Sample records for plug flow reactors

  1. Partial wetting gas-liquid segmented flow microreactor.

    PubMed

    Kazemi Oskooei, S Ali; Sinton, David

    2010-07-07

    A microfluidic reactor strategy for reducing plug-to-plug transport in gas-liquid segmented flow microfluidic reactors is presented. The segmented flow is generated in a wetting portion of the chip that transitions downstream to a partially wetting reaction channel that serves to disconnect the liquid plugs. The resulting residence time distributions show little dependence on channel length, and over 60% narrowing in residence time distribution as compared to an otherwise similar reactor. This partial wetting strategy mitigates a central limitation (plug-to-plug dispersion) while preserving the many attractive features of gas-liquid segmented flow reactors.

  2. Applying chemical engineering concepts to non-thermal plasma reactors

    NASA Astrophysics Data System (ADS)

    Pedro AFFONSO, NOBREGA; Alain, GAUNAND; Vandad, ROHANI; François, CAUNEAU; Laurent, FULCHERI

    2018-06-01

    Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.

  3. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Comparative performance of fixed-film biological filters: Application of reactor theory

    USGS Publications Warehouse

    Watten, B.J.; Sibrell, P.L.

    2006-01-01

    Nitrification is classified as a two-step consecutive reaction where R1 represents the rate of formation of the intermediate product NO2-N and R2 represents the rate of formation of the final product NO3-N. The relative rates of R1 and R2 are influenced by reactor type characterized hydraulically as plug-flow, plug-flow with dispersion and mixed-flow. We develop substrate conversion models for fixed-film biofilters operating in the first-order kinetic regime based on application of chemical reactor theory. Reactor type, inlet conditions and the biofilm kinetic constants Ki (h-1) are used to predict changes in NH4-N, NO2-N, NO3-N and BOD5. The inhibiting effects of the latter on R1 and R2 were established based on the ?? relation, e.g.:{A formula is presented}where BOD5,max is the concentration that causes nitrification to cease and N is a variable relating Ki to increasing BOD5. Conversion models were incorporated in spreadsheet programs that provided steady-state concentrations of nitrogen and BOD5 at several points in a recirculating aquaculture system operating with input values for fish feed rate, reactor volume, microscreen performance, make-up and recirculating flow rates. When rate constants are standardized, spreadsheet use demonstrates plug-flow reactors provide higher rates of R1 and R2 than mixed-flow reactors thereby reducing volume requirements for target concentrations of NH4-N and NO2-N. The benefit provided by the plug-flow reactor varies with hydraulic residence time t as well as the effective vessel dispersion number, D/??L. Both reactor types are capable of providing net increases in NO2-N during treatment but the rate of decrease in the mixed-flow case falls well behind that predicted for plug-flow operation. We show the potential for a positive net change in NO2-N increases with decreases in the dimensionless ratios K2, (R2 )/K1,( R1 ) and [NO2-N]/[NH4-N] and when the product K1, (R1) t provides low to moderate NH4-N conversions. Maintaining high levels of the latter reduces the effective reactor utilization rate (%) defined here as (RNavg/RNmax)100 where RNavg is the mean reactive nitrogen concentration ([NH4-N] + [NO2-N]) within the reactor, and RNmax represents the feed concentration of the same. Low utilization rates provide a hedge against unexpected increases in substrate loading and reduce water pumping requirements but force use of elevated reactor volumes. Further ?? effects on R1 and R2 can be reduced through use of a tanks-in-series versus a single mixed-flow reactor configuration and by improving the solids removal efficiency of microscreen treatment.

  5. Method for preventing plugging in the pyrolysis of agglomerative coals

    DOEpatents

    Green, Norman W.

    1979-01-23

    To prevent plugging in a pyrolysis operation where an agglomerative coal in a nondeleteriously reactive carrier gas is injected as a turbulent jet from an opening into an elongate pyrolysis reactor, the coal is comminuted to a size where the particles under operating conditions will detackify prior to contact with internal reactor surfaces while a secondary flow of fluid is introduced along the peripheral inner surface of the reactor to prevent backflow of the coal particles. The pyrolysis operation is depicted by two equations which enable preselection of conditions which insure prevention of reactor plugging.

  6. Achieve efficient nitrogen removal from real sewage in a plug-flow integrated fixed-film activated sludge (IFAS) reactor via partial nitritation/anammox pathway.

    PubMed

    Yang, Yandong; Zhang, Liang; Cheng, Jun; Zhang, Shujun; Li, Baikun; Peng, Yongzhen

    2017-09-01

    This study tested the feasibility of plug-flow integrated fixed-film activated sludge (IFAS) reactor in applying sewage partial nitritation/anammox (PN/A) process. The IFAS reactor was fed with real pre-treated sewage (C/N ratio=1.3) and operated for 200days. High nitrogen removal efficiency of 82% was achieved with nitrogen removal rates of 0.097±0.019kgN/(m 3 ·d). Therefore, plug-flow IFAS reactor could be an alternative to applying sewage PN/A process. Besides, it was found that the stability of sewage PN/A process was significantly affected by residual ammonium. Nitrate accumulated in effluent and PN/A performance deteriorated when residual ammonium was below 1mg/L. On the contrary, long-term stable PN/A operation was achieved when residual ammonium was over 3mg/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. NaK Plugging Meter Design for the Feasibility Test Loops

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Godfroy, Thomas J.; Reid, Robert S.; Polzin, Kurt A.

    2008-01-01

    The design and predicted performance of a plugging meter for use in the measurement of NaK impurity levels are presented. The plugging meter is incorporated into a Feasibility Test Loop (FTL), which is a small pumped-NaK loop designed to enable the rapid, small-scale evaluation of techniques such as in situ purification methods and to permit the measurement of bulk material transport effects (not mechanisms) under flow conditions that are representative of a fission surface power reactor. The FTL operates at temperatures similar to those found in a reactor, with a maximum hot side temperature of 900 K and a corresponding cold side temperature of 860 K. In the plugging meter a low flow rate bypass loop is cooled until various impurities (primarily oxides) precipitate out of solution. The temperatures at which these impurities precipitate are indicative of the level of impurities in the NaK. The precipitates incrementally plug a small orifice in the bypass loop, which is detected by monitoring changes in the liquid metal flow rate.

  8. Computational Fluid Dynamics simulation of hydrothermal liquefaction of microalgae in a continuous plug-flow reactor.

    PubMed

    Ranganathan, Panneerselvam; Savithri, Sivaraman

    2018-06-01

    Computational Fluid Dynamics (CFD) technique is used in this work to simulate the hydrothermal liquefaction of Nannochloropsis sp. microalgae in a lab-scale continuous plug-flow reactor to understand the fluid dynamics, heat transfer, and reaction kinetics in a HTL reactor under hydrothermal condition. The temperature profile in the reactor and the yield of HTL products from the present simulation are obtained and they are validated with the experimental data available in the literature. Furthermore, the parametric study is carried out to study the effect of slurry flow rate, reactor temperature, and external heat transfer coefficient on the yield of products. Though the model predictions are satisfactory in comparison with the experimental results, it still needs to be improved for better prediction of the product yields. This improved model will be considered as a baseline for design and scale-up of large-scale HTL reactor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A plug flow reactor model of a vanadium redox flow battery considering the conductive current collectors

    NASA Astrophysics Data System (ADS)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2017-08-01

    A lumped-parameter model for vanadium redox flow batteries, which use metallic current collectors, is extended into a one-dimensional model using the plug flow reactor principle. Thus, the commonly used simplification of a perfectly mixed cell is no longer required. The resistances of the cell components are derived in the in-plane and through-plane directions. The copper current collector is the only component with a significant in-plane conductance, which allows for a simplified electrical network. The division of a full-scale flow cell into 10 layers in the direction of fluid flow represents a reasonable compromise between computational effort and accuracy. Due to the variations in the state of charge and thus the open circuit voltage of the electrolyte, the currents in the individual layers vary considerably. Hence, there are situations, in which the first layer, directly at the electrolyte input, carries a multiple of the last layer's current. The conventional model overestimates the cell performance. In the worst-case scenario, the more accurate 20-layer model yields a discharge capacity 9.4% smaller than that computed with the conventional model. The conductive current collector effectively eliminates the high over-potentials in the last layers of the plug flow reactor models that have been reported previously.

  10. Modeling and simulation of enzymatic gluconic acid production using immobilized enzyme and CSTR-PFTR circulation reaction system.

    PubMed

    Li, Can; Lin, Jianqun; Gao, Ling; Lin, Huibin; Lin, Jianqiang

    2018-04-01

    Production of gluconic acid by using immobilized enzyme and continuous stirred tank reactor-plug flow tubular reactor (CSTR-PFTR) circulation reaction system. A production system is constructed for gluconic acid production, which consists of a continuous stirred tank reactor (CSTR) for pH control and liquid storage and a plug flow tubular reactor (PFTR) filled with immobilized glucose oxidase (GOD) for gluconic acid production. Mathematical model is developed for this production system and simulation is made for the enzymatic reaction process. The pH inhibition effect on GOD is modeled by using a bell-type curve. Gluconic acid can be efficiently produced by using the reaction system and the mathematical model developed for this system can simulate and predict the process well.

  11. Development and performance of an alternative biofilter system.

    PubMed

    Lee, D H; Lau, A K; Pinder, K L

    2001-01-01

    Step tracer tests were carried out on lab-scale biofilters to determine the residence time distributions (RTDs) of gases passing through two types of biofilters: a standard biofilter with vertical gas flow and a modified biofilter with horizontal gas flow. Results were used to define the flow patterns in the reactors. "Non-ideal flow" indicates that the flow reactors did not behave like either type of ideal reactor: the perfectly stirred reactor [often called a "continuously stirred tank reactor" (CSTR)] or the plug-flow reactor. The horizontal biofilter with back-mixing was able to accommodate a shorter residence time without the usual requirement of greater biofilter surface area for increased biofiltration efficiency. Experimental results indicated that the first bed of the modified biofilter behaved like two CSTRs in series, while the second bed may be represented by two or three CSTRs in series. Because of the flow baffles used in the horizontal biofilter system, its performance was more similar to completely mixed systems, and hence, it could not be modeled as a plug-flow reactor. For the standard biofilter, the number of CSTRs was found to be between 2 and 9 depending on the airflow rate. In terms of NH3 removal efficiency and elimination capacity, the standard biofilter was not as good as the modified system; moreover, the second bed of the modified biofilter exhibited greater removal efficiency than the first bed. The elimination rate increased as biofilter load increased. An opposite trend was exhibited with respect to removal efficiency.

  12. Nuclear reactor pressure vessel support system

    DOEpatents

    Sepelak, George R.

    1978-01-01

    A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

  13. Dry fermentation of manure with straw in continuous plug flow reactor: Reactor development and process stability at different loading rates.

    PubMed

    Patinvoh, Regina J; Kalantar Mehrjerdi, Adib; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-01-01

    In this work, a plug flow reactor was developed for continuous dry digestion processes and its efficiency was investigated using untreated manure bedded with straw at 22% total solids content. This newly developed reactor worked successfully for 230days at increasing organic loading rates of 2.8, 4.2 and 6gVS/L/d and retention times of 60, 40 and 28days, respectively. Organic loading rates up to 4.2gVS/L/d gave a better process stability, with methane yields up to 0.163LCH 4 /gVS added /d which is 56% of the theoretical yield. Further increase of organic loading rate to 6gVS/L/d caused process instability with lower volatile solid removal efficiency and cellulose degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. NEUTRONIC REACTOR SHIELD AND SPACER CONSTRUCTION

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.

    1958-11-18

    Reactors of the heterogeneous, graphite moderated, fluid cooled type and shielding and spacing plugs for the coolant channels thereof are reported. In this design, the coolant passages extend horizontally through the moderator structure, accommodating the fuel elements in abutting end-to-end relationship, and have access openings through the outer shield at one face of the reactor to facilitate loading of the fuel elements. In the outer ends of the channels which extend through the shields are provided spacers and shielding plugs designed to offer minimal reslstance to coolant fluid flow while preventing emanation of harmful radiation through the access openings when closed between loadings.

  15. A bioreactor system for the nitrogen loop in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Saulmon, M. M.; Reardon, K. F.; Sadeh, W. Z.

    1996-01-01

    As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camacho-Bunquin, Jeffrey; Shou, Heng; Aich, Payoli

    An integrated atomic layer deposition-catalysis (I-ALD-CAT) tool was developed, combining an ALD manifold with a plug-flow reactor system for the synthesis of supported catalytic materials by ALD and immediate evaluation of catalyst reactivity using gas-phase probe reactions. The I-ALD-CAT system can deliver gaseous reagents comprised of 12 different metal ALD precursors, 4 oxidizing or reducing agents, and 4 catalytic reaction feeds to either of the two plug-flow reactors. The system can employ reactor pressures and temperatures in the range of 10-3–1 bar and 300–1000 K, respectively. The instrument is also equipped with a gas chromatograph and a mass spectrometer unitmore » for the detection and quantification of volatile species from ALD and catalytic reactions. In this report, we demonstrate the use of the I-ALD-CAT tool for the ALD of platinum active sites and Al2O3 overcoats, and evaluation of catalyst propylene hydrogenation activity.« less

  17. A facile and efficient method of enzyme immobilization on silica particles via Michael acceptor film coatings: immobilized catalase in a plug flow reactor.

    PubMed

    Bayramoglu, Gulay; Arica, M Yakup; Genc, Aysenur; Ozalp, V Cengiz; Ince, Ahmet; Bicak, Niyazi

    2016-06-01

    A novel method was developed for facile immobilization of enzymes on silica surfaces. Herein, we describe a single-step strategy for generating of reactive double bonds capable of Michael addition on the surfaces of silica particles. This method was based on reactive thin film generation on the surfaces by heating of impregnated self-curable polymer, alpha-morpholine substituted poly(vinyl methyl ketone) p(VMK). The generated double bonds were demonstrated to be an efficient way for rapid incorporation of enzymes via Michael addition. Catalase was used as model enzyme in order to test the effect of immobilization methodology by the reactive film surface through Michael addition reaction. Finally, a plug flow type immobilized enzyme reactor was employed to estimate decomposition rate of hydrogen peroxide. The highly stable enzyme reactor could operate continuously for 120 h at 30 °C with only a loss of about 36 % of its initial activity.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camacho-Bunquin, Jeffrey; Shou, Heng; Marshall, Christopher L.

    An integrated atomic layer deposition synthesis-catalysis (I-ALD-CAT) tool was developed. It combines an ALD manifold in-line with a plug-flow reactor system for the synthesis of supported catalytic materials by ALD and immediate evaluation of catalyst reactivity using gas-phase probe reactions. The I-ALD-CAT delivery system consists of 12 different metal ALD precursor channels, 4 oxidizing or reducing agents, and 4 catalytic reaction feeds to either of the two plug-flow reactors. The system can employ reactor pressures and temperatures in the range of 10{sup −3} to 1 bar and 300–1000 K, respectively. The instrument is also equipped with a gas chromatograph andmore » a mass spectrometer unit for the detection and quantification of volatile species from ALD and catalytic reactions. In this report, we demonstrate the use of the I-ALD-CAT tool for the synthesis of platinum active sites and Al{sub 2}O{sub 3} overcoats, and evaluation of catalyst propylene hydrogenation activity.« less

  19. Characterization of a continuous agitated cell reactor for oxygen dependent biocatalysis.

    PubMed

    Toftgaard Pedersen, Asbjørn; de Carvalho, Teresa Melo; Sutherland, Euan; Rehn, Gustav; Ashe, Robert; Woodley, John M

    2017-06-01

    Biocatalytic oxidation reactions employing molecular oxygen as the electron acceptor are difficult to conduct in a continuous flow reactor because of the requirement for high oxygen transfer rates. In this paper, the oxidation of glucose to glucono-1,5-lactone by glucose oxidase was used as a model reaction to study a novel continuous agitated cell reactor (ACR). The ACR consists of ten cells interconnected by small channels. An agitator is placed in each cell, which mixes the content of the cell when the reactor body is shaken by lateral movement. Based on tracer experiments, a hydrodynamic model for the ACR was developed. The model consisted of ten tanks-in-series with back-mixing occurring within and between each cell. The back-mixing was a necessary addition to the model in order to explain the observed phenomenon that the ACR behaved as two continuous stirred tank reactors (CSTRs) at low flow rates, while it at high flow rates behaved as the expected ten CSTRs in series. The performance of the ACR was evaluated by comparing the steady state conversion at varying residence times with the conversion observed in a stirred batch reactor of comparable size. It was found that the ACR could more than double the overall reaction rate, which was solely due to an increased oxygen transfer rate in the ACR caused by the intense mixing as a result of the spring agitators. The volumetric oxygen transfer coefficient, k L a, was estimated to be 344 h -1 in the 100 mL ACR, opposed to only 104 h -1 in a batch reactor of comparable working volume. Interestingly, the large deviation from plug flow behavior seen in the tracer experiments was found to have little influence on the conversion in the ACR, since both a plug flow reactor (PFR) model and the backflow cell model described the data sufficiently well. Biotechnol. Bioeng. 2017;114: 1222-1230. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. A dynamic plug flow reactor model for a vanadium redox flow battery cell

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie

    2016-04-01

    A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.

  1. Development and Application of 3D Printed Mesoreactors in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Tabassum, Tahseen; Iloska, Marija; Scuereb, Daniel; Taira, Noriko; Jin, Chongguang; Zaitsev, Vladimir; Afshar, Fara; Kim, Taejin

    2018-01-01

    3D printing technology has an enormous potential to apply to chemical engineering education. In this paper, we describe several designs of 3D printed mesoreactors (Y-shape, T-shape, and Long channel shape) using the following steps: reactor sketching, CAD modeling, and reactor printing. With a focus on continuous plug flow mesoreactors (PFRs, i.d.…

  2. Low-temperature anaerobic digestion of swine manure in a plug-flow reactor.

    PubMed

    Massé, Daniel I; Gilbert, Yan; Saady, N M C; Liu, Charle

    2013-01-01

    A low-temperature (25 degrees C) anaerobic eight-compartment (PF01 to PF08) cascade reactor simulating a plug-flow reactor (PFR) treating pig manure was monitored for a year. The bioreactor was fed at an average loading rate of 2.4 +/- 0.2 g of total chemical oxygen demand (TCOD) per litre of reactor per day for a theoretical hydraulic retention time (HRT) of 67 +/- 7 d. An average of 79% of TCOD was removed from pig manure (converted into biogas and in sediments), whereas specific methane yields ranging from 397 to 482 NL CH4 kg(-1) VS (148.6 to 171.4 NL CH4 kg(-1) TCOD) were obtained. After 150 d, fluctuating performances of the process were observed, associated with solids accumulation in the upstream compartments, preventing the complete anaerobic digestion of swine manure in the compartments PF01 to PF04. Low-temperature anaerobic PFR represents an interesting alternative for the treatment of pig manure and recovery of green energy. Further investigations regarding a modified design, with better accumulating solids management, are needed to optimize the performance of this low-temperature PFR treating pig manure.

  3. Compression Ratio and Catalyst Aging Effects on Aqueous Ethanol Ignition (Year 2) : Part 2 Catalyst Aging and Effects of Water on Ignition

    DOT National Transportation Integrated Search

    2009-09-01

    A tubular plug-flow reactor under low Reynolds Numbers Re flow regimes, along with a 127 um diameter coiled platinum (Pt) wire, were used to study catalytic surface reactions of nonflammable, fuel-lean mixtures of propane, oxygen, and water vapor dil...

  4. Progress in catalytic ignition fabrication and modeling : fabrication part 2.

    DOT National Transportation Integrated Search

    2012-06-01

    The ignition temperature and heat generation from oxidation of methane on a platinum catalyst were : determined experimentally. A 127 micron diameter platinum coiled wire was placed crosswise in a : quartz tube of a plug flow reactor. A source meter ...

  5. Rotating plug bearing and seal

    DOEpatents

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  6. Self locking drive system for rotating plug of a nuclear reactor

    DOEpatents

    Brubaker, James E.

    1979-01-01

    This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.

  7. Aromatic Radicals-Acetylene Particulate Matter Chemistry

    DTIC Science & Technology

    2011-12-01

    in the fuel itself. For example, alkylated aromatic hydrocarbons form major constituents of gasoline, diesel and jet fuels due to their high energy... jet stirred reactor data at stoichiometric conditions the model shows greater consumption of fuel , oxygen and earlier formation of the intermediates...reaction time of 0.1s, which are the typical reaction times for complete conversion of the fuel in a plug flow reactor or the residence time in a jet

  8. CFD Investigation of the effects of bubble aerator layouts on hydrodynamics of an activated sludge channel reactor.

    PubMed

    Hreiz, Rainier; Potier, Olivier; Wicks, Jim; Commenge, Jean-Marc

    2018-03-08

    In this paper, computational fluid dynamics (CFD) simulations are employed to characterize the effects of bubble aerator layouts (i.e. spatial arrangement) on the hydrodynamics in activated sludge (AS) reactors. The first configuration considered is a channel reactor with aerators placed alongside one lateral wall, for which velocity measurements are available in literature. CFD results were in good agreement with experimental data, which proves that the model is sufficiently accurate and predictive. Accordingly, simulations and numerical residence time distribution tests were conducted for different aerator layouts to determine their effects on the reactor hydrodynamics. The results revealed that the flow characteristics are extremely sensitive to the aerators arrangement given the high gas flow rates used in AS processes. Among the layouts investigated, the one where diffusers are placed all over the reactor floor has led to the least dispersive flow, i.e. which characteristics best tend toward that of an ideal plug flow reactor. Indeed, this flow field presented the lowest average turbulent diffusion and the most uniform axial velocity and turbulence fields. Such a flow behaviour is expected to be highly beneficial for biological treatment since it reduces pollutant dilution by axial diffusion and limits raw wastewater channelling to the outlet.

  9. Molecular transformations accompanying the aging of laboratory secondary organic aerosol

    USDA-ARS?s Scientific Manuscript database

    The aging of fresh secondary organic aerosol, generated by alpha-pinene ozonolysis in a flow tube reactor, was studied by passing it through a second reaction chamber where hydroxyl radicals were generated. Two types of experiments were performed: plug injection experiments where the particle mass a...

  10. Nuclear reactor apparatus

    DOEpatents

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  11. PLUG STORAGE BUILDING, TRA611, AWAITS SHIELDING SOIL TO BE PLACED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLUG STORAGE BUILDING, TRA-611, AWAITS SHIELDING SOIL TO BE PLACED OVER PLUG STORAGE TUBES. WING WALLS WILL SUPPORT EARTH FILL. MTR, PROCESS WATER BUILDING, AND WORKING RESERVOIR IN VIEW BEYOND PLUG STORAGE. CAMERA FACES NORTHEAST. INL NEGATIVE NO. 2949. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Online Oxide Contamination Measurement and Purification Demonstration

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Godfroy, T. J.; Webster, K. L.; Garber, A. E.; Polzin, K. A.; Childers, D. J.

    2011-01-01

    Liquid metal sodium-potassium (NaK) has advantageous thermodynamic properties indicating its use as a fission reactor coolant for a surface (lunar, martian) power system. A major area of concern for fission reactor cooling systems is system corrosion due to oxygen contaminants at the high operating temperatures experienced. A small-scale, approximately 4-L capacity, simulated fission reactor cooling system employing NaK as a coolant was fabricated and tested with the goal of demonstrating a noninvasive oxygen detection and purification system. In order to generate prototypical conditions in the simulated cooling system, several system components were designed, fabricated, and tested. These major components were a fully-sealed, magnetically-coupled mechanical NaK pump, a graphite element heated reservoir, a plugging indicator system, and a cold trap. All system components were successfully demonstrated at a maximum system flow rate of approximately 150 cc/s at temperatures up to 550 C. Coolant purification was accomplished using a cold trap before and after plugging operations which showed a relative reduction in oxygen content.

  13. APPARATUS FOR LOADING AND UNLOADING A MACHINE

    DOEpatents

    Payne, J.H. Jr.

    1962-07-17

    An arrangement for loading and unloading a nuclear reactor is described. Depleted fuel elements are removed from the reactor through one of a small number of holes in a shielding plug that is rotatably mounted in an eccentric annular plug rotatably mounted in the top of the reactor. The fuel elements removed are stored in a plurality of openings in a rotatable magazine or storage means rotatably mounted over the plugs. (AEC)

  14. Assessing the degree of plug flow in oxidation flow reactors (OFRs): a study on a potential aerosol mass (PAM) reactor

    NASA Astrophysics Data System (ADS)

    Mitroo, Dhruv; Sun, Yujian; Combest, Daniel P.; Kumar, Purushottam; Williams, Brent J.

    2018-03-01

    Oxidation flow reactors (OFRs) have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate). While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs) inside the Washington University Potential Aerosol Mass (WU-PAM) reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS) model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD) simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study).

  15. Oxidative coupling of methane using inorganic membrane reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G.

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gasmore » phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.« less

  16. Investigation of flow dynamics of liquid phase in a pilot-scale trickle bed reactor using radiotracer technique.

    PubMed

    Pant, H J; Sharma, V K

    2016-10-01

    A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ketonization of Cuphea oil for the production of 2-undecanone

    USDA-ARS?s Scientific Manuscript database

    The objective of this work was to demonstrate the viability of the cross ketonization reaction with the triacylglycerol from Cuphea sp. and acetic acid in a fixed-bed plug-flow reactor. The seed oil from Cuphea sp. contains up to 71% decanoic acid and the reaction of this fatty acid residue with ac...

  18. Nuclear reactor

    DOEpatents

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  19. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    NASA Astrophysics Data System (ADS)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  20. Attainable region analysis for continuous production of second generation bioethanol

    PubMed Central

    2013-01-01

    Background Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. Results We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. Conclusions In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum residence time applied to the SHF and SSF operations for lignocellulosic ethanol production. The methodology can be readily modified to evaluate other kinetic models of different substrates, enzymes and microorganisms when available. From the obtained results, the most suitable reactor configuration considering residence time and rheological aspects is a continuous stirred tank reactor followed by a plug flow reactor (both in SSF mode) using washed solids as substrate. PMID:24286451

  1. Attainable region analysis for continuous production of second generation bioethanol.

    PubMed

    Scott, Felipe; Conejeros, Raúl; Aroca, Germán

    2013-11-29

    Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum residence time applied to the SHF and SSF operations for lignocellulosic ethanol production. The methodology can be readily modified to evaluate other kinetic models of different substrates, enzymes and microorganisms when available. From the obtained results, the most suitable reactor configuration considering residence time and rheological aspects is a continuous stirred tank reactor followed by a plug flow reactor (both in SSF mode) using washed solids as substrate.

  2. Simultaneous C and N removal from saline salmon effluents in filter reactors comprising anoxic-anaerobic-aerobic processes: effect of recycle ratio.

    PubMed

    Giustinianovich, Elisa A; Aspé, Estrella R; Huiliñir, César E; Roeckel, Marlene D

    2014-01-01

    Salmon processing generates saline effluents with high protein load. To treat these effluents, three compact tubular filter reactors were installed and an integrated anoxic/anaerobic/aerobic process was developed with recycling flow from the reactor's exit to the inlet stream in order to save organic matter (OM) for denitrification. The reactors were aerated in the upper section with recycle ratios (RR) of 0, 2, and 10, respectively, at 30°C. A tubular reactor behave as a plug flow reactor when RR = 0, and as a mixed flow reactor when recycle increases, thus, different RR values were used to evaluate how it affects the product distribution and the global performance. Diluted salmon process effluent was prepared as substrate. Using loads of 1.0 kg COD m(-3)d(-1) and 0.15 kg total Kjeldahl nitrogen (TKN) m(-3)d(-1) at HRT of 2 d, 100% removal efficiencies for nitrite and nitrate were achieved in the anoxic-denitrifying section without effect of the dissolved oxygen in the recycled flow on denitrification. Removals >98% for total organic carbon (TOC) was achieved in the three reactors. The RR had no effect on the TOC removal; nevertheless a higher efficiency in total nitrogen removal in the reactor with the highest recycle ratio was observed: 94.3% for RR = 10 and 46.6% for RR = 2. Results showed that the proposed layout with an alternative distribution in a compact reactor can efficiently treat high organic carbon and nitrogen concentrations from a saline fish effluent with OM savings in denitrification.

  3. Development and application of kinetic model on biological anoxic/aerobic filter.

    PubMed

    Kim, Youngnoh; Tanaka, Kazuhiro; Lee, Yong-Woo; Chung, Jinwook

    2008-01-01

    An up-flow biological anoxic filter (BANF) has been developed to achieve high removal performance of suspended solids and BOD removal as well as nitrogen. With a view to understand treatment mechanisms, we developed a filtration model that incorporates filtration, deposit scoring and biological reactions simultaneously. The biological reactions consist of four types of reaction; dissolution of organic particles; utilization of dissolved organic matter; denitrification; and self-degradation of bacteria. Whereas the reactor is generally assumed to be a plug flow reactor in the filtration model, it is assumed a continuous-flow stirred tank reactor (CSTR) in the model of biological reactions. The hydrodynamics is supposed that the filter bottom (the portion sludge settled) is a CSTR and the filter bed (the portion filled with filter media) consists of number of CSTR of equal size arranged in series. The model obtained in this study was verified and simulated using experimental results taken from a pilot-scale plant and predicted the experimental data well, applying to design and operate BANF.

  4. Influence of denitrification reactor retention time distribution (RTD) on dissolved oxygen control and nitrogen removal efficiency.

    PubMed

    Raboni, Massimo; Gavasci, Renato; Viotti, Paolo

    2015-01-01

    Low concentrations of dissolved oxygen (DO) are usually found in biological anoxic pre-denitrification reactors, causing a reduction in nitrogen removal efficiency. Therefore, the reduction of DO in such reactors is fundamental for achieving good nutrient removal. The article shows the results of an experimental study carried out to evaluate the effect of the anoxic reactor hydrodynamic model on both residual DO concentration and nitrogen removal efficiency. In particular, two hydrodynamic models were considered: the single completely mixed reactor and a series of four reactors that resemble plug-flow behaviour. The latter prove to be more effective in oxygen consumption, allowing a lower residual DO concentration than the former. The series of reactors also achieves better specific denitrification rates and higher denitrification efficiency. Moreover, the denitrification food to microrganism (F:M) ratio (F:MDEN) demonstrates a relevant synergic action in both controlling residual DO and improving the denitrification performance.

  5. Ketonization of Model Pyrolysis Oil Solutions in a Plug Flow Reactor over a Composite Oxide of Fe, Ce, and Al

    USDA-ARS?s Scientific Manuscript database

    The stabilization and upgrading of pyrolysis oil requires the neutralization of the acidic components of the oil. The conversion of small organic acids, particularly acetic acid, to ketones is one approach to addressing the instability of the oils caused by low pH. In the ketonization reaction, acet...

  6. Cross ketonization of Cuphea sp. oil with acetic acid over a composite oxide of Fe, Ce, and Al

    USDA-ARS?s Scientific Manuscript database

    The objective of this work was to demonstrate the viability of the cross ketonization reaction with the triacylglycerol from Cuphea sp. and acetic acid in a fixed-bed plug-flow reactor. The seed oil from Cuphea sp. contains up to 71% decanoic acid and the reaction of this fatty acid residue with ac...

  7. Analytic expressions for Atomic Layer Deposition: coverage, throughput, and materials utilization in cross-flow, particle coating, and spatial ALD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanguas-Gil, Angel; Elam, Jeffrey W.

    2014-05-01

    In this work, the authors present analytic models for atomic layer deposition (ALD) in three common experimental configurations: cross-flow, particle coating, and spatial ALD. These models, based on the plug-flow and well-mixed approximations, allow us to determine the minimum dose times and materials utilization for all three configurations. A comparison between the three models shows that throughput and precursor utilization can each be expressed by universal equations, in which the particularity of the experimental system is contained in a single parameter related to the residence time of the precursor in the reactor. For the case of cross-flow reactors, the authorsmore » show how simple analytic expressions for the reactor saturation profiles agree well with experimental results. Consequently, the analytic model can be used to extract information about the ALD surface chemistry (e. g., the reaction probability) by comparing the analytic and experimental saturation profiles, providing a useful tool for characterizing new and existing ALD processes. (C) 2014 American Vacuum Society« less

  8. MTR MAIN FLOOR. MEN DEMONSTRATE INSERTION OF DUMMY PLUG INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR MAIN FLOOR. MEN DEMONSTRATE INSERTION OF DUMMY PLUG INTO AN MTR BEAM HOLE. ONE MAN CHECKS RADIATION LEVEL AT THE END OF THE UNIVERSAL COFFIN, WHILE ANOTHER USES TOOL TO INSERT PLUG INTO HOLE THROUGH COFFIN. MEN WEAR "ANTI-C" (ANTI-CONTAMINATION) CLOTHING. INL NEGATIVE NO. 6198. R.G. Larsen, Photographer, 6/27/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.

  10. Demonstration of catalytic combustion with residual fuel

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.

    1981-01-01

    An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.

  11. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J. R.; Bergeron, A.; Dionne, B.

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux ofmore » 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.« less

  12. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system.

    PubMed

    Burkhardt, M; Koschack, T; Busch, G

    2015-02-01

    A new type of anaerobic trickle-bed reactor was used for biocatalytic methanation of hydrogen and carbon dioxide under mesophilic temperatures and ambient pressure in a continuous process. The conversion of gaseous substrates through immobilized hydrogenotrophic methanogenic archaea in a biofilm is a unique feature of this type of reactor. Due to the formation of a three-phase system on the carrier surface and operation as a plug flow reactor without gas recirculation, a complete reaction could be observed. With a methane concentration higher than c(CH4) = 98%, the product gas exhibits a very high quality. A specific methane production of P(CH4) = 1.49 Nm(3)/(m(3)(SV) d) was achieved at a hydraulic loading rate of LR(H2) = 6.0 Nm(3)/(m(3)(SV) d). The relation between trickle flow through the reactor and productivity could be shown. An application for methane enrichment in combination with biogas facilities as a source of carbon dioxide has also been positively proven. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Gas bubble formation and its pressure signature in T-junction of a microreactor

    NASA Astrophysics Data System (ADS)

    Pouya, Shahram; Koochesfahani, Manoochehr

    2013-11-01

    The segmented gas-liquid flow is of particular interest in microreactors used for high throughput material synthesis with enhanced mixing and more efficient reaction. A typical geometry to introduce gas plugs into the reactor is a T-junction where the dispersed liquid is squeezed and pinched by the continuous fluid in the main branch of the junction. We present experimental data of time resolved pressure along with synchronous imaging of the drop formation at the junction to show the transient behavior of the process. The stability of the slug regime and the regularity of the slug/plug pattern are investigated in this study. This work was supported by the CRC Program of the National Science Foundation, Grant Number CHE-0714028.

  14. Entropy Production in Chemical Reactors

    NASA Astrophysics Data System (ADS)

    Kingston, Diego; Razzitte, Adrián C.

    2017-06-01

    We have analyzed entropy production in chemically reacting systems and extended previous results to the two limiting cases of ideal reactors, namely continuous stirred tank reactor (CSTR) and plug flow reactor (PFR). We have found upper and lower bounds for the entropy production in isothermal systems and given expressions for non-isothermal operation and analyzed the influence of pressure and temperature in entropy generation minimization in reactors with a fixed volume and production. We also give a graphical picture of entropy production in chemical reactions subject to constant volume, which allows us to easily assess different options. We show that by dividing a reactor into two smaller ones, operating at different temperatures, the entropy production is lowered, going as near as 48 % less in the case of a CSTR and PFR in series, and reaching 58 % with two CSTR. Finally, we study the optimal pressure and temperature for a single isothermal PFR, taking into account the irreversibility introduced by a compressor and a heat exchanger, decreasing the entropy generation by as much as 30 %.

  15. Modeling residence-time distribution in horizontal screw hydrolysis reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, David A.; Stickel, Jonathan J.

    The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less

  16. Modeling residence-time distribution in horizontal screw hydrolysis reactors

    DOE PAGES

    Sievers, David A.; Stickel, Jonathan J.

    2017-10-12

    The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less

  17. HORIZONTAL BEAM HOLE NO. 3. PLUG AND RADIATION DOOR HAVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HORIZONTAL BEAM HOLE NO. 3. PLUG AND RADIATION DOOR HAVE BEEN REMOVED. EXPERIMENTAL APPARATUS WAS INSERTED INTO THE HOLE. NOTE VALVE CUBICLES NEAR FLOOR ON EACH SIDE OF HB-3. INL NEGATIVE NO. 3471. Unknown Photographer, 10/12/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process

    PubMed Central

    Vlad, Elena; Bozga, Grigore

    2012-01-01

    Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA) etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics. PMID:23365512

  19. Stagnation, circulation, and erosion of granular materials through belt conveyor sluice gate

    NASA Astrophysics Data System (ADS)

    Pohlman, Nicholas; Moralda, Michael; Dunne, Ryan

    2013-11-01

    Control of flow rates in conversion reactors for discrete materials like biomass can be achieved in belt conveyors through a combination of belt speed, hopper size, and aperture opening. As material is extracted from the bottom of the storage hopper, other material cannot achieve plug flow and therefore is restricted from exiting through a sluice-gate type opening. The excess material moves vertically from the opening causing a pile up and recirculation back along the free surface of the hopper. Experimental results obtained through high speed imaging show the position of the stagnation point as well as the rate of circulation is dependent on the mass flow rate achieved and instantaneous fill level. The movement of material into the plug flow along the belt allows verification of deposition models on erodible beds rather than rigid surfaces with artificial roughness of glued particles. Similarly, the pile-up at the exit influences the efficiency of the transport affecting the narrow energy return on investment of biomass resources. The laboratory-scale behavior can therefore be translated into industrial performance metrics for increased operational efficiency. This work is supported by the NSF REU Site Operation E-Tank under award number 1156789.

  20. Experimental study of moving throat plug in a shock tunnel

    NASA Astrophysics Data System (ADS)

    Lee, J. K.; Park, C.; Kwon, O. J.

    2015-07-01

    An experimental study has been carried out to investigate the flow in the KAIST shock tunnel with two moving throat plugs at a primary shock velocity of 1.19 km/s. The nozzle reservoir pressure and the Pitot pressure at the exit of the nozzle were measured to examine the influence of the moving throat plugs on the shock tunnel flow. To assess the present experimental results, comparisons with previous work using a stationary throat plug were made. The mechanism for closing the moving throat plug was developed and verified. The source of the force to move the plug was the pressure generated when the primary shock was reflected at the bottom of the plug. It was observed that the two plugs terminated the shock tunnel flow after the steady flow. .The time for the plugs to terminate the flow showed good agreement with the calculation of the proposed simple analytic solution. There was a negligible difference in flow values such as the reflected pressure and the Pitot pressure between the moving and the stationary plugs.

  1. Updated Chemical Kinetics and Sensitivity Analysis Code

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan

    2005-01-01

    An updated version of the General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code has become available. A prior version of LSENS was described in "Program Helps to Determine Chemical-Reaction Mechanisms" (LEW-15758), NASA Tech Briefs, Vol. 19, No. 5 (May 1995), page 66. To recapitulate: LSENS solves complex, homogeneous, gas-phase, chemical-kinetics problems (e.g., combustion of fuels) that are represented by sets of many coupled, nonlinear, first-order ordinary differential equations. LSENS has been designed for flexibility, convenience, and computational efficiency. The present version of LSENS incorporates mathematical models for (1) a static system; (2) steady, one-dimensional inviscid flow; (3) reaction behind an incident shock wave, including boundary layer correction; (4) a perfectly stirred reactor; and (5) a perfectly stirred reactor followed by a plug-flow reactor. In addition, LSENS can compute equilibrium properties for the following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static and one-dimensional-flow problems, including those behind an incident shock wave and following a perfectly stirred reactor calculation, LSENS can compute sensitivity coefficients of dependent variables and their derivatives, with respect to the initial values of dependent variables and/or the rate-coefficient parameters of the chemical reactions.

  2. Enzymatic synthesis of ethyl esters from waste oil using mixtures of lipases in a plug-flow packed-bed continuous reactor.

    PubMed

    Kathiele Poppe, Jakeline; Matte, Carla Roberta; Olave de Freitas, Vitória; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C; Záchia Ayub, Marco Antônio

    2018-04-30

    This work describes the continuous synthesis of ethyl esters via enzymatic catalysis on a packed-bed continuous reactor, using mixtures of immobilized lipases (combi-lipases) of Candida antarctica (CALB), Thermomyces lanuginosus (TLL), and Rhizomucor miehei (RML). The influence of the addition of glass beads to the reactor bed, evaluation of the use of different solvents, and flow rate on reaction conditions were studied. All experiments were conducted using the best combination of lipases according to the fatty acid composition of the waste oil (combi-lipase composition: 40% of TLL, 35% of CALB, and 25% of RML), and soybean oil (combi-lipase composition: 22.5% of TLL, 50% of CALB, and 27.5% of RML). The best general reaction conditions were found to be using tert-butanol as solvent, and the flow rate of 0.08 mL min -1 . The combi-lipase reactors operating at steady state for over 30 days (720 h), kept conversion yields of approximately 50%, with average productivity of 1.94 g ethyl esters g substrate -1 h -1 , regardless of the type of oil in use. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  3. Kinetics of carbendazim degradation in a horizontal tubular biofilm reactor.

    PubMed

    Alvarado-Gutiérrez, María Luisa; Ruiz-Ordaz, Nora; Galíndez-Mayer, Juvencio; Santoyo-Tepole, Fortunata; Curiel-Quesada, Everardo; García-Mena, Jaime; Ahuatzi-Chacón, Deifilia

    2017-04-01

    The fungicide carbendazim is an ecotoxic agent affecting aquatic biota. Due to its suspected hormone-disrupting effects, it is considered a "priority hazard substance" by the Water Framework Directive of the European Commission, and its degradation is of major concern. In this work, a horizontal tubular biofilm reactor (HTBR) operating in plug-flow regime was used to study the kinetics of carbendazim removal by an acclimated microbial consortium. The reactor was operated in steady state continuous culture at eight different carbendazim loading rates. The concentrations of the fungicide were determined at several distances of the HTBR. At the loading rates tested, the highest instantaneous removal rates were observed in the first section of the tubular biofilm reactor. No evidence of inhibition of the catabolic activity of the microbial community was found. Strains of the genera Flectobacillus, Klebsiella, Stenotrophomonas, and Flavobacterium were identified in the biofilm; the last three degrade carbendazim in axenic culture.

  4. Unbalanced-flow, fluid-mixing plug with metering capabilities

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)

    2009-01-01

    A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.

  5. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.

    PubMed

    Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D

    2017-09-01

    Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.

  6. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Volume 2. Development of microreactor systems for unsteady-state Fischer-Tropsch synthesis. Final technical report. [408 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, G.K.; Liu, Y.A.; Squires, A.M.

    1986-10-01

    Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the ''heat tray.'' This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition information under industrially important reaction conditions; (2) a sliding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor.more » The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395 C using a feed gas of H/sub 2//CO ratio of 2:1 or less. Above 395 C, the probability of hydrocarbon chain growth (..cap alpha.. < 0.50 to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395 C when a feed gas of H/sub 2//CO ratio of 2:1 or less was used. Cold-flow microreactor model studies show that rapid (on the order of seconds), quantitative switching of feed gases over a vibrofluidized bed of catalyst could be achieved. Vibrofluidization of the catalyst bed induced little backmixing of feed gas over the investigated flow-rate range of 417 to 1650 actual mm/sup 3//s. Further, cold-flow microreactor model studies showed intense solid mixing when a bed of fused-iron catalyst (150 to 300 microns) was vibrofluidized at 24 cycles per second with a peak-to-peak amplitude of 4 mm. The development of the microreactor systems provided an easy way of accurately determining integral fluid-bed kinetics in a laboratory reactor. 408 refs., 156 figs., 27 tabs.« less

  7. A Report on Superfluid Helium Flow Through Porous Plugs for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Mason, F. C.

    1983-01-01

    As a background for the study of the nature of superfluid helium flow through porous plugs for other space science uses, preliminary tests on various plugs of a given material, diameter, height, and filtration grade have been performed. Two characteristics of the plugs, pore size and number of channels, have been determined by the bubble test and warm flow test of helium gas through the plugs, respectively. Tests on the flow of He II through the plugs have also been performed. An obvious feature of the results of these tests is that for isothermal measurements of pressure versus mass flow rate below approximately 2.10 K, the flow is separated into two different regimes, indicative of the occurrence of a critical phenomenon.

  8. Design options for a bunsen reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project.more » Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.« less

  9. Monitoring the startup of a wet detention pond equipped with sand filters and sorption filters.

    PubMed

    Vollertsen, J; Lange, K H; Pedersen, J; Hallager, P; Bruus, A; Laustsen, A; Bundesen, V W; Brix, H; Nielsen, A H; Nielsen, N H; Wium-Andersen, T; Hvitved-Jacobsen, T

    2009-01-01

    The startup of a wet retention pond designed for extended stormwater treatment was monitored by more than one year of continual measurement of hydraulic parameters, nutrients and quality parameters in the pond itself (pH, temperature, dissolved oxygen, turbidity). The data revealed that photosynthesis played an important role for dissolved oxygen and pH for most of the year. Another important observation was that the pond behaved more like a completely mixed reactor than like a plug flow reactor--even though the length to width ratio was as high as 4.5:1. The pond was equipped with sand filters and sorption filters whereby very good nutrient removal efficiencies were achieved.

  10. Development of a preprototype sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Birbara, P.

    1980-01-01

    A preoprototype Sabatier CO2 Reduction Subsystem was successfully designed, fabricated and tested. The lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical (equivalent to 5 persons steady state). The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.

  11. Development of a preprototype Sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Birbara, P.

    1981-01-01

    A lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical. The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. Subsystem performance was proven by parametric testing and endurance testing over a wide range of crew sizes and metabolic loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.

  12. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has an outer radial wall with open flow channels formed between the plug's inlet and outlet. The plug has a central region coupled to the inner surface of the outer radial wall. Each open flow channel includes (i) a first portion originating at the inlet and converging to a location in the plug where convergence is contributed to by changes in thickness of the outer radial wall and divergence of the central region, and (ii) a second portion originating in the plug and diverging to the outlet where divergence is contributed to by changes in thickness of the outer radial wall and convergence of the central region. For at least a portion of the open flow channels, a central axis passing through the first and second portions is non-parallel with respect to the given direction of the flow.

  13. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.

    PubMed

    Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios

    2015-02-17

    CONSPECTUS: The previous decade has witnessed the expeditious uptake of flow chemistry techniques in modern synthesis laboratories, and flow-based chemistry is poised to significantly impact our approach to chemical preparation. The advantages of moving from classical batch synthesis to flow mode, in order to address the limitations of traditional approaches, particularly within the context of organic synthesis are now well established. Flow chemistry methodology has led to measurable improvements in safety and reduced energy consumption and has enabled the expansion of available reaction conditions. Contributions from our own laboratories have focused on the establishment of flow chemistry methods to address challenges associated with the assembly of complex targets through the development of multistep methods employing supported reagents and in-line monitoring of reaction intermediates to ensure the delivery of high quality target compounds. Recently, flow chemistry approaches have addressed the challenges associated with reactions utilizing reactive gases in classical batch synthesis. The small volumes of microreactors ameliorate the hazards of high-pressure gas reactions and enable improved mixing with the liquid phase. Established strategies for gas-liquid reactions in flow have relied on plug-flow (or segmented flow) regimes in which the gas plugs are introduced to a liquid stream and dissolution of gas relies on interfacial contact of the gas bubble with the liquid phase. This approach confers limited control over gas concentration within the liquid phase and is unsuitable for multistep methods requiring heterogeneous catalysis or solid supported reagents. We have identified the use of a gas-permeable fluoropolymer, Teflon AF-2400, as a simple method of achieving efficient gas-liquid contact to afford homogeneous solutions of reactive gases in flow. The membrane permits the transport of a wide range of gases with significant control of the stoichiometry of reactive gas in a given reaction mixture. We have developed a tube-in-tube reactor device consisting of a pair of concentric capillaries in which pressurized gas permeates through an inner Teflon AF-2400 tube and reacts with dissolved substrate within a liquid phase that flows within a second gas impermeable tube. This Account examines our efforts toward the development of a simple, unified methodology for the processing of gaseous reagents in flow by way of development of a tube-in-tube reactor device and applications to key C-C, C-N, and C-O bond forming and hydrogenation reactions. We further describe the application to multistep reactions using solid-supported reagents and extend the technology to processes utilizing multiple gas reagents. A key feature of our work is the development of computer-aided imaging techniques to allow automated in-line monitoring of gas concentration and stoichiometry in real time. We anticipate that this Account will illustrate the convenience and benefits of membrane tube-in-tube reactor technology to improve and concomitantly broaden the scope of gas/liquid/solid reactions in organic synthesis.

  14. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanakya, H.N.; Sharma, Isha; Ramachandra, T.V.

    The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their compositionmore » was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.« less

  15. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste.

    PubMed

    Chanakya, H N; Sharma, Isha; Ramachandra, T V

    2009-04-01

    The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

  16. Flow plug with length-to-hole size uniformity for use in flow conditioning and flow metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2012-01-01

    A flow plug of varying thickness has a plurality of holes formed therethrough. The plug fits in a conduit such that a fluid flow in the conduit passes through the plug's holes. Each hole is defined by a parameter indicative of size in terms of the cross-sectional area thereof. A ratio of hole length-to-parameter is approximately the same for all of the holes.

  17. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Bergeron, A.; Dionne, B.

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimentalmore » device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.« less

  18. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J. R.; Bergeron, A.; Dionne, B.

