; Kim, In-Jung
2016-01-01
A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gómez-Carracedo, M P; Andrade, J M; Rutledge, D N; Faber, N M
2007-03-07
Selecting the correct dimensionality is critical for obtaining partial least squares (PLS) regression models with good predictive ability. Although calibration and validation sets are best established using experimental designs, industrial laboratories cannot afford such an approach. Typically, samples are collected in an (formally) undesigned way, spread over time and their measurements are included in routine measurement processes. This makes it hard to evaluate PLS model dimensionality. In this paper, classical criteria (leave-one-out cross-validation and adjusted Wold's criterion) are compared to recently proposed alternatives (smoothed PLS-PoLiSh and a randomization test) to seek out the optimum dimensionality of PLS models. Kerosene (jet fuel) samples were measured by attenuated total reflectance-mid-IR spectrometry and their spectra where used to predict eight important properties determined using reference methods that are time-consuming and prone to analytical errors. The alternative methods were shown to give reliable dimensionality predictions when compared to external validation. By contrast, the simpler methods seemed to be largely affected by the largest changes in the modeling capabilities of the first components.
Yoo, Kwangsun; Rosenberg, Monica D; Hsu, Wei-Ting; Zhang, Sheng; Li, Chiang-Shan R; Scheinost, Dustin; Constable, R Todd; Chun, Marvin M
2018-02-15
Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM. Copyright © 2017 Elsevier Inc. All rights reserved.
Fourier transform infrared spectroscopy for Kona coffee authentication.
Wang, Jun; Jun, Soojin; Bittenbender, H C; Gautz, Loren; Li, Qing X
2009-06-01
Kona coffee, the variety of "Kona typica" grown in the north and south districts of Kona-Island, carries a unique stamp of the region of Big Island of Hawaii, U.S.A. The excellent quality of Kona coffee makes it among the best coffee products in the world. Fourier transform infrared (FTIR) spectroscopy integrated with an attenuated total reflectance (ATR) accessory and multivariate analysis was used for qualitative and quantitative analysis of ground and brewed Kona coffee and blends made with Kona coffee. The calibration set of Kona coffee consisted of 10 different blends of Kona-grown original coffee mixture from 14 different farms in Hawaii and a non-Kona-grown original coffee mixture from 3 different sampling sites in Hawaii. Derivative transformations (1st and 2nd), mathematical enhancements such as mean centering and variance scaling, multivariate regressions by partial least square (PLS), and principal components regression (PCR) were implemented to develop and enhance the calibration model. The calibration model was successfully validated using 9 synthetic blend sets of 100% Kona coffee mixture and its adulterant, 100% non-Kona coffee mixture. There were distinct peak variations of ground and brewed coffee blends in the spectral "fingerprint" region between 800 and 1900 cm(-1). The PLS-2nd derivative calibration model based on brewed Kona coffee with mean centering data processing showed the highest degree of accuracy with the lowest standard error of calibration value of 0.81 and the highest R(2) value of 0.999. The model was further validated by quantitative analysis of commercial Kona coffee blends. Results demonstrate that FTIR can be a rapid alternative to authenticate Kona coffee, which only needs very quick and simple sample preparations.
NASA Astrophysics Data System (ADS)
Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.
2014-03-01
Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.
Explaining and modeling the concentration and loading of Escherichia coli in a stream-A case study.
Wang, Chaozi; Schneider, Rebecca L; Parlange, Jean-Yves; Dahlke, Helen E; Walter, M Todd
2018-09-01
Escherichia coli (E. coli) level in streams is a public health indicator. Therefore, being able to explain why E. coli levels are sometimes high and sometimes low is important. Using citizen science data from Fall Creek in central NY we found that complementarily using principal component analysis (PCA) and partial least squares (PLS) regression provided insights into the drivers of E. coli and a mechanism for predicting E. coli levels, respectively. We found that stormwater, temperature/season and shallow subsurface flow are the three dominant processes driving the fate and transport of E. coli. PLS regression modeling provided very good predictions under stormwater conditions (R 2 = 0.85 for log (E. coli concentration) and R 2 = 0.90 for log (E. coli loading)); predictions under baseflow conditions were less robust. But, in our case, both E. coli concentration and E. coli loading were significantly higher under stormwater condition, so it is probably more important to predict high-flow E. coli hazards than low-flow conditions. Besides previously reported good indicators of in-stream E. coli level, nitrate-/nitrite-nitrogen and soluble reactive phosphorus were also found to be good indicators of in-stream E. coli levels. These findings suggest management practices to reduce E. coli concentrations and loads in-streams and, eventually, reduce the risk of waterborne disease outbreak. Copyright © 2018. Published by Elsevier B.V.
Netchacovitch, L; Dumont, E; Cailletaud, J; Thiry, J; De Bleye, C; Sacré, P-Y; Boiret, M; Evrard, B; Hubert, Ph; Ziemons, E
2017-09-15
The development of a quantitative method determining the crystalline percentage in an amorphous solid dispersion is of great interest in the pharmaceutical field. Indeed, the crystalline Active Pharmaceutical Ingredient transformation into its amorphous state is increasingly used as it enhances the solubility and bioavailability of Biopharmaceutical Classification System class II drugs. One way to produce amorphous solid dispersions is the Hot-Melt Extrusion (HME) process. This study reported the development and the comparison of the analytical performances of two techniques, based on backscattering and transmission Raman spectroscopy, determining the crystalline remaining content in amorphous solid dispersions produced by HME. Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression were performed on preprocessed data and tended towards the same conclusions: for the backscattering Raman results, the use of the DuoScan™ mode improved the PCA and PLS results, due to a larger analyzed sampling volume. For the transmission Raman results, the determination of low crystalline percentages was possible and the best regression model was obtained using this technique. Indeed, the latter acquired spectra through the whole sample volume, in contrast with the previous surface analyses performed using the backscattering mode. This study consequently highlighted the importance of the analyzed sampling volume. Copyright © 2017 Elsevier B.V. All rights reserved.
Elkhoudary, Mahmoud M; Naguib, Ibrahim A; Abdel Salam, Randa A; Hadad, Ghada M
2017-05-01
Four accurate, sensitive and reliable stability indicating chemometric methods were developed for the quantitative determination of Agomelatine (AGM) whether in pure form or in pharmaceutical formulations. Two supervised learning machines' methods; linear artificial neural networks (PC-linANN) preceded by principle component analysis and linear support vector regression (linSVR), were compared with two principle component based methods; principle component regression (PCR) as well as partial least squares (PLS) for the spectrofluorimetric determination of AGM and its degradants. The results showed the benefits behind using linear learning machines' methods and the inherent merits of their algorithms in handling overlapped noisy spectral data especially during the challenging determination of AGM alkaline and acidic degradants (DG1 and DG2). Relative mean squared error of prediction (RMSEP) for the proposed models in the determination of AGM were 1.68, 1.72, 0.68 and 0.22 for PCR, PLS, SVR and PC-linANN; respectively. The results showed the superiority of supervised learning machines' methods over principle component based methods. Besides, the results suggested that linANN is the method of choice for determination of components in low amounts with similar overlapped spectra and narrow linearity range. Comparison between the proposed chemometric models and a reported HPLC method revealed the comparable performance and quantification power of the proposed models.
He, Yan-Lin; Xu, Yuan; Geng, Zhi-Qiang; Zhu, Qun-Xiong
2016-03-01
In this paper, a hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) is proposed. Firstly, an improved functional link neural network with small norm of expanded weights and high input-output correlation (SNEWHIOC-FLNN) was proposed for enhancing the generalization performance of FLNN. Unlike the traditional FLNN, the expanded variables of the original inputs are not directly used as the inputs in the proposed SNEWHIOC-FLNN model. The original inputs are attached to some small norm of expanded weights. As a result, the correlation coefficient between some of the expanded variables and the outputs is enhanced. The larger the correlation coefficient is, the more relevant the expanded variables tend to be. In the end, the expanded variables with larger correlation coefficient are selected as the inputs to improve the performance of the traditional FLNN. In order to test the proposed SNEWHIOC-FLNN model, three UCI (University of California, Irvine) regression datasets named Housing, Concrete Compressive Strength (CCS), and Yacht Hydro Dynamics (YHD) are selected. Then a hybrid model based on the improved FLNN integrating with partial least square (IFLNN-PLS) was built. In IFLNN-PLS model, the connection weights are calculated using the partial least square method but not the error back propagation algorithm. Lastly, IFLNN-PLS was developed as an intelligent measurement model for accurately predicting the key variables in the Purified Terephthalic Acid (PTA) process and the High Density Polyethylene (HDPE) process. Simulation results illustrated that the IFLNN-PLS could significant improve the prediction performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Burgués, Javier; Marco, Santiago
2018-08-17
Metal oxide semiconductor (MOX) sensors are usually temperature-modulated and calibrated with multivariate models such as partial least squares (PLS) to increase the inherent low selectivity of this technology. The multivariate sensor response patterns exhibit heteroscedastic and correlated noise, which suggests that maximum likelihood methods should outperform PLS. One contribution of this paper is the comparison between PLS and maximum likelihood principal components regression (MLPCR) in MOX sensors. PLS is often criticized by the lack of interpretability when the model complexity increases beyond the chemical rank of the problem. This happens in MOX sensors due to cross-sensitivities to interferences, such as temperature or humidity and non-linearity. Additionally, the estimation of fundamental figures of merit, such as the limit of detection (LOD), is still not standardized in multivariate models. Orthogonalization methods, such as orthogonal projection to latent structures (O-PLS), have been successfully applied in other fields to reduce the complexity of PLS models. In this work, we propose a LOD estimation method based on applying the well-accepted univariate LOD formulas to the scores of the first component of an orthogonal PLS model. The resulting LOD is compared to the multivariate LOD range derived from error-propagation. The methodology is applied to data extracted from temperature-modulated MOX sensors (FIS SB-500-12 and Figaro TGS 3870-A04), aiming at the detection of low concentrations of carbon monoxide in the presence of uncontrolled humidity (chemical noise). We found that PLS models were simpler and more accurate than MLPCR models. Average LOD values of 0.79 ppm (FIS) and 1.06 ppm (Figaro) were found using the approach described in this paper. These values were contained within the LOD ranges obtained with the error-propagation approach. The mean LOD increased to 1.13 ppm (FIS) and 1.59 ppm (Figaro) when considering validation samples collected two weeks after calibration, which represents a 43% and 46% degradation, respectively. The orthogonal score-plot was a very convenient tool to visualize MOX sensor data and to validate the LOD estimates. Copyright © 2018 Elsevier B.V. All rights reserved.
Lê Cao, Kim-Anh; Boitard, Simon; Besse, Philippe
2011-06-22
Variable selection on high throughput biological data, such as gene expression or single nucleotide polymorphisms (SNPs), becomes inevitable to select relevant information and, therefore, to better characterize diseases or assess genetic structure. There are different ways to perform variable selection in large data sets. Statistical tests are commonly used to identify differentially expressed features for explanatory purposes, whereas Machine Learning wrapper approaches can be used for predictive purposes. In the case of multiple highly correlated variables, another option is to use multivariate exploratory approaches to give more insight into cell biology, biological pathways or complex traits. A simple extension of a sparse PLS exploratory approach is proposed to perform variable selection in a multiclass classification framework. sPLS-DA has a classification performance similar to other wrapper or sparse discriminant analysis approaches on public microarray and SNP data sets. More importantly, sPLS-DA is clearly competitive in terms of computational efficiency and superior in terms of interpretability of the results via valuable graphical outputs. sPLS-DA is available in the R package mixOmics, which is dedicated to the analysis of large biological data sets.
ERIC Educational Resources Information Center
Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.
2011-01-01
We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…
Quantification of amine functional groups and their influence on OM/OC in the IMPROVE network
NASA Astrophysics Data System (ADS)
Kamruzzaman, Mohammed; Takahama, Satoshi; Dillner, Ann M.
2018-01-01
Recently, we developed a method using FT-IR spectroscopy coupled with partial least squares (PLS) regression to measure the four most abundant organic functional groups, aliphatic C-H, alcohol OH, carboxylic acid OH and carbonyl C=O, in atmospheric particulate matter. These functional groups are summed to estimate organic matter (OM) while the carbon from the functional groups is summed to estimate organic carbon (OC). With this method, OM and OM/OC can be estimated for each sample rather than relying on one assumed value to convert OC measurements to OM. This study continues the development of the FT-IR and PLS method for estimating OM and OM/OC by including the amine functional group. Amines are ubiquitous in the atmosphere and come from motor vehicle exhaust, animal husbandry, biomass burning, and vegetation among other sources. In this study, calibration standards for amines are produced by aerosolizing individual amine compounds and collecting them on PTFE filters using an IMPROVE sampler, thereby mimicking the filter media and collection geometry of ambient standards. The moles of amine functional group on each standard and a narrow range of amine-specific wavenumbers in the FT-IR spectra (wavenumber range 1 550-1 500 cm-1) are used to develop a PLS calibration model. The PLS model is validated using three methods: prediction of a set of laboratory standards not included in the model, a peak height analysis and a PLS model with a broader wavenumber range. The model is then applied to the ambient samples collected throughout 2013 from 16 IMPROVE sites in the USA. Urban sites have higher amine concentrations than most rural sites, but amine functional groups account for a lower fraction of OM at urban sites. Amine concentrations, contributions to OM and seasonality vary by site and sample. Amine has a small impact on the annual average OM/OC for urban sites, but for some rural sites including amine in the OM/OC calculations increased OM/OC by 0.1 or more.
Assi, Nada; Fages, Anne; Vineis, Paolo; Chadeau-Hyam, Marc; Stepien, Magdalena; Duarte-Salles, Talita; Byrnes, Graham; Boumaza, Houda; Knüppel, Sven; Kühn, Tilman; Palli, Domenico; Bamia, Christina; Boshuizen, Hendriek; Bonet, Catalina; Overvad, Kim; Johansson, Mattias; Travis, Ruth; Gunter, Marc J.; Lund, Eiliv; Dossus, Laure; Elena-Herrmann, Bénédicte; Riboli, Elio; Jenab, Mazda; Viallon, Vivian; Ferrari, Pietro
2015-01-01
Abstract Metabolomics is a potentially powerful tool for identification of biomarkers associated with lifestyle exposures and risk of various diseases. This is the rationale of the ‘meeting-in-the-middle’ concept, for which an analytical framework was developed in this study. In a nested case–control study on hepatocellular carcinoma (HCC) within the European Prospective Investigation into Cancer and nutrition (EPIC), serum 1H nuclear magnetic resonance (NMR) spectra (800 MHz) were acquired for 114 cases and 222 matched controls. Through partial least square (PLS) analysis, 21 lifestyle variables (the ‘predictors’, including information on diet, anthropometry and clinical characteristics) were linked to a set of 285 metabolic variables (the ‘responses’). The three resulting scores were related to HCC risk by means of conditional logistic regressions. The first PLS factor was not associated with HCC risk. The second PLS metabolomic factor was positively associated with tyrosine and glucose, and was related to a significantly increased HCC risk with OR = 1.11 (95% CI: 1.02, 1.22, P = 0.02) for a 1SD change in the responses score, and a similar association was found for the corresponding lifestyle component of the factor. The third PLS lifestyle factor was associated with lifetime alcohol consumption, hepatitis and smoking, and had negative loadings on vegetables intake. Its metabolomic counterpart displayed positive loadings on ethanol, glutamate and phenylalanine. These factors were positively and statistically significantly associated with HCC risk, with 1.37 (1.05, 1.79, P = 0.02) and 1.22 (1.04, 1.44, P = 0.01), respectively. Evidence of mediation was found in both the second and third PLS factors, where the metabolomic signals mediated the relation between the lifestyle component and HCC outcome. This study devised a way to bridge lifestyle variables to HCC risk through NMR metabolomics data. This implementation of the ‘meeting-in-the-middle’ approach finds natural applications in settings characterised by high-dimensional data, increasingly frequent in the omics generation. PMID:26130468
Mass Spectrometry and Fourier Transform Infrared Spectroscopy for Analysis of Biological Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Timothy J.
Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55% (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the eight weekmore » study, cecal and distal-colon contents samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic treated subgroups were well classified for cecal samples and modestly separated for distal-colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.« less
Kumar, Keshav
2018-03-01
Excitation-emission matrix fluorescence (EEMF) and total synchronous fluorescence spectroscopy (TSFS) are the 2 fluorescence techniques that are commonly used for the analysis of multifluorophoric mixtures. These 2 fluorescence techniques are conceptually different and provide certain advantages over each other. The manual analysis of such highly correlated large volume of EEMF and TSFS towards developing a calibration model is difficult. Partial least square (PLS) analysis can analyze the large volume of EEMF and TSFS data sets by finding important factors that maximize the correlation between the spectral and concentration information for each fluorophore. However, often the application of PLS analysis on entire data sets does not provide a robust calibration model and requires application of suitable pre-processing step. The present work evaluates the application of genetic algorithm (GA) analysis prior to PLS analysis on EEMF and TSFS data sets towards improving the precision and accuracy of the calibration model. The GA algorithm essentially combines the advantages provided by stochastic methods with those provided by deterministic approaches and can find the set of EEMF and TSFS variables that perfectly correlate well with the concentration of each of the fluorophores present in the multifluorophoric mixtures. The utility of the GA assisted PLS analysis is successfully validated using (i) EEMF data sets acquired for dilute aqueous mixture of four biomolecules and (ii) TSFS data sets acquired for dilute aqueous mixtures of four carcinogenic polycyclic aromatic hydrocarbons (PAHs) mixtures. In the present work, it is shown that by using the GA it is possible to significantly improve the accuracy and precision of the PLS calibration model developed for both EEMF and TSFS data set. Hence, GA must be considered as a useful pre-processing technique while developing an EEMF and TSFS calibration model.
The subgingival microbiota of Papillon-Lefèvre syndrome.
Albandar, Jasim M; Khattab, Razan; Monem, Fawza; Barbuto, Sara M; Paster, Bruce J
2012-07-01
There is little information about the microbiologic profiles of periodontal lesions in Papillon-Lefèvre syndrome (PLS) and the significance of bacteria in the pathogenesis of periodontitis in these patients. This comprehensive analysis of the subgingival microbiota in patients with PLS used 16S ribosomal RNA (rRNA) clonal analysis and the 16S rRNA-based Human Oral Microbe Identification Microarray (HOMIM). Thirteen patients with PLS from seven unrelated families volunteered for this microbiologic study. Subgingival plaque was collected with sterile paper points from multiple sites with ≥5 mm probing depth, and whole genomic DNA was extracted. The 16S rRNA genes were amplified, cloned, and sequenced. The samples were then probed for ≈300 predominant oral bacterial species using the HOMIM. The most commonly detected phylotypes in the clonal analysis were Gemella morbillorum, Gemella haemolysans, Granulicatella adiacens, Lachnospiraceae OT 100 (EI074), Parvimonas micra, Selenomonas noxia, and Veillonella parvula. As a group, streptococci were commonly detected in these individuals. In the HOMIM analysis, a total of 170 bacterial species/phylotypes were detected, with a range of 40 to 80 species per patient with PLS. Of these, 12 bacterial species were detected in medium to high levels in ≥50% of the individuals. The high-frequency strains were clustered into eight groups: Aggregatibacter actinomycetemcomitans, Campylobacter spp., Capnocytophaga granulosa, G. morbillorum, P. micra, Porphyromonas endodontalis, Streptococcus spp., and Tannerella forsythia. The subgingival microbiota in PLS is diverse. Periodontal pathogens commonly associated with chronic and aggressive periodontitis and opportunistic pathogens may be associated with the development of severe periodontitis in patients with PLS.
Novel PLS3 variants in X-linked osteoporosis: Exploring bone material properties.
Balasubramanian, Meena; Fratzl-Zelman, Nadja; O'Sullivan, Rory; Bull, Mary; Fa Peel, Nicola; Pollitt, Rebecca C; Jones, Rebecca; Milne, Elizabeth; Smith, Kath; Roschger, Paul; Klaushofer, Klaus; Bishop, Nicholas J
2018-05-07
Idiopathic Juvenile Osteoporosis (IJO) refers to significantly lower than expected bone mass manifesting in childhood with no identifiable aetiology. IJO classically presents in early pubertal period with multiple fractures including metaphyseal and vertebral crush fractures, and low bone-mass. Here we describe two patients and provide information on their clinical phenotype, genotype and bone material analysis in one of the patients. Patient 1: 40-year old adult male diagnosed with IJO in childhood who re-presented with a hip fracture as an adult. Genetic analysis identified a pathogenic PLS3 hemizygous variant, c.1765del in exon 16. Patient 2: 15-year old boy with multiple vertebral fractures and bone biopsy findings suggestive of IJO who also has a diagnosis of autism spectrum disorder. Genetic analysis identified a maternally inherited PLS3 pathogenic c.1295T>A variant in exon 12. Analyses of the transiliac bone sample revealed severe reduction of trabecular volume and bone turnover indices and elevated bone matrix mineralisation. We propose that genetic testing for PLS3 should be undertaken in patients presenting with a current or previous history of IJO as this has implications for genetic counselling and cascade screening. The extensive evaluation of the transiliac biopsy sample of Patient 2 revealed a novel bone phenotype. This report includes a review of IJO and genetic causes of osteoporosis, and suggests that existing cases of IJO should be screened for PLS3. Through analysis of bone material properties in Patient 2, we can conclude that PLS3 does have a role in bone mineralisation. © 2018 Wiley Periodicals, Inc.
Study on rapid valid acidity evaluation of apple by fiber optic diffuse reflectance technique
NASA Astrophysics Data System (ADS)
Liu, Yande; Ying, Yibin; Fu, Xiaping; Jiang, Xuesong
2004-03-01
Some issues related to nondestructive evaluation of valid acidity in intact apples by means of Fourier transform near infrared (FTNIR) (800-2631nm) method were addressed. A relationship was established between the diffuse reflectance spectra recorded with a bifurcated optic fiber and the valid acidity. The data were analyzed by multivariate calibration analysis such as partial least squares (PLS) analysis and principal component regression (PCR) technique. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influence of data preprocessing and different spectra treatments were also investigated. Models based on smoothing spectra were slightly worse than models based on derivative spectra and the best result was obtained when the segment length was 5 and the gap size was 10. Depending on data preprocessing and multivariate calibration technique, the best prediction model had a correlation efficient (0.871), a low RMSEP (0.0677), a low RMSEC (0.056) and a small difference between RMSEP and RMSEC by PLS analysis. The results point out the feasibility of FTNIR spectral analysis to predict the fruit valid acidity non-destructively. The ratio of data standard deviation to the root mean square error of prediction (SDR) is better to be less than 3 in calibration models, however, the results cannot meet the demand of actual application. Therefore, further study is required for better calibration and prediction.
Gouvinhas, Irene; Machado, Nelson; Carvalho, Teresa; de Almeida, José M M M; Barros, Ana I R N A
2015-01-01
Extra virgin olive oils produced from three cultivars on different maturation stages were characterized using Raman spectroscopy. Chemometric methods (principal component analysis, discriminant analysis, principal component regression and partial least squares regression) applied to Raman spectral data were utilized to evaluate and quantify the statistical differences between cultivars and their ripening process. The models for predicting the peroxide value and free acidity of olive oils showed good calibration and prediction values and presented high coefficients of determination (>0.933). Both the R(2), and the correlation equations between the measured chemical parameters, and the values predicted by each approach are presented; these comprehend both PCR and PLS, used to assess SNV normalized Raman data, as well as first and second derivative of the spectra. This study demonstrates that a combination of Raman spectroscopy with multivariate analysis methods can be useful to predict rapidly olive oil chemical characteristics during the maturation process. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hadad, Ghada M.; El-Gindy, Alaa; Mahmoud, Waleed M. M.
2008-08-01
High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C 18 analytical column with a mobile phase consisting of a mixture of 20 mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ( 1DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination.
NASA Astrophysics Data System (ADS)
Metwally, Fadia H.
2008-02-01
The quantitative predictive abilities of the new and simple bivariate spectrophotometric method are compared with the results obtained by the use of multivariate calibration methods [the classical least squares (CLS), principle component regression (PCR) and partial least squares (PLS)], using the information contained in the absorption spectra of the appropriate solutions. Mixtures of the two drugs Nifuroxazide (NIF) and Drotaverine hydrochloride (DRO) were resolved by application of the bivariate method. The different chemometric approaches were applied also with previous optimization of the calibration matrix, as they are useful in simultaneous inclusion of many spectral wavelengths. The results found by application of the bivariate, CLS, PCR and PLS methods for the simultaneous determinations of mixtures of both components containing 2-12 μg ml -1 of NIF and 2-8 μg ml -1 of DRO are reported. Both approaches were satisfactorily applied to the simultaneous determination of NIF and DRO in pure form and in pharmaceutical formulation. The results were in accordance with those given by the EVA Pharma reference spectrophotometric method.
Hadad, Ghada M; El-Gindy, Alaa; Mahmoud, Waleed M M
2008-08-01
High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C(18) analytical column with a mobile phase consisting of a mixture of 20mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ((1)DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination.
Dong, Yanhong; Li, Juan; Zhong, Xiaoxiao; Cao, Liya; Luo, Yang; Fan, Qi
2016-04-15
This paper establishes a novel method to simultaneously predict the tablet weight (TW) and trimethoprim (TMP) content of compound sulfamethoxazole tablets (SMZCO) by near infrared (NIR) spectroscopy with partial least squares (PLS) regression for controlling the uniformity of dosage units (UODU). The NIR spectra for 257 samples were measured using the optimized parameter values and pretreated using the optimized chemometric techniques. After the outliers were ignored, two PLS models for predicting TW and TMP content were respectively established by using the selected spectral sub-ranges and the reference values. The TW model reaches the correlation coefficient of calibration (R(c)) 0.9543 and the TMP content model has the R(c) 0.9205. The experimental results indicate that this strategy expands the NIR application in controlling UODU, especially in the high-throughput and rapid analysis of TWs and contents of the compound pharmaceutical tablets, and may be an important complement to the common NIR on-line analytical method for pharmaceutical tablets. Copyright © 2016 Elsevier B.V. All rights reserved.
Sandoval, S; Torres, A; Pawlowsky-Reusing, E; Riechel, M; Caradot, N
2013-01-01
The present study aims to explore the relationship between rainfall variables and water quality/quantity characteristics of combined sewer overflows (CSOs), by the use of multivariate statistical methods and online measurements at a principal CSO outlet in Berlin (Germany). Canonical correlation results showed that the maximum and average rainfall intensities are the most influential variables to describe CSO water quantity and pollutant loads whereas the duration of the rainfall event and the rain depth seem to be the most influential variables to describe CSO pollutant concentrations. The analysis of partial least squares (PLS) regression models confirms the findings of the canonical correlation and highlights three main influences of rainfall on CSO characteristics: (i) CSO water quantity characteristics are mainly influenced by the maximal rainfall intensities, (ii) CSO pollutant concentrations were found to be mostly associated with duration of the rainfall and (iii) pollutant loads seemed to be principally influenced by dry weather duration before the rainfall event. The prediction quality of PLS models is rather low (R² < 0.6) but results can be useful to explore qualitatively the influence of rainfall on CSO characteristics.
Pinto, Susana; de Carvalho, Mamede
2017-02-01
Slow vital capacity (SVC) and forced vital capacity (FVC) are the most frequent used tests evaluating respiratory function in amyotrophic lateral sclerosis (ALS). No previous study has determined their interchangeability. To evaluate SVC-FVC correlation in ALS. Consecutive definite/probable ALS and primary lateral sclerosis (PLS) patients (2000-2014) in whom respiratory tests were performed at baseline/4-6months later were included. All were evaluated with revised ALS functional rating scale, the ALSFRS respiratory (R-subscore) and bulbar subscores, SVC, FVC, maximal inspiratory (MIP) and expiratory (MEP) pressures. SVC-FVC correlation was analysed by Pearson product-moment correlation test. Paired t-test compared baseline/follow-up values. Multilinear regression analysis modelled the relationship between tested variables. We included 592 ALS (332 men, mean onset age 62.6 ± 11.8 years, mean disease duration 15.4 ± 15 months) and 19 PLS (11 men, median age 54 years, median disease duration 5.5 years) patients. SVC and FVC predicted values decreased 2.15%/month and 2.08%/month, respectively. FVC and SVC were strongly correlated. Both were strongly correlated with MIP and MEP and moderately correlated with R-subscore for the all population and spinal-onset patients, but weakly correlated for bulbar-onset patients. FVC and SVC were strongly correlated and declined similarly. This correlation was preserved in bulbar-onset ALS and in spastic PLS patients.
Boiret, Mathieu; Meunier, Loïc; Ginot, Yves-Michel
2011-02-20
A near infrared (NIR) method was developed for determination of tablet potency of active pharmaceutical ingredient (API) in a complex coated tablet matrix. The calibration set contained samples from laboratory and production scale batches. The reference values were obtained by high performance liquid chromatography (HPLC) and partial least squares (PLS) regression was used to establish a model. The model was challenged by calculating tablet potency of two external test sets. Root mean square errors of prediction were respectively equal to 2.0% and 2.7%. To use this model with a second spectrometer from the production field, a calibration transfer method called piecewise direct standardisation (PDS) was used. After the transfer, the root mean square error of prediction of the first test set was 2.4% compared to 4.0% without transferring the spectra. A statistical technique using bootstrap of PLS residuals was used to estimate confidence intervals of tablet potency calculations. This method requires an optimised PLS model, selection of the bootstrap number and determination of the risk. In the case of a chemical analysis, the tablet potency value will be included within the confidence interval calculated by the bootstrap method. An easy to use graphical interface was developed to easily determine if the predictions, surrounded by minimum and maximum values, are within the specifications defined by the regulatory organisation. Copyright © 2010 Elsevier B.V. All rights reserved.
Ha, DongMun; Choi, Yong; Kim, Dae Up; Chung, Kyu Hyuck; Lee, Eui-Kyung
2011-07-01
Medical costs in South Korea have risen, in part due to increased demand and consumption of pharmaceutical products by an aging population and also because of the introduction of newer, more expensive drugs. In an effort to stabilize the financing of health insurance and alleviate the financial burden on individuals, the government implemented a policy changing the national health insurance drug-listing system from a negative list system to a positive list system (PLS). The goal of this study was to compare differences in drug-listing rates for new chemical entities (NCEs) and incrementally modified drugs (IMDs) after South Korea introduced the PLS in December 2006. Parameters significantly affecting NCE and IMD listings were also identified. New drug-listing data for 2007 and 2008 were obtained from the databases of the Health Insurance Review Agency and the Ministry of Health and Welfare. Descriptive analyses on the reimbursement rate and logistic regression analysis were conducted. Statistical significance was tested for all results, and P < 0.05 was considered statistically significant. A total of 150 reimbursement applications (79 for NCEs, 71 for IMDs) were examined for this study. The overall drug-listing rate was lower than before the introduction of the PLS. Drug reimbursement rates for NCEs (50.6%) were lower than those for IMDs (74.6%) (P = 0.0025). However, the price negotiation rate was 85.0% for NCEs compared with 73.6% for IMDs (P = 0.1847). The time required for both reimbursement and drug pricing was significantly longer for NCE than for IMD listings (P < 0.05). Cost-effectiveness and budget impact were 2 significant variables affecting the listing of NCEs. However, no significant variable was identified for IMDs. The PLS challenges the drug-listing system by decreasing the drug-listing rate and lengthening the period for reimbursement determinations. These effects were more pronounced for NCE listings than for IMD listings. Crown Copyright © 2011. Published by EM Inc USA. All rights reserved.
Is environmental sustainability a strategic priority for logistics service providers?
Evangelista, Pietro; Colicchia, Claudia; Creazza, Alessandro
2017-08-01
Despite an increasing number of third-party logistics service providers (3PLs) regard environmental sustainability as a key area of management, there is still great uncertainty on how 3PLs implement environmental strategies and on how they translate green efforts into practice. Through a multiple case study analysis, this paper explores the environmental strategies of a sample of medium-sized 3PLs operating in Italy and the UK, in terms of environmental organizational culture, initiatives, and influencing factors. Our analysis shows that, notwithstanding environmental sustainability is generally recognised as a strategic priority, a certain degree of diversity in the deployment of environmental strategies still exists. This paper is original since the extant literature on green strategies of 3PLs provides findings predominantly from a single country perspective and mainly investigates large/multinational organizations. It also provides indications to help managers of medium-sized 3PLs in positioning their business. This is particularly meaningful in the 3PL industry, where medium-sized organizations significantly contribute to the generated turnover and market value. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coexistence of antiphospholipid antibodies and cephalalgia.
Islam, Md Asiful; Alam, Fahmida; Gan, Siew Hua; Cavestro, Cinzia; Wong, Kah Keng
2018-03-01
Background The occurrence of antiphospholipid antibodies (aPLs) and headache comorbidity in the presence or absence of underlying autoimmune diseases remains unclear. Aim The aim of this review was to summarize the relationship between headache and aPLs based on evidences from cohort studies and case reports, in addition to examining the treatment strategies that resolved headache in aPLs-positive individuals. Methods A comprehensive literature search was conducted through PubMed, ISI Web of Science and Google Scholar. A total of 559 articles were screened and the appropriate articles were selected based on quality and level of evidence. Results Cohort studies (n = 27) from Europe, North America and Asia demonstrated comorbidity of aPLs and headache in antiphospholipid syndrome, systemic lupus erythematosus (SLE) and neuropsychiatric SLE patients. Significantly higher association between migraine and aPLs was observed (n = 170/779; p < 0.0001) in individuals without any underlying diseases. Our analysis of shortlisted case reports (n = 17) showed that a higher frequency of anticardiolipin antibodies were present in subjects with different autoimmune disorders (70.6%). Corticosteroids were highly effective in resolving headache in aPLs-positive individuals. Conclusion Higher frequency of comorbidity between aPLs and headache was observed in healthy individuals and patient cases. Therefore, experimental studies are warranted to evaluate the aPLs-induced pathogenic mechanism of headache.
Human Milk Plasmalogens Are Highly Enriched in Long-Chain PUFAs.
Moukarzel, Sara; Dyer, Roger A; Keller, Bernd O; Elango, Rajavel; Innis, Sheila M
2016-11-01
Human milk contains unique glycerophospholipids, including ethanolamine-containing plasmalogens (Pls-PEs) in the milk fat globule membrane, which have been implicated in infant brain development. Brain Pls-PEs accumulate postnatally and are enriched in long-chain polyunsaturated fatty acids (LC-PUFAs), particularly docosahexaenoic acid (DHA). Fatty acid (FA) composition of Pls-PEs in milk is poorly understood because of the analytical challenges in separating Pls-PEs from other phospholipids in the predominating presence of triacylglycerols. The variability of Pls-PE FAs and the potential role of maternal diet remain unknown. Our primary objectives were to establish improved methodology for extracting Pls-PEs from human milk, enabling FA analysis, and to compare FA composition between Pls-PEs and 2 major milk phospholipids, phosphatidylcholine and phosphatidylethanolamine. Our secondary objective was to explore associations between maternal DHA intake and DHA in milk phospholipids and variability in phospholipid-DHA within a woman. Mature milk was collected from 25 women, with 4 providing 3 milk samples on 3 separate days. Lipids were extracted, and phospholipids were removed by solid phase extraction. Pls-PEs were separated by using normal-phase HPLC, recovered and analyzed for FAs by GLC. Diet was assessed by using a validated food-frequency questionnaire. Pls-PE concentration in human milk was significantly higher in LC-PUFAs than phosphatidylethanolamine and phosphatidylcholine, including arachidonic acid (AA) and DHA. The mean ± SD concentration of AAs in Pls-PEs was ∼2.5-fold higher than in phosphatidylethanolamine (10.5 ± 1.71 and 3.82 ± 0.92 g/100 g, respectively). DHA in Pls-PEs varied across women (0.95-6.51 g/100 g), likely independent of maternal DHA intake. Pls-PE DHA also varied within a woman across days (CV ranged from 9.8% to 28%). Human milk provides the infant with LC-PUFAs from multiple lipid pools, including a source from Pls-PEs. The biological determinants of Pls-PE FAs and physiological relevance to the breastfed infant remain to be elucidated. © 2016 American Society for Nutrition.
Comparison of three chemometrics methods for near-infrared spectra of glucose in the whole blood
NASA Astrophysics Data System (ADS)
Zhang, Hongyan; Ding, Dong; Li, Xin; Chen, Yu; Tang, Yuguo
2005-01-01
Principal Component Regression (PCR), Partial Least Square (PLS) and Artificial Neural Networks (ANN) methods are used in the analysis for the near infrared (NIR) spectra of glucose in the whole blood. The calibration model is built up in the spectrum band where there are the glucose has much more spectral absorption than the water, fat, and protein with these methods and the correlation coefficients of the model are showed in this paper. Comparing these results, a suitable method to analyze the glucose NIR spectrum in the whole blood is found.
Zhang, Xuan; Li, Wei; Yin, Bin; Chen, Weizhong; Kelly, Declan P; Wang, Xiaoxin; Zheng, Kaiyi; Du, Yiping
2013-10-01
Coffee is the most heavily consumed beverage in the world after water, for which quality is a key consideration in commercial trade. Therefore, caffeine content which has a significant effect on the final quality of the coffee products requires to be determined fast and reliably by new analytical techniques. The main purpose of this work was to establish a powerful and practical analytical method based on near infrared spectroscopy (NIRS) and chemometrics for quantitative determination of caffeine content in roasted Arabica coffees. Ground coffee samples within a wide range of roasted levels were analyzed by NIR, meanwhile, in which the caffeine contents were quantitative determined by the most commonly used HPLC-UV method as the reference values. Then calibration models based on chemometric analyses of the NIR spectral data and reference concentrations of coffee samples were developed. Partial least squares (PLS) regression was used to construct the models. Furthermore, diverse spectra pretreatment and variable selection techniques were applied in order to obtain robust and reliable reduced-spectrum regression models. Comparing the respective quality of the different models constructed, the application of second derivative pretreatment and stability competitive adaptive reweighted sampling (SCARS) variable selection provided a notably improved regression model, with root mean square error of cross validation (RMSECV) of 0.375 mg/g and correlation coefficient (R) of 0.918 at PLS factor of 7. An independent test set was used to assess the model, with the root mean square error of prediction (RMSEP) of 0.378 mg/g, mean relative error of 1.976% and mean relative standard deviation (RSD) of 1.707%. Thus, the results provided by the high-quality calibration model revealed the feasibility of NIR spectroscopy for at-line application to predict the caffeine content of unknown roasted coffee samples, thanks to the short analysis time of a few seconds and non-destructive advantages of NIRS. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Li, Wei; Yin, Bin; Chen, Weizhong; Kelly, Declan P.; Wang, Xiaoxin; Zheng, Kaiyi; Du, Yiping
2013-10-01
Coffee is the most heavily consumed beverage in the world after water, for which quality is a key consideration in commercial trade. Therefore, caffeine content which has a significant effect on the final quality of the coffee products requires to be determined fast and reliably by new analytical techniques. The main purpose of this work was to establish a powerful and practical analytical method based on near infrared spectroscopy (NIRS) and chemometrics for quantitative determination of caffeine content in roasted Arabica coffees. Ground coffee samples within a wide range of roasted levels were analyzed by NIR, meanwhile, in which the caffeine contents were quantitative determined by the most commonly used HPLC-UV method as the reference values. Then calibration models based on chemometric analyses of the NIR spectral data and reference concentrations of coffee samples were developed. Partial least squares (PLS) regression was used to construct the models. Furthermore, diverse spectra pretreatment and variable selection techniques were applied in order to obtain robust and reliable reduced-spectrum regression models. Comparing the respective quality of the different models constructed, the application of second derivative pretreatment and stability competitive adaptive reweighted sampling (SCARS) variable selection provided a notably improved regression model, with root mean square error of cross validation (RMSECV) of 0.375 mg/g and correlation coefficient (R) of 0.918 at PLS factor of 7. An independent test set was used to assess the model, with the root mean square error of prediction (RMSEP) of 0.378 mg/g, mean relative error of 1.976% and mean relative standard deviation (RSD) of 1.707%. Thus, the results provided by the high-quality calibration model revealed the feasibility of NIR spectroscopy for at-line application to predict the caffeine content of unknown roasted coffee samples, thanks to the short analysis time of a few seconds and non-destructive advantages of NIRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Timothy J.; Jones, Roger W.; Ai, Yongfeng
Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55 % (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the 8-weekmore » study, cecal and distal colon content samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic-treated subgroups were well classified for cecal samples and modestly separated for distal colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.« less
Grisales, Jaiver Osorio; Arancibia, Juan A; Castells, Cecilia B; Olivieri, Alejandro C
2012-12-01
In this report, we demonstrate how chiral liquid chromatography combined with multivariate chemometric techniques, specifically unfolded-partial least-squares regression (U-PLS), provides a powerful analytical methodology. Using U-PLS, strongly overlapped enantiomer profiles in a sample could be successfully processed and enantiomeric purity could be accurately determined without requiring baseline enantioresolution between peaks. The samples were partially enantioseparated with a permethyl-β-cyclodextrin chiral column under reversed-phase conditions. Signals detected with a diode-array detector within a wavelength range from 198 to 241 nm were recorded, and the data were processed by a second-order multivariate algorithm to decrease detection limits. The R-(-)-enantiomer of ibuprofen in tablet formulation samples could be determined at the level of 0.5 mg L⁻¹ in the presence of 99.9% of the S-(+)-enantiomorph with relative prediction error within ±3%. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Xue-Xi; Yin, Jian-Hua; Mao, Zhi-Hua; Xia, Yang
2015-01-01
Abstract. Fourier transform infrared imaging (FTIRI) combined with chemometrics algorithm has strong potential to obtain complex chemical information from biology tissues. FTIRI and partial least squares-discriminant analysis (PLS-DA) were used to differentiate healthy and osteoarthritic (OA) cartilages for the first time. A PLS model was built on the calibration matrix of spectra that was randomly selected from the FTIRI spectral datasets of healthy and lesioned cartilage. Leave-one-out cross-validation was performed in the PLS model, and the fitting coefficient between actual and predicted categorical values of the calibration matrix reached 0.95. In the calibration and prediction matrices, the successful identifying percentages of healthy and lesioned cartilage spectra were 100% and 90.24%, respectively. These results demonstrated that FTIRI combined with PLS-DA could provide a promising approach for the categorical identification of healthy and OA cartilage specimens. PMID:26057029
Zhang, Xue-Xi; Yin, Jian-Hua; Mao, Zhi-Hua; Xia, Yang
2015-06-01
Fourier transform infrared imaging (FTIRI) combined with chemometrics algorithm has strong potential to obtain complex chemical information from biology tissues. FTIRI and partial least squares-discriminant analysis (PLS-DA) were used to differentiate healthy and osteoarthritic (OA) cartilages for the first time. A PLS model was built on the calibration matrix of spectra that was randomly selected from the FTIRI spectral datasets of healthy and lesioned cartilage. Leave-one-out cross-validation was performed in the PLS model, and the fitting coefficient between actual and predicted categorical values of the calibration matrix reached 0.95. In the calibration and prediction matrices, the successful identifying percentages of healthy and lesioned cartilage spectra were 100% and 90.24%, respectively. These results demonstrated that FTIRI combined with PLS-DA could provide a promising approach for the categorical identification of healthy and OA cartilage specimens.