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cmmore » 2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).« less

  19. Post-stenotic plug-like jet with a vortex ring demonstrated by 4D flow MRI.

    PubMed

    Kim, Guk Bae; Ha, Hojin; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Yang, Dong Hyun; Kim, Namkug

    2016-05-01

    To investigate the details of the flow structure of a plug-like jet that had a vortex ring in pulsatile stenotic phantoms using 4D flow MRI. Pulsatile Newtonian flows in two stenotic phantoms with 50% and 75% reductions in area were scanned by 4D flow MRI. Blood analog working fluid was circulated via the stenotic phantom using a pulsatile pump at a constant pulsating frequency of 1Hz. The velocity and vorticity fields of the plug-like jet with a vortex ring were quantitatively analyzed in the spatial and temporal domains. Pulsatile stenotic flow showed a plug-like jet at the specific stenotic degree of 50% in our pulsatile waveform design. This plug-like jet was found at the decelerating period in the post-stenotic region of 26.4mm (1.2 D). It revealed a vortex ring structure with vorticity strength in the range of ±100s(-1). We observed a plug-like jet with a vortex ring in pulsatile stenotic flow by in vitro visualization using 4D flow MRI. In this plug-like jet, the local fastest flow region occurred at the post-systole phase in the post-stenotic region, which was distinguishable from a typical stenotic jet flow at systole phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor

    PubMed Central

    Bogdan, Andrew

    2009-01-01

    Summary We demonstrate the preparation and characterization of a simplified packed-bed microreactor using an immobilized TEMPO catalyst shown to oxidize primary and secondary alcohols via the biphasic Anelli-Montanari protocol. Oxidations occurred in high yields with great stability over time. We observed that plugs of aqueous oxidant and organic alcohol entered the reactor as plugs but merged into an emulsion on the packed-bed. The emulsion coalesced into larger plugs upon exiting the reactor, leaving the organic product separate from the aqueous by-products. Furthermore, the microreactor oxidized a wide range of alcohols and remained active in excess of 100 trials without showing any loss of catalytic activity. PMID:19478910

  1. Producing Hydrogen by Plasma Pyrolysis of Methane

    NASA Technical Reports Server (NTRS)

    Atwater, James; Akse, James; Wheeler, Richard

    2010-01-01

    Plasma pyrolysis of methane has been investigated for utility as a process for producing hydrogen. This process was conceived as a means of recovering hydrogen from methane produced as a byproduct of operation of a life-support system aboard a spacecraft. On Earth, this process, when fully developed, could be a means of producing hydrogen (for use as a fuel) from methane in natural gas. The most closely related prior competing process - catalytic pyrolysis of methane - has several disadvantages: a) The reactor used in the process is highly susceptible to fouling and deactivation of the catalyst by carbon deposits, necessitating frequent regeneration or replacement of the catalyst. b) The reactor is highly susceptible to plugging by deposition of carbon within fixed beds, with consequent channeling of flow, high pressure drops, and severe limitations on mass transfer, all contributing to reductions in reactor efficiency. c) Reaction rates are intrinsically low. d) The energy demand of the process is high.

  2. Excess flow shutoff valve

    DOEpatents

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  3. Scalable synthesis of palladium icosahedra in plug reactors for the production of oxygen reduction reaction catalysts

    DOE PAGES

    Wang, Helan; Niu, Guangda; Zhou, Ming; ...

    2016-03-10

    We have synthesized Pd icosahedra with uniform, controllable sizes in plug reactors separated by air. The oxygen contained in the air segments not only contributed to the generation of a reductant from diethylene glycol in situ, but also oxidized elemental Pd back to the ionic form by oxidative etching and thus slowed down the reduction kinetics. Compared to droplet reactors involving silicone oil or fluorocarbon, the use of air as a carrier phase could reduce the production cost by avoiding additional procedures for the separation of products from the oil. The average diameters of the Pd icosahedra could be readilymore » controlled in the range of 12–20 nm. The Pd icosahedra were further employed as seeds for the production of Pd@Pt 2–3L core-shell icosahedra, which could serve as a catalyst toward the oxygen reduction reaction with greatly enhanced activity. As a result, we believe that the plug reactors could be extended to other types of noble-metal nanocrystals for their scale-up production.« less

  4. Aeroacoustics of supersonic jet flows from contoured and solid/porous conical plug-nozzles

    NASA Technical Reports Server (NTRS)

    Dosanjh, Darshan S.; Das, Indu S.

    1987-01-01

    The results of an experimental study of the acoustic far-field, the shock associated noise, and the nature of the repetitive shock structure of supersonic jet flows issuing from plug-nozzles having externally-expanded plugs with pointed termination operated at a range of supercritical pressure ratios Xi approaching 2 to 4.5 are reported. The plug of one of these plug-nozzles was contoured. The other plug-nozzles had short conical plugs with either a solid surface or a combination of solid/porous surface of different porosities. The contoured and the uncontoured plug-nozzles had the same throat area and the same annulus-radius ratio K = R sub p/R sub N = 0.43. As the result of modifications of the shock structure, the acoustic performance of improperly expanded jet flows of an externally-expanded short uncontoured plug of an appropriate geometry with suitably perforated plug and a pointed termination, is shown to approach the acoustic performance of a shock-free supersonic jet issuing from an equivalent externally-expanded contoured plug-nozzle.

  5. Gut-Bioreactor and Human Health in Future.

    PubMed

    Purohit, Hemant J

    2018-03-01

    Gut-microbiome provides the complementary metabolic potential to the human system. To understand the active participation and the performance of the microbial community in human health, the concept of gut as a plug-flow reactor with the fed-batch mode of operation can provide better insight. The concept suggests the virtual compartmentalized gut with sequential stratification of the microbial community in response to a typical host genotype. It also provides the analysis plan for gut microbiome; and its relevance in developing health management options under the identified clinical conditions.

  6. Biomass plug development and propagation in porous media.

    PubMed

    Stewart, T L; Fogler, H S

    2001-02-05

    Exopolymer-producing bacteria can be used to modify soil profiles for enhanced oil recovery or bioremediation. Understanding the mechanisms associated with biomass plug development and propagation is needed for successful application of this technology. These mechanisms were determined from packed-bed and micromodel experiments that simulate plugging in porous media. Leuconostoc mesenteroides was used, because production of dextran, a water-insoluble exopolymer, can be controlled by using different carbon sources. As dextran was produced, the pressure drop across the porous media increased and began to oscillate. Three pressure phases were identified under exopolymer-producing conditions: the exopolymer-induction phase, the plugging phase, and the plug-propagation phase. The exopolymer-induction phase extended from the time that exopolymer-producing conditions were induced until there was a measurable increase in pressure drop across the porous media. The plugging phase extended from the first increase in pressure drop until a maximum pressure drop was reached. Changes in pressure drop in these two phases were directly related to biomass distribution. Specifically, flow channels within the porous media filled with biomass creating a plugged region where convective flow occurred only in water channels within the biofilm. These water channels were more restrictive to flow causing the pressure drop to increase. At a maximum pressure drop across the porous media, the biomass yielded much like a Bingham plastic, and a flow channel was formed. This behavior marked the onset of the plug-propagation phase which was characterized by sequential development and breakthrough of biomass plugs. This development and breakthrough propagated the biomass plug in the direction of nutrient flow. The dominant mechanism associated with all three phases of plugging in porous media was exopolymer production; yield stress is an additional mechanism in the plug-propagation phase. Copyright 2001 John Wiley & Sons, Inc.

  7. Exhaust Nozzles for Supersonic Flight with Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Shillito, Thomas B.; Hearth, Donald P.; Cortright, Edgar M.

    1956-01-01

    Good internal performance over a wide range of flight conditions can be obtained with either a plug nozzle or a variable ejector nozzle that can provide a divergent shroud at high pressure ratios. For both the ejector and the plug nozzle, external flow can sometimes cause serious drag losses and, for some plug-nozzle installations, external flow can cause serious internal performance losses. Plug-nozzle cooling and design of the secondary-air-flow systems for ejectors were also considered .

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    During this time period, at WVU, we tried several methods to eliminate problems related to condensation of heavier products when reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C catalysts. We have also obtained same preliminary results in our attempts to analyze quantitatively the temperature-programmed reduction (TPR) spectra for C-supported Mo-based catalysts. We have completed the kinetic study for the sulfided Co-K-MoS /C catalyst. We have compared the results of methanol synthesis 2 using the membrane reactor with those using a simple plug-flow reactor. At UCC, the complete characterization of selected catalystsmore » has been completed. The results suggest that catalyst pretreatment under different reducing conditions yield different surface compositions and thus different catalytic reactivities.« less

  9. HOT CELL BUILDING, TRA632. CONTEXTUAL AERIAL VIEW OF HOT CELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. CONTEXTUAL AERIAL VIEW OF HOT CELL BUILDING, IN VIEW AT LEFT, AS YET WITHOUT ROOF. PLUG STORAGE BUILDING LIES BETWEEN IT AND THE SOUTH SIDE OF THE MTR BUILDING AND ITS WING. NOTE CONCRETE DRIVE BETWEEN ROLL-UP DOOR IN MTR BUILDING AND CHARGING FACE OF PLUG STORAGE. REACTOR SERVICES BUILDING (TRA-635) WILL COVER THIS DRIVE AND BUTT UP TO CHARGING FACE. DOTTED LINE IS ON ORIGINAL NEGATIVE. TRA PARKING LOT IN LEFT CORNER OF THE VIEW. CAMERA FACING NORTHWESTERLY. INL NEGATIVE NO. 8274. Unknown Photographer, 7/2/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Liquid-metal dip seal with pneumatic spring

    DOEpatents

    Poindexter, Allan M.

    1977-01-01

    An improved liquid-metal dip seal for sealing the annulus between rotating plugs in the reactor vessel head of a liquid-metal fast-breeder nuclear reactor has two legs of differing widths communicating under a seal blade; the wide leg is also in communication with cover gas of the reactor and the narrow leg is also in communication with an isolated plug annulus above the seal. The annulus contains inert gas which acts as a pneumatic spring. Upon increasing cover gas pressure which depresses the level in the wide leg and greatly increases the level in the narrow leg, the pneumatic spring is compressed, and resists further level changes, thus preventing radioactive cover gas from bubbling through the seal.

  11. Aeroacoustics of contoured and solid/porous conical plug-nozzle supersonic jet flows

    NASA Technical Reports Server (NTRS)

    Dosanjh, D. S.; Das, I. S.

    1985-01-01

    The acoustic far field, the shock-associated noise and characteristics of the repetitive shock structure of supersonic jet flows issuing from a contoured plug-nozzle and uncontoured plug-nozzle having a short conical plug of either a solid or a combination of solid/porous surface with pointed termination operated at a range of supercritical pressure are reported. The contoured and the uncontoured plug-nozzles had the same throat area and the same annular-radius ratio.

  12. Study of parameters affecting the conversion in a plug flow reactor for reactions of the type 2A→B

    NASA Astrophysics Data System (ADS)

    Beltran-Prieto, Juan Carlos; Long, Nguyen Huynh Bach Son

    2018-04-01

    Modeling of chemical reactors is an important tool to quantify reagent conversion, product yield and selectivity towards a specific compound and to describe the behavior of the system. Proposal of differential equations describing the mass and energy balance are among the most important steps required during the modeling process as they play a special role in the design and operation of the reactor. Parameters governing transfer of heat and mass have a strong relevance in the rate of the reaction. Understanding this information is important for the selection of reactor and operating regime. In this paper we studied the irreversible gas-phase reaction 2A→B. We model the conversion that can be achieved as function of the reactor volume and feeding temperature. Additionally, we discuss the effect of activation energy and the heat of reaction on the conversion achieved in the tubular reactor. Furthermore, we considered that dimerization occurs instantaneously in the catalytic surface to develop equations for the determination of rate of reaction per unit area of three different catalytic surface shapes. This data can be combined with information about the global rate of conversion in the reactor to improve regent conversion and yield of product.

  13. Continuous Polyol Synthesis of Metal and Metal Oxide Nanoparticles Using a Segmented Flow Tubular Reactor (SFTR).

    PubMed

    Testino, Andrea; Pilger, Frank; Lucchini, Mattia Alberto; Quinsaat, Jose Enrico Q; Stähli, Christoph; Bowen, Paul

    2015-06-08

    Over the last years a new type of tubular plug flow reactor, the segmented flow tubular reactor (SFTR), has proven its versatility and robustness through the water-based synthesis of precipitates as varied as CaCO3, BaTiO3, Mn(1-x)NixC2O4·2H2O, YBa oxalates, copper oxalate, ZnS, ZnO, iron oxides, and TiO2 produced with a high powder quality (phase composition, particle size, and shape) and high reproducibility. The SFTR has been developed to overcome the classical problems of powder production scale-up from batch processes, which are mainly linked with mass and heat transfer. Recently, the SFTR concept has been further developed and applied for the synthesis of metals, metal oxides, and salts in form of nano- or micro-particles in organic solvents. This has been done by increasing the working temperature and modifying the particle carrying solvent. In this paper we summarize the experimental results for four materials prepared according to the polyol synthesis route combined with the SFTR. CeO2, Ni, Ag, and Ca3(PO4)2 nanoparticles (NPs) can be obtained with a production rate of about 1-10 g per h. The production was carried out for several hours with constant product quality. These findings further corroborate the reliability and versatility of the SFTR for high throughput powder production.

  14. Treatment of low-strength soluble wastewater using an anaerobic baffled reactor (ABR).

    PubMed

    Gopala Krishna, G V T; Kumar, Pramod; Kumar, Pradeep

    2009-01-01

    Treatment of low-strength soluble wastewater (COD approximately 500 mg/L) was studied using an eight chambered anaerobic baffled reactor (ABR). At pseudo steady-state (PSS), the average total and soluble COD values (COD(T) and COD(S)) at 8h hydraulic retention time (HRT) were found to be around 50 and 40 mg/L, respectively, while at 10h HRT average COD(T) and COD(S) values were of the order of 47 and 37 mg/L, respectively. COD and BOD (3 day, 27 degrees C) removal averaged more than 90%. Effluent conformed to Indian standards laid down for BOD (less than 30 mg/L). Reactor effluent characteristics exhibited very low values of standard deviation indicating excellent reactor stability at PSS in terms of effluent characteristics. Based on mass balance calculations, more than 60% of raw wastewater COD was estimated to be recovered as CH(4) in the gas phase. Compartment-wise profiles indicated that most of the BOD and COD got reduced in the initial compartments only. Sudden drop in pH (7.8-6.7) and formation of volatile fatty acids (VFA) (53-85 mg/L) were observed in the first compartment due to acidogenesis and acetogenesis. The pH increased and VFA concentration decreased longitudinally down the reactor. Residence time distribution (RTD) studies revealed that the flow pattern in the ABR was neither completely plug-flow nor perfectly mixed. Observations from scanning electron micrographs (SEM) suggest that distinct phase separation takes place in an ABR.

  15. From catastrophic acceleration to deceleration of liquid plugs in prewetted capillary tubes

    NASA Astrophysics Data System (ADS)

    Magniez, Juan; Baudoin, Michael; Zoueshtiagh, Farzam; Lemac/Lics Team

    2016-11-01

    Liquid/gas flows in capillaries are involved in a multitude of systems including flow in porous media, petroleum extraction, imbibition of paper or flows in pulmonary airways in pathological conditions. Liquid plugs, witch compose the biphasic flows, can have a dramatic impact on patients with pulmonary obstructive diseases, since they considerably alter the circulation of air in the airways and thus can lead to severe breathing difficulties. Here, the dynamics of liquid plugs in prewetted capillary tube is investigated experimentally and theoretically, with a particular emphasis on the role of the prewetting films and of the driving condition (constant flow rate, constant pressure). For both driving conditions, the plugs can either experience a continuous increase or decrease of their size. While this phenomenon is regular in the case of imposed flow rate, a constant pressure head can lead to a catastrophic acceleration of the plug and eventually its rupture or a dramatic increase of the plug size. A theoretical model is proposed to explain the transition between theses two regimes. These results give a new insight on the critical pressure required for airways obstruction and reopening. IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, University of Lille.

  16. Jet-A reaction mechanism study for combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Acosta, Waldo

    1991-01-01

    Simplified chemical kinetic reaction mechanisms for the combustion of Jet A fuel was studied. Initially, 40 reacting species and 118 elementary chemical reactions were chosen based on a literature review. Through a sensitivity analysis with the use of LSENS General Kinetics and Sensitivity Analysis Code, 16 species and 21 elementary chemical reactions were determined from this study. This mechanism is first justified by comparison of calculated ignition delay time with the available shock tube data, then it is validated by comparison of calculated emissions from the plug flow reactor code with in-house flame tube data.

  17. CONTROL ROD

    DOEpatents

    Walker, D.E.; Matras, S.

    1963-04-30

    This patent shows a method of making a fuel or control rod for a nuclear reactor. Fuel or control material is placed within a tube and plugs of porous metal wool are inserted at both ends. The metal wool is then compacted and the tube compressed around it as by swaging, thereby making the plugs liquid- impervious but gas-pervious. (AEC)

  18. Interactive computer modeling of combustion chemistry and coalescence-dispersion modeling of turbulent combustion

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.

  19. Comparative simulation of a fluidised bed reformer using industrial process simulators

    NASA Astrophysics Data System (ADS)

    Bashiri, Hamed; Sotudeh-Gharebagh, Rahmat; Sarvar-Amini, Amin; Haghtalab, Ali; Mostoufi, Navid

    2016-08-01

    A simulation model is developed by commercial simulators in order to predict the performance of a fluidised bed reformer. As many physical and chemical phenomena take place in the reformer, two sub-models (hydrodynamic and reaction sub-models) are needed. The hydrodynamic sub-model is based on the dynamic two-phase model and the reaction sub-model is derived from the literature. In the overall model, the bed is divided into several sections. In each section, the flow of the gas is considered as plug flow through the bubble phase and perfectly mixed through the emulsion phase. Experimental data from the literature were used to validate the model. Close agreement was found between the model of both ASPEN Plus (ASPEN PLUS 2004 ©) and HYSYS (ASPEN HYSYS 2004 ©) and the experimental data using various sectioning of the reactor ranged from one to four. The experimental conversion lies between one and four sections as expected. The model proposed in this work can be used as a framework in developing the complicated models for non-ideal reactors inside of the process simulators.

  20. A combined Eulerian-Lagrangian two-phase flow analysis of SSME HPOTP nozzle plug trajectories. II - Results

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.; Garcia, R.; Dejong, F. J.; Sabnis, J. S.; Pribik, D. A.

    1989-01-01

    An analysis of Space Shuttle Main Engine high-pressure oxygen turbopump nozzle plug trajectories has been performed, using a Lagrangian method to track nozzle plug particles expelled from a turbine through a high Reynolds number flow in a turnaround duct with turning vanes. Axisymmetric and parametric analyses reveal that if nozzle plugs exited the turbine they would probably impact the LOX heat exchanger with impact velocities which are significantly less than the penetration velocity. The finding that only slight to moderate damage will result from nozzle plug failure in flight is supported by the results of a hot-fire engine test with induced nozzle plug failures.

  1. Numerical Simulation of Sediment Plug Formation in Alluvial Channels

    NASA Astrophysics Data System (ADS)

    Posner, A. J.; Duan, J. G.

    2011-12-01

    A sediment plug is the aggregation of sediment in a river reach that completely blocks the original channel resulting in plug growth upstream by accretion and flooding in surrounding areas. Sediment plugs historically form over relatively short periods, in many cases a matter of weeks. Although sediment plugs are much more common in reach constrictions associated with large woody debris, the mouths of tributaries, and along coastal regions, this investigation focuses on sediment plug formation in an alluvial river. During high flows in the years 1991, 1995, 2005, and 2008, a sediment plug formed in the San Marcial reach of the Middle Rio Grande. The Bureau of Reclamation has had to spend millions of dollars dredging the channel to restore flows to Elephant Butte Reservoir. The hydrodynamic and sediment transport processes, associated with plug formation, occurring in this reach are driven by 1) a flow constriction associated with a rock outcrop, 2) a railroad bridge, and 3) the water level of the downstream reservoir. The three-dimensional hydrodynamic model, Delft3D, was implemented to determine the hydrodynamic and sediment transport parameters and variables required to simulate plug formation in an effort to identify hydro- and morphodynamic thresholds. Several variables were identified by previous studies as metrics for plug formation. These variables were used in our investigation to detect the relative magnitude of each process. Both duration and degree of high flow events were simulated, along with extent of cohesive sediment deposits, reservoir level, and percent of fines in suspended sediment distribution. Results of this analysis illustrate that this model is able to reproduce the sediment plug formation. Model calibration was based on measured water levels and changes in bathymetry using both sediment transport and morphologic change parameters. Changes to hydraulic and sediment parameters are not proportional to morphologic changes and are asymptotic in their response. These results suggest that there are thresholds to predict plug formation and that the contribution of specific variables to plug formation is not uniform. Sediment plug formation is a costly and dangerous phenomenon, especially in large alluvial rivers. This investigation yielded specific insights into the hydrodynamic and morphologic processes occurring during sediment plug formation. These insights can be used to reduce the risk of plug formation and predict the locations and times of other sediment plugs.

  2. Multiphysics Object-Oriented Simulation Environment (MOOSE)

    ScienceCinema

    None

    2017-12-09

    Nuclear reactor operators can expand safety margins with more precise information about how materials behave inside operating reactors. INL's new simulation platform makes such studies easier & more informative by letting researchers "plug-n-play" their mathematical models, skipping years of computer code development.

  3. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes.

    PubMed

    Mascia, Michele; Monasterio, Sara; Vacca, Annalisa; Palmas, Simonetta

    2016-12-05

    An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10-60Am(-2) and Cl(-) concentrations up to 600gm(-3). The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl2, of about 0.7gCl2m(-3) were measured; the maximum values were obtained at Re=10 and i=25Am(-2), with values strongly dependent on the concentration of Cl(-). The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the system; the model was successfully used to simulate the performances of the reactor in the single-stack configuration used for the experiments and in multi-stack configurations. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A hydrophobic ionic liquid compartmentalized sampling/labeling and its separation techniques in polydimethylsiloxane microchip capillary electrophoresis.

    PubMed

    Quan, Hong Hua; Li, Ming; Huang, Yan; Hahn, Jong Hoon

    2017-01-01

    This paper demonstrates a novel compartmentalized sampling/labeling method and its separation techniques using a hydrophobic ionic liquid (IL)-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imidate (BmimNTf 2 )-as the immiscible phase, which is capable of minimizing signal losses during microchip capillary electrophoresis (MCE). The MCE device consists of a silica tube connected to a straight polydimethylsiloxane (PDMS) separation channel. Poly(diallyldimethylammonium chloride) (PDDAC) was coated on the inner surface of channel to ease the introduction of IL plugs and enhance the IL wetting on the PDMS surface for sample releasing. Electroosmotic flow (EOF)-based sample compartmentalization was carried out through a sequenced injection into sampling tubes with the following order: leading IL plug/sample segment/terminal IL plug. The movement of the sample segment was easily controlled by applying an electrical voltage across both ends of the chip without a sample volume change. This approach effectively prevented analyte diffusion before injection into MCE channels. When the sample segment was manipulated to the PDDAC-modified PDMS channel, the sample plug then was released from isolation under EOF while IL plugs adsorbed onto channel surfaces owing to strong adhesion. A mixture of flavin adenine nucleotides (FAD) and flavin mononucleotides (FMN) was successfully separated on a 2.5 cm long separation channel, for which the theoretical numbers of plates were 15 000 and 17 000, respectively. The obtained peak intensity was increased 6.3-fold over the corresponding value from conventional electrokinetic injection with the same sampling time. Furthermore, based on the compartmented sample segment serving as an interim reactor, an on-chip fluorescence labeling is demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Numerical simulations of porous medium with different permeabilities and positions in a laterally-heated cylindrical enclosure for crystal growth

    NASA Astrophysics Data System (ADS)

    Enayati, Hooman; Braun, Minel J.; Chandy, Abhilash J.

    2018-02-01

    This paper presents an investigation of flow and heat transfer in a large diameter (6.25 in) cylindrical enclosure heated laterally and containing a porous block that simulates the basket of nutrients used in a crystal growth reactor. The numerical model entails the use of a commercially available computational engine provided by ANSYS FLUENT, and based on a two-dimensional (2D) axisymmetric Reynolds-averaged Navier Stokes (RANS) equations. The porous medium is simulated using the Brinkman-extended model accounting for the Darcy and Forchheimer induced pressure drops. The porous 'plug' effects are analyzed as both its permeability/inertial resistance and locations in the reactor are changed on a parametric basis, while the Rayleigh number (Ra = gβΔTL3/να) is kept constant at 1.98 × 109. Additionally, the effect of different ratios of the hot to the cold zone lengths are investigated as a part of the current effort. For all cases, the velocity and temperature distributions in the reactor are analyzed together with the flow patterns in, and around the porous block. A comprehensive discussion is provided with regard to the effects of the position of the porous block and its permeability on both the immediately adjacent, and far flows. The consequences on the temperature distribution in the enclosure, when the ratio of the length of the hot-to-cold zones is changed, are also analyzed.

  6. Airway reopening through catastrophic events in a hierarchical network

    PubMed Central

    Baudoin, Michael; Song, Yu; Manneville, Paul; Baroud, Charles N.

    2013-01-01

    When you reach with your straw for the final drops of a milkshake, the liquid forms a train of plugs that flow slowly initially because of the high viscosity. They then suddenly rupture and are replaced with a rapid airflow with the characteristic slurping sound. Trains of liquid plugs also are observed in complex geometries, such as porous media during petroleum extraction, in microfluidic two-phase flows, or in flows in the pulmonary airway tree under pathological conditions. The dynamics of rupture events in these geometries play the dominant role in the spatial distribution of the flow and in determining how much of the medium remains occluded. Here we show that the flow of a train of plugs in a straight channel is always unstable to breaking through a cascade of ruptures. Collective effects considerably modify the rupture dynamics of plug trains: Interactions among nearest neighbors take place through the wetting films and slow down the cascade, whereas global interactions, through the total resistance to flow of the train, accelerate the dynamics after each plug rupture. In a branching tree of microchannels, similar cascades occur along paths that connect the input to a particular output. This divides the initial tree into several independent subnetworks, which then evolve independently of one another. The spatiotemporal distribution of the cascades is random, owing to strong sensitivity to the plug divisions at the bifurcations. PMID:23277557

  7. Analytical and experimental study of axisymmetric truncated plug nozzle flow fields

    NASA Technical Reports Server (NTRS)

    Muller, T. J.; Sule, W. P.; Fanning, A. E.; Giel, T. V.; Galanga, F. L.

    1972-01-01

    Experimental and analytical investigation of the flow field and base pressure of internal-external-expansion truncated plug nozzles are discussed. Experimental results for two axisymmetric, conical plug-cylindrical shroud, truncated plug nozzles are presented for both open and closed wake operations. These results include extensive optical and pressure data covering nozzle flow field and base pressure characteristics, diffuser effects, lip shock strength, Mach disc behaviour, and the recompression and reverse flow regions. Transonic experiments for a special planar transonic section are presented. An extension of the analytical method of Hall and Mueller to include the internal shock wave from the shroud exit is presented for closed wake operation. Results of this analysis include effects on the flow field and base pressure of ambient pressure ratio, nozzle geometry, and the ratio of specific heats. Static thrust is presented as a function of ambient pressure ratio and nozzle geometry. A new transonic solution method is also presented.

  8. Porous plug phase separator and superfluid film flow suppression system for the soft x-ray spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; Ishikawa, Kumi; Mitsuishi, Ikuyuki; Ohashi, Takaya; Mitsuda, Kazuhisa; Fujimoto, Ryuichi; Murakami, Masahide; Kanao, Kenichi; Yoshida, Seiji; Tsunematsu, Shoji; DiPirro, Michael; Shirron, Peter

    2016-07-01

    Suppression of super fluid helium flow is critical for the Soft X-ray Spectrometer onboard ASTRO-H (Hitomi). In nominal operation, a small helium gas flow of 30 μg/s must be safely vented and a super fluid film flow must be sufficiently small <2 μg/s. To achieve a life time of the liquid helium, a porous plug phase separator and a film flow suppression system composed of an orifice, a heat exchanger, and knife edge devices are employed. In this paper, design, on-ground testing results and in-orbit performance of the porous plug and the film flow suppression system are described.

  9. REACTOR SERVICE BUILDING, TRA635, CONTEXTUAL VIEW DURING CONSTRUCTION. CAMERA IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTOR SERVICE BUILDING, TRA-635, CONTEXTUAL VIEW DURING CONSTRUCTION. CAMERA IS ATOP MTR BUILDING AND LOOKING SOUTHERLY. FOUNDATION AND DRAINS ARE UNDER CONSTRUCTION. THE BUILDING WILL BUTT AGAINST CHARGING FACE OF PLUG STORAGE BUILDING. HOT CELL BUILDING, TRA-632, IS UNDER CONSTRUCTION AT TOP CENTER OF VIEW. INL NEGATIVE NO. 8518. Unknown Photographer, 8/25/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1983-01-01

    The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.

  11. Experimental investigation of gas hydrate formation, plugging and transportability in partially dispersed and water continuous systems

    NASA Astrophysics Data System (ADS)

    Vijayamohan, Prithvi

    As oil/gas subsea fields mature, the amount of water produced increases significantly due to the production methods employed to enhance the recovery of oil. This is true especially in the case of oil reservoirs. This increase in the water hold up increases the risk of hydrate plug formation in the pipelines, thereby resulting in higher inhibition cost strategies. A major industry concern is to reduce the severe safety risks associated with hydrate plug formation, and significantly extending subsea tieback distances by providing a cost effective flow assurance management/safety tool for mature fields. Developing fundamental understanding of the key mechanistic steps towards hydrate plug formation for different multiphase flow conditions is a key challenge to the flow assurance community. Such understanding can ultimately provide new insight and hydrate management guidelines to diminish the safety risks due to hydrate formation and accumulation in deepwater flowlines and facilities. The transportability of hydrates in pipelines is a function of the operating parameters, such as temperature, pressure, fluid mixture velocity, liquid loading, and fluid system characteristics. Specifically, the hydrate formation rate and plugging onset characteristics can be significantly different for water continuous, oil continuous, and partially dispersed systems. The latter is defined as a system containing oil/gas/water, where the water is present both as a free phase and partially dispersed in the oil phase (i.e., entrained water in the oil). Since hydrate formation from oil dispersed in water systems and partially dispersed water systems is an area which is poorly understood, this thesis aims to address some key questions in these systems. Selected experiments have been performed at the University of Tulsa flowloop to study the hydrate formation and plugging characteristics for the partially dispersed water/oil/gas systems as well as systems where the oil is completely dispersed in water. These experiments indicate that the partially dispersed systems tend to be problematic and are more severe cases with respect to flow assurance when compared to systems where the water is completely dispersed in oil. We have found that the partially dispersed systems are distinct, and are not an intermediate case between water dominated, and water-in-oil emulsified systems. Instead the experiments indicate that the hydrate formation and plugging mechanism for these systems are very complex. Hydrate growth is very rapid for such systems when compared to 100% water cut systems. The plugging mechanism for these systems is a combination of various phenomena (wall growth, agglomeration, bedding/settling, etc). Three different oils with different viscosities have been used to investigate the transportability of hydrates with respect to oil properties. The experiments indicate that the transportability of hydrates increases with increase in oil viscosity. The data from the tests performed provide the basis for a mechanistic model for hydrate formation and plugging in partially dispersed systems. It is found that in systems that were in stratified flow regime before hydrate onset, the hydrates eventually settled on the pipe walls thereby decreasing the flow area for the flow of fluids. In systems that were in the slug flow regime before hydrate formation, moving beds of hydrates were the main cause for plugging. In both the flow regimes, the systems studied entered a plugging regime beyond a certain hydrate concentration. This is termed as φplugging onset and can be used as an indicator to calculate the amount of hydrates that can be transported safely without requiring any additional treatment for a given set of flow characteristics. A correlation to calculate this hydrate concentration based on easily accessible parameters is developed in terms of flow characteristics and oil properties. The work performed in this thesis has enhanced the understanding of the hydrate plug mechanism in pipelines having high amounts of water. This work has also shown the effect of hydrate formation in different flow regimes thereby shedding light on the effects of hydrates on multiphase flow and vice versa. Lessons resulting from this work could be incorporated into flow assurance models, as well as operating company production strategies to reduce or mitigate hydrate plugging risks in complex multiphase systems.

  12. Design, construction, and optimization of a novel, modular, and scalable incubation chamber for continuous viral inactivation.

    PubMed

    Orozco, Raquel; Godfrey, Scott; Coffman, Jon; Amarikwa, Linus; Parker, Stephanie; Hernandez, Lindsay; Wachuku, Chinenye; Mai, Ben; Song, Brian; Hoskatti, Shashidhar; Asong, Jinkeng; Shamlou, Parviz; Bardliving, Cameron; Fiadeiro, Marcus

    2017-07-01

    We designed, built or 3D printed, and screened tubular reactors that minimize axial dispersion to serve as incubation chambers for continuous virus inactivation of biological products. Empirical residence time distribution data were used to derive each tubular design's volume equivalent to a theoretical plate (VETP) values at a various process flow rates. One design, the Jig in a Box (JIB), yielded the lowest VETP, indicating optimal radial mixing and minimal axial dispersion. A minimum residence time (MRT) approach was employed, where the MRT is the minimum time the product spends in the tubular reactor. This incubation time is typically 60 minutes in a batch process. We provide recommendations for combinations of flow rates and device dimensions for operation of the JIB connected in series that will meet a 60-min MRT. The results show that under a wide range of flow rates and corresponding volumes, it takes 75 ± 3 min for 99% of the product to exit the reactor while meeting the 60-min MRT criterion and fulfilling the constraint of keeping a differential pressure drop under 5 psi. Under these conditions, the VETP increases slightly from 3 to 5 mL though the number of theoretical plates stays constant at about 1326 ± 88. We also demonstrated that the final design volume was only 6% ± 1% larger than the ideal plug flow volume. Using such a device would enable continuous viral inactivation in a truly continuous process or in the effluent of a batch chromatography column. Viral inactivation studies would be required to validate such a design. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:954-965, 2017. © 2017 American Institute of Chemical Engineers.

  13. Closure head for a nuclear reactor

    DOEpatents

    Wade, Elman E.

    1980-01-01

    A closure head for a nuclear reactor includes a stationary outer ring integral with the reactor vessel with a first rotatable plug disposed within the stationary outer ring and supported from the stationary outer ring by a bearing assembly. A sealing system is associated with the bearing assembly to seal the annulus defined between the first rotatable plug and the stationary outer ring. The sealing system comprises tubular seal elements disposed in the annulus with load springs contacting the tubular seal elements so as to force the tubular seal elements against the annulus in a manner to seal the annulus. The sealing system also comprises a sealing fluid which is pumped through the annulus and over the tubular seal elements causing the load springs to compress thereby reducing the friction between the tubular seal elements and the rotatable components while maintaining a gas-tight seal therebetween.

  14. Bubbling and foaming assisted clearing of mucin plugs in microfluidic Y-junctions.

    PubMed

    Abdula, Daner; Lerud, Ryan; Rananavare, Shankar

    2017-11-07

    Microfluidic Y-junctions were used to study mechanical mechanisms involved in pig gastric mucin (PGM) plug removal from within one of two bifurcation branches with 2-phase air and liquid flow. Water control experiments showed moderate plug removal due to shear from vortex formation in the blockage branch and suggest a PGM yield stress of 35Pa, as determined by computational fluid dynamics. Addition of hexadecyltrimethylammonium bromide (CTAB) surfactant improved clearing effectiveness due to bubbling in 1mm diameter channels and foaming in 500μm diameter channels. Plug removal mechanisms have been identified as vortex shear, bubble scouring, and then foam scouring as air flow rate is increased with constant liquid flow. The onset of bubbling and foaming is attributed to a flow regime transition from slug to slug-annular. Flow rates explored for 1mm channels are typically experienced by bronchioles in generations 8 and 9 of lungs. Results have implications on treatment of cystic fibrosis and other lung diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Two-dimensional over-all neutronics analysis of the ITER device

    NASA Astrophysics Data System (ADS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi

    1993-07-01

    The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.

  16. A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO2 catalyst.

    PubMed

    Aguilar-Tapia, Antonio; Ould-Chikh, Samy; Lahera, Eric; Prat, Alain; Delnet, William; Proux, Olivier; Kieffer, Isabelle; Basset, Jean-Marie; Takanabe, Kazuhiro; Hazemann, Jean-Louis

    2018-03-01

    The construction of a high-temperature reaction cell for operando X-ray absorption spectroscopy characterization is reported. A dedicated cell was designed to operate as a plug-flow reactor using powder samples requiring gas flow and thermal treatment at high temperatures. The cell was successfully used in the reaction of dry reforming of methane (DRM). We present X-ray absorption results in the fluorescence detection mode on a 0.4 wt. % Ni/ZrO 2 catalyst under realistic conditions at 750 °C, reproducing the conditions used for a conventional dynamic microreactor for the DRM reaction. The setup includes a gas distribution system that can be fully remotely operated. The reaction cell offers the possibility of transmission and fluorescence detection modes. The complete setup dedicated to the study of catalysts is permanently installed on the Collaborating Research Groups French Absorption spectroscopy beamline in Material and Environmental sciences (CRG-FAME) and French Absorption spectroscopy beamline in Material and Environmental sciences at Ultra-High Dilution (FAME-UHD) beamlines (BM30B and BM16) at the European Synchrotron Radiation Facility in Grenoble, France.

  17. A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO2 catalyst

    NASA Astrophysics Data System (ADS)

    Aguilar-Tapia, Antonio; Ould-Chikh, Samy; Lahera, Eric; Prat, Alain; Delnet, William; Proux, Olivier; Kieffer, Isabelle; Basset, Jean-Marie; Takanabe, Kazuhiro; Hazemann, Jean-Louis

    2018-03-01

    The construction of a high-temperature reaction cell for operando X-ray absorption spectroscopy characterization is reported. A dedicated cell was designed to operate as a plug-flow reactor using powder samples requiring gas flow and thermal treatment at high temperatures. The cell was successfully used in the reaction of dry reforming of methane (DRM). We present X-ray absorption results in the fluorescence detection mode on a 0.4 wt. % Ni/ZrO2 catalyst under realistic conditions at 750 °C, reproducing the conditions used for a conventional dynamic microreactor for the DRM reaction. The setup includes a gas distribution system that can be fully remotely operated. The reaction cell offers the possibility of transmission and fluorescence detection modes. The complete setup dedicated to the study of catalysts is permanently installed on the Collaborating Research Groups French Absorption spectroscopy beamline in Material and Environmental sciences (CRG-FAME) and French Absorption spectroscopy beamline in Material and Environmental sciences at Ultra-High Dilution (FAME-UHD) beamlines (BM30B and BM16) at the European Synchrotron Radiation Facility in Grenoble, France.

  18. Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferroni, Paolo; Tatli, Emre; Czerniak, Luke

    The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na 2O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO 2 (sCO 2) Brayton cycle power conversion system. In SFRs,more » Na 2O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na 2O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na 2O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na 2O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO 2 systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test section and provided with Na 2O deposition prediction capabilities, was developed. This state-of-the-art computational tool incorporates a first-principles Na 2O deposition model developed by ANL, and combines it with predictive capabilities for the spatial and temporal variation of temperature, velocity, dissolved oxygen concentration, and wall temperature under flowing sodium conditions. The CFD model was validated under no-deposition conditions using experimental data collected with the SPPL, demonstrating the model’s capability to predict the thermal-hydraulics of the SPPL test section within the measurement uncertainty characterizing the SPPL instrumentation. The model’s deposition prediction capability was not, however, validated as the SPPL could not be operated under plugging conditions during the project, resulting in the lack of deposition data with adequate pedigree for a CFD model validation. Two novel diagnostic techniques to detect and characterize Na 2O deposits, i.e. Ultrasonic Time Domain Reflectometry (UTDR) and Potential Drop (PD) techniques, were developed to ultimately assist in the validation effort under plugging conditions, which can be performed once the SPPL becomes operational. This development effort consisted first in demonstrating, analytically and/or computationally, the capability of these techniques to diagnose Na 2O deposits inside of small channels (particularly the deposit’s thickness), and subsequently in the fabrication and testing of prototypical UTDR and PD instrumentation. The testing, performed on mockups of the SPPL test section, demonstrated the capability of these techniques to detect and characterize material discontinuities like those induced by sodium oxide deposition on stainless steel channel walls. Because of the mentioned impossibility to run the SPPL in a plugging mode, the developed instrumentation could not be tested in-situ, i.e. at the SPPL while deposits are being formed inside of the SPPL test section. Recommended future work includes a possible enhancement in the CFD modeling technique and installation of the developed UTDR and PD instrumentation on the test section, followed by plugging tests to be conducted with the SPPL. The installation of the UTDR and PD diagnostic instrumentation on the SPPL test section will allow collection of Na 2O deposition data after the onset of deposition to nearly complete channel plugging, which can ultimately be used for the validation of the CFD model.« less

  19. Porous plug for reducing orifice induced pressure error in airfoils

    NASA Technical Reports Server (NTRS)

    Plentovich, Elizabeth B. (Inventor); Gloss, Blair B. (Inventor); Eves, John W. (Inventor); Stack, John P. (Inventor)

    1988-01-01

    A porous plug is provided for the reduction or elimination of positive error caused by the orifice during static pressure measurements of airfoils. The porous plug is press fitted into the orifice, thereby preventing the error caused either by fluid flow turning into the exposed orifice or by the fluid flow stagnating at the downstream edge of the orifice. In addition, the porous plug is made flush with the outer surface of the airfoil, by filing and polishing, to provide a smooth surface which alleviates the error caused by imperfections in the orifice. The porous plug is preferably made of sintered metal, which allows air to pass through the pores, so that the static pressure measurements can be made by remote transducers.

  20. MATERIALS TESTING REACTOR (MTR) BUILDING, TRA603. CONTEXTUAL VIEW OF MTR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MATERIALS TESTING REACTOR (MTR) BUILDING, TRA-603. CONTEXTUAL VIEW OF MTR BUILDING SHOWING NORTH SIDES OF THE HIGH-BAY REACTOR BUILDING, ITS SECOND/THIRD FLOOR BALCONY LEVEL, AND THE ATTACHED ONE-STORY OFFICE/LABORATORY BUILDING, TRA-604. CAMERA FACING SOUTHEAST. VERTICAL CONCRETE-SHROUDED BEAMS SUPPORT PRECAST CONCRETE PANELS. CONCRETE PROJECTION FORMED AS A BUNKER AT LEFT OF VIEW IS TRA-657, PLUG STORAGE BUILDING. INL NEGATIVE NO. HD46-42-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Free jet feasibility study of a thermal acoustic shield concept for AST/VCE application-dual flow. Comprehensive data report. Volume 1: Test nozzles and acoustic data

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Brausch, J. F.; Price, A. O.

    1984-01-01

    Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles The tested nozzles included baseline (unshielded), 180 deg shielded, and 360 deg shielded dual flow coannular plug configurations. The baseline configurations include a high radius ratio unsuppressed coannular plug nozzle and a coanuular plug nozzle and a coannular plug nozzle with a 20-chute outer stream suppressor. The tests were conducted at nozzle temperatures and pressure typical of operating conditions of variable cycle engine.

  2. MTR, TRA603. FIRST FLOOR PLAN. REACTOR AT CENTER. TWENTYMETER CHOPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, TRA-603. FIRST FLOOR PLAN. REACTOR AT CENTER. TWENTY-METER CHOPPER HOUSE. COFFIN TURNING ROLLS. REMOVABLE PANEL OVER CANAL ON EAST SIDE. NEW PLUG STORAGE ACCESS. DOOR SCHEDULE INDICATES STEEL (FOR VAULT), WIRE MESH, AND HOLLOW METAL TYPES. STORAGE AND ISSUE ROOM. SAFETY SHOWERS. DOORWAY TO WING, TRA-604. BLAW-KNOX 3150-803-2, 7/1950. INL INDEX NO. 531-0603-00-098-100561, REV. 10. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Analysis of supersonic plug nozzle flowfield and heat transfer

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Sheu, W. H.

    1988-01-01

    A number of problems pertaining to the flowfield in a plug nozzle, designed as a supersonic thruster nozzle, with provision for cooling the plug with a coolant stream admitted parallel to the plug wall surface, were studied. First, an analysis was performed of the inviscid, nonturbulent, gas dynamic interaction between the primary hot stream and the secondary coolant stream. A numerical prediction code for establishing the resulting flowfield with a dividing surface between the two streams, for various combinations of stagnation and static properties of the two streams, was utilized for illustrating the nature of interactions. Secondly, skin friction coefficient, heat transfer coefficient and heat flux to the plug wall were analyzed under smooth flow conditions (without shocks or separation) for various coolant flow conditions. A numerical code was suitably modified and utilized for the determination of heat transfer parameters in a number of cases for which data are available. Thirdly, an analysis was initiated for modeling turbulence processes in transonic shock-boundary layer interaction without the appearance of flow separation.

  4. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  5. Biological processing in oscillatory baffled reactors: operation, advantages and potential

    PubMed Central

    Abbott, M. S. R.; Harvey, A. P.; Perez, G. Valente; Theodorou, M. K.

    2013-01-01

    The development of efficient and commercially viable bioprocesses is essential for reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, health products and precursor compounds for plastics are being synthesized using bioprocessing routes as opposed to more traditional chemical technologies. Production vessels or reactors are required for synthesis of crude product before downstream processing for extraction and purification. Reactors are operated either in discrete batches or, preferably, continuously in order to reduce waste, cost and energy. This review describes the oscillatory baffled reactor (OBR), which, generally, has a niche application in performing ‘long’ processes in plug flow conditions, and so should be suitable for various bioprocesses. We report findings to suggest that OBRs could increase reaction rates for specific bioprocesses owing to low shear, good global mixing and enhanced mass transfer compared with conventional reactors. By maintaining geometrical and dynamic conditions, the technology has been proved to be easily scaled up and operated continuously, allowing laboratory-scale results to be easily transferred to industrial-sized processes. This is the first comprehensive review of bioprocessing using OBRs. The barriers facing industrial adoption of the technology are discussed alongside some suggested strategies to overcome these barriers. OBR technology could prove to be a major aid in the development of commercially viable and sustainable bioprocesses, essential for moving towards a greener future. PMID:24427509

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    During this time period, at WVU, the authors have obtained models for the kinetics of the HAS (higher alcohol synthesis) reaction over the Co-K-MoS{sub 2}/C catalyst. The Rotoberty reactor was then replaced in the reactor system by a plug-flow tubular reactor. Accordingly, the authors re-started the investigations on sulfide catalysts. The authors encountered and solved the leak problem from the sampling valve for the non-sulfided reactor system. They also modified the system to eliminate the condensation problem. Accordingly, they are continuing their kinetic studies on the reduced Mo-Ni-K/C catalysts. They have set up an apparatus for temperature-programmed reduction (TPR) studies,more » and have obtained some interesting results on TPR characterizations. At UCC, the complete characterization of selected catalysts has been started. The authors sent nine selected types of ZnO, Zn/CrO and Zn/Cr/MnO catalysts and supports for BET surface area, SEM, XRD and ICP. They also sent fresh and spent samples of the Engelhard Zn/CrO catalyst impregnated with 3 wt% potassium for ISS and XPS testing. In Task 2, work on the design and optimization portion of this task, as well as on the fuel testing, is completed. All funds have been expended and there are no personnel working on this project.« less

  7. Experimental cold-flow evaluation of a ram air cooled plug nozzle concept for afterburning turbojet engines

    NASA Technical Reports Server (NTRS)

    Straight, D. M.; Harrington, D. E.

    1973-01-01

    A concept for plug nozzles cooled by inlet ram air is presented. Experimental data obtained with a small scale model, 21.59-cm (8.5-in.) diameter, in a static altitude facility demonstrated high thrust performance and excellent pumping characteristics. Tests were made at nozzle pressure ratios simulating supersonic cruise and takeoff conditions. Effect of plug size, outer shroud length, and varying amounts of secondary flow were investigated.

  8. On the Limitations of Breakthrough Curve Analysis in Fixed-Bed Adsorption

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Ebner, Armin D.; LeVan, M. Douglas; Coker, Robert F.; Ritter, James A.

    2016-01-01

    This work examined in detail the a priori prediction of the axial dispersion coefficient from available correlations versus obtaining it and also mass transfer information from experimental breakthrough data and the consequences that may arise when doing so based on using a 1-D axially dispersed plug flow model and its associated Danckwerts outlet boundary condition. These consequences mainly included determining the potential for erroneous extraction of the axial dispersion coefficient and/or the LDF mass transfer coefficient from experimental data, especially when non-plug flow conditions prevailed in the bed. Two adsorbent/adsorbate cases were considered, i.e., carbon dioxide and water vapor in zeolite 5A, because they both experimentally exhibited significant non-plug flow behavior, and the water-zeolite 5A system exhibited unusual concentration front sharpening that destroyed the expected constant pattern behavior (CPB) when modeled with the 1-D axially dispersed plug flow model. Overall, this work showed that it was possible to extract accurate mass transfer and dispersion information from experimental breakthrough curves using a 1-D axial dispersed plug flow model when they were measured both inside and outside the bed. To ensure the extracted information was accurate, the inside the bed breakthrough curves and their derivatives from the model were plotted to confirm whether or not the adsorbate/adsorbent system was exhibiting CPB or any concentration front sharpening near the bed exit. Even when concentration front sharpening was occurring with the water-zeolite 5A system, it was still possible to use the experimental inside and outside the bed breakthrough curves to extract fundamental mass transfer and dispersion information from the 1-D axial dispersed plug flow model based on the systematic methodology developed in this work.

  9. Continuous-flow Heck synthesis of 4-methoxybiphenyl and methyl 4-methoxycinnamate in supercritical carbon dioxide expanded solvent solutions

    PubMed Central

    Lau, Phei Li; Allen, Ray W K

    2013-01-01

    Summary The palladium metal catalysed Heck reaction of 4-iodoanisole with styrene or methyl acrylate has been studied in a continuous plug flow reactor (PFR) using supercritical carbon dioxide (scCO2) as the solvent, with THF and methanol as modifiers. The catalyst was 2% palladium on silica and the base was diisopropylethylamine due to its solubility in the reaction solvent. No phosphine co-catalysts were used so the work-up procedure was simplified and the green credentials of the reaction were enhanced. The reactions were studied as a function of temperature, pressure and flow rate and in the case of the reaction with styrene compared against a standard, stirred autoclave reaction. Conversion was determined and, in the case of the reaction with styrene, the isomeric product distribution was monitored by GC. In the case of the reaction with methyl acrylate the reactor was scaled from a 1.0 mm to 3.9 mm internal diameter and the conversion and turnover frequency determined. The results show that the Heck reaction can be effectively performed in scCO2 under continuous flow conditions with a palladium metal, phosphine-free catalyst, but care must be taken when selecting the reaction temperature in order to ensure the appropriate isomer distribution is achieved. Higher reaction temperatures were found to enhance formation of the branched terminal alkene isomer as opposed to the linear trans-isomer. PMID:24367454

  10. Micro-view-cell for phase behaviour and in situ Raman analysis of heterogeneously catalysed CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    Reymond, Helena; Rudolf von Rohr, Philipp

    2017-11-01

    The operando study of CO2 hydrogenation is fundamental for a more rational optimisation of heterogeneous catalyst and reactor designs. To further complement the established efficiency of microreactors in reaction screening and bridge the operating and optical gaps, a micro-view-cell is presented for Raman microscopy at extreme conditions with minimum flow interference for genuine reaction analysis. Based on a flat sapphire window unit sealed in a plug flow-type enclosure holding the sample, the cell features unique 14 mm working distance and 0.36 numerical aperture and resists 400 °C and 500 bars. The use of the cell as an in situ tool for fast process monitoring and surface catalyst characterisation is demonstrated with phase behaviour and chemical analysis of the methanol synthesis over a commercial Cu/ZnO/Al2O3 catalyst.

  11. Modeling of the reburning process using sewage sludge-derived syngas.

    PubMed

    Werle, Sebastian

    2012-04-01

    Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Use of solar radiation for continuous water disinfection in isolated areas.

    PubMed

    Fabbricino, M; d'Antonio, L

    2012-01-01

    This study involved investigation of solar water disinfection in continuously working treatment plants with the aim of producing safe drinking water in isolated areas. Results were obtained from experimental work carried out on a pilot plant operating in different configurations. The use of a simple device to increase solar radiation intensity (solar concentrator) was tested, with results showing that it facilitated better performance. A comparison between transparent and black-painted glass reactors was also made, showing no difference between the two casings. Further, the effect of an increase in water temperature was analysed in detail. Temperature was found to play an important role in the disinfection process, even in cases of limited solar radiation intensities, although a synergistic effect of water heating and solar radiation for effective microbial inactivation was confirmed. Reactor design is also discussed, highlighting the importance of having a plug flow to avoid zones that do not contribute to the overall effectiveness of the process.

  13. Polysilicon planarization and plug recess etching in a decoupled plasma source chamber using two endpoint techniques

    NASA Astrophysics Data System (ADS)

    Kaplita, George A.; Schmitz, Stefan; Ranade, Rajiv; Mathad, Gangadhara S.

    1999-09-01

    The planarization and recessing of polysilicon to form a plug are processes of increasing importance in silicon IC fabrication. While this technology has been developed and applied to DRAM technology using Trench Storage Capacitors, the need for such processes in other IC applications (i.e. polysilicon studs) has increased. Both planarization and recess processes usually have stringent requirements on etch rate, recess uniformity, and selectivity to underlying films. Additionally, both processes generally must be isotropic, yet must not expand any seams that might be present in the polysilicon fill. These processes should also be insensitive to changes in exposed silicon area (pattern factor) on the wafer. A SF6 plasma process in a polysilicon DPS (Decoupled Plasma Source) reactor has demonstrated the capability of achieving the above process requirements for both planarization and recess etch. The SF6 process in the decoupled plasma source reactor exhibited less sensitivity to pattern factor than in other types of reactors. Control of these planarization and recess processes requires two endpoint systems to work sequentially in the same recipe: one for monitoring the endpoint when blanket polysilicon (100% Si loading) is being planarized and one for monitoring the recess depth while the plug is being recessed (less than 10% Si loading). The planarization process employs an optical emission endpoint system (OES). An interferometric endpoint system (IEP), capable of monitoring lateral interference, is used for determining the recess depth. The ability of using either or both systems is required to make these plug processes manufacturable. Measuring the recess depth resulting from the recess process can be difficult, costly and time- consuming. An Atomic Force Microscope (AFM) can greatly alleviate these problems and can serve as a critical tool in the development of recess processes.

  14. Study of Plasma Behavior during ECRH Injection in the GAMMA 10 SMBI Experiments

    NASA Astrophysics Data System (ADS)

    Maidul Islam, Md.; Nakashima, Yousuke; Kobayashi, Shinji; Nishino, Nobuhiro; Ichimura, Kazuya; Iijima, Takaaki; Shahinul Islam, Md.; Yokodo, Takayuki; Lee, Guanyi; Yoshimoto, Tsubasa; Yamashita, Sotaro; Yoshikawa, Masayuki; Kohagura, Junko; Hirata, Mafumi; Minami, Ryutaro; Kariya, Tsuyoshi; Ikezoe, Ryuya; Ichimura, Makoto; Sakamoto, Mizuki; Imai, Tsuyoshi

    2018-01-01

    Establishment of fueling system is one of the critical issues for the future fusion reactors. Fueling experiment supersonic molecular beam injection (SMBI) have been carried out in the central-cell of GAMMA 10. In GAMMA 10, electron cyclotron resonance heating (ECRH) is used at plug/barrier-cells for the formation of the axial confining potential. Recently, ECRH was applied during SMBI to plug the loss particles and increased the plasma density in the central-cell compared to without ECRH. This result suggests that the particles are confined during SMBI due to the injection of ECRH at plug/barrier-cells in GAMMA 10.

  15. Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies.

    PubMed

    Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin

    2013-02-01

    A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, B.G.

    A recently completed two-year study of a commercial tandem mirror reactor design (Mirror Advanced Reactor Study (MARS)) is briefly reviewed. The end plugs are designed for trapped particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted.

  17. [Improvement of municipal sewage sludge dewaterability by bioleaching: a pilot-scale study with a continuous plug flow reaction model].

    PubMed

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng

    2011-10-01

    A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was operationally divided into six sections along the direction of the sludge movement. Ten duration of continuous operation of sludge bioleaching with Acidibacillus spp. and 1.2 m3 x h(-1) aeration amount was conducted. In this system, sludge retention time was 2.5 d, and the added amount of microbial nutritional substance was 4 g x L(-1). During sludge bioleaching, the dynamic changes of pH, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections, the moisture content and moisture evaporation rate of dewatered bioleached sludge cake obtained by chamber filter press were investigated. The results showed that the SRF of sludge significantly decreased from initial 1.50 x 10(13) m x kg(-1) to the final 0.34 x 10(13) m x kg(-1). The wasted bioleached sludge was collected and dewatered by chamber filter press under the following pressures as 0.3 MPa for 4 h (2 h for feeding sludge, 2 h for holding pressure), 3 h (1.5 h for feeding sludge, 1.5 h for holding pressure), 2 h (1 h for feeding sludge, 1 h for holding pressure), and 1 h (0.5 h for feeding sludge, 0.5 h for holding pressure). Correspondingly, the moisture of dewatered sludge was reduced to 57.9%, 59.2%, 59.6%, and 63.4% of initial moisture, respectively. Moreover, the moisture content of bioleached sludge cake was reduced to about 45% and less than 10% if the cake was placed at 25 degrees C for 15 h and 96 h, respectively. Obviously, sludge bioleaching followed by sludge dewatering using chamber filter press is a promising attractive approach for sludge half-dryness treatment in engineering application.

  18. Porous plug phase separator and superfluid film flow suppression system for the soft x-ray spectrometer onboard Hitomi

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; DiPirro, Michael; Fujimoto, Ryuichi; Ishikawa, Kumi; Ishisaki, Yoshitaka; Kanao, Kenichi; Kimball, Mark; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Murakami, Masahide; Noda, Hirofumi; Ohashi, Takaya; Okamoto, Atsushi; Satoh, Yohichi; Sato, Kosuke; Shirron, Peter; Tsunematsu, Shoji; Yamaguchi, Hiroya; Yoshida, Seiji

    2018-01-01

    When using superfluid helium in low-gravity environments, porous plug phase separators are commonly used to vent boil-off gas while confining the bulk liquid to the tank. Invariably, there is a flow of superfluid film from the perimeter of the porous plug down the vent line. For the soft x-ray spectrometer onboard ASTRO-H (Hitomi), its approximately 30-liter helium supply has a lifetime requirement of more than 3 years. A nominal vent rate is estimated as ˜30 μg/s, equivalent to ˜0.7 mW heat load. It is, therefore, critical to suppress any film flow whose evaporation would not provide direct cooling of the remaining liquid helium. That is, the porous plug vent system must be designed to both minimize film flow and to ensure maximum extraction of latent heat from the film. The design goal for Hitomi is to reduce the film flow losses to <2 μg/s, corresponding to a loss of cooling capacity of <40 μW. The design adopts the same general design as implemented for Astro-E and E2, using a vent system composed of a porous plug, combined with an orifice, a heat exchanger, and knife-edge devices. Design, on-ground testing results, and in-orbit performance are described.

  19. Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents.

    PubMed

    Abolhasani, Milad; Singh, Mayank; Kumacheva, Eugenia; Günther, Axel

    2012-05-07

    We present an automated microfluidic (MF) approach for the systematic and rapid investigation of carbon dioxide (CO(2)) mass transfer and solubility in physical solvents. Uniformly sized bubbles of CO(2) with lengths exceeding the width of the microchannel (plugs) were isothermally generated in a co-flowing physical solvent within a gas-impermeable, silicon-based MF platform that is compatible with a wide range of solvents, temperatures and pressures. We dynamically determined the volume reduction of the plugs from images that were accommodated within a single field of view, six different downstream locations of the microchannel at any given flow condition. Evaluating plug sizes in real time allowed our automated strategy to suitably select inlet pressures and solvent flow rates such that otherwise dynamically self-selecting parameters (e.g., the plug size, the solvent segment size, and the plug velocity) could be either kept constant or systematically altered. Specifically, if a constant slug length was imposed, the volumetric dissolution rate of CO(2) could be deduced from the measured rate of plug shrinkage. The solubility of CO(2) in the physical solvent was obtained from a comparison between the terminal and the initial plug sizes. Solubility data were acquired every 5 min and were within 2-5% accuracy as compared to literature data. A parameter space consisting of the plug length, solvent slug length and plug velocity at the microchannel inlet was established for different CO(2)-solvent pairs with high and low gas solubilities. In a case study, we selected the gas-liquid pair CO(2)-dimethyl carbonate (DMC) and volumetric mass transfer coefficients 4-30 s(-1) (translating into mass transfer times between 0.25 s and 0.03 s), and Henry's constants, within the range of 6-12 MPa.

  20. A new simpler way to obtain high fusion power gain in tandem mirrors

    NASA Astrophysics Data System (ADS)

    Fowler, T. K.; Moir, R. W.; Simonen, T. C.

    2017-05-01

    From the earliest days of fusion research, Richard F. Post and other advocates of magnetic mirror confinement recognized that mirrors favor high ion temperatures where nuclear reaction rates < σ v> begin to peak for all fusion fuels. In this paper we review why high ion temperatures are favored, using Post’s axisymmetric Kinetically Stabilized Tandem Mirror as the example; and we offer a new idea that appears to greatly improve reactor prospects at high ion temperatures. The idea is, first, to take advantage of recent advances in superconducting magnet technology to minimize the size and cost of End Plugs; and secondly, to utilize parallel advances in gyrotrons that would enable intense electron cyclotron heating (ECH) in these high field End Plugs. The yin-yang magnets and thermal barriers that complicated earlier tandem mirror designs are not required. We find that, concerning end losses, intense ECH in symmetric End Plugs could increase the fusion power gain Q, for both DT and Catalyzed DD fuel cycles, to levels competitive with steady-state tokamaks burning DT fuel. Radial losses remain an issue that will ultimately determine reactor viability.

  1. Bioreactor configurations for ex-situ treatment of perchlorate: a review.

    PubMed

    Sutton, Paul M

    2006-12-01

    The perchlorate anion has been detected in the drinking water of millions of people living in the United States. At perchlorate levels equal to or greater than 1 mg/L and where the water is not immediately used for household purposes, ex-situ biotreatment has been widely applied. The principal objective of this paper was to compare the technical and economic advantages and disadvantages of various bioreactor configurations in the treatment of low- and medium-strength perchlorate-contaminated aqueous streams. The ideal bioreactor configuration for this application should be able to operate efficiently while achieving a long solids retention time, be designed to promote physical-chemical adsorption in addition to biodegradation, and operate under plug-flow hydraulic conditions. To date, the granular activated carbon (GAC) or sand-media-based fluidized bed reactors (FBRs) and GAC, sand-, or plastic-media-based packed bed reactors (PBRs) have been the reactor configurations most widely applied for perchlorate treatment. Only the FBR configuration has been applied commercially. Commercial-scale cost information presented implies no economic advantage for the PBR relative to the FBR configuration. Full-scale application information provides evidence that the FBR is a good choice for treating perchlorate-contaminated aqueous streams.

  2. Effects of Distortion on Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Davis, David O.; Barnhart, Paul J.

    2015-01-01

    A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HXmore » channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.« less

  4. Chemisorption studies of Pt/SnO2 catalysts

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.; Ohorodnik, Susan K.; Vannorman, John D.; Schryer, Jacqueline; Upchurch, Billy T.; Schryer, David R.

    1990-01-01

    The low temperature CO oxidation catalysts that are being developed and tested at NASA-Langley are fairly unique in their ability to efficiently oxidize CO at low temperatures (approx. 303 K). The bulk of the reaction data that has been collected in the laboratory has been determined using plug flow reactors with a low mass of Pt/SnO2/SiO2 catalyst (approx. 0.1 g) and a modest flow rate (5 to 10 sc sm). The researchers have previously characterized the surface solely in terms of N2 BET surface areas. These surface areas have not been that indicative of reaction rate. Indeed, some of the formulations with high BET surface area have yielded lower reaction rates than those with lower BET surface areas. As a result researchers began a program of determining the chemisorption of the various species involved in the reaction; CO, O2 and CO2. Such a determination of will lead to a better understanding of the mechanism and overall kinetics of the reaction. The pulsed-reactor technique, initially described by Freel, is used to determine the amount of a particular molecule that is adsorbed on the catalyst. Since there is some reaction of CO with the surface to produce CO2, the pulsed reactor had to be coupled with a gas chromatograph in order to distinguish between the loss of CO that is due to adsorption by the surface and the loss that is due to reaction with the surface.

  5. Vascular plugs - A key companion to Interventionists - 'Just Plug it'.

    PubMed

    Ramakrishnan, Sivasubramanian

    2015-01-01

    Vascular plugs are ideally suited to close extra-cardiac, high flowing vascular communications. The family of vascular plugs has expanded. Vascular plugs in general have a lower profile and the newer variants can be delivered even through a diagnostic catheter. These features make them versatile and easy to use. The Amplatzer vascular plugs are also used for closing intracardiac defects including coronary arterio-venous fistula and paravalvular leakage in an off-label fashion. In this review, the features of currently available vascular plugs are reviewed along with tips and tricks of using them in the cardiac catheterization laboratory. Copyright © 2015. Published by Elsevier B.V.

  6. Forisome performance in artificial sieve tubes.

    PubMed

    Knoblauch, Michael; Stubenrauch, Mike; van Bel, Aart J E; Peters, Winfried S

    2012-08-01

    In the legume phloem, sieve element occlusion (SEO) proteins assemble into Ca(2+)-dependent contractile bodies. These forisomes presumably control phloem transport by forming reversible sieve tube plugs. This function, however, has never been directly demonstrated, and appears questionable as forisomes were reported to be too small to plug sieve tubes, and failed to block flow efficiently in artificial microchannels. Moreover, plugs of SEO-related proteins in Arabidopsis sieve tubes do not affect phloem translocation. We improved existing procedures for forisome isolation and storage, and found that the degree of Ca(2+)-driven deformation that is possible in forisomes of Vicia faba, the standard object of earlier research, has been underestimated substantially. Forisomes deform particularly strongly under reducing conditions and high sugar concentrations, as typically found in sieve tubes. In contrast to our previous inference, Ca(2+)-inducible forisome swelling certainly seems sufficient to plug sieve tubes. This conclusion was supported by 3D-reconstructions of forisome plugs in Canavalia gladiata. For a direct test, we built microfluidics chips with artificial sieve tubes. Using fluorescent dyes to visualize flow, we demonstrated the complete blockage of these biomimetic microtubes by Ca(2+)-induced forisome plugs, and concluded by analogy that forisomes are capable of regulating phloem flow in vivo. © 2012 Blackwell Publishing Ltd.

  7. Twenty Years of "Plug-and-Pond" Meadow Restoration: A Geomorphic Review

    NASA Astrophysics Data System (ADS)

    Natali, J.

    2015-12-01

    Channel incision has degraded the ecological function of wet meadows across montane regions of California. Conservation groups estimate that half of the Sierra Nevada's 333,000 acres of meadow are entrenched in a degraded state that is characterized by a shift from groundwater­fed, herbaceous vegetation to more sparse, drought­tolerant woody vegetation. My poster will present results of field research on a prominent restoration technique in California's montane meadows, the "Plug­and­Pond." Fundamentally, the technique re­channelizes the meadow by blocking flow into incised stream channels. Spoils dug from meadow sediments plug the incised channel, creating ponds as a by­product. One of three approaches to re­channelization ensues: (1) construct a new shallow and sinuous channel, (2) redirect flows into a remnant channel, (3) or allow the channel to define itself over the meadow floodplain. Re­ channelization aims to support overbank flows at 1.5 to 3 year recurrence intervals. Field surveys of ten of the oldest "plug-and-pond" meadow restoration projects in California reveal that channel bed degradation caused by meadow-scale changes to channel slope (i.e. culverts concentrating flows, channel straightening, meadow grazing) may be more conducive to intensive restoration approaches like Plug-and-Pond.

  8. Calibration of the NASA GRC 16 In. Mass-Flow Plug

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Friedlander, David J.; Saunders, J. David; Frate, Franco C.; Foster, Lancert E.

    2012-01-01

    The results of an experimental calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug (MFP) are presented and compared to a previously obtained calibration of a 15 in. Mass-Flow Plug. An ASME low-beta, long-radius nozzle was used as the calibration reference. The discharge coefficient for the ASME nozzle was obtained by numerically simulating the flow through the nozzle from the WIND-US code. The results showed agreement between the 15 in. and 16 in. MFPs for area ratios (MFP to pipe area ratio) greater than 0.6 but deviate at area ratios below this value for reasons that are not fully understood. A general uncertainty analysis was also performed and indicates that large uncertainties in the calibration are present for low MFP area ratios.

  9. Calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Friedlander, David J.; Saunders, J. David; Frate, Franco C.; Foster, Lancert E.

    2014-01-01

    The results of an experimental calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug (MFP) are presented and compared to a previously obtained calibration of a 15 in. Mass-Flow Plug. An ASME low-beta, long-radius nozzle was used as the calibration reference. The discharge coefficient for the ASME nozzle was obtained by numerically simulating the flow through the nozzle from the WIND-US code. The results showed agreement between the 15 and 16 in. MFPs for area ratios (MFP to pipe area ratio) greater than 0.6 but deviate at area ratios below this value for reasons that are not fully understood. A general uncertainty analysis was also performed and indicates that large uncertainties in the calibration are present for low MFP area ratios.

  10. Mass flow and velocity profiles in Neurospora hyphae: partial plug flow dominates intra-hyphal transport.

    PubMed

    Abadeh, Aryan; Lew, Roger R

    2013-11-01

    Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.

  11. MBM fuel feeding system design and evaluation for FBG pilot plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, William A., E-mail: bill.campbell@usask.ca; Fonstad, Terry; Pugsley, Todd

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer A 1-5 g/s fuel feeding system for pilot scale FBG was designed, built and tested. Black-Right-Pointing-Pointer Multiple conveying stages improve pressure balancing, flow control and stability. Black-Right-Pointing-Pointer Secondary conveyor stage reduced output irregularity from 47% to 15%. Black-Right-Pointing-Pointer Pneumatic air sparging effective in dealing with poor flow ability of MBM powder. Black-Right-Pointing-Pointer Pneumatic injection port plugs with char at gasification temperature of 850 Degree-Sign C. - Abstract: A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designedmore » for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50 mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection nozzle reduced the output irregularity further to 13%, with an air supply of 50 slpm as the minimum air supply to drive this injector. After commissioning of this final system to the FBG reactor, the injection nozzle was found to plug with char however, and was subsequently removed from the system. Final operation of the reactor continues satisfactorily with the two screw conveyors operating at matching pressure with the fluidized bed, with the output rate of the system estimated based on system characteristic equations, and confirmed by static weight measurements made before and after testing. The error rate by this method is reported to be approximately 10%, which is slightly better than the estimated error rate of 15% for the conveyor system. The reliability of this measurement prediction method relies upon the relative consistency of the physical properties of MBM with respect to its bulk density and feeding characteristics.« less

  12. The sound field of a rotating dipole in a plug flow.

    PubMed

    Wang, Zhao-Huan; Belyaev, Ivan V; Zhang, Xiao-Zheng; Bi, Chuan-Xing; Faranosov, Georgy A; Dowell, Earl H

    2018-04-01

    An analytical far field solution for a rotating point dipole source in a plug flow is derived. The shear layer of the jet is modelled as an infinitely thin cylindrical vortex sheet and the far field integral is calculated by the stationary phase method. Four numerical tests are performed to validate the derived solution as well as to assess the effects of sound refraction from the shear layer. First, the calculated results using the derived formulations are compared with the known solution for a rotating dipole in a uniform flow to validate the present model in this fundamental test case. After that, the effects of sound refraction for different rotating dipole sources in the plug flow are assessed. Then the refraction effects on different frequency components of the signal at the observer position, as well as the effects of the motion of the source and of the type of source are considered. Finally, the effect of different sound speeds and densities outside and inside the plug flow is investigated. The solution obtained may be of particular interest for propeller and rotor noise measurements in open jet anechoic wind tunnels.

  13. Unconventional nozzle tradeoff study. [space tug propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1979-01-01

    Plug cluster engine design, performance, weight, envelope, operational characteristics, development cost, and payload capability, were evaluated and comparisons were made with other space tug engine candidates using oxygen/hydrogen propellants. Parametric performance data were generated for existing developed or high technology thrust chambers clustered around a plug nozzle of very large diameter. The uncertainties in the performance prediction of plug cluster engines with large gaps between the modules (thrust chambers) were evaluated. The major uncertainty involves, the aerodynamics of the flow from discrete nozzles, and the lack of this flow to achieve the pressure ratio corresponding to the defined area ratio for a plug cluster. This uncertainty was reduced through a cluster design that consists of a plug contour that is formed from the cluster of high area ratio bell nozzles that have been scarfed. Light-weight, high area ratio, bell nozzles were achieved through the use of AGCarb (carbon-carbon cloth) nozzle extensions.

  14. Iron Mountain Electromagnetic Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gail Heath

    2012-07-01

    Iron Mountain Mine is located seventeen miles northwest of Redding, CA. After the completion of mining in early 1960s, the mine workings have been exposed to environmental elements which have resulted in degradation in water quality in the surrounding water sheds. In 1985, the EPA plugged ore stoops in many of the accessible mine drifts in an attempt to restrict water flow through the mine workings. During this process little data was gathered on the orientation of the stoops and construction of the plugs. During the last 25 years, plugs have begun to deteriorate and allow acidic waters from themore » upper workings to flow out of the mine. A team from Idaho National Laboratory (INL) performed geophysical surveys on a single mine drift and 3 concrete plugs. The project goal was to evaluate several geophysical methods to determine competence of the concrete plugs and orientation of the stopes.« less

  15. Biodegradation of toluene vapor in coir based upflow packed bed reactor by Trichoderma asperellum isolate.

    PubMed

    Gopinath, M; Mohanapriya, C; Sivakumar, K; Baskar, G; Muthukumaran, C; Dhanasekar, R

    2016-03-01

    In the present study, a new biofiltration system involving a selective microbial strain isolated from aerated municipal sewage water attached with coir as packing material was developed for toluene degradation. The selected fungal isolate was identified as Trichoderma asperellum by 16S ribosomal RNA (16S rRNA) sequencing method, and pylogenetic tree was constructed using BLASTn search. Effect of various factors on growth and toluene degradation by newly isolated T. asperellum was studied in batch studies, and the optimum conditions were found to be pH 7.0, temperature 30 °C, and initial toluene concentration 1.5 (v/v)%. Continuous removal of gaseous toluene was monitored in upflow packed bed reactor (UFPBR) using T. asperellum. Effect of various parameters like column height, flow rate, and the inlet toluene concentration were studied to evaluate the performance of the biofilter. The maximum elimination capacity (257 g m(-3) h(-1)) was obtained with the packing height of 100 cm with the empty bed residence time of 5 min. Under these optimum conditions, the T. asperellum showed better toluene removal efficiency. Kinetic models have been developed for toluene degradation by T. asperellum using macrokinetic approach of the plug flow model incorporated with Monod model.

  16. Flow through triple helical microchannel

    NASA Astrophysics Data System (ADS)

    Rajbanshi, Pravat; Ghatak, Animangsu

    2018-02-01

    Flow through helical tubes and channels have been examined in different contexts, for facilitating heat and mass transfer at low Reynolds number flow, for generating plug flow to minimize reactor volume for many reactions. The curvature and torsion of the helices have been shown to engender secondary flow in addition to the primary axial flow, which enhances passive in-plane mixing between different fluid streams. Most of these studies, however, involve a single spiral with circular cross-section, which in essence is symmetric. It is not known, however, how the coupled effect of asymmetry of cross-section and the curvature and torsion of channel would affect the flow profile inside such tubes or channels. In this context, we have presented here the analysis of fluid flow at low Reynolds number inside a novel triple helical channel that consists of three helical flow paths joined along their contour length forming a single channel. We have carried out both microparticle image velocimetry (micro-PIV) and 3D simulation in FLUENT of flow of a Newtonian fluid through such channels. Our analysis shows that whereas in conventional single helices, the secondary flow is characterized by two counter-rotating vortices, in the case of triple helical channels, number of such vortices increases with the helix angle. Such flow profile is expected to enhance possibility of mixing between the liquids, yet diminish the pressure drop.

  17. Influence of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters

    USDA-ARS?s Scientific Manuscript database

    The specific objectives of this study were to evaluate headspace aeration for reducing hydrogen sulfide levels in low cost plug flow digesters, and to characterize the relationship between the liquid surface area and hydrogen sulfide oxidation rates. Experiments with replicate field scale plug flow ...

  18. The WSTIAC Quarterly. Volume 9, Number 3

    DTIC Science & Technology

    2010-01-25

    program .[8] THE THORIUM FUEL CYCLE AND LFTR POWER PLANT The thorium fuel cycle is based on a series of neutron absorp- tion and beta decay processes...the fig- ure is a graphite matrix moderated MSR reactor with fuel salt mixture (ThF4-U233F4) being circulated by a pump through the core and to a...the core as purified salt. As one of the unique safety features, a melt-plug at the reactor bottom would permit the reactor fluid fuel to be drained

  19. Multiple-port valve

    DOEpatents

    Doody, Thomas J.

    1978-08-22

    A multiple-port valve assembly is designed to direct flow from a primary conduit into any one of a plurality of secondary conduits as well as to direct a reverse flow. The valve includes two mating hemispherical sockets that rotatably receive a spherical valve plug. The valve plug is attached to the primary conduit and includes diverging passageways from that conduit to a plurality of ports. Each of the ports is alignable wih one or more of a plurality of secondary conduits fitted into one of the hemispherical sockets. The other hemispherical socket includes a slot for the primary conduit such that the conduit's motion along that slot with rotation of the spherical plug about various axes will position the valve-plug ports in respect to the secondary conduits.

  20. APPARATUS FOR MELTING AND POURING METAL

    DOEpatents

    Harris, F.A.

    1958-02-25

    This patent relates to a crucible for melting and pouring a metal under controlled atmospheric conditions. The crucible has a frangible plug in the bottom and a retaining device to prevent the entrance of the broken portions of the plug into the mold without interfering with the flow of the melt. After the charge has been melted, a knockout rod is lowered through the charge and forced against the frangible plug sufficiently to break off the closure disk along a previously scored line. The disk drops onto a retaining grid large enough to permit the flow of metal around the disk and into the mold below. Thts arrangement elimnates the entry of broken portions of the plug into the mold, thereby elimnating a common cause of imperfect castings.

  1. A Classification of Subaqueous Density Flows Based on Transformations From Proximal to Distal Regions

    NASA Astrophysics Data System (ADS)

    Hermidas, Navid; Eggenhuisen, Joris; Luthi, Stefan; Silva Jacinto, Ricardo; Toth, Ferenc; Pohl, Florian

    2017-04-01

    Transformations of a subaqueous density flow from proximal to distal regions are investigated. A classification of these transformations based on the state of the free shear and boundary layers and existence of a plug layer during transition from a debris flow to a turbidity current is presented. A connection between the emplaced deposit by the flow and the relevant flow type is drawn through the results obtained from a series of laboratory flume experiments. These were performed using 9%, 15%, and 21% sediment mixture concentrations composed of sand, silt, clay, and tap water, on varying bed slopes of 6°, 8°, and 9.5°, and with discharge rates of 10[m3/h] and 15[m3/h]. Stress-controlled rheometry experiments were performed on the mixtures to obtain apparent viscosity data. A classification was developed based on the imposed flow conditions, where a cohesive flow may fall within one of five distinct flow types: 1) a cohesive plug flow (PF) with a laminar free shear and boundary layers, 2) a top transitional plug flow (TTPF) containing a turbulent free shear layer, a plug layer, and a laminar boundary layer, 3) a complete transitional plug flow (CTPF) consisting of a turbulent free shear and boundary layers and a plug, 4) a transitional turbidity current (TTC) with a turbulent free shear layer and a laminar boundary layer, and, 5) a completely turbulent turbidity current (TC). During the experiments, flow type PF resulted in en masse deposition of a thick uniform ungraded muddy sand mixture, which was emplaced once the yield stress overcame the gravitational forces within the tail region of the flow. Flow type TTPF resulted in deposition of a thin ungraded basal clean sand layer during the run. This layer was covered by a muddy sand deposit from the tail. Flow type TTC did not deposit any sediment during the run. A uniform muddy sand mixture was emplaced by the tail of the flow. Flow type TC resulted in deposition of poorly sorted massive bottom sand layer. This layer was overlain by either a muddy sand mixture or a sand and silt planar lamination. Flow type CTPF was not observed during the experiments. Furthermore, it was observed that flows which are in transition from a TTC to a TTPF result in a thin bottom clean sand layer covered by a banded transitional interval. This was overlain by a muddy sand layer and a very thin clean sand layer, resulting from traction by dilute turbulent wake. In all cases a mud cap was emplaced on top of the deposit after the runs were terminated.

  2. Evaluation of A Novel Split-Feeding Anaerobic/Oxic Baffled Reactor (A/OBR) For Foodwaste Anaerobic Digestate: Performance, Modeling and Bacterial Community

    PubMed Central

    Wang, Shaojie; Peng, Liyu; Jiang, Yixin; Gikas, Petros; Zhu, Baoning; Su, Haijia

    2016-01-01

    To enhance the treatment efficiency from an anaerobic digester, a novel six-compartment anaerobic/oxic baffled reactor (A/OBR) was employed. Two kinds of split-feeding A/OBRs R2 and R3, with influent fed in the 1st, 3rd and 5th compartment of the reactor simultaneously at the respective ratios of 6:3:1 and 6:2:2, were compared with the regular-feeding reactor R1 when all influent was fed in the 1st compartment (control). Three aspects, the COD removal, the hydraulic characteristics and the bacterial community, were systematically investigated, compared and evaluated. The results indicated that R2 and R3 had similar tolerance to loading shock, but the R2 had the highest COD removal of 91.6% with a final effluent of 345 mg/L. The mixing patterns in both split-feeding reactors were intermediate between plug-flow and completely-mixed, with dead spaces between 8.17% and 8.35% compared with a 31.9% dead space in R1. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that the split-feeding strategy provided a higher bacterial diversity and more stable bacterial community than that in the regular-feeding strategy. Further analysis indicated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant bacteria, among which Firmicutes and Bacteroidetes might be responsible for organic matter degradation and Proteobacteria for nitrification and denitrification. PMID:27708368

  3. Fluid Mechanics of Capillary-Elastic Instabilities in Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Grotberg, James B.

    2002-01-01

    The aim of this project is to investigate the closure and reopening of lung airways due to surface tension forces, coupled with airway elasticity. Airways are liquid-lined, flexible tubes and closure of airways can occur by a Rayleigh instability of the liquid lining, or an instability of the elastic support for the airway as the surface tension of the air-liquid interface pulls the tube shut, or both. Regardless of the mechanism, the airway is closed because the liquid lining has created a plug that prevents axial gas exchange. In the microgravity environment, surface tension forces dominate lung mechanics and would lead to more prevalent, and more uniformly distributed air-way closure, thereby creating a potential for respiratory problems for astronauts. Once closed the primary option for reopening an airway is by deep inspiration. This maneuver will pull the flexible airways open and force the liquid plug to flow distally by the incoming air stream. Airway reopening depends to a large extent on this plug flow and how it may lead to plug rupture to regain the continuity of gas between the environment and the alveoli. In addition to mathematical modeling of plug flows in liquid-lined, flexible tubes, this work has involved benchtop studies of propagating liquid plugs down tube networks that mimic the human airway tree. We have extended the work to involve animal models of liquid plug propagation in rat lungs. The liquid is radio-opaque and x-ray video imaging is used to ascertain the movement and distribution of the liquid plugs so that comparisons to theory may be made. This research has other uses, such as the delivery of liquids or drugs into the lung that may be used for surfactant replacement therapy or for liquid ventilation.

  4. Oscillation of an isolated liquid plug inside a dry capillary

    NASA Astrophysics Data System (ADS)

    Srinivasan, Vyas; Kumar, Siddhartha; Asfer, Mohammed; Khandekar, Sameer

    2017-11-01

    The present work reports an experimental study on the dynamics of partially wetting isolated liquid plug (DI water), which is made to oscillate inside a square, glass capillary tube (1 mm × 1 mm; 60 mm length). The liquid plug is made to oscillate pneumatically at two different frequencies (0.25 and 0.35 Hz), using a cam-follower mechanism. Bright field imaging is used to visualize the three-phase contact line behavior, while, micro-Particle Imaging Velocimetry (PIV) apparatus is used to discern the nature of flow inside the oscillating liquid plug. During a cycle, due to the partial wetting nature of DI water, the three-phase contact line at the menisci gets pinned at the extreme end of each stroke, where the dynamic apparent contact angle gets drastically altered before the initiation of the next stroke. The difference between the apparent contact angle of the front and rear meniscus are seen to be a function of the oscillating frequency; the difference increasing with increasing frequency. The flow inside the liquid plug reveals unique non-Poiseuille flow features near the meniscus, due to free-slip boundary condition, which leads to formation of distinct vortex pairs behind it. The vortices too change their direction during each stroke of the oscillation, eventually leading to an alternating recirculation pattern inside the plug. The results clearly indicate that improved mathematical models are required for predicting transport parameters in such flows, which are important in engineering systems such as pulsating heat pipes, lab-on-chip devices and PEM fuel cells.

  5. Thermodynamic modelling and solar reactor design for syngas production through SCWG of algae

    NASA Astrophysics Data System (ADS)

    Venkataraman, Mahesh B.; Rahbari, Alireza; Pye, John

    2017-06-01

    Conversion of algal biomass into value added products, such as liquid fuels, using solar-assisted supercritical water gasification (SCWG) offers a promising approach for clean fuel production. SCWG has significant advantages over conventional gasification in terms of flexibility of feedstock, faster intrinsic kinetics and lower char formation. A relatively unexplored avenue in SCWG is the use of non-renewable source of energy for driving the endothermic gasification. The use of concentrated solar thermal to provide the process heat is attractive, especially in the case of expensive feedstocks such as algae. This study attempts to identify the key parameters and constraints in designing a solar cavity receiver/reactor for on-sun SCWG of algal biomass. A tubular plug-flow reactor, operating at 24 MPa and 400-600 °C with a solar input of 20MWth is modelled. Solar energy is utilized to increase the temperature of the reaction medium (10 wt.% algae solution) from 400 to 605 °C and simultaneously drive the gasification. The model additionally incorporates material constraints based on the allowable stresses for a commercially available Ni-based alloy (Inconel 625), and exergy accounting for the cavity reactor. A parametric evaluation of the steady state performance and quantification of the losses through wall conduction, external radiation and convection, internal convection, frictional pressure drop, mixing and chemical irreversibility, is presented.

  6. Plasma-assisted combustion in lean, high-pressure, preheated air-methane mixtures

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy; Herbon, John; Saddoughi, Seyed; Deminsky, Maxim; Potapkin, Boris

    2013-09-01

    We combine a simplified physical model with a detailed plasma-chemical reaction mechanism to analyze the use of plasmas to improve flame stability in a gas turbine used for electric power generation. For this application the combustion occurs in a lean mixture of air and methane at high pressure (18.6 atm) and at ``preheat'' temperature 700 K, and the flame zone is both recirculating and turbulent. The system is modeled as a sequence of reactors: a pulsed uniform plasma (Boltzmann), an afterglow region (plug-flow), a flame region (perfectly-stirred), and a downstream region (plug-flow). The plasma-chemical reaction mechanism includes electron-impact on the feedstock species, relaxation in the afterglow to neutral molecules and radicals, and methane combustion chemistry (GRI-Mech 3.0), with extensions to properly describe low-temperature combustion 700-1000 K [M Deminsky et al., Chem Phys 32, 1 (2013)]. We find that plasma treatment of the incoming air-fuel mixture can improve the stability of lean flames, expressed as a reduction in the adiabatic flame temperature at lean blow-out, but that the plasma also generates oxides of nitrogen at the preheat temperature through the reactions e + N2 --> N + N and N + O2 --> NO + O. We find that flame stability is improved with less undesirable NOx formation when the plasma reduced-electric-field E/ N is smaller. A portion of this work was supported by the US Dept of Energy under Award Number DE-FC26-08NT05868.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Appel

    This cleanup verification package documents completion of remedial action for the 118-F-3, Minor Construction Burial Ground waste site. This site was an open field covered with cobbles, with no vegetation growing on the surface. The site received irradiated reactor parts that were removed during conversion of the 105-F Reactor from the Liquid 3X to the Ball 3X Project safety systems and received mostly vertical safety rod thimbles and step plugs.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    During this reporting period, there were three major thrusts in the WVU portion. First, we started a preliminary investigation on the use of a membrane reactor for HAS. Accordingly, the plug-flow reactor which had been isolated from sulfides was substituted by a membrane reactor. The tubular membrane was first characterized in terms of its permeation properties, i.e., the fluxes, permeances and selectivities of the components. After that, a BASF methanol-synthesis catalyst was tested under different conditions on the membrane reactor. The results will be compared with those from a non-permeable stainless steel tubular reactor under the same conditions. Second, wemore » started a detailed study of one of the catalysts tested during the screening runs. Accordingly, a carbon-supported potassium-doped molybdenum-cobalt catalyst was selected to be run in the Rotoberty reactor. Finally, we have started detailed analyses of reaction products from some earlier screening runs in which non-sulfide molybdenum-based catalysts were employed and much more complicated product distributions were generally observed. These products could not hitherto be analyzed using the gas chromatograph which was then available. A Varian gas chromatograph/mass spectrometer (GC/MS) is being used to characterize these liquid products. At UCC, we completed a screening of an Engelhard support impregnated with copper and cesium. We have met or exceeded three of four catalyst development targets. Oxygenate selectivity is our main hurdle. Further, we tested the effect of replacing stainless-steel reactor preheater tubing and fittings with titanium ones. We had hoped to reduce the yield of hydrocarbons which may have been produced at high temperatures due to Fischer-Tropsch catalysis with the iron and nickel in the preheater tube walls. Results showed that total hydrocarbon space time yield was actually increased with the titanium preheater, while total alcohol space time yield was not significantly affected.« less

  9. Nuclear reactor neutron shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less

  10. Continuously-stirred anaerobic digester to convert organic wastes into biogas: system setup and basic operation.

    PubMed

    Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2012-07-13

    Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general methodology for constructing, inoculating, operating, and monitoring a CSAD system for the purpose of testing the suitability of a given organic substrate for long-term anaerobic digestion. The construction section of this article will cover building the lab-scale reactor system. The inoculation section will explain how to create an anaerobic environment suitable for seeding with an active methanogenic inoculum. The operating section will cover operation, maintenance, and troubleshooting. The monitoring section will introduce testing protocols using standard analyses. The use of these measures is necessary for reliable experimental assessments of substrate suitability for AD. This protocol should provide greater protection against a common mistake made in AD studies, which is to conclude that reactor failure was caused by the substrate in use, when really it was improper user operation.

  11. Mitigation of harmful indoor organic vapors using plug-flow unit coated with 2D g-C3N4 and metallic Cu dual-incorporated 1D titania heterostructure.

    PubMed

    Kim, Dong Jin; Jo, Wan-Kuen

    2018-07-01

    Herein, a plug-flow reactor coated with one-dimensional (1D) TiO 2 nanotube (TNT) heterostructures incorporated with g-C 3 N 4 (CN) and metallic Cu (CN/Cu/TNT) nanocomposite and irradiated by a daylight lamp was newly applied for the mitigation of harmful indoor organic vapors. The CN/Cu/TNT catalyst showed high mitigation efficiency for all target pollutants, followed by Cu-incorporated TNT (Cu/TNT), CN-incorporated TNT (CN/TNT), TNT, and TiO 2 , in that order. The order of their photocatalytic activities agrees with that of the electron‒hole separation rates determined from their photoluminescence emission spectra. The mitigation efficiency of the CN/Cu/TNT catalyst increased as the CN-to-Cu/TNT percentage was increased from 1% to 10%, but subsequently decreased as the CN-to-Cu/TNT percentage increased to 20%. The mitigation efficiencies of the CN/Cu/TNT catalyst decreased with increasing relative humidity, feed pollutant concentrations, and airstream flow rates. However, in most cases, the reaction rates of the target compounds increased when the feed concentration was increased from 1 to 5 ppm. The mineralization rates of all target pollutants were lower than the corresponding photocatalytic mitigation rates, which could be ascribed to the production of CO and organic intermediates observed during the photocatalysis of the target pollutants. Nevertheless, the intermediates formed during the photocatalytic mitigation process would not cause significant adverse health effects to building occupants, because their concentrations were far below their exposure or threshold limit values. A probable mechanism for the photocatalytic mitigation of the organic vapors by the CN/Cu/TNT catalyst under daylight illumination was also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Revisiting Coiled Flocculator Performance for Particle Aggregation.

    PubMed

    2017-09-08

    This work summarizes recent studies evaluating the torsion and curvature parameters in the flocculation efficiency using a hydraulic plug-flow flocculator named as Flocs Generator Reactor (FGR). Colloidal Fe(OH)3 and coal particles were used as suspension models and a cationic polyacrylamide was used for the flocculation. The effectiveness of the aggregation process (in the distinct curvature and torsion parameters and hydrodynamic conditions) was evaluated by the settling rate of the Fe(OH)3 flocs and flocs size by photographic analysis. Due to curvature, a secondary flow is induced and the profiles of the flow quantities differ from those for a straight pipe. Results showed that the difference in the flocculator design influences the Fe(OH)3 flocs size and settling rates, reaching values about 13 and 4 mh-1, for the coiled and straight pipes respectively. Coal flocs generation also showed to be dependent on the flocculator design and shear rate. Results showed that turbulent kinetic energy increases due to curvature when the torsion parameter is kept constant (pitch close to zero) enhancing the flocs formation.

  13. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.

    PubMed

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh

    2018-05-01

    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Mechanics Model of Plug Welding

    NASA Technical Reports Server (NTRS)

    Zuo, Q. K.; Nunes, A. C., Jr.

    2015-01-01

    An analytical model has been developed for the mechanics of friction plug welding. The model accounts for coupling of plastic deformation (material flow) and thermal response (plastic heating). The model predictions of the torque, energy, and pull force on the plug were compared to the data of a recent experiment, and the agreements between predictions and data are encouraging.

  15. 76 FR 66090 - Facility Operating License Amendment From Virginia Electric and Power Company, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... operating pressures, leakage from primary water stress corrosion cracking below the proposed limited... discussed in Regulatory Guide (RG) 1.121, ``Bases for Plugging Degraded PWR [Pressurized-Water Reactor...

  16. VRA Modeling, phase 1

    NASA Technical Reports Server (NTRS)

    Kindt, Louis M.; Mullins, Michael E.; Hand, David W.; Kline, Andrew A.

    1995-01-01

    The destruction of organic contaminants in waste water for closed systems, such as that of Space Station, is crucial due to the need for recycling the waste water. A co-current upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. The objective of this study is to develop a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate. To validate this model, a bench scale reactor has been tested at Michigan Technological University at elevated pressures (50-83 psig,) and a temperature range of 200 to 290 F. Feeds consisting of five dilute solutions of ethanol (approx. 10 ppm), chlorobenzene (approx. 20 ppb), formaldehyde (approx. 100 ppb), dimethyl sulfoxide (DMSO approx. 300 ppb), and urea (approx. 20 ppm) in water were tested individually with an oxygen mass flow rate of 0.009 lb/h. The results from these individual tests were used to develop the kinetic parameter inputs necessary for the computer model. The computer simulated results are compared to the experimental data obtained for all 5 components run in a mixture on the differential test column for a range of reactor contact times.

  17. Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow

    NASA Astrophysics Data System (ADS)

    Alam, Meheboob; Arakeri, V. H.; Nott, P. R.; Goddard, J. D.; Herrmann, H. J.

    2005-01-01

    Linear stability theory and bifurcation analysis are used to investigate the role of gravity in shear-band formation in granular Couette flow, considering a kinetic-theory rheological model. We show that the only possible state, at low shear rates, corresponds to a "plug" near the bottom wall, in which the particles are densely packed and the shear rate is close to zero, and a uniformly sheared dilute region above it. The origin of such plugged states is shown to be tied to the spontaneous symmetry-breaking instabilities of the gravity-free uniform shear flow, leading to the formation of ordered bands of alternating dilute and dense regions in the transverse direction, via an infinite hierarchy of pitchfork bifurcations. Gravity plays the role of an "imperfection", thus destroying the "perfect" bifurcation structure of uniform shear. The present bifurcation problem admits universal unfolding of pitchfork bifurcations which subsequently leads to the formation of a sequence of a countably infinite number of "isolas", with the solution structures being a modulated version of their gravity-free counterpart. While the solution with a plug near the bottom wall looks remarkably similar to the shear-banding phenomenon in dense slow granular Couette flows, a "floating" plug near the top wall is also a solution of these equations at high shear rates. A two-dimensional linear stability analysis suggests that these floating plugged states are unstable to long-wave travelling disturbances.The unique solution having a bottom plug can also be unstable to long waves, but remains stable at sufficiently low shear rates. The implications and realizability of the present results are discussed in the light of shear-cell experiments under "microgravity" conditions.

  18. Mitigation of Syngas Cooler Plugging and Fouling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bockelie, Michael J.

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling ofmore » the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better understanding of deposit formation mechanisms; • performing Techno-Economic-Analysis for a representative IGCC plant to investigate the impact on plant economics, in particular the impacts on the Cost of Electricity (COE), due to plant shutdowns caused by syngas cooler plugging and fouling and potential benefits to plant economics of developing strategies to mitigate syngas cooler fouling; and • performing modeling and pilot scale tests to investigate the potential benefits of using a sorbent (fuel additive) to capture the vaporized metals that result in syngas cooler fouling. All project milestones for BP 1 and BP 2 were achieved. DOE was provided a briefing on our accomplishments in BP1 and BP2 and our proposed plans for Budget Period 3 (BP 3). Based on our research the mitigation technology selected to investigate in BP 3 was the use of a sorbent that can be injected into the gasifier with the fuel slurry to capture vaporized metals that lead to the deposit formation in the syngas cooler. The work effort proposed for BP 3 would have focused on addressing concerns raised by gasification industry personnel for the impacts on gasifier performance of sorbent injection, so that at the end of BP 3 the use of sorbent injection would be at “pre-commercial” stage and ready for use in a Field Demonstration that could be funded by industry or DOE. A Budget Continuation Application (BCA) was submitted to obtain funding for BP3 DOE but DOE chose to not fund the proposed BP3 effort.« less

  19. Effects of gravity, inertia, and surfactant on steady plug propagation in a two-dimensional channel

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Fujioka, H.; Grotberg, J. B.