NASA Astrophysics Data System (ADS)
Jiang, Junjun; Hu, Ruimin; Han, Zhen; Wang, Zhongyuan; Chen, Jun
2013-10-01
Face superresolution (SR), or face hallucination, refers to the technique of generating a high-resolution (HR) face image from a low-resolution (LR) one with the help of a set of training examples. It aims at transcending the limitations of electronic imaging systems. Applications of face SR include video surveillance, in which the individual of interest is often far from cameras. A two-step method is proposed to infer a high-quality and HR face image from a low-quality and LR observation. First, we establish the nonlinear relationship between LR face images and HR ones, according to radial basis function and partial least squares (RBF-PLS) regression, to transform the LR face into the global face space. Then, a locality-induced sparse representation (LiSR) approach is presented to enhance the local facial details once all the global faces for each LR training face are constructed. A comparison of some state-of-the-art SR methods shows the superiority of the proposed two-step approach, RBF-PLS global face regression followed by LiSR-based local patch reconstruction. Experiments also demonstrate the effectiveness under both simulation conditions and some real conditions.
Talpur, M Younis; Kara, Huseyin; Sherazi, S T H; Ayyildiz, H Filiz; Topkafa, Mustafa; Arslan, Fatma Nur; Naz, Saba; Durmaz, Fatih; Sirajuddin
2014-11-01
Single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) spectroscopy in conjunction with chemometrics was used for accurate determination of free fatty acid (FFA), peroxide value (PV), iodine value (IV), conjugated diene (CD) and conjugated triene (CT) of cottonseed oil (CSO) during potato chips frying. Partial least square (PLS), stepwise multiple linear regression (SMLR), principal component regression (PCR) and simple Beer׳s law (SBL) were applied to develop the calibrations for simultaneous evaluation of five stated parameters of cottonseed oil (CSO) during frying of French frozen potato chips at 170°C. Good regression coefficients (R(2)) were achieved for FFA, PV, IV, CD and CT with value of >0.992 by PLS, SMLR, PCR, and SBL. Root mean square error of prediction (RMSEP) was found to be less than 1.95% for all determinations. Result of the study indicated that SB-ATR FTIR in combination with multivariate chemometrics could be used for accurate and simultaneous determination of different parameters during the frying process without using any toxic organic solvent. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Xiaona; Zhang, Qiao; Wu, Zhisheng; Shi, Xinyuan; Zhao, Na; Qiao, Yanjiang
2015-01-01
Laser-induced breakdown spectroscopy (LIBS) was applied to perform a rapid elemental analysis and provenance study of Blumea balsamifera DC. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were implemented to exploit the multivariate nature of the LIBS data. Scores and loadings of computed principal components visually illustrated the differing spectral data. The PLS-DA algorithm showed good classification performance. The PLS-DA model using complete spectra as input variables had similar discrimination performance to using selected spectral lines as input variables. The down-selection of spectral lines was specifically focused on the major elements of B. balsamifera samples. Results indicated that LIBS could be used to rapidly analyze elements and to perform provenance study of B. balsamifera. PMID:25558999
Rapid monitoring of grape withering using visible near-infrared spectroscopy.
Beghi, Roberto; Giovenzana, Valentina; Marai, Simone; Guidetti, Riccardo
2015-12-01
Wineries need new practical and quick instruments, non-destructive and able to quantitatively evaluate during withering the parameters that impact product quality. The aim of the work was to test an optical portable system (visible near-infrared (NIR) spectrophotometer) in a wavelength range of 400-1000 nm for the prediction of quality parameters of grape berries during withering. A total of 300 red grape samples (Vitis vinifera L., Corvina cultivar) harvested in vintage year 2012 from the Valpolicella area (Verona, Italy) were analyzed. Qualitative (principal component analysis, PCA) and quantitative (partial least squares regression algorithm, PLS) evaluations were performed on grape spectra. PCA showed a clear sample grouping for the different withering stages. PLS models gave encouraging predictive capabilities for soluble solids content (R(2) val = 0.62 and ratio performance deviation, RPD = 1.87) and firmness (R(2) val = 0.56 and RPD = 1.79). The work demonstrated the applicability of visible NIR spectroscopy as a rapid technique for the analysis of grape quality directly in barns, during withering. The sector could be provided with simple and inexpensive optical systems that could be used to monitor the withering degree of grape for better management of the wine production process. © 2014 Society of Chemical Industry.
Morais Ferreira, Janaína Madruga; Azevedo, Bruna Marcacini; Luccas, Valdecir; Bolini, Helena Maria André
2017-03-01
Functional food is a product containing nutrients that provide health benefits beyond basic nutrition. The objective of the present study was to evaluate the descriptive sensory profile and consumers' acceptance of functional (prebiotic) white chocolates with and without the addition of an antioxidant source (goji berry [GB]) and sucrose replacement. The descriptive sensory profile was determined by quantitative descriptive analysis (QDA) with trained assessors (n = 12), and the acceptance test was performed with 120 consumers. The correlation of descriptive and hedonic data was determined by partial least squares (PLS). The results of QDA indicated that GB reduces the perception of most aroma and flavor attributes, and enhances the bitter taste, bitter aftertaste, astringency, and most of the texture attributes. The consumers' acceptance of the chocolates was positive for all sensory characteristics, with acceptance scores above 6 on a 9-point scale. According to the PLS regression analysis, the descriptors cream color and cocoa butter flavor contributed positively to the acceptance of functional white chocolates. Therefore, prebiotic white chocolate with or without the addition of GB is innovative and can attract consumers, due to its functional properties, being a promising alternative for the food industry. © 2017 Institute of Food Technologists®.
Rationalizing context-dependent performance of dynamic RNA regulatory devices.
Kent, Ross; Halliwell, Samantha; Young, Kate; Swainston, Neil; Dixon, Neil
2018-06-21
The ability of RNA to sense, regulate and store information is an attractive attribute for a variety of functional applications including the development of regulatory control devices for synthetic biology. RNA folding and function is known to be highly context sensitive, which limits the modularity and reuse of RNA regulatory devices to control different heterologous sequences and genes. We explored the cause and effect of sequence context sensitivity for translational ON riboswitches located in the 5' UTR, by constructing and screening a library of N-terminal synonymous codon variants. By altering the N-terminal codon usage we were able to obtain RNA devices with a broad range of functional performance properties (ON, OFF, fold-change). Linear regression and calculated metrics were used to rationalize the major determining features leading to optimal riboswitch performance, and to identify multiple interactions between the explanatory metrics. Finally, partial least squared (PLS) analysis was employed in order to understand the metrics and their respective effect on performance. This PLS model was shown to provide good explanation of our library. This study provides a novel multi-variant analysis framework by which to rationalize the codon context performance of allosteric RNA-devices. The framework will also serve as a platform for future riboswitch context engineering endeavors.
Mohammadi Moghaddam, Toktam; Razavi, Seyed M A; Taghizadeh, Masoud; Sazgarnia, Ameneh
2016-01-01
Roasting is an important step in the processing of pistachio nuts. The effect of hot air roasting temperature (90, 120 and 150 °C), time (20, 35 and 50 min) and air velocity (0.5, 1.5 and 2.5 m/s) on textural and sensory characteristics of pistachio nuts and kernels were investigated. The results showed that increasing the roasting temperature decreased the fracture force (82-25.54 N), instrumental hardness (82.76-37.59 N), apparent modulus of elasticity (47-21.22 N/s), compressive energy (280.73-101.18 N.s) and increased amount of bitterness (1-2.5) and the hardness score (6-8.40) of pistachio kernels. Higher roasting time improved the flavor of samples. The results of the consumer test showed that the roasted pistachio kernels have good acceptability for flavor (score 5.83-8.40), color (score 7.20-8.40) and hardness (score 6-8.40) acceptance. Moreover, Partial Least Square (PLS) analysis of instrumental and sensory data provided important information for the correlation of objective and subjective properties. The univariate analysis showed that over 93.87 % of the variation in sensory hardness and almost 87 % of the variation in sensory acceptability could be explained by instrumental texture properties.
Aleixandre-Tudo, José Luis; Nieuwoudt, Helené; Aleixandre, José Luis; Du Toit, Wessel J
2015-02-04
The validation of ultraviolet-visible (UV-vis) spectroscopy combined with partial least-squares (PLS) regression to quantify red wine tannins is reported. The methylcellulose precipitable (MCP) tannin assay and the bovine serum albumin (BSA) tannin assay were used as reference methods. To take the high variability of wine tannins into account when the calibration models were built, a diverse data set was collected from samples of South African red wines that consisted of 18 different cultivars, from regions spanning the wine grape-growing areas of South Africa with their various sites, climates, and soils, ranging in vintage from 2000 to 2012. A total of 240 wine samples were analyzed, and these were divided into a calibration set (n = 120) and a validation set (n = 120) to evaluate the predictive ability of the models. To test the robustness of the PLS calibration models, the predictive ability of the classifying variables cultivar, vintage year, and experimental versus commercial wines was also tested. In general, the statistics obtained when BSA was used as a reference method were slightly better than those obtained with MCP. Despite this, the MCP tannin assay should also be considered as a valid reference method for developing PLS calibrations. The best calibration statistics for the prediction of new samples were coefficient of correlation (R 2 val) = 0.89, root mean standard error of prediction (RMSEP) = 0.16, and residual predictive deviation (RPD) = 3.49 for MCP and R 2 val = 0.93, RMSEP = 0.08, and RPD = 4.07 for BSA, when only the UV region (260-310 nm) was selected, which also led to a faster analysis time. In addition, a difference in the results obtained when the predictive ability of the classifying variables vintage, cultivar, or commercial versus experimental wines was studied suggests that tannin composition is highly affected by many factors. This study also discusses the correlations in tannin values between the methylcellulose and protein precipitation methods.
Nuclear Forensic Inferences Using Iterative Multidimensional Statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robel, M; Kristo, M J; Heller, M A
2009-06-09
Nuclear forensics involves the analysis of interdicted nuclear material for specific material characteristics (referred to as 'signatures') that imply specific geographical locations, production processes, culprit intentions, etc. Predictive signatures rely on expert knowledge of physics, chemistry, and engineering to develop inferences from these material characteristics. Comparative signatures, on the other hand, rely on comparison of the material characteristics of the interdicted sample (the 'questioned sample' in FBI parlance) with those of a set of known samples. In the ideal case, the set of known samples would be a comprehensive nuclear forensics database, a database which does not currently exist. Inmore » fact, our ability to analyze interdicted samples and produce an extensive list of precise materials characteristics far exceeds our ability to interpret the results. Therefore, as we seek to develop the extensive databases necessary for nuclear forensics, we must also develop the methods necessary to produce the necessary inferences from comparison of our analytical results with these large, multidimensional sets of data. In the work reported here, we used a large, multidimensional dataset of results from quality control analyses of uranium ore concentrate (UOC, sometimes called 'yellowcake'). We have found that traditional multidimensional techniques, such as principal components analysis (PCA), are especially useful for understanding such datasets and drawing relevant conclusions. In particular, we have developed an iterative partial least squares-discriminant analysis (PLS-DA) procedure that has proven especially adept at identifying the production location of unknown UOC samples. By removing classes which fell far outside the initial decision boundary, and then rebuilding the PLS-DA model, we have consistently produced better and more definitive attributions than with a single pass classification approach. Performance of the iterative PLS-DA method compared favorably to that of classification and regression tree (CART) and k nearest neighbor (KNN) algorithms, with the best combination of accuracy and robustness, as tested by classifying samples measured independently in our laboratories against the vendor QC based reference set.« less
Lotti, F; Corona, G; Mondaini, N; Maseroli, E; Rossi, M; Filimberti, E; Noci, I; Forti, G; Maggi, M
2014-01-01
'Prostatitis-like symptoms' (PLS) are a cluster of bothersome conditions defined as 'perineal and/or ejaculatory pain or discomfort and National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) pain subdomain score ≥4' (Nickel's criteria). PLS may originate from the prostate or from other portions of the male genital tract. Although PLS could be associated with 'prostatitis', they should not be confused. The NIH-CPSI is considered the gold-standard for assessing PLS severity. Although previous studies investigated the impact of prostatitis, vesiculitis or epididymitis on semen parameters, correlations between their related symptoms and seminal or scrotal/transrectal colour-Doppler ultrasound (CDU) characteristics have not been carefully determined. And no previous study evaluated the CDU features of PLS in infertile men. This study was aimed at investigating possible associations among NIH-CPSI (total and subdomain) scores and PLS, with seminal, clinical and scrotal/transrectal CDU parameters in a cohort of males of infertile couples. PLS of 400 men (35.8 ± 7.2 years) with a suspected male factor were assessed by the NIH-CPSI. All patients underwent, during the same day, semen analysis, seminal plasma interleukin 8 (sIL-8, a marker of male genital tract inflammation), biochemical evaluation, urine/seminal cultures, scrotal/transrectal CDU. PLS was detected in 39 (9.8%) subjects. After adjusting for age, waist and total testosterone (TT), no association among NIH-CPSI (total or subdomain) scores or PLS and sperm parameters was observed. However, we found a positive association with current positive urine and/or seminal cultures, sIL-8 levels and CDU features suggestive of inflammation of the epididymis, seminal vesicles, prostate, but not of the testis. The aforementioned significant associations of PLS were further confirmed by comparing PLS patients with age-, waist- and TT-matched PLS-free patients (1 : 3 ratio). In conclusion, NIH-CPSI scores and PLS evaluated in males of infertile couples, are not related to sperm parameters, but mainly to clinical and CDU signs of infection/inflammation. © 2013 American Society of Andrology and European Academy of Andrology.
NASA Astrophysics Data System (ADS)
Liu, Wen; Zhang, Yuying; Yang, Si; Han, Donghai
2018-05-01
A new technique to identify the floral resources of honeys is demanded. Terahertz time-domain attenuated total reflection spectroscopy combined with chemometrics methods was applied to discriminate different categorizes (Medlar honey, Vitex honey, and Acacia honey). Principal component analysis (PCA), cluster analysis (CA) and partial least squares-discriminant analysis (PLS-DA) have been used to find information of the botanical origins of honeys. Spectral range also was discussed to increase the precision of PLS-DA model. The accuracy of 88.46% for validation set was obtained, using PLS-DA model in 0.5-1.5 THz. This work indicated terahertz time-domain attenuated total reflection spectroscopy was an available approach to evaluate the quality of honey rapidly.
Lambou, Karine; Malagnac, Fabienne; Barbisan, Crystel; Tharreau, Didier; Lebrun, Marc-Henri; Silar, Philippe
2008-10-01
Pls1 tetraspanins were shown for some pathogenic fungi to be essential for appressorium-mediated penetration into their host plants. We show here that Podospora anserina, a saprobic fungus lacking appressorium, contains PaPls1, a gene orthologous to known PLS1 genes. Inactivation of PaPls1 demonstrates that this gene is specifically required for the germination of ascospores in P. anserina. These ascospores are heavily melanized cells that germinate under inducing conditions through a specific pore. On the contrary, MgPLS1, which fully complements a DeltaPaPls1 ascospore germination defect, has no role in the germination of Magnaporthe grisea nonmelanized ascospores but is required for the formation of the penetration peg at the pore of its melanized appressorium. P. anserina mutants with mutation of PaNox2, which encodes the NADPH oxidase of the NOX2 family, display the same ascospore-specific germination defect as the DeltaPaPls1 mutant. Both mutant phenotypes are suppressed by the inhibition of melanin biosynthesis, suggesting that they are involved in the same cellular process required for the germination of P. anserina melanized ascospores. The analysis of the distribution of PLS1 and NOX2 genes in fungal genomes shows that they are either both present or both absent. These results indicate that the germination of P. anserina ascospores and the formation of the M. grisea appressorium penetration peg use the same molecular machinery that includes Pls1 and Nox2. This machinery is specifically required for the emergence of polarized hyphae from reinforced structures such as appressoria and ascospores. Its recurrent recruitment during fungal evolution may account for some of the morphogenetic convergence observed in fungi.
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby
2017-01-01
Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.
Sato, Takako; Zaitsu, Kei; Tsuboi, Kento; Nomura, Masakatsu; Kusano, Maiko; Shima, Noriaki; Abe, Shuntaro; Ishii, Akira; Tsuchihashi, Hitoshi; Suzuki, Koichi
2015-05-01
Estimation of postmortem interval (PMI) is an important goal in judicial autopsy. Although many approaches can estimate PMI through physical findings and biochemical tests, accurate PMI calculation by these conventional methods remains difficult because PMI is readily affected by surrounding conditions, such as ambient temperature and humidity. In this study, Sprague-Dawley (SD) rats (10 weeks) were sacrificed by suffocation, and blood was collected by dissection at various time intervals (0, 3, 6, 12, 24, and 48 h; n = 6) after death. A total of 70 endogenous metabolites were detected in plasma by gas chromatography-tandem mass spectrometry (GC-MS/MS). Each time group was separated from each other on the principal component analysis (PCA) score plot, suggesting that the various endogenous metabolites changed with time after death. To prepare a prediction model of a PMI, a partial least squares (or projection to latent structure, PLS) regression model was constructed using the levels of significantly different metabolites determined by variable importance in the projection (VIP) score and the Kruskal-Wallis test (P < 0.05). Because the constructed PLS regression model could successfully predict each PMI, this model was validated with another validation set (n = 3). In conclusion, plasma metabolic profiling demonstrated its ability to successfully estimate PMI under a certain condition. This result can be considered to be the first step for using the metabolomics method in future forensic casework.
Kong, Yu; Wu, Qun; Zhang, Yan
2014-01-01
The in situ metabolic characteristics of the yeasts involved in spontaneous fermentation process of Chinese light-style liquor are poorly understood. The covariation between metabolic profiles and yeast communities in Chinese light-style liquor was modeled using the partial least square (PLS) regression method. The diversity of yeast species was evaluated by sequence analysis of the 26S ribosomal DNA (rDNA) D1/D2 domains of cultivable yeasts, and the volatile compounds in fermented grains were analyzed by gas chromatography (GC)-mass spectrometry (MS). Eight yeast species and 58 volatile compounds were identified, respectively. The modulation of 16 of these volatile compounds was associated with variations in the yeast population (goodness of prediction [Q2] > 20%). The results showed that Pichia anomala was responsible for the characteristic aroma of Chinese liquor, through the regulation of several important volatile compounds, such as ethyl lactate, octanoic acid, and ethyl tetradecanoate. Correspondingly, almost all of the compounds associated with P. anomala were detected in a pure culture of this yeast. In contrast to the PLS regression results, however, ethyl lactate and ethyl isobutyrate were not detected in the same pure culture, which indicated that some metabolites could be generated by P. anomala only when it existed in a community with other yeast species. Furthermore, different yeast communities provided different volatile patterns in the fermented grains, which resulted in distinct flavor profiles in the resulting liquors. This study could help identify the key yeast species involved in spontaneous fermentation and provide a deeper understanding of the role of individual yeast species in the community. PMID:24727269
Ali, Hina; Saleem, Muhammad; Anser, Muhammad Ramzan; Khan, Saranjam; Ullah, Rahat; Bilal, Muhammad
2018-01-01
Due to high price and nutritional values of extra virgin olive oil (EVOO), it is vulnerable to adulteration internationally. Refined oil or other vegetable oils are commonly blended with EVOO and to unmask such fraud, quick, and reliable technique needs to be standardized and developed. Therefore, in this study, adulteration of edible oil (sunflower oil) is made with pure EVOO and analyzed using fluorescence spectroscopy (excitation wavelength at 350 nm) in conjunction with principal component analysis (PCA) and partial least squares (PLS) regression. Fluorescent spectra contain fingerprints of chlorophyll and carotenoids that are characteristics of EVOO and differentiated it from sunflower oil. A broad intense hump corresponding to conjugated hydroperoxides is seen in sunflower oil in the range of 441-489 nm with the maximum at 469 nm whereas pure EVOO has low intensity doublet peaks in this region at 441 nm and 469 nm. Visible changes in spectra are observed in adulterated EVOO by increasing the concentration of sunflower oil, with an increase in doublet peak and correspondingly decrease in chlorophyll peak intensity. Principal component analysis showed a distinct clustering of adulterated samples of different concentrations. Subsequently, the PLS regression model was best fitted over the complete data set on the basis of coefficient of determination (R 2 ), standard error of calibration (SEC), and standard error of prediction (SEP) of values 0.99, 0.617, and 0.623 respectively. In addition to adulterant, test samples and imported commercial brands of EVOO were also used for prediction and validation of the models. Fluorescence spectroscopy combined with chemometrics showed its robustness to identify and quantify the specified adulterant in pure EVOO.
The development of comparative bias index
NASA Astrophysics Data System (ADS)
Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin
2017-08-01
Structural Equation Modeling (SEM) is a second generation statistical analysis techniques developed for analyzing the inter-relationships among multiple variables in a model simultaneously. There are two most common used methods in SEM namely Covariance-Based Structural Equation Modeling (CB-SEM) and Partial Least Square Path Modeling (PLS-PM). There have been continuous debates among researchers in the use of PLS-PM over CB-SEM. While there is few studies were conducted to test the performance of CB-SEM and PLS-PM bias in estimating simulation data. This study intends to patch this problem by a) developing the Comparative Bias Index and b) testing the performance of CB-SEM and PLS-PM using developed index. Based on balanced experimental design, two multivariate normal simulation data with of distinct specifications of size 50, 100, 200 and 500 are generated and analyzed using CB-SEM and PLS-PM.
Li, Yankun; Shao, Xueguang; Cai, Wensheng
2007-04-15
Consensus modeling of combining the results of multiple independent models to produce a single prediction avoids the instability of single model. Based on the principle of consensus modeling, a consensus least squares support vector regression (LS-SVR) method for calibrating the near-infrared (NIR) spectra was proposed. In the proposed approach, NIR spectra of plant samples were firstly preprocessed using discrete wavelet transform (DWT) for filtering the spectral background and noise, then, consensus LS-SVR technique was used for building the calibration model. With an optimization of the parameters involved in the modeling, a satisfied model was achieved for predicting the content of reducing sugar in plant samples. The predicted results show that consensus LS-SVR model is more robust and reliable than the conventional partial least squares (PLS) and LS-SVR methods.
Mixture quantification using PLS in plastic scintillation measurements.
Bagán, H; Tarancón, A; Rauret, G; García, J F
2011-06-01
This article reports the capability of plastic scintillation (PS) combined with multivariate calibration (Partial least squares; PLS) to detect and quantify alpha and beta emitters in mixtures. While several attempts have been made with this purpose in mind using liquid scintillation (LS), no attempt was done using PS that has the great advantage of not producing mixed waste after the measurements are performed. Following this objective, ternary mixtures of alpha and beta emitters ((241)Am, (137)Cs and (90)Sr/(90)Y) have been quantified. Procedure optimisation has evaluated the use of the net spectra or the sample spectra, the inclusion of different spectra obtained at different values of the Pulse Shape Analysis parameter and the application of the PLS1 or PLS2 algorithms. The conclusions show that the use of PS+PLS2 applied to the sample spectra, without the use of any pulse shape discrimination, allows quantification of the activities with relative errors less than 10% in most of the cases. This procedure not only allows quantification of mixtures but also reduces measurement time (no blanks are required) and the application of this procedure does not require detectors that include the pulse shape analysis parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.
Funabashi, Nobusada; Takaoka, Hiroyuki; Ozawa, Koya; Kamata, Tomoko; Uehara, Masae; Komuro, Issei; Kobayashi, Yoshio
2018-05-30
To achieve further risk stratification in hypertrophic cardiomyopathy (HCM) patients, we localized and quantified layer-specific LVM fibrosis on MRI in HCM patients using regional layer-specific peak longitudinal strain (PLS) and peak circumferential strain (PCS) in LV myocardium (LVM) on speckle tracking transthoracic echocardiography (TTE). A total of 18 HCM patients (14 males; 58 ± 17 years) underwent 1.5T-MRI and TTE. PLS and PCS in each layer of the LVM (endocardium, epicardium, and whole-layer myocardium) were calculated for 17 AHA-defined lesions. MRI assessment showed that fibrosis was classified as endocardial, epicardial, or whole-layer (= either or both of these). Regional PLS was smaller in fibrotic endocardial lesions than in non-fibrotic endocardial lesions (P = 0.004). To detect LV endocardial lesions with fibrosis, ROC curves of regional PLS revealed an area under the curve (AUC) of 0.609 and a best cut-off point of 13.5%, with sensitivity of 65.3% and specificity of 54.3%. Regional PLS was also smaller in fibrotic epicardial lesions than in non-fibrotic epicardial lesions (P < 0.001). To detect LV epicardial lesions with fibrosis, ROC curves of PLS revealed an AUC of 0.684 and a best cut-off point of 9.5%, with sensitivity of 73.5% and specificity of 55.5%. Using whole-layer myocardium analysis, PLS was smaller in fibrotic lesions than in non-fibrotic lesions (P < 0.001). To detect whole-layer LV lesions with fibrosis, ROC curves of regional PLS revealed an AUC of 0.674 and a best cut-off point of 12.5%, with sensitivity of 79.0% and specificity of 50.7%. There were no significant differences in PCS of LV myocardium (endocardium, epicardium, and whole-layer) between fibrotic and non-fibrotic lesions. Quantitative regional PLS but not PCS in LV endocardium, epicardium, and whole-layer myocardium provides useful non-invasive information for layer-specific localization of fibrosis in HCM patients.
USDA-ARS?s Scientific Manuscript database
Hyperspectral scattering is a promising technique for rapid and noninvasive measurement of multiple quality attributes of apple fruit. A hierarchical evolutionary algorithm (HEA) approach, in combination with subspace decomposition and partial least squares (PLS) regression, was proposed to select o...
NASA Astrophysics Data System (ADS)
Bilal, Maria; Bilal, Muhammad; Saleem, Muhammad; Khurram, Muhammad; Khan, Saranjam; Ullah, Rahat; Ali, Hina; Ahmed, Mushtaq; Shahzada, Shaista; Ullah Khan, Ehsan
2017-04-01
Raman spectroscopy based investigations of the molecular changes associated with an early stage of dengue virus infection (DENV) using a partial least squares (PLS) regression model is presented. This study is based on non-structural protein 1 (NS1) which appears after three days of DENV infection. In total, 39 blood sera samples were collected and divided into two groups. The control group contained samples which were the negative for NS1 and antibodies and the positive group contained those samples in which NS1 is positive and antibodies were negative. Out of 39 samples, 29 Raman spectra were used for the model development while the remaining 10 were kept hidden for blind testing of the model. PLS regression yielded a vector of regression coefficients as a function of Raman shift, which were analyzed. Cytokines in the region 775-875 cm-1, lectins at 1003, 1238, 1340, 1449 and 1672 cm-1, DNA in the region 1040-1140 cm-1 and alpha and beta structures of proteins in the region 933-967 cm-1 have been identified in the regression vector for their role in an early stage of DENV infection. Validity of the model was established by its R-square value of 0.891. Sensitivity, specificity and accuracy were 100% each and the area under the receiver operator characteristic curve was found to be 1.
PLS modelling of structure—activity relationships of catechol O-methyltransferase inhibitors
NASA Astrophysics Data System (ADS)
Lotta, Timo; Taskinen, Jyrki; Bäckström, Reijo; Nissinen, Erkki
1992-06-01
Quantitative structure-activity analysis was carried out for in vitro inhibition of rat brain soluble catechol O-methyltransferase by a series (N=99) of 1,5-substituted-3,4-dihydroxybenzenes using computational chemistry and multivariate PLS modelling of data sets. The molecular structural descriptors (N=19) associated with the electronics of the catecholic ring and sizes of substituents were derived theoretically. For the whole set of molecules two separate PLS models have to be used. A PLS model with two significant (crossvalidated) model dimensions describing 82.2% of the variance in inhibition activity data was capable of predicting all molecules except those having the largest R1 substituent or having a large R5 substituent compared to the NO2 group. The other PLS model with three significant (crossvalidated) model dimensions described 83.3% of the variance in inhibition activity data. This model could not handle compounds having a small R5 substituent, compared to the NO2 group, or the largest R1 substituent. The predictive capability of these PLS models was good. The models reveal that inhibition activity is nonlinearly related to the size of the R5 substituent. The analysis of the PLS models also shows that the binding affinity is greatly dependent on the electronic nature of both R1 and R5 substituents. The electron-withdrawing nature of the substituents enhances inhibition activity. In addition, the size of the R1 substituent and its lipophilicity are important in the binding of inhibitors. The size of the R1 substituent has an upper limit. On the other hand, ionized R1 substituents decrease inhibition activity.
Bleiziffer, Isabelle; Eikmeier, Julian; Pohlentz, Gottfried; McAulay, Kathryn; Xia, Guoqing; Hussain, Muzaffar; Peschel, Andreas; Foster, Simon; Peters, Georg; Heilmann, Christine
2017-01-01
Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To study protein glycosylation in staphylococci, we analyzed lysostaphin lysates of methicillin-resistant Staphylococcus aureus (MRSA) strains by SDS-PAGE and subsequent periodic acid-Schiff's staining. We detected four (>300, ∼250, ∼165, and ∼120 kDa) and two (>300 and ∼175 kDa) glycosylated surface proteins with strain COL and strain 1061, respectively. The ∼250, ∼165, and ∼175 kDa proteins were identified as plasmin-sensitive protein (Pls) by mass spectrometry. Previously, Pls has been demonstrated to be a virulence factor in a mouse septic arthritis model. The pls gene is encoded by the staphylococcal cassette chromosome (SCC)mec type I in MRSA that also encodes the methicillin resistance-conferring mecA and further genes. In a search for glycosyltransferases, we identified two open reading frames encoded downstream of pls on the SCCmec element, which we termed gtfC and gtfD. Expression and deletion analysis revealed that both gtfC and gtfD mediate glycosylation of Pls. Additionally, the recently reported glycosyltransferases SdgA and SdgB are involved in Pls glycosylation. Glycosylation occurs at serine residues in the Pls SD-repeat region and modifying carbohydrates are N-acetylhexosaminyl residues. Functional characterization revealed that Pls can confer increased biofilm formation, which seems to involve two distinct mechanisms. The first mechanism depends on glycosylation of the SD-repeat region by GtfC/GtfD and probably also involves eDNA, while the second seems to be independent of glycosylation as well as eDNA and may involve the centrally located G5 domains. Other previously known Pls properties are not related to the sugar modifications. In conclusion, Pls is a glycoprotein and Pls glycosyl residues can stimulate biofilm formation. Thus, sugar modifications may represent promising new targets for novel therapeutic or prophylactic measures against life-threatening S. aureus infections.
Alladio, E; Giacomelli, L; Biosa, G; Corcia, D Di; Gerace, E; Salomone, A; Vincenti, M
2018-01-01
The chronic intake of an excessive amount of alcohol is currently ascertained by determining the concentration of direct alcohol metabolites in the hair samples of the alleged abusers, including ethyl glucuronide (EtG) and, less frequently, fatty acid ethyl esters (FAEEs). Indirect blood biomarkers of alcohol abuse are still determined to support hair EtG results and diagnose a consequent liver impairment. In the present study, the supporting role of hair FAEEs is compared with indirect blood biomarkers with respect to the contexts in which hair EtG interpretation is uncertain. Receiver Operating Characteristics (ROC) curves and multivariate Principal Component Analysis (PCA) demonstrated much stronger correlation of EtG results with FAEEs than with any single indirect biomarker or their combinations. Partial Least Squares Discriminant Analysis (PLS-DA) models based on hair EtG and FAEEs were developed to maximize the biomarkers information content on a multivariate background. The final PLS-DA model yielded 100% correct classification on a training/evaluation dataset of 155 subjects, including both chronic alcohol abusers and social drinkers. Then, the PLS-DA model was validated on an external dataset of 81 individual providing optimal discrimination ability between chronic alcohol abusers and social drinkers, in terms of specificity and sensitivity. The PLS-DA scores obtained for each subject, with respect to the PLS-DA model threshold that separates the probabilistic distributions for the two classes, furnished a likelihood ratio value, which in turn conveys the strength of the experimental data support to the classification decision, within a Bayesian logic. Typical boundary real cases from daily work are discussed, too. Copyright © 2017 Elsevier B.V. All rights reserved.
Baum, Andreas; Hansen, Per Waaben; Meyer, Anne S; Mikkelsen, Jørn Dalgaard
2013-08-06
Enzymes are used in many processes to release fermentable sugars for green production of biofuel, or the refinery of biomass for extraction of functional food ingredients such as pectin or prebiotic oligosaccharides. The complex biomasses may, however, require a multitude of specific enzymes which are active on specific substrates generating a multitude of products. In this paper we use the plant polymer, pectin, to present a method to quantify enzyme activity of two pectolytic enzymes by monitoring their superimposed spectral evolutions simultaneously. The data is analyzed by three chemometric multiway methods, namely PARAFAC, TUCKER3 and N-PLS, to establish simultaneous enzyme activity assays for pectin lyase and pectin methyl esterase. Correlation coefficients Rpred(2) for prediction test sets are 0.48, 0.96 and 0.96 for pectin lyase and 0.70, 0.89 and 0.89 for pectin methyl esterase, respectively. The retrieved models are compared and prediction test sets show that especially TUCKER3 performs well, even in comparison to the supervised regression method N-PLS. Copyright © 2013 Elsevier B.V. All rights reserved.
Eliseyev, Andrey; Aksenova, Tetiana
2016-01-01
In the current paper the decoding algorithms for motor-related BCI systems for continuous upper limb trajectory prediction are considered. Two methods for the smooth prediction, namely Sobolev and Polynomial Penalized Multi-Way Partial Least Squares (PLS) regressions, are proposed. The methods are compared to the Multi-Way Partial Least Squares and Kalman Filter approaches. The comparison demonstrated that the proposed methods combined the prediction accuracy of the algorithms of the PLS family and trajectory smoothness of the Kalman Filter. In addition, the prediction delay is significantly lower for the proposed algorithms than for the Kalman Filter approach. The proposed methods could be applied in a wide range of applications beyond neuroscience. PMID:27196417
Souza, Beatriz C C; De Oliveira, Tiago B; Aquino, Thiago M; de Lima, Maria C A; Pitta, Ivan R; Galdino, Suely L; Lima, Edeltrudes O; Gonçalves-Silva, Teresinha; Militão, Gardênia C G; Scotti, Luciana; Scotti, Marcus T; Mendonça, Francisco J B
2012-06-01
A series of 2-[(arylidene)amino]-cycloalkyl[b]thiophene-3-carbonitriles (2a-x) was synthesized by incorporation of substituted aromatic aldehydes in Gewald adducts (1a-c). The title compounds were screened for their antifungal activity against Candida krusei and Criptococcus neoformans and for their antiproliferative activity against a panel of 3 human cancer cell lines (HT29, NCI H-292 and HEP). For antiproliferative activity, the partial least squares (PLS) methodology was applied. Some of the prepared compounds exhibited promising antifungal and proliferative properties. The most active compounds for antifungal activity were cyclohexyl[b]thiophene derivatives, and for antiproliferative activity cycloheptyl[b]thiophene derivatives, especially 2-[(1H-indol-2-yl-methylidene)amino]- 5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile (2r), which inhibited more than 97 % growth of the three cell lines. The PLS discriminant analysis (PLS-DA) applied generated good exploratory and predictive results and showed that the descriptors having shape characteristics were strongly correlated with the biological data.
Sun, Zhongyu; Li, Can; Li, Lian; Nie, Lei; Dong, Qin; Li, Danyang; Gao, Lingling; Zang, Hengchang
2018-08-05
N-acetyl-d-glucosamine (GlcNAc) is a microbial fermentation product, and NIR spectroscopy is an effective process analytical technology (PAT) tool in detecting the key quality attribute: the GlcNAc content. Meanwhile, the design of NIR spectrometers is under the trend of miniaturization, portability and low-cost nowadays. The aim of this study was to explore a portable micro NIR spectrometer with the fermentation process. First, FT-NIR spectrometer and Micro-NIR 1700 spectrometer were compared with simulated fermentation process solutions. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal FT-NIR and Micro-NIR 1700 models were 0.999, 0.999, 3.226 g/L, 1.388 g/L and 0.999, 0.999, 1.821 g/L, 0.967 g/L. Passing-Bablok regression method and paired t-test results showed there were no significant differences between the two instruments. Then the Micro-NIR 1700 was selected for the practical fermentation process, 135 samples from 10 batches were collected. Spectral pretreatment methods and variables selection methods (BiPLS, FiPLS, MWPLS and CARS-PLS) for PLS modeling were discussed. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal GlcNAc content PLS model of the practical fermentation process were 0.994, 0.995, 2.792 g/L and 1.946 g/L. The results have a positive reference for application of the Micro-NIR spectrometer. To some extent, it could provide theoretical supports in guiding the microbial fermentation or the further assessment of bioprocess. Copyright © 2018. Published by Elsevier B.V.
Sheng, Kui-Chuan; Shen, Ying-Ying; Yang, Hai-Qing; Wang, Wen-Jin; Luo, Wei-Qiang
2012-10-01
Rapid determination of biomass feedstock properties is of value for the production of biomass densification briquetting fuel with high quality. In the present study, visible and near-infrared (Vis-NIR) spectroscopy was employed to build prediction models of componential contents, i. e. moisture, ash, volatile matter and fixed-carbon, and calorific value of three selected species of agricultural biomass feedstock, i. e. pine wood, cedar wood, and cotton stalk. The partial least squares (PLS) cross validation results showed that compared with original reflection spectra, PLS regression models developed for first derivative spectra produced higher prediction accuracy with coefficients of determination (R2) of 0.97, 0.94 and 0.90, and residual prediction deviation (RPD) of 6.57, 4.00 and 3.01 for ash, volatile matter and moisture, respectively. Good prediction accuracy was achieved with R2 of 0.85 and RPD of 2.55 for fixed carbon, and R2 of 0.87 and RPD of 2.73 for calorific value. It is concluded that the Vis-NIR spectroscopy is promising as an alternative of traditional proximate analysis for rapid determination of componential contents and calorific value of agricultural biomass feedstock
Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Leung, Hei-Wun
2008-02-13
Honghua Oil (HHO), a traditional Chinese medicine (TCM) oil preparation, is a mixture of several plant essential oils. In this text, the extended ranges of Fourier transform mid-infrared (FT-MIR) and near infrared (FT-NIR) were recorded for 48 commercially available HHOs of different batches from nine manufacturers. The qualitative and quantitative analysis of three marker components, alpha-pinene, methyl salicylate and eugenol, in different HHO products were performed rapidly by the two vibrational spectroscopic methods, i.e. MIR with horizontal attenuated total reflection (HATR) accessory and NIR with direct sampling technique, followed by partial least squares (PLS) regression treatment of the set of spectra obtained. The results indicated that it was successful to identify alpha-pinene, methyl salicylate and eugenol in all of the samples by simple inspection of the MIR-HATR spectra. Both PLS models established with MIR-HATR and NIR spectral data using gas chromatography (GC) peak areas as calibration reference showed a good linear correlation for each of all three target substances in HHO samples. The above spectroscopic techniques may be the promising methods for the rapid quality assessment/quality control (QA/QC) of TCM oil preparations.
Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun
2014-01-01
Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.
Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy.
Liu, Yan-De; Ying, Yi-Bin; Fu, Xia-Ping
2005-03-01
To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way.
Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy*
Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping
2005-01-01
To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r 2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way. PMID:15682498
Scampicchio, Matteo; Mimmo, Tanja; Capici, Calogero; Huck, Christian; Innocente, Nadia; Drusch, Stephan; Cesco, Stefano
2012-11-14
Stable isotope values were used to develop a new analytical approach enabling the simultaneous identification of milk samples either processed with different heating regimens or from different geographical origins. The samples consisted of raw, pasteurized (HTST), and ultrapasteurized (UHT) milk from different Italian origins. The approach consisted of the analysis of the isotope ratio of δ¹³C and δ¹⁵N for the milk samples and their fractions (fat, casein, and whey). The main finding of this work is that as the heat processing affects the composition of the milk fractions, changes in δ¹³C and δ¹⁵N were also observed. These changes were used as markers to develop pattern recognition maps based on principal component analysis and supervised classification models, such as linear discriminant analysis (LDA), multivariate regression (MLR), principal component regression (PCR), and partial least-squares (PLS). The results give proof of the concept that isotope ratio mass spectroscopy can discriminate simultaneously between milk samples according to their geographical origin and type of processing.
Computerized pigment design based on property hypersurfaces
NASA Astrophysics Data System (ADS)
Halova, Jaroslava; Sulcova, Petra; Kupka, Karel
2007-05-01
Competition is tough in the pigment market. Rational pigment design has therefore a competitive advantage, saving time and money. The aim of this work is to provide methods that can assist in designing pigments with defined properties. These methods include partial least squares regression (PLSR), neural network (NN) and generalized regression ANOVA model. Authors show how PLS bi-plot can be used to identify market gaps poorly covered by pigment manufacturers, thus giving an opportunity to develop pigments with potentially profitable properties.
Besis, Athanasios; Tsolakidou, Alexandra; Balla, Dimitra; Samara, Constantini; Voutsa, Dimitra; Pantazaki, Anastasia; Choli-Papadopoulou, Theodora; Lialiaris, Theodore S
2017-11-01
Toxic organic substances and polar organic marker compounds, i.e. polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs) and their nitro-derivatives (N-PAHs), as well as dicarboxylic acids (DCAs) and sugars/sugar anhydrites (S/SAs) were analyzed in size-segregated PM samples (<0.49, 0.49-0.97, 0.97-3 and >3 μm) collected at two urban sites (urban traffic and urban background) during the cold and the warm season. The potential associations between the organic PM determinants and the adverse cellular effects (i.e. cytotoxicity, genotoxicity, DNA damage, oxidative DNA adduct formation, and inflammatory response) induced by the extractable organic matter (EOM) of PM, previously measured in Velali et al. (2016b), were investigated by bivariate correlations and Principal Component Analysis (PCA). Partial Least Square regression analysis (PLS) was also employed in order to identify the chemical classes mainly involved in the EOM-induced toxicological endpoints in the various particle size fractions. Results indicated that particle size range <0.49 μm was the major carrier of PM mass and organic compounds at both sites. All toxic organic compounds exhibited higher concentrations at the urban traffic site, except PCBs and OCPs that did not exhibit intra-urban variations. Conversely, wintertime levels of levoglucosan were significantly higher at the urban background site as a result of residential biomass burning. The PLS regression analysis allowed quite good prediction of the EOM-induced cytotoxicity and genotoxicity based on the determined organic chemical classes, particularly for the finest size fraction of PM. Nevertheless, it is expected that other chemical constituents, not determined here, also contribute to the measured toxicological responses. Copyright © 2017. Published by Elsevier Ltd.
Energy and speleogenesis: Key determinants of terrestrial species richness in caves.
Jiménez-Valverde, Alberto; Sendra, Alberto; Garay, Policarp; Reboleira, Ana Sofia P S
2017-12-01
The aim of this study was to unravel the relative role played by speleogenesis (i.e., the process in which a cave is formed), landscape-scale variables, and geophysical factors in the determination of species richness in caves. Biological inventories from 21 caves located in the southeastern Iberian Peninsula along with partial least square (PLS) regression analysis were used to assess the relative importance of the different explanatory variables. The caves were grouped according to the similarity in their species composition; the effect that spatial distance could have on similarity was also studied using correlation between matrices. The energy and speleogenesis of caves accounted for 44.3% of the variation in species richness. The trophic level of each cave was the most significant factor in PLS regression analysis, and epigenic caves (i.e., those formed by the action of percolating water) had significantly more species than hypogenic ones (i.e., those formed by the action of upward flows in confined aquifers). Dissimilarity among the caves was very high (multiple-site β sim = 0.92). Two main groups of caves were revealed through the cluster analysis, one formed by the western caves and the other by the eastern ones. The significant-but low-correlation found between faunistic dissimilarity and geographical distance ( r = .16) disappeared once the caves were split into the two groups. The extreme beta-diversity suggests a very low connection among the caves and/or a very low dispersal capacity of the species. In the region under study, two main factors are intimately related to the richness of terrestrial subterranean species in caves: the amount of organic material (trophic level) and the formation process (genesis). This is the first time that the history of a cave genesis has been quantitatively considered to assess its importance in explaining richness patterns in comparison with other factors more widely recognized.
Lambou, Karine; Malagnac, Fabienne; Barbisan, Crystel; Tharreau, Didier; Lebrun, Marc-Henri; Silar, Philippe
2008-01-01
Pls1 tetraspanins were shown for some pathogenic fungi to be essential for appressorium-mediated penetration into their host plants. We show here that Podospora anserina, a saprobic fungus lacking appressorium, contains PaPls1, a gene orthologous to known PLS1 genes. Inactivation of PaPls1 demonstrates that this gene is specifically required for the germination of ascospores in P. anserina. These ascospores are heavily melanized cells that germinate under inducing conditions through a specific pore. On the contrary, MgPLS1, which fully complements a ΔPaPls1 ascospore germination defect, has no role in the germination of Magnaporthe grisea nonmelanized ascospores but is required for the formation of the penetration peg at the pore of its melanized appressorium. P. anserina mutants with mutation of PaNox2, which encodes the NADPH oxidase of the NOX2 family, display the same ascospore-specific germination defect as the ΔPaPls1 mutant. Both mutant phenotypes are suppressed by the inhibition of melanin biosynthesis, suggesting that they are involved in the same cellular process required for the germination of P. anserina melanized ascospores. The analysis of the distribution of PLS1 and NOX2 genes in fungal genomes shows that they are either both present or both absent. These results indicate that the germination of P. anserina ascospores and the formation of the M. grisea appressorium penetration peg use the same molecular machinery that includes Pls1 and Nox2. This machinery is specifically required for the emergence of polarized hyphae from reinforced structures such as appressoria and ascospores. Its recurrent recruitment during fungal evolution may account for some of the morphogenetic convergence observed in fungi. PMID:18757568
Calvano, C D; van der Werf, I D; Palmisano, F; Sabbatini, L
2011-06-01
A matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based approach was applied for the detection of various lipid classes, such as triacylglycerols (TAGs) and phospholipids (PLs), and their oxidation by-products in extracts of small (50-100 μg) samples obtained from painted artworks. Ageing of test specimens under various conditions, including the presence of different pigments, was preliminarily investigated. During ageing, the TAGs and PLs content decreased, whereas the amount of diglycerides, short-chain oxidative products arising from TAGs and PLs, and oxidized TAGs and PLs components increased. The examination of a series of model paint samples gave a clear indication that specific ions produced by oxidative cleavage of PLs and/or TAGs may be used as markers for egg and drying oil-based binders. Their elemental composition and hypothetical structure are also tentatively proposed. Moreover, the simultaneous presence of egg and oil binders can be easily and unambiguously ascertained through the simultaneous occurrence of the relevant specific markers. The potential of the proposed approach was demonstrated for the first time by the analysis of real samples from a polyptych of Bartolomeo Vivarini (fifteenth century) and a "French school" canvas painting (seventeenth century).
Quantitative analysis of multi-component gas mixture based on AOTF-NIR spectroscopy
NASA Astrophysics Data System (ADS)
Hao, Huimin; Zhang, Yong; Liu, Junhua
2007-12-01
Near Infrared (NIR) spectroscopy analysis technology has attracted many eyes and has wide application in many domains in recent years because of its remarkable advantages. But the NIR spectrometer can only be used for liquid and solid analysis by now. In this paper, a new quantitative analysis method of gas mixture by using new generation NIR spectrometer is explored. To collect the NIR spectra of gas mixtures, a vacuumable gas cell was designed and assembled to Luminar 5030-731 Acousto-Optic Tunable Filter (AOTF)-NIR spectrometer. Standard gas samples of methane (CH 4), ethane (C IIH 6) and propane (C 3H 8) are diluted with super pure nitrogen via precision volumetric gas flow controllers to obtain gas mixture samples of different concentrations dynamically. The gas mixtures were injected into the gas cell and the spectra of wavelength between 1100nm-2300nm were collected. The feature components extracted from gas mixture spectra by using Partial Least Squares (PLS) were used as the inputs of the Support Vector Regress Machine (SVR) to establish the quantitative analysis model. The effectiveness of the model is tested by the samples of predicting set. The prediction Root Mean Square Error (RMSE) of CH 4, C IIH 6 and C 3H 8 is respectively 1.27%, 0.89%, and 1.20% when the concentrations of component gas are over 0.5%. It shows that the AOTF-NIR spectrometer with gas cell can be used for gas mixture analysis. PLS combining with SVR has a good performance in NIR spectroscopy analysis. This paper provides the bases for extending the application of NIR spectroscopy analysis to gas detection.
Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai
2015-01-01
The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree. Copyright © 2015 Elsevier B.V. All rights reserved.
Late-onset Papillon-Lefèvre syndrome without alteration of the cathepsin C gene.
Pilger, Ulrike; Hennies, Hans Christian; Truschnegg, Astrid; Aberer, Elisabeth
2003-11-01
Mutations in the cathepsin C gene have recently been detected in Papillon-Lefèvre syndrome (PLS). Until now, 5 cases with the late-onset variation of this disease have been reported in the literature. The genetic background of this type of PLS is still unknown. We describe a 46-year-old woman with late-onset transgredient palmar hyperkeratosis and a 10-year history of severe periodontal disease. Histology of skin biopsy specimens revealed a psoriasiform pattern. Dental examination showed severe gingival inflammation with loss of alveolar bone. Dental plaque investigated by a polymerase chain reaction method revealed DNA signals of 5 different dental bacteria. DNA from EDTA blood was investigated for mutations in the cathepsin C gene by polymerase chain reaction analysis and direct sequencing. A silent variation in the codon for proline-459 was detected but interpreted as a polymorphism of this gene. All genetic linkage and mutation studies for PLS performed so far have shown that PLS is genetically homogeneous. Our patient with late-onset variation of PLS, however, did not show a mutation in the cathepsin C gene. Thus, we suspect that there is another genetic cause for the late-onset forms of PLS.
NASA Astrophysics Data System (ADS)
Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai
2015-10-01
The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.
Golmohammadi, Hassan
2009-11-30
A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.
Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J
2018-04-03
Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.
NASA Astrophysics Data System (ADS)
Lorenzetti, G.; Foresta, A.; Palleschi, V.; Legnaioli, S.
2009-09-01
The recent development of mobile instrumentation, specifically devoted to in situ analysis and study of museum objects, allows the acquisition of many LIBS spectra in very short time. However, such large amount of data calls for new analytical approaches which would guarantee a prompt analysis of the results obtained. In this communication, we will present and discuss the advantages of statistical analytical methods, such as Partial Least Squares Multiple Regression algorithms vs. the classical calibration curve approach. PLS algorithms allows to obtain in real time the information on the composition of the objects under study; this feature of the method, compared to the traditional off-line analysis of the data, is extremely useful for the optimization of the measurement times and number of points associated with the analysis. In fact, the real time availability of the compositional information gives the possibility of concentrating the attention on the most `interesting' parts of the object, without over-sampling the zones which would not provide useful information for the scholars or the conservators. Some example on the applications of this method will be presented, including the studies recently performed by the researcher of the Applied Laser Spectroscopy Laboratory on museum bronze objects.
Raja, Zahid; André, Sonia; Piesse, Christophe; Sereno, Denis; Nicolas, Pierre; Foulon, Thierry
2013-01-01
Transcriptomic and peptidomic analysis of skin secretions from the Painted-belly leaf frog Phyllomedusa sauvagii led to the identification of 5 novel phylloseptins (PLS-S2 to -S6) and also of phylloseptin-1 (PSN-1, here renamed PLS-S1), the only member of this family previously isolated in this frog. Synthesis and characterization of these phylloseptins revealed differences in their antimicrobial activities. PLS-S1, -S2, and -S4 (79–95% amino acid sequence identity; net charge = +2) were highly potent and cidal against Gram-positive bacteria, including multidrug resistant S. aureus strains, and killed the promastigote stage of Leishmania infantum, L. braziliensis and L. major. By contrast, PLS-S3 (95% amino acid identity with PLS-S2; net charge = +1) and -S5 (net charge = +2) were found to be almost inactive against bacteria and protozoa. PLS-S6 was not studied as this peptide was closely related to PLS-S1. Differential scanning calorimetry on anionic and zwitterionic multilamellar vesicles combined with circular dichroism spectroscopy and membrane permeabilization assays on bacterial cells indicated that PLS-S1, -S2, and -S4 are structured in an amphipathic α-helix that disrupts the acyl chain packing of anionic lipid bilayers. As a result, regions of two coexisting phases could be formed, one phase rich in peptide and the other lipid-rich. After reaching a threshold peptide concentration, the disruption of lipid packing within the bilayer may lead to local cracks and disintegration of the microbial membrane. Differences in the net charge, α-helical folding propensity, and/or degree of amphipathicity between PLS-S1, -S2 and -S4, and between PLS-S3 and -S5 appear to be responsible for their marked differences in their antimicrobial activities. In addition to the detailed characterization of novel phylloseptins from P. sauvagii, our study provides additional data on the previously isolated PLS-S1 and on the mechanism of action of phylloseptins. PMID:23967105
NASA Astrophysics Data System (ADS)
Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin
2017-05-01
Structural equation modeling (SEM) is the second generation statistical analysis technique developed for analyzing the inter-relationships among multiple variables in a model. Previous studies have shown that there seemed to be at least an implicit agreement about the factors that should drive the choice between covariance-based structural equation modeling (CB-SEM) and partial least square path modeling (PLS-PM). PLS-PM appears to be the preferred method by previous scholars because of its less stringent assumption and the need to avoid the perceived difficulties in CB-SEM. Along with this issue has been the increasing debate among researchers on the use of CB-SEM and PLS-PM in studies. The present study intends to assess the performance of CB-SEM and PLS-PM as a confirmatory study in which the findings will contribute to the body of knowledge of SEM. Maximum likelihood (ML) was chosen as the estimator for CB-SEM and was expected to be more powerful than PLS-PM. Based on the balanced experimental design, the multivariate normal data with specified population parameter and sample sizes were generated using Pro-Active Monte Carlo simulation, and the data were analyzed using AMOS for CB-SEM and SmartPLS for PLS-PM. Comparative Bias Index (CBI), construct relationship, average variance extracted (AVE), composite reliability (CR), and Fornell-Larcker criterion were used to study the consequence of each estimator. The findings conclude that CB-SEM performed notably better than PLS-PM in estimation for large sample size (100 and above), particularly in terms of estimations accuracy and consistency.
Seierstad, Therese; Røe, Kathrine; Sitter, Beathe; Halgunset, Jostein; Flatmark, Kjersti; Ree, Anne H; Olsen, Dag Rune; Gribbestad, Ingrid S; Bathen, Tone F
2008-01-01
Background This study was conducted in order to elucidate metabolic differences between human rectal cancer biopsies and colorectal HT29, HCT116 and SW620 xenografts by using high-resolution magnetic angle spinning (MAS) magnetic resonance spectroscopy (MRS) and for determination of the most appropriate human rectal xenograft model for preclinical MR spectroscopy studies. A further aim was to investigate metabolic changes following irradiation of HT29 xenografts. Methods HR MAS MRS of tissue samples from xenografts and rectal biopsies were obtained with a Bruker Avance DRX600 spectrometer and analyzed using principal component analysis (PCA) and partial least square (PLS) regression analysis. Results and conclusion HR MAS MRS enabled assignment of 27 metabolites. Score plots from PCA of spin-echo and single-pulse spectra revealed separate clusters of the different xenografts and rectal biopsies, reflecting underlying differences in metabolite composition. The loading profile indicated that clustering was mainly based on differences in relative amounts of lipids, lactate and choline-containing compounds, with HT29 exhibiting the metabolic profile most similar to human rectal cancers tissue. Due to high necrotic fractions in the HT29 xenografts, radiation-induced changes were not detected when comparing spectra from untreated and irradiated HT29 xenografts. However, PLS calibration relating spectral data to the necrotic fraction revealed a significant correlation, indicating that necrotic fraction can be assessed from the MR spectra. PMID:18439252
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens
We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; ...
2016-12-15
We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less
Identification of chilling and heat requirements of cherry trees--a statistical approach.
Luedeling, Eike; Kunz, Achim; Blanke, Michael M
2013-09-01
Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. 'Schneiders späte Knorpelkirsche' trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. 'Schneiders späte Knorpelkirsche' cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package ('chillR') and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. 'Payne') at Davis, California.
Identification of chilling and heat requirements of cherry trees—a statistical approach
NASA Astrophysics Data System (ADS)
Luedeling, Eike; Kunz, Achim; Blanke, Michael M.
2013-09-01
Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. `Schneiders späte Knorpelkirsche' trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. `Schneiders späte Knorpelkirsche' cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package (`chillR') and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. `Payne') at Davis, California.
Metabolomics Tools for Describing Complex Pesticide Exposure in Pregnant Women in Brittany (France)
Bonvallot, Nathalie; Tremblay-Franco, Marie; Chevrier, Cécile; Canlet, Cécile; Warembourg, Charline; Cravedi, Jean-Pierre; Cordier, Sylvaine
2013-01-01
Background The use of pesticides and the related environmental contaminations can lead to human exposure to various molecules. In early-life, such exposures could be responsible for adverse developmental effects. However, human health risks associated with exposure to complex mixtures are currently under-explored. Objective This project aims at answering the following questions: What is the influence of exposures to multiple pesticides on the metabolome? What mechanistic pathways could be involved in the metabolic changes observed? Methods Based on the PELAGIE cohort (Brittany, France), 83 pregnant women who provided a urine sample in early pregnancy, were classified in 3 groups according to the surface of land dedicated to agricultural cereal activities in their town of residence. Nuclear magnetic resonance-based metabolomics analyses were performed on urine samples. Partial Least Squares Regression-Discriminant Analysis (PLS-DA) and polytomous regressions were used to separate the urinary metabolic profiles from the 3 exposure groups after adjusting for potential confounders. Results The 3 groups of exposure were correctly separated with a PLS-DA model after implementing an orthogonal signal correction with pareto standardizations (R2 = 90.7% and Q2 = 0.53). After adjusting for maternal age, parity, body mass index and smoking habits, the most statistically significant changes were observed for glycine, threonine, lactate and glycerophosphocholine (upward trend), and for citrate (downward trend). Conclusion This work suggests that an exposure to complex pesticide mixtures induces modifications of metabolic fingerprints. It can be hypothesized from identified discriminating metabolites that the pesticide mixtures could increase oxidative stress and disturb energy metabolism. PMID:23704985
Fu, Chunjiang; Wu, Gang; Lv, Fenglin; Tian, Feifei
2012-05-01
Many protein-protein interactions are mediated by a peptide-recognizing domain, such as WW, PDZ, or SH3. In the present study, we describe a new method called position-dependent noncovalent potential analysis (PDNPA), which can accurately characterize the nonbonding profile between the human endophilin-1 Src homology 3 (hEndo1 SH3) domain and its peptide ligands and quantitatively predict the binding affinity of peptide to hEndo1 SH3. In this procedure, structure models of diverse peptides in complex with the hEndo1 SH3 domain are constructed by molecular dynamics simulation and a virtual mutagenesis protocol. Subsequently, three noncovalent interactions associated with each position of the peptide ligand in the complexed state are analyzed using empirical potential functions, and the resulting potential descriptors are then correlated with the experimentally measured affinity on the basis of 1997 hEndo1 SH3-binding peptides with known activities, using linear partial least squares regression (PLS) and the nonlinear support vector machine (SVM). The results suggest that: (i) the electrostatics appears to be more important than steric properties and hydrophobicity in the formation of the hEndo1 SH3-peptide complex; (ii) P(-4) of the core decapeptide ligand with the sequence pattern P(-6)P(-5)P(-4)P(-3)P(-2)P(-1)P(0)P(1)P(2)P(3) is the most important position in terms of determining both the stability and specificity of the architecture of the complex, and; (iii) nonlinear SVM appears to be more effective than linear PLS for accurately predicting the binding affinity of a peptide ligand to hEndo1 SH3, whereas PLS models are straightforward and easy to interpret as compared to those built by SVM.
Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ikram, Masroor
2016-06-01
Optical polarimetry was employed for assessment of ex vivo healthy and basal cell carcinoma (BCC) tissue samples from human skin. Polarimetric analyses revealed that depolarization and retardance for healthy tissue group were significantly higher (p<0.001) compared to BCC tissue group. Histopathology indicated that these differences partially arise from BCC-related characteristic changes in tissue morphology. Wilks lambda statistics demonstrated the potential of all investigated polarimetric properties for computer assisted classification of the two tissue groups. Based on differences in polarimetric properties, partial least square (PLS) regression classified the samples with 100% accuracy, sensitivity and specificity. These findings indicate that optical polarimetry together with PLS statistics hold promise for automated pathology classification. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Mengliang; Harrington, Peter de B
2015-01-01
Multivariate partial least-squares (PLS) method was applied to the quantification of two complex polychlorinated biphenyls (PCBs) commercial mixtures, Aroclor 1254 and 1260, in a soil matrix. PCBs in soil samples were extracted by headspace solid phase microextraction (SPME) and determined by gas chromatography/mass spectrometry (GC/MS). Decachlorinated biphenyl (deca-CB) was used as internal standard. After the baseline correction was applied, four data representations including extracted ion chromatograms (EIC) for Aroclor 1254, EIC for Aroclor 1260, EIC for both Aroclors and two-way data sets were constructed for PLS-1 and PLS-2 calibrations and evaluated with respect to quantitative prediction accuracy. The PLS model was optimized with respect to the number of latent variables using cross validation of the calibration data set. The validation of the method was performed with certified soil samples and real field soil samples and the predicted concentrations for both Aroclors using EIC data sets agreed with the certified values. The linear range of the method was from 10μgkg(-1) to 1000μgkg(-1) for both Aroclor 1254 and 1260 in soil matrices and the detection limit was 4μgkg(-1) for Aroclor 1254 and 6μgkg(-1) for Aroclor 1260. This holistic approach for the determination of mixtures of complex samples has broad application to environmental forensics and modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quantification of adulterations in extra virgin flaxseed oil using MIR and PLS.
de Souza, Letícia Maria; de Santana, Felipe Bachion; Gontijo, Lucas Caixeta; Mazivila, Sarmento Júnior; Borges Neto, Waldomiro
2015-09-01
This paper proposes a new method for the quantitative analysis of soybean oil (SO) and sunflower oil (SFO) as adulterants in extra virgin flaxseed oil (EFO) by applying Mid Infrared Spectroscopy (MIR) associated with chemometric technique of Partial Least Squares (PLS). The PLS models were built in accordance with standard method ASTM E1655-05 and these showed good correlation between the reference values and those calculated using the PLS models with low error values, with R = 0.998 for SFO and R = 0.999 for SO in EFO. These models were validated analytically in accordance with Brazilian and international guidelines through the estimate of figures of merit parameters, thus showing an effective and feasible method to control the quality of extra virgin flaxseed oil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ding, Ning; Li, Xitao; Shi, Yunfei; Ping, Lingyan; Wu, Lina; Fu, Kai; Feng, Lixia; Zheng, Xiaohui; Song, Yuqin; Pan, Zhengying; Zhu, Jun
2015-06-20
The B-cell receptor (BCR) signaling pathway has gained significant attention as a therapeutic target in B-cell malignancies. Recently, several drugs that target the BCR signaling pathway, especially the Btk inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicates that pharmacological inhibition of BCR pathway holds promise in B-cell lymphoma treatment. Here we present a novel covalent irreversible Btk inhibitor PLS-123 with more potent anti-proliferative activity compared with ibrutinib in multiple cellular and in vivo models through effective apoptosis induction and dual-action inhibitory mode of Btk activation. The phosphorylation of BCR downstream activating AKT/mTOR and MAPK signal pathways was also more significantly reduced after treatment with PLS-123 than ibrutinib. Gene expression profile analysis further suggested that the different selectivity profile of PLS-123 led to significant downregulation of oncogenic gene PTPN11 expression, which might also offer new opportunities beyond what ibrutinib has achieved. In addition, PLS-123 dose-dependently attenuated BCR- and chemokine-mediated lymphoma cell adhesion and migration. Taken together, Btk inhibitor PLS-123 suggested a new direction to pharmacologically modulate Btk function and develop novel therapeutic drug for B-cell lymphoma treatment.
Ding, Ning; Li, Xitao; Shi, Yunfei; Ping, Lingyan; Wu, Lina; Fu, Kai; Feng, Lixia; Zheng, Xiaohui; Song, Yuqin; Pan, Zhengying; Zhu, Jun
2015-01-01
The B-cell receptor (BCR) signaling pathway has gained significant attention as a therapeutic target in B-cell malignancies. Recently, several drugs that target the BCR signaling pathway, especially the Btk inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicates that pharmacological inhibition of BCR pathway holds promise in B-cell lymphoma treatment. Here we present a novel covalent irreversible Btk inhibitor PLS-123 with more potent anti-proliferative activity compared with ibrutinib in multiple cellular and in vivo models through effective apoptosis induction and dual-action inhibitory mode of Btk activation. The phosphorylation of BCR downstream activating AKT/mTOR and MAPK signal pathways was also more significantly reduced after treatment with PLS-123 than ibrutinib. Gene expression profile analysis further suggested that the different selectivity profile of PLS-123 led to significant downregulation of oncogenic gene PTPN11 expression, which might also offer new opportunities beyond what ibrutinib has achieved. In addition, PLS-123 dose-dependently attenuated BCR- and chemokine-mediated lymphoma cell adhesion and migration. Taken together, Btk inhibitor PLS-123 suggested a new direction to pharmacologically modulate Btk function and develop novel therapeutic drug for B-cell lymphoma treatment. PMID:25944695
NASA Astrophysics Data System (ADS)
Pérez-Rodríguez, Marta; Horák-Terra, Ingrid; Rodríguez-Lado, Luis; Martínez Cortizas, Antonio
2016-11-01
Despite its potential, infrared spectroscopy combined with multivariate statistics has been seldom used to model peat properties with environmental value, such us the concentration of potentially toxic metals. In this research, we applied attenuated total reflectance (ATR) Fourier-Transform Infrared (FTIR) spectroscopy to evaluate the ability of the technique to predict mercury concentrations in late-Pleistocene/Holocene peat from a minerogenic peatland from Minas Gerais (Brazil). Mercury concentrations were analysed using a Milestone DMA-80 analyzer and attenuated total reflectance FTIR-ATR was performed using a Gladi-ATR (Pike Technologies) in the mid IR spectrum (4000-400 cm- 1). Concentrations were modelled using principal components (PCR) and partial least squares regression (PLS). The performance of the models varied between moderate and very good (R2 0.67-0.90), with low RMSD values (0.35-1.06). A PLS model based on three latent vectors (LV1 to LV3) provided the best (R2 0.90, RMSD 0.35) results. LV1 reflected total organic matter content versus mineral matter (mainly quartz from local fluxes), LV2 was related to dust deposition from regional sources, and LV3 reflected peat organic matter decomposition. Compared to a previous investigation based on geochemical data, the spectroscopy-based PLS model performed better, but it has to be complemented with additional data (as δ13 C ratios) to reliably reproduce the changes of the factors controlling mercury accumulation over time. This, time- and cost-effective, methodology may help to develop multi-core approaches to study the within and between mire (of a similar type and area) variability in mercury accumulation, and probably also other peat properties. Fig. S2 Loadings weights of the three and two significant components from the direct (dPCR) and transposed (trPCR) PCR models. Fig. S3 Depth records of the cumulative effects of the factors involved in the variation of mercury concentrations. Left, MIR-PLS model; centre, MIR-PLS + δ13 C data model; right, geochemical model from Pérez-Rodríguez et al. [44].
Hara, Yoshinori; Seki, Masahide; Matsuoka, Satoshi; Hara, Hiroshi; Yamashita, Atsushi; Matsumoto, Kouji
2008-12-01
The gene responsible for the first acylation of sn-glycerol-3-phosphate (G3P) in Bacillus subtilis has not yet been determined with certainty. The product of this first acylation, lysophosphatidic acid (LPA), is subsequently acylated again to form phosphatidic acid (PA), the primary precursor to membrane glycerolipids. A novel G3P acyltransferase (GPAT), the gene product of plsY, which uses acyl-phosphate formed by the plsX gene product, has recently been found to synthesize LPA in Streptococcus pneumoniae. We found that in B. subtilis growth arrests after repression of either a plsY homologue or a plsX homologue were overcome by expression of E. coli plsB, which encodes an acyl-acylcarrier protein (acyl-ACP)-dependent GPAT, although in the case of plsX repression a high level of plsB expression was required. B. subtilis has, therefore, a capability to use the acyl-ACP dependent GPAT of PlsB. Simultaneous expression of plsY and plsX suppressed the glycerol requirement of a strict glycerol auxotrophic derivative of the E. coli plsB26 mutant, although either one alone did not. Membrane fractions from B. subtilis cells catalyzed palmitoylphosphate-dependent acylation of [14C]-labeled G3P to synthesize [14C]-labeled LPA, whereas those from DeltaplsY cells did not. The results indicate unequivocally that PlsY is an acyl-phosphate dependent GPAT. Expression of plsX corrected the glycerol auxotrophy of a DeltaygiH (the deleted allele of an E. coli homologue of plsY) derivative of BB26-36 (plsB26 plsX50), suggesting an essential role of plsX other than substrate supply for acyl-phosphate dependent LPA synthesis. Two-hybrid examinations suggested that PlsY is associated with PlsX and that each may exist in multimeric form.
Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of streptococcus pneumontae
Lacks, Sanford A.
1990-01-01
Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252.
Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of Streptococcus pneumontae
Lacks, S.A.
1990-10-02
Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252. 9 figs.
[Effect of near infrared spectrum on the precision of PLS model for oil yield from oil shale].
Wang, Zhi-Hong; Liu, Jie; Chen, Xiao-Chao; Sun, Yu-Yang; Yu, Yang; Lin, Jun
2012-10-01
It is impossible to use present measurement methods for the oil yield of oil shale to realize in-situ detection and these methods unable to meet the requirements of the oil shale resources exploration and exploitation. But in-situ oil yield analysis of oil shale can be achieved by the portable near infrared spectroscopy technique. There are different correlativities of NIR spectrum data formats and contents of sample components, and the different absorption specialities of sample components shows in different NIR spectral regions. So with the proportioning samples, the PLS modeling experiments were done by 3 formats (reflectance, absorbance and K-M function) and 4 regions of modeling spectrum, and the effect of NIR spectral format and region to the precision of PLS model for oil yield from oil shale was studied. The results show that the best data format is reflectance and the best modeling region is combination spectral range by PLS model method and proportioning samples. Therefore, the appropriate data format and the proper characteristic spectral region can increase the precision of PLS model for oil yield form oil shale.
Liu, Fei; Feng, Lei; Lou, Bing-gan; Sun, Guang-ming; Wang, Lian-ping; He, Yong
2010-07-01
The combinational-stimulated bands were used to develop linear and nonlinear calibrations for the early detection of sclerotinia of oilseed rape (Brassica napus L.). Eighty healthy and 100 Sclerotinia leaf samples were scanned, and different preprocessing methods combined with successive projections algorithm (SPA) were applied to develop partial least squares (PLS) discriminant models, multiple linear regression (MLR) and least squares-support vector machine (LS-SVM) models. The results indicated that the optimal full-spectrum PLS model was achieved by direct orthogonal signal correction (DOSC), then De-trending and Raw spectra with correct recognition ratio of 100%, 95.7% and 95.7%, respectively. When using combinational-stimulated bands, the optimal linear models were SPA-MLR (DOSC) and SPA-PLS (DOSC) with correct recognition ratio of 100%. All SPA-LSSVM models using DOSC, De-trending and Raw spectra achieved perfect results with recognition of 100%. The overall results demonstrated that it was feasible to use combinational-stimulated bands for the early detection of Sclerotinia of oilseed rape, and DOSC-SPA was a powerful way for informative wavelength selection. This method supplied a new approach to the early detection and portable monitoring instrument of sclerotinia.
Zhang, Chu; Liu, Fei; Kong, Wenwen; He, Yong
2015-01-01
Visible and near-infrared hyperspectral imaging covering spectral range of 380–1030 nm as a rapid and non-destructive method was applied to estimate the soluble protein content of oilseed rape leaves. Average spectrum (500–900 nm) of the region of interest (ROI) of each sample was extracted, and four samples out of 128 samples were defined as outliers by Monte Carlo-partial least squares (MCPLS). Partial least squares (PLS) model using full spectra obtained dependable performance with the correlation coefficient (rp) of 0.9441, root mean square error of prediction (RMSEP) of 0.1658 mg/g and residual prediction deviation (RPD) of 2.98. The weighted regression coefficient (Bw), successive projections algorithm (SPA) and genetic algorithm-partial least squares (GAPLS) selected 18, 15, and 16 sensitive wavelengths, respectively. SPA-PLS model obtained the best performance with rp of 0.9554, RMSEP of 0.1538 mg/g and RPD of 3.25. Distribution of protein content within the rape leaves were visualized and mapped on the basis of the SPA-PLS model. The overall results indicated that hyperspectral imaging could be used to determine and visualize the soluble protein content of rape leaves. PMID:26184198
Prediction of ethanol in bottled Chinese rice wine by NIR spectroscopy
NASA Astrophysics Data System (ADS)
Ying, Yibin; Yu, Haiyan; Pan, Xingxiang; Lin, Tao
2006-10-01
To evaluate the applicability of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining ethanol concentration of Chinese rice wine in square brown glass bottle, transmission spectra of 100 bottled Chinese rice wine samples were collected in the spectral range of 350-1200 nm. Statistical equations were established between the reference data and VIS-NIR spectra by partial least squares (PLS) regression method. Performance of three kinds of mathematical treatment of spectra (original spectra, first derivative spectra and second derivative spectra) were also discussed. The PLS models of original spectra turned out better results, with higher correlation coefficient in calibration (R cal) of 0.89, lower root mean standard error of calibration (RMSEC) of 0.165, and lower root mean standard error of cross validation (RMSECV) of 0.179. Using original spectra, PLS models for ethanol concentration prediction were developed. The R cal and the correlation coefficient in validation (R val) were 0.928 and 0.875, respectively; and the RMSEC and the root mean standard error of validation (RMSEP) were 0.135 (%, v v -1) and 0.177 (%, v v -1), respectively. The results demonstrated that VIS-NIR spectroscopy could be used to predict ethanol concentration in bottled Chinese rice wine.
De Luca, Michele; Restuccia, Donatella; Clodoveo, Maria Lisa; Puoci, Francesco; Ragno, Gaetano
2016-07-01
Chemometric discrimination of extra virgin olive oils (EVOO) from whole and stoned olive pastes was carried out by using Fourier transform infrared (FTIR) data and partial least squares-discriminant analysis (PLS1-DA) approach. Four Italian commercial EVOO brands, all in both whole and stoned version, were considered in this study. The adopted chemometric methodologies were able to describe the different chemical features in phenolic and volatile compounds contained in the two types of oil by using unspecific IR spectral information. Principal component analysis (PCA) was employed in cluster analysis to capture data patterns and to highlight differences between technological processes and EVOO brands. The PLS1-DA algorithm was used as supervised discriminant analysis to identify the different oil extraction procedures. Discriminant analysis was extended to the evaluation of possible adulteration by addition of aliquots of oil from whole paste to the most valuable oil from stoned olives. The statistical parameters from external validation of all the PLS models were very satisfactory, with low root mean square error of prediction (RMSEP) and relative error (RE%). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray
2007-09-01
Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.
Ciofi, Lorenzo; Renai, Lapo; Rossini, Daniele; Ancillotti, Claudia; Falai, Alida; Fibbi, Donatella; Bruzzoniti, Maria Concetta; Santana-Rodriguez, José Juan; Orlandini, Serena; Del Bubba, Massimo
2018-01-01
The applicability of a direct injection UHPLC-MS/MS method for the analysis of several perfluoroalkyl acids (PFAAs) in a wide range of water matrices was investigated. The method is based on the direct injection of 100µL of centrifuged water sample, without any other sample treatment. Very good method detection limits (0.014-0.44ngL -1 ) and excellent intra and inter-day precision (RSD% values in the range 1.8-4.4% and 2.7-5.7%, respectively) were achieved, with a total analysis time of 20min per sample. A high number of samples - i.e. 8 drinking waters (DW), 12 ground waters (GW), 13 surface waters (SW), 8 influents and 11 effluents of wastewater treatment plants (WWTP IN and WWTP OUT ) were processed and the extent of matrix effect (ME) was calculated, highlighting the strong prevalence of |ME| < 20%. The occurrence of |ME| > 50% was occasionally observed only for perfluorooctanesulphonic and perfluorodecanoic acids. Linear discriminant analysis highlighted the great contribution of the sample origin (i.e. DW, GW, SW, WWTP IN and WWTP OUT ) to the ME. Partial least square regression (PLS) and leave-one-out cross-validation were performed in order to interpret and predict the signal suppression or enhancement phenomena as a function of physicochemical parameters of water samples (i.e. conductivity, hardness and chemical oxygen demand) and background chromatographic area. The PLS approach resulted only in an approximate screening, due to the low prediction power of the PLS models. However, for most analytes in most samples, the fitted and cross-validated values were such as to correctly distinguish between | ME | higher than 20% or below this limit. PFAAs in the aforementioned water samples were quantified by means of the standard addition method, highlighting their occurrence mainly in WWTP influents and effluents, at concentrations as high as one hundred of µgL -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Hemmila, April; McGill, Jim; Ritter, David
2008-03-01
To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.
Fulcher, Yan G.; Fotso, Martial; Chang, Chee-Hoon; Rindt, Hans; Reinero, Carol R.
2016-01-01
Asthma is prevalent in children and cats, and needs means of noninvasive diagnosis. We sought to distinguish noninvasively the differences in 53 cats before and soon after induction of allergic asthma, using NMR spectra of exhaled breath condensate (EBC). Statistical pattern recognition was improved considerably by preprocessing the spectra with probabilistic quotient normalization and glog transformation. Classification of the 106 preprocessed spectra by principal component analysis and partial least squares with discriminant analysis (PLS-DA) appears to be impaired by variances unrelated to eosinophilic asthma. By filtering out confounding variances, orthogonal signal correction (OSC) PLS-DA greatly improved the separation of the healthy and early asthmatic states, attaining 94% specificity and 94% sensitivity in predictions. OSC enhancement of multi-level PLS-DA boosted the specificity of the prediction to 100%. OSC-PLS-DA of the normalized spectra suggest the most promising biomarkers of allergic asthma in cats to include increased acetone, metabolite(s) with overlapped NMR peaks near 5.8 ppm, and a hydroxyphenyl-containing metabolite, as well as decreased phthalate. Acetone is elevated in the EBC of 74% of the cats with early asthma. The noninvasive detection of early experimental asthma, biomarkers in EBC, and metabolic perturbation invite further investigation of the diagnostic potential in humans. PMID:27764146
Kehimkar, Benjamin; Hoggard, Jamin C; Marney, Luke C; Billingsley, Matthew C; Fraga, Carlos G; Bruno, Thomas J; Synovec, Robert E
2014-01-31
There is an increased need to more fully assess and control the composition of kerosene-based rocket propulsion fuels such as RP-1. In particular, it is critical to make better quantitative connections among the following three attributes: fuel performance (thermal stability, sooting propensity, engine specific impulse, etc.), fuel properties (such as flash point, density, kinematic viscosity, net heat of combustion, and hydrogen content), and the chemical composition of a given fuel, i.e., amounts of specific chemical compounds and compound classes present in a fuel as a result of feedstock blending and/or processing. Recent efforts in predicting fuel chemical and physical behavior through modeling put greater emphasis on attaining detailed and accurate fuel properties and fuel composition information. Often, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is employed to provide chemical composition information. Building on approaches that used GC-MS, but to glean substantially more chemical information from these complex fuels, we recently studied the use of comprehensive two dimensional (2D) gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) using a "reversed column" format: RTX-wax column for the first dimension, and a RTX-1 column for the second dimension. In this report, by applying chemometric data analysis, specifically partial least-squares (PLS) regression analysis, we are able to readily model (and correlate) the chemical compositional information provided by use of GC×GC-TOFMS to RP-1 fuel property information such as density, kinematic viscosity, net heat of combustion, and so on. Furthermore, we readily identified compounds that contribute significantly to measured differences in fuel properties based on results from the PLS models. We anticipate this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an improved approach to fuel formulation and specification for advanced engine cycles. Copyright © 2014 Elsevier B.V. All rights reserved.