    2007-08-01

    Liquid plugs may form in pulmonary airways during the process of liquid instillation or removal in many clinical treatments. Studies have shown that the effectiveness of these treatments may depend on how liquids distribute in the lung. Better understanding of the fundamental fluid mechanics of liquid plug transport will facilitate treatment strategies. In this paper, we develop a numerical model of steady plug propagation driven by gravity and pressure in a two-dimensional liquid-lined channel oriented at an angle α with respect to gravity. We investigate the effects of gravity through the Bond number, Bo, and α; the plug propagation speed through the capillary number, Ca, or the Reynolds number, Re; the plug length LP, and the surfactant concentration C0. Without gravity, i.e., Bo =0, the plug is symmetric, and there are two regimes for the flow: two wall layers and two trapped vortices in the core. There is no flow interaction between the upper and lower half plug domains. When Bo ≠0 and α ≠0, π, fluid is found to flow from the upper precursor film, through the core and into the lower trailing film. Then the number of vortices can be zero, one, or two, depending on the flow parameters. The vortices have stagnation points on the interface when C0=0, however when the surfactant is present (C0>0), the vortices detach from the interface and create saddle points inside the core. The front meniscus develops a capillary surface wave extending into the precursor film. This is where the film is thinnest and thus the wall shear stress is highest, as high as ˜100dyn /cm2 in adult airways, which indicates a significant risk of pulmonary airway epithelial cell damage. Adding surfactant can decrease the peak magnitude of the shear stress, thus reducing the risk of cell damage. The prebifurcation asymmetry of the plug is quantified by the volume ratio, Vr, defined as the ratio of the liquid above to that below the center line of the channel. Vr is found to increase with LP, Ca, Re, and C0, while it decreases with Bo. The total mass left behind in the trailing films increases with Bo for any α at α >2π/5, Ca and α for any value of Bo >0.

  20. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    PubMed Central

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m3 d−1 for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation. PMID:24822190

  1. Modified septic tank-anaerobic filter unit as a two-stage onsite domestic wastewater treatment system.

    PubMed

    Sharma, Meena Kumari; Khursheed, Anwar; Kazmi, Absar Ahmad

    2014-01-01

    This study demonstrates the performance evaluation of a uniquely designed two-stage system for onsite treatment of domestic wastewater. The system consisted of two upflow anaerobic bioreactors, a modified septic tank followed by an upflow anaerobic filter, accommodated within a single cylindrical unit. The system was started up without inoculation at 24 h hydraulic retention time (HRT). It achieved a steady-state condition after 120 days. The system was observed to be remarkably efficient in removing pollutants during steady-state condition with the average removal efficiency of 88.6 +/- 3.7% for chemical oxygen demand, 86.3 +/- 4.9% for biochemical oxygen demand and 91.2 +/- 9.7% for total suspended solids. The microbial analysis revealed a high reduction (>90%) capacity of the system for indicator organism and pathogens. It also showed a very good endurance against imposed hydraulic shock load. Tracer study showed that the flow pattern was close to plug flow reactor. Mean HRT was also found to be close to the designed value.

  2. Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces.

    PubMed

    Shu, Shi; Morrison, Glenn C

    2011-05-15

    Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.

  3. Core disruptive accident margin seal

    DOEpatents

    Garin, John

    1978-01-01

    An apparatus for sealing the annulus defined between a substantially cylindrical rotatable first riser assembly and plug combination disposed in a substantially cylindrical second riser assembly and plug combination of a nuclear reactor system. The apparatus comprises a flexible metal member having a first side attached to one of the riser components and a second side extending toward the other riser component and an actuating mechanism attached to the flexible metal member while extending to an accessible location. When the actuating mechanism is not activated, the flexible metal member does not contact the other riser component thus allowing the free rotation of the riser assembly and plug combination. When desired, the actuating mechanism causes the second side of the flexible metal member to contact the other riser component thereby sealing the annulus between the components.

  4. Dual-shank attachment design for omega seals

    DOEpatents

    Sattinger, Stanley S.

    1978-01-01

    An improved apparatus and process for attaching welded omega seal segments to reactor heads, standpipes, mechanisms, and plugs comprises a first shank in combination with a second shank to attach an omega seal at a metal-to-metal interface.

  5. Percutaneous treatment of a duodenocutaneous high-flow fistula using a new biological plug

    PubMed Central

    Vallejo, Eduardo Crespo; Martinez-Galdamez, Mario; Del Olmo Martínez, Lourdes; Brunet, Eduardo Crespo; Martin, Ernesto Santos

    2015-01-01

    Enterocutaneous fistula is a challenging entity and a gold-standard treatment is not settled so far. Here, we describe the successful closure of a duodenocutaneous fistula with the use of the Biodesign enterocutaneous fistula plug (Cook Medical), which is derived from a biological plug that has been used in recent years in order to close anorectal fistula tracts. PMID:25835076

  6. CFD analysis of laboratory scale phase equilibrium cell operation

    NASA Astrophysics Data System (ADS)

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process.: Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  7. CFD analysis of laboratory scale phase equilibrium cell operation.

    PubMed

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  8. Clearance of a Mucus Plug

    NASA Astrophysics Data System (ADS)

    Bian, Shiyao; Zheng, Ying; Grotberg, James B.

    2008-11-01

    Mucus plugging may occur in pulmonary airways in asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. How to clear the mucus plug is essential and of fundamental importance. Mucus is known to have a yield stress and a mucus plug behaves like a solid plug when the applied stresses are below its yield stress τy. When the local stresses reaches τy, the plug starts to move and can be cleared out of the lung. It is then of great importance to examine how the mucus plug deforms and what is the minimum pressure required to initiate its movement. The present study used the finite element method (FEM) to study the stress distribution and deformation of a solid mucus plug under different pressure loads using ANSYS software. The maximum shear stress is found to occur near the rear transition region of the plug, which can lead to local yielding and flow. The critical pressure increases linearly with the plug length and asymptotes when the plug length is larger than the half channel width. Experimentally a mucus simulant is used to study the process of plug deformation and critical pressure difference required for the plug to propagate. Consistently, the fracture is observed to start at the rear transition region where the plug core connects the films. However, the critical pressure is observed to be dependent on not only the plug length but also the interfacial shape.

  9. Solar Cell Modules With Improved Backskin

    DOEpatents

    Chevrefils, Andre; Grigore, Daniel Gheorghe

    2001-01-23

    The present invention relates to gas turbines and more particularly to a device for controlling the flow of cooling air through a flowpath in a turbine blade. The device can be inserted in the inlet opening of the blade flowpath and be retained therein. The device comprises a plug member for adjusting the flow of cooling air through the flowpath. The plug member comprises a retaining portion for retaining the plug member at the inlet opening of the flowpath and a blocking portion inserted within the flowpath for reducing the cross-sectional area of the inlet opening. Such a device is inexpensive and can be easily inserted in the inlet opening of a blade flowpath and retained therein.

  10. The automation of an inlet mass flow control system

    NASA Technical Reports Server (NTRS)

    Supplee, Frank; Tcheng, Ping; Weisenborn, Michael

    1989-01-01

    The automation of a closed-loop computer controlled system for the inlet mass flow system (IMFS) developed for a wind tunnel facility at Langley Research Center is presented. This new PC based control system is intended to replace the manual control system presently in use in order to fully automate the plug positioning of the IMFS during wind tunnel testing. Provision is also made for communication between the PC and a host-computer in order to allow total animation of the plug positioning and data acquisition during the complete sequence of predetermined plug locations. As extensive running time is programmed for the IMFS, this new automated system will save both manpower and tunnel running time.

  11. Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application.

    PubMed

    Wu, Wenming; Kang, Kyung-Tae; Lee, Nae Yoon

    2011-06-07

    Bubble formation inside a microscale channel is a significant problem in general microfluidic experiments. The problem becomes especially crucial when performing a polymerase chain reaction (PCR) on a chip which is subject to repetitive temperature changes. In this paper, we propose a bubble-free sample injection scheme applicable for continuous-flow PCR inside a glass/PDMS hybrid microfluidic chip, and attempt to provide a theoretical basis concerning bubble formation and elimination. Highly viscous paraffin oil plugs are employed in both the anterior and posterior ends of a sample plug, completely encapsulating the sample and eliminating possible nucleation sites for bubbles. In this way, internal channel pressure is increased, and vaporization of the sample is prevented, suppressing bubble formation. Use of an oil plug in the posterior end of the sample plug aids in maintaining a stable flow of a sample at a constant rate inside a heated microchannel throughout the entire reaction, as compared to using an air plug. By adopting the proposed sample injection scheme, we demonstrate various practical applications. On-chip continuous-flow PCR is performed employing genomic DNA extracted from a clinical single hair root sample, and its D1S80 locus is successfully amplified. Also, chip reusability is assessed using a plasmid vector. A single chip is used up to 10 times repeatedly without being destroyed, maintaining almost equal intensities of the resulting amplicons after each run, ensuring the reliability and reproducibility of the proposed sample injection scheme. In addition, the use of a commercially-available and highly cost-effective hot plate as a potential candidate for the heating source is investigated.

  12. Static Gas-Charging Plug

    NASA Technical Reports Server (NTRS)

    Indoe, William

    2012-01-01

    A gas-charging plug can be easily analyzed for random vibration. The design features two steeped O-rings in a radial configuration at two different diameters, with a 0.050-in. (.1.3-mm) diameter through-hole between the two O-rings. In the charging state, the top O-ring is engaged and sealing. The bottom O-ring outer diameter is not squeezed, and allows air to flow by it into the tank. The inner diameter is stretched to plug the gland diameter, and is restrained by the O-ring groove. The charging port bushing provides mechanical stop to restrain the plug during gas charge removal. It also prevents the plug from becoming a projectile when removing gas charge from the accumulator. The plug can easily be verified after installation to ensure leakage requirements are met.

  13. Landscape assessment of side channel plugs and associated cumulative side channel attrition across a large river floodplain.

    PubMed

    Reinhold, Ann Marie; Poole, Geoffrey C; Bramblett, Robert G; Zale, Alexander V; Roberts, David W

    2018-04-24

    Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small "anthropogenic plugs" (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.

  14. Critical Propulsion and Noise reduction Technologies for Future Commercial Subsonic Engines. Area of Interest 14.3: Separate Flow Exhaust System Noise

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Brausch, J. F.; Gliebe, P. R.; Coffin, R. S.; Martens, S.; Delaney, B. R.; Dalton, W. N.; Mengle, V. G.

    2000-01-01

    This presentation discusses: Project Objectives, Approach and Goal; Baseline Nozzles and Test Cycle Definition; Repeatability and Baseline Nozzle Results; Noise Reduction Concepts; Noise Reduction Tests Configurations of BPR=5 Internal Plug Nozzle adn Acoustic Results; Noise Reduction Test Configurations of BPR=5 External Plug Nozzle and Acoustic Results; and Noise Reduction Tests Configurations of BPR=8 External Plug Nozzle and Acoustic Results.

  15. Initial Study of Friction Pull Plug Welding

    NASA Technical Reports Server (NTRS)

    Rich, Brian S.

    1999-01-01

    Pull plug friction welding is a new process being developed to conveniently eliminate defects from welded plate tank structures. The general idea is to drill a hole of precise, optimized dimensions and weld a plug into it, filling the hole perfectly. A conically-shaped plug is rotated at high angular velocity as it is brought into contact with the plate material in the hole. As the plug is pulled into the hole, friction rapidly raises the temperature to the point at which the plate material flows plastically. After a brief heating phase, the plug rotation is terminated. The plug is then pulled upon with a forging force, solidly welding the plug into the hole in the plate. Three aspects of this process were addressed in this study. The transient temperature distribution was analyzed based on slightly idealized boundary conditions for different plug geometries. Variations in hole geometry and ram speed were considered, and a program was created to calculate volumes of displaced material and empty space, as well as many other relevant dimensions. The relation between the axially applied forging force and the actual forging pressure between the plate and plug surfaces was determined for various configurations.

  16. Nitrogen management in reservoir catchments through constructed wetland systems.

    PubMed

    Tunçiper, B; Ayaz, S C; Akça, L; Samsunlu, A

    2005-01-01

    In this study, nitrogen removal was investigated in pilot-scale subsurface flow (SSF) and in free water surface flow (FWS) constructed wetlands installed in the campus of TUBITAK-Marmara Research Center, Gebze, near Istanbul, Turkey. The main purposes of this study are to apply constructed wetlands for the protection of water reservoirs and to reuse wastewater. Experiments were carried out at continuous flow reactors. The effects of the type of plants on the removal were investigated by using emergent (Canna, Cyperus, Typhia spp., Phragmites spp., Juncus, Poaceae, Paspalum and Iris.), submerged (Elodea, Egeria) and floating (Pistia, Salvina and Lemna) marsh plants at different conditions. During the study period HLRs were 30, 50, 70, 80 and 120 L m(2)d(-1) respectively. The average annual NH4-N, NO(3)-N, organic N and TN treatment efficiencies in SSF and FWS wetlands are 81% and 68%, 37% and 49%, 75% and 68%, 47% and 53%, respectively. Nitrification, denitrification and ammonification rate constant (k20) values in SSF and FNS systems have been found as 0.898 d(-1) and 0.541 d(-1), 0.488 d(-1) and 0.502 d(-1), 0.986 d(-1) and 0.908 respectively. Two types of the models (first-order plug flow and multiple regression) were tried to estimate the system performances.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The objective of Task 1 is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extender and octane enhancers. Task 1 is subdivided into three separate subtasks: laboratory and equipment setup; catalysis research; and reaction engineering and modeling. Research at West Virginia University (WVU) is focused on molybdenum-based catalysts for higher alcohol synthesis. Parallel research carried out at Union Carbide Corporation (UCC) is focused on transition-metal-oxide catalysts. During this time period, at WVU, we tried several methods to eliminate problems related to condensation of heavier products whenmore » reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C catalysts. We have also obtained same preliminary results in our attempts to analyze quantitatively the temperature-programmed reduction spectra for C- supported Mo-based catalysts. We have completed the kinetic study for the sulfided Co-K-MoS{sub 2}/C catalyst. We have compared the results of methanol synthesis using the membrane reactor with those using a simple plug-flow reactor. At UCC, the complete characterization of selected catalysts has been completed. The results suggest that catalyst pretreatment under different reducing conditions yield different surface compositions and thus different catalytic reactivities.« less

  18. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems.

    PubMed

    Huh, Dongeun; Fujioka, Hideki; Tung, Yi-Chung; Futai, Nobuyuki; Paine, Robert; Grotberg, James B; Takayama, Shuichi

    2007-11-27

    We describe a microfabricated airway system integrated with computerized air-liquid two-phase microfluidics that enables on-chip engineering of human airway epithelia and precise reproduction of physiologic or pathologic liquid plug flows found in the respiratory system. Using this device, we demonstrate cellular-level lung injury under flow conditions that cause symptoms characteristic of a wide range of pulmonary diseases. Specifically, propagation and rupture of liquid plugs that simulate surfactant-deficient reopening of closed airways lead to significant injury of small airway epithelial cells by generating deleterious fluid mechanical stresses. We also show that the explosive pressure waves produced by plug rupture enable detection of the mechanical cellular injury as crackling sounds.

  19. Congenital extrahepatic portosystemic shunt (Abernethy malformation) treated endovascularly with vascular plug shunt closure.

    PubMed

    Passalacqua, Matthew; Lie, Kevin T; Yarmohammadi, Hooman

    2012-01-01

    A 3-year-old boy, who presented with progressive cyanosis and hypoxia, was diagnosed with a large congenital extrahepatic portosystemic shunt, interrupted IVC with azygos continuation, and multiple congenital anomalies. Traditionally open and laparoscopic surgical techniques have been used to treat this malformation. Endovascular repair using a 16-mm Amplatzer vascular plug (AGA Medical Corporation, Golden Valley, Minnesota, USA) was used to occlude the shunt. Immediate post-placement venography demonstrated cessation of flow within the shunt and increased portal venous flow. The patient's hypoxia and cyanosis decreased significantly, and he was discharged on the 5th post-procedure day in stable clinical condition. Three months follow-up evaluation demonstrated the vascular plug in place, unchanged in position.

  20. Selenium concentrations in the Colorado pikeminnow (Ptychocheilus lucius): Relationship with flows in the upper Colorado River

    USGS Publications Warehouse

    Osmundson, B.C.; May, T.W.; Osmundson, D.B.

    2000-01-01

    A Department of the Interior (DOI) irrigation drainwater study of the Uncompahgre Project area and the Grand Valley in western Colorado revealed high selenium concentrations in water, sediment, and biota samples. The lower Gunnison River and the Colorado River in the study area are designated critical habitat for the endangered Colorado pikeminnow (Ptychocheilus lucius) and razorback sucker (Xyrauchen texanus). Because of the endangered status of these fish, sacrificing individuals for tissue residue analysis has been avoided; consequently, little information existed regarding selenium tissue residues. In 1994, muscle plugs were collected from a total of 39 Colorado pikeminnow captured at various Colorado River sites in the Grand Valley for selenium residue analysis. The muscle plugs collected from 16 Colorado pikeminnow captured at Walter Walker State Wildlife Area (WWSWA) contained a mean selenium concentration of 17 ??g/g dry weight, which was over twice the recommended toxic threshold guideline concentration of 8 ??g/g dry weight in muscle tissue for freshwater fish. Because of elevated selenium concentrations in muscle plugs in 1994, a total of 52 muscle plugs were taken during 1995 from Colorado pikeminnow staging at WWSWA. Eleven of these plugs were from fish previously sampled in 1994. Selenium concentrations in 9 of the 11 recaptured fish were significantly lower in 1995 than in 1994. Reduced selenium in fish may in part be attributed to higher instream flows in 1995 and lower water selenium concentrations in the Colorado River in the Grand Valley. In 1996, muscle plugs were taken from 35 Colorado squawfish captured at WWSWA, and no difference in mean selenium concentrations were detected from those sampled in 1995. Colorado River flows during 1996 were intermediate to those measured in 1994 and 1995.

  1. Selenium concentrations in the Colorado pikeminnow (Ptychocheilus lucius): relationship with flows in the upper Colorado River.

    PubMed

    Osmundson, B C; May, T W; Osmundson, D B

    2000-05-01

    A Department of the Interior (DOI) irrigation drainwater study of the Uncompahgre Project area and the Grand Valley in western Colorado revealed high selenium concentrations in water, sediment, and biota samples. The lower Gunnison River and the Colorado River in the study area are designated critical habitat for the endangered Colorado pikeminnow (Ptychocheilus lucius) and razorback sucker (Xyrauchen texanus). Because of the endangered status of these fish, sacrificing individuals for tissue residue analysis has been avoided; consequently, little information existed regarding selenium tissue residues. In 1994, muscle plugs were collected from a total of 39 Colorado pikeminnow captured at various Colorado River sites in the Grand Valley for selenium residue analysis. The muscle plugs collected from 16 Colorado pikeminnow captured at Walter Walker State Wildlife Area (WWSWA) contained a mean selenium concentration of 17 microg/g dry weight, which was over twice the recommended toxic threshold guideline concentration of 8 microg/g dry weight in muscle tissue for freshwater fish. Because of elevated selenium concentrations in muscle plugs in 1994, a total of 52 muscle plugs were taken during 1995 from Colorado pikeminnow staging at WWSWA. Eleven of these plugs were from fish previously sampled in 1994. Selenium concentrations in 9 of the 11 recaptured fish were significantly lower in 1995 than in 1994. Reduced selenium in fish may in part be attributed to higher instream flows in 1995 and lower water selenium concentrations in the Colorado River in the Grand Valley. In 1996, muscle plugs were taken from 35 Colorado squawfish captured at WWSWA, and no difference in mean selenium concentrations were detected from those sampled in 1995. Colorado River flows during 1996 were intermediate to those measured in 1994 and 1995.

  2. Flow equation for porous plug and capillary tube flow restrictors

    NASA Technical Reports Server (NTRS)

    Davis, W. S.

    1972-01-01

    Development of flow measuring apparatus for determining low flow performance of resistojet thruster is discussed. Diagram of test equipment is presented. Operation of test equipment is described and numerical relationships are explained.

  3. Velocity profiles and plug zones in a free surface viscoplastic flow : experimental study and comparison to shallow flow models

    NASA Astrophysics Data System (ADS)

    Freydier, Perrine; Chambon, Guillaume; Naaim, Mohamed

    2016-04-01

    Rheological studies concerning natural muddy debris flows have shown that these materials can be modelled as non-Newtonian viscoplastic fluids. These complex flows are generally represented using models based on a depth-integrated approach (Shallow Water) that take into account closure terms depending on the shape of the velocity profile. But to date, there is poor knowledge about the shape of velocity profiles and the position of the interface between sheared and unsheared regions (plug) in these flows, especially in the vicinity of the front. In this research, the internal dynamics of a free-surface viscoplastic flow down an inclined channel is investigated and compared to the predictions of a Shallow Water model based on the lubrication approximation. Experiments are conducted in an inclined channel whose bottom is constituted by an upward-moving conveyor belt with controlled velocity, which allows generating and observing gravity-driven stationary surges in the laboratory frame. Carbopol microgel has been used as a homogeneous and transparent viscoplastic fluid. High-resolution measurements of velocity field is performed through optical velocimetry techniques both in the uniform zone and within the front zone where flow thickness is variable and where recirculation takes place. Specific analyses have been developed to determine the position of the plug within the surge. Flow height is accessible through image processing and ultrasonic sensors. Sufficiently far from the front, experimental results are shown to be in good agreement with theoretical predictions regarding the velocity profiles and the flow height evolution. In the vicinity of the front, however, analysis of measured velocity profiles shows an evolution of the plug different from that predicted by lubrication approximation. Accordingly, the free surface shape also deviates from the predictions of the classical Shallow Water model. These results highlight the necessity to take into account higher-order corrective terms in Shallow Water models in order to better account for the internal dynamics of the fluid layer.

  4. The Mars Development of a Micro-Isolation Valve

    NASA Technical Reports Server (NTRS)

    Mueller, Juergen; Vargo, Steven; Forgrave, John; Bame, David; Chakraborty, Indrani; Tang, William

    1999-01-01

    A feasibility investigation for a newly proposed microfabricated, normally-closed isolation valve was initiated. The micro-isolation valve is silicon based and relies on the principle of melting a silicon plug, opening an otherwise sealed flow passage. This valve may thus serve a similar role as a conventional pyrovalve and is intended for use in micropropulsion systems onboard future microspacecraft, having wet masses of no more than 10-20 kg, as well as in larger scale propulsion systems having only low flow rate requirements, such as ion propulsion or Hall thruster systems. Two key feasibility issues - melting of the plug and pressure handling capability - were addressed. Thermal finite element modeling showed that valves with plugs having widths between 10 and 50 gm have power requirements of only 10 . 30 Watts to open over a duration of 0.5 ms or less. Valve chips featuring 5 0 micron plugs were burst pressure tested and reached maximum pressure values o f 2900 psig (19.7 Mpa).

  5. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seapan, M.; Crynes, B.L.; Dale, S.

    The objectives of this study were to analyze alternate crudes kinetic hydrotreatment data in the literature, develop a mathematical model for interpretation of these data, develop an experimental procedure and apparatus to collect accurate kinetic data, and finally, to combine the model and experimental data to develop a general model which, with a few experimental parameters, could be used in design of future hydrotreatment processes. These objectives were to cover a four year program (1980 to 1984) and were subjective to sufficient funding. Only partial funding has been available thus far to cover activities for two years. A hydrotreatment datamore » base is developed which contains over 2000 citations, stored in a microcomputer. About 50% of these are reviewed, classified and can be identified by feedstock, catalyst, reactor type and other process characteristics. Tests of published hydrodesulfurization data indicate the problems with simple n-th order, global kinetic models, and point to the value of developing intrinsic reaction kinetic models to describe the reaction processes. A Langmuir-Hinshelwood kinetic model coupled with a plug flow reactor design equation has been developed and used for published data evaluation. An experimental system and procedure have been designed and constructed, which can be used for kinetic studies. 30 references, 4 tables.« less

  7. Core disruptive accident margin seal

    DOEpatents

    Golden, Martin P.

    1979-01-01

    Apparatus for sealing the annulus defined within a substantially cylindrical rotatable riser assembly and plug combination of a nuclear reactor closure head. The apparatus comprises an inflatable sealing mechanism disposed in one portion of the riser assembly near the annulus such that upon inflation the sealing mechanism is radially actuated against the other portion of the riser assembly thereby sealing the annulus. The apparatus further comprises a connecting mechanism which places one end of the sealing mechanism in fluid communication with the reactor cover gas so that overpressurization of the reactor cover gas will increase the radial actuation of the sealing mechanism thus enhancing sealing of the annulus.

  8. RADIATION FACILITY FOR NUCLEAR REACTORS

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1961-12-12

    A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

  9. Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles

    NASA Astrophysics Data System (ADS)

    Guo, C. Q.; Zhang, C. H.; Païdoussis, M. P.

    2010-07-01

    Considering the non-uniformity of the flow velocity distribution in fluid-conveying pipes caused by the viscosity of real fluids, the centrifugal force term in the equation of motion of the pipe is modified for laminar and turbulent flow profiles. The flow-profile-modification factors are found to be 1.333, 1.015-1.040 and 1.035-1.055 for laminar flow in circular pipes, turbulent flow in smooth-wall circular pipes and turbulent flow in rough-wall circular pipes, respectively. The critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%, 0.74-1.9% and 1.7-2.6%, respectively, lower than that with plug flow, while those for flutter are even lower, which could reach 36% for the laminar flow profile. By introducing two new concepts of equivalent flow velocity and equivalent mass, fluid-conveying pipe problems with different flow profiles can be solved with the equation of motion for plug flow.

  10. Experimental Investigation of Shock-Cell Noise Reduction for Single Stream Nozzles in Simulated Flight

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Brausch, J. F.; Balsa, T. F.; Janardan, B. A.; Knott, P. R.

    1984-01-01

    Seven single stream model nozzles were tested in the Anechoic Free-Jet Acoustic Test Facility to evaluate the effectiveness of convergent divergent (C-D) flowpaths in the reduction of shock-cell noise under both static and mulated flight conditions. The test nozzles included a baseline convergent circular nozzle, a C-D circular nozzle, a convergent annular plug nozzle, a C-D annular plug nozzle, a convergent multi-element suppressor plug nozzle, and a C-D multi-element suppressor plug nozzle. Diagnostic flow visualization with a shadowgraph and aerodynamic plume measurements with a laser velocimeter were performed with the test nozzles. A theory of shock-cell noise for annular plug nozzles with shock-cells in the vicinity of the plug was developed. The benefit of these C-D nozzles was observed over a broad range of pressure ratiosin the vicinity of their design conditions. At the C-D design condition, the C-D annual nozzle was found to be free of shock-cells on the plug.

  11. Integrated geophysical surveys for mapping lati-andesite intrusive bodies, Chino Valley, Arizona

    USGS Publications Warehouse

    El-Kaliouby, Hesham; Sternberg, Ben K.; Hoffmann, John P.; Langenheim, V.E.

    2012-01-01

    Three different geophysical methods (magnetic, transient electromagnetic (TEM) and gravity) were used near Chino Valley, Arizona, USA in order to map a suspected lati-andesite intrusive body (plug) previously located by interpretation of aeromagnetic data. The magnetic and TEM surveys provided the best indication of the location and depth of the plug. The north-south spatial extent of this plug was estimated to be approximately 600 meters. The depth to the top of the plug was found from the TEM survey to be approximately 350 meters near the center of the survey. The location of the plug defined by the ground magnetic data is consistent with that from the TEM data. Gravity data mostly image the basin-basement interface with a small contribution from the plug of about 0.5 mGal. Results from this investigation can be used to help define the irregular subsurface topography caused by several intrusive lati-andesite plugs that could influence groundwater flow in the area.

  12. Mixing regime as a key factor to determine DON formation in drinking water biological treatment.

    PubMed

    Lu, Changqing; Li, Shuai; Gong, Song; Yuan, Shoujun; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) can act as precursor of nitrogenous disinfection by-products formed during chlorination disinfection. The performances of biological fluidized bed (continuous stirred tank reactor, CSTR) and bio-ceramic filters (plug flow reactor, PFR) were compared in this study to investigate the influence of mixing regime on DON formation in drinking water treatment. In the shared influent, DON ranged from 0.71mgL(-1) to 1.20mgL(-1). The two biological fluidized bed reactors, named BFB1 (mechanical stirring) and BFB2 (air agitation), contained 0.12 and 0.19mgL(-1) DON in their effluents, respectively. Meanwhile, the bio-ceramic reactors, labeled as BCF1 (no aeration) and BCF2 (with aeration), had 1.02 and 0.81mgL(-1) DON in their effluents, respectively. Comparative results showed that the CSTR mixing regime significantly reduced DON formation. This particular reduction was further investigated in this study. The viable/total microbial biomass was determined with propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) and qPCR, respectively. The results of the investigation demonstrated that the microbes in BFB2 had higher viability than those in BCF2. The viable bacteria decreased more sharply than the total bacteria along the media depth in BCF2, and DON in BCF2 accumulated in the deeper media. These phenomena suggested that mixing regime determined DON formation by influencing the distribution of viable, total biomass, and ratio of viable biomass to total biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Heat-Transfer Characteristics of Partially Film Cooled Plug Nozzle on a J-85 Afterburning Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Nosek, S. M.; Straight, D. M.

    1976-01-01

    Plug nozzle film cooling data were obtained downstream of a slot located at 42 percent of the total plug length on a J-85 engine. Film cooling reduced the aft end wall temperature as much as 150 K, reduced total pressure loss in the upstream convection cooling passages by 50 percent, and reduced estimated compressor bleed flow requirement by 14 percent compared to an all convectively cooled nozzle. Shock waves along the plug surface strongly influenced temperature distributions on both convection and film cooled portions. The effect was most severe at nozzle pressure ratios below 10 where adverse pressure gradients were most severe.

  14. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Annunzio, Julie; Slezak, Lee; Conley, John Jason

    2014-03-26

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology andmore » interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.« less

  15. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    NASA Astrophysics Data System (ADS)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  16. Analysis of digester design concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashare, E.; Wilson, E. H.

    1979-01-29

    Engineering economic analyses were performed on various digester design concepts to determine the relative performance for various biomass feedstocks. A comprehensive literature survey describing the state-of-the-art of the various digestion designs is included. The digester designs included in the analyses are CSTR, plug flow, batch, CSTR in series, multi-stage digestion and biomethanation. Other process options investigated included pretreatment processes such as shredding, degritting, and chemical pretreatment, and post-digestion processes, such as dewatering and gas purification. The biomass sources considered include feedlot manure, rice straw, and bagasse. The results of the analysis indicate that the most economical (on a unit gasmore » cost basis) digester design concept is the plug flow reactor. This conclusion results from this system providing a high gas production rate combined with a low capital hole-in-the-ground digester design concept. The costs determined in this analysis do not include any credits or penalties for feedstock or by-products, but present the costs only for conversion of biomass to methane. The batch land-fill type digester design was shown to have a unit gas cost comparable to that for a conventional stirred tank digester, with the potential of reducing the cost if a land-fill site were available for a lower cost per unit volume. The use of chemical pretreatment resulted in a higher unit gas cost, primarily due to the cost of pretreatment chemical. A sensitivity analysis indicated that the use of chemical pretreatment could improve the economics provided a process could be developed which utilized either less pretreatment chemical or a less costly chemical. The use of other process options resulted in higher unit gas costs. These options should only be used when necessary for proper process performance, or to result in production of a valuable by-product.« less

  17. Amplatzer vascular plug as an embolic agent in different vascular pathologies: A pictorial essay

    PubMed Central

    Tresley, Jonathan; Bhatia, Shivank; Kably, Issam; Poozhikunnath Mohan, Prasoon; Salsamendi, Jason; Narayanan, Govindarajan

    2016-01-01

    The Amplatzer Vascular Plug (AVP) is a cylindrical plug made of self-expanding nitinol wire mesh with precise delivery control, which can be used for a variety of vascular pathologies. An AVP is an ideal vascular occlusion device particularly in high-flow vessels, where there is high risk of migration and systemic embolization with traditional occlusion devices. We performed 28 embolizations using the AVP from 2009 to 2014 and achieved complete occlusion without complications. PMID:27413276

  18. Successful transcatheter closure of a congenital high-flow portosystemic venous shunt with the Amplatzer vascular plug II.

    PubMed

    Guneyli, Serkan; Cinar, Celal; Bozkaya, Halil; Parildar, Mustafa; Oran, Ismail; Akin, Yigit

    2012-12-01

    Congenital portosystemic venous shunt is extremely rare and should be treated. Advances in treatment techniques allow for patients to be treated safely. We present a 9-year-old boy with a large congenital portosystemic venous shunt. The shunt was occluded interventionally with the Amplatzer vascular plug II. Our case was unique with its clinical manifestation, the use of a 22-mm Amplatzer vascular plug II, and the presence of the patient's 1-year follow-up.

  19. Quasi-Porous Plug With Vortex Chamber

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1985-01-01

    Pressure-letdown valve combines quasi-porous-plug and vortex-chamber in one controllable unit. Valve useful in fossil-energy plants for reducing pressures in such erosive two-phase process streams as steam/water, coal slurries, or combustion gases with entrained particles. Quasi-Porous Plug consists of plenums separated by perforated plates. Number or size of perforations increases with each succeeding stage to compensate for expansion. In Vortex Chamber, control flow varies to control swirl and therefore difference between inlet and outlet pressures.

  20. Annular flow diverter valve

    DOEpatents

    Rider, Robert L.

    1980-01-01

    A valve for diverting flow from the center of two concentric tubes to the annulus between the tubes or, operating in the reverse direction, for mixing fluids from concentric tubes into a common tube and for controlling the volume ratio of said flow consists of a toroidal baffle disposed in sliding engagement with the interior of the inner tube downstream of a plurality of ports in the inner tube, a plurality of gates in sliding engagement with the interior of the inner tube attached to the baffle for movement therewith, a servomotor having a bullet-shaped plug on the downstream end thereof, and drive rods connecting the servomotor to the toroidal baffle, the servomotor thereby being adapted to move the baffle into mating engagement with the bullet-shaped plug and simultaneously move the gates away from the ports in the inner tube and to move the baffle away from the bullet-shaped plug and simultaneously move the gates to cover the ports in the inner tube.

  1. Measurement and Control of Electroosmotic Flow in Plastic Microchannels

    NASA Astrophysics Data System (ADS)

    Ross, David; Barker, Susan; Waddell, Emanuel; Johnson, Tim; Locascio, Laurie

    2000-11-01

    We have measured electroosmotic flow profiles in microchannels fabricated in a variety of commercially available plastics by imprinting using a silicon template and by UV laser ablation. It is possible to achieve nearly ideal plug flow profiles in straight imprinted channels made entirely of one material. In contrast, electroosmotic flow in imprinted channels constructed from two different materials and in channels fabricated using laser ablation show deviations from ideal plug flow resulting from non-uniformity of the surface charge density on the walls of the channels. We have also explored strategies for controlling electroosmotic flow through modification of the surface charge density. The techniques used to alter surface charge include the deposition of polyelectrolyte multilayers on channel surfaces and the use of combinations of imprinting and laser ablation in the fabrication of the channels. We will discuss the effectiveness of these strategies for controlling flow, sample dispersion, and mixing.

  2. Oxidation kinetics of model compounds of metabolic waste in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.

    1990-01-01

    In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dong; Xu, Pinghong; Browning, Nigel D.

    The initial steps of rhodium cluster formation from zeolite-supported mononuclear Rh(C2H4)2 complexes in H2 at 373 K and 1 bar were investigated by infrared and extended X-ray absorption fine structure spectroscopies and scanning transmission electron microscopy (STEM). The data show that ethylene ligands on the rhodium react with H2 to give supported rhodium hydrides and trigger the formation of rhodium clusters. STEM provided the first images of the smallest rhodium clusters (Rh2) and their further conversion into larger clusters. The samples were investigated in a plug-flow reactor as catalysts for the conversion of ethylene + H2 in a molar ratiomore » of 4:1 at 1 bar and 298 K, with the results showing how the changes in catalyst structure affect the activity and selectivity; the rhodium clusters are more active for hydrogenation of ethylene than the single-site complexes, which are more selective for dimerization of ethylene to give butenes« less

  4. Methane biofiltration using autoclaved aerated concrete as the carrier material.

    PubMed

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico

    2015-09-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material.

  5. Rapid oxidation of sulfide mine tailings by reaction with potassium ferrate.

    PubMed

    Murshed, Mohamed; Rockstraw, David A; Hanson, Adrian T; Johnson, Michael

    2003-01-01

    The chemistry of sulfide mine tailings treated with potassium ferrate (K2FeO4) in aqueous slurry has been investigated. The reaction system is believed to parallel a geochemical oxidation in which ferrate ion replaces oxygen. This chemical system utilized in a pipeline (as a plug flow reactor) may have application eliminating the potential for tailings to leach acid while recovering the metal from the tailings. Elemental analyses were performed using an ICP spectrometer for the aqueous phase extract of the treated tailings; and an SEM-EDX for the tailing solids. Solids were analyzed before and after treatments were applied. ICP shows that as the mass ratio of ferrate ion to tailings increases, the concentration of metals in the extract solution increases; while EDX indicates a corresponding decrease in sulfur content of the tailing solids. The extraction of metal and reduction in sulfide content is significant. The kinetic timeframe is on the order of minutes.

  6. 76 FR 1644 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... tubesheet in that region. At normal operating pressures, leakage from primary water stress corrosion... cause failure. The EDG reliability will thereby be potentially increased by reducing the stresses on the..., ``Bases for Plugging Degraded PWR [pressurized-water reactor] Steam Generator Tubes,'' margins against...

  7. Effect of coolant flow ejection on aerodynamic performance of low-aspect-ratio vanes. 1: Performance with coolant ejection holes plugged

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1976-01-01

    The aerodynamic performance of a low aspect ratio turbine vane designed with coolant flow ejection holes on the vane surfaces was experimentally determined in a full-annular cascade with the coolant ejection holes plugged. The purpose was to establish a baseline for comparison with tests where flow is ejected from the vane surfaces. The vanes were tested over a mean-section ideal critical velocity ratio range of 0.64 to 0.98. This ideal critical velocity ratio corresponds to the vane inlet total to vane aftermixed static pressure ratio at the mean section. The variations in vane efficiency and aftermixed flow conditions with circumferential and radial position were obtained.

  8. Jet noise suppression by porous plug nozzles

    NASA Technical Reports Server (NTRS)

    Bauer, A. B.; Kibens, V.; Wlezien, R. W.

    1982-01-01

    Jet noise suppression data presented earlier by Maestrello for porous plug nozzles were supplemented by the testing of a family of nozzles having an equivalent throat diameter of 11.77 cm. Two circular reference nozzles and eight plug nozzles having radius ratios of either 0.53 or 0.80 were tested at total pressure ratios of 1.60 to 4.00. Data were taken both with and without a forward motion or coannular flow jet, and some tests were made with a heated jet. Jet thrust was measured. The data were analyzed to show the effects of suppressor geometry on nozzle propulsive efficiency and jet noise. Aerodynamic testing of the nozzles was carried out in order to study the physical features that lead to the noise suppression. The aerodynamic flow phenomena were examined by the use of high speed shadowgraph cinematography, still shadowgraphs, extensive static pressure probe measurements, and two component laser Doppler velocimeter studies. The different measurement techniques correlated well with each other and demonstrated that the porous plug changes the shock cell structure of a standard nozzle into a series of smaller, periodic cell structures without strong shock waves. These structures become smaller in dimension and have reduced pressure variations as either the plug diameter or the porosity is increased, changes that also reduce the jet noise and decrease thrust efficiency.

  9. Solvent viscosity mismatch between the solute plug and the mobile phase: Considerations in the applications of two-dimensional HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalliker, R. Andrew; Guiochon, Georges A

    Understanding the nature of viscosity contrast induced flow instabilities is an important aspect in the design of two-dimensional HPLC separations. When the viscosity contrast between the sample plug and the mobile phase is sufficiently large, the phenomenon known as viscous fingering can be induced. Viscous fingering is a flow instability phenomenon that occurs at the interface between two fluids with different viscosities. In liquid chromatography, viscous fingering results in the solute band undergoing a change in form as it enters into the chromatography column. Moreover, even in the absence of viscous fingering, band shapes change shape at low viscosity contrasts.more » These changes can result in a noticeable change in separation performance, with the result depending on whether the solvent pushing the solute plug has a higher or lower viscosity than the solute plug. These viscosity induced changes become more important as the solute injection volume increases and hence understanding the process becomes critical in the implementation of multidimensional HPLC techniques, since in these techniques the sample injection plug into the second dimension is an order of magnitude greater than in one-dimensional HPLC. This review article assesses the current understanding of the viscosity contrast induced processes as they relate to liquid chromatographic separation behaviour.« less

  10. Integrated fountain effect pump device for fluid management at low gravity

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frank, D. J.

    1988-01-01

    A new device for fluid management at low gravity is described. The system is basically the same as the enclosed capillary device using screens, in which the screens along the gallery channels are replaced by porous plugs which are responsible for both the fluid retention and pumping of He II; in this device, no downstream pump is needed. The plugs in contact with liquid He on both sides act as a fountain-effect pumps (FEPs), while plugs exposed to vapor on one side behave as vapor-liquid phase separators (VLPSs). The total net rate of He II transfer into the receiving tank equals the mass flow rate through the FEP plugs minus the liquid loss from the VLPS plugs. The results of the performance analysis of this integrated FEP device are presented together with its schematic diagram.

  11. Design and Testing of a Shell-Flow Hollow-Fiber Venting Gas Trap

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Cross, Cindy; Hansen, Scott; Vogel, Matthew; Dillon, Paul

    2013-01-01

    A Venting Gas Trap (VGT) was designed, built, and tested at NASA Johnson Space Center to eliminate dissolved and free gas from the circulating coolant loop of the Orion Environmental Control Life Support System. The VGT was downselected from two different designs. The VGT has robust operation, and easily met all the Orion requirements, especially size and weight. The VGT has a novel design with the gas trap made of a five-layer spiral wrap of porous hydrophobic hollow fibers that form a cylindrically shaped curtain terminated by a dome-shaped distal plug. Circulating coolant flows into the center of the cylindrical curtain and flows between the hollow fibers, around the distal plug, and exits the VGT outlet. Free gas is forced by the coolant flow to the distal plug and brought into contact with hollow fibers. The proximal ends of the hollow fibers terminate in a venting chamber that allows for rapid venting of the free gas inclusion, but passively limits the external venting from the venting chamber through two small holes in the event of a long-duration decompression of the cabin. The VGT performance specifications were verified in a wide range of flow rates, bubble sizes, and inclusion volumes. Long-duration and integrated Orion human tests of the VGT are also planned for the coming year.

  12. A fast passive and planar liquid sample micromixer.

    PubMed

    Melin, Jessica; Gimenéz, Guillem; Roxhed, Niclas; van der Wijngaart, Wouter; Stemme, Göran

    2004-06-01

    A novel microdevice for passively mixing liquid samples based on surface tension and a geometrical mixing chamber is presented. Due to the laminar flow regime on the microscale, mixing becomes difficult if not impossible. We present a micromixer where a constantly changing time dependent flow pattern inside a two sample liquid plug is created as the plug simply passes through the planar mixer chamber. The device requires no actuation during mixing and is fabricated using a single etch process. The effective mixing of two coloured liquid samples is demonstrated.

  13. Experimental study of flow due to an isolated suction hole and a partially plugged suction slot

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Wilkinson, S. P.

    1980-01-01

    Details for construction of a model of a partially plugged, laminar flow control, suction slot and an isolated hole are presented. The experimental wind tunnel facility and instrumentation is described. Preliminary boundary layer velocity profiles (without suction model) are presented and shown to be in good agreement with the Blasius laminar profile. Recommendations for the completion of the study are made. An experimental program for study of transition on a rotating disk is described along with preliminary disturbance amplification rate data.

  14. [Effect of different sludge retention time (SRT) on municipal sewage sludge bioleaching continuous plug flow reaction system].

    PubMed

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan

    2012-01-01

    A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was divided into six sections along the direction of the sludge movement. Fourteen days of continuous operation of sludge bioleaching with different sludge retention time (SRT) under the condition of 1.2 m3 x h(-1) aeration amount and 4 g x L(-1) of microbial nutritional substance was conducted. During sludge bioleaching, the dynamic changes of pH, DO, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections were investigated in the present study. The results showed that sludge pH were maintained at 5.00, 3.00, 2.90, 2.70, 2.60 and 2.40 from section 1 to section 6 and the SRF of sludge was drastically decreased from initial 0.64 x 10(13) m x kg(-1) to the final 0.33 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 72 with SRT 2.5d. In addition, the sludge pH were maintained at 5.10, 4.10, 3.20, 2.90, 2.70 and 2.60, the DO value were 0.43, 1.47, 3.29, 4.76, 5.75 and 5.88 mg x L(-1) from section 1 to section 6, and the SRF of sludge was drastically decreased from initial 0.56 x 10(13) to the final 0.20 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 120 with SRT 2 d. The pH value was increased to 3.00 at section 6 at hour 48 h with SRT 1.25 d. The bioleaching system imbalanced in this operation conditions because of the utilization efficiency of microbial nutritional substance by Acidibacillus spp. was decreased. The longer sludge retention time, the easier bioleaching system reached stable. 2 d could be used as the optimum sludge retention time in engineering application. The bioleached sludge was collected and dewatered by plate-and-frame filter press to the moisture content of dewatered sludge cake under 60%. This study would provide the necessary data to the engineering application on municipal sewage sludge bioleaching.

  15. Nozzle dam having a unitary plug

    DOEpatents

    Veronesi, L.; Wepfer, R.M.

    1992-12-15

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator is disclosed. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket. 16 figs.

  16. Nozzle dam having a unitary plug

    DOEpatents

    Veronesi, Luciano; Wepfer, Robert M.

    1992-01-01

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket.

  17. A medical prescription for a mind

    NASA Astrophysics Data System (ADS)

    Simões da Fonseca, J.

    1999-03-01

    The author who is an expert in clinical psychiatry deals with the problem of modeling human Mind the way physicians implicitly use when their profession renders necessary to intervene to help or even cure patients. If physicists, mathematicians or cognitive science specialists and engineers may propose artificial designs for a mind, psychiatrists and psychologists have developed reliable diagnostic systems for the classification of normal or else psychopathological states. Usually in Psychiatry it is not made any use of an algorithmic approach to describe and characterize psychological processes during cognitive, perceptual, emotional, motivational processes or else anticipatory processes, distinct types of memory, learning processes, etc. Differently from what is mentioned in Neuropsychological literature the author and his group were able to find a significant and consistent relationship between the level of ostensive expression of symptoms and competence in interpretation of information carried by verbal communication during the simulation of social interactions by restrict groups of experimenters. Furthermore it is shown how dendro-dendritic models of neural processing are adequate to represent symbolic processes performed by local operators in the Cortex, as well as the usefulness of models of chemical reactors either batch reactors or else flow plug reactors to represent virtual neural networks capable of clarifying some aspects of cognition and of the structure of the Self. Finally many episodes of the life of the late Warren Sturgis McCulloch are recalled as attribute of gratitude of the author who was his before the last student.

  18. Continuous API-crystal coating via coacervation in a tubular reactor.

    PubMed

    Besenhard, M O; Thurnberger, A; Hohl, R; Faulhammer, E; Rattenberger, J; Khinast, J G

    2014-11-20

    We present a proof-of-concept study of a continuous coating process of single API crystals in a tubular reactor using coacervation as a microencapsulation technique. Continuous API crystal coating can have several advantages, as in a single step (following crystallization) individual crystals can be prepared with a functional coating, either to change the release behavior, to protect the API from gastric juice or to modify the surface energetics of the API (i.e., to tailor the hydrophobic/hydrophilic characteristics, flowability or agglomeration tendency, etc.). The coating process was developed for the microencapsulation of a lipophilic core material (ibuprofen crystals of 20 μm- to 100 μm-size), with either hypromellose phthalate (HPMCP) or Eudragit L100-55. The core material was suspended in an aqueous solution containing one of these enteric polymers, fed into the tubing and mixed continuously with a sodium sulfate solution as an antisolvent to induce coacervation. A subsequent temperature treatment was applied to optimize the microencapsulation of crystals via the polymer-rich coacervate phase. Cross-linking of the coating shell was achieved by mixing the processed material with an acidic solution (pH<3). Flow rates, temperature profiles and polymer-to-antisolvent ratios had to be tightly controlled to avoid excessive aggregation, leading to pipe plugging. This work demonstrates the potential of a tubular reactor design for continuous coating applications and is the basis for future work, combining continuous crystallization and coating. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Assessing point-of-use ultraviolet disinfection for safe water in urban developing communities.

    PubMed

    Barstow, Christina K; Dotson, Aaron D; Linden, Karl G

    2014-12-01

    Residents of urban developing communities often have a tap in their home providing treated and sometimes filtered water but its microbial quality cannot be guaranteed. Point-of-use (POU) disinfection systems can provide safe drinking water to the millions who lack access to clean water in urban communities. While many POU systems exist, there are several concerns that can lead to low user acceptability, including low flow rate, taste and odor issues, high cost, recontamination, and ineffectiveness at treating common pathogens. An ultraviolet (UV) POU system was constructed utilizing developing community-appropriate materials and simple construction techniques based around an inexpensive low-wattage, low pressure UV bulb. The system was tested at the bench scale to characterize its hydrodynamic properties and microbial disinfection efficacy. Hydraulically the system most closely resembled a plug flow reactor with minor short-circuiting. The system was challenge tested and validated for a UV fluence of 50 mJ/cm(2) and greater, over varying flow rates and UV transmittances, corresponding to a greater than 4 log reduction of most pathogenic bacteria, viruses, and protozoa of public health concern. This study presents the designed system and testing results to demonstrate the potential architecture of a low-cost, open-source UV system for further prototyping and field-testing.

  20. Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry.

    PubMed

    Hiebler, Katharina; Lichtenegger, Georg J; Maier, Manuel C; Park, Eun Sung; Gonzales-Groom, Renie; Binks, Bernard P; Gruber-Woelfler, Heidrun

    2018-01-01

    Within the "compartmentalised smart factory" approach of the ONE-FLOW project the implementation of different catalysts in "compartments" provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd catalysts that are ready to be used in combination with biocatalysts for catalytic cascade synthesis of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki-Miyaura cross-coupling reactions, which is the key step in the synthesis of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create a large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce-Sn-Pd oxides with the molecular formula Ce 0.99- x Sn x Pd 0.01 O 2-δ ( x = 0-0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki-Miyaura cross-coupling reactions in batch as well as in continuous flow employing the so-called "plug & play reactor". Finally, we demonstrate the use of these particles as the sole emulsifier of oil-water emulsions for a range of oils.

  1. Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor

    NASA Astrophysics Data System (ADS)

    Urban, Brook

    Thermochemical conversion methods such as pyrolysis have the potential for converting diverse biomass feedstocks into liquid fuels. In particular, bio-oil yields can be maximized by implementing flash pyrolysis to facilitate rapid heat transfer to the solids along with short vapor residence times to minimize secondary degradation of bio-oils. This study first focused on the design and construction of a fluidized-bed flash pyrolysis reactor with a high-efficiency bio-oil recovery unit. Subsequently, the reactor was used to perform flash pyrolysis of soybean pellets to assess the thermochemical conversion of oleaginous biomass feedstocks. The fluidized bed reactor design included a novel feed input mechanism through suction created by flow of carrier gas through a venturi which prevented plugging problems that occur with a more conventional screw feeders. In addition, the uniquely designed batch pyrolysis unit comprised of two tubes of dissimilar diameters. The bottom section consisted of a 1" tube and was connected to a larger 3" tube placed vertically above. At the carrier gas flow rates used in these studies, the feed particles remained fluidized in the smaller diameter tube, but a reduction in carrier gas velocity in the larger diameter "disengagement chamber" prevented the escape of particles into the condensers. The outlet of the reactor was connected to two Allihn condensers followed by an innovative packed-bed dry ice condenser. Due to the high carrier gas flow rates in fluidized bed reactors, bio-oil vapors form dilute aerosols upon cooling which that are difficult to coalesce and recover by traditional heat exchange condensers. The dry ice condenser provided high surface area for inertial impaction of these aerosols and also allowed easy recovery of bio-oils after natural evaporation of the dry ice at the end of the experiments. Single step pyrolysis was performed between 250-610°C with a vapor residence time between 0.3-0.6s. At 550°C or higher, 70% of the initial feed mass was recovered as bio-oil. However, the mass of high calorific lipid-derived components in the collected bio-oils remained nearly constant at reaction temperatures above 415°C; between 80-90% of the feedstock lipids were recovered in the bio-oil fraction. In addition, multi-step fractional flash pyrolysis experiments were performed to assess the possibility of producing higher quality bio-oils since a large fraction of protein and carbohydrates degrade at lower temperatures (320-400°C). A low temperature pyrolysis step was first performed and was followed by pyrolysis of the residues at higher temperature. This fractional pyrolysis approach which produced higher quality bio-oil with low water- and nitrogen- content from the higher temperature steps.

  2. Small Scale Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.

  3. Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles. Comprehensive data report, volume 2

    NASA Technical Reports Server (NTRS)

    Vogt, P. G.; Bhutiani, P. K.; Knott, P. R.

    1981-01-01

    Laser velocimeter data, collected as part of an acoustic investigation of coannular plug nozzles, is provided. The type of traverse, position, and histogram number is given along with the mean and turbulent velocity data. The velocites are normalized with respect to the outer flow velocity and the 'mixed' velocity.

  4. 30 CFR 250.1712 - What information must I submit before I permanently plug a well or zone?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What information must I submit before I permanently plug a well or zone? 250.1712 Section 250.1712 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... two independent tested barriers, including one mechanical barrier, across each flow path during...

  5. Investigation of Thrust and Drag Characteristics of a Plug-type Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Hearth, Donald P; Gorton, Gerald C

    1954-01-01

    An investigation was conducted in the 8- by 6-foot supersonic wind tunnel on the external and internal characteristics of a plug-type exhaust nozzle. Two positions of the center plug, one simulating a convergent nozzle and the other a convergent-divergent nozzle, were investigated. Data were obtained at free-stream Mach numbers of 0.1, 0.6, 1.6, and 2.0 over a pressure-ratio range of 1 to 20 and angles of attack of zero and 8 degrees. Results of this investigation indicated that the plug nozzle had thrust-minus-drag performance over the entire pressure-ratio range comparable with equivalent conventional nozzles. The effect of the exhaust jet on the external aerodynamics was similar to results observed for conventional nozzles. In addition, the thrust characteristics were generally insensitive to external flow and good agreement was noted with data obtained on comparable plug nozzles in quiescent air.

  6. Effects of external stream flow and afterbody variations on the performance of a plug nozzle

    NASA Technical Reports Server (NTRS)

    Salmi, R J; Cortright, E M , Jr

    1956-01-01

    The off-design operation of an isentropic plug nozzle designed for a jet pressure ratio of 15 was investigated experimentally at subsonic Mach numbers up to 0.9 and jet pressure ratios up to 5. When installed in a cylindrical nacelle with a sharp turn at the nozzle lip, the interaction of the jet and the external stream produced low pressures on the base formed by the high lip angle. These low pressures increased the nacelle drag and caused an overexpansion of the jet, which resulted in lower pressures on the plug and, hence, reduced thrust. With a boattail ahead of the plug nozzle, the base pressures were increased and the jet overexpansion significantly reduced.

  7. Landscape assessment of side channel plugs and associated cumulative side channel attrition across a large river floodplain

    USGS Publications Warehouse

    Reinhold, Ann Marie; Poole, Geoffrey C.; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.

    2018-01-01

    Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small “anthropogenic plugs” (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.

  8. Method for packing chromatographic beds

    DOEpatents

    Freeman, David H.; Angeles, Rosalie M.; Keller, Suzanne

    1991-01-01

    Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.

  9. Low Absorption Vitreous Carbon Reactors for Operando XAS: A Case Study on Cu/Zeolites for Selective Catalytic Reduction of NOx by NH3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kispersky, Vincent F.; Kropf, A. Jeremy; Ribeiro, Fabio H.

    2012-01-01

    We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NO x by NH₃ on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH₃, 5% O₂, 5% H₂O, 5% CO₂ and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states.more » XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situSCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO₂ catalyst, reduced in H₂ at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO₂ catalyst to be in a partially reduced Cu metal–Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance.« less

  10. Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight comprehensive data report. Volume 2: Laser velocimeter data, static pressures and shadowgraph photos

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Janardan, B. A.; Brausch, J. F.; Hoerst, D. J.; Price, A. O.

    1984-01-01

    Parameters which contribute to supersonic jet shock noise were investigated for the purpose of determining means to reduce such noise generation to acceptable levels. Six dual-stream test nozzles with varying flow passage and plug closure designs were evaluated under simulated flight conditions in an anechoic chamber. All nozzles had combined convergent-divergent or convergent flow passages. Mean velocity and turbulence velocity measurements of 25 selected flow conditions were performed employing a laser Doppler velocimeter. Static pressure measurements were made to define the actual convergence-divergence condition. Test point definition, tabulation of aerodynamic test conditions, velocity histograms, and shadowgraph photographs are presented. Flow visualization through shadowgraph photography can contribute to the development of an analytical prediction model for shock noise from coannular plug nozzles.

  11. The pre-conceptual design of the nuclear island of ASTRID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez, M.; Menou, S.; Uzu, B.

    The CEA is involved in a substantial effort on the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) pre-conceptual design in cooperation with EDF, as experienced Sodium-cooled Fast Reactor (SFR) operator, AREVA, as experienced SFR Nuclear Island engineering company and components designer, ALSTOM POWER as energy conversion system designer and COMEX NUCLEAIRE as mechanical systems designer. The CEA is looking for other partnerships, in France and abroad. The ASTRID preliminary design is based on a sodium-cooled pool reactor of 1500 MWth generating about 600 MWe, which is required to guarantee the representativeness of the reactor core and the main componentsmore » with regard to future commercial reactors. ASTRID lifetime target is 60 years. Two Energy Conversion Systems are studied in parallel until the end of 2012: Rankine steam cycle or Brayton gas based energy conversion cycle. ASTRID design is guided by the following major objectives: improved safety, simplification of structures, improved In Service Inspection and Repair (ISIR), improved manufacturing conditions for cost reduction and increased quality, reduction of risks related to sodium fires and water/sodium reaction, and improved robustness against external hazards. The core is supported by a diagrid, which lay on a strong back to transfer the weight to the main vessel. AREVA is involved in a substantial effort in order to improve the core support structure in particular regarding the ISIR and the connection to primary pump. In the preliminary design, the primary system is formed by the main vessel and the upper closure comprising the reactor roof, two rotating plugs - used for fuel handling - and the components plugs located in the roof penetrations. The Above Core Structure deflects the sodium flow in the hot pool and provides support to core instrumentation and guidance of the control rod drive mechanisms. The number of the major components in the main vessel, primary pumps, Intermediate Heat Exchangers, and Decay Heat Exchangers are now under consideration. Under normal conditions, power release is achieved using the steam/water plant (in case of Rankine steam cycle) or the gas plant (in case of Brayton gas cycle). The diverse design and operating modes of Decay Heat Removal systems provide protection against common cause failures. A Decay Heat Removal system through the reactor vault is in particular studied with the objective to complement Direct Reactor Cooling systems. At this stage of the studies, the secondary system comprises four independent sodium loops (two and three sodium loops configurations are also investigated). Each loop includes one mechanical pump (or a large capacity Annular Linear Induction Electromagnetic Pump), and three modular Steam Generator Units characterized by once through straight tube units with a ferritic tube bundle; nevertheless, helical coil steam generator with tubes made of Alloy 800, and inverted type steam generator with a ferritic tube bundle are also investigated. The limited power of each modular Steam Generator Unit allows the whole secondary loop to withstand a large water/sodium reaction consecutive to the postulated simultaneous rupture of all the heat exchange tubes of one module. The arrangement of the components is based on the 'Regain' concept, in which the secondary pump is situated at a low level in the circuit; conventional arrangement, as SUPERPHENIX type, is a back-up option. Alternative arrangements based on gas cycles are also studied together with Na-gas heat exchanger design. This paper presents a status of the ASTRID pre-conceptual design. The most promising options are highlighted as well as less risky and back-up options. (authors)« less

  12. Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico

    USGS Publications Warehouse

    Delaney, Paul T.; Pollard, David D.

    1981-01-01

    We have studied a small group of minette dikes and plugs that crop out within a flat-lying sequence of siltstone and shale near Ship Rock, a prominent volcanic throat of tuff breccia in northwestern New Mexico. Seven dikes form a radial pattern about Ship Rock we describe in detail the northeastern dike, which has an outcrop length of about 2,900 m, an average thickness of 2.3 m, and a maximum thickness of 7.2 m. The dike is composed of 35 discrete segments arranged in echelon; orientation. of dike segments ranges systematically from N. 52? E. to N. 66? E. A prominent joint set strikes parallel to the segments and is localized within several tens of meters of the dike. Regional joint patterns display no obvious relation to dike orientation. Small offsets of segment contacts, as well as wedge-shaped bodies of crumpled host rock within segments mark the sites of coalescence of smaller segments during dike growth. Bulges in the dike contact, which represent a nondilational component of growth, indicate that wall rocks were brecciated and eroded during the flow of magma. Breccias make up about 9 percent of the 7,176-m 2 area of the dike, are concentrated in its southwest half, and are commonly associated with its thickest parts. We also describe three subcircular plugs; each plug is smaller than 30 m in diameter, is laterally associated with a dike, and contains abundant breccias. Field evidence indicates that these plugs grew from the dikes by brecciation and erosion of wallrocks and that the bulges in the contact of the northeastern dike represent an initial stage of this process. From continuum-mechanical models of host-rock deformation, we conclude that dike propagation was the dominant mechanism for creating conduits for magma ascent where the host rock was brittle and elastic. At a given driving pressure, dikes dilate to accept greater volumes of magma than plugs, and for a given dilation, less work is done on the host rocks. In addition, the pressure required for dike growth decreases with dike length. From numerical solutions for dilation of cracks oriented like segments of the northeastern dike, we find that we can best model the form of the dike by treating it as composed of 10 cracks rather than 35. We attribute this result to coalescence of adjacent segments below the present outcrop and to inelastic deformation at segment ends. Using a driving pressure of 2 MPa (20 bars), we estimate a shear modulus of about 10^3 MPa for the host rocks, in agreement with laboratory tests on soft shale. A propagation criterion based on stress intensity at the segment ends indicates a fracture toughness of the host rocks of about 100 MPa-m^? , a hundredfold greater than values reported from laboratory tests. Segmentation of fractures is common in many materials and has been observed during fissure eruptions at Kilauea Volcano in Hawaii. At the northeastern dike, we attribute segmentation to local rotation of the direction of least principal compressive stress. From continuum-mechanical models of magma and heat flow in idealized conduits, we conclude that magma flows far more rapidly and with less relative heat loss in plugs than in dikes. Although dikes are the preferred form for emplacement, plugs are the preferred form for the flow of magma. We present a numerical solution for volumetric flow rate and wall heat flux for the northeastern dike and find that although the flow rate is extremely sensitive to conduit geometry, the rate of heat loss to wall rocks is not. During emplacement of the northeastern dike, local flow rate increased where wall rocks were eroded and reached a maximum of about 45 times the mean initial rate, whereas the maximum rate of heat loss to wallrocks increased to only 1.6 times the mean initial rate. An inferred progression from continuous magma flow along a dike to flow from a plug agrees well with observations of volcanic eruptions that begin from fissures and later are localized at discrete vents. We

  13. 40 CFR 600.116-12 - Special procedures related to electric vehicles, hybrid electric vehicles, and plug-in hybrid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... technology under § 86.1870-12, and requires the measurement of electrical current (in amps) flowing into the... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Special procedures related to electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles. 600.116-12 Section 600.116-12...

  14. Performance characteristics of a slagging gasifier for MHD combustor systems

    NASA Technical Reports Server (NTRS)

    Smith, K. O.

    1979-01-01

    The performance of a two stage, coal combustor concept for magnetohydrodynamic (MHD) systems was investigated analytically. The two stage MHD combustor is comprised of an entrained flow, slagging gasifier as the first stage, and a gas phase reactor as the second stage. The first stage was modeled by assuming instantaneous coal devolatilization, and volatiles combustion and char gasification by CO2 and H2O in plug flow. The second stage combustor was modeled assuming adiabatic instantaneous gas phase reactions. Of primary interest was the dependence of char gasification efficiency on first stage particle residence time. The influence of first stage stoichiometry, heat loss, coal moisture, coal size distribution, and degree of coal devolatilization on gasifier performance and second stage exhaust temperature was determined. Performance predictions indicate that particle residence times on the order of 500 msec would be required to achieve gasification efficiencies in the range of 90 to 95 percent. The use of a finer coal size distribution significantly reduces the required gasifier residence time for acceptable levels of fuel use efficiency. Residence time requirements are also decreased by increased levels of coal devolatilization. Combustor design efforts should maximize devolatilization by minimizing mixing times associated with coal injection.

  15. Reactor refueling containment system

    DOEpatents

    Gillett, J.E.; Meuschke, R.E.

    1995-05-02

    A method of refueling a nuclear reactor is disclosed whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced. 2 figs.

  16. Reactor refueling containment system

    DOEpatents

    Gillett, James E.; Meuschke, Robert E.

    1995-01-01

    A method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

  17. CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL PROCESSING PLANT IN BACKGROUND AT CENTER TOP OF VIEW. CAMERA FACING EAST. EXCLUSION GATE HOUSE AT LEFT OF VIEW. BEYOND MTR BUILDING AND ITS WING, THE PROCESS WATER BUILDING AND WORKING RESERVOIR ARE LEFT-MOST. FAN HOUSE AND STACK ARE TO ITS RIGHT. PLUG STORAGE BUILDING IS RIGHT-MOST STRUCTURE. NOTE FAN LOFT ABOVE MTR BUILDING'S ONE-STORY WING. THIS WAS LATER CONVERTED FOR OFFICES. INL NEGATIVE NO. 3610. Unknown Photographer, 10/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Table Mountain Shoshonite Porphyry Lava Flows and Their Vents, Golden, Colorado

    USGS Publications Warehouse

    Drewes, Harald

    2008-01-01

    During early Paleocene time shoshonite porphyry lava was extruded from several plugs about 5 km north of Golden, Colo., to form lava flows intercalated in the upper part of the Denver Formation. These flows now form the caps of North and South Table Mountains. Detailed field and petrographic studies provide insights into magma development, linkage between vents and flows, and the history of the lava flows. The magma was derived from a deep (mantle) source, was somewhat turbulent on its way up, paused on its way up in a shallow granite-hosted chamber, and near the surface followed the steep Golden fault and the thick, weak, steeply dipping Upper Cretaceous Pierre Shale. At the surface the lava flowed out of several plug and dike vents in a nonexplosive manner, four times during a span of about 1 m.y. Potassium-rich material acquired in the shallow chamber produced distinctive textures and mineral associations in the igneous rocks. Lava flows 1 (the lowest) and 2 are channel deposits derived from the southeastern group of intrusions, and flow 1 (a composite, multiple-tongued flow) lies about 50 m below the capping flows. Provisionally, the unit termed flow 1 is considered to include older, felty-textured flows that are distinguished from a blocky-textured unit, flow 1a. Flow 2, newly recognized in this study, lies immediately beneath the capping flows. Lava flows 3 and 4, more voluminous than the earlier ones, were derived from a plug vent 1?2 km farther north-northwest and flowed south-southeast across a broad alluvial plain. This plug is a composite body; the rim phase fed flow 3, and the core phase was the source of flow 4. During the time between the effusion of the four flows, the composition of the shoshonite porphyry magma changed subtly; the later flows contain more alkali, as shown by higher proportions of sanidine. On North Table Mountain, lava flows 3 and 4 form an elongate tumulus above a stream channel that carried water at the time of their eruption. On South Table Mountain, lava flow 3 forms a low, broad dome that forced flow 4 into channels now restricted to the west and northeast flanks of that mesa. Mesa-capping lava flows 3 and 4 are broken by many small normal faults and are warped into open synclines, probably in response to local stresses associated with the settling of piedmont deposits into the Denver Basin. Mid-Tertiary deposits are inferred to have covered the upper part of the Denver Formation and its lavas; these deposits could thus have been instrumental in changing the stream flow direction to the east before the onset of Neogene uplift and consequent canyon cutting across the flows. Other younger deposits may also have covered the area, to be linked to this consequent canyon cutting.

  19. Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis

    NASA Technical Reports Server (NTRS)

    Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.

    2011-01-01

    The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  20. Mesophilic and thermophilic activated sludge post-treatment of paper mill process water.

    PubMed

    Vogelaar, J C T; Bouwhuis, E; Klapwijk, A; Spanjers, H; van Lier, J B

    2002-04-01

    Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper mill using recycled wastepaper was studied. Two lab-scale plug flow activated sludge reactors were run in parallel for 6 months; a thermophilic reactor at 55 degrees C and a reference reactor at 30 degrees C. Both reactors were operated simultaneously at 20, 15 and 10 days SRT. The effects of temperature and SRT on sludge settleability and chemical oxygen demand (COD) removal efficiencies of different fractions were studied. Total COD removal percentages over the whole experimental period were 58+/-5% at 30 degrees C and 48 +/- 10% at 55 degrees C. The effect of the SRT on the total COD removal was negligible. Differences in total COD removal between both systems were due to a lesser removal of soluble and colloidal COD at 55 degrees C compared to the reference system. At 30 degrees C, colloidal COD removal percentages were 65+/-25%, 75+/-17% and 86+/-22% at 20, 15 and 10 days SRT, respectively. At 55 degrees C, these percentages were 48+/-34%, 40+/-28% and 70+/-25%, respectively. The effluent concentrations of colloidal COD in both systems were related to the influent concentration of colloidal material. The thermophilic sludge was not able to retain influent colloidal material as well as the mesophilic sludge causing a higher thermophilic effluent turbidity. Sludge settling properties were excellent in both reactor systems. These were neither temperature nor SRT dependent but were rather caused by extensive calcium precipitation in the aeration tanks creating a very dense sludge. For application in the board industry, a thermophilic in line treatment system seems feasible. The higher effluent turbidity is most likely offset by the energy gains of treatment under thermophilic conditions.

  1. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    NASA Astrophysics Data System (ADS)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of <0.5 m3 s-1, while endogenous dome growth is predicted at higher flow rates (Qout > 3 m3 s-1) for magma with lower relative yield strengths (<1 MPa). At moderately high flow rates (Qout = 4 m3 s-1), the extrusion of magma with lower crystal content (62 per cent) and low interparticulate yield strength (0.6 MPa) results in the development of endogenous shear lobes. Our simulations model the periodic extrusion history at Mount St. Helens (1980-1983). Endogenous growth initiates in the simulated lava dome with the extrusion of low yield strength magma (ϕ = 0.63 and τp = 0.76 MPa) after the crystallized viscous plug (ϕ = 0.87 and τp = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 < Qout < 12 m3 s-1). The size of the endogenous viscous plug and the occurrence of exogenous growth depend on magma yield strength and the magma chamber volume, which control the periodicity of the effusion. Our simulations generate dome morphologies similar to those observed at Mount St Helens, and demonstrate the degree to which domes can sag and spread during and following extrusion pulses. This process, which has been observed at Mount St. Helens and other locations, largely reflects gravitational loading of dome with a viscous core, with retardation by yield strength and talus friction.

  2. Anaerobic co-digestion of dairy manure and potato waste

    NASA Astrophysics Data System (ADS)

    Yadanaparthi, Sai Krishna Reddy

    Dairy and potato are two important agricultural commodities in Idaho. Both the dairy and potato processing industries produce a huge amount of waste which could cause environmental pollution. To minimize the impact of potential pollution associated with dairy manure (DM) and potato waste (PW), anaerobic co-digestion has been considered as one of the best treatment process. The purpose of this research is to evaluate the anaerobic co-digestion of dairy manure and potato waste in terms of process stability, biogas generation, construction and operating costs, and potential revenue. For this purpose, I conducted 1) a literature review, 2) a lab study on anaerobic co-digestion of dairy manure and potato waste at three different temperature ranges (ambient (20-25°C), mesophilic (35-37°C) and thermophilic (55-57°C) with five mixing ratios (DM:PW-100:0, 90:10, 80:20, 60:40, 40:60), and 3) a financial analysis for anaerobic digesters based on assumed different capital costs and the results from the lab co-digestion study. The literature review indicates that several types of organic waste were co-digested with DM. Dairy manure is a suitable base matter for the co-digestion process in terms of digestion process stability and methane (CH4) production (Chapter 2). The lab tests showed that co-digestion of DM with PW was better than digestion of DM alone in terms of biogas and CH4 productions (Chapter 3). The financial analysis reveals DM and PW can be used as substrate for full size anaerobic digesters to generate positive cash flow within a ten year time period. Based on this research, the following conclusions and recommendations were made: ▸ The ratio of DM:PW-80:20 is recommended at thermophilic temperatures and the ratio of DM:PW-90:10 was recommended at mesophilic temperatures for optimum biogas and CH4 productions. ▸ In cases of anaerobic digesters operated with electricity generation equipment (generators), low cost plug flow digesters (capital cost of 600/cow) operating at thermophilic temperatures are recommended. • The ratio of DM:PW-90:10 or 80:20 is recommended while operating low cost plug flow digesters at thermophilic temperatures. ▸ In cases of anaerobic digesters operated without electricity generation equipment (generators), completely mixed or high or low cost plug flow digesters can be used. • The ratio of DM:PW-80:20 is recommended for completely mixed digesters operated at thermophilic temperatures; • The ratio of DM:PW-90:10 or 80:20 is recommended for high cost plug flow digesters (capital cost of 1,000/cow) operated at thermophilic temperatures; • All of the four co-digested mixing ratios (i.e. DM:PW-90:10 or 80:20 or 60:40 or 40:60) are good for low cost plug flow digesters (capital cost of $600/cow) operated at thermophilic temperatures. The ratio of DM:PW-90:10 is recommended for positive cash flow within the ten year period if the low cost plug flow digesters are operated at mesophilic temperatures.

  3. Core disruptive accident margin seal

    DOEpatents

    Garin, John; Belsick, James C.

    1978-01-01

    An apparatus for sealing the annulus defined between a substantially cylindrical rotatable first riser assembly and plug combination disposed in a substantially cylindrical second riser assembly and plug combination of a nuclear reactor system. The apparatus comprises a flexible member disposed between the first and second riser components and attached to a metal member which is attached to an actuating mechanism. When the actuating mechanism is not actuated, the flexible member does not contact the riser components thus allowing the free rotation of the riser components. When desired, the actuating mechanism causes the flexible member to contact the first and second riser components in a manner to block the annulus defined between the riser components, thereby sealing the annulus between the riser components.

  4. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  5. To Tug Alumni Heartstrings, Bucknell U. Reaches out and Text-Messages Them

    ERIC Educational Resources Information Center

    Foster, Andrea L.

    2007-01-01

    To get money flowing from alumni, colleges try to keep them feeling plugged in to their alma mater--even if the "plug" becomes wireless. Bucknell University rolled out a new service this month that pushes cell phone text messages to its 47,000 alumni. So far only a few dozen alumni have signed up for the service. If the service, which is…

  6. Computational study of arc discharges: Spark plug and railplug ignitors

    NASA Astrophysics Data System (ADS)

    Ekici, Ozgur

    A theoretical study of electrical arc discharges that focuses on the discharge processes in spark plug and railplug ignitors is presented. The aim of the study is to gain a better understanding of the dynamics of electrical discharges, more specifically the transfer of electrical energy into the gas and the effect of this energy transfer on the flow physics. Different levels of computational models are presented to investigate the types of arc discharges seen in spark plugs and railplugs (i.e., stationary and moving arc discharges). Better understanding of discharge physics is important for a number of applications. For example, improved fuel economy under the constraint of stricter emissions standards and improved plug durability are important objectives of current internal combustion engine designs. These goals can be achieved by improving the existing systems (spark plug) and introducing more sophisticated ignition systems (railplug). In spite of the fact spark plug and railplug ignitors are the focus of this work, the methods presented in this work can be extended to study the discharges found in other applications such as plasma torches, laser sparks, and circuit breakers. The system of equations describing the physical processes in an air plasma is solved using computational fluid dynamics codes to simulate thermal and flow fields. The evolution of the shock front, temperature, pressure, density, and flow of a plasma kernel were investigated for both stationary and moving arcs. Arc propagation between the electrodes under the effects of gas dynamics and electromagnetic processes was studied for moving arcs. The air plasma is regarded as a continuum, single substance material in local thermal equilibrium. Thermophysical properties of high temperature air are used to take into consideration the important processes such as dissociation and ionization. The different mechanisms and the relative importance of several assumptions in gas discharges and thermal plasma modeling were investigated. Considering the complex nature of the studied problem, the computational models aid in analyzing the analytical theory and serve as relatively inexpensive tools when compared to experiments in design process.

  7. Biodegradable microfabricated plug-filters for glaucoma drainage devices.

    PubMed

    Maleki, Teimour; Chitnis, Girish; Park, Jun Hyeong; Cantor, Louis B; Ziaie, Babak

    2012-06-01

    We report on the development of a batch fabricated biodegradable truncated-cone-shaped plug filter to overcome the postoperative hypotony in nonvalved glaucoma drainage devices. Plug filters are composed of biodegradable polymers that disappear once wound healing and bleb formation has progressed past the stage where hypotony from overfiltration may cause complications in the human eye. The biodegradable nature of device eliminates the risks associated with permanent valves that may become blocked or influence the aqueous fluid flow rate in the long term. The plug-filter geometry simplifies its integration with commercial shunts. Aqueous humor outflow regulation is achieved by controlling the diameter of a laser-drilled through-hole. The batch compatible fabrication involves a modified SU-8 molding to achieve truncated-cone-shaped pillars, polydimethylsiloxane micromolding, and hot embossing of biodegradable polymers. The developed plug filter is 500 μm long with base and apex plane diameters of 500 and 300 μm, respectively, and incorporates a laser-drilled through-hole with 44-μm effective diameter in the center.

  8. Transient motion of mucus plugs in respiratory airways

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.

    2011-11-01

    Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.

  9. Turbulent transport of He II in active and passive phase separators using slit devices and porous media

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Frederking, T. H. K.

    1988-01-01

    The turbulent transport mode of vapor liquid phase separators (VLPS) for He II has been investigated comparing passive porous plug separators with active phase separators (APS) using slits of variable flow paths within a common frame of reference. It is concluded that the basic transport regimes in both devices are identical. An integrated Gorter-Mellink (1949) equation, found previously to predict VLPS results of porous plugs, is employed to analyze APS data published in the literature. It is found that the Gorter-Mellink flow rate parameter for 9-micron and 14-micron APS slit widths are relatively independent of the slit width, having a rate constant of about 9 + or - 10 percent. This agrees with the early heat flow results for He II entropy transport at zero net mass flow in wide capillaries and slits.

  10. Automated high-throughput flow-through real-time diagnostic system

    DOEpatents

    Regan, John Frederick

    2012-10-30

    An automated real-time flow-through system capable of processing multiple samples in an asynchronous, simultaneous, and parallel fashion for nucleic acid extraction and purification, followed by assay assembly, genetic amplification, multiplex detection, analysis, and decontamination. The system is able to hold and access an unlimited number of fluorescent reagents that may be used to screen samples for the presence of specific sequences. The apparatus works by associating extracted and purified sample with a series of reagent plugs that have been formed in a flow channel and delivered to a flow-through real-time amplification detector that has a multiplicity of optical windows, to which the sample-reagent plugs are placed in an operative position. The diagnostic apparatus includes sample multi-position valves, a master sample multi-position valve, a master reagent multi-position valve, reagent multi-position valves, and an optical amplification/detection system.

  11. Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture

    NASA Astrophysics Data System (ADS)

    Hassan, Ezeldin A.

    Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.

  12. Insight into the role of facultative bacteria stimulated by micro-aeration in continuous bioreactors converting LCFA to methane.

    PubMed

    Duarte, Maria Salomé; Silva, Sérgio A; Salvador, Andreia F; Cavaleiro, Ana Júlia; Stams, Alfons J M; Alves, Maria Madalena; Pereira, Maria Alcina

    2018-05-15

    Conversion of unsaturated long chain fatty acids (LCFA) to methane in continuous bioreactors is not fully understood. Palmitate (C16:0) often accumulates during oleate (C18:1) biodegradation in methanogenic bioreactors, and the reason why this happens and which microorganisms catalyze this reaction remains unknown. Facultative anaerobic bacteria are frequently found in continuous reactors operated at high LCFA loads, but their function is unclear. To get more insight on the role of these bacteria, LCFA conversion was studied under microaerophilic conditions. For that, we compared bioreactors treating oleate-based wastewater (organic loading rates of 1 and 3 kg COD m-3 d-1), operated under different redox conditions (strictly anaerobic-AnR, -350 mV; microaerophilic-MaR, -250 mV). At the higher load, palmitate accumulated 7 times more in the MaR, where facultative anaerobes were more abundant, and only the biomass from this reactor could recover the methanogenic activity after a transient inhibition. In a second experiment, the abundance of facultative anaerobic bacteria, particularly Pseudomonas spp. (from which two strains were isolated), was strongly correlated (p<0.05) with palmitate-to-total LCFA percentage in the biofilm formed in a continuous plug flow reactor fed with very high loads of oleate. This work strongly suggests that micro-aeration stimulates the development of facultative bacteria that are critical for achieving LCFA conversion to methane in continuous bioreactors. Microbial networks and interactions of facultative and strict anaerobes in microbial communities should be considered in future studies.

  13. Sealed head access area enclosure

    DOEpatents

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A liquid-metal-cooled fast breeder power reactor is provided with a sealed head access area enclosure disposed above the reactor vessel head consisting of a plurality of prefabricated structural panels including a center panel removably sealed into position with inflatable seals, and outer panels sealed into position with semipermanent sealant joints. The sealant joints are located in the joint between the edge of the panels and the reactor containment structure and include from bottom to top an inverted U-shaped strip, a lower layer of a room temperature vulcanizing material, a separator strip defining a test space therewithin, and an upper layer of a room temperature vulcanizing material. The test space is tapped by a normally plugged passage extending to the top of the enclosure for testing the seal or introducing a buffer gas thereinto.

  14. 78 FR 13905 - Government-Owned Inventions, Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... to the National Aeronautics and Space Administration, have been filed in the United States Patent and... Including Crack Arresting Barrier; NASA Case No.: MFS 32761-1-CIP: Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering. Sumara M. Thompson-King, Deputy General Counsel. [FR Doc...

  15. Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model

    NASA Astrophysics Data System (ADS)

    Li, Xin; Li, Xingang; Xiao, Yao; Jia, Bin

    2016-06-01

    Real traffic is heterogeneous with car and truck. Due to mechanical restrictions, the car and the truck have different limited deceleration capabilities, which are important factors in safety driving. This paper extends the single lane safety driving (SD) model with limited deceleration capability to two-lane SD model, in which car-truck heterogeneous traffic is considered. A car has a larger limited deceleration capability while a heavy truck has a smaller limited deceleration capability as a result of loaded goods. Then the safety driving conditions are different as the types of the following and the leading vehicles vary. In order to eliminate the well-known plug in heterogeneous two-lane traffic, it is assumed that heavy truck has active deceleration behavior when the heavy truck perceives the forming plug. The lane-changing decisions are also determined by the safety driving conditions. The fundamental diagram, spatiotemporal diagram, and lane-changing frequency were investigated to show the effect of mechanical restriction on heterogeneous traffic flow. It was shown that there would be still three traffic phases in heterogeneous traffic condition; the active deceleration of the heavy truck could well eliminate the plug; the lane-changing frequency was low in synchronized flow; the flow and velocity would decrease as the proportion of heavy truck grows or the limited deceleration capability of heavy truck drops; and the flow could be improved with lane control measures.

  16. Ultracentrifuge for separating fluid mixtures

    DOEpatents

    Lowry, Ralph A.

    1976-01-01

    1. A centrifuge for the separation of fluid mixtures having light and heavy fractions comprising a cylindrical rotor, disc type end-plugs closing the ends of the rotor, means for mounting said rotor for rotation about its cylindrical axis, a housing member enclosing the rotor, a vacuum chamber in said housing about the central portion of the rotor, a collection chamber at each end of the housing, the innermost side of which is substantially formed by the outer face of the end-plug, means for preventing flow of the fluid from the collection chambers to said vacuum chamber, at least one of said end-plugs having a plurality of holes therethrough communicating between the collection chamber adjacent thereto and the inside of the rotor to induce countercurrent flow of the fluid in the centrifuge, means for feeding fluid to be processed into the centrifuge, means communicating with the collection chambers to extract the light and heavy separated fractions of the fluid, and means for rotating the rotor.

  17. Compact electrochemical sensor system and method for field testing for metals in saliva or other fluids

    DOEpatents

    Lin, Yuehe; Bennett, Wendy D.; Timchalk, Charles; Thrall, Karla D.

    2004-03-02

    Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating "plug and play" concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform. Another integration scheme was based on a multilayer lamination method utilizing stacking modules with different functionality to achieve a compact microanalytical device. Application of the microanalytical system for detection of lead in, for example, river water and saliva samples using stripping voltammetry is described.

  18. Derivation of a Multiparameter Gamma Model for Analyzing the Residence-Time Distribution Function for Nonideal Flow Systems as an Alternative to the Advection-Dispersion Equation

    DOE PAGES

    Embry, Irucka; Roland, Victor; Agbaje, Oluropo; ...

    2013-01-01

    A new residence-time distribution (RTD) function has been developed and applied to quantitative dye studies as an alternative to the traditional advection-dispersion equation (AdDE). The new method is based on a jointly combined four-parameter gamma probability density function (PDF). The gamma residence-time distribution (RTD) function and its first and second moments are derived from the individual two-parameter gamma distributions of randomly distributed variables, tracer travel distance, and linear velocity, which are based on their relationship with time. The gamma RTD function was used on a steady-state, nonideal system modeled as a plug-flow reactor (PFR) in the laboratory to validate themore » effectiveness of the model. The normalized forms of the gamma RTD and the advection-dispersion equation RTD were compared with the normalized tracer RTD. The normalized gamma RTD had a lower mean-absolute deviation (MAD) (0.16) than the normalized form of the advection-dispersion equation (0.26) when compared to the normalized tracer RTD. The gamma RTD function is tied back to the actual physical site due to its randomly distributed variables. The results validate using the gamma RTD as a suitable alternative to the advection-dispersion equation for quantitative tracer studies of non-ideal flow systems.« less

  19. Improved Measurement System for Atmospheric Studies

    DTIC Science & Technology

    2015-05-05

    wire placed in fluid flow depends on: 1- the properties of the ambient fluid (density, viscosity, thermal conductivity , specific heat) and, 2- the...bead thermistors in gas chromatog- raphy and thermal conductivity gas analysis equipment, as well as in ther- mistor catheters and hypodermic needles...ground. Special MCX plugs on the turbulence payload (outside of MCX plug not in contact with any metal part but connected to the outside conductor

  20. Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.

    PubMed

    Toh, Ren Wei; Li, Jie Sheng; Wu, Jie

    2018-01-04

    A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.

  1. Feasibility of ultraviolet-light-emitting diodes as an alternative light source for photocatalysis.

    PubMed

    Levine, Lanfang H; Richards, Jeffrey T; Coutts, Janelle L; Soler, Robert; Maxik, Fred; Wheeler, Raymond M

    2011-09-01

    The objective of this study was to determine whether ultraviolet-light-emitting diodes (UV-LEDs) could serve as an efficient photon source for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A (lambda max = 365 nm) LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp for a bench scale annular reactor packed with silica-titania composite (STC) pellets. Lighting and thermal properties of the module were characterized to assess its uniformity and total irradiance. A forward current (I(F)) of 100 mA delivered an average irradiance of 4.0 mW cm(-2) at a distance of 8 mm, which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED and BLB reactors were tested for the oxidization of ethanol (50 ppm(v)) in a continuous-flow-through mode with 0.94 sec residence time. At the same average irradiance, the UV-A LED reactor resulted in a lower CO2 production rate (19.8 vs. 28.6 nmol L(-1) s(-1)), lower ethanol removal (80% vs. 91%), and lower mineralization efficiency (28% vs. 44%) than the UV-A BLB reactor. Ethanol mineralization was enhanced with the increase of the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED reactor relative to the BLB reactor at the same average irradiance could be attributed to the nonuniform irradiance over the photocatalyst, that is, a portion of the catalyst was exposed to less than the average irradiance. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off" feature for periodic irradiation. Nevertheless, our results also showed that the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB, demonstrating that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  2. Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. IV. Immobilization of two thermostable beta-glycosidases and optimization of a packed-bed reactor for lactose conversion.

    PubMed

    Petzelbauer, Inge; Kuhn, Bernhard; Splechtna, Barbara; Kulbe, Klaus D; Nidetzky, Bernd

    2002-03-20

    Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced. Copyright 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 619-631, 2002; DOI 10.1002/bit.10110

  3. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis.

    PubMed

    Koga, Hirotaka; Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta

    2017-06-22

    Continuous-flow nanocatalysis based on metal nanoparticle catalyst-anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle-anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The "paper reactor" offers hierarchically interconnected micro- and nanoscale pores, which can act as convective-flow and rapid-diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous-flow, aqueous, room-temperature catalytic reduction of 4-nitrophenol to 4-aminophenol, a gold nanoparticle (AuNP)-anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state-of-the-art AuNP-anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP-anchored paper reactors were also demonstrated while high reaction efficiency was maintained. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. A hybrid constructed wetland for organic-material and nutrient removal from sewage: Process performance and multi-kinetic models.

    PubMed

    Nguyen, X Cuong; Chang, S Woong; Nguyen, Thi Loan; Ngo, H Hao; Kumar, Gopalakrishnan; Banu, J Rajesh; Vu, M Cuong; Le, H Sinh; Nguyen, D Duc

    2018-09-15

    A pilot-scale hybrid constructed wetland with vertical flow and horizontal flow in series was constructed and used to investigate organic material and nutrient removal rate constants for wastewater treatment and establish a practical predictive model for use. For this purpose, the performance of multiple parameters was statistically evaluated during the process and predictive models were suggested. The measurement of the kinetic rate constant was based on the use of the first-order derivation and Monod kinetic derivation (Monod) paired with a plug flow reactor (PFR) and a continuously stirred tank reactor (CSTR). Both the Lindeman, Merenda, and Gold (LMG) analysis and Bayesian model averaging (BMA) method were employed for identifying the relative importance of variables and their optimal multiple regression (MR). The results showed that the first-order-PFR (M 2 ) model did not fit the data (P > 0.05, and R 2  < 0.5), whereas the first-order-CSTR (M 1 ) model for the chemical oxygen demand (COD Cr ) and Monod-CSTR (M 3 ) model for the COD Cr and ammonium nitrogen (NH 4 -N) showed a high correlation with the experimental data (R 2  > 0.5). The pollutant removal rates in the case of M 1 were 0.19 m/d (COD Cr ) and those for M 3 were 25.2 g/m 2 ∙d for COD Cr and 2.63 g/m 2 ∙d for NH 4 -N. By applying a multi-variable linear regression method, the optimal empirical models were established for predicting the final effluent concentration of five days' biochemical oxygen demand (BOD 5 ) and NH 4 -N. In general, the hydraulic loading rate was considered an important variable having a high value of relative importance, which appeared in all the optimal predictive models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Yamamoto, K.; Majjigi, R. K.; Brausch, J. F.

    1984-01-01

    Six scale-model nozzles were tested in an anechoic facility to evauate the effectiveness of convergent-divergent (C-D) terminations in reducing shock-cell noise of unsuppressed and mechanically suppressed coannular plug nozzles. One hundred fifty-three acoustic test points with inverted velocity profiles were conducted under static and simulated flight conditions. Diagnostic flow visualization with a shadowgraph and velocity measurements with a laser velocimeter were performed on selected plumes. Shock-cells were identified on the plug and downstream of the plug of the unsuppressed convergent coannular nozzle with truncated plug. Broadband peak frequencies predicted with the two shock-cell structures were correlated with the observed spectra using the measured shock-cell spacings. Relative to a convergent circular nozzle, the perceived noise level (PNL) data at an observer angle of 60 deg relative to inlet, indicated a reduction of (1) 6.5 dB and 9.2 dB with unsuppressed C-D coannular nozzle with truncated plug and (2) 7.7 dB and 8.3 dB with suppressed C-D coannular nozzle under static and simulated flight conditions, espectively. The unsuppressed C-D coannular nozzle with truncated plug, operating at the C-D design condition, had shock-cells downstream of the plug with no shock-cells on the plug. The downstream shock-cells were eliminated by replacing the truncated plug with a smooth extension to obtain an additional 2.4 dB and 3 dB front quadrant PNL reduction, under static and simulated flight conditions, respectively. Other results are discussed.

  6. Extrusion cycles of dome-forming eruptions

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, M.; Clarke, A. B.; Neri, A.; Voight, B.

    2010-12-01

    We investigated the dynamics of magma ascent along a dome-forming conduit coupled with the formation and extrusion of a degassed plug at the top by a two-phase flow model. We treated the magma mixture as a liquid continuum with dispersed gas bubbles and crystals in thermodynamic equilibrium with the melt. A modified Poiseulle form of the viscous term for fully developed laminar flow in an elliptic conduit was assumed. During ascent, magma pressure decreases and water vapor exsolves and partially degasses from the melt as the melt simultaneously crystallizes, causing changes in mixture density and viscosity, which may eventually lead to the formation of a degassed plug sealing the conduit. The numerical model DOMEFLOW (de’ Michieli Vitturi et al., EPSL 2010) has been applied to dome-building eruptions using conditions approximately appropriate for the Soufrière Hills volcano, Montserrat, which has led to a better understanding of the role of a plug on eruption periodicity. Two mechanisms, which have been proposed to cause periodicity, have been implemented in the model and their corresponding timescales explored. The first test applies a stick-slip model in which the plug is considered as solid and static/dynamic friction, as described in Iverson et al. [Nature 2006, 444, 439-43], replaces the viscous forces in the momentum equation. This mechanism yields cycle timescales of seconds to tens of seconds with values generally depending on assumed friction coefficients. Although not all constants and parameters have been explored for this model, we suggest that a stick-slip mechanism of this type cannot explain the cycles of extrusion and explosion typically observed at Montserrat (timescales of hours). The second mechanism does not consider friction but allows enhanced permeable gas loss in the shallow conduit, possibly due to connected porosity or micro- or macro-scale fractures. Enhanced permeable gas loss may lead to formation of a dense and rheologically stiffened magma plug with high viscosity at the top of the conduit which can resist extrusion and prevent steady conduit flow. The plug produces high pressure in the upper conduit, which can cause edifice inflation. Eventually the pressure increases sufficiently to drive the degassed plug from the conduit, overcoming dome overburden, plug weight, and viscous forces. Extrusion and escape of pressurized gas result in a relaxation of pressure in the upper conduit and allow edifice deflation. In general, cycle period decreases with increasing magma supply rate until a threshold is reached, at which point periodicity disappears and extrusion rate becomes steady. Results are compared to well-documented cyclic phases of the ongoing eruption of the Soufrière Hills volcano, Montserrat, in order to demonstrate the appropriateness of this second formulation.

  7. Early first trimester uteroplacental flow and the progressive disintegration of spiral artery plugs: new insights from contrast-enhanced ultrasound and tissue histopathology.

    PubMed

    Roberts, V H J; Morgan, T K; Bednarek, P; Morita, M; Burton, G J; Lo, J O; Frias, A E

    2017-12-01

    Does the use of a vascular contrast agent facilitate earlier detection of maternal flow to the placental intervillous space (IVS) in the first trimester of pregnancy? Microvascular filling of the IVS was demonstrated by contrast-enhanced ultrasound from 6 weeks of gestation onwards, earlier than previously believed. During placental establishment and remodeling of maternal spiral arteries, endovascular trophoblast cells invade and accumulate in the lumen of these vessels to form 'trophoblast plugs'. Prior evidence from morphological and Doppler ultrasound studies has been conflicting as to whether the spiral arteries are completely plugged, preventing maternal blood flow to the IVS until late in the first trimester. Uteroplacental flow was examined across the first trimester in human subjects given an intravenous infusion of lipid-shelled octofluoropropane microbubbles with ultrasound measurement of destruction and replenishment kinetics. We also performed a comprehensive histopathological correlation using two separately archived uteroplacental tissue collections to evaluate the degree of spiral artery plugging and evaluate remodeling of the upstream myometrial radial and arcurate arteries. Pregnant women (n = 34) were recruited in the first trimester (range: 6+3 to 13+6 weeks gestation) for contrast-enhanced ultrasound studies with destruction-replenishment analysis of signal intensity for assessment of microvascular flux rate. Histological samples from archived in situ (Boyd Collection, n = 11) and fresh first, second, and third trimester decidual and post-hysterectomy uterine specimens (n = 16) were evaluated by immunohistochemistry (using markers of epithelial, endothelial and T-cells, as well as cell adhesion and proliferation) and ultrastructural analysis. Contrast agent entry into the IVS was visualized as early as 6+3 weeks of gestation with some variability in microvascular flux rate noted in the 6-7+6 week samples. Spiral artery plug canalization was observed from 7 weeks with progressive disintegration thereafter. Of note, microvascular flux rate did not progressively increase until 13 weeks, which suggests that resistance to maternal flow in the early placenta may be mediated more proximally by myometrial radial arteries that begin remodeling at the end of the first trimester. Gestational age was determined by crown-rump length measurements obtained by transvaginal ultrasound on the day of contrast-enhanced imaging studies, which may explain the variability in the earliest gestational age samples due to the margin of error in this type of measurement. Our comprehensive in situ histological analysis, in combination with the use of an in vivo imaging modality that has the sensitivity to permit visualization of microvascular filling, has allowed us to reveal new evidence in support of increasing blood flow to the IVS from 6 weeks of gestation. Histologic review suggested the mechanism may be blood flow through capillary-sized channels that form through the loosely cohesive 'plugs' by 7 weeks gestation. However, spiral artery remodeling on its own did not appear to explain why there is significantly more blood flow at 13 weeks gestation. Histologic studies suggest it may be related to radial artery remodeling, which begins at the end of the first trimester. This project was supported by the Oregon Health and Science University Knight Cardiovascular Institute, Center for Developmental Health and the Struble Foundation. There are no competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  9. MBM fuel feeding system design and evaluation for FBG pilot plant.

    PubMed

    Campbell, William A; Fonstad, Terry; Pugsley, Todd; Gerspacher, Regan

    2012-06-01

    A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designed for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection nozzle reduced the output irregularity further to 13%, with an air supply of 50 slpm as the minimum air supply to drive this injector. After commissioning of this final system to the FBG reactor, the injection nozzle was found to plug with char however, and was subsequently removed from the system. Final operation of the reactor continues satisfactorily with the two screw conveyors operating at matching pressure with the fluidized bed, with the output rate of the system estimated based on system characteristic equations, and confirmed by static weight measurements made before and after testing. The error rate by this method is reported to be approximately 10%, which is slightly better than the estimated error rate of 15% for the conveyor system. The reliability of this measurement prediction method relies upon the relative consistency of the physical properties of MBM with respect to its bulk density and feeding characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Long life reference electrode

    DOEpatents

    Yonco, R.M.; Nagy, Z.

    1987-07-30

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservoir and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved. 2 figs.