Roberts, D K; Winters, J E; Castells, D D; Clark, C A; Teitelbaum, B A
2001-01-01
To investigate pigmented striae of the anterior lens capsule in African-Americans, a potential indicator of significant anterior segment pigment dispersion. A group of 40 African-American subjects who exhibited pigmented lens striae (PLS) were identified from a non-referred, primary eye care population in Chicago, IL, USA. These subjects were then compared to an age, race, and gender matched control group relative to refractive error and the presence or absence of diabetes and hypertension. The PLS subjects (mean age = 65.4 +/- 8.8 years, range = 50-87 years) consisted of 36 females and 4 males. PLS were bilateral in 36 (85%) of the 40 subjects. Among the eyes with PLS, 21 (55%) of 38 right eyes and 22 (61%) of 36 left eyes also had significant corneal endothelial pigment dusting, commonly in the shape of a Krukenberg's spindle. Ten (25%) of the PLS subjects had either glaucoma or ocular hypertension (7 bilateral, 3 unilateral). The presence of trabecular meshwork pigment varied from minimal to heavy. The mean +/- SD (range) refractive error of the PLS right eyes was +1.61 +/- 1.43D (-1.50 to +5.00D) and +1.77 +/- 1.37D (-1.00 to +5.00D) for the left eyes. Based on these data, the PLS right eyes were +1.63D (Student's t, p = 0.0001; 95% CI = +0.82 to +2.44D) more hyperopic on average than the control right eyes, and the PLS left eyes were +1.77D (p = 0.0001; 95% CI = +0.92 to +2.63D) more hyperopic on average than the control left eyes. Trend analysis showed a gradually increasing likelihood of PLS with increasing magnitude of hyperopia in both eyes (Mantel-Haenszel chi-square, p = 0.001). Among PLS subjects, 24 (60%) of 40 were hypertensive and 9 (23%) of 40 were diabetic. However, these proportions were not significantly different (two-tailed Fisher's exact test; hypertension: p = 0.30; diabetes: p = 0.70) from the randomly selected controls. Among our African-American group, which consisted predominately of females >50 years of age, the likelihood of PLS increased with increasing hyperopic refractive error. This finding is consistent with the possibility that PLS may, in some circumstances, indicate a significant pigment dispersal process due to iris-lens rubbing that may be associated with crowding of anterior segment structures. Additional study is warranted to further assess the nature of PLS, their precise relationship with an age-related pigment dispersal process, and their true significance as a risk factor for development of glaucoma.
Garriga, Miguel; Romero-Bravo, Sebastián; Estrada, Félix; Escobar, Alejandro; Matus, Iván A.; del Pozo, Alejandro; Astudillo, Cesar A.; Lobos, Gustavo A.
2017-01-01
Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat (Triticum aestivum L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (Δ13C), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and kNN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and Δ13C. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection. PMID:28337210
Garriga, Miguel; Romero-Bravo, Sebastián; Estrada, Félix; Escobar, Alejandro; Matus, Iván A; Del Pozo, Alejandro; Astudillo, Cesar A; Lobos, Gustavo A
2017-01-01
Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat ( Triticum aestivum L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (Δ 13 C), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and k NN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and Δ 13 C. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection.
NASA Astrophysics Data System (ADS)
Pullanagari, R. R.; Kereszturi, G.; Yule, I. J.
2017-06-01
New Zealand farming relies heavily on grazed pasture for feeding livestock; therefore it is important to provide high quality palatable grass in order to maintain profitable and sustainable grassland management. The presence of non-photosynthetic vegetation (NPV) such as dead vegetation in pastures severely limits the quality and productivity of pastures. Quantifying the fraction of dead vegetation in mixed pastures is a great challenge even with remote sensing approaches. In this study, a high spatial resolution with pixel resolution of 1 m and spectral resolution of 3.5-5.6 nm imaging spectroscopy data from AisaFENIX (380-2500 nm) was used to assess the fraction of dead vegetation component in mixed pastures on a hill country farm in New Zealand. We used different methods to retrieve dead vegetation fraction from the spectra; narrow band vegetation indices, full spectrum based partial least squares (PLS) regression and feature selection based PLS regression. Among all approaches, feature selection based PLS model exhibited better performance in terms of prediction accuracy (R2CV = 0.73, RMSECV = 6.05, RPDCV = 2.25). The results were consistent with validation data, and also performed well on the external test data (R2 = 0.62, RMSE = 8.06, RPD = 2.06). In addition, statistical tests were conducted to ascertain the effect of topographical variables such as slope and aspect on the accumulation of the dead vegetation fraction. Steep slopes (>25°) had a significantly (p < 0.05) higher amount of dead vegetation. In contrast, aspect showed non-significant impact on dead vegetation accumulation. The results from the study indicate that AisaFENIX imaging spectroscopy data could be a useful tool for mapping the dead vegetation fraction accurately.
Farrés, Mireia; Piña, Benjamí; Tauler, Romà
2016-08-01
Copper containing fungicides are used to protect vineyards from fungal infections. Higher residues of copper in grapes at toxic concentrations are potentially toxic and affect the microorganisms living in vineyards, such as Saccharomyces cerevisiae. In this study, the response of the metabolic profiles of S. cerevisiae at different concentrations of copper sulphate (control, 1 mM, 3 mM and 6 mM) was analysed by liquid chromatography coupled to mass spectrometry (LC-MS) and multivariate curve resolution-alternating least squares (MCR-ALS) using an untargeted metabolomics approach. Peak areas of the MCR-ALS resolved elution profiles in control and in Cu(ii)-treated samples were compared using partial least squares regression (PLSR) and PLS-discriminant analysis (PLS-DA), and the intracellular metabolites best contributing to sample discrimination were selected and identified. Fourteen metabolites showed significant concentration changes upon Cu(ii) exposure, following a dose-response effect. The observed changes were consistent with the expected effects of Cu(ii) toxicity, including oxidative stress and DNA damage. This research confirmed that LC-MS based metabolomics coupled to chemometric methods are a powerful approach for discerning metabolomics changes in S. cerevisiae and for elucidating modes of toxicity of environmental stressors, including heavy metals like Cu(ii).
NASA Astrophysics Data System (ADS)
Hong, Jangho; Kawashima, Ayato; Hamada, Noriaki
2017-06-01
In this study, we developed a facile fabrication method to access a highly reproducible plasmonic surface enhanced Raman scattering substrate via the immobilization of gold nanoparticles on an Ultrafiltration (UF) membrane using a suction technique. This was combined with a simple and rapid analyte concentration and detection method utilizing portable Raman spectroscopy. The minimum detectable concentrations for aqueous thiabendazole standard solution and thiabendazole in orange extract are 0.01 μg/mL and 0.125 μg/g, respectively. The partial least squares (PLS) regression plot shows a good linear relationship between 0.001 and 100 μg/mL of analyte, with a root mean square error of prediction (RMSEP) of 0.294 and a correlation coefficient (R2) of 0.976 for the thiabendazole standard solution. Meanwhile, the PLS plot also shows a good linear relationship between 0.0 and 2.5 μg/g of analyte, with an RMSEP value of 0.298 and an R2 value of 0.993 for the orange peel extract. In addition to the detection of other types of pesticides in agricultural products, this highly uniform plasmonic substrate has great potential for application in various environmentally-related areas.
Measurement of Vibrated Bulk Density of Coke Particle Blends Using Image Texture Analysis
NASA Astrophysics Data System (ADS)
Azari, Kamran; Bogoya-Forero, Wilinthon; Duchesne, Carl; Tessier, Jayson
2017-09-01
A rapid and nondestructive machine vision sensor was developed for predicting the vibrated bulk density (VBD) of petroleum coke particles based on image texture analysis. It could be used for making corrective adjustments to a paste plant operation to reduce green anode variability (e.g., changes in binder demand). Wavelet texture analysis (WTA) and gray level co-occurrence matrix (GLCM) algorithms were used jointly for extracting the surface textural features of coke aggregates from images. These were correlated with the VBD using partial least-squares (PLS) regression. Coke samples of several sizes and from different sources were used to test the sensor. Variations in the coke surface texture introduced by coke size and source allowed for making good predictions of the VBD of individual coke samples and mixtures of them (blends involving two sources and different sizes). Promising results were also obtained for coke blends collected from an industrial-baked carbon anode manufacturer.
Analysis of spreadable cheese by Raman spectroscopy and chemometric tools.
Oliveira, Kamila de Sá; Callegaro, Layce de Souza; Stephani, Rodrigo; Almeida, Mariana Ramos; de Oliveira, Luiz Fernando Cappa
2016-03-01
In this work, FT-Raman spectroscopy was explored to evaluate spreadable cheese samples. A partial least squares discriminant analysis was employed to identify the spreadable cheese samples containing starch. To build the models, two types of samples were used: commercial samples and samples manufactured in local industries. The method of supervised classification PLS-DA was employed to classify the samples as adulterated or without starch. Multivariate regression was performed using the partial least squares method to quantify the starch in the spreadable cheese. The limit of detection obtained for the model was 0.34% (w/w) and the limit of quantification was 1.14% (w/w). The reliability of the models was evaluated by determining the confidence interval, which was calculated using the bootstrap re-sampling technique. The results show that the classification models can be used to complement classical analysis and as screening methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Croker, Denise M; Hennigan, Michelle C; Maher, Anthony; Hu, Yun; Ryder, Alan G; Hodnett, Benjamin K
2012-04-07
Diffraction and spectroscopic methods were evaluated for quantitative analysis of binary powder mixtures of FII(6.403) and FIII(6.525) piracetam. The two polymorphs of piracetam could be distinguished using powder X-ray diffraction (PXRD), Raman and near-infrared (NIR) spectroscopy. The results demonstrated that Raman and NIR spectroscopy are most suitable for quantitative analysis of this polymorphic mixture. When the spectra are treated with the combination of multiplicative scatter correction (MSC) and second derivative data pretreatments, the partial least squared (PLS) regression model gave a root mean square error of calibration (RMSEC) of 0.94 and 0.99%, respectively. FIII(6.525) demonstrated some preferred orientation in PXRD analysis, making PXRD the least preferred method of quantification. Copyright © 2012 Elsevier B.V. All rights reserved.
Bunaciu, Andrei A.; Udristioiu, Gabriela Elena; Ruţă, Lavinia L.; Fleschin, Şerban; Aboul-Enein, Hassan Y.
2009-01-01
A Fourier transform infrared (FT-IR) spectrometric method was developed for the rapid, direct measurement of diosmin in different pharmaceutical drugs. Conventional KBr-spectra were compared for best determination of active substance in commercial preparations. The Beer–Lambert law and two chemometric approaches, partial least squares (PLS) and principal component regression (PCR+) methods, were tried in data processing. PMID:23960715
Year-class formation of upper St. Lawrence River northern pike
Smith, B.M.; Farrell, J.M.; Underwood, H.B.; Smith, S.J.
2007-01-01
Variables associated with year-class formation in upper St. Lawrence River northern pike Esox lucius were examined to explore population trends. A partial least-squares (PLS) regression model (PLS 1) was used to relate a year-class strength index (YCSI; 1974-1997) to explanatory variables associated with spawning and nursery areas (seasonal water level and temperature and their variability, number of ice days, and last day of ice presence). A second model (PLS 2) incorporated four additional ecological variables: potential predators (abundance of double-crested cormorants Phalacrocorax auritus and yellow perch Perca flavescens), female northern pike biomass (as a measure of stock-recruitment effects), and total phosphorus (productivity). Trends in adult northern pike catch revealed a decline (1981-2005), and year-class strength was positively related to catch per unit effort (CPUE; R2 = 0.58). The YCSI exceeded the 23-year mean in only 2 of the last 10 years. Cyclic patterns in the YCSI time series (along with strong year-classes every 4-6 years) were apparent, as was a dampening effect of amplitude beginning around 1990. The PLS 1 model explained over 50% of variation in both explanatory variables and the dependent variable, YCSI first-order moving-average residuals. Variables retained (N = 10; Wold's statistic ??? 0.8) included negative YCSI associations with high summer water levels, high variability in spring and fall water levels, and variability in fall water temperature. The YCSI exhibited positive associations with high spring, summer, and fall water temperature, variability in spring temperature, and high winter and spring water level. The PLS 2 model led to positive YCSI associations with phosphorus and yellow perch CPUE and a negative correlation with double-crested cormorant abundance. Environmental variables (water level and temperature) are hypothesized to regulate northern pike YCSI cycles, and dampening in YCSI magnitude may be related to a combination of factors, including wetland habitat changes, reduced nutrient loading, and increased predation by double-crested cormorants. ?? Copyright by the American Fisheries Society 2007.
Zhu, Daofang; Dou, Xianming; Tang, Liang; Tang, Dongdong; Liao, Guiyi; Fang, Weihua; Zhang, Xiansheng
2017-01-01
Premature ejaculation (PE) is one of the most common sexual dysfunctions, which were associated with prostatitis-like symptoms (PLS). We intended to explore the prevalence of prostatitis-like symptoms and outcomes of National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) scores in outpatients with lifelong (LPE) and acquired premature ejaculation (APE). From December 2013 to December 2015, a total of 498 consecutive heterosexual men with PE and 322 male healthy subjects without PE were enrolled. Each of them completed a detailed questionnaire on demographics information, sexual and medical histories, and the NIH-CPSI. Assessment of NIH-CPSI and definition of PLS and PE were used to measure the PLS and NIH-CPSI scores and ejaculatory function for all subjects. Finally, a total of 820 subjects (including 498 men in PE group and 322 men in control group) were enrolled in our study. The mean ages were significantly different between PE and no PE groups. Men with PE reported worse PLS and higher NIH-CPSI scores ( P < 0.001 for all). Similar findings were also observed between men with LPE and APE. Men with APE also reported higher rates of PLS and scores of NIH-CPSI ( P < 0.001 for all). Multivariate analysis showed that PLS and NIH-CPSI scores were significantly associated with PE.
Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy
De Girolamo, Annalisa; Cervellieri, Salvatore; Visconti, Angelo; Pascale, Michelangelo
2014-01-01
Fourier-transform-near infrared (FT-NIR) spectroscopy has been used to develop quantitative and classification models for the prediction of deoxynivalenol (DON) levels in durum wheat samples. Partial least-squares (PLS) regression analysis was used to determine DON in wheat samples in the range of <50–16,000 µg/kg DON. The model displayed a large root mean square error of prediction value (1,977 µg/kg) as compared to the EU maximum limit for DON in unprocessed durum wheat (i.e., 1,750 µg/kg), thus making the PLS approach unsuitable for quantitative prediction of DON in durum wheat. Linear discriminant analysis (LDA) was successfully used to differentiate wheat samples based on their DON content. A first approach used LDA to group wheat samples into three classes: A (DON ≤ 1,000 µg/kg), B (1,000 < DON ≤ 2,500 µg/kg), and C (DON > 2,500 µg/kg) (LDA I). A second approach was used to discriminate highly contaminated wheat samples based on three different cut-off limits, namely 1,000 (LDA II), 1,200 (LDA III) and 1,400 µg/kg DON (LDA IV). The overall classification and false compliant rates for the three models were 75%–90% and 3%–7%, respectively, with model LDA IV using a cut-off of 1,400 µg/kg fulfilling the requirement of the European official guidelines for screening methods. These findings confirmed the suitability of FT-NIR to screen a large number of wheat samples for DON contamination and to verify the compliance with EU regulation. PMID:25384107
Rapid analysis of deoxynivalenol in durum wheat by FT-NIR spectroscopy.
De Girolamo, Annalisa; Cervellieri, Salvatore; Visconti, Angelo; Pascale, Michelangelo
2014-11-06
Fourier-transform-near infrared (FT-NIR) spectroscopy has been used to develop quantitative and classification models for the prediction of deoxynivalenol (DON) levels in durum wheat samples. Partial least-squares (PLS) regression analysis was used to determine DON in wheat samples in the range of <50-16,000 µg/kg DON. The model displayed a large root mean square error of prediction value (1,977 µg/kg) as compared to the EU maximum limit for DON in unprocessed durum wheat (i.e., 1,750 µg/kg), thus making the PLS approach unsuitable for quantitative prediction of DON in durum wheat. Linear discriminant analysis (LDA) was successfully used to differentiate wheat samples based on their DON content. A first approach used LDA to group wheat samples into three classes: A (DON ≤ 1,000 µg/kg), B (1,000 < DON ≤ 2,500 µg/kg), and C (DON > 2,500 µg/kg) (LDA I). A second approach was used to discriminate highly contaminated wheat samples based on three different cut-off limits, namely 1,000 (LDA II), 1,200 (LDA III) and 1,400 µg/kg DON (LDA IV). The overall classification and false compliant rates for the three models were 75%-90% and 3%-7%, respectively, with model LDA IV using a cut-off of 1,400 µg/kg fulfilling the requirement of the European official guidelines for screening methods. These findings confirmed the suitability of FT-NIR to screen a large number of wheat samples for DON contamination and to verify the compliance with EU regulation.
Philip Ye, X; Liu, Lu; Hayes, Douglas; Womac, Alvin; Hong, Kunlun; Sokhansanj, Shahab
2008-10-01
The objectives of this research were to determine the variation of chemical composition across botanical fractions of cornstover, and to probe the potential of Fourier transform near-infrared (FT-NIR) techniques in qualitatively classifying separated cornstover fractions and in quantitatively analyzing chemical compositions of cornstover by developing calibration models to predict chemical compositions of cornstover based on FT-NIR spectra. Large variations of cornstover chemical composition for wide calibration ranges, which is required by a reliable calibration model, were achieved by manually separating the cornstover samples into six botanical fractions, and their chemical compositions were determined by conventional wet chemical analyses, which proved that chemical composition varies significantly among different botanical fractions of cornstover. Different botanic fractions, having total saccharide content in descending order, are husk, sheath, pith, rind, leaf, and node. Based on FT-NIR spectra acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was employed to conduct qualitative classification of cornstover fractions, and partial least square (PLS) regression was used for quantitative chemical composition analysis. SIMCA was successfully demonstrated in classifying botanical fractions of cornstover. The developed PLS model yielded root mean square error of prediction (RMSEP %w/w) of 0.92, 1.03, 0.17, 0.27, 0.21, 1.12, and 0.57 for glucan, xylan, galactan, arabinan, mannan, lignin, and ash, respectively. The results showed the potential of FT-NIR techniques in combination with multivariate analysis to be utilized by biomass feedstock suppliers, bioethanol manufacturers, and bio-power producers in order to better manage bioenergy feedstocks and enhance bioconversion.
Data Mining Methods for Omics and Knowledge of Crude Medicinal Plants toward Big Data Biology
Afendi, Farit M.; Ono, Naoaki; Nakamura, Yukiko; Nakamura, Kensuke; Darusman, Latifah K.; Kibinge, Nelson; Morita, Aki Hirai; Tanaka, Ken; Horai, Hisayuki; Altaf-Ul-Amin, Md.; Kanaya, Shigehiko
2013-01-01
Molecular biological data has rapidly increased with the recent progress of the Omics fields, e.g., genomics, transcriptomics, proteomics and metabolomics that necessitates the development of databases and methods for efficient storage, retrieval, integration and analysis of massive data. The present study reviews the usage of KNApSAcK Family DB in metabolomics and related area, discusses several statistical methods for handling multivariate data and shows their application on Indonesian blended herbal medicines (Jamu) as a case study. Exploration using Biplot reveals many plants are rarely utilized while some plants are highly utilized toward specific efficacy. Furthermore, the ingredients of Jamu formulas are modeled using Partial Least Squares Discriminant Analysis (PLS-DA) in order to predict their efficacy. The plants used in each Jamu medicine served as the predictors, whereas the efficacy of each Jamu provided the responses. This model produces 71.6% correct classification in predicting efficacy. Permutation test then is used to determine plants that serve as main ingredients in Jamu formula by evaluating the significance of the PLS-DA coefficients. Next, in order to explain the role of plants that serve as main ingredients in Jamu medicines, information of pharmacological activity of the plants is added to the predictor block. Then N-PLS-DA model, multiway version of PLS-DA, is utilized to handle the three-dimensional array of the predictor block. The resulting N-PLS-DA model reveals that the effects of some pharmacological activities are specific for certain efficacy and the other activities are diverse toward many efficacies. Mathematical modeling introduced in the present study can be utilized in global analysis of big data targeting to reveal the underlying biology. PMID:24688691
Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Kim, Moon S; Chao, Kuanglin; Qin, Jianwei; Fu, Xiaping; Baek, Insuck; Cho, Byoung-Kwan
2016-05-01
Illegal use of nitrogen-rich melamine (C3H6N6) to boost perceived protein content of food products such as milk, infant formula, frozen yogurt, pet food, biscuits, and coffee drinks has caused serious food safety problems. Conventional methods to detect melamine in foods, such as Enzyme-linked immunosorbent assay (ELISA), High-performance liquid chromatography (HPLC), and Gas chromatography-mass spectrometry (GC-MS), are sensitive but they are time-consuming, expensive, and labor-intensive. In this research, near-infrared (NIR) hyperspectral imaging technique combined with regression coefficient of partial least squares regression (PLSR) model was used to detect melamine particles in milk powders easily and quickly. NIR hyperspectral reflectance imaging data in the spectral range of 990-1700nm were acquired from melamine-milk powder mixture samples prepared at various concentrations ranging from 0.02% to 1%. PLSR models were developed to correlate the spectral data (independent variables) with melamine concentration (dependent variables) in melamine-milk powder mixture samples. PLSR models applying various pretreatment methods were used to reconstruct the two-dimensional PLS images. PLS images were converted to the binary images to detect the suspected melamine pixels in milk powder. As the melamine concentration was increased, the numbers of suspected melamine pixels of binary images were also increased. These results suggested that NIR hyperspectral imaging technique and the PLSR model can be regarded as an effective tool to detect melamine particles in milk powders. Copyright © 2016 Elsevier B.V. All rights reserved.
Hou, Siyuan; Riley, Christopher B; Mitchell, Cynthia A; Shaw, R Anthony; Bryanton, Janet; Bigsby, Kathryn; McClure, J Trenton
2015-09-01
Immunoglobulin G (IgG) is crucial for the protection of the host from invasive pathogens. Due to its importance for human health, tools that enable the monitoring of IgG levels are highly desired. Consequently there is a need for methods to determine the IgG concentration that are simple, rapid, and inexpensive. This work explored the potential of attenuated total reflectance (ATR) infrared spectroscopy as a method to determine IgG concentrations in human serum samples. Venous blood samples were collected from adults and children, and from the umbilical cord of newborns. The serum was harvested and tested using ATR infrared spectroscopy. Partial least squares (PLS) regression provided the basis to develop the new analytical methods. Three PLS calibrations were determined: one for the combined set of the venous and umbilical cord serum samples, the second for only the umbilical cord samples, and the third for only the venous samples. The number of PLS factors was chosen by critical evaluation of Monte Carlo-based cross validation results. The predictive performance for each PLS calibration was evaluated using the Pearson correlation coefficient, scatter plot and Bland-Altman plot, and percent deviations for independent prediction sets. The repeatability was evaluated by standard deviation and relative standard deviation. The results showed that ATR infrared spectroscopy is potentially a simple, quick, and inexpensive method to measure IgG concentrations in human serum samples. The results also showed that it is possible to build a united calibration curve for the umbilical cord and the venous samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Detection of crop water status in mature olive orchards using vegetation spectral measurements
NASA Astrophysics Data System (ADS)
Rallo, Giovanni; Ciraolo, Giuseppe; Farina, Giuseppe; Minacapilli, Mario; Provenzano, Giuseppe
2013-04-01
Leaf/stem water potentials are generally considered the most accurate indicators of crop water status (CWS) and they are quite often used for irrigation scheduling, even if costly and time-consuming. For this reason, in the last decade vegetation spectral measurements have been proposed, not only for environmental monitoring, but also in precision agriculture, to evaluate crop parameters and consequently for irrigation scheduling. Objective of the study was to assess the potential of hyperspectral reflectance (450-2400 nm) data to predict the crop water status (CWS) of a Mediterranean olive orchard. Different approaches were tested and particularly, (i) several standard broad- and narrow-band vegetation indices (VIs), (ii) specific VIs computed on the basis of some key wavelengths, predetermined by simple correlations and finally, (iii) using partial least squares (PLS) regression technique. To this aim, an intensive experimental campaign was carried out in 2010 and a total of 201 reflectance spectra, at leaf and canopy level, were collected with an ASD FieldSpec Pro (Analytical Spectral Devices, Inc.) handheld field spectroradiometer. CWS was contemporarily determined by measuring leaf and stem water potentials with the Scholander chamber. The results indicated that the considered standard vegetation indices were weakly correlated with CWS. On the other side, the prediction of CWS can be improved using VIs pointed to key-specific wavelengths, predetermined with a correlation analysis. The best prediction accuracy, however, can be achieved with models based on PLS regressions. The results confirmed the dependence of leaf/canopy optical features from CWS so that, for the examined crop, the proposed methodology can be considered a promising tool that could also be extended for operational applications using multispectral aerial sensors.
Urban pavement surface temperature. Comparison of numerical and statistical approach
NASA Astrophysics Data System (ADS)
Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia
2015-04-01
The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.
Evaluation of 1H NMR metabolic profiling using biofluid mixture design.
Athersuch, Toby J; Malik, Shahid; Weljie, Aalim; Newton, Jack; Keun, Hector C
2013-07-16
A strategy for evaluating the performance of quantitative spectral analysis tools in conditions that better approximate background variation in a metabonomics experiment is presented. Three different urine samples were mixed in known proportions according to a {3, 3} simplex lattice experimental design and analyzed in triplicate by 1D (1)H NMR spectroscopy. Fifty-four urinary metabolites were subsequently quantified from the sample spectra using two methods common in metabolic profiling studies: (1) targeted spectral fitting and (2) targeted spectral integration. Multivariate analysis using partial least-squares (PLS) regression showed the latent structure of the spectral set recapitulated the experimental mixture design. The goodness-of-prediction statistic (Q(2)) of each metabolite variable in a PLS model was calculated as a metric for the reliability of measurement, across the sample compositional space. Several metabolites were observed to have low Q(2) values, largely as a consequence of their spectral resonances having low s/n or strong overlap with other sample components. This strategy has the potential to allow evaluation of spectral features obtained from metabolic profiling platforms in the context of the compositional background found in real biological sample sets, which may be subject to considerable variation. We suggest that it be incorporated into metabolic profiling studies to improve the estimation of matrix effects that confound accurate metabolite measurement. This novel method provides a rational basis for exploiting information from several samples in an efficient manner and avoids the use of multiple spike-in authentic standards, which may be difficult to obtain.
Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics
NASA Astrophysics Data System (ADS)
Liu, J.; Xie, H.; Zha, B.; Ding, W.; Luo, J.; Hu, C.
2018-03-01
A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Lucia, Frank C. Jr.; Gottfried, Jennifer L.; Munson, Chase A.
2008-11-01
A technique being evaluated for standoff explosives detection is laser-induced breakdown spectroscopy (LIBS). LIBS is a real-time sensor technology that uses components that can be configured into a ruggedized standoff instrument. The U.S. Army Research Laboratory has been coupling standoff LIBS spectra with chemometrics for several years now in order to discriminate between explosives and nonexplosives. We have investigated the use of partial least squares discriminant analysis (PLS-DA) for explosives detection. We have extended our study of PLS-DA to more complex sample types, including binary mixtures, different types of explosives, and samples not included in the model. We demonstrate themore » importance of building the PLS-DA model by iteratively testing it against sample test sets. Independent test sets are used to test the robustness of the final model.« less
NASA Astrophysics Data System (ADS)
Matiu, Michael; Lüdecke, Cornelia; Newell, Dianne; Menzel, Annette
2017-04-01
Systematically recorded daily instrumental meteorological data from the Moravian Brethern mission stations located on the east coast of Labrador and southwest coast of Greenland during the 18th, 19th and 20th centuries provide a most valuable source of historical climatological data in the Subarctic region. Although the collections of original data themselves are both scattered in physical location and fragmented in their coverage of time and place, and large amounts still need to be digitized, this data provides large potential for studying climate extreme events in this remote region. In this paper, we study polar lows (PLs). They are high-latitude intense maritime cyclones with only 200 to 1000 km in diameter, a short life-time of only two days, mostly occurring in wintertime, e.g. in the Norwegian, Barents, but also Labrador and Greenland seas. Due to high wind speeds exceeding 30 m s-1, high ocean waves and heavy snow showers, they constitute a major hazard risk difficult to forecast. Published papers indicate that with future climate warming, the frequency of PLs is predicted to decrease; however, climatologies of PLs for the last 7 decades (1948-2009) based on reanalysis data and satellite remote sensing products did not indicate any change in their mean annual frequency. In our digitized long-term dataset (1846-2015) for one Moravian station at Nain, Labrador, we identified PLs as follows: If there was a drop in air pressure of at least 30hPa during 48 hours, we marked it as a preliminary event. Then, each preliminary event was checked manually to see whether additional changes in air pressure, air temperature, wind direction and wind speed matched the known textbook example. If more than two variables showed the required pattern, the preliminary event was identified as PL. Our analysis revealed an average frequency of 5.6 PLs yr-1 for 1846-1853, 5.2 PLs yr-1(1882-1913), and 4.4 PLs yr-1 (1926-1939), largely confirming long-term averages for the more recent periods 1948-2005 (4.9 PLs yr-1) as well as 1977-1994 (4.4 PLs yr-1) reported in the literature. Once more data from the historical Moravian collection is digitized, it may be checked whether there is a stable tendency of more annual PLs in the mid-19th century compared to recent numbers of this extreme event. With respect of the boundary conditions in which PLs are developing, our data from the mid-19th century cannot confirm recent findings that the occurrence of PLs is mainly associated with NAO+ phases. Due to additional concurrently operating Moravian climate stations at the eastern Labrador and southwestern Greenland coasts, the moving of PLs and PL clusters over the Labrador Sea and southern Davis Strait can be confirmed based on this unique historical subarctic climate data.
Cozzolino, Rosaria; Martignetti, Antonella; Pellicano, Mario Paolo; Stocchero, Matteo; Cefola, Maria; Pace, Bernardo; De Giulio, Beatrice
2016-02-01
The volatile profile of two hybrids of "Radicchio di Chioggia", Corelli and Botticelli, stored in air or passive modified atmosphere (MAP) during 12 days of cold storage, was monitored by solid phase micro-extraction (SPME) GC-MS. Botticelli samples were also subjected to sensory analysis. Totally, 61 volatile organic compounds (VOCs) were identified in the headspace of radicchio samples. Principal component analysis (PCA) showed that fresh product possessed a metabolic content similar to that of the MAP samples after 5 and 8 days of storage. Projection to latent structures by partial least squares (PLS) regression analysis showed the volatiles content of the samples varied depending only on the packaging conditions. Specifically, 12 metabolites describing the time evolution and explaining the effects of the different storage conditions were highlighted. Finally, a PCA analysis revealed that VOCs profile significantly correlated with sensory attributes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rodríguez-Entrena, Macario; Schuberth, Florian; Gelhard, Carsten
2018-01-01
Structural equation modeling using partial least squares (PLS-SEM) has become a main-stream modeling approach in various disciplines. Nevertheless, prior literature still lacks a practical guidance on how to properly test for differences between parameter estimates. Whereas existing techniques such as parametric and non-parametric approaches in PLS multi-group analysis solely allow to assess differences between parameters that are estimated for different subpopulations, the study at hand introduces a technique that allows to also assess whether two parameter estimates that are derived from the same sample are statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a reduced version of the well-established technology acceptance model.
Kuriakose, Saji; Joe, I Hubert
2013-11-01
Determination of the authenticity of essential oils has become more significant, in recent years, following some illegal adulteration and contamination scandals. The present investigative study focuses on the application of near infrared spectroscopy to detect sample authenticity and quantify economic adulteration of sandalwood oils. Several data pre-treatments are investigated for calibration and prediction using partial least square regression (PLSR). The quantitative data analysis is done using a new spectral approach - full spectrum or sequential spectrum. The optimum number of PLS components is obtained according to the lowest root mean square error of calibration (RMSEC=0.00009% v/v). The lowest root mean square error of prediction (RMSEP=0.00016% v/v) in the test set and the highest coefficient of determination (R(2)=0.99989) are used as the evaluation tools for the best model. A nonlinear method, locally weighted regression (LWR), is added to extract nonlinear information and to compare with the linear PLSR model. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuriakose, Saji; Joe, I. Hubert
2013-11-01
Determination of the authenticity of essential oils has become more significant, in recent years, following some illegal adulteration and contamination scandals. The present investigative study focuses on the application of near infrared spectroscopy to detect sample authenticity and quantify economic adulteration of sandalwood oils. Several data pre-treatments are investigated for calibration and prediction using partial least square regression (PLSR). The quantitative data analysis is done using a new spectral approach - full spectrum or sequential spectrum. The optimum number of PLS components is obtained according to the lowest root mean square error of calibration (RMSEC = 0.00009% v/v). The lowest root mean square error of prediction (RMSEP = 0.00016% v/v) in the test set and the highest coefficient of determination (R2 = 0.99989) are used as the evaluation tools for the best model. A nonlinear method, locally weighted regression (LWR), is added to extract nonlinear information and to compare with the linear PLSR model.
Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II
Bechtel, Kate L.; Shih, Wei-Chuan; Feld, Michael S.
2009-01-01
We demonstrate the effectiveness of intrinsic Raman spectroscopy (IRS) at reducing errors caused by absorption and scattering. Physical tissue models, solutions of varying absorption and scattering coefficients with known concentrations of Raman scatterers, are studied. We show significant improvement in prediction error by implementing IRS to predict concentrations of Raman scatterers using both ordinary least squares regression (OLS) and partial least squares regression (PLS). In particular, we show that IRS provides a robust calibration model that does not increase in error when applied to samples with optical properties outside the range of calibration. PMID:18711512
Yang, Jing; Mei, Ying; Hook, Andrew L.; Taylor, Michael; Urquhart, Andrew J.; Bogatyrev, Said R.; Langer, Robert; Anderson, Daniel G.; Davies, Martyn C.; Alexander, Morgan R.
2010-01-01
High throughput materials discovery using combinatorial polymer microarrays to screen for new biomaterials with new and improved function is established as a powerful strategy. Here we combine this screening approach with high throughput surface characterisation (HT-SC) to identify surface structure-function relationships. We explore how this combination can help to identify surface chemical moieties that control protein adsorption and subsequent cellular response. The adhesion of human embryoid body (hEB) cells to a large number (496) of different acrylate polymers synthesized in a microarray format is screened using a high throughput procedure. To determine the role of the polymer surface properties on hEB cell adhesion, detailed HT-SC of these acrylate polymers is carried out using time of flight secondary ion mass spectrometry (ToF SIMS), x-ray photoelectron spectroscopy (XPS), pico litre drop sessile water contact angle (WCA) measurement and atomic force microscopy (AFM). A structure-function relationship is identified between the ToF SIMS analysis of the surface chemistry after a fibronectin (Fn) pre-conditioning step and the cell adhesion to each spot using the multivariate analysis technique partial least squares (PLS) regression. Secondary ions indicative of the adsorbed Fn correlate with increased cell adhesion whereas glycol and other functionalities from the polymers are identified that reduce cell adhesion. Furthermore, a strong relationship between the ToF SIMS spectra of bare polymers and the cell adhesion to each spot is identified using PLS regression. This identifies a role for both the surface chemistry of the bare polymer and the pre-adsorbed Fn, as-represented in the ToF SIMS spectra, in controlling cellular adhesion. In contrast, no relationship is found between cell adhesion and wettability, surface roughness, elemental or functional surface composition. The correlation between ToF SIMS data of the surfaces and the cell adhesion demonstrates the ability of identifying surface moieties that control protein adsorption and subsequent cell adhesion using ToF SIMS and multivariate analysis. PMID:20832108
NASA Astrophysics Data System (ADS)
Yang, Yue; Wang, Lei; Wu, Yongjiang; Liu, Xuesong; Bi, Yuan; Xiao, Wei; Chen, Yong
2017-07-01
There is a growing need for the effective on-line process monitoring during the manufacture of traditional Chinese medicine to ensure quality consistency. In this study, the potential of near infrared (NIR) spectroscopy technique to monitor the extraction process of Flos Lonicerae Japonicae was investigated. A new algorithm of synergy interval PLS with genetic algorithm (Si-GA-PLS) was proposed for modeling. Four different PLS models, namely Full-PLS, Si-PLS, GA-PLS, and Si-GA-PLS, were established, and their performances in predicting two quality parameters (viz. total acid and soluble solid contents) were compared. In conclusion, Si-GA-PLS model got the best results due to the combination of superiority of Si-PLS and GA. For Si-GA-PLS, the determination coefficient (Rp2) and root-mean-square error for the prediction set (RMSEP) were 0.9561 and 147.6544 μg/ml for total acid, 0.9062 and 0.1078% for soluble solid contents, correspondingly. The overall results demonstrated that the NIR spectroscopy technique combined with Si-GA-PLS calibration is a reliable and non-destructive alternative method for on-line monitoring of the extraction process of TCM on the production scale.
Wu, Yanwei; Guo, Pan; Chen, Siying; Chen, He; Zhang, Yinchao
2017-04-01
Auto-adaptive background subtraction (AABS) is proposed as a denoising method for data processing of the coherent Doppler lidar (CDL). The method is proposed specifically for a low-signal-to-noise-ratio regime, in which the drifting power spectral density of CDL data occurs. Unlike the periodogram maximum (PM) and adaptive iteratively reweighted penalized least squares (airPLS), the proposed method presents reliable peaks and is thus advantageous in identifying peak locations. According to the analysis results of simulated and actually measured data, the proposed method outperforms the airPLS method and the PM algorithm in the furthest detectable range. The proposed method improves the detection range approximately up to 16.7% and 40% when compared to the airPLS method and the PM method, respectively. It also has smaller mean wind velocity and standard error values than the airPLS and PM methods. The AABS approach improves the quality of Doppler shift estimates and can be applied to obtain the whole wind profiling by the CDL.
Han, Yeji; Kim, Hyun Jung; Kong, Kyoung Ae; Kim, Soo Jung; Lee, Su Hwan; Ryu, Yon Ju; Lee, Jin Hwa; Kim, Yookyoung; Shim, Sung Shine
2018-01-01
Background Advances in bronchoscopy and CT-guided lung biopsy have improved the evaluation of small pulmonary lesions (PLs), leading to an increase in preoperative histological diagnosis. We aimed to evaluate the efficacy and safety of transbronchial lung biopsy using radial endobronchial ultrasound and virtual bronchoscopic navigation (TBLB-rEBUS&VBN) and CT-guided transthoracic needle biopsy (CT-TNB) for tissue diagnosis of small PLs. Methods A systematic search was performed in five electronic databases, including MEDLINE, EMBASE, Cochrane Library Central Register of Controlled Trials, Web of Science, and Scopus, for relevant studies in May 2016; the selected articles were assessed using meta-analysis. The articles were limited to those published after 2000 that studied small PLs ≤ 3 cm in diameter. Results From 7345 records, 9 articles on the bronchoscopic (BR) approach and 15 articles on the percutaneous (PC) approach were selected. The pooled diagnostic yield was 75% (95% confidence interval [CI], 69–80) using the BR approach and 93% (95% CI, 90–96) using the PC approach. For PLs ≤ 2 cm, the PC approach (pooled diagnostic yield: 92%, 95% CI: 88–95) was superior to the BR approach (66%, 95% CI: 55–76). However, for PLs > 2 cm but ≤ 3 cm, the diagnostic yield using the BR approach was improved to 81% (95% CI, 75–85). Complications of pneumothorax and hemorrhage were rare with the BR approach but common with the PC approach. Conclusions CT-TNB was superior to TBLB-rEBUS&VBN for the evaluation of small PLs. However, for lesions greater than 2 cm, the BR approach may be considered considering its diagnostic yield of over 80% and the low risk of procedure-related complications. PMID:29357388
Li, Juan; Jiang, Yue; Fan, Qi; Chen, Yang; Wu, Ruanqi
2014-05-05
This paper establishes a high-throughput and high selective method to determine the impurity named oxidized glutathione (GSSG) and radial tensile strength (RTS) of reduced glutathione (GSH) tablets based on near infrared (NIR) spectroscopy and partial least squares (PLS). In order to build and evaluate the calibration models, the NIR diffuse reflectance spectra (DRS) and transmittance spectra (TS) for 330 GSH tablets were accurately measured by using the optimized parameter values. For analyzing GSSG or RTS of GSH tablets, the NIR-DRS or NIR-TS were selected, subdivided reasonably into calibration and prediction sets, and processed appropriately with chemometric techniques. After selecting spectral sub-ranges and neglecting spectrum outliers, the PLS calibration models were built and the factor numbers were optimized. Then, the PLS models were evaluated by the root mean square errors of calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP), and by the correlation coefficients of calibration (R(c)) and prediction (R(p)). The results indicate that the proposed models have good performances. It is thus clear that the NIR-PLS can simultaneously, selectively, nondestructively and rapidly analyze the GSSG and RTS of GSH tablets, although the contents of GSSG impurity were quite low while those of GSH active pharmaceutical ingredient (API) quite high. This strategy can be an important complement to the common NIR methods used in the on-line analysis of API in pharmaceutical preparations. And this work expands the NIR applications in the high-throughput and extraordinarily selective analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Payne, Courtney E; Wolfrum, Edward J
2015-01-01
Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. We present individual model statistics to demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. It is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.