  11. Respiratory fluid mechanics

    NASA Astrophysics Data System (ADS)

    Grotberg, James B.

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  12. Long life reference electrode

    DOEpatents

    Yonco, R.M.; Nagy, Z.

    1989-04-04

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservoir and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved. 2 figs.

  13. Long life reference electrode

    DOEpatents

    Yonco, Robert M.; Nagy, Zoltan

    1989-01-01

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservior and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved.

  14. Spatial orientation of caloric nystagmus in semicircular canal-plugged monkeys.

    PubMed

    Arai, Yasuko; Yakushin, Sergei B; Cohen, Bernard; Suzuki, Jun-Ichi; Raphan, Theodore

    2002-08-01

    We studied caloric nystagmus before and after plugging all six semicircular canals to determine whether velocity storage contributed to the spatial orientation of caloric nystagmus. Monkeys were stimulated unilaterally with cold ( approximately 20 degrees C) water while upright, supine, prone, right-side down, and left-side down. The decline in the slow phase velocity vector was determined over the last 37% of the nystagmus, at a time when the response was largely due to activation of velocity storage. Before plugging, yaw components varied with the convective flow of endolymph in the lateral canals in all head orientations. Plugging blocked endolymph flow, eliminating convection currents. Despite this, caloric nystagmus was readily elicited, but the horizontal component was always toward the stimulated (ipsilateral) side, regardless of head position relative to gravity. When upright, the slow phase velocity vector was close to the yaw and spatial vertical axes. Roll components became stronger in supine and prone positions, and vertical components were enhanced in side down positions. In each case, this brought the velocity vectors toward alignment with the spatial vertical. Consistent with principles governing the orientation of velocity storage, when the yaw component of the velocity vector was positive, the cross-coupled pitch or roll components brought the vector upward in space. Conversely, when yaw eye velocity vector was downward in the head coordinate frame, i.e., negative, pitch and roll were downward in space. The data could not be modeled simply by a reduction in activity in the ipsilateral vestibular nerve, which would direct the velocity vector along the roll direction. Since there is no cross coupling from roll to yaw, velocity storage alone could not rotate the vector to fit the data. We postulated, therefore, that cooling had caused contraction of the endolymph in the plugged canals. This contraction would deflect the cupula toward the plug, simulating ampullofugal flow of endolymph. Inhibition and excitation induced by such cupula deflection fit the data well in the upright position but not in lateral or prone/supine conditions. Data fits in these positions required the addition of a spatially orientated, velocity storage component. We conclude, therefore, that three factors produce cold caloric nystagmus after canal plugging: inhibition of activity in ampullary nerves, contraction of endolymph in the stimulated canals, and orientation of eye velocity to gravity through velocity storage. Although the response to convection currents dominates the normal response to caloric stimulation, velocity storage probably also contributes to the orientation of eye velocity.

  15. Thermal Cracking of Tars in a Continuously Fed Reactor with Steam

    DTIC Science & Technology

    2011-05-01

    Fluidized Bed using biomass 8 Tars  Mixture of organic components present in gasification product gas with high molecular weight hydrocarbons [MW...Disable sulfur removal systems FoulingPlugging [Ref. 3: Biomass Gasification – Tar and Particles in Product Gases Sampling and Analysis”, European...P., and Nussbaumer T., “Gas Cleaning Requirements for Internal Combustion Engine Applications of Fixed Bed Biomass Gasification ”, Biomass and

  16. Immobilization of Trypsin in Lignocellulosic Waste Material to Produce Peptides with Bioactive Potential from Whey Protein

    PubMed Central

    Bassan, Juliana Cristina; de Souza Bezerra, Thaís Milena; Peixoto, Guilherme; da Cruz, Clariana Zanutto Paulino; Galán, Julián Paul Martínez; Vaz, Aline Buda dos Santos; Garrido, Saulo Santesso; Filice, Marco; Monti, Rubens

    2016-01-01

    In this study, trypsin (Enzyme Comission 3.4.21.4) was immobilized in a low cost, lignocellulosic support (corn cob powder—CCP) with the goal of obtaining peptides with bioactive potential from cheese whey. The pretreated support was activated with glyoxyl groups, glutaraldehyde and IDA-glyoxyl. The immobilization yields of the derivatives were higher than 83%, and the retention of catalytic activity was higher than 74%. The trypsin-glyoxyl-CCP derivative was thermally stable at 65 °C, a value that was 1090-fold higher than that obtained with the free enzyme. The trypsin-IDA-glyoxyl-CCP and trypsin-glutaraldehyde-CCP derivatives had thermal stabilities that were 883- and five-fold higher, respectively, then those obtained with the free enzyme. In the batch experiments, trypsin-IDA-glyoxyl-CCP retained 91% of its activity and had a degree of hydrolysis of 12.49%, while the values for trypsin-glyoxyl-CCP were 87% and 15.46%, respectively. The stabilized derivative trypsin-glyoxyl-CCP was also tested in an upflow packed-bed reactor. The hydrodynamic characterization of this reactor was a plug flow pattern, and the kinetics of this system provided a relative activity of 3.04 ± 0.01 U·g−1 and an average degree of hydrolysis of 23%, which were suitable for the production of potentially bioactive peptides. PMID:28773482

  17. Development and testing of a fast conceptual river water quality model.

    PubMed

    Keupers, Ingrid; Willems, Patrick

    2017-04-15

    Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  19. Liquid microjunction surface sampling probe fluid dynamics: Characterization and application of an analyte plug formation operational mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ElNaggar, Mariam S.; Van Berkel, Gary J.

    2011-08-10

    The recently discovered sample plug formation and injection operational mode of a continuous flow, coaxial tube geometry, liquid microjunction surface sampling probe (LMJ-SSP) (J. Am. Soc. Mass Spectrom, 2011) was further characterized and applied for concentration and mixing of analyte extracted from multiple areas on a surface and for nanoliter-scale chemical reactions of sampled material. A transparent LMJ-SSP was constructed and colored analytes were used so that the surface sampling process, plug formation, and the chemical reactions could be visually monitored at the sampling end of the probe before being analyzed by mass spectrometry of the injected sample plug. Injectionmore » plug peak widths were consistent for plug hold times as long as the 8 minute maximum attempted (RSD below 1.5%). Furthermore, integrated injection peak signals were not significantly different for the range of hold times investigated. The ability to extract and completely mix individual samples within a fixed volume at the sampling end of the probe was demonstrated and a linear mass spectral response to the number of equivalent analyte spots sampled was observed. Lastly, using the color and mass changing chemical reduction of the redox dye 2,6-dichlorophenol-indophenol with ascorbic acid, the ability to sample, concentrate, and efficiently run reactions within the same plug volume within the probe was demonstrated.« less

  20. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1958-08-19

    A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

  1. Computer study of emergency shutdowns of a 60-kilowatt reactor Brayton space power system

    NASA Technical Reports Server (NTRS)

    Tew, R. C.; Jefferies, K. S.

    1974-01-01

    A digital computer study of emergency shutdowns of a 60-kWe reactor Brayton power system was conducted. Malfunctions considered were (1) loss of reactor coolant flow, (2) loss of Brayton system gas flow, (3)turbine overspeed, and (4) a reactivity insertion error. Loss of reactor coolant flow was the most serious malfunction for the reactor. Methods for moderating the reactor transients due to this malfunction are considered.

  2. Fuel rod with annular nuclear fuel pellets having same U-235 enrichment and different annulus sizes for graduated enrichment loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mildrum, C.M.

    1987-08-18

    A fuel rod is described for a nuclear reactor fuel assembly, comprising: (a) a hollow cladding tube; (b) a pair of end plugs connected to and sealing the cladding tube at opposite ends thereof; (c) a plurality of fuel pellets contained on the tube and being composed of fissile material having a single enrichment the value of which is at the level of the maximum enrichment loading of the rod, the pellets having provided in a stack having one end disposed adjacent to one of the end plugs and an opposite end disposed remote from the other of the endmore » plugs; and (d) a plenum spring disposed in the tube between the other end plug and the opposite end of the pellet stack for retaining the pellets in a stack form; (e) at least some of the fuel pellets having an annular configuration and at least other of the fuel pellets having a solid configuration; (f) each of some of the annular fuel pellets having an annulus of a first size; (e) each of other of the annual fuel pellets having an annulus of a second size different from the first size, whereby graduation of axial enrichment loading is provided between the annual fuel pellets of the fuel rod.« less

  3. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous‐Flow Nanocatalysis

    PubMed Central

    Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta

    2017-01-01

    Abstract Continuous‐flow nanocatalysis based on metal nanoparticle catalyst‐anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle‐anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The “paper reactor” offers hierarchically interconnected micro‐ and nanoscale pores, which can act as convective‐flow and rapid‐diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous‐flow, aqueous, room‐temperature catalytic reduction of 4‐nitrophenol to 4‐aminophenol, a gold nanoparticle (AuNP)‐anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state‐of‐the‐art AuNP‐anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP‐anchored paper reactors were also demonstrated while high reaction efficiency was maintained. PMID:28394501

  4. Avalanches of Singing Sand in the Laboratory

    NASA Astrophysics Data System (ADS)

    Dagois-Bohy, Simon; Courrech Du Pont, Sylvain; Douady, Stéphane

    2011-03-01

    The song of dunes is a natural phenomenon that has arisen travellers' curiosity for a long time, from Marco Polo to R.A. Bagnold. Scientific observations in the XXth century have shown that the sound is emitted during a shear flow of these particular grains, the free surface of the flow having coherent vibrations like a loud speaker. The sound emission is also submitted to a threshold effect with many parameters like humidity, flow speed, surface of the grains. The sound has been reproduced in laboratory avalanche experiments close to the natural phenomenon on field, but set in a channel with a hard bottom and a few centimeters of sand flowing, which contradicts explanations of the sound that involve a sand dune under the avalanche flow. Flow rates measurements also show the presence of a plug region in the flow above the sheared band, with the same characteristic length as the coherence zones of the sound. Finally we show experimentally that the Froude number, once modified to take into account the height of this plug band, is the parameter that sets the amplitude of the sound, and produces a threshold that depends on the grain type.

  5. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  6. The Evolution of Friction Stir Welding Theory at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C.

    2012-01-01

    From 1995 to the present the friction stir welding (FSW) process has been under study at Marshall Space Flight Center (MSFC). This is an account of the progressive emergence of a set of conceptual tools beginning with the discovery of the shear surface, wiping metal transfer, and the invention of a kinematic model and making possible a treatment of both metallurgical structure formation and process dynamics in friction stir welding from a unified point of view. It is generally observed that the bulk of the deformation of weld metal around the FSW pin takes place in a very narrow, almost discontinuous zone with high deformation rates characteristic of metal cutting. By 1999 it was realized that this zone could be treated as a shear surface like that in simple metal cutting models. At the shear surface the seam is drawn out and compressed and pressure and flow conditions determine whether or not a sound weld is produced. The discovery of the shear surface was followed by the synthesis of a simple 3- flow kinematic model of the FSW process. Relative to the tool the flow components are: (1) an approaching translational flow at weld speed V, (2) a rotating cylindrical plug flow with the angular velocity of the tool , and (3) a relatively slow ring vortex flow (like a smoke ring) encircling the tool and driven by shoulder scrolls and pin threads. The rotating plug flow picks up an element of weld metal, rotates it around with the tool, and deposits it behind the tool ( wiping metal transfer ); it forms plan section loops in tracers cut through by the tool. Radially inward flow from the ring vortex component retains metal longer in the rotating plug and outward flow expels metal earlier; this interaction forms the looping weld seam trace and the tongue and groove bimetallic weld contour. The radial components of the translational and ring vortex flows introduce parent metal intrusions into the small grained nugget material close to the tool shoulder; if this feature is pronounced, nugget collapse may result. Certain weld features, in particular internal banding seen in transverse section as onion rings and associated surface ridges called tool marks , have long implied an oscillation flow component, but have only recently been attributed in the literature to tool eccentricity. Rotating plug shape, typically a hollow cylinder flared at the end where it sticks to the shoulder, varies as pressure distribution on the tool determines where sticking occurs. Simplified power input estimates balanced against heat loss estimates give reasonable temperature estimates, explain why the power requirement changes hardly at all over a wide range of RPM s, and yield isotherms that seem to fall along boundaries of parameter windows of operation.

  7. Modeling of molecular and particulate transport in dry spent nuclear fuel canisters

    NASA Astrophysics Data System (ADS)

    Casella, Andrew M.

    2007-09-01

    The transportation and storage of spent nuclear fuel is one of the prominent issues facing the commercial nuclear industry today, as there is still no general consensus regarding the near- and long-term strategy for managing the back-end of the nuclear fuel cycle. The debate continues over whether the fuel cycle should remain open, in which case spent fuel will be stored at on-site reactor facilities, interim facilities, or a geologic repository; or if the fuel cycle should be closed, in which case spent fuel will be recycled. Currently, commercial spent nuclear fuel is stored at on-site reactor facilities either in pools or in dry storage containers. Increasingly, spent fuel is being moved to dry storage containers due to decreased costs relative to pools. As the number of dry spent fuel containers increases and the roles they play in the nuclear fuel cycle increase, more regulations will be enacted to ensure that they function properly. Accordingly, they will have to be carefully analyzed for normal conditions, as well as any off-normal conditions of concern. This thesis addresses the phenomena associated with one such concern; the formation of a microscopic through-wall breach in a dry storage container. Particular emphasis is placed on the depressurization of the canister, release of radioactivity, and plugging of the breach due to deposition of suspended particulates. The depressurization of a dry storage container upon the formation of a breach depends on the temperature and quantity of the fill gas, the pressure differential across the breach, and the size of the breach. The first model constructed in this thesis is capable of determining the depressurization time for a breached container as long as the associated parameters just identified allow for laminar flow through the breach. The parameters can be manipulated to quantitatively determine their effect on depressurization. This model is expanded to account for the presence of suspended particles. If these particles are transported with the fill gas into the breach, they may be deposited, leading to a restriction of flow and eventually to the plugging of the breach. This model uses an analytical solution to the problem of particle deposition in convective-diffusive fully-developed laminar flow through a straight cylindrical tube. Since the cylindrical flow geometry is a requirement for the use of this equation, it is assumed that all deposited particles are distributed uniformly both axially and circumferentially along the breach. The model is capable of monitoring the pressure, temperature, quantity of fill gas, breach radius, particle transmission fraction, and flow velocity through the breach as functions of time. The depressurization time can be significantly affected by the release of fission gases or helium generated from alpha decay if the cladding of a fuel rod within the canister is breached. To better quantify this phenomenon, a Monte Carlo model of molecular transport through nano-scale flow pathways in the spent fuel is developed in this thesis. This model is applied to cylindrical, conical, elliptical, and helical pathways. Finally, in order to remove some of the restrictions of the model of canister depressurization accounting for suspended particles, a Monte Carlo program was written to model the movement of particles through the breach. This program is capable of accounting for any transport mechanism specified but is focused in this work on laminar convective-diffusive flow. Each test particle is tracked as it is carried through the breach and if it impacts the breach wall, the three-dimensional location of the impact is recorded. In this way, the axial and circumferential deposition patterns can be recorded. This program can model any flow geometry as long as a velocity profile can be provided. In this thesis, the program is expanded to account for flow through straight and torroidal cylindrical tubes.

  8. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin

    2016-08-01

    Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.

  9. Frozen-Plug Technique for Liquid-Oxygen Plumbing

    NASA Technical Reports Server (NTRS)

    McCaskey, C. E. " Mac" ; Lobmeyer, Dennis; Nagy, Zoltan; Peltzer, Rich

    2005-01-01

    A frozen-plug technique has been conceived as a means of temporarily blocking the flow of liquid oxygen or its vapor through a tube or pipe. The technique makes it possible to perform maintenance, repair, or other work on downstream parts of the cryogenic system in which the oxygen is used, without having to empty an upstream liquid-oxygen reservoir and, hence, without wasting the stored liquid oxygen and without subjecting the reservoir to the stresses of thermal cycling.

  10. Motion of liquid plugs between vapor bubbles in capillary tubes: a comparison between fluids

    NASA Astrophysics Data System (ADS)

    Bertossi, Rémi; Ayel, Vincent; Mehta, Balkrishna; Romestant, Cyril; Bertin, Yves; Khandekar, Sameer

    2017-11-01

    Pulsating heat pipes (PHP) are now well-known devices in which liquid/vapor slug flow oscillates in a capillary tube wound between hot and cold sources. In this context, this paper focuses on the motion of the liquid plug, trapped between vapor bubbles, moving in capillary tubes, to try to better understand the thermo-physical phenomena involved in such devices. This study is divided into three parts. In the first part, an experimental study presents the evolution of the vapor pressure during the evaporation process of a liquid thin film deposited from a liquid plug flowing in a heated capillary tube: it is found that the behavior of the generated and removed vapor can be very different, according to the thermophysical properties of the fluids. In the second part, a transient model allows to compare, in terms of pressure and duration, the motion of a constant-length liquid plug trapped between two bubbles subjected to a constant difference of vapor pressure: the results highlight that the performances of the four fluids are also very different. Finally, a third model that can be considered as an improvement of the second one, is also presented: here, the liquid slug is surrounded by two vapor bubbles, one subjected to evaporation, the pressure in both bubbles is now a result of the calculation. This model still allows comparing the behaviors of the fluid. Even if our models are quite far from a complete model of a real PHP, results do indicate towards the applicability of different fluids as suitable working fluids for PHPs, particularly in terms of the flow instabilities which they generate.

  11. The non-Newtonian heat and mass transport of He 2 in porous media used for vapor-liquid phase separation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.

    1985-01-01

    This investigation of vapor-liquid phase separation (VLPS) of He 2 is related to long-term storage of cryogenic liquid. The VLPS system utilizes porous plugs in order to generate thermomechanical (thermo-osmotic) force which in turn prevents liquid from flowing out of the cryo-vessel (e.g., Infrared Astronomical Satellite). An apparatus was built and VLPS data were collected for a 2 and a 10 micrometer sintered stainless steel plug and a 5 to 15 micrometer sintered bronze plug. The VLPS data obtained at high temperature were in the nonlinear turbulent regime. At low temperature, the Stokes regime was approached. A turbulent flow model was developed, which provides a phenomenological description of the VLPS data. According to the model, most of the phase separation data are in the turbulent regime. The model is based on concepts of the Gorter-Mellink transport involving the mutual friction known from the zero net mass flow (ZNMF) studies. The latter had to be modified to obtain agreement with the present experimental VLPS evidence. In contrast to the well-known ZNMF mode, the VLPS results require a geometry dependent constant (Gorter-Mellink constant). A theoretical interpretation of the phenomenological equation for the VLPS data obtained, is based on modelling of the dynamics of quantized vortices proposed by Vinen. In extending Vinen's model to the VLPS transport of He 2 in porous media, a correlation between the K*(GM) and K(p) was obtained which permits an interpretation of the present findings. As K(p) is crucial, various methods were introduced to measure the permeability of the porous media at low temperatures. Good agreement was found between the room temperature and the low temperature K(p)-value of the plugs.

  12. High-throughput microcoil NMR of compound libraries using zero-dispersion segmented flow analysis.

    PubMed

    Kautz, Roger A; Goetzinger, Wolfgang K; Karger, Barry L

    2005-01-01

    An automated system for loading samples into a microcoil NMR probe has been developed using segmented flow analysis. This approach enhanced 2-fold the throughput of the published direct injection and flow injection methods, improved sample utilization 3-fold, and was applicable to high-field NMR facilities with long transfer lines between the sample handler and NMR magnet. Sample volumes of 2 microL (10-30 mM, approximately 10 microg) were drawn from a 96-well microtiter plate by a sample handler, then pumped to a 0.5-microL microcoil NMR probe as a queue of closely spaced "plugs" separated by an immiscible fluorocarbon fluid. Individual sample plugs were detected by their NMR signal and automatically positioned for stopped-flow data acquisition. The sample in the NMR coil could be changed within 35 s by advancing the queue. The fluorocarbon liquid wetted the wall of the Teflon transfer line, preventing the DMSO samples from contacting the capillary wall and thus reducing sample losses to below 5% after passage through the 3-m transfer line. With a wash plug of solvent between samples, sample-to-sample carryover was <1%. Significantly, the samples did not disperse into the carrier liquid during loading or during acquisitions of several days for trace analysis. For automated high-throughput analysis using a 16-second acquisition time, spectra were recorded at a rate of 1.5 min/sample and total deuterated solvent consumption was <0.5 mL (1 US dollar) per 96-well plate.

  13. Multiphase Modeling of Bottom-Stirred Ladle for Prediction of Slag-Steel Interface and Estimation of Desulfurization Behavior

    NASA Astrophysics Data System (ADS)

    Singh, Umesh; Anapagaddi, Ravikiran; Mangal, Saurabh; Padmanabhan, Kuppuswamy Anantha; Singh, Amarendra Kumar

    2016-06-01

    Ladle furnace is a key unit in which various phenomena such as deoxidation, desulfurization, inclusion removal, and homogenization of alloy composition and temperature take place. Therefore, the processes present in the ladle play an important role in determining the quality of steel. Prediction of flow behavior of the phases present in the ladle furnace is needed to understand the phenomena that take place there and accordingly control the process parameters. In this study, first a mathematical model is developed to analyze the transient three-phase flow present. Argon gas bottom-stirred ladle with off-centered plugs has been used in this study. Volume of fluid method is used in a computational fluid dynamics (CFD) model to capture the behavior of slag, steel, and argon interfaces. The results are validated with data from literature. Eye opening and slag-steel interfacial area are calculated for different operating conditions and are compared with experimental and simulated results cited in literature. Desulfurization rate is then predicted using chemical kinetic equations, interfacial area, calculated from CFD model, and thermodynamic data, obtained from the Thermo-Calc software. Using the model, it is demonstrated that the double plug purging is more suitable than the single plug purging for the same level of total flow. The advantage is more distinct at higher flow rates as it leads higher interfacial area, needed for desulfurization and smaller eye openings (lower oxygen/nitrogen pickup).

  14. Respiratory fluid mechanics

    PubMed Central

    Grotberg, James B.

    2011-01-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from “capillary-elastic instabilities,” as well as nonlinear stabilization from oscillatory core flow which we call the “oscillating butter knife;” liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg–Borgas–Gaver shock. PMID:21403768

  15. Cruise control for segmented flow.

    PubMed

    Abolhasani, Milad; Singh, Mayank; Kumacheva, Eugenia; Günther, Axel

    2012-11-21

    Capitalizing on the benefits of microscale segmented flows, e.g., enhanced mixing and reduced sample dispersion, so far requires specialist training and accommodating a few experimental inconveniences. For instance, microscale gas-liquid flows in many current setups take at least 10 min to stabilize and iterative manual adjustments are needed to achieve or maintain desired mixing or residence times. Here, we report a cruise control strategy that overcomes these limitations and allows microscale gas-liquid (bubble) and liquid-liquid (droplet) flow conditions to be rapidly "adjusted" and maintained. Using this strategy we consistently establish bubble and droplet flows with dispersed phase (plug) velocities of 5-300 mm s(-1), plug lengths of 0.6-5 mm and continuous phase (slug) lengths of 0.5-3 mm. The mixing times (1-5 s), mass transfer times (33-250 ms) and residence times (3-300 s) can therefore be directly imposed by dynamically controlling the supply of the dispersed and the continuous liquids either from external pumps or from local pressurized reservoirs. In the latter case, no chip-external pumps, liquid-perfused tubes or valves are necessary while unwanted dead volumes are significantly reduced.

  16. Alternate tube plugging criteria for steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cueto-Felgueroso, C.; Aparicio, C.B.

    1997-02-01

    The tubing of the Steam Generators constitutes more than half of the reactor coolant pressure boundary. Specific requirements governing the maintenance of steam generator tubes integrity are set in Plant Technical Specifications and in Section XI of the ASME Boiler and Pressure Vessel Code. The operating experience of Steam Generator tubes of PWR plants has shown the existence of some types of degradatory processes. Every one of these has an specific cause and affects one or more zones of the tubes. In the case of Spanish Power Plants, and depending on the particular Plant considered, they should be mentioned themore » Primary Water Stress Corrosion Cracking (PWSCC) at the roll transition zone (RTZ), the Outside Diameter Stress Corrosion Cracking (ODSCC) at the Tube Support Plate (TSP) intersections and the fretting with the Anti-Vibration Bars (AVBs) or with the Support Plates in the preheater zone. The In-Service Inspections by Eddy Currents constitutes the standard method for assuring the SG tubes integrity and they permit the monitoring of the defects during the service life of the plant. When the degradation reaches a determined limit, called the plugging limit, the SG tube must be either repaired or retired from service by plugging. Customarily, the plugging limit is related to the depth of the defect. Such depth is typically 40% of the wall thickness of the tube and is applicable to any type of defect in the tube. In its origin, that limit was established for tubes thinned by wastage, which was the predominant degradation in the seventies. The application of this criterion for axial crack-like defects, as, for instance, those due to PWSCC in the roll transition zone, has lead to an excessive and unnecessary number of tubes being plugged. This has lead to the development of defect specific plugging criteria. Examples of the application of such criteria are discussed in the article.« less

  17. Collection of nanoliter microdiaysate fractions in plugs for off-line in vivo chemical monitoring with up to 2 s temporal resolution

    PubMed Central

    Wang, Meng; Slaney, Thomas; Mabrouk, Omar; Kennedy, Robert T.

    2010-01-01

    An off-line in vivo neurochemical monitoring approach was developed based on collecting nanoliter microdialysate fractions as an array of “plugs” segmented by immiscible oil in a piece of Teflon tubing. The dialysis probe was integrated with the plug generator in a polydimethlysiloxane microfluidic device that could be mounted on the subject. The microfluidic device also allowed derivatization reagents to be added to the plugs for fluorescence detection of analytes. Using the device, 2 nL fractions corresponding to 1–20 ms sampling times depending upon dialysis flow rate, were collected. Because axial dispersion was prevented between them, each plug acted as a discrete sample collection vial and temporal resolution was not lost by mixing or diffusion during transport. In vitro tests of the system revealed that the temporal resolution of the system was as good as 2 s and was limited by mass transport effects within the dialysis probe. After collection of dialysate fractions, they were pumped into a glass microfluidic chip that automatically analyzed the plugs by capillary electrophoresis with laser-induced fluorescence at 50 s intervals. By using a relatively low flow rate during transfer to the chip, the temporal resolution of the samples could be preserved despite the relatively slow analysis time. The system was used to detect rapid dynamics in neuroactive amino acids evoked by microinjecting the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) or K+ into the striatum of anesthetized rats. The resulted showed increases in neurotransmitter efflux that reached a peak in 20 s for PDC and 13 s for K+. PMID:20447417

  18. Pressurized water reactor flow skirt apparatus

    DOEpatents

    Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.

    2016-04-05

    A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.

  19. Disastrous Portal Vein Embolization Turned into a Successful Intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrocky, Tomas, E-mail: tomas.dobrocky@insel.ch; Kettenbach, Joachim, E-mail: joachim.kettenbach@stpoelten.lknoe.at; Lopez-Benitez, Ruben, E-mail: Ruben.lopez@insel.ch

    Portal vein embolization (PVE) may be performed before hemihepatectomy to increase the volume of future liver remnant (FLR) and to reduce the risk of postoperative liver insufficiency. We report the case of a 71-year-old patient with hilar cholangiocarcinoma undergoing PVE with access from the right portal vein using a mixture of n-butyl-2-cyanoacrylate and ethiodized oil. During the procedure, nontarget embolization of the left portal vein occurred. An aspiration maneuver of the polymerized plug failed; however, the embolus obstructing portal venous flow in the FLR was successfully relocated into the right portal vein while carefully bypassing the plug with a balloonmore » catheter, inflating the balloon, and pulling the plug into the main right portal vein.« less

  20. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  1. Does aphid salivation affect phloem sieve element occlusion in vivo?

    PubMed

    Medina-Ortega, Karla J; Walker, G P

    2013-12-01

    To protect against loss of photo-assimilate-rich phloem sap, plants have evolved several mechanisms to plug phloem sieve tubes in response to damage. In many Fabaceae, each sieve element contains a discrete proteinaceous body called a forisome, which, in response to damage, rapidly transforms from a condensed configuration that does not impede the flow of sap to a dispersed configuration that plugs the sieve element. Aphids and other specialized phloem sap feeders can ingest phloem sap from a single sieve element for hours or days, and to do this, they must be able to suppress or reverse phloem plugging. A recent study provided in vitro evidence that aphid saliva can reverse forisome plugs. The present study tested this hypothesis in vivo by inducing forisome plugs which triggered aphids to switch behaviour from phloem sap ingestion to salivation into the sieve element. After salivating into the sieve element for various periods of time, the aphids were instantaneously cryofixed (freeze fixed) in situ on their leaf. The state of the forisome was then determined in the penetrated sieve element and in nearby non-penetrated sieve elements which served as controls for sieve elements not subjected to direct aphid salivation. Forisomes were almost always in close contact with the stylet tips and thus came into direct contact with the saliva. Nonetheless, forisome plugs in the penetrated sieve element did not revert back to a non-plugging state any faster than those in neighbouring sieve elements that were not subjected to direct aphid salivation.

  2. Does aphid salivation affect phloem sieve element occlusion in vivo?

    PubMed Central

    Medina-Ortega, Karla J.

    2013-01-01

    To protect against loss of photo-assimilate-rich phloem sap, plants have evolved several mechanisms to plug phloem sieve tubes in response to damage. In many Fabaceae, each sieve element contains a discrete proteinaceous body called a forisome, which, in response to damage, rapidly transforms from a condensed configuration that does not impede the flow of sap to a dispersed configuration that plugs the sieve element. Aphids and other specialized phloem sap feeders can ingest phloem sap from a single sieve element for hours or days, and to do this, they must be able to suppress or reverse phloem plugging. A recent study provided in vitro evidence that aphid saliva can reverse forisome plugs. The present study tested this hypothesis in vivo by inducing forisome plugs which triggered aphids to switch behaviour from phloem sap ingestion to salivation into the sieve element. After salivating into the sieve element for various periods of time, the aphids were instantaneously cryofixed (freeze fixed) in situ on their leaf. The state of the forisome was then determined in the penetrated sieve element and in nearby non-penetrated sieve elements which served as controls for sieve elements not subjected to direct aphid salivation. Forisomes were almost always in close contact with the stylet tips and thus came into direct contact with the saliva. Nonetheless, forisome plugs in the penetrated sieve element did not revert back to a non-plugging state any faster than those in neighbouring sieve elements that were not subjected to direct aphid salivation. PMID:24127515

  3. Computational fluid dynamics characterization of a novel mixed cell raceway design

    USDA-ARS?s Scientific Manuscript database

    Computational fluid dynamics (CFD) analysis was performed on a new type of mixed cell raceway (MCR) that incorporates longitudinal plug flow using inlet and outlet weirs for the primary fraction of the total flow. As opposed to regular MCR wherein vortices are entirely characterized by the boundary ...

  4. Validation of a simple method for predicting the disinfection performance in a flow-through contactor.

    PubMed

    Pfeiffer, Valentin; Barbeau, Benoit

    2014-02-01

    Despite its shortcomings, the T10 method introduced by the United States Environmental Protection Agency (USEPA) in 1989 is currently the method most frequently used in North America to calculate disinfection performance. Other methods (e.g., the Integrated Disinfection Design Framework, IDDF) have been advanced as replacements, and more recently, the USEPA suggested the Extended T10 and Extended CSTR (Continuous Stirred-Tank Reactor) methods to improve the inactivation calculations within ozone contactors. To develop a method that fully considers the hydraulic behavior of the contactor, two models (Plug Flow with Dispersion and N-CSTR) were successfully fitted with five tracer tests results derived from four Water Treatment Plants and a pilot-scale contactor. A new method based on the N-CSTR model was defined as the Partially Segregated (Pseg) method. The predictions from all the methods mentioned were compared under conditions of poor and good hydraulic performance, low and high disinfectant decay, and different levels of inactivation. These methods were also compared with experimental results from a chlorine pilot-scale contactor used for Escherichia coli inactivation. The T10 and Extended T10 methods led to large over- and under-estimations. The Segregated Flow Analysis (used in the IDDF) also considerably overestimated the inactivation under high disinfectant decay. Only the Extended CSTR and Pseg methods produced realistic and conservative predictions in all cases. Finally, a simple implementation procedure of the Pseg method was suggested for calculation of disinfection performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Impact of sludge layer geometry on the hydraulic performance of a waste stabilization pond.

    PubMed

    Ouedraogo, Faissal R; Zhang, Jie; Cornejo, Pablo K; Zhang, Qiong; Mihelcic, James R; Tejada-Martinez, Andres E

    2016-08-01

    Improving the hydraulic performance of waste stabilization ponds (WSPs) is an important management strategy to not only ensure protection of public health and the environment, but also to maximize the potential reuse of valuable resources found in the treated effluent. To reuse effluent from WSPs, a better understanding of the factors that impact the hydraulic performance of the system is needed. One major factor determining the hydraulic performance of a WSP is sludge accumulation, which alters the volume of the pond. In this study, computational fluid dynamics (CFD) analysis was applied to investigate the impact of sludge layer geometry on hydraulic performance of a facultative pond, typically used in many small communities throughout the developing world. Four waste stabilization pond cases with different sludge volumes and distributions were investigated. Results indicate that sludge distribution and volume have a significant impact on wastewater treatment efficiency and capacity. Although treatment capacity is reduced with accumulation of sludge, the latter may induce a baffling effect which causes the flow to behave closer to that of plug flow reactor and thus increase treatment efficiency. In addition to sludge accumulation and distribution, the impact of water surface level is also investigated through two additional cases. Findings show that an increase in water level while keeping a constant flow rate can result in a significant decrease in the hydraulic performance by reducing the sludge baffling effect, suggesting a careful monitoring of sludge accumulation and water surface level in WSP systems. Published by Elsevier Ltd.

  6. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Csernica, Stephen N.

    The demand for renewable forms of energy has increased tremendously over the past two decades. Of all the different forms of renewable energy, biodiesel, a liquid fuel, has emerged as one of the more viable possibilities. This is in large part due to the fact that biodiesel can readily be used in modern day diesel engines with nearly no engine modifications. It is commonly blended with conventional petroleum-derived diesel but it can also be used neat. As a result of the continued growth of the industry, there has been a correspondingly large increase in the scientific and technical research conducted on the subject. Much of the research has been conducted on the feasibility of using different types of feedstocks, which generally vary with respect to geographic locale, as well as different types of catalysts. Much of the work of the present study was involved with the investigation of the binary liquid-liquid nature of the system and its effects on the reaction kinetics. Initially, the development of an analytical method for the analysis of the compounds present in transesterification reaction mixtures using high performance liquid chromatography (HPLC) was developed. The use of UV(205 nm) as well as refractive index detection (RID) were shown capable to detect the various different types of components associated with transesterification reactions. Reversed-phase chromatography with isocratic elution was primarily used. Using a unique experimental apparatus enabling the simultaneous analysis of both liquid phases throughout the reaction, an experimental method was developed for measuring the reaction rate under both mass transfer control and reaction control. The transesterification reaction rate under each controlling mechanism was subsequently evaluated and compared. It was determined that the reaction rate is directly proportional to the concentration of triglycerides in the methanol phase. Furthermore, the reaction rate accelerates rapidly as the system transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style plug flow reactors (PFR). Despite this fact, the use of CSTRs is more common than the use of PFRs. This is mostly due to the fact that the two initial reactant phases are relatively immiscible and significant agitation is generally supplied to initiate the reaction. Based on the theoretical results, however, the use of a packed-bed tubular flow reactor was investigated experimentally. A series of two tubular flow reactors was built in the laboratory. The first reactor was of the shell and tube variety and also functioned as a preheater. The second reactor was larger and contained a packed-bed. Two different flow configurations were invested, upflow-upflow and downflow-downflow. It was determined that the downflow-downflow configuration provided significantly better triglyceride conversions that the upflow-upflow configuration.

  7. Folding-paper-based preconcentrator for low dispersion of preconcentration plug

    NASA Astrophysics Data System (ADS)

    Lee, Kyungjae; Yoo, Yong Kyoung; Han, Sung Il; Lee, Junwoo; Lee, Dohwan; Kim, Cheonjung; Lee, Jeong Hoon

    2017-12-01

    Ion concentration polarization (ICP) has been widely studied for collecting target analytes as it is a powerful preconcentrator method employed for charged molecules. Although the method is quite robust, simple, cheap, and yields a high preconcentration factor, a major hurdle to be addressed is extracting the preconcentrated samples without dispersing the plug. This study investigates a 3D folding-paper-based ICP preconcentrator for preconcentrated plug extraction without the dispersion effect. The ICP preconcentrator is printed on a cellulose paper with pre-patterned hydrophobic wax. To extract and isolate the preconcentration plug with minimal dispersion, a 3D pop-up structure is fabricated via water drain, and a preconcentration factor of 300-fold for 10 min is achieved. By optimizing factors such as the electric field, water drain, and sample volume, the technique was enhanced by facilitating sample preconcentration and isolation, thereby providing the possibility for extensive applications in analytical devices such as lateral flow assays and FTAR cards.

  8. Turbulence coefficients and stability studies for the coaxial flow or dissimiliar fluids. [gaseous core nuclear reactors

    NASA Technical Reports Server (NTRS)

    Weinstein, H.; Lavan, Z.

    1975-01-01

    Analytical investigations of fluid dynamics problems of relevance to the gaseous core nuclear reactor program are presented. The vortex type flow which appears in the nuclear light bulb concept is analyzed along with the fluid flow in the fuel inlet region for the coaxial flow gaseous core nuclear reactor concept. The development of numerical methods for the solution of the Navier-Stokes equations for appropriate geometries is extended to the case of rotating flows and almost completes the gas core program requirements in this area. The investigations demonstrate that the conceptual design of the coaxial flow reactor needs further development.

  9. Nonlinear saturation of the Rayleigh instability due to oscillatory flow in a liquid-lined tube

    NASA Astrophysics Data System (ADS)

    Halpern, David; Grotberg, James B.

    2003-10-01

    In this paper, the stability of core annular flows consisting of two immiscible fluids in a cylindrical tube with circular cross-section is examined. Such flows are important in a wide range of industrial and biomedical applications. For example, in secondary oil recovery, water is pumped into the well to displace the remaining oil. It is also of relevance in the lung, where a thin liquid film coats the inner surface of the small airways of the lungs. In both cases, the flow is influenced by a surface-tension instability, which may induce the breakup of the core fluid into short plugs, reducing the efficiency of the oil recovery, or blocking the passage of air in the lung thus inducing airway closure. We consider the stability of a thin film coating the inner surface of a rigid cylindrical tube with the less viscous fluid in the core. For thick enough films, the Rayleigh instability forms a liquid bulge that can grow to eventually create a plug blocking the tube. The analysis explores the effect of an oscillatory core flow on the interfacial dynamics and particularly the nonlinear stabilization of the bulge. The oscillatory core flow exerts tangential and normal stresses on the interface between the two fluids that are simplified by uncoupling the core and film analyses in the thin-film high-frequency limit of the governing equations. Lubrication theory is used to derive a nonlinear evolution equation for the position of the air liquid interface which includes the effects of the core flow. It is shown that the core flow can prevent plug formation of the more viscous film layer by nonlinear saturation of the capillary instability. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stoke and shear turn around. To be successful, the leading film thickness ahead of the bulge must be smaller than the trailing film thickness behind it, a requirement necessitating a large enough core capillary number which promotes a large core shear stress on the interface. The core capillary number is defined to be the ratio of core viscous forces to surface tension forces. When this process is tuned correctly, the two phases balance and there is no net growth of the liquid bulge over one cycle. We find that there is a critical frequency above which plug formation does not occur, and that this critical frequency increases as the tidal volume amplitude of the core flow decreases.

  10. Mathematical modeling of pulsatile flow of non-Newtonian fluid in stenosed arteries

    NASA Astrophysics Data System (ADS)

    Sankar, D. S.; Lee, Usik

    2009-07-01

    The pulsatile flow of blood through mild stenosed artery is studied. The effects of pulsatility, stenosis and non-Newtonian behavior of blood, treating the blood as Herschel-Bulkley fluid, are simultaneously considered. A perturbation method is used to analyze the flow. The expressions for the shear stress, velocity, flow rate, wall shear stress, longitudinal impedance and the plug core radius have been obtained. The variations of these flow quantities with different parameters of the fluid have been analyzed. It is found that, the plug core radius, pressure drop and wall shear stress increase with the increase of yield stress or the stenosis height. The velocity and the wall shear stress increase considerably with the increase in the amplitude of the pressure drop. It is clear that for a given value of stenosis height and for the increasing values of the stenosis shape parameter from 3 to 6, there is a sharp increase in the impedance of the flow and also the plots are skewed to the right-hand side. It is observed that the estimates of the increase in the longitudinal impedance increase with the increase of the axial distance or with the increase of the stenosis height. The present study also brings out the effects of asymmetric of the stenosis on the flow quantities.

  11. Regional groundwater flow model for C, K. L. and P reactor areas, Savannah River Site, Aiken, SC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G.P.

    2000-02-11

    A regional groundwater flow model encompassing approximately 100 mi2 surrounding the C, K, L, and P reactor areas has been developed. The reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department. The model provides a quantitative understanding of groundwater flow on a regional scale within the near surface aquifers and deeper semi-confined to confined aquifers. The model incorporates historical and current field characterization data upmore » through Spring 1999. Model preprocessing is automated so that future updates and modifications can be performed quickly and efficiently. The CKLP regional reactor model can be used to guide characterization, perform scoping analyses of contaminant transport, and serve as a common base for subsequent finer-scale transport and remedial/feasibility models for each reactor area.« less

  12. Microkinetic modeling of H 2SO 4 formation on Pt based diesel oxidation catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hom N.; Sun, Yunwei; Glascoe, Elizabeth A.

    The presence of water vapor and sulfur oxides in diesel engine exhaust leads to the formation of sulfuric acid (H 2SO 4), which severely impacts the performance of Pt/Pd based emissions aftertreatment catalysts. In this study, a microkinetic model is developed to investigate the reaction pathways of H 2SO 4 formation on Pt based diesel oxidation catalysts (DOCs). The microkinetic model consists of 14 elementary step reactions (7 reversible pairs) and yields prediction in excellent agreement with data obtained from experiments at practically relevant sulfur oxides environment in engine exhaust. The model simulation utilizing a steady-state plug flow reactor demonstratesmore » that it matches experimental data in both kinetically and thermodynamically controlled regions. Results clearly show the negative impact of SO 3 on the SO 2 oxidation light-off temperature, consistent with experimental observations. A reaction pathway analysis shows that the primary pathway of sulfuric acid formation on Pt surface involves SO 2* oxidation to form SO 3* with the subsequent interaction of SO 3* with H 2O* to form H 2SO 4*.« less

  13. Microkinetic modeling of H 2SO 4 formation on Pt based diesel oxidation catalysts

    DOE PAGES

    Sharma, Hom N.; Sun, Yunwei; Glascoe, Elizabeth A.

    2017-08-10

    The presence of water vapor and sulfur oxides in diesel engine exhaust leads to the formation of sulfuric acid (H 2SO 4), which severely impacts the performance of Pt/Pd based emissions aftertreatment catalysts. In this study, a microkinetic model is developed to investigate the reaction pathways of H 2SO 4 formation on Pt based diesel oxidation catalysts (DOCs). The microkinetic model consists of 14 elementary step reactions (7 reversible pairs) and yields prediction in excellent agreement with data obtained from experiments at practically relevant sulfur oxides environment in engine exhaust. The model simulation utilizing a steady-state plug flow reactor demonstratesmore » that it matches experimental data in both kinetically and thermodynamically controlled regions. Results clearly show the negative impact of SO 3 on the SO 2 oxidation light-off temperature, consistent with experimental observations. A reaction pathway analysis shows that the primary pathway of sulfuric acid formation on Pt surface involves SO 2* oxidation to form SO 3* with the subsequent interaction of SO 3* with H 2O* to form H 2SO 4*.« less

  14. Situ microbial plugging process for subterranean formations

    DOEpatents

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-12-17

    Subterranean paths of water flow are impeded or changed by the facilitation of microbial growth therein. Either indigenous bacterial growth may be stimulated with nutrients or the formation may be first seeded with bacteria or their spores which inhibit fluid flow after proliferation. These methods and bacteria are usable to alter the flow of water in a waterflooded oil formation and to impede the outflow of contaminated water.

  15. HOx radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Day, D. A.; Stark, H.; Li, R.; Lee-Taylor, J.; Palm, B. B.; Brune, W. H.; Jimenez, J. L.

    2015-11-01

    Oxidation flow reactors (OFRs) using OH produced from low-pressure Hg lamps at 254 nm (OFR254) or both 185 and 254 nm (OFR185) are commonly used in atmospheric chemistry and other fields. OFR254 requires the addition of externally formed O3 since OH is formed from O3 photolysis, while OFR185 does not since O2 can be photolyzed to produce O3, and OH can also be formed from H2O photolysis. In this study, we use a plug-flow kinetic model to investigate OFR properties under a very wide range of conditions applicable to both field and laboratory studies. We show that the radical chemistry in OFRs can be characterized as a function of UV light intensity, H2O concentration, and total external OH reactivity (OHRext, e.g., from volatile organic compounds (VOCs), NOx, and SO2). OH exposure is decreased by added external OH reactivity. OFR185 is especially sensitive to this effect at low UV intensity due to low primary OH production. OFR254 can be more resilient against OH suppression at high injected O3 (e.g., 70 ppm), as a larger primary OH source from O3, as well as enhanced recycling of HO2 to OH, make external perturbations to the radical chemistry less significant. However if the external OH reactivity in OFR254 is much larger than OH reactivity from injected O3, OH suppression can reach 2 orders of magnitude. For a typical input of 7 ppm O3 (OHRO3 = 10 s-1), 10-fold OH suppression is observed at OHRext ~ 100 s-1, which is similar or lower than used in many laboratory studies. The range of modeled OH suppression for literature experiments is consistent with the measured values except for those with isoprene. The finding on OH suppression may have important implications for the interpretation of past laboratory studies, as applying OHexp measurements acquired under different conditions could lead to over a 1-order-of-magnitude error in the estimated OHexp. The uncertainties of key model outputs due to uncertainty in all rate constants and absorption cross-sections in the model are within ±25 % for OH exposure and within ±60 % for other parameters. These uncertainties are small relative to the dynamic range of outputs. Uncertainty analysis shows that most of the uncertainty is contributed by photolysis rates of O3, O2, and H2O and reactions of OH and HO2 with themselves or with some abundant species, i.e., O3 and H2O2. OHexp calculated from direct integration and estimated from SO2 decay in the model with laminar and measured residence time distributions (RTDs) are generally within a factor of 2 from the plug-flow OHexp. However, in the models with RTDs, OHexp estimated from SO2 is systematically lower than directly integrated OHexp in the case of significant SO2 consumption. We thus recommended using OHexp estimated from the decay of the species under study when possible, to obtain the most appropriate information on photochemical aging in the OFR. Using HOx-recycling vs. destructive external OH reactivity only leads to small changes in OHexp under most conditions. Changing the identity (rate constant) of external OH reactants can result in substantial changes in OHexp due to different reductions in OH suppression as the reactant is consumed. We also report two equations for estimating OH exposure in OFR254. We find that the equation estimating OHexp from measured O3 consumption performs better than an alternative equation that does not use it, and thus recommend measuring both input and output O3 concentrations in OFR254 experiments. This study contributes to establishing a firm and systematic understanding of the gas-phase HOx and Ox chemistry in these reactors, and enables better experiment planning and interpretation as well as improved design of future reactors.

  16. HO x radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling

    DOE PAGES

    Peng, Z.; Day, D. A.; Stark, H.; ...