NASA Astrophysics Data System (ADS)
Peerbhay, Kabir Yunus; Mutanga, Onisimo; Ismail, Riyad
2013-05-01
Discriminating commercial tree species using hyperspectral remote sensing techniques is critical in monitoring the spatial distributions and compositions of commercial forests. However, issues related to data dimensionality and multicollinearity limit the successful application of the technology. The aim of this study was to examine the utility of the partial least squares discriminant analysis (PLS-DA) technique in accurately classifying six exotic commercial forest species (Eucalyptus grandis, Eucalyptus nitens, Eucalyptus smithii, Pinus patula, Pinus elliotii and Acacia mearnsii) using airborne AISA Eagle hyperspectral imagery (393-900 nm). Additionally, the variable importance in the projection (VIP) method was used to identify subsets of bands that could successfully discriminate the forest species. Results indicated that the PLS-DA model that used all the AISA Eagle bands (n = 230) produced an overall accuracy of 80.61% and a kappa value of 0.77, with user's and producer's accuracies ranging from 50% to 100%. In comparison, incorporating the optimal subset of VIP selected wavebands (n = 78) in the PLS-DA model resulted in an improved overall accuracy of 88.78% and a kappa value of 0.87, with user's and producer's accuracies ranging from 70% to 100%. Bands located predominantly within the visible region of the electromagnetic spectrum (393-723 nm) showed the most capability in terms of discriminating between the six commercial forest species. Overall, the research has demonstrated the potential of using PLS-DA for reducing the dimensionality of hyperspectral datasets as well as determining the optimal subset of bands to produce the highest classification accuracies.
Fernandes, David Douglas Sousa; Gomes, Adriano A; Costa, Gean Bezerra da; Silva, Gildo William B da; Véras, Germano
2011-12-15
This work is concerned of evaluate the use of visible and near-infrared (NIR) range, separately and combined, to determine the biodiesel content in biodiesel/diesel blends using Multiple Linear Regression (MLR) and variable selection by Successive Projections Algorithm (SPA). Full spectrum models employing Partial Least Squares (PLS) and variables selection by Stepwise (SW) regression coupled with Multiple Linear Regression (MLR) and PLS models also with variable selection by Jack-Knife (Jk) were compared the proposed methodology. Several preprocessing were evaluated, being chosen derivative Savitzky-Golay with second-order polynomial and 17-point window for NIR and visible-NIR range, with offset correction. A total of 100 blends with biodiesel content between 5 and 50% (v/v) prepared starting from ten sample of biodiesel. In the NIR and visible region the best model was the SPA-MLR using only two and eight wavelengths with RMSEP of 0.6439% (v/v) and 0.5741 respectively, while in the visible-NIR region the best model was the SW-MLR using five wavelengths and RMSEP of 0.9533% (v/v). Results indicate that both spectral ranges evaluated showed potential for developing a rapid and nondestructive method to quantify biodiesel in blends with mineral diesel. Finally, one can still mention that the improvement in terms of prediction error obtained with the procedure for variables selection was significant. Copyright © 2011 Elsevier B.V. All rights reserved.
Ciura, Krzesimir; Belka, Mariusz; Kawczak, Piotr; Bączek, Tomasz; Markuszewski, Michał J; Nowakowska, Joanna
2017-09-05
The objective of this paper is to build QSRR/QSAR model for predicting the blood-brain barrier (BBB) permeability. The obtained models are based on salting-out thin layer chromatography (SOTLC) constants and calculated molecular descriptors. Among chromatographic methods SOTLC was chosen, since the mobile phases are free of organic solvent. As consequences, there are less toxic, and have lower environmental impact compared to classical reserved phases liquid chromatography (RPLC). During the study three stationary phase silica gel, cellulose plates and neutral aluminum oxide were examined. The model set of solutes presents a wide range of log BB values, containing compounds which cross the BBB readily and molecules poorly distributed to the brain including drugs acting on the nervous system as well as peripheral acting drugs. Additionally, the comparison of three regression models: multiple linear regression (MLR), partial least-squares (PLS) and orthogonal partial least squares (OPLS) were performed. The designed QSRR/QSAR models could be useful to predict BBB of systematically synthesized newly compounds in the drug development pipeline and are attractive alternatives of time-consuming and demanding directed methods for log BB measurement. The study also shown that among several regression techniques, significant differences can be obtained in models performance, measured by R 2 and Q 2 , hence it is strongly suggested to evaluate all available options as MLR, PLS and OPLS. Copyright © 2017 Elsevier B.V. All rights reserved.
Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T
2018-03-01
Calibration transfer or standardisation aims at creating a uniform spectral response on different spectroscopic instruments or under varying conditions, without requiring a full recalibration for each situation. In the current study, this strategy is applied to construct at-line multivariate calibration models and consequently employ them in-line in a continuous industrial production line, using the same spectrometer. Firstly, quantitative multivariate models are constructed at-line at laboratory scale for predicting the concentration of two main ingredients in hard surface cleaners. By regressing the Raman spectra of a set of small-scale calibration samples against their reference concentration values, partial least squares (PLS) models are developed to quantify the surfactant levels in the liquid detergent compositions under investigation. After evaluating the models performance with a set of independent validation samples, a univariate slope/bias correction is applied in view of transporting these at-line calibration models to an in-line manufacturing set-up. This standardisation technique allows a fast and easy transfer of the PLS regression models, by simply correcting the model predictions on the in-line set-up, without adjusting anything to the original multivariate calibration models. An extensive statistical analysis is performed in order to assess the predictive quality of the transferred regression models. Before and after transfer, the R 2 and RMSEP of both models is compared for evaluating if their magnitude is similar. T-tests are then performed to investigate whether the slope and intercept of the transferred regression line are not statistically different from 1 and 0, respectively. Furthermore, it is inspected whether no significant bias can be noted. F-tests are executed as well, for assessing the linearity of the transfer regression line and for investigating the statistical coincidence of the transfer and validation regression line. Finally, a paired t-test is performed to compare the original at-line model to the slope/bias corrected in-line model, using interval hypotheses. It is shown that the calibration models of Surfactant 1 and Surfactant 2 yield satisfactory in-line predictions after slope/bias correction. While Surfactant 1 passes seven out of eight statistical tests, the recommended validation parameters are 100% successful for Surfactant 2. It is hence concluded that the proposed strategy for transferring at-line calibration models to an in-line industrial environment via a univariate slope/bias correction of the predicted values offers a successful standardisation approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Lu, Yuzhen; Du, Changwen; Yu, Changbing; Zhou, Jianmin
2014-08-01
Fast and non-destructive determination of rapeseed protein content carries significant implications in rapeseed production. This study presented the first attempt of using Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) to quantify protein content of rapeseed. The full-spectrum model was first built using partial least squares (PLS). Interval selection methods including interval partial least squares (iPLS), synergy interval partial least squares (siPLS), backward elimination interval partial least squares (biPLS) and dynamic backward elimination interval partial least squares (dyn-biPLS) were then employed to select the relevant band or band combination for PLS modeling. The full-spectrum PLS model achieved an ratio of prediction to deviation (RPD) of 2.047. In comparison, all interval selection methods produced better results than full-spectrum modeling. siPLS achieved the best predictive accuracy with an RPD of 3.215 when the spectrum was sectioned into 25 intervals, and two intervals (1198-1335 and 1614-1753 cm(-1) ) were selected. iPLS excelled biPLS and dyn-biPLS, and dyn-biPLS performed slightly better than biPLS. FTIR-PAS was verified as a promising analytical tool to quantify rapeseed protein content. Interval selection could extract the relevant individual band or synergy band associated with the sample constituent of interest, and then improve the prediction accuracy of the full-spectrum model. © 2013 Society of Chemical Industry.
Multivariate data analysis to characterize gas chromatography columns for dioxin analysis.
Do, Lan; Geladi, Paul; Haglund, Peter
2014-06-20
Principal component analysis (PCA) was applied for evaluating the selectivity of 22 GC columns for which complete retention data were available for the 136 tetra- to octa-chlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Because the hepta- and octa-homologues are easy to separate the PCA was focused on the 128 tetra- to hexa-CDD/Fs. The analysis showed that 21 of the 22 GC columns could be subdivided into four groups with different selectivity. Group I consists of columns with non-polar thermally stable phases (Restek 5Sil MS and Dioxin 2, SGE BPX-DXN, Supelco Equity-5, and Agilent DB-1, DB-5, DB-5ms, VF-5ms, VF-Xms and DB-XLB). Group II includes ionic liquid columns (Supelco SLB-IL61, SLB-IL111 and SLB-IL76) with very high polarity. Group III includes columns with high-percentage phenyl and cyanopropyl phases (Agilent DB-17 and DB-225, Quadrex CPS-1, Supelco SP-2331, and Agilent CP-Sil 88), and Group IV columns with shape selectivity (Dionex SB-Smectic and Restek LC-50, Supelco βDEXcst, Agilent VF-Xms and DB-XLB). Thus, two columns appeared in both Group I and IV (Agilent VF-Xms and DB-XLB). The selectivity of the other column, Agilent DB-210, differs from those of these four groups. Partial least squares (PLS) regression was used to correlate the retention times of the tetra- to hexa-CDD/Fs on the 22 stationary phases with a set of physicochemical and structural descriptors to identify parameters that significantly influence the solute-stationary phase interactions. The most influential physicochemical parameters for the interaction were associated with molecular size (as reflects in the total energy, electron energy, core-core repulsion and standard entropy), solubility (aqueous solubility and n-octanol/water partition coefficient), charge distribution (molecular polarizability and dipolar moment), and reactivity (relative Gibbs free energy); and the most influential structural descriptors were related to these parameters, in particular, size and dipolar moment. Finally, the PCA and PLS analyses were complemented with linear regression analysis to identify the most orthogonal column combinations, which could be used in comprehensive two-dimensional gas chromatography (GC×GC) to enhance PCDD/F separation and congener profiling. Copyright © 2014 Elsevier B.V. All rights reserved.
Preschool life skills: Recent advancements and future directions.
Fahmie, Tara A; Luczynski, Kevin C
2018-01-01
Over the past decade, researchers have replicated and extended research on the preschool life skills (PLS) program developed by Hanley, Heal, Tiger, and Ingvarsson (2007). This review summarizes recent research with respect to maximizing skill acquisition, improving generality, evaluating feasibility and acceptability, and testing predictions of the initial PLS study. For each area, we suggest directions for future research. © 2018 Society for the Experimental Analysis of Behavior.
Real-time Raman spectroscopy for automatic in vivo skin cancer detection: an independent validation.
Zhao, Jianhua; Lui, Harvey; Kalia, Sunil; Zeng, Haishan
2015-11-01
In a recent study, we have demonstrated that real-time Raman spectroscopy could be used for skin cancer diagnosis. As a translational study, the objective of this study is to validate previous findings through a completely independent clinical test. In total, 645 confirmed cases were included in the analysis, including a cohort of 518 cases from a previous study, and an independent cohort of 127 new cases. Multi-variant statistical data analyses including principal component with general discriminant analysis (PC-GDA) and partial least squares (PLS) were used separately for lesion classification, which generated similar results. When the previous cohort (n = 518) was used as training and the new cohort (n = 127) was used as testing, the area under the receiver operating characteristic curve (ROC AUC) was found to be 0.889 (95 % CI 0.834-0.944; PLS); when the two cohorts were combined, the ROC AUC was 0.894 (95 % CI 0.870-0.918; PLS) with the narrowest confidence intervals. Both analyses were comparable to the previous findings, where the ROC AUC was 0.896 (95 % CI 0.846-0.946; PLS). The independent study validates that real-time Raman spectroscopy could be used for automatic in vivo skin cancer diagnosis with good accuracy.
Partial Least Squares for Discrimination in fMRI Data
Andersen, Anders H.; Rayens, William S.; Liu, Yushu; Smith, Charles D.
2011-01-01
Multivariate methods for discrimination were used in the comparison of brain activation patterns between groups of cognitively normal women who are at either high or low Alzheimer's disease risk based on family history and apolipoprotein-E4 status. Linear discriminant analysis (LDA) was preceded by dimension reduction using either principal component analysis (PCA), partial least squares (PLS), or a new oriented partial least squares (OrPLS) method. The aim was to identify a spatial pattern of functionally connected brain regions that was differentially expressed by the risk groups and yielded optimal classification accuracy. Multivariate dimension reduction is required prior to LDA when the data contains more feature variables than there are observations on individual subjects. Whereas PCA has been commonly used to identify covariance patterns in neuroimaging data, this approach only identifies gross variability and is not capable of distinguishing among-groups from within-groups variability. PLS and OrPLS provide a more focused dimension reduction by incorporating information on class structure and therefore lead to more parsimonious models for discrimination. Performance was evaluated in terms of the cross-validated misclassification rates. The results support the potential of using fMRI as an imaging biomarker or diagnostic tool to discriminate individuals with disease or high risk. PMID:22227352
ATR-FTIR spectroscopy for the determination of Na4EDTA in detergent aqueous solutions.
Suárez, Leticia; García, Roberto; Riera, Francisco A; Diez, María A
2013-10-15
Fourier transform infrared spectroscopy in the attenuated total reflectance mode (ATR-FTIR) combined with partial last square (PLS) algorithms was used to design calibration and prediction models for a wide range of tetrasodium ethylenediaminetetraacetate (Na4EDTA) concentrations (0.1 to 28% w/w) in aqueous solutions. The spectra obtained using air and water as a background medium were tested for the best fit. The PLS models designed afforded a sufficient level of precision and accuracy to allow even very small amounts of Na4EDTA to be determined. A root mean square error of nearly 0.37 for the validation set was obtained. Over a concentration range below 5% w/w, the values estimated from a combination of ATR-FTIR spectroscopy and a PLS algorithm model were similar to those obtained from an HPLC analysis of NaFeEDTA complexes and subsequent detection by UV absorbance. However, the lowest detection limit for Na4EDTA concentrations afforded by this spectroscopic/chemometric method was 0.3% w/w. The PLS model was successfully used as a rapid and simple method to quantify Na4EDTA in aqueous solutions of industrial detergents as an alternative to HPLC-UV analysis which involves time-consuming dilution and complexation processes. © 2013 Elsevier B.V. All rights reserved.
Ma, W; Zhang, T-F; Lu, P; Lu, S H
2014-01-01
Breast cancer is categorized into two broad groups: estrogen receptor positive (ER+) and ER negative (ER-) groups. Previous study proposed that under trastuzumab-based neoadjuvant chemotherapy, tumor initiating cell (TIC) featured ER- tumors response better than ER+ tumors. Exploration of the molecular difference of these two groups may help developing new therapeutic strategies, especially for ER- patients. With gene expression profile from the Gene Expression Omnibus (GEO) database, we performed partial least squares (PLS) based analysis, which is more sensitive than common variance/regression analysis. We acquired 512 differentially expressed genes. Four pathways were found to be enriched with differentially expressed genes, involving immune system, metabolism and genetic information processing process. Network analysis identified five hub genes with degrees higher than 10, including APP, ESR1, SMAD3, HDAC2, and PRKAA1. Our findings provide new understanding for the molecular difference between TIC featured ER- and ER+ breast tumors with the hope offer supports for therapeutic studies.
NASA Astrophysics Data System (ADS)
Wu, W.; Chen, G. Y.; Kang, R.; Xia, J. C.; Huang, Y. P.; Chen, K. J.
2017-07-01
During slaughtering and further processing, chicken carcasses are inevitably contaminated by microbial pathogen contaminants. Due to food safety concerns, many countries implement a zero-tolerance policy that forbids the placement of visibly contaminated carcasses in ice-water chiller tanks during processing. Manual detection of contaminants is labor consuming and imprecise. Here, a successive projections algorithm (SPA)-multivariable linear regression (MLR) classifier based on an optimal performance threshold was developed for automatic detection of contaminants on chicken carcasses. Hyperspectral images were obtained using a hyperspectral imaging system. A regression model of the classifier was established by MLR based on twelve characteristic wavelengths (505, 537, 561, 562, 564, 575, 604, 627, 656, 665, 670, and 689 nm) selected by SPA , and the optimal threshold T = 1 was obtained from the receiver operating characteristic (ROC) analysis. The SPA-MLR classifier provided the best detection results when compared with the SPA-partial least squares (PLS) regression classifier and the SPA-least squares supported vector machine (LS-SVM) classifier. The true positive rate (TPR) of 100% and the false positive rate (FPR) of 0.392% indicate that the SPA-MLR classifier can utilize spatial and spectral information to effectively detect contaminants on chicken carcasses.
Belay, T K; Dagnachew, B S; Boison, S A; Ådnøy, T
2018-03-28
Milk infrared spectra are routinely used for phenotyping traits of interest through links developed between the traits and spectra. Predicted individual traits are then used in genetic analyses for estimated breeding value (EBV) or for phenotypic predictions using a single-trait mixed model; this approach is referred to as indirect prediction (IP). An alternative approach [direct prediction (DP)] is a direct genetic analysis of (a reduced dimension of) the spectra using a multitrait model to predict multivariate EBV of the spectral components and, ultimately, also to predict the univariate EBV or phenotype for the traits of interest. We simulated 3 traits under different genetic (low: 0.10 to high: 0.90) and residual (zero to high: ±0.90) correlation scenarios between the 3 traits and assumed the first trait is a linear combination of the other 2 traits. The aim was to compare the IP and DP approaches for predictions of EBV and phenotypes under the different correlation scenarios. We also evaluated relationships between performances of the 2 approaches and the accuracy of calibration equations. Moreover, the effect of using different regression coefficients estimated from simulated phenotypes (β p ), true breeding values (β g ), and residuals (β r ) on performance of the 2 approaches were evaluated. The simulated data contained 2,100 parents (100 sires and 2,000 cows) and 8,000 offspring (4 offspring per cow). Of the 8,000 observations, 2,000 were randomly selected and used to develop links between the first and the other 2 traits using partial least square (PLS) regression analysis. The different PLS regression coefficients, such as β p , β g , and β r , were used in subsequent predictions following the IP and DP approaches. We used BLUP analyses for the remaining 6,000 observations using the true (co)variance components that had been used for the simulation. Accuracy of prediction (of EBV and phenotype) was calculated as a correlation between predicted and true values from the simulations. The results showed that accuracies of EBV prediction were higher in the DP than in the IP approach. The reverse was true for accuracy of phenotypic prediction when using β p but not when using β g and β r , where accuracy of phenotypic prediction in the DP was slightly higher than in the IP approach. Within the DP approach, accuracies of EBV when using β g were higher than when using β p only at the low genetic correlation scenario. However, we found no differences in EBV prediction accuracy between the β p and β g in the IP approach. Accuracy of the calibration models increased with an increase in genetic and residual correlations between the traits. Performance of both approaches increased with an increase in accuracy of the calibration models. In conclusion, the DP approach is a good strategy for EBV prediction but not for phenotypic prediction, where the classical PLS regression-based equations or the IP approach provided better results. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Li, Muyang; Williams, Daniel L.; Heckwolf, Marlies; ...
2016-10-04
In this paper, we explore the ability of several characterization approaches for phenotyping to extract information about plant cell wall properties in diverse maize genotypes with the goal of identifying approaches that could be used to predict the plant's response to deconstruction in a biomass-to-biofuel process. Specifically, a maize diversity panel was subjected to two high-throughput biomass characterization approaches, pyrolysis molecular beam mass spectrometry (py-MBMS) and near-infrared (NIR) spectroscopy, and chemometric models to predict a number of plant cell wall properties as well as enzymatic hydrolysis yields of glucose following either no pretreatment or with mild alkaline pretreatment. These weremore » compared to multiple linear regression (MLR) models developed from quantified properties. We were able to demonstrate that direct correlations to specific mass spectrometry ions from pyrolysis as well as characteristic regions of the second derivative of the NIR spectrum regions were comparable in their predictive capability to partial least squares (PLS) models for p-coumarate content, while the direct correlation to the spectral data was superior to the PLS for Klason lignin content and guaiacyl monomer release by thioacidolysis as assessed by cross-validation. The PLS models for prediction of hydrolysis yields using either py-MBMS or NIR spectra were superior to MLR models based on quantified properties for unpretreated biomass. However, the PLS models using the two high-throughput characterization approaches could not predict hydrolysis following alkaline pretreatment while MLR models based on quantified properties could. This is likely a consequence of quantified properties including some assessments of pretreated biomass, while the py-MBMS and NIR only utilized untreated biomass.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Muyang; Williams, Daniel L.; Heckwolf, Marlies
In this paper, we explore the ability of several characterization approaches for phenotyping to extract information about plant cell wall properties in diverse maize genotypes with the goal of identifying approaches that could be used to predict the plant's response to deconstruction in a biomass-to-biofuel process. Specifically, a maize diversity panel was subjected to two high-throughput biomass characterization approaches, pyrolysis molecular beam mass spectrometry (py-MBMS) and near-infrared (NIR) spectroscopy, and chemometric models to predict a number of plant cell wall properties as well as enzymatic hydrolysis yields of glucose following either no pretreatment or with mild alkaline pretreatment. These weremore » compared to multiple linear regression (MLR) models developed from quantified properties. We were able to demonstrate that direct correlations to specific mass spectrometry ions from pyrolysis as well as characteristic regions of the second derivative of the NIR spectrum regions were comparable in their predictive capability to partial least squares (PLS) models for p-coumarate content, while the direct correlation to the spectral data was superior to the PLS for Klason lignin content and guaiacyl monomer release by thioacidolysis as assessed by cross-validation. The PLS models for prediction of hydrolysis yields using either py-MBMS or NIR spectra were superior to MLR models based on quantified properties for unpretreated biomass. However, the PLS models using the two high-throughput characterization approaches could not predict hydrolysis following alkaline pretreatment while MLR models based on quantified properties could. This is likely a consequence of quantified properties including some assessments of pretreated biomass, while the py-MBMS and NIR only utilized untreated biomass.« less
Angeyo, K H; Gari, S; Mustapha, A O; Mangala, J M
2012-11-01
The greatest challenge to material characterization by XRF technique is encountered in direct trace analysis of complex matrices. We exploited partial least squares (PLS) in conjunction with energy dispersive X-ray fluorescence and scattering (EDXRFS) spectrometry to rapidly (200 s) analyze lubricating oils. The PLS-EDXRFS method affords non-invasive quality assurance (QA) analysis of complex matrix liquids as it gave optimistic results for both heavy- and low-Z metal additives. Scatter peaks may further be used for QA characterization via the light elements. Copyright © 2012 Elsevier Ltd. All rights reserved.
Meijer, W J; de Boer, A J; van Tongeren, S; Venema, G; Bron, S
1995-01-01
A 3.1 kb fragment of the large (approximately 55 kb) Bacillus subtilis plasmid pLS20 containing all the information for autonomous replication was cloned and sequenced. In contrast to the parental plasmid, derived minireplicons were unstably maintained. Using deletion analysis the fragment essential and sufficient for replication was delineated to 1.1 kb. This 1.1 kb fragment is located between two divergently transcribed genes, denoted orfA and orfB, neither of which is required for replication. orfA shows homology to the B.subtilis chromosomal genes rapA (spoOL, gsiA) and rapB (spoOP). The 1.1 kb fragment, which is characterized by the presence of several regions of dyad symmetry, contains no open reading frames of more than 85 codons and shows no similarity with other known plasmid replicons. The structural organization of the pLS20 minimal replicon is entirely different from that of typical rolling circle plasmids from Gram-positive bacteria. The pLS20 minireplicons replicate in polA5 and recA4 B.subtilis strains. Taken together, these results strongly suggest that pLS20 belongs to a new class of theta replicons. PMID:7667098
Differences in chewing sounds of dry-crisp snacks by multivariate data analysis
NASA Astrophysics Data System (ADS)
De Belie, N.; Sivertsvik, M.; De Baerdemaeker, J.
2003-09-01
Chewing sounds of different types of dry-crisp snacks (two types of potato chips, prawn crackers, cornflakes and low calorie snacks from extruded starch) were analysed to assess differences in sound emission patterns. The emitted sounds were recorded by a microphone placed over the ear canal. The first bite and the first subsequent chew were selected from the time signal and a fast Fourier transformation provided the power spectra. Different multivariate analysis techniques were used for classification of the snack groups. This included principal component analysis (PCA) and unfold partial least-squares (PLS) algorithms, as well as multi-way techniques such as three-way PLS, three-way PCA (Tucker3), and parallel factor analysis (PARAFAC) on the first bite and subsequent chew. The models were evaluated by calculating the classification errors and the root mean square error of prediction (RMSEP) for independent validation sets. It appeared that the logarithm of the power spectra obtained from the chewing sounds could be used successfully to distinguish the different snack groups. When different chewers were used, recalibration of the models was necessary. Multi-way models distinguished better between chewing sounds of different snack groups than PCA on bite or chew separately and than unfold PLS. From all three-way models applied, N-PLS with three components showed the best classification capabilities, resulting in classification errors of 14-18%. The major amount of incorrect classifications was due to one type of potato chips that had a very irregular shape, resulting in a wide variation of the emitted sounds.
Microorganisms detection on substrates using QCL spectroscopy
NASA Astrophysics Data System (ADS)
Padilla-Jiménez, Amira C.; Ortiz-Rivera, William; Castro-Suarez, John R.; Ríos-Velázquez, Carlos; Vázquez-Ayala, Iris; Hernández-Rivera, Samuel P.
2013-05-01
Recent investigations have focused on the improvement of rapid and accurate methods to develop spectroscopic markers of compounds constituting microorganisms that are considered biological threats. Quantum cascade lasers (QCL) systems have revolutionized many areas of research and development in defense and security applications, including his area of research. Infrared spectroscopy detection based on QCL was employed to acquire mid infrared (MIR) spectral signatures of Bacillus thuringiensis (Bt), Escherichia coli (Ec) and Staphylococcus epidermidis (Se), which were used as biological agent simulants of biothreats. The experiments were carried out in reflection mode on various substrates such as cardboard, glass, travel baggage, wood and stainless steel. Chemometrics statistical routines such as principal component analysis (PCA) regression and partial least squares-discriminant analysis (PLS-DA) were applied to the recorded MIR spectra. The results show that the infrared vibrational techniques investigated are useful for classification/detection of the target microorganisms on the types of substrates studied.
Goicoechea, H C; Olivieri, A C
1999-08-01
The use of multivariate spectrophotometric calibration is presented for the simultaneous determination of the active components of tablets used in the treatment of pulmonary tuberculosis. The resolution of ternary mixtures of rifampicin, isoniazid and pyrazinamide has been accomplished by using partial least squares (PLS-1) regression analysis. Although the components show an important degree of spectral overlap, they have been simultaneously determined with high accuracy and precision, rapidly and with no need of nonaqueous solvents for dissolving the samples. No interference has been observed from the tablet excipients. A comparison is presented with the related multivariate method of classical least squares (CLS) analysis, which is shown to yield less reliable results due to the severe spectral overlap among the studied compounds. This is highlighted in the case of isoniazid, due to the small absorbances measured for this component.
Lee, Sang Mi; Kwon, Goo Young; Kim, Kwang-Ok; Kim, Young-Suk
2011-10-10
The non-targeted analysis, combining gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF/MS) and sensory evaluation, was applied to investigate the relationship between volatile compounds and the sensory attributes of glutathione-Maillard reaction products (GSH-MRPs) prepared under different reaction conditions. Volatile compounds in GSH-MRPs correlating to the sensory attributes were determined using partial least-squares (PLS) regression. Volatile compounds such as 2-methylfuran-3-thiol, 3-sulfanylpentan-2-one, furan-2-ylmethanethiol, 2-propylpyrazine, 1-furan-2-ylpropan-2-one, 1H-pyrrole, 2-methylthiophene, and 2-(furan-2-ylmethyldisulfanylmethyl)furan could be identified as possible key contributors to the beef-related attributes of GSH-MRPs. In this study, we demonstrated that the unbiased non-targeted analysis based on metabolomic approach allows the identification of key volatile compounds related to beef flavor in GSH-MRPs. Copyright © 2011 Elsevier B.V. All rights reserved.
Szymanska-Chargot, M; Chylinska, M; Kruk, B; Zdunek, A
2015-01-22
The aim of this work was to quantitatively and qualitatively determine the composition of the cell wall material from apples during development by means of Fourier transform infrared (FT-IR) spectroscopy. The FT-IR region of 1500-800 cm(-1), containing characteristic bands for galacturonic acid, hemicellulose and cellulose, was examined using principal component analysis (PCA), k-means clustering and partial least squares (PLS). The samples were differentiated by development stage and cultivar using PCA and k-means clustering. PLS calibration models for galacturonic acid, hemicellulose and cellulose content from FT-IR spectra were developed and validated with the reference data. PLS models were tested using the root-mean-square errors of cross-validation for contents of galacturonic acid, hemicellulose and cellulose which was 8.30 mg/g, 4.08% and 1.74%, respectively. It was proven that FT-IR spectroscopy combined with chemometric methods has potential for fast and reliable determination of the main constituents of fruit cell walls. Copyright © 2014 Elsevier Ltd. All rights reserved.
Oliveira, Flavia C C; Brandão, Christian R R; Ramalho, Hugo F; da Costa, Leonardo A F; Suarez, Paulo A Z; Rubim, Joel C
2007-03-28
In this work it has been shown that the routine ASTM methods (ASTM 4052, ASTM D 445, ASTM D 4737, ASTM D 93, and ASTM D 86) recommended by the ANP (the Brazilian National Agency for Petroleum, Natural Gas and Biofuels) to determine the quality of diesel/biodiesel blends are not suitable to prevent the adulteration of B2 or B5 blends with vegetable oils. Considering the previous and actual problems with fuel adulterations in Brazil, we have investigated the application of vibrational spectroscopy (Fourier transform (FT) near infrared spectrometry and FT-Raman) to identify adulterations of B2 and B5 blends with vegetable oils. Partial least square regression (PLS), principal component regression (PCR), and artificial neural network (ANN) calibration models were designed and their relative performances were evaluated by external validation using the F-test. The PCR, PLS, and ANN calibration models based on the Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy were designed using 120 samples. Other 62 samples were used in the validation and external validation, for a total of 182 samples. The results have shown that among the designed calibration models, the ANN/FT-Raman presented the best accuracy (0.028%, w/w) for samples used in the external validation.
Infrared microspectroscopic determination of collagen cross-links in articular cartilage
NASA Astrophysics Data System (ADS)
Rieppo, Lassi; Kokkonen, Harri T.; Kulmala, Katariina A. M.; Kovanen, Vuokko; Lammi, Mikko J.; Töyräs, Juha; Saarakkala, Simo
2017-03-01
Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples (n=27) were treated with threose to increase the collagen cross-linking while the other half (n=27) served as a control group. Partial least squares (PLS) regression with variable selection algorithms was used to predict the cross-link concentrations from the measured average FTIR spectra of the samples, and HPLC was used as the reference method for cross-link concentrations. The correlation coefficients between the PLS regression models and the biochemical reference values were r=0.84 (p<0.001), r=0.87 (p<0.001) and r=0.92 (p<0.001) for hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP), and pentosidine (Pent) cross-links, respectively. The study demonstrated that FTIR microspectroscopy is a feasible method for investigating cross-link concentrations in articular cartilage.
You, Ying-Shu; Lin, Ching-Yu; Liang, Hao-Jan; Lee, Shen-Hung; Tsai, Keh-Sung; Chiou, Jeng-Min; Chen, Yen-Ching; Tsao, Chwen-Keng; Chen, Jen-Hau
2014-01-01
Osteoporosis is related to the alteration of specific circulating metabolites. However, previous studies on only a few metabolites inadequately explain the pathogenesis of this complex syndrome. To date, no study has related the metabolome to bone mineral density (BMD), which would provide an overview of metabolism status and may be useful in clinical practice. This cross-sectional study involved 601 healthy Taiwanese women aged 40 to 55 years recruited from MJ Health Management Institution between 2009 and 2010. Participants were classified according to high (2nd tertile plus 3rd tertile) and low (1st tertile) BMD groups. The plasma metabolome was evaluated by proton nuclear magnetic resonance spectroscopy ((1) H NMR). Principal components analysis (PCA), partial least-squares discriminant analysis (PLS-DA), and logistic regression analysis were used to assess the association between the metabolome and BMD. The high and low BMD groups could be differentiated by PLS-DA but not PCA in postmenopausal women (Q(2) = 0.05, ppermutation = 0.04). Among postmenopausal women, elevated glutamine was significantly associated with low BMD (adjusted odds ratio [AOR] = 5.10); meanwhile, elevated lactate (AOR = 0.55), acetone (AOR = 0.51), lipids (AOR = 0.04), and very low-density lipoprotein (AOR = 0.49) protected against low BMD. To the best of our knowledge, this study is the first to identify a group of metabolites for characterizing low BMD in postmenopausal women using a (1) H NMR-based metabolomic approach. The metabolic profile may be useful for predicting the risk of osteoporosis in postmenopausal women at an early age. © 2014 American Society for Bone and Mineral Research.
Characterization of the biosolids composting process by hyperspectral analysis.
Ilani, Talli; Herrmann, Ittai; Karnieli, Arnon; Arye, Gilboa
2016-02-01
Composted biosolids are widely used as a soil supplement to improve soil quality. However, the application of immature or unstable compost can cause the opposite effect. To date, compost maturation determination is time consuming and cannot be done at the composting site. Hyperspectral spectroscopy was suggested as a simple tool for assessing compost maturity and quality. Nevertheless, there is still a gap in knowledge regarding several compost maturation characteristics, such as dissolved organic carbon, NO3, and NH4 contents. In addition, this approach has not yet been tested on a sample at its natural water content. Therefore, in the current study, hyperspectral analysis was employed in order to characterize the biosolids composting process as a function of composting time. This goal was achieved by correlating the reflectance spectra in the range of 400-2400nm, using the partial least squares-regression (PLS-R) model, with the chemical properties of wet and oven-dried biosolid samples. The results showed that the proposed method can be used as a reliable means to evaluate compost maturity and stability. Specifically, the PLS-R model was found to be an adequate tool to evaluate the biosolids' total carbon and dissolved organic carbon, total nitrogen and dissolved nitrogen, and nitrate content, as well as the absorbance ratio of 254/365nm (E2/E3) and C/N ratios in the dry and wet samples. It failed, however, to predict the ammonium content in the dry samples since the ammonium evaporated during the drying process. It was found that in contrast to what is commonly assumed, the spectral analysis of the wet samples can also be successfully used to build a model for predicting the biosolids' compost maturity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Elsohaby, Ibrahim; McClure, J Trenton; Riley, Christopher B; Bryanton, Janet; Bigsby, Kathryn; Shaw, R Anthony
2018-02-20
Attenuated total reflectance infrared (ATR-IR) spectroscopy is a simple, rapid and cost-effective method for the analysis of serum. However, the complex nature of serum remains a limiting factor to the reliability of this method. We investigated the benefits of coupling the centrifugal ultrafiltration with ATR-IR spectroscopy for quantification of human serum IgA concentration. Human serum samples (n = 196) were analyzed for IgA using an immunoturbidimetric assay. ATR-IR spectra were acquired for whole serum samples and for the retentate (residue) reconstituted with saline following 300 kDa centrifugal ultrafiltration. IR-based analytical methods were developed for each of the two spectroscopic datasets, and the accuracy of each of the two methods compared. Analytical methods were based upon partial least squares regression (PLSR) calibration models - one with 5-PLS factors (for whole serum) and the second with 9-PLS factors (for the reconstituted retentate). Comparison of the two sets of IR-based analytical results to reference IgA values revealed improvements in the Pearson correlation coefficient (from 0.66 to 0.76), and the root mean squared error of prediction in IR-based IgA concentrations (from 102 to 79 mg/dL) for the ultrafiltration retentate-based method as compared to the method built upon whole serum spectra. Depleting human serum low molecular weight proteins using a 300 kDa centrifugal filter thus enhances the accuracy IgA quantification by ATR-IR spectroscopy. Further evaluation and optimization of this general approach may ultimately lead to routine analysis of a range of high molecular-weight analytical targets that are otherwise unsuitable for IR-based analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Multivariate classification of the infrared spectra of cell and tissue samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haaland, D.M.; Jones, H.D.; Thomas, E.V.
1997-03-01
Infrared microspectroscopy of biopsied canine lymph cells and tissue was performed to investigate the possibility of using IR spectra coupled with multivariate classification methods to classify the samples as normal, hyperplastic, or neoplastic (malignant). IR spectra were obtained in transmission mode through BaF{sub 2} windows and in reflection mode from samples prepared on gold-coated microscope slides. Cytology and histopathology samples were prepared by a variety of methods to identify the optimal methods of sample preparation. Cytospinning procedures that yielded a monolayer of cells on the BaF{sub 2} windows produced a limited set of IR transmission spectra. These transmission spectra weremore » converted to absorbance and formed the basis for a classification rule that yielded 100{percent} correct classification in a cross-validated context. Classifications of normal, hyperplastic, and neoplastic cell sample spectra were achieved by using both partial least-squares (PLS) and principal component regression (PCR) classification methods. Linear discriminant analysis applied to principal components obtained from the spectral data yielded a small number of misclassifications. PLS weight loading vectors yield valuable qualitative insight into the molecular changes that are responsible for the success of the infrared classification. These successful classification results show promise for assisting pathologists in the diagnosis of cell types and offer future potential for {ital in vivo} IR detection of some types of cancer. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}« less
Nawaz, Haq; Bonnier, Franck; Knief, Peter; Howe, Orla; Lyng, Fiona M; Meade, Aidan D; Byrne, Hugh J
2010-12-01
The study of the interaction of anticancer drugs with mammalian cells in vitro is important to elucidate the mechanisms of action of the drug on its biological targets. In this context, Raman spectroscopy is a potential candidate for high throughput, non-invasive analysis. To explore this potential, the interaction of cis-diamminedichloroplatinum(II) (cisplatin) with a human lung adenocarcinoma cell line (A549) was investigated using Raman microspectroscopy. The results were correlated with parallel measurements from the MTT cytotoxicity assay, which yielded an IC(50) value of 1.2 ± 0.2 µM. To further confirm the spectral results, Raman spectra were also acquired from DNA extracted from A549 cells exposed to cisplatin and from unexposed controls. Partial least squares (PLS) multivariate regression and PLS Jackknifing were employed to highlight spectral regions which varied in a statistically significant manner with exposure to cisplatin and with the resultant changes in cellular physiology measured by the MTT assay. The results demonstrate the potential of the cellular Raman spectrum to non-invasively elucidate spectral changes that have their origin either in the biochemical interaction of external agents with the cell or its physiological response, allowing the prediction of the cellular response and the identification of the origin of the chemotherapeutic response at a molecular level in the cell.
Winning, Hanne; Roldán-Marín, Eduvigis; Dragsted, Lars O; Viereck, Nanna; Poulsen, Morten; Sánchez-Moreno, Concepción; Cano, M Pilar; Engelsen, Søren B
2009-11-01
The metabolome following intake of onion by-products is evaluated. Thirty-two rats were fed a diet containing an onion by-product or one of the two derived onion by-product fractions: an ethanol extract and the residue. A 24 hour urine sample was analyzed using (1)H NMR spectroscopy in order to investigate the effects of onion intake on the rat metabolism. Application of interval extended canonical variates analysis (ECVA) proved to be able to distinguish between the metabolomic profiles from rats consuming normal feed and rats fed with an onion diet. Two dietary biomarkers for onion intake were identified as dimethyl sulfone and 3-hydroxyphenylacetic acid. The same two dietary biomarkers were subsequently revealed by interval partial least squares regression (PLS) to be perfect quantitative markers for onion intake. The best PLS calibration model yielded a root mean square error of cross-validation (RMSECV) of 0.97% (w/w) with only 1 latent variable and a squared correlation coefficient of 0.94. This indicates that urine from rats on the by-product diet, the extract diet, and the residue diet all contain the same dietary biomarkers and it is concluded that dimethyl sulfone and 3-hydroxyphenylacetic acid are dietary biomarkers for onion intake. Being able to detect specific dietary biomarkers is highly beneficial in the control of nutritionally enhanced functional foods.
Vásquez, Valeria; Báez, María E; Bravo, Manuel; Fuentes, Edwar
2013-09-01
Seven heavy polycyclic aromatic hydrocarbons (PAHs) of concern on the US Environmental Protection Agency priority pollutant list (benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-c,d]-pyrene) were simultaneously analyzed in extra virgin olive oil. The analysis is based on the measurement of excitation-emission matrices on nylon membrane and processing of data using unfolded partial least-squares regression with residual bilinearization (U-PLS/RBL). The conditions needed to retain the PAHs present in the oil matrix on the nylon membrane were evaluated. The limit of detection for the proposed method ranged from 0.29 to 1.0 μg kg(-1), with recoveries between 64 and 78 %. The predicted U-PLS/RBL concentrations compared favorably with those measured using high-performance liquid chromatography with fluorescence detection. The proposed method was applied to ten samples of edible oil, two of which presented PAHs ranging from 0.35 to 0.63 μg kg(-1). The principal advantages of the proposed analytical method are that it provides a significant reduction in time and solvent consumption with a similar limit of detection as compared with chromatography.
Malzert-Fréon, A; Hennequin, D; Rault, S
2010-11-01
Lipidic nanoparticles (NP), formulated from a phase inversion temperature process, have been studied with chemometric techniques to emphasize the influence of the four major components (Solutol®, Labrasol®, Labrafac®, water) on their average diameter and their distribution in size. Typically, these NP present a monodisperse size lower than 200 nm, as determined by dynamic light scattering measurements. From the application of the partial least squares (PLS) regression technique to the experimental data collected during definition of the feasibility zone, it was established that NP present a core-shell structure where Labrasol® is well encapsulated and contributes to the structuring of the NP. Even if this solubility enhancer is regarded as a pure surfactant in the literature, it appears that the oil moieties of this macrogolglyceride mixture significantly influence its properties. Furthermore, results have shown that PLS technique can be also used for predictions of sizes for given relative proportions of components and it was established that from a mixture design, the quantitative mixture composition to use in order to reach a targeted size and a targeted polydispersity index (PDI) can be easily predicted. Hence, statistical models can be a useful tool to control and optimize the characteristics in size of NP. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Liu, Xiu-ying; Wang, Li; Chang, Qing-rui; Wang, Xiao-xing; Shang, Yan
2015-07-01
Wuqi County of Shaanxi Province, where the vegetation recovering measures have been carried out for years, was taken as the study area. A total of 100 loess samples from 24 different profiles were collected. Total nitrogen (TN) and alkali hydrolysable nitrogen (AHN) contents of the soil samples were analyzed, and the soil samples were scanned in the visible/near-infrared (VNIR) region of 350-2500 nm in the laboratory. The calibration models were developed between TN and AHN contents and VNIR values based on correlation analysis (CA) and partial least squares regression (PLS). Independent samples validated the calibration models. The results indicated that the optimum model for predicting TN of loess was established by using first derivative of reflectance. The best model for predicting AHN of loess was established by using normal derivative spectra. The optimum TN model could effectively predict TN in loess from 0 to 40 cm, but the optimum AHN model could only roughly predict AHN at the same depth. This study provided a good method for rapidly predicting TN of loess where vegetation recovering measures have been adopted, but prediction of AHN needs to be further studied.
A SAR and QSAR study of new artemisinin compounds with antimalarial activity.
Santos, Cleydson Breno R; Vieira, Josinete B; Lobato, Cleison C; Hage-Melim, Lorane I S; Souto, Raimundo N P; Lima, Clarissa S; Costa, Elizabeth V M; Brasil, Davi S B; Macêdo, Williams Jorge C; Carvalho, José Carlos T
2013-12-30
The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs) and molecular docking were used to investigate the interaction between ligands and the receptor (heme). Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE), the charge on the O11 oxygen atom (QO11), the torsion angle O1-O2-Fe-N2 (D2) and the maximum rate of R/Sanderson Electronegativity (RTe+). These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.
Noncontact analysis of the fiber weight per unit area in prepreg by near-infrared spectroscopy.
Jiang, B; Huang, Y D
2008-05-26
The fiber weight per unit area in prepreg is an important factor to ensure the quality of the composite products. Near-infrared spectroscopy (NIRS) technology together with a noncontact reflectance sources has been applied for quality analysis of the fiber weight per unit area. The range of the unit area fiber weight was 13.39-14.14mgcm(-2). The regression method was employed by partial least squares (PLS) and principal components regression (PCR). The calibration model was developed by 55 samples to determine the fiber weight per unit area in prepreg. The determination coefficient (R(2)), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were 0.82, 0.092, 0.099, respectively. The predicted values of the fiber weight per unit area in prepreg measured by NIRS technology were comparable to the values obtained by the reference method. For this technology, the noncontact reflectance sources focused directly on the sample with neither previous treatment nor manipulation. The results of the paired t-test revealed that there was no significant difference between the NIR method and the reference method. Besides, the prepreg could be analyzed one time within 20s without sample destruction.
[Detection of Hawthorn Fruit Defects Using Hyperspectral Imaging].
Liu, De-hua; Zhang, Shu-juan; Wang, Bin; Yu, Ke-qiang; Zhao, Yan-ru; He, Yong
2015-11-01
Hyperspectral imaging technology covered the range of 380-1000 nm was employed to detect defects (bruise and insect damage) of hawthorn fruit. A total of 134 samples were collected, which included damage fruit of 46, pest fruit of 30, injure and pest fruit of 10 and intact fruit of 48. Because calyx · s⁻¹ tem-end and bruise/insect damage regions offered a similar appearance characteristic in RGB images, which could produce easily confusion between them. Hence, five types of defects including bruise, insect damage, sound, calyx, and stem-end were collected from 230 hawthorn fruits. After acquiring hyperspectral images of hawthorn fruits, the spectral data were extracted from region of interest (ROI). Then, several pretreatment methods of standard normalized variate (SNV), savitzky golay (SG), median filter (MF) and multiplicative scatter correction (MSC) were used and partial least squares method(PLS) model was carried out to obtain the better performance. Accordingly to their results, SNV pretreatment methods assessed by PLS was viewed as best pretreatment method. Lastly, SNV was chosen as the pretreatment method. Spectral features of five different regions were combined with Regression coefficients(RCs) of partial least squares-discriminant analysis (PLS-DA) model was used to identify the important wavelengths and ten wavebands at 483, 563, 645, 671, 686, 722, 777, 819, 837 and 942 nm were selected from all of the wavebands. Using Kennard-Stone algorithm, all kinds of samples were randomly divided into training set (173) and test set (57) according to the proportion of 3:1. And then, least squares-support vector machine (LS-SVM) discriminate model was established by using the selected wavebands. The results showed that the discriminate accuracy of the method was 91.23%. In the other hand, images at ten important wavebands were executed to Principal component analysis (PCA). Using "Sobel" operator and region growing algrorithm "Regiongrow", the edge and defect feature of 86 Hawthorn could be recognized. Lastly, the detect precision of bruised, insect damage and two-defect samples is 95.65%, 86.67% and 100%, respectively. This investigation demonstrated that hyperspectral imaging technology could detect the defects of bruise, insect damage, calyx, and stem-end in hawthorn fruit in qualitative analysis and feature detection which provided a theoretical reference for the defects nondestructive detection of hawthorn fruit.
Yue, Peijian; Gao, Lin; Wang, Xuejing; Ding, Xuebing; Teng, Junfang
2018-06-01
The purpose of this study was to investigate ultrasound-triggered effects of the glial cell line-derived neurotrophic factor (GDNF) + nuclear receptor-related factor 1 (Nurr1)-polyethylene glycol (PEG)ylated liposomes-coupled microbubbles (PLs-GDNF + Nurr1-MBs) on behavioral impairment and neuron loss in a rat model of Parkinson's disease (PD). The unloaded PEGylated liposomes-coupled microbubbles (PLs-MBs) were characterized for zeta potential, particle size, and concentration. 6-hydroxydopamine (6-OHDA) was used to establish the PD rat model. Rotational, climbing pole, and suspension tests were used to detect behavioral impairment. The immunohistochemical staining of tyrosine hydroxylase (TH) and dopamine transporter (DAT) was used to assess the neuron loss. Western blot and quantitative real-time PCR (qRT-PCR) analysis were used to measure the expression levels of GDNF and Nurr1. The particle size of PLs-MBs was gradually increased, while the concentration and absolute zeta potential were gradually decreased as the time prolongs. 6-OHDA increased amphetamine-induced rotations and loss of dopaminergic neurons as compared to sham group. Interestingly, PLs-GDNF-MBs or PLs-Nurr1-MBs decreased rotations and increased the TH and DAT immunoreactivity. Combined of both genes resulted in a robust reduction in the rotations and a greater increase of the dopaminergic neurons. The delivery of PLs-GDNF + Nurr1-MBs into the brains using magnetic resonance imaging (MRI)-guided focused ultrasound may be more efficacious for the treatment of PD than the single treatment. © 2017 Wiley Periodicals, Inc.
Tissue-selective alteration of ethanolamine plasmalogen metabolism in dedifferentiated colon mucosa.
Lopez, Daniel H; Bestard-Escalas, Joan; Garate, Jone; Maimó-Barceló, Albert; Fernández, Roberto; Reigada, Rebeca; Khorrami, Sam; Ginard, Daniel; Okazaki, Toshiro; Fernández, José A; Barceló-Coblijn, Gwendolyn
2018-08-01
Human colon lipid analysis by imaging mass spectrometry (IMS) demonstrates that the lipid fingerprint is highly sensitive to a cell's pathophysiological state. Along the colon crypt axis, and concomitant to the differentiation process, certain lipid species tightly linked to signaling (phosphatidylinositols and arachidonic acid (AA)-containing diacylglycerophospholipids), change following a rather simple mathematical expression. We extend here our observations to ethanolamine plasmalogens (PlsEtn), a unique type of glycerophospholipid presenting a vinyl ether linkage at sn-1 position. PlsEtn distribution was studied in healthy, adenomatous, and carcinomatous colon mucosa sections by IMS. In epithelium, 75% of PlsEtn changed in a highly regular manner along the crypt axis, in clear contrast with diacyl species (67% of which remained constant). Consistently, AA-containing PlsEtn species were more abundant at the base, where stem cells reside, and decreased while ascending the crypt. In turn, mono-/diunsaturated species experienced the opposite change. These gradients were accompanied by a gradual expression of ether lipid synthesis enzymes. In lamina propria, 90% of stromal PlsEtn remained unchanged despite the high content of AA and the gradient in AA-containing diacylglycerophospholipids. Finally, both lipid and protein gradients were severely affected in polyps and carcinoma. These results link PlsEtn species regulation to cell differentiation for the first time and confirm that diacyl and ether species are differently regulated. Furthermore, they reaffirm the observations on cell lipid fingerprint image sensitivity to predict cell pathophysiological status, reinforcing the translational impact both lipidome and IMS might have in clinical research. Copyright © 2018 Elsevier B.V. All rights reserved.
Tsopelas, Fotios; Konstantopoulos, Dimitris; Kakoulidou, Anna Tsantili
2018-07-26
In the present work, two approaches for the voltammetric fingerprinting of oils and their combination with chemometrics were investigated in order to detect the adulteration of extra virgin olive oil with olive pomace oil as well as the most common seed oils, namely sunflower, soybean and corn oil. In particular, cyclic voltammograms of diluted extra virgin olive oils, regular (pure) olive oils (blends of refined olive oils with virgin olive oils), olive pomace oils and seed oils in presence of dichloromethane and 0.1 M of LiClO 4 in EtOH as electrolyte were recorded at a glassy carbon working electrode. Cyclic voltammetry was also employed in methanolic extracts of olive and seed oils. Datapoints of cyclic voltammograms were exported and submitted to Principal Component Analysis (PCA), Partial Least Square- Discriminant Analysis (PLS-DA) and soft independent modeling of class analogy (SIMCA). In diluted oils, PLS-DA provided a clear discrimination between olive oils (extra virgin and regular) and olive pomace/seed oils, while SIMCA showed a clear discrimination of extra virgin olive oil in regard to all other samples. Using methanolic extracts and considering datapoints recorded between 0.6 and 1.3 V, PLS-DA provided more information, resulting in three clusters-extra virgin olive oils, regular olive oils and seed/olive pomace oils-while SIMCA showed inferior performance. For the quantification of extra virgin olive oil adulteration with olive pomace oil or seed oils, a model based on Partial Least Square (PLS) analysis was developed. Detection limit of adulteration in olive oil was found to be 2% (v/v) and the linearity range up to 33% (v/v). Validation and applicability of all models was proved using a suitable test set. In the case of PLS, synthetic oil mixtures with 4 known adulteration levels in the range of 4-26% were also employed as a blind test set. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Belal, F.; Ibrahim, F.; Sheribah, Z. A.; Alaa, H.
2018-06-01
In this paper, novel univariate and multivariate regression methods along with model-updating technique were developed and validated for the simultaneous determination of quaternary mixture of imatinib (IMB), gemifloxacin (GMI), nalbuphine (NLP) and naproxen (NAP). The univariate method is extended derivative ratio (EDR) which depends on measuring every drug in the quaternary mixture by using a ternary mixture of the other three drugs as divisor. Peak amplitudes were measured at 294 nm, 250 nm, 283 nm and 239 nm within linear concentration ranges of 4.0-17.0, 3.0-15.0, 4.0-80.0 and 1.0-6.0 μg mL-1 for IMB, GMI, NLP and NAB, respectively. Multivariate methods adopted are partial least squares (PLS) in original and derivative mode. These models were constructed for simultaneous determination of the studied drugs in the ranges of 4.0-8.0, 3.0-11.0, 10.0-18.0 and 1.0-3.0 μg mL-1 for IMB, GMI, NLP and NAB, respectively, by using eighteen mixtures as a calibration set and seven mixtures as a validation set. The root mean square error of predication (RMSEP) were 0.09 and 0.06 for IMB, 0.14 and 0.13 for GMI, 0.07 and 0.02 for NLP and 0.64 and 0.27 for NAP by PLS in original and derivative mode, respectively. Both models were successfully applied for analysis of IMB, GMI, NLP and NAP in their dosage forms. Updated PLS in derivative mode and EDR were applied for determination of the studied drugs in spiked human urine. The obtained results were statistically compared with those obtained by the reported methods giving a conclusion that there is no significant difference regarding accuracy and precision.
Zhang, Jianhong; Shynlova, Oksana; Sabra, Sally; Bang, Annie; Briollais, Laurent; Lye, Stephen J
2017-10-01
The onset of labour in rodents and in humans is associated with physiological inflammation which is manifested by infiltration of activated maternal peripheral leukocytes (mPLs) into uterine tissues. Here, we used flow cytometry to immunophenotype mPLs throughout gestation and labour, both term and preterm. Peripheral blood was collected from non-pregnant women and pregnant women in the 1st, 2nd and 3rd trimesters. Samples were also collected from women in active labour at term (TL) or preterm (PTL) and compared with women term not-in-labour (TNIL) and preterm not-in-labour (PTNIL). Different leukocyte populations were identified by surface markers such as CD45, CD14, CD15, CD3, CD4, CD8, CD19 and CD56. Their activation status was measured by the expression levels of CD11b, CD44, CD55, CD181 and CD192 proteins. Of all circulating CD45+ leukocytes, we detected significant increases in CD15+ granulocytes (i) in pregnant women versus non-pregnant; (ii) in TL women versus TNIL and versus pregnant women in the 1st/2nd/3rd trimester; (iii) in PTL women versus PTNIL. TL was characterized by (iv) increased expressions of CD11b, CD55 and CD192 on granulocytes; (v) increased mean fluorescent intensity (MFI) of CD55 and CD192 on monocytes; (vi) increased CD44 MFI on CD3+ lymphocytes as compared to late gestation. In summary, we have identified sub-populations of mPLs that are specifically activated in association with gestation (granulocytes) or with the onset of labour (granulocytes, monocytes and lymphocytes). Additionally, beta regression analysis created a set of reference values to rank this association between immune markers of pregnancy and to identify activation status with potential prognostic and diagnostic capability. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Belal, F; Ibrahim, F; Sheribah, Z A; Alaa, H
2018-06-05
In this paper, novel univariate and multivariate regression methods along with model-updating technique were developed and validated for the simultaneous determination of quaternary mixture of imatinib (IMB), gemifloxacin (GMI), nalbuphine (NLP) and naproxen (NAP). The univariate method is extended derivative ratio (EDR) which depends on measuring every drug in the quaternary mixture by using a ternary mixture of the other three drugs as divisor. Peak amplitudes were measured at 294nm, 250nm, 283nm and 239nm within linear concentration ranges of 4.0-17.0, 3.0-15.0, 4.0-80.0 and 1.0-6.0μgmL -1 for IMB, GMI, NLP and NAB, respectively. Multivariate methods adopted are partial least squares (PLS) in original and derivative mode. These models were constructed for simultaneous determination of the studied drugs in the ranges of 4.0-8.0, 3.0-11.0, 10.0-18.0 and 1.0-3.0μgmL -1 for IMB, GMI, NLP and NAB, respectively, by using eighteen mixtures as a calibration set and seven mixtures as a validation set. The root mean square error of predication (RMSEP) were 0.09 and 0.06 for IMB, 0.14 and 0.13 for GMI, 0.07 and 0.02 for NLP and 0.64 and 0.27 for NAP by PLS in original and derivative mode, respectively. Both models were successfully applied for analysis of IMB, GMI, NLP and NAP in their dosage forms. Updated PLS in derivative mode and EDR were applied for determination of the studied drugs in spiked human urine. The obtained results were statistically compared with those obtained by the reported methods giving a conclusion that there is no significant difference regarding accuracy and precision. Copyright © 2018 Elsevier B.V. All rights reserved.
Maldi-tof fingerprinting of seminal plasma lipids in the study of human male infertility.
Camargo, Mariana; Intasqui, Paula; de Lima, Camila Bruna; Montani, Daniela Antunes; Nichi, Marcílio; Pilau, Eduardo Jorge; Gozzo, Fabio Cesar; Lo Turco, Edson Guimarães; Bertolla, Ricardo Pimenta
2014-09-01
This study proposed lipid fingerprinting of human seminal plasma by mass spectrometry as an analytical method to differentiate biological conditions. For this purpose, we chose infertile men as a model to study specific conditions, namely: high and low seminal plasma lipid peroxidation levels (sub-study 1.1), high and low sperm nuclear DNA fragmentation (sub-study 1.2), and intervention status: before and after subinguinal microsurgical varicocelectomy (study 2). Study 1 included 133 patients, of which 113 were utilized for sub-study 1.1 and 89 for sub-study 1.2. Study 2 included 17 adult men submitted to subinguinal varicocelectomy, before and 90 days after varicocelectomy. Lipids were extracted from seminal plasma and submitted to Matrix-Assisted Laser Desorption Ionization Quadrupole-Time-of-Flight Mass Spectrometry in the positive ionization mode. Spectra were processed using Waters(®) MassLynx, and MetaboAnalyst online software was used for statistical analyses. For sub-studies 1.1 and 1.2, and study 2, univariate analysis revealed 8, 87 and 34 significant ions, respectively. Multivariate analysis was performed through PCA and PLS-DA. PCA generated 56, 32 and 34 components respectively for each study and these were submitted to logistic regression. A ROC curve was plotted and the area under the curve was equal to 97.4, 92.5 and 96.5%. PLS-DA generated a list of 19, 24 and 23 VIP ions for sub-studies 1.1 and 1.2, and study 2, respectively. Therefore, this study established the lipid profile and comparison of patterns altered in response to specific biological conditions.
NASA Astrophysics Data System (ADS)
Ni, Yongnian; Wang, Yong; Kokot, Serge
2008-10-01
A spectrophotometric method for the simultaneous determination of the important pharmaceuticals, pefloxacin and its structurally similar metabolite, norfloxacin, is described for the first time. The analysis is based on the monitoring of a kinetic spectrophotometric reaction of the two analytes with potassium permanganate as the oxidant. The measurement of the reaction process followed the absorbance decrease of potassium permanganate at 526 nm, and the accompanying increase of the product, potassium manganate, at 608 nm. It was essential to use multivariate calibrations to overcome severe spectral overlaps and similarities in reaction kinetics. Calibration curves for the individual analytes showed linear relationships over the concentration ranges of 1.0-11.5 mg L -1 at 526 and 608 nm for pefloxacin, and 0.15-1.8 mg L -1 at 526 and 608 nm for norfloxacin. Various multivariate calibration models were applied, at the two analytical wavelengths, for the simultaneous prediction of the two analytes including classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). PLS and PC-RBF-ANN calibrations with the data collected at 526 nm, were the preferred methods—%RPE T ˜ 5, and LODs for pefloxacin and norfloxacin of 0.36 and 0.06 mg L -1, respectively. Then, the proposed method was applied successfully for the simultaneous determination of pefloxacin and norfloxacin present in pharmaceutical and human plasma samples. The results compared well with those from the alternative analysis by HPLC.
Classification and authentication of unknown water samples using machine learning algorithms.
Kundu, Palash K; Panchariya, P C; Kundu, Madhusree
2011-07-01
This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
De Lucia, Frank C., Jr.; Gottfried, Jennifer L.
2011-02-01
Using a series of thirteen organic materials that includes novel high-nitrogen energetic materials, conventional organic military explosives, and benign organic materials, we have demonstrated the importance of variable selection for maximizing residue discrimination with partial least squares discriminant analysis (PLS-DA). We built several PLS-DA models using different variable sets based on laser induced breakdown spectroscopy (LIBS) spectra of the organic residues on an aluminum substrate under an argon atmosphere. The model classification results for each sample are presented and the influence of the variables on these results is discussed. We found that using the whole spectra as the data input for the PLS-DA model gave the best results. However, variables due to the surrounding atmosphere and the substrate contribute to discrimination when the whole spectra are used, indicating this may not be the most robust model. Further iterative testing with additional validation data sets is necessary to determine the most robust model.
El Alami El Hassani, Nadia; Tahri, Khalid; Llobet, Eduard; Bouchikhi, Benachir; Errachid, Abdelhamid; Zine, Nadia; El Bari, Nezha
2018-03-15
Moroccan and French honeys from different geographical areas were classified and characterized by applying a voltammetric electronic tongue (VE-tongue) coupled to analytical methods. The studied parameters include color intensity, free lactonic and total acidity, proteins, phenols, hydroxymethylfurfural content (HMF), sucrose, reducing and total sugars. The geographical classification of different honeys was developed through three-pattern recognition techniques: principal component analysis (PCA), support vector machines (SVMs) and hierarchical cluster analysis (HCA). Honey characterization was achieved by partial least squares modeling (PLS). All the PLS models developed were able to accurately estimate the correct values of the parameters analyzed using as input the voltammetric experimental data (i.e. r>0.9). This confirms the potential ability of the VE-tongue for performing a rapid characterization of honeys via PLS in which an uncomplicated, cost-effective sample preparation process that does not require the use of additional chemicals is implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Payne, Courtney E.; Wolfrum, Edward J.
2015-03-12
Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics tomore » demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Courtney E.; Wolfrum, Edward J.
Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics tomore » demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.« less
Villanger, Gro D; Jenssen, Bjørn M; Fjeldberg, Rita R; Letcher, Robert J; Muir, Derek C G; Kirkegaard, Maja; Sonne, Christian; Dietz, Rune
2011-05-01
We investigated the multivariate relationships between adipose tissue residue levels of 48 individual organohalogen contaminants (OHCs) and circulating thyroid hormone (TH) levels in polar bears (Ursus maritimus) from East Greenland (1999-2001, n=62), using projection to latent structure (PLS) regression for four groupings of polar bears; subadults (SubA), adult females with cubs (AdF_N), adult females without cubs (AdF_S) and adult males (AdM). In the resulting significant PLS models for SubA, AdF_N and AdF_S, some OHCs were especially important in explaining variations in circulating TH levels: polybrominated diphenylether (PBDE)-99, PBDE-100, PBDE-153, polychlorinated biphenyl (PCB)-52, PCB-118, cis-nonachlor, trans-nonachlor, trichlorobenzene (TCB) and pentachlorobenzene (QCB), and both negative and positive relationships with THs were found. In addition, the models revealed that DDTs had a positive influence on total 3,5,3'-triiodothyronine (TT3) in AdF_S, and that a group of 17 higher chlorinated ortho-PCBs had a positive influence on total 3,5,3',5'-tetraiodothyronine (thyroxine, TT4) in AdF_N. TH levels in AdM seemed less influenced by OHCs because of non-significant PLS models. TH levels were also influenced by biological factors such as age, sex, body size, lipid content of adipose tissue and sampling date. When controlling for biological variables, the major relationships from the PLS models for SubA, AdF_N and AdF_S were found significant in partial correlations. The most important OHCs that influenced TH levels in the significant PLS models may potentially act through similar mechanisms on the hypothalamic-pituitary-thyroid (HPT) axis, suggesting that both combined effects by dose and response addition and perhaps synergistic potentiation may be a possibility in these polar bears. Statistical associations are not evidence per se of biological cause-effect relationships. Still, the results of the present study indicate that OHCs may affect circulating TH levels in East Greenland polar bears, adding to the "weight of evidence" suggesting that OHCs might interfere with thyroid homeostasis in polar bears. Copyright © 2011 Elsevier Ltd. All rights reserved.
Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T
2011-04-18
Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test batches were used to examine the predictive ability of the model. Copyright © 2011 Elsevier B.V. All rights reserved.
Marschner, C B; Kokla, M; Amigo, J M; Rozanski, E A; Wiinberg, B; McEvoy, F J
2017-07-11
Diagnosis of pulmonary thromboembolism (PTE) in dogs relies on computed tomography pulmonary angiography (CTPA), but detailed interpretation of CTPA images is demanding for the radiologist and only large vessels may be evaluated. New approaches for better detection of smaller thrombi include dual energy computed tomography (DECT) as well as computer assisted diagnosis (CAD) techniques. The purpose of this study was to investigate the performance of quantitative texture analysis for detecting dogs with PTE using grey-level co-occurrence matrices (GLCM) and multivariate statistical classification analyses. CT images from healthy (n = 6) and diseased (n = 29) dogs with and without PTE confirmed on CTPA were segmented so that only tissue with CT numbers between -1024 and -250 Houndsfield Units (HU) was preserved. GLCM analysis and subsequent multivariate classification analyses were performed on texture parameters extracted from these images. Leave-one-dog-out cross validation and receiver operator characteristic (ROC) showed that the models generated from the texture analysis were able to predict healthy dogs with optimal levels of performance. Partial Least Square Discriminant Analysis (PLS-DA) obtained a sensitivity of 94% and a specificity of 96%, while Support Vector Machines (SVM) yielded a sensitivity of 99% and a specificity of 100%. The models, however, performed worse in classifying the type of disease in the diseased dog group: In diseased dogs with PTE sensitivities were 30% (PLS-DA) and 38% (SVM), and specificities were 80% (PLS-DA) and 89% (SVM). In diseased dogs without PTE the sensitivities of the models were 59% (PLS-DA) and 79% (SVM) and specificities were 79% (PLS-DA) and 82% (SVM). The results indicate that texture analysis of CTPA images using GLCM is an effective tool for distinguishing healthy from abnormal lung. Furthermore the texture of pulmonary parenchyma in dogs with PTE is altered, when compared to the texture of pulmonary parenchyma of healthy dogs. The models' poorer performance in classifying dogs within the diseased group, may be related to the low number of dogs compared to texture variables, a lack of balanced number of dogs within each group or a real lack of difference in the texture features among the diseased dogs.
Marques Junior, Jucelino Medeiros; Muller, Aline Lima Hermes; Foletto, Edson Luiz; da Costa, Adilson Ben; Bizzi, Cezar Augusto; Irineu Muller, Edson
2015-01-01
A method for determination of propranolol hydrochloride in pharmaceutical preparation using near infrared spectrometry with fiber optic probe (FTNIR/PROBE) and combined with chemometric methods was developed. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). The treatments based on the mean centered data and multiplicative scatter correction (MSC) were selected for models construction. A root mean square error of prediction (RMSEP) of 8.2 mg g(-1) was achieved using siPLS (s2i20PLS) algorithm with spectra divided into 20 intervals and combination of 2 intervals (8501 to 8801 and 5201 to 5501 cm(-1)). Results obtained by the proposed method were compared with those using the pharmacopoeia reference method and significant difference was not observed. Therefore, proposed method allowed a fast, precise, and accurate determination of propranolol hydrochloride in pharmaceutical preparations. Furthermore, it is possible to carry out on-line analysis of this active principle in pharmaceutical formulations with use of fiber optic probe.
Robertson, Rosanna M.; Yao, Jiangwei; Gajewski, Stefan; Kumar, Gyanendra; Martin, Erik W.; Rock, Charles O.; White, Stephen W.
2017-01-01
Phosphatidic acid is the central intermediate in membrane phospholipid synthesis and is generated by two acyltransferases in a pathway conserved in all life forms. The second step in this pathway is catalyzed by 1-acyl-sn-glycero-3-phosphate acyltransferase, called PlsC in bacteria. The crystal structure of PlsC from Thermotoga maritima reveals an unusual hydrophobic/aromatic N-terminal two-helix motif linked to an acyltransferase αβ domain that contains the catalytic HX4D motif. PlsC dictates the acyl chain composition of the 2-position of phospholipids, and the acyl chain selectivity ‘ruler’ is an appropriately placed and closed hydrophobic tunnel. This was confirmed by site-directed mutagenesis and membrane composition analysis of Escherichia coli cells expressing the mutated proteins. MD simulations reveal that the two-helix motif represents a novel substructure that firmly anchors the protein to one leaflet of the membrane. This binding mode allows the PlsC active site to acylate lysophospholipids within the membrane bilayer using soluble acyl donors. PMID:28714993
Bagnasco, Lucia; Cosulich, M Elisabetta; Speranza, Giovanna; Medini, Luca; Oliveri, Paolo; Lanteri, Silvia
2014-08-15
The relationships between sensory attribute and analytical measurements, performed by electronic tongue (ET) and near-infrared spectroscopy (NIRS), were investigated in order to develop a rapid method for the assessment of umami taste. Commercially available umami products and some aminoacids were submitted to sensory analysis. Results were analysed in comparison with the outcomes of analytical measurements. Multivariate exploratory analysis was performed by principal component analysis (PCA). Calibration models for prediction of the umami taste on the basis of ET and NIR signals were obtained using partial least squares (PLS) regression. Different approaches for merging data from the two different analytical instruments were considered. Both of the techniques demonstrated to provide information related with umami taste. In particular, ET signals showed the higher correlation with umami attribute. Data fusion was found to be slightly beneficial - not so significantly as to justify the coupled use of the two analytical techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.
Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina
2014-07-15
This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS)
NASA Astrophysics Data System (ADS)
Zhang, Yun; He, Yong
2006-09-01
The traditional uniform herbicide application often results in an over chemical residues on soil, crop plants and agriculture produce, which have imperiled the environment and food security. Near-infrared reflectance spectroscopy (NIRS) offers a promising means for weed detection and site-specific herbicide application. In laboratory, a total of 90 samples (30 for each species) of the detached leaves of two weeds, i.e., threeseeded mercury (Acalypha australis L.) and fourleafed duckweed (Marsilea quadrfolia L.), and one crop soybean (Glycine max) was investigated for NIRS on 325- 1075 nm using a field spectroradiometer. 20 absorbance samples of each species after pretreatment were exported and the lacked Y variables were assigned independent values for partial least squares (PLS) analysis. During the combined principle component analysis (PCA) on 400-1000 nm, the PC1 and PC2 could together explain over 91% of the total variance and detect the three plant species with 98.3% accuracy. The full-cross validation results of PLS, i.e., standard error of prediction (SEP) 0.247, correlation coefficient (r) 0.954 and root mean square error of prediction (RMSEP) 0.245, indicated an optimum model for weed identification. By predicting the remaining 10 samples of each species in the PLS model, the results with deviation presented a 100% crop/weed detection rate. Thus, it could be concluded that PLS was an available alternative of for qualitative weed discrimination on NTRS.
Gottfried, Jennifer L
2011-07-01
The potential of laser-induced breakdown spectroscopy (LIBS) to discriminate biological and chemical threat simulant residues prepared on multiple substrates and in the presence of interferents has been explored. The simulant samples tested include Bacillus atrophaeus spores, Escherichia coli, MS-2 bacteriophage, α-hemolysin from Staphylococcus aureus, 2-chloroethyl ethyl sulfide, and dimethyl methylphosphonate. The residue samples were prepared on polycarbonate, stainless steel and aluminum foil substrates by Battelle Eastern Science and Technology Center. LIBS spectra were collected by Battelle on a portable LIBS instrument developed by A3 Technologies. This paper presents the chemometric analysis of the LIBS spectra using partial least-squares discriminant analysis (PLS-DA). The performance of PLS-DA models developed based on the full LIBS spectra, and selected emission intensities and ratios have been compared. The full-spectra models generally provided better classification results based on the inclusion of substrate emission features; however, the intensity/ratio models were able to correctly identify more types of simulant residues in the presence of interferents. The fusion of the two types of PLS-DA models resulted in a significant improvement in classification performance for models built using multiple substrates. In addition to identifying the major components of residue mixtures, minor components such as growth media and solvents can be identified with an appropriately designed PLS-DA model.
Tursi, Antonio; Mastromarino, Paola; Capobianco, Daniela; Elisei, Walter; Miccheli, Alfredo; Capuani, Giorgio; Tomassini, Alberta; Campagna, Giuseppe; Picchio, Marcello; Giorgetti, GianMarco; Fabiocchi, Federica; Brandimarte, Giovanni
2016-10-01
The aim of this study was to assess fecal microbiota and metabolome in a population with symptomatic uncomplicated diverticular disease (SUDD). Whether intestinal microbiota and metabolic profiling may be altered in patients with SUDD is unknown. Stool samples from 44 consecutive women [15 patients with SUDD, 13 with asymptomatic diverticulosis (AD), and 16 healthy controls (HCs)] were analyzed. Real-time polymerase chain reaction was used to quantify targeted microorganisms. High-resolution proton nuclear magnetic resonance spectroscopy associated with multivariate analysis with partial least-square discriminant analysis (PLS-DA) was applied on the metabolite data set. The overall bacterial quantity did not differ among the 3 groups (P=0.449), with no difference in Bacteroides/Prevotella, Clostridium coccoides, Bifidobacterium, Lactobacillus, and Escherichia coli subgroups. The amount of Akkermansia muciniphila species was significantly different between HC, AD, and SUDD subjects (P=0.017). PLS-DA analysis of nuclear magnetic resonance -based metabolomics associated with microbiological data showed significant discrimination between HCs and AD patients (R=0.733; Q=0.383; P<0.05, LV=2). PLS analysis showed lower N-acetyl compound and isovalerate levels in AD, associated with higher levels of A. municiphila, as compared with the HC group. PLS-DA applied on AD and SUDD samples showed a good discrimination between these 2 groups (R=0.69; Q=0.35; LV=2). SUDD patients were characterized by low levels of valerate, butyrate, and choline and by high levels of N-acetyl derivatives and U1. SUDD and AD do not show colonic bacterial overgrowth, but a significant difference in the levels of fecal A. muciniphila was observed. Moreover, increasing expression of some metabolites as expression of different AD and SUDD metabolic activity was found.
Gu, Haiwei; Pan, Zhengzheng; Xi, Bowei; Asiago, Vincent; Musselman, Brian; Raftery, Daniel
2011-02-07
Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the two most commonly used analytical tools in metabolomics, and their complementary nature makes the combination particularly attractive. A combined analytical approach can improve the potential for providing reliable methods to detect metabolic profile alterations in biofluids or tissues caused by disease, toxicity, etc. In this paper, (1)H NMR spectroscopy and direct analysis in real time (DART)-MS were used for the metabolomics analysis of serum samples from breast cancer patients and healthy controls. Principal component analysis (PCA) of the NMR data showed that the first principal component (PC1) scores could be used to separate cancer from normal samples. However, no such obvious clustering could be observed in the PCA score plot of DART-MS data, even though DART-MS can provide a rich and informative metabolic profile. Using a modified multivariate statistical approach, the DART-MS data were then reevaluated by orthogonal signal correction (OSC) pretreated partial least squares (PLS), in which the Y matrix in the regression was set to the PC1 score values from the NMR data analysis. This approach, and a similar one using the first latent variable from PLS-DA of the NMR data resulted in a significant improvement of the separation between the disease samples and normals, and a metabolic profile related to breast cancer could be extracted from DART-MS. The new approach allows the disease classification to be expressed on a continuum as opposed to a binary scale and thus better represents the disease and healthy classifications. An improved metabolic profile obtained by combining MS and NMR by this approach may be useful to achieve more accurate disease detection and gain more insight regarding disease mechanisms and biology. Copyright © 2010 Elsevier B.V. All rights reserved.
2012-01-01
Background Decision-making in healthcare is complex. Research on coverage decision-making has focused on comparative studies for several countries, statistical analyses for single decision-makers, the decision outcome and appraisal criteria. Accounting for decision processes extends the complexity, as they are multidimensional and process elements need to be regarded as latent constructs (composites) that are not observed directly. The objective of this study was to present a practical application of partial least square path modelling (PLS-PM) to evaluate how it offers a method for empirical analysis of decision-making in healthcare. Methods Empirical approaches that applied PLS-PM to decision-making in healthcare were identified through a systematic literature search. PLS-PM was used as an estimation technique for a structural equation model that specified hypotheses between the components of decision processes and the reasonableness of decision-making in terms of medical, economic and other ethical criteria. The model was estimated for a sample of 55 coverage decisions on the extension of newborn screening programmes in Europe. Results were evaluated by standard reliability and validity measures for PLS-PM. Results After modification by dropping two indicators that showed poor measures in the measurement models’ quality assessment and were not meaningful for newborn screening, the structural equation model estimation produced plausible results. The presence of three influences was supported: the links between both stakeholder participation or transparency and the reasonableness of decision-making; and the effect of transparency on the degree of scientific rigour of assessment. Reliable and valid measurement models were obtained to describe the composites of ‘transparency’, ‘participation’, ‘scientific rigour’ and ‘reasonableness’. Conclusions The structural equation model was among the first applications of PLS-PM to coverage decision-making. It allowed testing of hypotheses in situations where there are links between several non-observable constructs. PLS-PM was compatible in accounting for the complexity of coverage decisions to obtain a more realistic perspective for empirical analysis. The model specification can be used for hypothesis testing by using larger sample sizes and for data in the full domain of health technologies. PMID:22856325
Fischer, Katharina E
2012-08-02
Decision-making in healthcare is complex. Research on coverage decision-making has focused on comparative studies for several countries, statistical analyses for single decision-makers, the decision outcome and appraisal criteria. Accounting for decision processes extends the complexity, as they are multidimensional and process elements need to be regarded as latent constructs (composites) that are not observed directly. The objective of this study was to present a practical application of partial least square path modelling (PLS-PM) to evaluate how it offers a method for empirical analysis of decision-making in healthcare. Empirical approaches that applied PLS-PM to decision-making in healthcare were identified through a systematic literature search. PLS-PM was used as an estimation technique for a structural equation model that specified hypotheses between the components of decision processes and the reasonableness of decision-making in terms of medical, economic and other ethical criteria. The model was estimated for a sample of 55 coverage decisions on the extension of newborn screening programmes in Europe. Results were evaluated by standard reliability and validity measures for PLS-PM. After modification by dropping two indicators that showed poor measures in the measurement models' quality assessment and were not meaningful for newborn screening, the structural equation model estimation produced plausible results. The presence of three influences was supported: the links between both stakeholder participation or transparency and the reasonableness of decision-making; and the effect of transparency on the degree of scientific rigour of assessment. Reliable and valid measurement models were obtained to describe the composites of 'transparency', 'participation', 'scientific rigour' and 'reasonableness'. The structural equation model was among the first applications of PLS-PM to coverage decision-making. It allowed testing of hypotheses in situations where there are links between several non-observable constructs. PLS-PM was compatible in accounting for the complexity of coverage decisions to obtain a more realistic perspective for empirical analysis. The model specification can be used for hypothesis testing by using larger sample sizes and for data in the full domain of health technologies.
Liao, Xiang; Wang, Qing; Fu, Ji-hong; Tang, Jun
2015-09-01
This work was undertaken to establish a quantitative analysis model which can rapid determinate the content of linalool, linalyl acetate of Xinjiang lavender essential oil. Totally 165 lavender essential oil samples were measured by using near infrared absorption spectrum (NIR), after analyzing the near infrared spectral absorption peaks of all samples, lavender essential oil have abundant chemical information and the interference of random noise may be relatively low on the spectral intervals of 7100~4500 cm(-1). Thus, the PLS models was constructed by using this interval for further analysis. 8 abnormal samples were eliminated. Through the clustering method, 157 lavender essential oil samples were divided into 105 calibration set samples and 52 validation set samples. Gas chromatography mass spectrometry (GC-MS) was used as a tool to determine the content of linalool and linalyl acetate in lavender essential oil. Then the matrix was established with the GC-MS raw data of two compounds in combination with the original NIR data. In order to optimize the model, different pretreatment methods were used to preprocess the raw NIR spectral to contrast the spectral filtering effect, after analysizing the quantitative model results of linalool and linalyl acetate, the root mean square error prediction (RMSEP) of orthogonal signal transformation (OSC) was 0.226, 0.558, spectrally, it was the optimum pretreatment method. In addition, forward interval partial least squares (FiPLS) method was used to exclude the wavelength points which has nothing to do with determination composition or present nonlinear correlation, finally 8 spectral intervals totally 160 wavelength points were obtained as the dataset. Combining the data sets which have optimized by OSC-FiPLS with partial least squares (PLS) to establish a rapid quantitative analysis model for determining the content of linalool and linalyl acetate in Xinjiang lavender essential oil, numbers of hidden variables of two components were 8 in the model. The performance of the model was evaluated according to root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP). In the model, RESECV of linalool and linalyl acetate were 0.170 and 0.416, respectively; RM-SEP were 0.188 and 0.364. The results indicated that raw data was pretreated by OSC and FiPLS, the NIR-PLS quantitative analysis model with good robustness, high measurement precision; it could quickly determine the content of linalool and linalyl acetate in lavender essential oil. In addition, the model has a favorable prediction ability. The study also provide a new effective method which could rapid quantitative analysis the major components of Xinjiang lavender essential oil.
Nguyen, Phuc Nghia; Trinh Dang, Thuan Thao; Waton, Gilles; Vandamme, Thierry; Krafft, Marie Pierre
2011-10-04
The adsorption dynamics of a series of phospholipids (PLs) at the interface between an aqueous solution or dispersion of the PL and a gas phase containing the nonpolar, nonamphiphilic linear perfluorocarbon perfluorohexane (PFH) was studied by bubble profile analysis tensiometry. The PLs investigated were dioctanoylphosphatidylcholine (DiC(8)-PC), dilaurylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmitoylphosphatidylcholine. The gas phase consisted of air or air saturated with PFH. The perfluorocarbon gas was found to have an unexpected, strong effect on both the adsorption rate and the equilibrium interfacial tension (γ(eq)) of the PLs. First, for all of the PLs, and at all concentrations investigated, the γ(eq) values were significantly lower (by up to 10 mN m(-1)) when PFH was present in the gas phase. The efficacy of PFH in decreasing γ(eq) depends on the ability of PLs to form micelles or vesicles in water. For vesicles, it also depends on the gel or fluid state of the membranes. Second, the adsorption rates of all the PLs at the interface (as assessed by the time required for the initial interfacial tension to be reduced by 30%) are significantly accelerated (by up to fivefold) by the presence of PFH for the lower PL concentrations. Both the surface-tension reducing effect and the adsorption rate increasing effect establish that PFH has a strong interaction with the PL monolayer and acts as a cosurfactant at the interface, despite the absence of any amphiphilic character. Fitting the adsorption profiles of DiC(8)-PC at the PFH-saturated air/aqueous solution interface with the modified Frumkin model indicated that the PFH molecule lay horizontally at the interface. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yeganeh, B.; Motlagh, M. Shafie Pour; Rashidi, Y.; Kamalan, H.