    2015-11-20

    Oxidation flow reactors (OFRs) using OH produced from low-pressure Hg lamps at 254 nm (OFR254) or both 185 and 254 nm (OFR185) are commonly used in atmospheric chemistry and other fields. OFR254 requires the addition of externally formed O 3 since OH is formed from O 3 photolysis, while OFR185 does not since O 2 can be photolyzed to produce O 3, and OH can also be formed from H 2O photolysis. In this study, we use a plug-flow kinetic model to investigate OFR properties under a very wide range of conditions applicable to both field and laboratory studies. Wemore » show that the radical chemistry in OFRs can be characterized as a function of UV light intensity, H 2O concentration, and total external OH reactivity (OHR ext, e.g., from volatile organic compounds (VOCs), NO x, and SO 2). OH exposure is decreased by added external OH reactivity. OFR185 is especially sensitive to this effect at low UV intensity due to low primary OH production. OFR254 can be more resilient against OH suppression at high injected O 3 (e.g., 70 ppm), as a larger primary OH source from O 3, as well as enhanced recycling of HO 2 to OH, make external perturbations to the radical chemistry less significant. However if the external OH reactivity in OFR254 is much larger than OH reactivity from injected O 3, OH suppression can reach 2 orders of magnitude. For a typical input of 7 ppm O 3 (OHR O3 = 10 s –1), 10-fold OH suppression is observed at OHR ext ~ 100 s –1, which is similar or lower than used in many laboratory studies. The range of modeled OH suppression for literature experiments is consistent with the measured values except for those with isoprene. The finding on OH suppression may have important implications for the interpretation of past laboratory studies, as applying OH exp measurements acquired under different conditions could lead to over a 1-order-of-magnitude error in the estimated OH exp. The uncertainties of key model outputs due to uncertainty in all rate constants and absorption cross-sections in the model are within ±25 % for OH exposure and within ±60 % for other parameters. These uncertainties are small relative to the dynamic range of outputs. Uncertainty analysis shows that most of the uncertainty is contributed by photolysis rates of O 3, O 2, and H 2O and reactions of OH and HO 2 with themselves or with some abundant species, i.e., O 3 and H 2O 2. OH exp calculated from direct integration and estimated from SO 2 decay in the model with laminar and measured residence time distributions (RTDs) are generally within a factor of 2 from the plug-flow OH exp. However, in the models with RTDs, OH exp estimated from SO 2 is systematically lower than directly integrated OH exp in the case of significant SO 2 consumption. We thus recommended using OH exp estimated from the decay of the species under study when possible, to obtain the most appropriate information on photochemical aging in the OFR. Using HO x-recycling vs. destructive external OH reactivity only leads to small changes in OH exp under most conditions. Changing the identity (rate constant) of external OH reactants can result in substantial changes in OH exp due to different reductions in OH suppression as the reactant is consumed. We also report two equations for estimating OH exposure in OFR254. We find that the equation estimating OH exp from measured O 3 consumption performs better than an alternative equation that does not use it, and thus recommend measuring both input and output O 3 concentrations in OFR254 experiments. As a result, this study contributes to establishing a firm and systematic understanding of the gas-phase HO x and O x chemistry in these reactors, and enables better experiment planning and interpretation as well as improved design of future reactors.« less

  17. HO x radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Z.; Day, D. A.; Stark, H.

    Oxidation flow reactors (OFRs) using OH produced from low-pressure Hg lamps at 254 nm (OFR254) or both 185 and 254 nm (OFR185) are commonly used in atmospheric chemistry and other fields. OFR254 requires the addition of externally formed O 3 since OH is formed from O 3 photolysis, while OFR185 does not since O 2 can be photolyzed to produce O 3, and OH can also be formed from H 2O photolysis. In this study, we use a plug-flow kinetic model to investigate OFR properties under a very wide range of conditions applicable to both field and laboratory studies. Wemore » show that the radical chemistry in OFRs can be characterized as a function of UV light intensity, H 2O concentration, and total external OH reactivity (OHR ext, e.g., from volatile organic compounds (VOCs), NO x, and SO 2). OH exposure is decreased by added external OH reactivity. OFR185 is especially sensitive to this effect at low UV intensity due to low primary OH production. OFR254 can be more resilient against OH suppression at high injected O 3 (e.g., 70 ppm), as a larger primary OH source from O 3, as well as enhanced recycling of HO 2 to OH, make external perturbations to the radical chemistry less significant. However if the external OH reactivity in OFR254 is much larger than OH reactivity from injected O 3, OH suppression can reach 2 orders of magnitude. For a typical input of 7 ppm O 3 (OHR O3 = 10 s –1), 10-fold OH suppression is observed at OHR ext ~ 100 s –1, which is similar or lower than used in many laboratory studies. The range of modeled OH suppression for literature experiments is consistent with the measured values except for those with isoprene. The finding on OH suppression may have important implications for the interpretation of past laboratory studies, as applying OH exp measurements acquired under different conditions could lead to over a 1-order-of-magnitude error in the estimated OH exp. The uncertainties of key model outputs due to uncertainty in all rate constants and absorption cross-sections in the model are within ±25 % for OH exposure and within ±60 % for other parameters. These uncertainties are small relative to the dynamic range of outputs. Uncertainty analysis shows that most of the uncertainty is contributed by photolysis rates of O 3, O 2, and H 2O and reactions of OH and HO 2 with themselves or with some abundant species, i.e., O 3 and H 2O 2. OH exp calculated from direct integration and estimated from SO 2 decay in the model with laminar and measured residence time distributions (RTDs) are generally within a factor of 2 from the plug-flow OH exp. However, in the models with RTDs, OH exp estimated from SO 2 is systematically lower than directly integrated OH exp in the case of significant SO 2 consumption. We thus recommended using OH exp estimated from the decay of the species under study when possible, to obtain the most appropriate information on photochemical aging in the OFR. Using HO x-recycling vs. destructive external OH reactivity only leads to small changes in OH exp under most conditions. Changing the identity (rate constant) of external OH reactants can result in substantial changes in OH exp due to different reductions in OH suppression as the reactant is consumed. We also report two equations for estimating OH exposure in OFR254. We find that the equation estimating OH exp from measured O 3 consumption performs better than an alternative equation that does not use it, and thus recommend measuring both input and output O 3 concentrations in OFR254 experiments. As a result, this study contributes to establishing a firm and systematic understanding of the gas-phase HO x and O x chemistry in these reactors, and enables better experiment planning and interpretation as well as improved design of future reactors.« less

  18. Recirculating, passive micromixer with a novel sawtooth structure.

    PubMed

    Nichols, Kevin P; Ferullo, Julia R; Baeumner, Antje J

    2006-02-01

    A microfluidic device capable of recirculating nano to microlitre volumes in order to efficiently mix solutions is described. The device consists of molded polydimethyl siloxane (PDMS) channels with pressure inlet and outlet holes sealed by a glass lid. Recirculation is accomplished by a repeatedly reciprocated flow over an iterated sawtooth structure. The sawtooth structure serves to change the fluid velocity of individual streamlines differently depending on whether the fluid is flowing backwards or forward over the structure. Thus, individual streamlines can be accelerated or decelerated relative to the other streamlines to allow sections of the fluid to interact that would normally be linearly separated. Low Reynolds numbers imply that the process is reversible, neglecting diffusion. Computer simulations were carried out using FLUENT. Subsequently, fluorescent indicators were employed to experimentally verify these numerical simulations of the recirculation principal. Finally, mixing of a carboxyfluorescein labeled DMSO plug with an unlabeled DMSO plug across an immiscible hydrocarbon plug was investigated. At cycling rates of 1 Hz across five sawtooth units, the time was recorded to reach steady state in the channels, i.e. until both DMSO plugs had the same fluorescence intensity. In the case of the sawtooth structures, steady state was reached five times faster than in channels without sawtooth structures, which verified what would be expected based on numerical simulations. The microfluidic mixer is unique due to its versatility with respect to scaling, its potential to also mix solutions containing small particles such as beads and cells, and its ease of fabrication and use.

  19. Internal performance of a 10 deg conical plug nozzle with a multispoke primary and translating external shroud

    NASA Technical Reports Server (NTRS)

    Bresnahan, D. L.

    1972-01-01

    An experimental investigation was conducted in a nozzle static test facility to determine the performance characteristics of a cold-flow, 21.59-centimeter-diameter plug nozzle with a multispoke primary. Two multispoke primary nozzles, a 12-spoke and a 24-spoke, were tested and compared with an annular plug nozzle. The supersonic cruise configurations for both spoke primaries performed about the same, with a gross thrust coefficient of 0.974, a decrease of approximately 1.5 percent from the reference nozzle. The takeoff configuration for the 12-spoke primary had a gross thrust coefficient of 0.957, a decrease of 1.5 percent from the reference nozzle, and the 24-spoke primary had a gross thrust coefficient of 0.95.

  20. Low cost solar array project 1: Silicon material

    NASA Technical Reports Server (NTRS)

    Jewett, D. N.; Bates, H. E.; Hill, D. M.

    1980-01-01

    The low cost production of silicon by deposition of silicon from a hydrogen/chlorosilane mixture is described. Reactor design, reaction vessel support systems (physical support, power control and heaters, and temperature monitoring systems) and operation of the system are reviewed. Testing of four silicon deposition reactors is described, and test data and consequently derived data are given. An 18% conversion of trichlorosilane to silicon was achieved, but average conversion rates were lower than predicted due to incomplete removal of byproduct gases for recycling and silicon oxide/silicon polymer plugging of the gas outlet. Increasing the number of baffles inside the reaction vessel improved the conversion rate. Plans for further design and process improvements to correct the problems encountered are outlined.

  1. Connecting apparatus for limited rotary or rectilinear motion

    DOEpatents

    Hardin, Jr., Roy T.

    1981-11-10

    Apparatus for providing connection between two members movable in a horizontal plane with respect to each other in a rotary or linear fashion. The apparatus includes a set of horizontal shelves affixed to each of the two members, vertically aligned across a selected gap. A number of cables or hoses, for electrical, hydraulic or pneumatic connection are arranged on the aligned shelves in a U-shaped loop, connected through their extremities to the two members, so that through a sliding motion portions of the cable are transferred from one shelf to the other, across the gap, upon relative motion of the members. The apparatus is particularly adaptable to the rotating plugs of the reactor vessel head of a nuclear reactor.

  2. Scram signal generator

    DOEpatents

    Johanson, Edward W.; Simms, Richard

    1981-01-01

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  3. Scram signal generator

    DOEpatents

    Johanson, E.W.; Simms, R.

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  4. Osborne Reynolds pipe flow: direct numerical simulation from laminar to fully-developed turbulence

    NASA Astrophysics Data System (ADS)

    Adrian, R. J.; Wu, X.; Moin, P.; Baltzer, J. R.

    2014-11-01

    Osborne Reynolds' pipe experiment marked the onset of modern viscous flow research, yet the detailed mechanism carrying the laminar state to fully-developed turbulence has been quite elusive, despite notable progress related to dynamic edge-state theory. Here, we continue our direct numerical simulation study on this problem using a 250R long, spatially-developing pipe configuration with various Reynolds numbers, inflow disturbances, and inlet base flow states. For the inlet base flow, both fully-developed laminar profile and the uniform plug profile are considered. Inlet disturbances consist of rings of turbulence of different width and radial location. In all the six cases examined so far, energy norms show exponential growth with axial distance until transition after an initial decay near the inlet. Skin-friction overshoots the Moody's correlation in most, but not all, the cases. Another common theme is that lambda vortices amplified out of susceptible elements in the inlet disturbances trigger rapidly growing hairpin packets at random locations and times, after which infant turbulent spots appear. Mature turbulent spots in the pipe transition are actually tight concentrations of hairpin packets looking like a hairpin forest. The plug flow inlet profile requires much stronger disturbances to transition than the parabolic profile.

  5. Integral isolation valve systems for loss of coolant accident protection

    DOEpatents

    Kanuch, David J.; DiFilipo, Paul P.

    2018-03-20

    A nuclear reactor includes a nuclear reactor core comprising fissile material disposed in a reactor pressure vessel having vessel penetrations that exclusively carry flow into the nuclear reactor and at least one vessel penetration that carries flow out of the nuclear reactor. An integral isolation valve (IIV) system includes passive IIVs each comprising a check valve built into a forged flange and not including an actuator, and one or more active IIVs each comprising an active valve built into a forged flange and including an actuator. Each vessel penetration exclusively carrying flow into the nuclear reactor is protected by a passive IIV whose forged flange is directly connected to the vessel penetration. Each vessel penetration carrying flow out of the nuclear reactor is protected by an active IIV whose forged flange is directly connected to the vessel penetration. Each active valve may be a normally closed valve.

  6. Nuclear reactor cavity floor passive heat removal system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Tyler A.; Neeley, Gary W.; Inman, James B.

    A nuclear reactor includes a reactor core disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor and includes a concrete floor located underneath the nuclear reactor. An ex vessel corium retention system includes flow channels embedded in the concrete floor located underneath the nuclear reactor, an inlet in fluid communication with first ends of the flow channels, and an outlet in fluid communication with second ends of the flow channels. In some embodiments the inlet is in fluid communication with the interior of the radiological containment at a first elevation and the outlet is in fluidmore » communication with the interior of the radiological containment at a second elevation higher than the first elevation. The radiological containment may include a reactor cavity containing a lower portion of the pressure vessel, wherein the concrete floor located underneath the nuclear reactor is the reactor cavity floor.« less

  7. Comparison of secondary organic aerosol formed with an aerosol flow reactor and environmental reaction chambers: effect of oxidant concentration, exposure time and seed particles on chemical composition and yield

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.

    2014-12-01

    We performed a systematic intercomparison study of the chemistry and yields of SOA generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0×108 to 2.2×1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2×106 to 2×107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. A linear correlation analysis of the mass spectra (m=0.91-0.92, r2=0.93-0.94) and carbon oxidation state (m=1.1, r2=0.58) of SOA produced in the flow reactor and environmental chambers for OH exposures of approximately 1011 molec cm-3 s suggests that the composition of SOA produced in the flow reactor and chambers is the same within experimental accuracy as measured with an aerosol mass spectrometer. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors, rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  8. Reducing or stopping the uncontrolled flow of fluid such as oil from a well

    DOEpatents

    Hermes, Robert E

    2014-02-18

    The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

  9. Gelation of Oil upon Contact with Water: A Bioinspired Scheme for the Self-Repair of Oil Leaks from Underwater Tubes.

    PubMed

    Oh, Hyuntaek; Yaraghi, Nicholas; Raghavan, Srinivasa R

    2015-05-19

    Molecular organogelators convert oils into gels by forming self-assembled fibrous networks. Here, we demonstrate that such gelation can be activated by contacting the oil with an immiscible solvent (water). Our gelator is dibenzylidene sorbitol (DBS), which forms a low-viscosity sol when added to toluene containing a small amount of dimethyl sulfoxide (DMSO). Upon contact with water, DMSO partitions into the water, activating gelation of DBS in the toluene. The gel grows from the oil/water interface and slowly envelops the oil phase. We have exploited this effect for the self-repair of oil leaks from underwater tubes. When a DBS/toluene/DMSO solution flows through the tube, it forms a gel selectively at the leak point, thereby plugging the leak and restoring flow. Our approach is reminiscent of wound-sealing via blood-clotting: there also, inactive gelators in blood are activated at the wound site into a fibrous network, thereby plugging the wound and restoring blood flow.

  10. Neural mechanisms of motion sickness

    NASA Technical Reports Server (NTRS)

    Crampton, G. H.; Daunton, N. G.

    1983-01-01

    The possibility that there might be a neuro-homoral cerebrospinal fluid link in motion sickness was directly tested by blocking the flow of CSF from the third into the fourth ventricle in cats. Evidence obtained thus far is consistent with the hypothesis. Cats with demonstrably sound plugs did not vomit in response to an accelerative motion sickness stimulus, whereas cats with imperfect 'leaky' plugs vomited with little or no delay in latency. Althoough there are several putative candidates, the identification of a humoral motion sickness substance is a matter of conjecture.

  11. Flight investigation of an air-cooled plug nozzle with afterburning turbojet

    NASA Technical Reports Server (NTRS)

    Samanich, N. E.

    1972-01-01

    A convectively cooled plug nozzle, using 4 percent of the engine air as the coolant, was tested in 1967 K (3540 R) temperature exhaust gas. No significant differences in cooling characteristics existed between flight and static results. At flight speeds above Mach 1.1, nozzle performance was improved by extending the outer shroud. Increasing engine power improved nozzle efficiency considerably more at Mach 1.2 than at 0.9. The effect of nozzle pressure ratio and secondary weight flow on nozzle performance are also presented.

  12. Radial blanket assembly orificing arrangement

    DOEpatents

    Patterson, J.F.

    1975-07-01

    A nuclear reactor core for a liquid metal cooled fast breeder reactor is described in which means are provided for increasing the coolant flow through the reactor fuel assemblies as the reactor ages by varying the coolant flow rate with the changing coolant requirements during the core operating lifetime. (auth)

  13. Biomass growth restriction in a packed bed reactor

    DOEpatents

    Griffith, William L.; Compere, Alicia L.

    1978-01-01

    When carrying out continuous biologically catalyzed reactions with anaerobic microorganisms attached to a support in an upflow packed bed column, growth of the microorganisms is restricted to prevent the microorganisms from plugging the column by limiting the availability of an essential nutrient and/or by the presence of predatory protozoa which consume the anaerobic microorganisms. A membrane disruptive detergent may be provided in the column to lyse dead microorganisms to make them available as nutrients for live microorganisms.

  14. Mesenchymal Stem Cells for Vascular Target Discovery in Breast Cancer-Associated Angiogenesis

    DTIC Science & Technology

    2004-09-01

    Matrigel plug and sorted by flow cytometry . Sorting of these retrieved cells based on co-expression of the GFP marker and cell- surface endothelial...express the green fluorescent protein (GFP) and clonal MSC populations can be isolated and phenotypically and genotypically analyzed by flow cytometry ...monoclonal populations of these GFP+ murine MSCs and conducted flow cytometry analysis to determine their phenotype. Specifically, we determined if

  15. Stroke

    MedlinePlus

    ... emergency. Strokes happen when blood flow to your brain stops. Within minutes, brain cells begin to die. There are two kinds ... blocks or plugs a blood vessel in the brain. The other kind, called hemorrhagic stroke, is caused ...

  16. Modeling of the reburning process using sewage sludge-derived syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werle, Sebastian, E-mail: sebastian.werle@polsl.pl

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Gasification provides an attractive method for sewage sludges treatment. Black-Right-Pointing-Pointer Gasification generates a fuel gas (syngas) which can be used as a reburning fuel. Black-Right-Pointing-Pointer Reburning potential of sewage sludge gasification gases was defined. Black-Right-Pointing-Pointer Numerical simulation of co-combustion of syngases in coal fired boiler has been done. Black-Right-Pointing-Pointer Calculation shows that analysed syngases can provide higher than 80% reduction of NO{sub x}. - Abstract: Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). Amore » numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200 K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process.« less

  17. Effect of physical property of supporting media and variable hydraulic loading on hydraulic characteristics of advanced onsite wastewater treatment system.

    PubMed

    Sharma, Meena Kumari; Kazmi, Absar Ahmad

    2015-01-01

    A laboratory-scale study was carried out to investigate the effects of physical properties of the supporting media and variable hydraulic shock loads on the hydraulic characteristics of an advanced onsite wastewater treatment system. The system consisted of two upflow anaerobic reactors (a septic tank and an anaerobic filter) accommodated within a single unit. The study was divided into three phases on the basis of three different supporting media (Aqwise carriers, corrugated ring and baked clay) used in the anaerobic filter. Hydraulic loadings were based on peak flow factor (PFF), varying from one to six, to simulate the actual conditions during onsite wastewater treatment. Hydraulic characteristics of the system were identified on the basis of residence time distribution analyses. The system showed a very good hydraulic efficiency, between 0.86 and 0.93, with the media of highest porosity at the hydraulic loading of PFF≤4. At the higher hydraulic loading of PFF 6 also, an appreciable hydraulic efficiency of 0.74 was observed. The system also showed good chemical oxygen demand and total suspended solids removal efficiency of 80.5% and 82.3%, respectively at the higher hydraulic loading of PFF 6. Plug-flow dispersion model was found to be the most appropriate one to describe the mixing pattern of the system, with different supporting media at variable loading, during the tracer study.

  18. 157. ARAIII Reactor building (ARA608) Main gas loop mechanical flow ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    157. ARA-III Reactor building (ARA-608) Main gas loop mechanical flow sheet. This drawing was selected as a typical example of mechanical arrangements within reactor building. Aerojet-general 880-area/GCRE-0608-50-013-102634. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  19. Device for controlling the pouring of molten materials

    DOEpatents

    Moore, A.F.; Duncan, A.L.

    1994-02-15

    A device is described for controlling the pouring of a molten material from a crucible or other container. The device includes an annular retainer ring for mounting in the drain opening in the bottom of a conventional crucible, the retainer ring defining a opening there through. The device also includes a plug member having an annular forward end portion for force-fit reception in the opening of the retainer ring to selectively seal the opening and for being selectively forced through the opening. The plug member has a rear end portion for being positioned within the crucible, the rear end portion including stop means for prohibiting the rear end portion from passing through the opening in the retainer ring when the forward end portion is selectively forced through the opening. The plug member defines at least one, and preferably a plurality of flutes, each extending from a point rearward the annular forward end portion of the plug member, and forward the stop means, to a point rearward of the stop means. The flutes permit fluid communication between the interior and exterior of the crucible when the forward end portion of the plug member is forced through the opening in the retaining ring such that the molten material is allowed to flow from the crucible. 5 figures.

  20. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    NASA Technical Reports Server (NTRS)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  1. The filling of powdered herbs into two-piece hard capsules using hydrogenated cotton seed oil as lubricant.

    PubMed

    Aling, Joanna; Podczeck, Fridrun

    2012-11-20

    The aim of this work was to investigate the plug formation and filling properties of powdered herbal leaves using hydrogenated cotton seed oil as an alternative lubricant. In a first step, unlubricated and lubricated herbal powders were studied on a small scale using a plug simulator, and low-force compression physics and parameterization techniques were used to narrow down the range in which the optimum amount of lubricant required would be found. In a second step these results were complemented with investigations into the flow properties of the powders based on packing (tapping) experiments to establish the final optimum lubricant concentration. Finally, capsule filling of the optimum formulations was undertaken using an instrumented tamp filling machine. This work has shown that hydrogenated cotton seed oil can be used advantageously for the lubrication of herbal leaf powders. Stickiness as observed with magnesium stearate did not occur, and the optimum lubricant concentration was found to be less than that required for magnesium stearate. In this work, lubricant concentrations of 1% or less hydrogenated cotton seed oil were required to fill herbal powders into capsules on the instrumented tamp-filling machine. It was found that in principle all powders could be filled successfully, but that for some powders the use of higher compression settings was disadvantageous. Relationships between the particle size distributions of the powders, their flow and consolidation as well as their filling properties could be identified by multivariate statistical analysis. The work has demonstrated that a combination of the identification of plug formation and powder flow properties is helpful in establishing the optimum lubricant concentration required using a small quantity of powder and a powder plug simulator. On an automated tamp-filling machine, these optimum formulations produced satisfactory capsules in terms of coefficient of fill weight variability and capsule weight. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Characterization and optimization of slanted well designs for microfluidic mixing under electroosmotic flow.

    PubMed

    Johnson, Timothy J; Locascio, Laurie E

    2002-08-01

    Recently, a series of slanted wells on the floor of a microfluidic channel were experimentally shown to successfully induce off-axis transport and mixing of two confluent streams when operating under electroosmotic (EO) flow. This paper will further explore, through numerical simulations, the parameters that affect off-axis transport under EO flow with an emphasis on optimizing the mixing rate of (a). two confluent streams in steady-state or (b). the transient scenario of two confluent plugs of material, which simulates mixing after an injection. For the steady-state scenario, the degree of mixing was determined to increase by changing any of the following parameters: (1). increasing the well depth, (2). decreasing the well angle relative to the axis of the channel, and (3). increasing the EO mobility of the well walls relative to the mobility of the main channel. Also, it will be shown that folding of the fluid can occur when the well angle is sufficiently reduced and/or when the EO mobility of the wells is increased relative to the channel. The optimum configuration for the transient problem of mixing two confluent plugs includes shallow wells to minimize the well residence time, and an increased EO mobility of the well walls relative to the main channel as well as small well angles to maximize off-axis transport. The final design reported here for the transient study reduces the standard deviation of the concentration across the channel by 72% while only increasing the axial dispersion of the injected plug by 8.6 % when compared to a plug injected into a channel with no wells present. These results indicate that a series of slanted wells on the wall of a microchannel provides a means for controlling and achieving a high degree of off-axis transport and mixing in a passive manner for micro total analysis system (microTAS) devices that are driven by electroosmosis.

  3. A highly efficient autothermal microchannel reactor for ammonia decomposition: Analysis of hydrogen production in transient and steady-state regimes

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Nicolaas; Chiuta, Steven; Bessarabov, Dmitri G.

    2018-05-01

    The experimental evaluation of an autothermal microchannel reactor for H2 production from NH3 decomposition is described. The reactor design incorporates an autothermal approach, with added NH3 oxidation, for coupled heat supply to the endothermic decomposition reaction. An alternating catalytic plate arrangement is used to accomplish this thermal coupling in a cocurrent flow strategy. Detailed analysis of the transient operating regime associated with reactor start-up and steady-state results is presented. The effects of operating parameters on reactor performance are investigated, specifically, the NH3 decomposition flow rate, NH3 oxidation flow rate, and fuel-oxygen equivalence ratio. Overall, the reactor exhibits rapid response time during start-up; within 60 min, H2 production is approximately 95% of steady-state values. The recommended operating point for steady-state H2 production corresponds to an NH3 decomposition flow rate of 6 NL min-1, NH3 oxidation flow rate of 4 NL min-1, and fuel-oxygen equivalence ratio of 1.4. Under these flows, NH3 conversion of 99.8% and H2 equivalent fuel cell power output of 0.71 kWe is achieved. The reactor shows good heat utilization with a thermal efficiency of 75.9%. An efficient autothermal reactor design is therefore demonstrated, which may be upscaled to a multi-kW H2 production system for commercial implementation.

  4. Cylindrical diffuser performance using a truncated plug nozzle

    NASA Technical Reports Server (NTRS)

    Galanga, F. L.; Mueller, T. J.

    1976-01-01

    Cylindrical diffuser performance for a truncated plug nozzle without external flow was tested in a blowdown wind tunnel. The nozzle was designed for an exit Mach number of 1.9 and the plug was conical in shape from the throat and converged to the axis of symmetry at an angle of 10 degrees. The diffuser section was fashioned into two 13.97 cm lengths to facilitate boring of the duct diameter and to allow for testing of two different duct lengths. A slotted hypotube was installed in the base of the diffuser to measure pressure distribution down the centerline of the diffuser. The data obtained included: the typical centerline and sidewall pressure ratio variation along the diffuser, cell pressure ratio vs overall pressure ratio for long and short diffusers and a comparison of minimum experimental cell pressure ratio vs area ratio.

  5. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  6. 78 FR 19743 - Government-Owned Inventions, Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Eddy Current Minimization for Metering, Mixing, and Conditioning; NASA Case No.: MFS-32761-1-CON: Multi-Channel Flow Plug with Eddy Current Minimization for Meeting, Mixing, and Conditioning. Sumara M. Thompson...

  7. Transcatheter Amplatzer vascular plug-embolization of a giant postnephrectomy arteriovenous fistula combined with an aneurysm of the renal pedicle by through-and-through, arteriovenous access

    PubMed Central

    Kayser, Ole; Schäfer, Philipp

    2013-01-01

    Although endovascular transcatheter embolization of arteriovenous fistulas is minimally invasive, the torrential flow prevailing within a fistula implies the risk of migration of the deployed embolization devices into the downstream venous and pulmonary circulation. We present the endovascular treatment of a giant postnephrectomy arteriovenous fistula between the right renal pedicle and the residual renal vein in a 63-year-old man. The purpose of this case report is to demonstrate that the Amplatzer vascular plug (AVP) can be safely positioned to embolize even relatively large arteriovenous fistulas (AVFs). Secondly, we illustrate that this occluder can even be introduced to the fistula via a transvenous catheter in cases where it is initially not possible to advance the deployment-catheter through a tortuous feeder artery. Migration of the vascular plug was ruled out at follow-up 4 months subsequently to the intervention. Thus, the Amplatzer vascular plug and the arteriovenous through-and-through guide wire access with subsequent transvenous deployment should be considered in similar cases. PMID:23326248

  8. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  9. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  10. The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Wei; Sjöberg, Magnus; Reuss, David L.

    Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel–air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.« less

  11. The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

    DOE PAGES

    Zeng, Wei; Sjöberg, Magnus; Reuss, David L.; ...

    2016-06-01

    Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel–air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.« less

  12. Axi-symmetrical flow reactor for .sup.196 Hg photochemical enrichment

    DOEpatents

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, .sup.196 Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired .sup.196 Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith.

  13. Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques.

    PubMed

    Vasilaki, V; Volcke, E I P; Nandi, A K; van Loosdrecht, M C M; Katsou, E

    2018-04-26

    Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between N 2 O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring campaign was divided into 10 sub-periods based on the profile of N 2 O emissions, using Binary Segmentation. The dependencies between operating variables and N 2 O emissions fluctuated according to Spearman's rank correlation. The correlation between N 2 O emissions and nitrite concentrations ranged between 0.51 and 0.78. Correlation >0.7 between N 2 O emissions and nitrate concentrations was observed at sub-periods with average temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N 2 O emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-periods characterized by low N 2 O fluxes. Additionally, the highest ranges of measured N 2 O fluxes belonged to clusters corresponding with NO 3 -N concentration less than 1 mg/L in the upstream plug-flow reactor (middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N 2 O emissions partially depends on the prior behavior of the system. The principal component analysis validated the findings from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a considerable percentage of the variance in the system for the majority of the sub-periods. The applied statistical methods, linked the different ranges of emissions with the system variables, provided insights on the effect of operating conditions on N 2 O emissions in each sub-period and can be integrated into N 2 O emissions data processing at wastewater treatment plants. Copyright © 2018. Published by Elsevier Ltd.

  14. Synthesizing Equivalence Indices for the Comparative Evaluation of Technoeconomic Efficiency of Industrial Processes at the Design/Re-engineering Level

    NASA Astrophysics Data System (ADS)

    Fotilas, P.; Batzias, A. F.

    2007-12-01

    The equivalence indices synthesized for the comparative evaluation of technoeconomic efficiency of industrial processes are of critical importance since they serve as both, (i) positive/analytic descriptors of the physicochemical nature of the process and (ii) measures of effectiveness, especially helpful for investigated competitiveness in the industrial/energy/environmental sector of the economy. In the present work, a new algorithmic procedure has been developed, which initially standardizes a real industrial process, then analyzes it as a compromise of two ideal processes, and finally synthesizes the index that can represent/reconstruct the real process as a result of the trade-off between the two ideal processes taking as parental prototypes. The same procedure makes fuzzy multicriteria ranking within a set of pre-selected industrial processes for two reasons: (a) to analyze the process most representative of the production/treatment under consideration, (b) to use the `second best' alternative as a dialectic pole in absence of the two ideal processes mentioned above. An implantation of this procedure is presented, concerning a facility of biological wastewater treatment with six alternatives: activated sludge through (i) continuous-flow incompletely-stirred tank reactors in series, (ii) a plug flow reactor with dispersion, (iii) an oxidation ditch, and biological processing through (iv) a trickling filter, (v) rotating contactors, (vi) shallow ponds. The criteria used for fuzzy (to count for uncertainty) ranking are capital cost, operating cost, environmental friendliness, reliability, flexibility, extendibility. Two complementary indices were synthesized for the (ii)-alternative ranked first and their quantitative expressions were derived, covering a variety of kinetic models as well as recycle/bypass conditions. Finally, analysis of estimating the optimal values of these indices at maximum technoeconomic efficiency is presented and the implications (expected to be) caused by exogenous and endogenous factors (e.g., environmental standards change and innovative energy savings/substitution, respectively) are discussed by means of marginal efficiency graphs.

  15. Mesenchymal Stem Cells for Vascular Target Discovery in Breast Cancer-Associated Angiogenesis

    DTIC Science & Technology

    2005-09-01

    demonstrating this marker as demonstrated by flow cytometry . These GFP+ MSCs were subsequently analyzed for expression of commonly reported markers of...phenotypically and genotypically analyzed by flow cytometry and gene chip analysis, respectively. We have also shown that MSCs can then be stimulated to...positive MSCs retrieved by collagenase digestion of the Matrigel plug and sorted by flow cytometry . Sorting of these retrieved cells based on co-expression

  16. Injectable Solid Peptide Hydrogel as Cell Carrier: Effects of Shear Flow on Hydrogel and Cell Payload

    PubMed Central

    Yan, Congqi; Mackay, Michael E.; Czymmek, Kirk; Nagarkar, Radhika P.; Schneider, Joel P.; Pochan, Darrin J.

    2012-01-01

    β-hairpin peptide-based hydrogels are a class of injectable solid hydrogels that can deliver encapsulated cells or molecular therapies to a target site via syringe or catheter injection as a carrier material. These physical hydrogels can shear-thin and consequently flow as a low-viscosity material under a sufficient shear stress but immediately recover back into a solid upon removal of the stress, allowing them to be injected as preformed gel solids. Hydrogel behavior during flow was studied in a cylindrical capillary geometry that mimicked the actual situation of injection through a syringe needle in order to quantify effects of shear-thin injection delivery on hydrogel flow behavior and encapsulated cell payloads. It was observed that all β-hairpin peptide hydrogels investigated displayed a promising flow profile for injectable cell delivery: a central wide plug flow region where gel material and cell payloads experienced little or no shear rate and a narrow shear zone close to the capillary wall where gel and cells were subject to shear deformation. The width of the plug flow region was found to be weakly dependent on hydrogel rigidity and flow rate. Live-dead assays were performed on encapsulated MG63 cells three hours after injection flow and revealed that shear-thin delivery through the capillary had little impact on cell viability and the spatial distribution of encapsulated cell payloads. These observations help us to fundamentally understand how the gels flow during injection through a thin catheter and how they immediately restore mechanically and morphologically relative to pre-flow, static gels. PMID:22390812

  17. Flow reversal power limit for the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Tichler, P.R.

    The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. Themore » experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion.« less

  18. Dumbo: A pachydermal rocket motor

    NASA Technical Reports Server (NTRS)

    Kirk, Bill

    1991-01-01

    A brief historical account is given of the Dumbo nuclear reactor, a type of folded flow reactor that could be used for rocket propulsion. Much of the information is given in viewgraph form. Viewgraphs show details of the reactor system, fuel geometry, and key characteristics of the system (folded flow, use of fuel washers, large flow area, small fuel volume, hybrid modulator, and cermet fuel).

  19. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.

    2015-03-01

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1-2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  20. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  1. Low exchange element for nuclear reactor

    DOEpatents

    Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.

    1985-01-01

    A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.

  2. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, A.; Boardman, C.E.

    1995-04-11

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

  3. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1995-01-01

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

  4. CFD Simulation of flow pattern in a bubble column reactor for forming aerobic granules and its development.

    PubMed

    Fan, Wenwen; Yuan, LinJiang; Li, Yonglin

    2018-06-22

    The flow pattern is considered to play an important role in the formation of aerobic granular sludge in a bubble column reactor; therefore, it is necessary to understand the behavior of the flow in the reactor. A three-dimensional computational fluid dynamics (CFD) simulation for bubble column reactor was established to visualize the flow patterns of two-phase air-liquid flow and three-phase air-liquid-sludge flow under different ratios of height to diameter (H/D ratio) and superficial gas upflow velocities (SGVs). Moreover, a simulation of the three-phase flow pattern at the same SGV and different characteristics of the sludge was performed in this study. The results show that not only SGV but also properties of sludge involve the transformation of flow behaviors and relative velocity between liquid and sludge. For the original activated sludge floc to cultivate aerobic granules, the flow pattern has nothing to do with sludge, but is influenced by SGV, and the vortices is occurred and the relative velocity is increased with an increase in SGV; the two-phase flow can simplify the three-phase flow that predicts the flow pattern development in bubble column reactor (BCR) for aerobic granulation. For the aerobic granules, the liquid flow behavior developed from the symmetrical circular flow to numbers and small-size vortices with an increase in the sludge diameter, the relative velocity is amount up to u r  = 5.0, it is 29.4 times of original floc sludge.

  5. Axi-symmetrical flow reactor for [sup 196]Hg photochemical enrichment

    DOEpatents

    Grossman, M.W.

    1991-04-30

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, [sup 196]Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired [sup 196]Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith. 10 figures.

  6. Determination of the Darcy permeability of porous media including sintered metal plugs

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Hepler, W. A.; Yuan, S. W. K.; Feng, W. F.

    1986-01-01

    Sintered-metal porous plugs with a normal size of the order of 1-10 microns are used to evaluate the Darcy permeability of laminar flow at very small velocities in laminar fluids. Porous media experiment results and data adduced from the literature are noted to support the Darcy law analog for normal fluid convection in the laminar regime. Low temperature results suggest the importance of collecting room temperature data prior to runs at liquid He(4) temperatures. The characteristic length diagram gives a useful picture of the tolerance range encountered with a particular class of porous media.

  7. Gas turbine exhaust nozzle. [for noise reduction

    NASA Technical Reports Server (NTRS)

    Straight, D. M. (Inventor)

    1973-01-01

    An elongated hollow string is disposed in an exhaust nozzle combustion chamber and communicates with an air source through hollow struts at one end. The other end of the string is bell-mouth shaped and extends over the front portion of a nozzle plug. The bell-mouth may be formed by pivotally mounted flaps or leaves which are used to vary the exhaust throat area and the area between the plug and the leaves. Air from the engine inlet flows into the string and also between the combustion chamber and a housing disposed around the chamber. The air cools the plug and serves as a low velocity inner core of secondary gas to provide noise reduction for the primary exhaust gas while the other air, when it exits from the nozzle, forms an outer low velocity layer to further reduce noise. The structure produces increased thrust in a turbojet or turbofan engine.

  8. Self-compensating solenoid valve

    NASA Technical Reports Server (NTRS)

    Woeller, Fritz H. (Inventor); Matsumoto, Yutaka (Inventor)

    1987-01-01

    A solenoid valve is described in which both an inlet and an outlet of the valve are sealed when the valve is closed. This double seal compensates for leakage at either the inlet or the outlet by making the other seal more effective in response to the leakage and allows the reversal of the flow direction by simply switching the inlet and outlet connections. The solenoid valve has a valve chamber within the valve body. Inlet and outlet tubes extend through a plate into the chamber. A movable core in the chamber extends into the solenoid coil. The distal end of the core has a silicone rubber plug. Other than when the solenoid is energized, the compressed spring biases the core downward so that the surface of the plug is in sealing engagement with the ends of the tubes. A leak at either end increases the pressure in the chamber, resulting in increased sealing force of the plug.

  9. The assembly and use of continuous flow systems for chemical synthesis.

    PubMed

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  10. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, Anstein

    1996-01-01

    An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

  11. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  12. Alternative Fuels Data Center: How Do Plug-In Hybrid Electric Cars Work?

    Science.gov Websites

    the pack. Power electronics controller: This unit manages the flow of electrical energy delivered by , electric motor, power electronics, and other components. Traction battery pack: Stores electricity for use

  13. WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA603. SUMMARY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA-603. SUMMARY OF COOLANT FLOW FROM WORKING RESERVOIR TO INTERIOR OF REACTOR'S THERMAL SHIELD. NAMES TANK SECTIONS. PIPE AND DRAIN-LINE SIZES. SHOWS DIRECTION OF AIR FLOW THROUGH PEBBLE AND GRAPHITE BLOCK ZONE. NEUTRON CURTAIN AND THERMAL COLUMN DOOR. BLAW-KNOX 3150-92-7, 3/1950. INL INDEX NO. 531-0603-51-098-100036, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Numerical Simulations of a 96-rod Polysilicon CVD Reactor

    NASA Astrophysics Data System (ADS)

    Guoqiang, Tang; Cong, Chen; Yifang, Cai; Bing, Zong; Yanguo, Cai; Tihu, Wang

    2018-05-01

    With the rapid development of the photovoltaic industry, pressurized Siemens belljar-type polysilicon CVD reactors have been enlarged from 24 rods to 96 rods in less than 10 years aimed at much greater single-reactor productivity. A CFD model of an industry-scale 96-rod CVD reactor was established to study the internal temperature distribution and the flow field of the reactor. Numerical simulations were carried out and compared with actual growth results from a real CVD reactor. Factors affecting polysilicon depositions such as inlet gas injections, flow field, and temperature distribution in the CVD reactor are studied.

  15. A novel model for smectic liquid crystals: Elastic anisotropy and response to a steady-state flow.

    PubMed

    Püschel-Schlotthauer, Sergej; Meiwes Turrión, Victor; Stieger, Tillmann; Grotjahn, Robin; Hall, Carol K; Mazza, Marco G; Schoen, Martin

    2016-10-28

    By means of a combination of equilibrium Monte Carlo and molecular dynamics simulations and nonequilibrium molecular dynamics we investigate the ordered, uniaxial phases (i.e., nematic and smectic A) of a model liquid crystal. We characterize equilibrium behavior through their diffusive behavior and elastic properties. As one approaches the equilibrium isotropic-nematic phase transition, diffusion becomes anisotropic in that self-diffusion D ⊥ in the direction orthogonal to a molecule's long axis is more hindered than self-diffusion D ∥ in the direction parallel to that axis. Close to nematic-smectic A phase transition the opposite is true, D ∥ < D ⊥ . The Frank elastic constants K 1 , K 2 , and K 3 for the respective splay, twist, and bend deformations of the director field n̂ are no longer equal and exhibit a temperature dependence observed experimentally for cyanobiphenyls. Under nonequilibrium conditions, a pressure gradient applied to the smectic A phase generates Poiseuille-like or plug flow depending on whether the convective velocity is parallel or orthogonal to the plane of smectic layers. We find that in Poiseuille-like flow the viscosity of the smectic A phase is higher than in plug flow. This can be rationalized via the velocity-field component in the direction of the flow. In a sufficiently strong flow these smectic layers are not destroyed but significantly bent.

  16. Measurement and Analysis of Structural Integrity of Reactor Core Support Structure in Pressurized Water Reactor (PWR) Plant

    NASA Astrophysics Data System (ADS)

    Ansari, Saleem A.; Haroon, Muhammad; Rashid, Atif; Kazmi, Zafar

    2017-02-01

    Extensive calculation and measurements of flow-induced vibrations (FIV) of reactor internals were made in a PWR plant to assess the structural integrity of reactor core support structure against coolant flow. The work was done to meet the requirements of the Fukushima Response Action Plan (FRAP) for enhancement of reactor safety, and the regulatory guide RG-1.20. For the core surveillance measurements the Reactor Internals Vibration Monitoring System (IVMS) has been developed based on detailed neutron noise analysis of the flux signals from the four ex-core neutron detectors. The natural frequencies, displacement and mode shapes of the reactor core barrel (CB) motion were determined with the help of IVMS. The random pressure fluctuations in reactor coolant flow due to turbulence force have been identified as the predominant cause of beam-mode deflection of CB. The dynamic FIV calculations were also made to supplement the core surveillance measurements. The calculational package employed the computational fluid dynamics, mode shape analysis, calculation of power spectral densities of flow & pressure fields and the structural response to random flow excitation forces. The dynamic loads and stiffness of the Hold-Down Spring that keeps the core structure in position against upward coolant thrust were also determined by noise measurements. Also, the boron concentration in primary coolant at any time of the core cycle has been determined with the IVMS.

  17. Flow reversal power limit for the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Tichler, P.R.

    The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safemore » operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.« less

  18. Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace

    NASA Astrophysics Data System (ADS)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.

  19. Nuclear engine flow reactivity shim control

    DOEpatents

    Walsh, J.M.

    1973-12-11

    A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

  20. Immobilization of catalase on electrospun PVA/PA6-Cu(II) nanofibrous membrane for the development of efficient and reusable enzyme membrane reactor.

    PubMed

    Feng, Quan; Zhao, Yong; Wei, Anfang; Li, Changlong; Wei, Qufu; Fong, Hao

    2014-09-02

    In this study, a mat/membrane consisting of overlaid PVA/PA6-Cu(II) composite nanofibers was prepared via the electrospinning technique followed by coordination/chelation with Cu(II) ions; an enzyme of catalase (CAT) was then immobilized onto the PVA/PA6-Cu(II) nanofibrous membrane. The amount of immobilized catalase reached a high value of 64 ± 4.6 mg/g, while the kinetic parameters (Vmax and Km) of enzyme were 3774 μmol/mg·min and 41.13 mM, respectively. Furthermore, the thermal stability and storage stability of immobilized catalase were improved significantly. Thereafter, a plug-flow type of immobilized enzyme membrane reactor (IEMR) was assembled from the PVA/PA6-Cu(II)-CAT membrane. With the increase of operational pressure from 0.02 to 0.2 MPa, the flux value of IEMR increased from 0.20 ± 0.02 to 0.76 ± 0.04 L/m(2)·min, whereas the conversion ratio of H2O2 decreased slightly from 92 ± 2.5% to 87 ± 2.1%. After 5 repeating cycles, the production capacity of IEMR was merely decreased from 0.144 ± 0.006 to 0.102 ± 0.004 mol/m(2)·min. These results indicated that the assembled IEMR possessed high productivity and excellent reusability, suggesting that the IEMR based on electrospun PVA/PA6-Cu(II) nanofibrous membrane might have great potential for various applications, particularly those related to environmental protection.

  1. Fabrication of U-10 wt.%Zr Metallic Fuel Rodlets for Irradiation Test in BOR-60 Fast Reactor

    DOE PAGES

    Kim, Ki-Hwan; Kim, Jong-Hwan; Oh, Seok-Jin; ...

    2016-01-01

    The fabrication technology for metallic fuel has been developed to produce the driver fuel in a PGSFR in Korea since 2007. In order to evaluate the irradiation integrity and validate the in-reactor of the starting metallic fuel with FMS cladding for the loading of the metallic fuel, U-10 wt.%Zr fuel rodlets were fabricated and evaluated for a verification of the starting driver fuel through an irradiation test in the BOR-60 fast reactor. The injection casting method was applied to U-10 wt.%Zr fuel slugs with a diameter of 5.5 mm. Consequently, fuel slugs per melting batch without casting defects were fabricated through the developmentmore » of advanced casting technology and evaluation tests. The optimal GTAW welding conditions were also established through a number of experiments. In addition, a qualification test was carried out to prove the weld quality of the end plug welding of the metallic fuel rodlets. The wire wrapping of metallic fuel rodlets was successfully accomplished for the irradiation test. Thus, PGSFR fuel rodlets have been soundly fabricated for the irradiation test in a BOR-60 fast reactor.« less

  2. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, A.V.

    1983-10-12

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  3. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, Anthony V.

    1985-01-01

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  4. Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process.

    PubMed

    Ge, Shijian; Peng, Yongzhen; Qiu, Shuang; Zhu, Ao; Ren, Nanqi

    2014-05-15

    This study assessed the technical feasibility of removing nitrogen from municipal wastewater by partial nitrification (nitritation) in a continuous plug-flow step feed process. Nitrite in the effluent accumulated to over 81.5  ± 9.2% but disappeared with the transition of process operation from anoxic/oxic mode to the anaerobic/anoxic/oxic mode. Batch tests showed obvious ammonia oxidizing bacteria (AOB) stimulation (advanced ammonia oxidation rate) and nitrite (NOB) oxidizing bacteria inhibition (reduced nitrite oxidation rate) under transient anoxic conditions. Two main factors contributed to nitritation in this continuous plug-flow process: One was the alternating anoxic and oxic operational condition; the step feed strategy guaranteed timely denitrification in anoxic zones, allowing a reduction in energy supply (nitrite) to NOB. Fluorescence in Situ Hybridization and quantitative real-time polymerase chain reaction analysis indicated that NOB population gradually decreased to 1.0  ± 0.1% of the total bacterial population (dominant Nitrospira spp., 1.55 × 10(9) copies/L) while AOB increased approximately two-fold (7.4  ± 0.9%, 1.25 × 10(10) copies/L) during the above anoxic to anaerobic transition. Most importantly, without addition of external carbon sources, the above wastewater treatment process reached 86.0  ± 4.2% of total nitrogen (TN) removal with only 7.23 ± 2.31 mg/L of TN in the effluent, which met the discharge requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Experimental and theoretical investigation of the role of clay in subaqueous sediment flows and its effect on run-out distance

    NASA Astrophysics Data System (ADS)

    Hermidas, Navid; Luthi, Stefan; Eggenhuisen, Joris; Silva Jacinto, Ricardo; Toth, Ferenc; Pohl, Florian; de Leeuw, Jan

    2016-04-01

    Debris flows are driven by gravity, which in the tail region is overcome by the yield strength of the flow, forcing it to freeze. These flows are capable of achieving staggeringly large run-out distances on low gradients. The case in point, described in previous publications, is the flow which resulted in the deposit of Bed 5 of the Agadir megaslide on the north-west African margin. Debrites of this flow have been recorded several hundred kilometres away from the original landslide. Previous studies have attributed such long run-out distances to hydroplaning, low yield strength, and flow transformation. It is known that the net force acting on a volume of fluid in equilibrium is zero. In this work we show that clay-laden flows are capable of approaching equilibrium. The flows which can achieve the maximum run-out distance are cohesive enough to resist some of the surrounding disturbances, that can upset the equilibrium, and reach close to equilibrium conditions, yet are dilute enough to have low viscous stress, and relatively low yield strength and lose little sediment due to deposition. A flow that is not in equilibrium will always seek to approach equilibrium conditions by speeding up or slowing down, depositing sediment, eroding the substrate, contracting in the form of the tail approaching the head, stretching, entraining water and growing in height, or dewatering and collapsing. Here we present a theory that shows that two dimensional (2D) flows in equilibrium do not grow in height. 2D flume experiments were conducted on different mixtures of kaolinite, sand, silt, and water, on varying slopes and a transitionally rough bed (sand glued), and using various discharge rates, in order to map out different stages in the evolution of a density flow from a cohesive plug flow into a turbidity current. The following flow types were observed: high density turbidity currents, plug flows, and no flow. From the velocity profiles, certain runs demonstrated close to equilibrium behaviour. For these flows, very little flow height growth and velocity variation was observed over the length of the flume. In all cases the flow appeared to be laminar within the boundary layer with Kelvin-Helmholtz instabilities at the top which were suppressed to a large extent for higher sediment concentrations. A deposit consisting of thick muddy sand, with approximately uniform thickness, was observed for higher sediment concentrations, indicating relatively higher yield strength values, while a thinner more sandy deposit was observed for more dilute flows. It was concluded that high sediment concentrations on more moderate slopes result in slower moving plug flows which are capable of suppressing turbulence at the top, while lower sediment concentrations on steeper slopes result in faster moving, more turbulent currents. The flows which can achieve the largest run-out distance are located between these two extremes.