2012-08-01
Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS-SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS-SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65-85% for hybrid PLS-SVM model respectively. Also it was found that the hybrid PLS-SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS-SVM model.
A preliminary MTD-PLS study for androgen receptor binding of steroid compounds
NASA Astrophysics Data System (ADS)
Bora, Alina; Seclaman, E.; Kurunczi, L.; Funar-Timofei, Simona
The relative binding affinities (RBA) of a series of 30 steroids for Human Androgen Receptor (AR) were used to initiate a MTD-PLS study. The 3D structures of all the compounds were obtained through geometry optimization in the framework of AM1 semiempirical quantum chemical method. The MTD hypermolecule (HM) was constructed, superposing these structures on the AR-bonded dihydrotestosterone (DHT) skeleton obtained from PDB (AR complex, ID 1I37). The parameters characterizing the HM vertices were collected using: AM1 charges, XlogP fragmental values, calculated fragmental polarizabilities (from refractivities), volumes, and H-bond parameters (Raevsky's thermodynamic originated scale). The resulted QSAR data matrix was submitted to PCA (Principal Component Analysis) and PLS (Projections in Latent Structures) procedure (SIMCA P 9.0); five compounds were selected as test set, and the remaining 25 molecules were used as training set. In the PLS procedure supplementary chemical information was introduced, i.e. the steric effect was always considered detrimental, and the hydrophobic and van der Waals interactions were imposed to be beneficial. The initial PLS model using the entire training set has the following characteristics: R2Y = 0.584, Q2 = 0.344. Based on distances to the model criterions (DMODX and DMODY), five compounds were eliminated and the obtained final model had the following characteristics: R2Y D 0.891, Q2 D 0.591. For this the external predictivity on the test set was unsatisfactory. A tentative explanation for these behaviors is the weak information content of the input QSAR matrix for the present series comparatively with other successful MTD-PLS modeling published elsewhere.
Purified human MDR 1 modulates membrane potential in reconstituted proteoliposomes.
Howard, Ellen M; Roepe, Paul D
2003-04-01
Human multidrug resistance (hu MDR 1) cDNA was fused to a P. shermanii transcarboxylase biotin acceptor domain (TCBD), and the fusion protein was heterologously overexpressed at high yield in K(+)-uptake deficient Saccharomyces cerevisiae yeast strain 9.3, purified by avidin-biotin chromatography, and reconstituted into proteoliposomes (PLs) formed with Escherichia coli lipid. As measured by pH- dependent ATPase activity, purified, reconstituted, biotinylated MDR-TCBD protein is fully functional. Dodecyl maltoside proved to be the most effective detergent for the membrane solubilization of MDR-TCBD, and various salts were found to significantly affect reconstitution into PLs. After extensive analysis, we find that purified reconstituted MDR-TCBD protein does not catalyze measurable H(+) pumping in the presence of ATP. In the presence of physiologic [ATP], K(+)/Na(+) diffusion potentials monitored by either anionic oxonol or cationic carbocyanine are easily established upon addition of valinomycin to either control or MDR-TCBD PLs. However, in the absence of ATP, although control PLs still maintain easily measurable K(+)/Na(+) diffusion potentials upon addition of valinomycin, MDR-TCBD PLs do not. Dissipation of potential by MDR-TCBD is clearly [ATP] dependent and also appears to be Cl(-) dependent, since replacing Cl(-) with equimolar glutamate restores the ability of MDR-TCBD PLs to form a membrane potential in the absence of physiologic [ATP]. The data are difficult to reconcile with models that might propose ATP-catalyzed "pumping" of the fluorescent probes we use and are more consistent with electrically passive anion transport via MDR-TCBD protein, but only at low [ATP]. These observations may help to resolve the confusing array of data related to putative ion transport by hu MDR 1 protein.
Uronic polysaccharide degrading enzymes.
Garron, Marie-Line; Cygler, Miroslaw
2014-10-01
In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Investigation into the Relationship between Human Cranial and Pelvic Sexual Dimorphism.
Best, Kaleigh C; Garvin, Heather M; Cabo, Luis L
2017-10-16
When faced with commingled remains, it might be assumed that a more "masculine" pelvis is associated with a more "masculine" cranium, but this relationship has not been specifically tested. This study uses geometric morphometric analyses of pelvic and cranial landmarks to assess whether there is an intra-individual relationship between the degrees of sexual expression in these two skeletal regions. Principal component and discriminant function scores were used to assess sexual dimorphism in 113 U.S. Black individuals. Correlation values and partial least squares regression (PLS) were used to evaluate intra-individual relationships. Results indicate that the os coxae is more sexually dimorphic than the cranium, with element shape being more sexually dimorphic than size. PLS and correlation results suggest no significant intra-individual relationship between pelvic and cranial sexual size or shape expression. Thus, in commingled situations, associations between these skeletal elements cannot be inferred based on degree of "masculinity." © 2017 American Academy of Forensic Sciences.
Rébufa, Catherine; Pany, Inès; Bombarda, Isabelle
2018-09-30
A rapid methodology was developed to simultaneously predict water content and activity values (a w ) of Moringa oleifera leaf powders (MOLP) using near infrared (NIR) signatures and experimental sorption isotherms. NIR spectra of MOLP samples (n = 181) were recorded. A Partial Least Square Regression model (PLS2) was obtained with low standard errors of prediction (SEP of 1.8% and 0.07 for water content and a w respectively). Experimental sorption isotherms obtained at 20, 30 and 40 °C showed similar profiles. This result is particularly important to use MOLP in food industry. In fact, a temperature variation of the drying process will not affect their available water content (self-life). Nutrient contents based on protein and selected minerals (Ca, Fe, K) were also predicted from PLS1 models. Protein contents were well predicted (SEP of 2.3%). This methodology allowed for an improvement in MOLP safety, quality control and traceability. Published by Elsevier Ltd.
TØ, Bechshøft; Sonne, C; Dietz, R; Born, EW; Muir, DCG; Letcher, RJ; Novak, MA; Henchey, E; Meyer, JS; Jenssen, BM; Villanger, GD
2012-01-01
The multivariate relationship between hair cortisol, whole blood thyroid hormones, and the complex mixtures of organohalogen contaminant (OHC) levels measured in subcutaneous adipose of 23 East Greenland polar bears (eight males and 15 females, all sampled between the years 1999 and 2001) was analyzed using projection to latent structure (PLS) regression modeling. In the resulting PLS model, most important variables with a negative influence on cortisol levels were particularly BDE-99, but also CB-180, -201, BDE-153, and CB-170/190. The most important variables with a positive influence on cortisol were CB-66/95, α-HCH, TT3, as well as heptachlor epoxide, dieldrin, BDE-47, p,p′-DDD. Although statistical modeling does not necessarily fully explain biological cause-effect relationships, relationships indicate that (1) the hypothalamic-pituitary-adrenal (HPA) axis in East Greenland polar bears is likely to be affected by OHC-contaminants and (2) the association between OHCs and cortisol may be linked with the hypothalamus-pituitary-thyroid (HPT) axis. PMID:22575327
Jiménez-Carvelo, Ana M; González-Casado, Antonio; Cuadros-Rodríguez, Luis
2017-03-01
A new analytical method for the quantification of olive oil and palm oil in blends with other vegetable edible oils (canola, safflower, corn, peanut, seeds, grapeseed, linseed, sesame and soybean) using normal phase liquid chromatography, and applying chemometric tools was developed. The procedure for obtaining of chromatographic fingerprint from the methyl-transesterified fraction from each blend is described. The multivariate quantification methods used were Partial Least Square-Regression (PLS-R) and Support Vector Regression (SVR). The quantification results were evaluated by several parameters as the Root Mean Square Error of Validation (RMSEV), Mean Absolute Error of Validation (MAEV) and Median Absolute Error of Validation (MdAEV). It has to be highlighted that the new proposed analytical method, the chromatographic analysis takes only eight minutes and the results obtained showed the potential of this method and allowed quantification of mixtures of olive oil and palm oil with other vegetable oils. Copyright © 2016 Elsevier B.V. All rights reserved.
Özbalci, Beril; Boyaci, İsmail Hakkı; Topcu, Ali; Kadılar, Cem; Tamer, Uğur
2013-02-15
The aim of this study was to quantify glucose, fructose, sucrose and maltose contents of honey samples using Raman spectroscopy as a rapid method. By performing a single measurement, quantifications of sugar contents have been said to be unaffordable according to the molecular similarities between sugar molecules in honey matrix. This bottleneck was overcome by coupling Raman spectroscopy with chemometric methods (principal component analysis (PCA) and partial least squares (PLS)) and an artificial neural network (ANN). Model solutions of four sugars were processed with PCA and significant separation was observed. This operation, done with the spectral features by using PLS and ANN methods, led to the discriminant analysis of sugar contents. Models/trained networks were created using a calibration data set and evaluated using a validation data set. The correlation coefficient values between actual and predicted values of glucose, fructose, sucrose and maltose were determined as 0.964, 0.965, 0.968 and 0.949 for PLS and 0.965, 0.965, 0.978 and 0.956 for ANN, respectively. The requirement of rapid analysis of sugar contents of commercial honeys has been met by the data processed within this article. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fragkaki, A. G.; Angelis, Y. S.; Tsantili-Kakoulidou, A.; Koupparis, M.; Georgakopoulos, C.
2009-08-01
Anabolic androgenic steroids (AAS) are included in the List of prohibited substances of the World Anti-Doping Agency (WADA) as substances abused to enhance athletic performance. Gas chromatography coupled to mass spectrometry (GC-MS) plays an important role in doping control analyses identifying AAS as their enolized-trimethylsilyl (TMS)-derivatives using the electron ionization (EI) mode. This paper explores the suitability of complementary GC-MS mass spectra and statistical analysis (principal component analysis, PCA and partial least squares-discriminant analysis, PLS-DA) to differentiate AAS as a function of their structural and conformational features expressed by their fragment ions. The results obtained showed that the application of PCA yielded a classification among the AAS molecules which became more apparent after applying PLS-DA to the dataset. The application of PLS-DA yielded a clear separation among the AAS molecules which were, thus, classified as: 1-ene-3-keto, 3-hydroxyl with saturated A-ring, 1-ene-3-hydroxyl, 4-ene-3-keto, 1,4-diene-3-keto and 3-keto with saturated A-ring anabolic steroids. The study of this paper also presents structurally diagnostic fragment ions and dissociation routes providing evidence for the presence of unknown AAS or chemically modified molecules known as designer steroids.
NASA Astrophysics Data System (ADS)
Hashim, Noor Haslinda Noor; Latip, Jalifah; Khatib, Alfi
2016-11-01
The metabolites of Clinacanthus nutans leaves extracts and their dependence on drying process were systematically characterized using 1H nuclear magnetic resonance spectroscopy (NMR) multivariate data analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were able to distinguish the leaves extracts obtained from different drying methods. The identified metabolites were carbohydrates, amino acid, flavonoids and sulfur glucoside compounds. The major metabolites responsible for the separation in PLS-DA loading plots were lupeol, cycloclinacosides, betulin, cerebrosides and choline. The results showed that the combination of 1H NMR spectroscopy and multivariate data analyses could act as an efficient technique to understand the C. nutans composition and its variation.
Analytics of Radioactive Materials Released in the Fukushima Daiichi Nuclear Accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egarievwe, Stephen U.; Nuclear Engineering Department, University of Tennessee, Knoxville, TN; Coble, Jamie B.
The 2011 Fukushima Daiichi nuclear accident in Japan resulted in the release of radioactive materials into the atmosphere, the nearby sea, and the surrounding land. Following the accident, several meteorological models were used to predict the transport of the radioactive materials to other continents such as North America and Europe. Also of high importance is the dispersion of radioactive materials locally and within Japan. Based on the International Atomic Energy Agency (IAEA) Convention on Early Notification of a nuclear accident, several radiological data sets were collected on the accident by the Japanese authorities. Among the radioactive materials monitored, are I-131more » and Cs-137 which form the major contributions to the contamination of drinking water. The radiation dose in the atmosphere was also measured. It is impractical to measure contamination and radiation dose in every place of interest. Therefore, modeling helps to predict contamination and radiation dose. Some modeling studies that have been reported in the literature include the simulation of transport and deposition of I-131 and Cs-137 from the accident, Cs-137 deposition and contamination of Japanese soils, and preliminary estimates of I-131 and Cs-137 discharged from the plant into the atmosphere. In this paper, we present statistical analytics of I-131 and Cs-137 with the goal of predicting gamma dose from the Fukushima Daiichi nuclear accident. The data sets used in our study were collected from the IAEA Fukushima Monitoring Database. As part of this study, we investigated several regression models to find the best algorithm for modeling the gamma dose. The modeling techniques used in our study include linear regression, principal component regression (PCR), partial least square (PLS) regression, and ridge regression. Our preliminary results on the first set of data showed that the linear regression model with one variable was the best with a root mean square error of 0.0133 μSv/h, compared to 0.0210 μSv/h for PCR, 0.231 μSv/h for ridge regression L-curve, 0.0856 μSv/h for PLS, and 0.0860 μSv/h for ridge regression cross validation. Complete results using the full datasets for these models will also be presented. (authors)« less
Wood, Clive; Alwati, Abdolati; Halsey, Sheelagh; Gough, Tim; Brown, Elaine; Kelly, Adrian; Paradkar, Anant
2016-09-10
The use of near infra red spectroscopy to predict the concentration of two pharmaceutical co-crystals; 1:1 ibuprofen-nicotinamide (IBU-NIC) and 1:1 carbamazepine-nicotinamide (CBZ-NIC) has been evaluated. A partial least squares (PLS) regression model was developed for both co-crystal pairs using sets of standard samples to create calibration and validation data sets with which to build and validate the models. Parameters such as the root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP) and correlation coefficient were used to assess the accuracy and linearity of the models. Accurate PLS regression models were created for both co-crystal pairs which can be used to predict the co-crystal concentration in a powder mixture of the co-crystal and the active pharmaceutical ingredient (API). The IBU-NIC model had smaller errors than the CBZ-NIC model, possibly due to the complex CBZ-NIC spectra which could reflect the different arrangement of hydrogen bonding associated with the co-crystal compared to the IBU-NIC co-crystal. These results suggest that NIR spectroscopy can be used as a PAT tool during a variety of pharmaceutical co-crystal manufacturing methods and the presented data will facilitate future offline and in-line NIR studies involving pharmaceutical co-crystals. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oleszko, Adam; Hartwich, Jadwiga; Wójtowicz, Anna; Gąsior-Głogowska, Marlena; Huras, Hubert; Komorowska, Małgorzata
2017-08-01
Hypertriglyceridemia, related with triglyceride (TG) in plasma above 1.7 mmol/L is one of the cardiovascular risk factors. Very low density lipoproteins (VLDL) are the main TG carriers. Despite being time consuming, demanding well-qualified staff and expensive instrumentation, ultracentrifugation technique still remains the gold standard for the VLDL isolation. Therefore faster and simpler method of VLDL-TG determination is needed. Vibrational spectroscopy, including FT-IR and Raman, is widely used technique in lipid and protein research. The aim of this study was assessment of Raman and FT-IR spectroscopy in determination of VLDL-TG directly in serum with the isolation step omitted. TG concentration in serum and in ultracentrifugated VLDL fractions from 32 patients were measured with reference colorimetric method. FT-IR and Raman spectra of VLDL and serum samples were acquired. Partial least square (PLS) regression was used for calibration and leave-one-out cross validation. Our results confirmed possibility of reagent-free determination of VLDL-TG directly in serum with both Raman and FT-IR spectroscopy. Quantitative VLDL testing by FT-IR and/or Raman spectroscopy applied directly to maternal serum seems to be promising screening test to identify women with increased risk of adverse pregnancy outcomes and patient friendly method of choice based on ease of performance, accuracy and efficiency.
Otsuka, Eri; Abe, Hiroyuki; Aburada, Masaki; Otsuka, Makoto
2010-07-01
A suppository dosage form has a rapid effect on therapeutics, because it dissolves in the rectum, is absorbed in the bloodstream, and passes the hepatic metabolism. However, the dosage form is unstable, because a suppository is made in a semisolid form, and so it is not easy to mix the bulk drug powder in the base. This article describes a nondestructive method of determining the drug content of suppositories using near-infrared spectrometry (NIR) combined with chemometrics. Suppositories (aspirin content: 1.8, 2.7, 4.5, 7.3, and 9.1%, w/w) were produced by mixing an aspirin bulk powder with hard fat at 50 degrees C and pouring the melt mixture into a plastic mold (2.25 mL). NIR spectra of 12 calibration and 12 validation sample sets were recorded 5 times. A total of 60 spectral data were used as a calibration set to establish a calibration model to predict drug content with a partial least-squares (PLS) regression analysis. NIR data of the suppository samples were divided into two wave number ranges, 4000-12500 cm(-1) (LR), and 5900-6300 cm(-1) (SR). Calibration models for the aspirin content of the suppositories were calculated based on LR and SR ranges of second-derivative NIR spectra using PLS. The models for LR and SR consisted of five and one principal components (PC), respectively. The plots of predicted values against actual values gave a straight line with regression coefficient constants of 0.9531 and 0.9749, respectively. The mean bias and mean accuracy of the calibration models were calculated based on the SR of variation data sets, and were lower than those of LR, respectively. Limiting the wave number of spectral data sets is useful to help understand the calibration model because of noise cancellation and to measure objective functions.
Wei, Minyan; Guo, Xiucai; Tu, Liuxiao; Zou, Qi; Li, Qi; Tang, Chenyi; Chen, Bao; Xu, Yuehong; Wu, Chuanbin
2015-01-01
Lactoferrin (Lf) is a potential-targeting ligand for hepatocellular carcinoma (HCC) cells because of its specific binding with asialoglycoprotein receptor (ASGPR). In this present work, a doxorubicin (DOX)-loaded, Lf-modified, polyethylene glycol (PEG)ylated liposome (Lf-PLS) system was developed, and its targeting effect and antitumor efficacy to HCC was also explored. The DOX-loaded Lf-PLS system had spherical or oval vesicles, with mean particle size approximately 100 nm, and had an encapsulation efficiency of 97%. The confocal microscopy and flow cytometry indicated that the cellular uptake of Lf-PLS was significantly higher than that of PEGylated liposome (PLS) in ASGPR-positive cells (P<0.05) but not in ASGPR-negative cells (P>0.05). Cytotoxicity assay by MTT demonstrated that DOX-loaded Lf-PLS showed significantly stronger antiproliferative effects on ASGPR-positive HCC cells than did PLS without the Lf modification (P<0.05). The in vivo antitumor studies on male BALB/c nude mice bearing HepG2 xenografts demonstrated that DOX-loaded Lf-PLS had significantly stronger antitumor efficacy compared with PLS (P<0.05) and free DOX (P<0.05). All these results demonstrated that a DOX-loaded Lf-PLS might have great potential application for HCC-targeting therapy. PMID:26316745
Parsons, Joshua B.; Frank, Matthew W.; Eleveld, Marc J.; Schalkwijk, Joost; Broussard, Tyler C.; de Jonge, Marien I.; Rock, Charles O.
2015-01-01
Summary PlsX is an acyl-acyl carrier protein (ACP):phosphate transacylase that interconverts the two acyl donors in Gram-positive bacterial phospholipid synthesis. The deletion of plsX in Staphylococcus aureus results in a requirement for both exogenous fatty acids and de novo type II fatty acid biosynthesis. Deletion of plsX (SP0037) in Streptococcus pneumoniae did not result in an auxotrophic phenotype. The ΔplsX S. pneumoniae strain was refractory to myristic acid-dependent growth arrest, and unlike the wild-type strain, was susceptible to fatty acid synthesis inhibitors in the presence of exogenous oleate. The ΔplsX strain contained longer-chain saturated fatty acids imparting a distinctly altered phospholipid molecular species profile. An elevated pool of 18- and 20-carbon saturated fatty acids was detected in the ΔplsX strain. A S. pneumoniae thioesterase (TesS, SP1408) hydrolyzed acyl-ACP in vitro, and the ΔtesS ΔplsX double knockout strain was a fatty acid auxotroph. Thus, the TesS thioesterase hydrolyzed the accumulating acyl-ACP in the ΔplsX strain to liberate fatty acids that were activated by fatty acid kinase to bypass a requirement for extracellular fatty acid. This work identifies tesS as the gene responsible for the difference in exogenous fatty acid growth requirement of the ΔplsX strains of S. aureus and S. pneumoniae. PMID:25534847
Katayama, K; Sato, T; Arai, T; Amao, H; Ohta, Y; Ozawa, T; Kenyon, P R; Hickson, R E; Tazaki, H
2013-02-01
Simple liquid chromatography-mass spectrometry (LC-MS) was applied to non-targeted metabolic analyses to discover new metabolic markers in animal plasma. Principle component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) were used to analyse LC-MS multivariate data. PCA clearly generated two separate clusters for artificially induced diabetic mice and healthy control mice. PLS-DA of time-course changes in plasma metabolites of chicks after feeding generated three clusters (pre- and immediately after feeding, 0.5-3 h after feeding and 4 h after feeding). Two separate clusters were also generated for plasma metabolites of pregnant Angus heifers with differing live-weight change profiles (gaining or losing). The accompanying PLS-DA loading plot detailed the metabolites that contribute the most to the cluster separation. In each case, the same highly hydrophilic metabolite was strongly correlated to the group separation. The metabolite was identified as betaine by LC-MS/MS. This result indicates that betaine and its metabolic precursor, choline, may be useful biomarkers to evaluate the nutritional and metabolic status of animals. © 2011 Blackwell Verlag GmbH.
Son, Hong-Seok; Kim, Ki Myong; van den Berg, Frans; Hwang, Geum-Sook; Park, Won-Mok; Lee, Cherl-Ho; Hong, Young-Shick
2008-09-10
(1)H NMR spectroscopy was used to investigate the metabolic differences in wines produced from different grape varieties and different regions. A significant separation among wines from Campbell Early, Cabernet Sauvignon, and Shiraz grapes was observed using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The metabolites contributing to the separation were assigned to be 2,3-butanediol, lactate, acetate, proline, succinate, malate, glycerol, tartarate, glucose, and phenolic compounds by PCA and PLS-DA loading plots. Wines produced from Cabernet Sauvignon grapes harvested in the continental areas of Australia, France, and California were also separated. PLS-DA loading plots revealed that the level of proline in Californian Cabernet Sauvignon wines was higher than that in Australian and French Cabernet Sauvignon, Australian Shiraz, and Korean Campbell Early wines, showing that the chemical composition of the grape berries varies with the variety and growing area. This study highlights the applicability of NMR-based metabolomics with multivariate statistical data sets in determining wine quality and product origin.
Abbatangelo, Marco; Núñez-Carmona, Estefanía; Sberveglieri, Veronica; Zappa, Dario; Comini, Elisabetta; Sberveglieri, Giorgio
2018-05-18
Parmigiano Reggiano cheese is one of the most appreciated and consumed foods worldwide, especially in Italy, for its high content of nutrients and taste. However, these characteristics make this product subject to counterfeiting in different forms. In this study, a novel method based on an electronic nose has been developed to investigate the potentiality of this tool to distinguish rind percentages in grated Parmigiano Reggiano packages that should be lower than 18%. Different samples, in terms of percentage, seasoning and rind working process, were considered to tackle the problem at 360°. In parallel, GC-MS technique was used to give a name to the compounds that characterize Parmigiano and to relate them to sensors responses. Data analysis consisted of two stages: Multivariate analysis (PLS) and classification made in a hierarchical way with PLS-DA ad ANNs. Results were promising, in terms of correct classification of the samples. The correct classification rate (%) was higher for ANNs than PLS-DA, with correct identification approaching 100 percent.
Gan, Heng-Hui; Soukoulis, Christos; Fisk, Ian
2014-03-01
In the present work, we have evaluated for first time the feasibility of APCI-MS volatile compound fingerprinting in conjunction with chemometrics (PLS-DA) as a new strategy for rapid and non-destructive food classification. For this purpose 202 clarified monovarietal juices extracted from apples differing in their botanical and geographical origin were used for evaluation of the performance of APCI-MS as a classification tool. For an independent test set PLS-DA analyses of pre-treated spectral data gave 100% and 94.2% correct classification rate for the classification by cultivar and geographical origin, respectively. Moreover, PLS-DA analysis of APCI-MS in conjunction with GC-MS data revealed that masses within the spectral ACPI-MS data set were related with parent ions or fragments of alkyesters, carbonyl compounds (hexanal, trans-2-hexenal) and alcohols (1-hexanol, 1-butanol, cis-3-hexenol) and had significant discriminating power both in terms of cultivar and geographical origin. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Calvano, Cosima D; De Ceglie, Cristina; Zambonin, Carlo G
2014-09-01
In foodstuffs, one of the main factors inducing modifications in phospholipids (PLs) structure is the heat treatment. Among PLs, only phosphatidylethanolamines and phosphatidylserines, due to their free amino group, can be involved in Maillard reaction and can form adducts with reducing sugars, besides other by-products called advanced glycation end-products. To date, glycated lipid products are less characterized in comparison to proteins. The aim of this work was to develop a novel, rapid and sensitive extraction protocol for the detection and characterization of modified PLs (glycated and oxidized) by means of matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). At first, to investigate the formation of glycated and/or short chain by-products in different classes of PLs, representative standards were heated with or without sugar (lactose or glucose) and subjected to traditional lipid extraction methods as Bligh and Dyer and to the novel direct in matrix extraction (DIME) using 1,8-bis(dimethylamino)naphthalene as preconcentrating matrix. MALDI-MS analysis in negative ion mode allowed detecting glycation and oxidation products both on fatty acid and glucose moieties. Then, the procedure was successfully applied to different heat-treated and powdered samples (milk powders, pasteurized milk, ultra-high-temperature milk and soy flour) for the detection of modified PLs in complex foods. The currently developed DIME protocol could be a powerful tool for understanding lipid glycation also in biological samples. Copyright © 2014 John Wiley & Sons, Ltd.
Ouyang, Qin; Zhao, Jiewen; Pan, Wenxiu; Chen, Quansheng
2016-01-01
A portable and low-cost spectral analytical system was developed and used to monitor real-time process parameters, i.e. total sugar content (TSC), alcohol content (AC) and pH during rice wine fermentation. Various partial least square (PLS) algorithms were implemented to construct models. The performance of a model was evaluated by the correlation coefficient (Rp) and the root mean square error (RMSEP) in the prediction set. Among the models used, the synergy interval PLS (Si-PLS) was found to be superior. The optimal performance by the Si-PLS model for the TSC was Rp = 0.8694, RMSEP = 0.438; the AC was Rp = 0.8097, RMSEP = 0.617; and the pH was Rp = 0.9039, RMSEP = 0.0805. The stability and reliability of the system, as well as the optimal models, were verified using coefficients of variation, most of which were found to be less than 5%. The results suggest this portable system is a promising tool that could be used as an alternative method for rapid monitoring of process parameters during rice wine fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield
NASA Astrophysics Data System (ADS)
Suarez, L. A.; Apan, A.; Werth, J.
2016-10-01
Yield loss in crops is often associated with plant disease or external factors such as environment, water supply and nutrient availability. Improper agricultural practices can also introduce risks into the equation. Herbicide drift can be a combination of improper practices and environmental conditions which can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alterations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality, photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA) were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these variables were highly affected by the chemical. Four PLS-R models for predicting yield were developed according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated by the model performance, the analysis revealed that 7 DAE was the best time for data collection purposes (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the results of this study show that it is possible to accurately predict yield after a simulated herbicide drift of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effective and non-destructive alternative based on the internal response of the cotton leaves.
Caporaso, Nicola; Whitworth, Martin B; Grebby, Stephen; Fisk, Ian D
2018-04-01
Hyperspectral imaging (HSI) is a novel technology for the food sector that enables rapid non-contact analysis of food materials. HSI was applied for the first time to whole green coffee beans, at a single seed level, for quantitative prediction of sucrose, caffeine and trigonelline content. In addition, the intra-bean distribution of coffee constituents was analysed in Arabica and Robusta coffees on a large sample set from 12 countries, using a total of 260 samples. Individual green coffee beans were scanned by reflectance HSI (980-2500nm) and then the concentration of sucrose, caffeine and trigonelline analysed with a reference method (HPLC-MS). Quantitative prediction models were subsequently built using Partial Least Squares (PLS) regression. Large variations in sucrose, caffeine and trigonelline were found between different species and origin, but also within beans from the same batch. It was shown that estimation of sucrose content is possible for screening purposes (R 2 =0.65; prediction error of ~0.7% w/w coffee, with observed range of ~6.5%), while the performance of the PLS model was better for caffeine and trigonelline prediction (R 2 =0.85 and R 2 =0.82, respectively; prediction errors of 0.2 and 0.1%, on a range of 2.3 and 1.1% w/w coffee, respectively). The prediction error is acceptable mainly for laboratory applications, with the potential application to breeding programmes and for screening purposes for the food industry. The spatial distribution of coffee constituents was also successfully visualised for single beans and this enabled mapping of the analytes across the bean structure at single pixel level. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Process analytical technology in continuous manufacturing of a commercial pharmaceutical product.
Vargas, Jenny M; Nielsen, Sarah; Cárdenas, Vanessa; Gonzalez, Anthony; Aymat, Efrain Y; Almodovar, Elvin; Classe, Gustavo; Colón, Yleana; Sanchez, Eric; Romañach, Rodolfo J
2018-03-01
The implementation of process analytical technology and continuous manufacturing at an FDA approved commercial manufacturing site is described. In this direct compaction process the blends produced were monitored with a Near Infrared (NIR) spectroscopic calibration model developed with partial least squares (PLS) regression. The authors understand that this is the first study where the continuous manufacturing (CM) equipment was used as a gravimetric reference method for the calibration model. A principal component analysis (PCA) model was also developed to identify the powder blend, and determine whether it was similar to the calibration blends. An air diagnostic test was developed to assure that powder was present within the interface when the NIR spectra were obtained. The air diagnostic test as well the PCA and PLS calibration model were integrated into an industrial software platform that collects the real time NIR spectra and applies the calibration models. The PCA test successfully detected an equipment malfunction. Variographic analysis was also performed to estimate the sampling analytical errors that affect the results from the NIR spectroscopic method during commercial production. The system was used to monitor and control a 28 h continuous manufacturing run, where the average drug concentration determined by the NIR method was 101.17% of label claim with a standard deviation of 2.17%, based on 12,633 spectra collected. The average drug concentration for the tablets produced from these blends was 100.86% of label claim with a standard deviation of 0.4%, for 500 tablets analyzed by Fourier Transform Near Infrared (FT-NIR) transmission spectroscopy. The excellent agreement between the mean drug concentration values in the blends and tablets produced provides further evidence of the suitability of the validation strategy that was followed. Copyright © 2018 Elsevier B.V. All rights reserved.
Escuder-Gilabert, L; Martín-Biosca, Y; Sagrado, S; Medina-Hernández, M J
2014-10-10
The design of experiments (DOE) is a good option for rationally limiting the number of experiments required to achieve the enantioresolution (Rs) of a chiral compound in capillary electrophoresis. In some cases, the modeled Rs after DOE analysis can be unsatisfactory, maybe because the range of the explored factors (DOE domain) was not the adequate. In these cases, anticipative strategies can be an alternative to the repetition of the process (e.g. a new DOE), to save time and money. In this work, multiple linear regression (MLR)-steepest ascent and a new anticipative strategy based on a multiple response-partial least squares model (called PLS2-prediction) are examined as post-DOE strategies to anticipate new experimental conditions providing satisfactory Rs values. The new anticipative strategy allows to include the analysis time (At) and uncertainty limits into the decision making process. To demonstrate their efficiency, the chiral separation of hexaconazole and penconazole, as model compounds, is studied using highly sulfated-β-cyclodextrin (HS-β-CD) in electrokinetic chromatography (EKC). Box-Behnken DOE for three factors (background electrolyte pH, separation temperature and HS-β-CD concentration) and two responses (Rs and At) is used. Using commercially available software, the whole modeling and anticipative process is automatic, simple and requires minimal skills from the researcher. Both strategies studied have proven to successfully anticipate Rs values close to the experimental ones for EKC conditions outside the DOE domain for the two model compounds. The results in this work suggest that PLS2-prediction approach could be the strategy of choice to obtain secure anticipations in EKC. Copyright © 2014 Elsevier B.V. All rights reserved.
Nasal variation in relation to high-altitude adaptations among Tibetans and Andeans.
Butaric, Lauren N; Klocke, Ross P
2018-05-01
High-altitude (>2500 m) populations face several pressures, including hypoxia and cold-dry air, resulting in greater respiratory demand to obtain more oxygen and condition inspired air. While cardiovascular and pulmonary adaptations to high-altitude hypoxia have been extensively studied, adaptations of upper-respiratory structures, e.g., nasal cavity, remain untested. This study investigates whether nasal morphology presents adaptations to hypoxic (larger noses) and/or cold-dry (tall/narrow noses) conditions among high-altitude samples. CT scans of two high- and four low-altitude samples from diverse climates were collected (n = 130): high-altitude Tibetans and Peruvians; low-altitude Peruvians, Southern Chinese (temperate), Mongolian-Buriats (cold-dry), and Southeast Asians (hot-wet). Facial and nasal distances were calculated from 3D landmarks placed on digitally-modeled crania. Temperature, precipitation, and barometric pressure data were also obtained. Principal components analysis and analyses of variance primarily indicate size-related differences among the cold-dry (Mongolian-Buriats) and hot-wet (Southeast Asians) adapted groups. Two-block partial least squares (PLS) analysis show weak relationships between size-standardized nasal dimensions and environmental variables. However, among PLS1 (85.90% of covariance), Tibetans display relatively larger nasal cavities related to lower temperatures and barometric pressure; regression analyses also indicate high-altitude Tibetans possess relatively larger internal nasal breadths and heights for their facial size. Overall, nasal differences relate to climate among the cold-dry and hot-wet groups. Specific nasal adaptations were not identified among either Peruvian group, perhaps due to their relatively recent migration history and population structure. However, high-altitude Tibetans seem to exhibit a compromise in nasal morphology, serving in increased oxygen uptake, and air-conditioning processes. © 2018 Wiley Periodicals, Inc.
Isak, I; Patel, M; Riddell, M; West, M; Bowers, T; Wijeyekoon, S; Lloyd, J
2016-08-01
Fourier transform infrared (FTIR) spectroscopy was used in this study for the rapid quantification of polyhydroxyalkanoates (PHA) in mixed and pure culture bacterial biomass. Three different statistical analysis methods (regression, partial least squares (PLS) and nonlinear) were applied to the FTIR data and the results were plotted against the PHA values measured with the reference gas chromatography technique. All methods predicted PHA content in mixed culture biomass with comparable efficiency, indicated by similar residuals values. The PHA in these cultures ranged from low to medium concentration (0-44 wt% of dried biomass content). However, for the analysis of the combined mixed and pure culture biomass with PHA concentration ranging from low to high (0-93% of dried biomass content), the PLS method was most efficient. This paper reports, for the first time, the use of a single calibration model constructed with a combination of mixed and pure cultures covering a wide PHA range, for predicting PHA content in biomass. Currently no one universal method exists for processing FTIR data for polyhydroxyalkanoates (PHA) quantification. This study compares three different methods of analysing FTIR data for quantification of PHAs in biomass. A new data-processing approach was proposed and the results were compared against existing literature methods. Most publications report PHA quantification of medium range in pure culture. However, in our study we encompassed both mixed and pure culture biomass containing a broader range of PHA in the calibration curve. The resulting prediction model is useful for rapid quantification of a wider range of PHA content in biomass. © 2016 The Society for Applied Microbiology.
Teixeira, Kelly Sivocy Sampaio; da Cruz Fonseca, Said Gonçalves; de Moura, Luís Carlos Brigido; de Moura, Mario Luís Ribeiro; Borges, Márcia Herminia Pinheiro; Barbosa, Euzébio Guimaraes; De Lima E Moura, Túlio Flávio Accioly
2018-02-05
The World Health Organization recommends that TB treatment be administered using combination therapy. The methodologies for quantifying simultaneously associated drugs are highly complex, being costly, extremely time consuming and producing chemical residues harmful to the environment. The need to seek alternative techniques that minimize these drawbacks is widely discussed in the pharmaceutical industry. Therefore, the objective of this study was to develop and validate a multivariate calibration model in association with the near infrared spectroscopy technique (NIR) for the simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol. These models allow the quality control of these medicines to be optimized using simple, fast, low-cost techniques that produce no chemical waste. In the NIR - PLS method, spectra readings were acquired in the 10,000-4000cm -1 range using an infrared spectrophotometer (IRPrestige - 21 - Shimadzu) with a resolution of 4cm -1 , 20 sweeps, under controlled temperature and humidity. For construction of the model, the central composite experimental design was employed on the program Statistica 13 (StatSoft Inc.). All spectra were treated by computational tools for multivariate analysis using partial least squares regression (PLS) on the software program Pirouette 3.11 (Infometrix, Inc.). Variable selections were performed by the QSAR modeling program. The models developed by NIR in association with multivariate analysis provided good prediction of the APIs for the external samples and were therefore validated. For the tablets, however, the slightly different quantitative compositions of excipients compared to the mixtures prepared for building the models led to results that were not statistically similar, despite having prediction errors considered acceptable in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.
Feng, Jianyuan; Turksoy, Kamuran; Samadi, Sediqeh; Hajizadeh, Iman; Littlejohn, Elizabeth; Cinar, Ali
2017-12-01
Supervision and control systems rely on signals from sensors to receive information to monitor the operation of a system and adjust manipulated variables to achieve the control objective. However, sensor performance is often limited by their working conditions and sensors may also be subjected to interference by other devices. Many different types of sensor errors such as outliers, missing values, drifts and corruption with noise may occur during process operation. A hybrid online sensor error detection and functional redundancy system is developed to detect errors in online signals, and replace erroneous or missing values detected with model-based estimates. The proposed hybrid system relies on two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least squares (LW-PLS) regression model, which leverage the advantages of automatic measurement error elimination with ORKF and data-driven prediction with LW-PLS. The system includes a nominal angle analysis (NAA) method to distinguish between signal faults and large changes in sensor values caused by real dynamic changes in process operation. The performance of the system is illustrated with clinical data continuous glucose monitoring (CGM) sensors from people with type 1 diabetes. More than 50,000 CGM sensor errors were added to original CGM signals from 25 clinical experiments, then the performance of error detection and functional redundancy algorithms were analyzed. The results indicate that the proposed system can successfully detect most of the erroneous signals and substitute them with reasonable estimated values computed by functional redundancy system.
NASA Astrophysics Data System (ADS)
Scafutto, Rebecca Del'Papa Moreira; Souza Filho, Carlos Roberto de
2016-08-01
The near and shortwave infrared spectral reflectance properties of several mineral substrates impregnated with crude oils (°APIs 19.2, 27.5 and 43.2), diesel, gasoline and ethanol were measured and assembled in a spectral library. These data were examined using Principal Component Analysis (PCA) and Partial Least Squares (PLS) Regression. Unique and characteristic absorption features were identified in the mixtures, besides variations of the spectral signatures related to the compositional difference of the crude oils and fuels. These features were used for qualitative and quantitative determination of the contaminant impregnated in the substrates. Specific wavelengths, where key absorption bands occur, were used for the individual characterization of oils and fuels. The intensity of these features can be correlated to the abundance of the contaminant in the mixtures. Grain size and composition of the impregnated substrate directly influence the variation of the spectral signatures. PCA models applied to the spectral library proved able to differentiate the type and density of the hydrocarbons. The calibration models generated by PLS are robust, of high quality and can also be used to predict the concentration of oils and fuels in mixtures with mineral substrates. Such data and models are employable as a reference for classifying unknown samples of contaminated substrates. The results of this study have important implications for onshore exploration and environmental monitoring of oil and fuels leaks using proximal and far range multispectral, hyperspectral and ultraespectral remote sensing.
Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Torrico, Damir; Howell, Kate; Dunshea, Frank R
2018-01-01
Beer quality is mainly defined by its colour, foamability and foam stability, which are influenced by the chemical composition of the product such as proteins, carbohydrates, pH and alcohol. Traditional methods to assess specific chemical compounds are usually time-consuming and costly. This study used rapid methods to evaluate 15 foam and colour-related parameters using a robotic pourer (RoboBEER) and chemical fingerprinting using near infrared spectroscopy (NIR) from six replicates of 21 beers from three types of fermentation. Results from NIR were used to create partial least squares regression (PLS) and artificial neural networks (ANN) models to predict four chemometrics such as pH, alcohol, Brix and maximum volume of foam. The ANN method was able to create more accurate models (R 2 = 0.95) compared to PLS. Principal components analysis using RoboBEER parameters and NIR overtones related to protein explained 67% of total data variability. Additionally, a sub-space discriminant model using the absorbance values from NIR wavelengths resulted in the successful classification of 85% of beers according to fermentation type. The method proposed showed to be a rapid system based on NIR spectroscopy and RoboBEER outputs of foamability that can be used to infer the quality, production method and chemical parameters of beer with minimal laboratory equipment. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Books, toys, parent-child interaction, and development in young Latino children.
Tomopoulos, Suzy; Dreyer, Benard P; Tamis-LeMonda, Catherine; Flynn, Virginia; Rovira, Irene; Tineo, Wendy; Mendelsohn, Alan L
2006-01-01
To describe the interrelationships between books and toys in the home, parent-child interaction, and child development at 21 months among low-income Latino children. Latino mother-infant dyads enrolled in a level 1 nursery and infants were followed to 21 months. The subjects consisted of the control group of a larger intervention study. At 6 and 18 months, the number of books and toys in the home and the frequency of reading aloud were measured by the StimQ. At 21 months, child cognitive and language development and parent-child interaction were assessed by the Bayley Mental Development Index (MDI), the Preschool Language Scale-3 (PLS-3), and the Caregiver-Child Interaction Rating Scale, respectively. Eligibility for early intervention (EI) services was determined on the basis of the MDI and PLS-3. Data were obtained for 46 (63.0%) of 73 at 21 months. In multiple regression analysis, books provided at 18 months predicted both cognition (semipartial correlation [sr] = .49, P= .001) and receptive language (sr = .37, P= .02), whereas toys provided at both 6 and 18 months predicted 21-month receptive language (sr = .40, P= .01; sr = .32, P= .047, respectively). Reading aloud by parents > or =4 days a week was associated with decreased EI eligibility (adjusted odds ratio = 0.16, 95% confidence interval 0.03-0.99). Reading aloud and provision of toys are associated with better child cognitive and language development as well as with decreased likelihood of EI eligibility.
Masili, Alice; Puligheddu, Sonia; Sassu, Lorenzo; Scano, Paola; Lai, Adolfo
2012-11-01
In this work, we report the feasibility study to predict the properties of neat crude oil samples from 300-MHz NMR spectral data and partial least squares (PLS) regression models. The study was carried out on 64 crude oil samples obtained from 28 different extraction fields and aims at developing a rapid and reliable method for characterizing the crude oil in a fast and cost-effective way. The main properties generally employed for evaluating crudes' quality and behavior during refining were measured and used for calibration and testing of the PLS models. Among these, the UOP characterization factor K (K(UOP)) used to classify crude oils in terms of composition, density (D), total acidity number (TAN), sulfur content (S), and true boiling point (TBP) distillation yields were investigated. Test set validation with an independent set of data was used to evaluate model performance on the basis of standard error of prediction (SEP) statistics. Model performances are particularly good for K(UOP) factor, TAN, and TPB distillation yields, whose standard error of calibration and SEP values match the analytical method precision, while the results obtained for D and S are less accurate but still useful for predictions. Furthermore, a strategy that reduces spectral data preprocessing and sample preparation procedures has been adopted. The models developed with such an ample crude oil set demonstrate that this methodology can be applied with success to modern refining process requirements. Copyright © 2012 John Wiley & Sons, Ltd.
Pappas, Christos; Kyraleou, Maria; Voskidi, Eleni; Kotseridis, Yorgos; Taranilis, Petros A; Kallithraka, Stamatina
2015-02-01
The direct and simultaneous quantitative determination of the mean degree of polymerization (mDP) and the degree of galloylation (%G) in grape seeds were quantified using diffuse reflectance infrared Fourier transform spectroscopy and partial least squares (PLS). The results were compared with those obtained using the conventional analysis employing phloroglucinolysis as pretreatment followed by high performance liquid chromatography-UV and mass spectrometry detection. Infrared spectra were recorded in solid state samples after freeze drying. The 2nd derivative of the 1832 to 1416 and 918 to 739 cm(-1) spectral regions for the quantification of mDP, the 2nd derivative of the 1813 to 607 cm(-1) spectral region for the degree of %G determination and PLS regression were used. The determination coefficients (R(2) ) of mDP and %G were 0.99 and 0.98, respectively. The corresponding values of the root-mean-square error of calibration were found 0.506 and 0.692, the root-mean-square error of cross validation 0.811 and 0.921, and the root-mean-square error of prediction 0.612 and 0.801. The proposed method in comparison with the conventional method is simpler, less time consuming, more economical, and requires reduced quantities of chemical reagents and fewer sample pretreatment steps. It could be a starting point for the design of more specific models according to the requirements of the wineries. © 2015 Institute of Food Technologists®
Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics
NASA Astrophysics Data System (ADS)
Manfredi, Marcello; Robotti, Elisa; Quasso, Fabio; Mazzucco, Eleonora; Calabrese, Giorgio; Marengo, Emilio
2018-01-01
The authentication and traceability of hazelnuts is very important for both the consumer and the food industry, to safeguard the protected varieties and the food quality. This study investigates the use of a portable FTIR spectrometer coupled to multivariate statistical analysis for the classification of raw hazelnuts. The method discriminates hazelnuts from different origins/cultivars based on differences of the signal intensities of their IR spectra. The multivariate classification methods, namely principal component analysis (PCA) followed by linear discriminant analysis (LDA) and partial least square discriminant analysis (PLS-DA), with or without variable selection, allowed a very good discrimination among the groups, with PLS-DA coupled to variable selection providing the best results. Due to the fast analysis, high sensitivity, simplicity and no sample preparation, the proposed analytical methodology could be successfully used to verify the cultivar of hazelnuts, and the analysis can be performed quickly and directly on site.
du Toit, Lisa; Pillay, Viness; Choonara, Yahya
2010-01-01
Dissolution testing with subsequent analysis is considered as an imperative tool for quality evaluation of the combination rifampicin-isoniazid (RIF-INH) combination. Partial least squares (PLS) regression has been successfully undertaken to select suitable predictor variables and to identify outliers for the generation of equations for RIF and INH determination in fixed-dose combinations (FDCs). The aim of this investigation was to ascertain the applicability of the described technique in testing a novel oral FDC anti-TB drug delivery system and currently available two-drug FDCs, in comparison to the United States Pharmacopeial method for analysis of RIF and INH Capsules with chromatographic determination of INH and colorimetric RIF determination. Regression equations generated employing the statistical coefficients satisfactorily predicted RIF release at each sampling point (R(2)>or=0.9350). There was an acceptable degree of correlation between the drug release data, as predicted by regressional analysis of UV spectrophotometric data, and chromatographic and colorimetric determination of INH (R(2)=0.9793 and R(2)=0.9739) and RIF (R(2)= 0.9976 and R(2)=0.9996) for the two-drug FDC and the novel oral anti-TB drug delivery system, respectively. Regressional analysis of UV spectrophotometric data for simultaneous RIF and INH prediction thus provides a simplified methodology for use in diverse research settings for the assurance of RIF bioavailability from FDC formulations, specifically modified-release forms.
Real‐time monitoring and control of the load phase of a protein A capture step
Rüdt, Matthias; Brestrich, Nina; Rolinger, Laura
2016-01-01
ABSTRACT The load phase in preparative Protein A capture steps is commonly not controlled in real‐time. The load volume is generally based on an offline quantification of the monoclonal antibody (mAb) prior to loading and on a conservative column capacity determined by resin‐life time studies. While this results in a reduced productivity in batch mode, the bottleneck of suitable real‐time analytics has to be overcome in order to enable continuous mAb purification. In this study, Partial Least Squares Regression (PLS) modeling on UV/Vis absorption spectra was applied to quantify mAb in the effluent of a Protein A capture step during the load phase. A PLS model based on several breakthrough curves with variable mAb titers in the HCCF was successfully calibrated. The PLS model predicted the mAb concentrations in the effluent of a validation experiment with a root mean square error (RMSE) of 0.06 mg/mL. The information was applied to automatically terminate the load phase, when a product breakthrough of 1.5 mg/mL was reached. In a second part of the study, the sensitivity of the method was further increased by only considering small mAb concentrations in the calibration and by subtracting an impurity background signal. The resulting PLS model exhibited a RMSE of prediction of 0.01 mg/mL and was successfully applied to terminate the load phase, when a product breakthrough of 0.15 mg/mL was achieved. The proposed method has hence potential for the real‐time monitoring and control of capture steps at large scale production. This might enhance the resin capacity utilization, eliminate time‐consuming offline analytics, and contribute to the realization of continuous processing. Biotechnol. Bioeng. 2017;114: 368–373. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc. PMID:27543789
NASA Astrophysics Data System (ADS)
Yulia, M.; Suhandy, D.
2018-03-01
NIR spectra obtained from spectral data acquisition system contains both chemical information of samples as well as physical information of the samples, such as particle size and bulk density. Several methods have been established for developing calibration models that can compensate for sample physical information variations. One common approach is to include physical information variation in the calibration model both explicitly and implicitly. The objective of this study was to evaluate the feasibility of using explicit method to compensate the influence of different particle size of coffee powder in NIR calibration model performance. A number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared. Spectral data was acquired using NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement. A discrimination method based on PLS-DA was conducted and the influence of different particle size on the performance of PLS-DA was investigated. In explicit method, we add directly the particle size as predicted variable results in an X block containing only the NIR spectra and a Y block containing the particle size and type of coffee. The explicit inclusion of the particle size into the calibration model is expected to improve the accuracy of type of coffee determination. The result shows that using explicit method the quality of the developed calibration model for type of coffee determination is a little bit superior with coefficient of determination (R2) = 0.99 and root mean square error of cross-validation (RMSECV) = 0.041. The performance of the PLS2 calibration model for type of coffee determination with particle size compensation was quite good and able to predict the type of coffee in two different particle sizes with relatively high R2 pred values. The prediction also resulted in low bias and RMSEP values.
PLS Road surface temperature forecast for susceptibility of ice occurrence
NASA Astrophysics Data System (ADS)
Marchetti, Mario; Khalifa, Abderrhamen; Bues, Michel
2014-05-01
Winter maintenance relies on many operational tools consisting in monitoring atmospheric and pavement physical parameters. Among them, road weather information systems (RWIS) and thermal mapping are mostly used by service in charge of managing infrastructure networks. The Data from RWIS and thermal mapping are considered as inputs for forecasting physical numerical models, commonly in place since the 80s. These numerical models do need an accurate description of the infrastructure, such as pavement layers and sub-layers, along with many meteorological parameters, such as air temperature and global and infrared radiation. The description is sometimes partially known, and meteorological data is only monitored on specific spot. On the other hand, thermal mapping is now an easy, reliable and cost effective way to monitor road surface temperature (RST), and many meteorological parameters all along routes of infrastructure networks, including with a whole fleet of vehicles in the specific cases of roads, or airports. The technique uses infrared thermometry to measure RST and an atmospheric probes for air temperature, relative humidity, wind speed and global radiation, both at a high resolution interval, to identify sections of the road network prone to ice occurrence. However, measurements are time-consuming, and the data from thermal mapping is one input among others to establish the forecast. The idea was to build a reliable forecast on the sole data from thermal mapping. Previous work has established the interest to use principal component analysis (PCA) on the basis of a reduced number of thermal fingerprints. The work presented here is a focus on the use of partial least-square regression (PLS) to build a RST forecast with air temperature measurements. Roads with various environments, weather conditions (clear, cloudy mainly) and seasons were monitored over several months to generate an appropriate number of samples. The study was conducted to determine the minimum number of samples to get a reliable forecast, considering inputs for numerical models do not exceed five thermal fingerprints. Results of PLS have shown that the PLS model could have a R² of 0.9562, a RMSEP of 1.34 and a bias of -0.66. The same model applied to establish a forecast on past event indicates an average difference between measurements and forecasts of 0.20 °C. The advantage of such approach is its potential application not only to winter events, but also the extreme summer ones for urban heat island.
Hattotuwagama, Channa K; Doytchinova, Irini A; Flower, Darren R
2007-01-01
Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.
Multimodal Classification of Mild Cognitive Impairment Based on Partial Least Squares.
Wang, Pingyue; Chen, Kewei; Yao, Li; Hu, Bin; Wu, Xia; Zhang, Jiacai; Ye, Qing; Guo, Xiaojuan
2016-08-10
In recent years, increasing attention has been given to the identification of the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD). Brain neuroimaging techniques have been widely used to support the classification or prediction of MCI. The present study combined magnetic resonance imaging (MRI), 18F-fluorodeoxyglucose PET (FDG-PET), and 18F-florbetapir PET (florbetapir-PET) to discriminate MCI converters (MCI-c, individuals with MCI who convert to AD) from MCI non-converters (MCI-nc, individuals with MCI who have not converted to AD in the follow-up period) based on the partial least squares (PLS) method. Two types of PLS models (informed PLS and agnostic PLS) were built based on 64 MCI-c and 65 MCI-nc from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The results showed that the three-modality informed PLS model achieved better classification accuracy of 81.40%, sensitivity of 79.69%, and specificity of 83.08% compared with the single-modality model, and the three-modality agnostic PLS model also achieved better classification compared with the two-modality model. Moreover, combining the three modalities with clinical test score (ADAS-cog), the agnostic PLS model (independent data: florbetapir-PET; dependent data: FDG-PET and MRI) achieved optimal accuracy of 86.05%, sensitivity of 81.25%, and specificity of 90.77%. In addition, the comparison of PLS, support vector machine (SVM), and random forest (RF) showed greater diagnostic power of PLS. These results suggested that our multimodal PLS model has the potential to discriminate MCI-c from the MCI-nc and may therefore be helpful in the early diagnosis of AD.
Paradowska, Katarzyna; Jamróz, Marta Katarzyna; Kobyłka, Mariola; Gowin, Ewelina; Maczka, Paulina; Skibiński, Robert; Komsta, Łukasz
2012-01-01
This paper presents a preliminary study in building discriminant models from solid-state NMR spectrometry data to detect the presence of acetaminophen in over-the-counter pharmaceutical formulations. The dataset, containing 11 spectra of pure substances and 21 spectra of various formulations, was processed by partial least squares discriminant analysis (PLS-DA). The model found coped with the discrimination, and its quality parameters were acceptable. It was found that standard normal variate preprocessing had almost no influence on unsupervised investigation of the dataset. The influence of variable selection with the uninformative variable elimination by PLS method was studied, reducing the dataset from 7601 variables to around 300 informative variables, but not improving the model performance. The results showed the possibility to construct well-working PLS-DA models from such small datasets without a full experimental design.
CIEL*a*b* color space predictive models for colorimetry devices--analysis of perfume quality.
Korifi, Rabia; Le Dréau, Yveline; Antinelli, Jean-François; Valls, Robert; Dupuy, Nathalie
2013-01-30
Color perception plays a major role in the consumer evaluation of perfume quality. Consumers need first to be entirely satisfied with the sensory properties of products, before other quality dimensions become relevant. The evaluation of complex mixtures color presents a challenge even for modern analytical techniques. A variety of instruments are available for color measurement. They can be classified as tristimulus colorimeters and spectrophotometers. Obsolescence of the electronics of old tristimulus colorimeter arises from the difficulty in finding repair parts and leads to its replacement by more modern instruments. High quality levels in color measurement, i.e., accuracy and reliability in color control are the major advantages of the new generation of color instrumentation, the integrating sphere spectrophotometer. Two models of spectrophotometer were tested in transmittance mode, employing the d/0° geometry. The CIEL(*)a(*)b(*) color space parameters were measured with each instrument for 380 samples of raw materials and bases used in the perfume compositions. The results were graphically compared between the colorimeter device and the spectrophotometer devices. All color space parameters obtained with the colorimeter were used as dependent variables to generate regression equations with values obtained from the spectrophotometers. The data was statistically analyzed to create predictive model between the reference and the target instruments through two methods. The first method uses linear regression analysis and the second method consists of partial least square regression (PLS) on each component. Copyright © 2012 Elsevier B.V. All rights reserved.
Three-dimensional displacement measurement of image point by point-diffraction interferometry
NASA Astrophysics Data System (ADS)
He, Xiao; Chen, Lingfeng; Meng, Xiaojie; Yu, Lei
2018-01-01
This paper presents a method for measuring the three-dimensional (3-D) displacement of an image point based on point-diffraction interferometry. An object Point-light-source (PLS) interferes with a fixed PLS and its interferograms are captured by an exit pupil. When the image point of the object PLS is slightly shifted to a new position, the wavefront of the image PLS changes. And its interferograms also change. Processing these figures (captured before and after the movement), the wavefront difference of the image PLS can be obtained and it contains the information of three-dimensional (3-D) displacement of the image PLS. However, the information of its three-dimensional (3-D) displacement cannot be calculated until the distance between the image PLS and the exit pupil is calibrated. Therefore, we use a plane-parallel-plate with a known refractive index and thickness to determine this distance, which is based on the Snell's law for small angle of incidence. Thus, since the distance between the exit pupil and the image PLS is a known quantity, the 3-D displacement of the image PLS can be simultaneously calculated through two interference measurements. Preliminary experimental results indicate that its relative error is below 0.3%. With the ability to accurately locate an image point (whatever it is real or virtual), a fiber point-light-source can act as the reticle by itself in optical measurement.
Ghanem, Eman; Hopfer, Helene; Navarro, Andrea; Ritzer, Maxwell S; Mahmood, Lina; Fredell, Morgan; Cubley, Ashley; Bolen, Jessica; Fattah, Rabia; Teasdale, Katherine; Lieu, Linh; Chua, Tedmund; Marini, Federico; Heymann, Hildegarde; Anslyn, Eric V
2015-05-20
Differential sensing using synthetic receptors as mimics of the mammalian senses of taste and smell is a powerful approach for the analysis of complex mixtures. Herein, we report on the effectiveness of a cross-reactive, supramolecular, peptide-based sensing array in differentiating and predicting the composition of red wine blends. Fifteen blends of Cabernet Sauvignon, Merlot and Cabernet Franc, in addition to the mono varietals, were used in this investigation. Linear Discriminant Analysis (LDA) showed a clear differentiation of blends based on tannin concentration and composition where certain mono varietals like Cabernet Sauvignon seemed to contribute less to the overall characteristics of the blend. Partial Least Squares (PLS) Regression and cross validation were used to build a predictive model for the responses of the receptors to eleven binary blends and the three mono varietals. The optimized model was later used to predict the percentage of each mono varietal in an independent test set composted of four tri-blends with a 15% average error. A partial least square regression model using the mouth-feel and taste descriptive sensory attributes of the wine blends revealed a strong correlation of the receptors to perceived astringency, which is indicative of selective binding to polyphenols in wine.
Dimensions of professional labor support for intrapartum practice.
Sauls, Donna J
2006-01-01
To define and describe the dimensions of Professional Labor Support (PLS). A factor-analytic study was conducted with a random sample of 146 intrapartum nurses in Texas. Nurses' responses to the Labor Support Questionnaire (LSQ) were subjected to principal components analysis and descriptive analysis. A six-factor solution indicated the dimensions of PLS: Tangible Support, Advocacy, Emotional Support-Reassurance, Emotional Support-Creating Control, Security and Comfort, Emotional Support-Nurse Caring Behavior, and Informational Support. Although the presence of four dimensions was theorized, six dimensions were found. The emotional support dimension was identified by nurses as being an important component of labor support as indicated by the identification of three separate emotional support dimensions.
Kumar, Keshav; Mishra, Ashok Kumar
2015-07-01
Fluorescence characteristic of 8-anilinonaphthalene-1-sulfonic acid (ANS) in ethanol-water mixture in combination with partial least square (PLS) analysis was used to propose a simple and sensitive analytical procedure for monitoring the adulteration of ethanol by water. The proposed analytical procedure was found to be capable of detecting even small adulteration level of ethanol by water. The robustness of the procedure is evident from the statistical parameters such as square of correlation coefficient (R(2)), root mean square of calibration (RMSEC) and root mean square of prediction (RMSEP) that were found to be well with in the acceptable limits.
Soliman, Wael; Wang, Liru; Bhattacharjee, Subir; Kaur, Kamaljit
2011-04-14
Class IIb bacteriocins are ribosomally synthesized antimicrobial peptides comprising two different peptides synergistically acting in equal amounts for optimal potency. In this study, we demonstrate for the first time potent (nanomolar) antimicrobial activity of a representative class IIb bacteriocin, plantaricin S (Pls), against four pathogenic gram-positive bacteria, including Listeria monocytogenes. The structure-activity relationships for Pls were studied using activity assays, circular dichroism (CD), and molecular dynamics (MD) simulations. The two Pls peptides and five Pls derived fragments were synthesized. The CD spectra of the Pls and selected fragments revealed helical conformations in aqueous 2,2,2-trifluoroethanol. The MD simulations showed that when the two Pls peptides are in antiparallel orientation, the helical regions interact and align, mediated by strong attraction between conserved GxxxG/AxxxA motifs. The results strongly correlate with the antimicrobial activity suggesting that helix-helix alignment of the two Pls peptides and interaction between the conserved motifs are crucial for interaction with the target cell membrane.
A Cultural Diffusion Model for the Rise and Fall of Programming Languages.
Valverde, Sergi; Solé, Ricard V
2015-07-01
Our interaction with complex computing machines is mediated by programming languages (PLs), which constitute one of the major innovations in the evolution of technology. PLs allow flexible, scalable, and fast use of hardware and are largely responsible for shaping the history of information technology since the rise of computers in the 1950s. The rapid growth and impact of computers were followed closely by the development of PLs. As occurs with natural, human languages, PLs have emerged and gone extinct. There has been always a diversity of coexisting PLs that compete somewhat while occupying special niches. Here we show that the statistical patterns of language adoption, rise, and fall can be accounted for by a simple model in which a set of programmers can use several PLs, decide to use existing PLs used by other programmers, or decide not to use them. Our results highlight the influence of strong communities of practice in the diffusion of PL innovations.
Determination of urine ionic composition with potentiometric multisensor system.
Yaroshenko, Irina; Kirsanov, Dmitry; Kartsova, Lyudmila; Sidorova, Alla; Borisova, Irina; Legin, Andrey
2015-01-01
The ionic composition of urine is a good indicator of patient's general condition and allows for diagnostics of certain medical problems such as e.g., urolithiasis. Due to environmental factors and malnutrition the number of registered urinary tract cases continuously increases. Most of the methods currently used for urine analysis are expensive, quite laborious and require skilled personnel. The present work deals with feasibility study of potentiometric multisensor system of 18 ion-selective and cross-sensitive sensors as an analytical tool for determination of urine ionic composition. In total 136 samples from patients of Urolithiasis Laboratory and healthy people were analyzed by the multisensor system as well as by capillary electrophoresis as a reference method. Various chemometric approaches were implemented to relate the data from electrochemical measurements with the reference data. Logistic regression (LR) was applied for classification of samples into healthy and unhealthy producing reasonable misclassification rates. Projection on Latent Structures (PLS) regression was applied for quantitative analysis of ionic composition from potentiometric data. Mean relative errors of simultaneous prediction of sodium, potassium, ammonium, calcium, magnesium, chloride, sulfate, phosphate, urate and creatinine from multisensor system response were in the range 3-13% for independent test sets. This shows a good promise for development of a fast and inexpensive alternative method for urine analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Lascola, Robert; O'Rourke, Patrick E.; Kyser, Edward A.
2017-10-05
Here, we have developed a piecewise local (PL) partial least squares (PLS) analysis method for total plutonium measurements by absorption spectroscopy in nitric acid-based nuclear material processing streams. Instead of using a single PLS model that covers all expected solution conditions, the method selects one of several local models based on an assessment of solution absorbance, acidity, and Pu oxidation state distribution. The local models match the global model for accuracy against the calibration set, but were observed in several instances to be more robust to variations associated with measurements in the process. The improvements are attributed to the relativemore » parsimony of the local models. Not all of the sources of spectral variation are uniformly present at each part of the calibration range. Thus, the global model is locally overfitting and susceptible to increased variance when presented with new samples. A second set of models quantifies the relative concentrations of Pu(III), (IV), and (VI). Standards containing a mixture of these species were not at equilibrium due to a disproportionation reaction. Therefore, a separate principal component analysis is used to estimate of the concentrations of the individual oxidation states in these standards in the absence of independent confirmatory analysis. The PL analysis approach is generalizable to other systems where the analysis of chemically complicated systems can be aided by rational division of the overall range of solution conditions into simpler sub-regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lascola, Robert; O'Rourke, Patrick E.; Kyser, Edward A.
Here, we have developed a piecewise local (PL) partial least squares (PLS) analysis method for total plutonium measurements by absorption spectroscopy in nitric acid-based nuclear material processing streams. Instead of using a single PLS model that covers all expected solution conditions, the method selects one of several local models based on an assessment of solution absorbance, acidity, and Pu oxidation state distribution. The local models match the global model for accuracy against the calibration set, but were observed in several instances to be more robust to variations associated with measurements in the process. The improvements are attributed to the relativemore » parsimony of the local models. Not all of the sources of spectral variation are uniformly present at each part of the calibration range. Thus, the global model is locally overfitting and susceptible to increased variance when presented with new samples. A second set of models quantifies the relative concentrations of Pu(III), (IV), and (VI). Standards containing a mixture of these species were not at equilibrium due to a disproportionation reaction. Therefore, a separate principal component analysis is used to estimate of the concentrations of the individual oxidation states in these standards in the absence of independent confirmatory analysis. The PL analysis approach is generalizable to other systems where the analysis of chemically complicated systems can be aided by rational division of the overall range of solution conditions into simpler sub-regions.« less
Missing RRI interpolation for HRV analysis using locally-weighted partial least squares regression.
Kamata, Keisuke; Fujiwara, Koichi; Yamakawa, Toshiki; Kano, Manabu
2016-08-01
The R-R interval (RRI) fluctuation in electrocardiogram (ECG) is called heart rate variability (HRV). Since HRV reflects autonomic nervous function, HRV-based health monitoring services, such as stress estimation, drowsy driving detection, and epileptic seizure prediction, have been proposed. In these HRV-based health monitoring services, precise R wave detection from ECG is required; however, R waves cannot always be detected due to ECG artifacts. Missing RRI data should be interpolated appropriately for HRV analysis. The present work proposes a missing RRI interpolation method by utilizing using just-in-time (JIT) modeling. The proposed method adopts locally weighted partial least squares (LW-PLS) for RRI interpolation, which is a well-known JIT modeling method used in the filed of process control. The usefulness of the proposed method was demonstrated through a case study of real RRI data collected from healthy persons. The proposed JIT-based interpolation method could improve the interpolation accuracy in comparison with a static interpolation method.
Determination of elemental composition of shale rocks by laser induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Sanghapi, Hervé K.; Jain, Jinesh; Bol'shakov, Alexander; Lopano, Christina; McIntyre, Dustin; Russo, Richard
2016-08-01
In this study laser induced breakdown spectroscopy (LIBS) is used for elemental characterization of outcrop samples from the Marcellus Shale. Powdered samples were pressed to form pellets and used for LIBS analysis. Partial least squares regression (PLS-R) and univariate calibration curves were used for quantification of analytes. The matrix effect is substantially reduced using the partial least squares calibration method. Predicted results with LIBS are compared to ICP-OES results for Si, Al, Ti, Mg, and Ca. As for C, its results are compared to those obtained by a carbon analyzer. Relative errors of the LIBS measurements are in the range of 1.7 to 12.6%. The limits of detection (LODs) obtained for Si, Al, Ti, Mg and Ca are 60.9, 33.0, 15.6, 4.2 and 0.03 ppm, respectively. An LOD of 0.4 wt.% was obtained for carbon. This study shows that the LIBS method can provide a rapid analysis of shale samples and can potentially benefit depleted gas shale carbon storage research.
External cavity-quantum cascade laser (EC-QCL) spectroscopy for protein analysis in bovine milk.
Kuligowski, Julia; Schwaighofer, Andreas; Alcaráz, Mirta Raquel; Quintás, Guillermo; Mayer, Helmut; Vento, Máximo; Lendl, Bernhard
2017-04-22
The analytical determination of bovine milk proteins is important in food and non-food industrial applications and yet, rather labour-intensive wet-chemical, low-throughput methods have been employed since decades. This work proposes the use of external cavity-quantum cascade laser (EC-QCL) spectroscopy for the simultaneous quantification of the most abundant bovine milk proteins and the total protein content based on the chemical information contained in mid-infrared (IR) spectral features of the amide I band. Mid-IR spectra of protein standard mixtures were used for building partial least squares (PLS) regression models. Protein concentrations in commercial bovine milk samples were calculated after chemometric compensation of the matrix contribution employing science-based calibration (SBC) without sample pre-processing. The use of EC-QCL spectroscopy together with advanced multivariate data analysis allowed the determination of casein, α-lactalbumin, β-lactoglobulin and total protein content within several minutes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Baptistao, Mariana; Rocha, Werickson Fortunato de Carvalho; Poppi, Ronei Jesus
2011-09-01
In this work, it was used imaging spectroscopy and chemometric tools for the development and analysis of paracetamol and excipients in pharmaceutical formulations. It was also built concentration maps to study the distribution of the drug in the tablets surface. Multivariate models based on PLS regression were developed for paracetamol and excipients concentrations prediction. For the construction of the models it was used 31 samples in the tablet form containing the active principle in a concentration range of 30.0-90.0% (w/w) and errors below to 5% were obtained for validation samples. Finally, the study of the distribution in the drug was performed through the distribution maps of concentration of active principle and excipients. The analysis of maps showed the complementarity between the active principle and excipients in the tablets. The region with a high concentration of a constituent must have, necessarily, absence or low concentration of the other one. Thus, an alternative method for the paracetamol drug quality monitoring is presented.
Hutengs, Christopher; Ludwig, Bernard; Jung, András; Eisele, Andreas; Vohland, Michael
2018-03-27
Mid-infrared (MIR) spectroscopy has received widespread interest as a method to complement traditional soil analysis. Recently available portable MIR spectrometers additionally offer potential for on-site applications, given sufficient spectral data quality. We therefore tested the performance of the Agilent 4300 Handheld FTIR (DRIFT spectra) in comparison to a Bruker Tensor 27 bench-top instrument in terms of (i) spectral quality and measurement noise quantified by wavelet analysis; (ii) accuracy of partial least squares (PLS) calibrations for soil organic carbon (SOC), total nitrogen (N), pH, clay and sand content with a repeated cross-validation analysis; and (iii) key spectral regions for these soil properties identified with a Monte Carlo spectral variable selection approach. Measurements and multivariate calibrations with the handheld device were as good as or slightly better than Bruker equipped with a DRIFT accessory, but not as accurate as with directional hemispherical reflectance (DHR) data collected with an integrating sphere. Variations in noise did not markedly affect the accuracy of multivariate PLS calibrations. Identified key spectral regions for PLS calibrations provided a good match between Agilent and Bruker DHR data, especially for SOC and N. Our findings suggest that portable FTIR instruments are a viable alternative for MIR measurements in the laboratory and offer great potential for on-site applications.
Analyses of direct and indirect impacts of a positive list system on pharmaceutical R&D investments.
Han, Euna; Kim, Tae Hyun; Jeung, Myung Jin; Lee, Eui-Kyung
2013-07-01
The South Korean government recently enacted a Positive List System (PLS) as a major change of the national formulary listing system and reimbursed prices for pharmaceutical products. Regardless of the primary goal of the PLS, its implementation might have spillover effects by influencing the pharmaceutical industry's research and development (R&D), potentially leading to a variety of responses by firms in relation to their R&D activities. We investigated the spillover effect of the PLS on R&D investments of the pharmaceutical industry in Korea through both direct and indirect channels, examining the influence of the PLS on sales profit and cash flow. Data from 9 years (5 before and 4 after PLS implementation) were drawn from the financial statements of firms whose stocks were exchanged in 2 official stock markets in Korea (526 firms) and additional pharmaceutical firms whose financial performance was officially audited by external reviewers (263 firms). Longitudinal analyses were conducted, using the panel nature of the data to control for permanent unobserved firm heterogeneity. Our results showed that the PLS was directly associated with R&D investments. In contrast, its indirect impacts stemming from the influence on sales profit and cash flow were minimal and statistically nonsignificant. The gross impact of the PLS on R&D investments increased moving further from the enactment year; R&D investments were reduced by 18.3% to 25.8% in 2009-2010 (compared with before PLS implementation) in the firm fixed-effects model. We also found that such negative direct and gross impacts of the PLS on R&D investments were significant only in firms without newly developed chemical entities. Considering the gross negative impact of the PLS on R&D investments of pharmaceutical firms and the heterogeneous response of these firms by the R&D activities, governmental efforts of cost-containment may need to consider the spillover impact of the PLS on pharmaceutical innovation. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.
Alarcón, Francis; Báez, María E; Bravo, Manuel; Richter, Pablo; Escandar, Graciela M; Olivieri, Alejandro C; Fuentes, Edwar
2013-01-15
The possibility of simultaneously determining seven concerned heavy polycyclic aromatic hydrocarbons (PAHs) of the US-EPA priority pollutant list, in extra virgin olive and sunflower oils was examined using unfolded partial least-squares with residual bilinearization (U-PLS/RBL) and parallel factor analysis (PARAFAC). Both of these methods were applied to fluorescence excitation emission matrices. The compounds studied were benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene and indeno[1,2,3-c,d]-pyrene. The analysis was performed using fluorescence spectroscopy after a microwave assisted liquid-liquid extraction and solid-phase extraction on silica. The U-PLS/RBL algorithm exhibited the best performance for resolving the heavy PAH mixture in the presence of both the highly complex oil matrix and other unpredicted PAHs of the US-EPA list. The obtained limit of detection for the proposed method ranged from 0.07 to 2 μg kg(-1). The predicted U-PLS/RBL concentrations were satisfactorily compared with those obtained using high-performance liquid chromatography with fluorescence detection. A simple analysis with a considerable reduction in time and solvent consumption in comparison with chromatography are the principal advantages of the proposed method. Copyright © 2012 Elsevier B.V. All rights reserved.
Xylella taiwanensis sp. nov., causing pear leaf scorch disease.
Su, C-C; Deng, W-L; Jan, F-J; Chang, C-J; Huang, H; Shih, H-T; Chen, J
2016-11-01
A Gram-stain-negative, nutritionally fastidious bacterium (PLS229T) causing pear leaf scorch was identified in Taiwan and previously grouped into Xylella fastidiosa. Yet, significant variations between PLS229T and Xylellafastidiosa were noted. In this study, PLS229T was evaluated phenotypically and genotypically against representative strains of Xylellafastidiosa, including strains of the currently known subspecies of Xylellafastidiosa, Xylella fastidiosa subsp. multiplex and 'Xylella fastidiosasubsp.pauca'. Because of the difficulty of in vitro culture characterization, emphases were made to utilize the available whole-genome sequence information. The average nucleotide identity (ANI) values, an alternative for DNA-DNA hybridization relatedness, between PLS229T and Xylellafastidiosa were 83.4-83.9 %, significantly lower than the bacterial species threshold of 95 %. In contrast, sequence similarity of 16S rRNA genes was greater than 98 %, higher than the 97 % threshold to justify if two bacterial strains belong to different species. The uniqueness of PLS229T was also evident by observing only about 87 % similarity in the sequence of the 16S-23S internal transcribed spacer (ITS) between PLS229T and strains of Xylellafastidiosa, discovering significant single nucleotide polymorphisms at 18 randomly selected housekeeping gene loci, observing a distinct fatty acid profile for PLS229T compared with Xylellafastidiosa, and PLS229T having different observable phenotypes, such as different susceptibility to antibiotics. A phylogenetic tree derived from 16S rRNA gene sequences showed a distinct PLS229T phyletic lineage positioning it between Xylellafastidiosa and members of the genus Xanthomonas. On the basis of these data, a novel species, Xylella taiwanensis sp. nov. is proposed. The type strain is PLS229T (=BCRC 80915T=JCM 31187T).
Zuo, Yamin; Deng, Xuehua; Wu, Qing
2018-05-04
Discrimination of Gastrodia elata ( G. elata ) geographical origin is of great importance to pharmaceutical companies and consumers in China. this paper focuses on the feasibility of near infrared spectrum (NIRS) combined multivariate analysis as a rapid and non-destructive method to prove its fit for this purpose. Firstly, 16 batches of G. elata samples from four main-cultivation regions in China were quantified by traditional HPLC method. It showed that samples from different origins could not be efficiently differentiated by the contents of four phenolic compounds in this study. Secondly, the raw near infrared (NIR) spectra of those samples were acquired and two different pattern recognition techniques were used to classify the geographical origins. The results showed that with spectral transformation optimized, discriminant analysis (DA) provided 97% and 99% correct classification for the calibration and validation sets of samples from discriminating of four different main-cultivation regions, and provided 98% and 99% correct classifications for the calibration and validation sets of samples from eight different cities, respectively, which all performed better than the principal component analysis (PCA) method. Thirdly, as phenolic compounds content (PCC) is highly related with the quality of G. elata , synergy interval partial least squares (Si-PLS) was applied to build the PCC prediction model. The coefficient of determination for prediction (R p ²) of the Si-PLS model was 0.9209, and root mean square error for prediction (RMSEP) was 0.338. The two regions (4800 cm −1 ⁻5200 cm −1 , and 5600 cm −1 ⁻6000 cm −1 ) selected by Si-PLS corresponded to the absorptions of aromatic ring in the basic phenolic structure. It can be concluded that NIR spectroscopy combined with PCA, DA and Si-PLS would be a potential tool to provide a reference for the quality control of G. elata.
2013-01-01
Background Given the serious threats posed to terrestrial ecosystems by industrial contamination, environmental monitoring is a standard procedure used for assessing the current status of an environment or trends in environmental parameters. Measurement of metal concentrations at different trophic levels followed by their statistical analysis using exploratory multivariate methods can provide meaningful information on the status of environmental quality. In this context, the present paper proposes a novel chemometric approach to standard statistical methods by combining the Block clustering with Partial least square (PLS) analysis to investigate the accumulation patterns of metals in anthropized terrestrial ecosystems. The present study focused on copper, zinc, manganese, iron, cobalt, cadmium, nickel, and lead transfer along a soil-plant-snai food chain, and the hepatopancreas of the Roman snail (Helix pomatia) was used as a biological end-point of metal accumulation. Results Block clustering deliniates between the areas exposed to industrial and vehicular contamination. The toxic metals have similar distributions in the nettle leaves and snail hepatopancreas. PLS analysis showed that (1) zinc and copper concentrations at the lower trophic levels are the most important latent factors that contribute to metal accumulation in land snails; (2) cadmium and lead are the main determinants of pollution pattern in areas exposed to industrial contamination; (3) at the sites located near roads lead is the most threatfull metal for terrestrial ecosystems. Conclusion There were three major benefits by applying block clustering with PLS for processing the obtained data: firstly, it helped in grouping sites depending on the type of contamination. Secondly, it was valuable for identifying the latent factors that contribute the most to metal accumulation in land snails. Finally, it optimized the number and type of data that are best for monitoring the status of metallic contamination in terrestrial ecosystems exposed to different kinds of anthropic polution. PMID:23987502
Long-term change of disease behavior in Papillon-Lefèvre syndrome: seven years follow-up.
Wang, Xinwen; Liu, Yang; Liu, Yuan; Dong, Guangying; Kenney, E Barrie; Liu, Qing; Ma, Zhiwei; Wang, Qingtao
2015-03-01
Papillon-Lefèvre syndrome (PLS) is an autosomal recessive disease, characterized by severe periodontitis and palmoplantar hyperkeratosis. Mutations in the cathepsin C (CTSC) gene are the causative genetic factor. PLS starts at very early age, however, the age associated change of PLS has never been characterized. In this report, four PLS patients with CTSC mutations were followed up for seven years, periodontal condition and serum immunoglobulins (Igs) were recorded. Results showed that periodontal inflammation of PLS peaked at teenage years, but declined with time. At the same time the serum IgE change was consistent with the change, suggesting the possibility of using IgE as a monitoring index for PLS inflammation level, or to develop new target for therapy. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Exclusion of phospholipases (PLs)-producing bacteria in raw milk flushed with nitrogen gas (N(2)).
Munsch-Alatossava, Patricia; Gursoy, Oguz; Alatossava, Tapani
2010-01-01
Prolonged cold storage of raw milks favors the growth of psychrotrophs, which produce heat-resistant exoenzymes of considerable spoilage potential; the bacterial proteases and lipases affect raw milk quality; among them phospholipases (PLs) may target the milk fat globule. More importantly, bacterial PLs are key virulence factors for numerous species. Two studies examined the use of nitrogen (N(2)) gas and examined its effect on psychrotrophs, proteases and lipase producers when the milk was stored in closed vessels; however, the effect on PLs producers is unknown. Here we show that by considering an open system the PLs producers were sooner or later excluded in raw milk (whereas the PLs producers in the non-treated controls culminated at 10(8)CFU/ml), by effective gas treatments that bring oxygen (O(2)) levels in milk lower than 0.1ppm. No increase of the PLs producers among the anaerobes was noticed during the course of the experiments. In the experiments performed at 6.0 degrees C, the delay after which the PLs producers were no longer detectable seemed independent of the initial level of PLs producers in raw milk (lower than 10(3)CFU/ml). We anticipate that flushing pure N(2) gas in raw milk tanks, considered as open systems, along the cold chain of raw milk storage and transportation, may be an additional technique to control psychrotrophs, and may also constitute an interesting perspective for limiting their spoilage and pathogenic potential in food materials in general.