  6. Thermo-kinetic instabilities in model reactors. Examples in experimental tests

    NASA Astrophysics Data System (ADS)

    Lavadera, Marco Lubrano; Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele

    2017-11-01

    The use of advanced combustion technologies (such as MILD, LTC, etc.) is among the most promising methods to reduce emission of pollutants. For such technologies, working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. These peculiar operative conditions also imply strong fuel flexibility, thus allowing the use of low calorific value (LCV) energy carriers with high efficiency. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to features such as the susceptibility to oscillations, which are undesirable during combustion. Therefore, an effective use of advanced combustion technologies requires a thorough analysis of the combustion kinetic characteristics in order to identify optimal operating conditions and control strategies with high efficiency and low pollutant emissions. The present work experimentally and numerically characterized the ignition and oxidation processes of methane and propane, highly diluted in nitrogen, at atmospheric pressure, in a Plug Flow Reactor and a Perfectly Stirred Reactor under a wide range of operating conditions involving temperatures, mixture compositions and dilution levels. The attention was focused particularly on the chemistry of oscillatory phenomena and multistage ignitions. The global behavior of these systems can be qualitatively and partially quantitatively modeled using the detailed kinetic models available in the literature. Results suggested that, for diluted conditions and lower adiabatic flame temperatures, the competition among several pathways, i.e. intermediate- and high-temperature branching, branching and recombination channels, oxidation and recombination/pyrolysis pathways, is enhanced, thus permitting the onset of phenomena that are generally hidden during conventional combustion processes.

  7. Degradation of volatile organic compounds in the gas phase by heterogeneous photocatalysis with titanium dioxide/ultraviolet light.

    PubMed

    Rochetto, Ursula Luana; Tomaz, Edson

    2015-07-01

    This work presents an overview over heterogeneous photocatalysis performed in gas phase towards the degradation of o-xylene, n-hexane, n-octane, n-decane, methylcyclohexane and 2,2,4-trimethylpentane. The experimental set-up composed by a titanium plug flow reactor vessel contained a quartz tube with a 100 W UV lamp placed at center position from 1.7 cm to the quartz wall. A titanium dioxide film was immobilized on the internal walls of the reactor and used as catalyst. All measurements were taken after reaching steady state condition and evaluated at the inlet and outlet of the system. Conversion rates were studied in a wide range of residence times yielding to a 90% or above conversion as from 20 seconds of residence time. During experiments the temperature of reactor's wall was monitored and remained between 52 and 62 °C. Temperature influence over degradation rates was negligible once a control experiment performed at 15 °C did not modify outgoing results. Humidity effect was also evaluated showing an ideal working range of 10-80% with abrupt conversion decay outside the range. By varying inlet concentration between 60 and 110 ppmv the VOC degradation curves remained unchanged. Loss over catalytic activity was only observed for o-xylene after 30 minutes of reaction, the catalyst was reactivated with a solution of hydrogen peroxide and UV light followed by additional deposition of the catalytic layer. The kinetic study suggests a first order reaction rate. The study of effective and economically viable techniques on the treatment of volatile organic compounds (VOCs) has being highlighted as an important parameter on the environmental research. The heterogeneous photocatalysis in gas phase was proved to be an effective process for the degradation of the nonaromatic VOCs tested, yielding high conversion values for the optimized systems.

  8. Flow photochemistry: Old light through new windows

    PubMed Central

    Knowles, Jonathan P; Elliott, Luke D

    2012-01-01

    Summary Synthetic photochemistry carried out in classic batch reactors has, for over half a century, proved to be a powerful but under-utilised technique in general organic synthesis. Recent developments in flow photochemistry have the potential to allow this technique to be applied in a more mainstream setting. This review highlights the use of flow reactors in organic photochemistry, allowing a comparison of the various reactor types to be made. PMID:23209538

  9. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  10. The impact of viscosity on the combined heat, mass and momentum transfer in laminar liquid falling films

    NASA Astrophysics Data System (ADS)

    Mittermaier, M.; Ziegler, F.

    2018-04-01

    In this article we present a model describing a laminar film flow over a vertical isothermal plate whilst heat and mass transfer is occurring. We focus on a formulation where most common assumptions, such as constant property data and constant film thickness, have been cancelled. The hydrodynamic model results in longitudinal and transversal velocity components and their evolution in the entrance region. Heat and mass transfer occurs simultaneously and is modelled with respect to release of differential heat of solution as well as heat flow due to interdiffusion. The numerical solution is obtained by utilising a Newton-Raphson method to solve the finite difference formulation of the governing equations. Mass transfer across the film affects the development of both longitudinal and transversal velocity components. The hydrodynamics are modelled using a boundary layer approximation of the Navier-Stokes equations. The significance of simplifications on the hydrodynamic model are illustrated and discussed using a fully developed velocity profile (Nusselt flow) and a plug flow at the inlet for comparison. Even if a Nusselt profile is assumed, it develops further since mass is absorbed or desorbed. It is found that the onset of absorption occurs at shorter flow length when applying a plug flow at the inlet. If the film is initially in equilibrium, this results in a 9.3% increase in absorbed mass over a length of 0.03 m as compared with the Nusselt flow. A fluid with a viscosity five times the one of lithium bromide solution but sharing comparable properties apart from that, leads to lower overall heat and mass transfer rates. If the respective fluids are saturated at the inlet, the accumulated mass flux absorbed by lithium bromide solution is 2.2 times higher than the one absorbed by a high viscous fluid. However, when a plug flow is applied and the fluid is sub-cooled, ab initio the absorbed mass flux is slightly higher for a high viscous fluid. Assuming a sub-cooling of 3 K at the inlet, lithium bromide solution now only performs around 11% better as compared with a high viscous fluid over the considered length of 0.03 m. The code may be downloaded from: https://github.com/mittermaier/hmt.

  11. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.

    PubMed

    Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E

    2006-02-01

    A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  12. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less

  13. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; ...

    2015-03-18

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less

  14. Integrated fountain effect pump device for fluid management at low gravity

    NASA Astrophysics Data System (ADS)

    Yuan, S. W. K.; Frank, D. J.

    1988-02-01

    To transfer He II in space, the supply tank must be drained at low gravity. Conventional capillary devices such as the gallery system make use of the capillary retention capability of the screens for fluid management. Liquid helium is collected into gallery channels and then conveyed to the downstream fountain effect pump (FEP) or mechanical pump. In this Paper, a new fluid management device is proposed. The screens along the gallery channels are replaced by porous plugs which are responsible for both the fluid retention and pumping (by mechanical effect) of He II. No downstream pump is needed. The plugs in contact with liquid helium on both sides act as FEPs, and plugs exposed to vapour on one side behave as vapour-liquid phase separators (VLPSs). The total net transfer rate of He II into the receiving tank is the mass flow rate through the FEP minus the liquid loss from the VLPS plugs. The performance of the integrated FEP device (IFD) was analysed. The possibility of liquid breakthrough in the IFD was studied. The IFD is a very promising system for the fluid management of He II at low gravity.

  15. The effect of local parameters on gas turbine emissions

    NASA Technical Reports Server (NTRS)

    Kauffman, C. W.; Correa, S. M.; Orozco, N. J.

    1980-01-01

    Gas turbine engine inlet parameters reflect changes in local atmospheric conditions. The pollutant emissions for the engine reflects these changes. In attempting to model the effect of the changing ambient conditions on the emissions it was found that these emissions exhibit an extreme sensitivity to some of the details of the combustion process such as the local fuel-air ratio and the size of the drops in the fuel spray. Fuel-air ratios have been mapped under nonburning conditions using a single JT8D-17 combustion can at simulated idle conditions, and significant variations in the local values have been found. Modelling of the combustor employs a combination of perfectly stirred and plug flow reactors including a finite rate vaporization treatment of the fuel spray. Results show that a small increase in the mean drop size can lead to a large increase in hydrocarbon emissions and decreasing the value of the CO-OH rate constant can lead to large increases in the carbon monoxide emissions. These emissions may also be affected by the spray characteristics with larger drops retarding the combustion process. Hydrocarbon, carbon monoxide, and oxides of nitrogen emissions calculated using the model accurately reflect measured emission variations caused by changing engine inlet conditions.

  16. Bioaugmentation for treatment of full-scale diethylene glycol monobutyl ether (DGBE) wastewater by Serratia sp. BDG-2.

    PubMed

    Chen, Maoxia; Fan, Rong; Zou, Wenhui; Zhou, Houzhen; Tan, Zhouliang; Li, Xudong

    2016-05-15

    A novel bacterial strain BDG-2 was isolated and used to augment the treatment of silicon plate manufacturing wastewater that primarily contains diethylene glycol monobutyl ether (DGBE). BDG-2 was identified as a Serratia sp. Under the optimal conditions of 30 °C, pH 9 and DGBE concentration of 2000 mg L(-1), the bioaugmented system achieved 96.92% COD removal after 39.9h. Laboratory-scale technological matching results indicated that, in a biofilm process with the addition of 100 mg L(-1) ammonia and 5 mg L(-1) total phosphorus (TP), 70.61% COD removal efficiency could be obtained in 46 h. Addition of polyaluminium chloride (PAC) to the reactors during the suspension process enhanced the settleability of the BDG-2 culture. Subsequently, successful start-up and stable operation of a full-scale bioaugmented treatment facilities were accomplished, and the volumetric organic load in the plug-flow aeration tank was 2.17 ± 0.81 kg m(-3) d(-1). The effluent COD of the facilities was stable and always below 100 mg L(-1). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Diffusion and reaction within porous packing media: a phenomenological model.

    PubMed

    Jones, W L; Dockery, J D; Vogel, C R; Sturman, P J

    1993-04-25

    A phenomenological model has been developed to describe biomass distribution and substrate depletion in porous diatomaceous earth (DE) pellets colonized by Pseudomonas aeruginosa. The essential features of the model are diffusion, attachment and detachment to/from pore walls of the biomass, diffusion of substrate within the pellet, and external mass transfer of both substrate and biomass in the bulk fluid of a packed bed containing the pellets. A bench-scale reactor filled with DE pellets was inoculated with P. aeruginosa and operated in plug flow without recycle using a feed containing glucose as the limiting nutrient. Steady-state effluent glucose concentrations were measured at various residence times, and biomass distribution within the pellet was measured at the lowest residence time. In the model, microorganism/substrate kinetics and mass transfer characteristics were predicted from the literature. Only the attachment and detachment parameters were treated as unknowns, and were determined by fitting biomass distribution data within the pellets to the mathematical model. The rate-limiting step in substrate conversion was determined to be internal mass transfer resistance; external mass transfer resistance and microbial kinetic limitations were found to be nearly negligible. Only the outer 5% of the pellets contributed to substrate conversion.

  18. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less

  19. Nuclear reactor reflector

    DOEpatents

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  20. Nuclear reactor reflector

    DOEpatents

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  1. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, A.

    1996-03-12

    An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

  2. CONTROL ROD

    DOEpatents

    Zinn, W.H.; Ross, H.V.

    1958-11-18

    A control rod is described for a nuclear reactor. In certaln reactor designs it becomes desirable to use a control rod having great width but relatively llttle thickness. This patent is addressed to such a need. The neutron absorbing material is inserted in a triangular tube, leaving volds between the circular insert and the corners of the triangular tube. The material is positioned within the tube by the use of dummy spacers to achleve the desired absorption pattern, then the ends of the tubes are sealed with suitable plugs. The tubes may be welded or soldered together to form two flat surfaces of any desired width, and covered with sheetmetal to protect the tubes from damage. This design provides a control member that will not distort under the action of outside forces or be ruptured by gases generated within the jacketed control member.

  3. Bistable flow occurrence in the 2D model of a steam turbine valve

    NASA Astrophysics Data System (ADS)

    Pavel, Procházka; Václav, Uruba

    2017-09-01

    The internal flow inside a steam turbine valve was investigated experimentally using PIV measurement. The valve model was proposed to be two-dimensional. The model was connected to the blow-down wind tunnel. The flow conditions were set by the different position of the valve plug. Several angles of the diffuser by diverse radii were investigated concerning flow separation and flow dynamics. It was found that the flow takes one of two possible bistable modes. The first regime is characterized by a massive flow separation just at the beginning of the diffuser section on the one side. The second regime is axisymmetric and the flow separation is not detected at all.

  4. Impact of VOC Composition and Reactor Conditions on the Aging of Biomass Cookstove Emission in an Oxidation Flow Reactor

    EPA Science Inventory

    Oxidation flow reactor (OFR) experiments in our lab have explored secondary organic aerosol (SOA) production during photochemical aging of emissions from cookstoves used by billions in developing countries. Previous experiments, conducted with red oak fuel under conditions of hig...

  5. Impact of VOC Composition and Reactor Conditions on the Aging of Biomass Cookstove Emissions in an Oxidation Flow Reactor

    EPA Science Inventory

    Oxidation flow reactor (OFR) experiments in our lab have explored secondary organic aerosol (SOA) production during photochemical aging of emissions from cookstoves used by billions in developing countries. Previous experiments, conducted with red oak fuel under conditions of hig...

  6. Distinguishing between debris flows and floods from field evidence in small watersheds

    USGS Publications Warehouse

    Pierson, Thomas C.

    2005-01-01

    Post-flood indirect measurement techniques to back-calculate flood magnitude are not valid for debris flows, which commonly occur in small steep watersheds during intense rainstorms. This is because debris flows can move much faster than floods in steep channel reaches and much slower than floods in low-gradient reaches. In addition, debris-flow deposition may drastically alter channel geometry in reaches where slope-area surveys are applied. Because high-discharge flows are seldom witnessed and automated samplers are commonly plugged or destroyed, determination of flow type often must be made on the basis of field evidence preserved at the site.

  7. Fluidic self-actuating control assembly

    DOEpatents

    Grantz, Alan L.

    1979-01-01

    A fluidic self-actuating control assembly for use in a reactor wherein no external control inputs are required to actuate (scram) the system. The assembly is constructed to scram upon sensing either a sudden depressurization of reactor inlet flow or a sudden increase in core neutron flux. A fluidic control system senses abnormal flow or neutron flux transients and actuates the system, whereupon assembly coolant flow reverses, forcing absorber balls into the reactor core region.

  8. Shuttle APS propellant thermal conditioner study

    NASA Technical Reports Server (NTRS)

    Fulton, D. L.

    1971-01-01

    The conditioner design concept selected for evaluation consists of an integral reactor and baffle-type heat exchanger. Heat exchange is accomplished by flowing reactor hot gases past a series of slotted and formed plates, through which the conditioned propellant flows. Heat transfer analysis has resulted in the selection of a reactor hot gas nominal mixture ratio of 1.0, giving a combustion temperature of 1560 F with a hydrogen inlet temperature of 275 R. Worst case conditions result in a combustion gas temperature of 2060 F, satisfying the condition of no damage to the conditioner in case of failure to flow cold fluid. In addition, evaluation of hot gas flow requirements and conditioner weight has resulted in the selection of a reactor hot gas exhaust temperature of 750 R.

  9. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, Michael R.; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2016-11-01

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  10. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2015-12-15

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  11. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark A; Shen, Clifton Kwang-Fu

    2015-02-10

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  12. FLOW SYSTEM FOR REACTOR

    DOEpatents

    Zinn, W.H.

    1963-06-11

    A reactor is designed with means for terminating the reaction when returning coolant is below a predetermined temperature. Coolant flowing from the reactor passes through a heat exchanger to a lower reservoir, and then circulates between the lower reservoir and an upper reservoir before being returned to the reactor. Means responsive to the temperature of the coolant in the return conduit terminate the chain reaction when the temperature reaches a predetermined minimum value. (AEC)

  13. Evaluation of infrared thermography as a diagnostic tool in CVD applications

    NASA Astrophysics Data System (ADS)

    Johnson, E. J.; Hyer, P. V.; Culotta, P. W.; Clark, I. O.

    1998-05-01

    This research is focused on the feasibility of using infrared temperature measurements on the exterior of a chemical vapor deposition (CVD) reactor to ascertain both real-time information on the operating characteristics of a CVD system and provide data which could be post-processed to provide quantitative information for research and development on CVD processes. Infrared thermography techniques were used to measure temperatures on a horizontal CVD reactor of rectangular cross section which were correlated with the internal gas flow field, as measured with the laser velocimetry (LV) techniques. For the reactor tested, thermal profiles were well correlated with the gas flow field inside the reactor. Correlations are presented for nitrogen and hydrogen carrier gas flows. The infrared data were available to the operators in real time with sufficient sensitivity to the internal flow field so that small variations such as misalignment of the reactor inlet could be observed. The same data were post-processed to yield temperature measurements at known locations on the reactor surface. For the experiments described herein, temperatures associated with approximately 3.3 mm 2 areas on the reactor surface were obtained with a precision of ±2°C. These temperature measurements were well suited for monitoring a CVD production reactor, development of improved thermal boundary conditions for use in CFD models of reactors, and for verification of expected thermal conditions.

  14. Reactor design rules for GaN epitaxial layer growths on sapphire in metal-organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Kim, Keunjoo; Noh, Sam Kyu

    2000-08-01

    The thermal process of the growth of GaN-based semiconductors was analysed for two home-made horizontal reactors. The reactors were designed to make the ammonia gas flow in the opposite direction to the main gas flow. For two horizontal reactors different in dimension, the low Reynolds numbers of Re = 2.94 and 4.15 were chosen for stable laminar flow and the Rayleigh numbers governing the heat convection were optimized to the values of Ra = 6.0 and 76.2, respectively. The qualities of GaN and InGaN films were characterized by Hall effect measurement, x-ray diffraction and photoluminescence and compared with respect to the reactor dependency.

  15. Generation of hazardous methyl azide and its application to synthesis of a key-intermediate of picarbutrazox, a new potent pesticide in flow.

    PubMed

    Ichinari, Daisuke; Nagaki, Aiichiro; Yoshida, Jun-Ichi

    2017-12-01

    Generation and reactions of methyl azide (MeN 3 ) were successfully performed by using a flow reactor system, demonstrating that the flow method serves as a safe method for handling hazardous explosive methyl azide. The reaction of NaN 3 and Me 2 SO 4 in a flow reactor gave a MeN 3 solution, which was used for Huisgen reaction with benzoyl cyanide in a flow reactor after minimal washing. The resulting 1-methyl-5-benzoyltetrazole serves as a key intermediate of picarbutrazox (IX), a new potent pesticide. Copyright © 2017. Published by Elsevier Ltd.

  16. Pressure-Letdown Plates for Coal Gasifiers

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1985-01-01

    Variation of pseudoporous plates used with coal gasifiers in pressure letdown stage of processing minimize clogging. Rotating plates containing variable gap annuli continually change flow path to enable erosionless reduction of gas pressure. Particles that otherwise clog porous plugs pass through gaps.

  17. 30 CFR 250.601 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... installed: (a) Cutting paraffin; (b) Removing and setting pump-through-type tubing plugs, gas-lift valves...) Corrosion inhibitor treatment; (i) Removing or replacing subsurface pumps; (j) Through-tubing logging (diagnostics); (k) Wireline fishing; and (l) Setting and retrieving other subsurface flow-control devices...

  18. 30 CFR 250.601 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... installed: (a) Cutting paraffin; (b) Removing and setting pump-through-type tubing plugs, gas-lift valves...) Corrosion inhibitor treatment; (i) Removing or replacing subsurface pumps; (j) Through-tubing logging (diagnostics); (k) Wireline fishing; and (l) Setting and retrieving other subsurface flow-control devices...

  19. 30 CFR 250.601 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... installed: (a) Cutting paraffin; (b) Removing and setting pump-through-type tubing plugs, gas-lift valves...) Corrosion inhibitor treatment; (i) Removing or replacing subsurface pumps; (j) Through-tubing logging (diagnostics); (k) Wireline fishing; and (l) Setting and retrieving other subsurface flow-control devices...

  20. Preceiving Patterns of Reference Service: A Survey

    ERIC Educational Resources Information Center

    Blakely, Florence

    1971-01-01

    Reference librarians must, if they hope to survive, retool in preparation for becoming the interface between the patron and computer-based information systems. This involves sharpening the interview technique and understanding where to plug into the information flow process. (4 references) (Author)

  1. Study on bubbly flow behavior in natural circulation reactor by thermal-hydraulic simulation tests with SF6-Gas and ethanol liquid

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro

    2009-02-01

    An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.

  2. Can eccentric arterial plaques alone cause flow stagnation points and favour thrombus incorporation?

    PubMed Central

    Beneli, Cristina T; Barbosa, Priscila F; Floriano, Elaine M; Abreu, Mônica A; Ramalho, Fernando S; Júnior, Jorge Elias; Rossi, Marcos A; Ramos, Simone G

    2009-01-01

    We have used an experimental model of aorta stenosis, with a Plexiglas plug, simulating a stable atheromatous plaque that promotes local turbulence and thrombosis. With animal survival of more than 24 h, we followed the partial fibrinolysis of the thrombus as well as its posterior organization and incorporation to the arterial wall as a neointima for up to 30 days. The mushroom plug form permitted the development of recirculation and stasis areas around it, favouring this evolution. Despite noted limitations, this study demonstrates that thrombus incorporation can contribute to plaque extension, as it can promote recirculation and stasis areas. PMID:19563612

  3. Computational and Experimental Investigations of the Coolant Flow in the Cassette Fissile Core of a KLT-40S Reactor

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. M.; Varentsov, A. V.; Dobrov, A. A.; Doronkov, D. V.; Pronin, A. N.; Sorokin, V. D.; Khrobostov, A. E.

    2017-07-01

    Results of experimental investigations of the local hydrodynamic and mass-exchange characteristics of a coolant flowing through the cells in the characteristic zones of a fuel assembly of a KLT-40S reactor plant downstream of a plate-type spacer grid by the method of diffusion of a gas tracer in the coolant flow with measurement of its velocity by a five-channel pneumometric probe are presented. An analysis of the concentration distribution of the tracer in the coolant flow downstream of a plate-type spacer grid in the fuel assembly of the KLT-40S reactor plant and its velocity field made it possible to obtain a detailed pattern of this flow and to determine its main mechanisms and features. Results of measurement of the hydraulic-resistance coefficient of a plate-type spacer grid depending on the Reynolds number are presented. On the basis of the experimental data obtained, recommendations for improvement of the method of calculating the flow rate of a coolant in the cells of the fissile core of a KLT-40S reactor were developed. The results of investigations of the local hydrodynamic and mass-exchange characteristics of the coolant flow in the fuel assembly of the KLT-40S reactor plant were accepted for estimating the thermal and technical reliability of the fissile cores of KLT-40S reactors and were included in the database for verification of computational hydrodynamics programs (CFD codes).

  4. Single Channel Testing for Characterization of the Direct Gas Cooled Reactor and the SAFE-100 Heat Exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragg-Sitton, S.M.; Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812; Kapernick, R.

    2004-02-04

    Experiments have been designed to characterize the coolant gas flow in two space reactor concepts that are currently under investigation by NASA Marshall Space Flight Center and Los Alamos National Laboratory: the direct-drive gas-cooled reactor (DDG) and the SAFE-100 heatpipe-cooled reactor (HPR). For the DDG concept, initial tests have been completed to measure pressure drop versus flow rate for a prototypic core flow channel, with gas exiting to atmospheric pressure conditions. The experimental results of the completed DDG tests presented in this paper validate the predicted results to within a reasonable margin of error. These tests have resulted in amore » re-design of the flow annulus to reduce the pressure drop. Subsequent tests will be conducted with the re-designed flow channel and with the outlet pressure held at 150 psi (1 MPa). Design of a similar test for a nominal flow channel in the HPR heat exchanger (HPR-HX) has been completed and hardware is currently being assembled for testing this channel at 150 psi. When completed, these test programs will provide the data necessary to validate calculated flow performance for these reactor concepts (pressure drop and film temperature rise)« less

  5. Rupture loop annex ion exchange RLAIX vault deactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  6. Loss-of-flow-without-scram tests in Experimental Breeder Reactor-II and comparison with pretest predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L.K.; Mohr, D.; Planchon, H.P.

    This article discusses a series of successful loss-of-flow-without-scram tests conducted in Experimental Breeder Reactor-II (EBR-II), a metal-fueled, sodium-cooled fast reactor. These May 1985 tests demonstrated the capability of the EBR to reduce reactor power passively during a loss of flow and to maintain reactor temperatures within bounds without any reliance on an active safety system. The tests were run from reduced power to ensure that temperatures could be maintained well below the fuel-clad eutectic temperature. Good agreement was found between selected test data and pretest predictions made with the EBR-II system analysis code NATDEMO and the hot channel analysis codemore » HOTCHAN. The article also discusses safety assessments of the tests as well as modifications required on the EBR-II reactor safety system for conducting required on the EBR-II reactor safety system for the conducting the tests.« less

  7. Catalytic Reactor for Inerting of Aircraft Fuel Tanks

    DTIC Science & Technology

    1974-06-01

    Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft

  8. Silane-Pyrolysis Reactor With Nonuniform Heating

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1991-01-01

    Improved reactor serves as last stage in system processing metallurgical-grade silicon feedstock into silicon powder of ultrahigh purity. Silane pyrolized to silicon powder and hydrogen gas via homogeneous decomposition reaction in free space. Features set of individually adjustable electrical heaters and purge flow of hydrogen to improve control of pyrolysis conditions. Power supplied to each heater set in conjunction with flow in reactor to obtain desired distribution of temperature as function of position along reactor.

  9. Self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  10. Extending Cross-Generational Knowledge Flow Research in Edge Organizations

    DTIC Science & Technology

    2008-06-01

    letting Protégé generate the basic user interface, and then gradually write widgets and plug-ins to customize its look-and- feel and behavior . 4 3.0...2007a) focused on cross-generational knowledge flows in edge organizations. We found that cross- generational biases affect tacit knowledge transfer...the software engineering field, many matured methodologies already exist, such as Rational Unified Process (Hunt, 2003) or Extreme Programming (Beck

  11. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    DOE PAGES

    Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...

    2016-05-24

    We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less

  12. Nuclear reactor downcomer flow deflector

    DOEpatents

    Gilmore, Charles B [Greensburg, PA; Altman, David A [Pittsburgh, PA; Singleton, Norman R [Murrysville, PA

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  13. Insights into the origins of drumbeat earthquakes, periodic low frequency seismicity, and plug degradation from multi-instrument monitoring at Tungurahua volcano, Ecuador, April 2015

    NASA Astrophysics Data System (ADS)

    Bell, Andrew; Hernandez, Stephen; Gaunt, Elizabeth; Mothes, Patricia; Hidalgo, Silvana; Ruiz, Mario

    2016-04-01

    Highly-periodic repeating 'drumbeat' earthquakes have been reported from several andesitic and dacitic volcanoes. Physical models for the origin of drumbeat earthquakes incorporate, to different extents, the incremental upward movement of viscous magma. However, the roles played by stick-slip friction, brittle failure, and fluid flow, and the relations between drumbeat earthquakes and other low-frequency seismic signals, remain controversial. Here we report the results of analysis of three weeks of geophysical data recorded during an unrest episode at Tungurahua, an andesitic stratovolcano in Ecuador, during April 2015, by the monitoring network of the Instituto Geofisico of Ecuador. Combined seismic, geodetic, infrasound, and gas monitoring has provided new insights into the origins of periodic low-frequency seismic signals, conduit processes, and the nature of current unrest. Over the three-week period, the relative seismic amplitude (RSAM) correlated closely with short-term deformation rates and gas fluxes. However, the characteristics of the seismic signals, as recorded at a short-period station closest to the summit crater, changed considerably with time. Initially high RSAM and gas fluxes, with modest ash emissions, were associated with continuous and 'pulsed' tremor signals (amplitude modulated, with 30-100 second periods). As activity levels decreased over several days, tremor episodes became increasingly intermittent, and short-lived bursts of low-frequency earthquakes with quasiperiodic inter-event times were observed. Following one day of quiescence, the onset of pronounced low frequency drumbeat earthquakes signalled the resumption of elevated unrest, initially with mean inter-event times of 32 seconds, and later increasing to 74 seconds and longer, with periodicity progressively breaking down over several days. A reduction in RSAM was then followed by one week of persistent, quasiperiodic, longer-duration emergent low-frequency pulses, including 'double events'. The unrest finished with a series of minor explosions and ash emissions, and a reduction in RSAM. None of the seismic events were associated with significant infrasound or ground-coupled acoustic waves. The persistent and steadily evolving periodicity of seismic signals, and contemporaneous inflation-deflation tilt cycle, suggest that incremental upward movement of a viscous magma plug determines the system periodicity, likely controlled by the balance between magma ascent rate, magma compressibility beneath the plug, and resisting forces at the plug margin. However, relations between a range of observations, including waveform similarity, periodicity, and amplitudes of contemporaneous discrete and continuous signals, suggest that the detected seismic signals are predominantly generated by gas flow that is largely decoupled from the magma ascent rate. Signals are generated by both continuous flow through longer-lived pathways, and by gas pulses passing through transient pathways generated by slip at the plug margins. The nature and amplitude of signals is therefore a product of the rate of gas flux and the evolving state of the degassing pathway, controlled in part by degradation and healing of the plug margins.

  14. Nuclear reactor overflow line

    DOEpatents

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  15. Flow Reactor for studying Physicochemical and aging properties of SOA

    NASA Astrophysics Data System (ADS)

    Babar, Z. B.

    2016-12-01

    Secondary organic aerosols (SOA) have importance in environmental processes such as affecting earth's radiative balance and cloud formation processes. For studying SOA formation large scale environmental batch reactors and laboratory scale flow reactors have been used. In this study application of flow reactor to study physicochemical properties of SOA is also investigated after its characterization. The flow reactor is of cylindrical design (ID 15 cm x L 70 cm) equipped with UV lamps. It is coupled with various instruments such as scanning mobility particle sizer, NOx analyzer, ozone analyzer, VOC analyzer, hygrometer, and temperature sensors for gas and particle phase measurements. OH radicals were generated by custom build ozone generator and relative humidity. The following characterizations were performed: (1) residence time distribution (RTD) measurements, (2) RH and temperature control, (3) OH radical exposure range (atmospheric aging time), (4) gas phase oxidation of SOA precursors such as α-pinene by OH radical. The flow reactor yielded narrow RTDs. In particular, RH and temperature can be controlled effectively between 0-60% and 22-43oC, respectively. OH radical exposure ranges from 6.49x1010 to 3.68x1011 molecules/cm3s (0.49 to 4.91 days). Our initial efforts on OH radical generation using hydrogen peroxide and its quantification by using flourescenet technique will be also be presented.

  16. Numerical Investigation of a Novel Microscale Swirling Jet Reactor for Medical Sensor Applications

    NASA Astrophysics Data System (ADS)

    Ogus, G.; Baelmans, M.; Lammertyn, J.; Vanierschot, M.

    2018-03-01

    A microscale swirler and corresponding reactor for a recent detection and analysis tool for healthcare applications, Fiber optic-surface plasmon resonance (FO-SPR), is presented in this study. The sensor is a 400 μm diameter needle that works as a detector for certain particles. Currently, the detection process relies on diffusion of particles towards the sensor and hence diagnostic time is rather long. The aim of this study is to decrease that diagnostic time by introducing convective mixing in the reactor by means of a swirling inlet flow. This will increase the particle deposition on the FO-SPR sensor and hence an increase in detection rate, as this rate strongly depends on the aimed particle concentration near the sensor. As the flow rates are rather low and the length scales are small, the flow in such reactors is laminar. In this study, robustly controllable mixing features of a swirling jet flow is used to increase the particle concentration near the sensor. A numerical analysis (CFD) is performed to characterize the flow and a detailed analysis of flow structures depending on the flow rate are reported.

  17. Analysis of the stochastic excitability in the flow chemical reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashkirtseva, Irina

    2015-11-30

    A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.

  18. Analysis of the stochastic excitability in the flow chemical reactor

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina

    2015-11-01

    A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.

  19. Hydraulic Actuator for Ganged Control Rods

    NASA Technical Reports Server (NTRS)

    Thompson, D. C.; Robey, R. M.

    1986-01-01

    Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.

  20. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  1. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs

    NASA Astrophysics Data System (ADS)

    Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo

    2012-02-01

    We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min-1, 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.

  2. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs.

    PubMed

    Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo

    2012-02-17

    We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min(-1), 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.

  3. Application of a novel type impinging streams reactor in solid-liquid enzyme reactions and modeling of residence time distribution using GDB model.

    PubMed

    Fatourehchi, Niloufar; Sohrabi, Morteza; Dabir, Bahram; Royaee, Sayed Javid; Haji Malayeri, Adel

    2014-02-05

    Solid-liquid enzyme reactions constitute important processes in biochemical industries. The isomerization of d-glucose to d-fructose, using the immobilized glucose isomerase (Sweetzyme T), as a typical example of solid-liquid catalyzed reactions has been carried out in one stage and multi-stage novel type of impinging streams reactors. Response surface methodology was applied to determine the effects of certain pertinent parameters of the process namely axial velocity (A), feed concentration (B), nozzles' flow rates (C) and enzyme loading (D) on the performance of the apparatus. The results obtained from the conversion of glucose in this reactor were much higher than those expected in conventional reactors, while residence time was decreased dramatically. Residence time distribution (RTD) in a one-stage impinging streams reactor was investigated using colored solution as the tracer. The results showed that the flow pattern in the reactor was close to that in a continuous stirred tank reactor (CSTR). Based on the analysis of flow region in the reactor, gamma distribution model with bypass (GDB) was applied to study the RTD of the reactor. The results indicated that RTD in the impinging streams reactor could be described by the latter model. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR

    EPA Science Inventory


    The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...

  5. 75 FR 8412 - Office of New Reactors: Interim Staff Guidance on Assessing Ground Water Flow and Transport of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0047] Office of New Reactors: Interim Staff Guidance on Assessing Ground Water Flow and Transport of Accidental Radionuclide Releases; Solicitation of Public... ground water flow and transport of accidental radionuclide releases necessary to demonstrate compliance...

  6. Design, Operation, and Modeling of a Vertical APCVD Reactor for Silicon Carbide Film Growth

    NASA Technical Reports Server (NTRS)

    DeAnna, Russell G.; Fleischman, Aaron J.; Zorman, Christian A.; Mehregany, Mehran

    1998-01-01

    An atmospheric pressure chemical vapor deposition (APCVD) reactor utilizing a unique vertical geometry which enables 3C-SiC films to be grown on two, 4-inch diameter Si wafers has been constructed. Contrary to expectations, 3C-SiC films grown in this reactor are thickest at the downstream end of the substrates. To better understand the reason for the thickness distribution on the wafers, an axisymmetric finite-element model of the gas flow in the reactor was constructed. The model uses the ANSYS53 Flowtran package and includes compressible and temperature-dependent fluid properties in laminar or turbulent flow. It does not include reaction chemistry or unsteady flow. The ANSYS53 results predict that the cool, inlet fluid falls through the inlet pipe and the warm, diffuser region like a jet. This jet impinges on top of the susceptor and gets diverted to the reactor side walls, where it flows to the bottom of the reactor, turns, and slowly rises along the face of the susceptor. This may explain why the SiC films are thickest at the downstream side of the wafers, as gas containing fresh reactants first passes over this region. Modeling results are presented for both one atmosphere and one half atmosphere reactor pressure.

  7. METHOD FOR SENSING DEGREE OF FLUIDIZATION IN FLUIDIZED BED

    DOEpatents

    Levey, R.P. Jr.; Fowler, A.H.

    1961-12-12

    A method is given for detecting, indicating, and controlling the degree of fluidization in a fluid-bed reactor into which powdered material is fed. The method comprises admitting of gas into the reactor, inserting a springsupported rod into the powder bed of the reactor, exciting the rod to vibrate at its resonant frequency, deriving a signal responsive to the amplitude of vibi-ation of the rod and spring, the signal being directiy proportional to the rate of flow of the gas through the reactor, displaying the signal to provide an indication of the degree of fluidization within the reactor, and controlling the rate of gas flow into the reactor until said signal stabilizes at a constant value to provide substantially complete fluidization within the reactor. (AEC)

  8. Core Dynamics Analysis for Reactivity Insertion and Loss of Coolant Flow Tests Using the High Temperature Engineering Test Reactor

    NASA Astrophysics Data System (ADS)

    Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki

    Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-temperature Gas-cooled Reactors (HTGRs). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named-ACCORD-, was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We have modified this code to use a model with four parallel channels and twenty temperature coefficients. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results. Moreover, the effect of the model is formulated quantitatively with our proposed equation. Finally, the pre-analytical result of the loss of coolant flow test by tripping all gas circulators is also discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salko, Robert K; Sung, Yixing; Kucukboyaci, Vefa

    The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time stepmore » of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.« less

  10. MECHANISMS OF NITROUS OXIDE FORMATION IN COAL FLAMES

    EPA Science Inventory

    The paper gives results of a study, using both detailed kinetic modeling and plug-flow simulator experiments, to investigate an unknown mechanism by which N2O is formed in coal flames. This mechanism has considerable importance in determining the influence of common and advanced ...

  11. Kinetics and mechanisms of iron sulfide reductions in hydrogen and in carbon monoxide

    USGS Publications Warehouse

    Wiltowski, T.; Hinckley, C.C.; Smith, Gerard V.; Nishizawa, T.; Saporoschenko, Mykola; Shiley, R.H.; Webster, J.R.

    1987-01-01

    The reduction of iron sulfides by hydrogen and by carbon monoxide has been studied using plug flow and thermogravimetric methods. The reactions were studied in the 523-723??K temperature range and were found to be first-order processes. Plug flow studies were used to correlate reaction rates between pyrite and the gases as a function of the surface area of the pyrite. The rate of H2S formation increases with the surface area of the pyrite sample. The results of thermogravimetric experiments indicate that the reactions consist of several steps. Rate constants for the pyrite reduction by H2 and by CO were obtained. The activation energies increased with degree of reduction. Values of Ea were 113.2 (step I) and 122.5 kJ/mole (step II) for pyrite reduction with CO and 99.4 (step I), 122.4 (step II), 125.2 (step III), and 142.6 kJ/mole (step IV) for pyrite reduction with hydrogen. ?? 1987.

  12. Apparatus, components and operating methods for circulating fluidized bed transport gasifiers and reactors

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2015-02-24

    The improvements proposed in this invention provide a reliable apparatus and method to gasify low rank coals in a class of pressurized circulating fluidized bed reactors termed "transport gasifier." The embodiments overcome a number of operability and reliability problems with existing gasifiers. The systems and methods address issues related to distribution of gasification agent without the use of internals, management of heat release to avoid any agglomeration and clinker formation, specific design of bends to withstand the highly erosive environment due to high solid particles circulation rates, design of a standpipe cyclone to withstand high temperature gasification environment, compact design of seal-leg that can handle high mass solids flux, design of nozzles that eliminate plugging, uniform aeration of large diameter Standpipe, oxidant injection at the cyclone exits to effectively modulate gasifier exit temperature and reduction in overall height of the gasifier with a modified non-mechanical valve.

  13. Innovative test method for the estimation of the foaming tendency of substrates for biogas plants.

    PubMed

    Moeller, Lucie; Eismann, Frank; Wißmann, Daniel; Nägele, Hans-Joachim; Zielonka, Simon; Müller, Roland A; Zehnsdorf, Andreas

    2015-07-01

    Excessive foaming in anaerobic digestion occurs at many biogas plants and can cause problems including plugged gas pipes. Unfortunately, the majority of biogas plant operators are unable to identify the causes of foaming in their biogas reactor. The occurrence of foaming is often related to the chemical composition of substrates fed to the reactor. The consistency of the digestate itself is also a crucial part of the foam formation process. Thus, no specific recommendations concerning substrates can be given in order to prevent foam formation in biogas plants. The safest way to avoid foaming is to test the foaming tendency of substrates on-site. A possible solution is offered by an innovative foaming test. With the help of this tool, biogas plant operators can evaluate the foaming disposition of new substrates prior to use in order to adjust the composition of substrate mixes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels

    PubMed Central

    Song, Helen; Bringer, Michelle R.; Tice, Joshua D.; Gerdts, Cory J.; Ismagilov, Rustem F.

    2006-01-01

    This letter describes an experimental test of a simple argument that predicts the scaling of chaotic mixing in a droplet moving through a winding microfluidic channel. Previously, scaling arguments for chaotic mixing have been described for a flow that reduces striation length by stretching, folding, and reorienting the fluid in a manner similar to that of the baker’s transformation. The experimentally observed flow patterns within droplets (or plugs) resembled the baker’s transformation. Therefore, the ideas described in the literature could be applied to mixing in droplets to obtain the scaling argument for the dependence of the mixing time, t~(aw/U)log(Pe), where w [m] is the cross-sectional dimension of the microchannel, a is the dimensionless length of the plug measured relative to w, U [m s−1] is the flow velocity, Pe is the Péclet number (Pe=wU/D), and D [m2s−1] is the diffusion coefficient of the reagent being mixed. Experiments were performed to confirm the scaling argument by varying the parameters w, U, and D. Under favorable conditions, submillisecond mixing has been demonstrated in this system. PMID:17940580

  15. Slump Flows inside Pipes: Numerical Results and Comparison with Experiments

    NASA Astrophysics Data System (ADS)

    Malekmohammadi, S.; Naccache, M. F.; Frigaard, I. A.; Martinez, D. M.

    2008-07-01

    In this work an analysis of the buoyancy-driven slumping flow inside a pipe is presented. This flow usually occurs when an oil well is sealed by a plug cementing process, where a cement plug is placed inside the pipe filled with a lower density fluid, displacing it towards the upper cylinder wall. Both the cement and the surrounding fluids have a non Newtonian behavior. The cement is viscoplastic and the surrounding fluid presents a shear thinning behavior. A numerical analysis was performed to evaluate the effects of some governing parameters on the slump length development. The conservation equations of mass and momentum were solved via a finite volume technique, using Fluent software (Ansys Inc.). The Volume of Fluid surface-tracking method was used to obtain the interface between the fluids and the slump length as a function of time. The results were obtained for different values of fluids densities differences, fluids rheology and pipe inclinations. The effects of these parameters on the interface shape and on the slump length versus time curve were analyzed. Moreover, the numerical results were compared to experimental ones, but some differences are observed, possibly due to chemical effects at the interface.

  16. The role of heater thermal response in reactor thermal limits during oscillartory two-phase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, A.E.; Brown, N.W.; Vasil`ev, A.D.

    1995-09-01

    Analytical and numerical investigations of critical heat flux (CHF) and reactor thermal limits are conducted for oscillatory two-phase flows often associated with natural circulation conditions. It is shown that the CHF and associated thermal limits depend on the amplitude of the flow oscillations, the period of the flow oscillations, and the thermal properties and dimensions of the heater. The value of the thermal limit can be much lower in unsteady flow situations than would be expected using time average flow conditions. It is also shown that the properties of the heater strongly influence the thermal limit value in unsteady flowmore » situations, which is very important to the design of experiments to evaluate thermal limits for reactor fuel systems.« less

  17. Thermal margin protection system for a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musick, C.R.

    1974-02-12

    A thermal margin protection system for a nuclear reactor is described where the coolant flow flow trip point and the calculated thermal margin trip point are switched simultaneously and the thermal limit locus is made more restrictive as the allowable flow rate is decreased. The invention is characterized by calculation of the thermal limit Locus in response to applied signals which accurately represent reactor cold leg temperature and core power; cold leg temperature being corrected for stratification before being utilized and reactor power signals commensurate with power as a function of measured neutron flux and thermal energy added to themore » coolant being auctioneered to select the more conservative measure of power. The invention further comprises the compensation of the selected core power signal for the effects of core radial peaking factor under maximum coolant flow conditions. (Official Oazette)« less

  18. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  19. Design and test of porous-tungsten mercury vaporizers

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.

    1972-01-01

    Future use of large size Kaufman thrusters and thruster arrays will impose new design requirements for porous plug type vaporizers. Larger flow rate coupled with smaller pores to prevent liquid intrusion will be desired. The results of testing samples of porous tungsten for flow rate, liquid intrusion pressure level, and mechanical strength are presented. Nitrogen gas was used in addition to mercury flow for approximate calibration. Liquid intrusion pressure levels will require that flight thruster systems with long feed lines have some way (a valve) to restrict dynamic line pressures during launch.

  20. Electrogenerative gold recovery from cyanide solutions using a flow-through cell with activated reticulated vitreous carbon.

    PubMed

    Yap, Chin Yean; Mohamed, Norita

    2008-10-01

    An electrogenerative flow-through reactor with an activated reticulated vitreous carbon cathode was developed. The influence of palladium-tin activation of the cathode towards gold deposition was studied by cyclic voltammetry. The reactor proved to be efficient in recovering more than 99% of gold within 4 h of operation. The performance of the reactor was evaluated with initial gold concentrations of 10, 100 and 500 mg L-1 and various electrolyte flow rates. Gold recovery was found to be strongly dependent on electrolyte flow rate and initial gold concentration in the cyanide solution under the experimental conditions used.

  1. Performance Assessment of the Commercial CFD Software for the Prediction of the Reactor Internal Flow

    NASA Astrophysics Data System (ADS)

    Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Kim, Do Hyeong; Kang, Min Ku

    2014-06-01

    As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developer and its user think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor problems, there is still limitation and uncertainty in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of the commercial CFD software for nuclear reactor problems. In this study, in order to examine the validity of the results of 1/5 scaled APR+ (Advanced Power Reactor Plus) flow distribution tests and the applicability of CFD in the analysis of reactor internal flow, the simulation was conducted with the two commercial CFD software (ANSYS CFX V.14 and FLUENT V.14) among the numerous commercial CFD software and was compared with the measurement. In addition, what needs to be improved in CFD for the accurate simulation of reactor core inlet flow was discussed.

  2. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.

    PubMed

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-10-15

    The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate=4.3 l/h, inter electrode distance=2.8 cm, current density=5.78 mA/cm(2), A/V ratio=0.248 cm(-1). The NOM removal according to UV(254) absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m(3). According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oktamuliani, Sri, E-mail: srioktamuliani@ymail.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation atmore » inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.« less

  4. Development of hydrate risk quantification in oil and gas production

    NASA Astrophysics Data System (ADS)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in order to reduce the parametric study that may require a long duration of time using The Colorado School of Mines Hydrate Kinetic Model (CSMHyK). The evolution of the hydrate plugging risk along flowline-riser systems is modeled for steady state and transient operations considering the effect of several critical parameters such as oil-hydrate slip, duration of shut-in, and water droplet size on a subsea tieback system. This research presents a novel platform for quantification of the hydrate plugging risk, which in-turn will play an important role in improving and optimizing current hydrate management strategies. The predictive strength of the hydrate risk quantification and hydrate prediction models will have a significant impact on flow assurance engineering and design with respect to building safe and efficient hydrate management techniques for future deep-water developments.

  5. Component and Technology Development for Advanced Liquid Metal Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark

    2017-01-30

    The following report details the significant developments to Sodium Fast Reactor (SFR) technologies made throughout the course of this funding. This report will begin with an overview of the sodium loop and the improvements made over the course of this research to make it a more advanced and capable facility. These improvements have much to do with oxygen control and diagnostics. Thus a detailed report of advancements with respect to the cold trap, plugging meter, vanadium equilibration loop, and electrochemical oxygen sensor is included. Further analysis of the university’s moving magnet pump was performed and included in a section ofmore » this report. A continuous electrical resistance based level sensor was built and tested in the sodium with favorable results. Materials testing was done on diffusion bonded samples of metal and the results are presented here as well. A significant portion of this work went into the development of optical fiber temperature sensors which could be deployed in an SFR environment. Thus, a section of this report presents the work done to develop an encapsulation method for these fibers inside of a stainless steel capillary tube. High temperature testing was then done on the optical fiber ex situ in a furnace. Thermal response time was also explored with the optical fiber temperature sensors. Finally these optical fibers were deployed successfully in a sodium environment for data acquisition. As a test of the sodium deployable optical fiber temperature sensors they were installed in a sub-loop of the sodium facility which was constructed to promote the thermal striping effect in sodium. The optical fibers performed exceptionally well, yielding unprecedented 2 dimensional temperature profiles with good temporal resolution. Finally, this thermal striping loop was used to perform cross correlation velocimetry successfully over a wide range of flow rates.« less

  6. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    USGS Publications Warehouse

    Bachand, P.A.M.; S. Bachand,; Fleck, Jacob A.; Anderson, Frank E.; Windham-Myers, Lisamarie

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flowrates and tracer concentrations atwetland inflows and outflows. We used two ideal reactormodel solutions, a continuous flowstirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these nonideal agricultural wetlands in which check ponds are in series. Using a fluxmodel, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemicalmechanisms affecting dissolved constituent cycling in the root zone. In addition,our understanding of internal root zone cycling of Hg and other dissolved constituents, benthic fluxes, and biological irrigation may be greatly affected.

  7. SNCR De-NOx within a moderate temperature range using urea-spiked hydrazine hydrate as reductant.

    PubMed

    Chen, H; Chen, D Z; Fan, S; Hong, L; Wang, D

    2016-10-01

    In this research, urea-spiked hydrazine hydrate solutions are used as reductants for the Selective Non-Catalytic Reduction (SNCR) De-NOx process below 650 °C. The urea concentration in the urea/hydrazine hydrate solutions is chosen through experimental and theoretical studies. To determine the mechanism of the De-NOx process, thermogravimetric analysis (TGA) of the urea/hydrazine hydrate solutions and their thermal decomposition in air and nitrogen atmospheres were studied to understand their decomposition behaviours and redox characteristics. Then a plug flow reactor (PFR) model was adopted to simulate the De-NOx processes in a pilot scale tubular reactor, and the calculated De-NOx efficiency vs. temperature profiles were compared with experimental results to support the mechanism and choose the proper reductant and its reaction temperature. Both the experimental and calculated results show that when the urea is spiked into hydrazine hydrate solution to make the urea-N content approximately 16.7%-25% of the total N content in the solution, better De-NOx efficiencies can be obtained in the temperature range of 550-650 °C, under which NH3 is inactive in reducing NOx. And it is also proved that for these urea-spiked hydrazine hydrate solutions, the hydrazine decomposition through the pathway N2H4 + M = N2H3 + H + M is enhanced to provide radical H, which is active to reduce NO. Finally, the reaction routes for SNCR De-NOx process based on urea-spiked hydrazine hydrate at the proper temperature are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Phonological studies of the new gas-induced agitated reactor using computational fluid dynamics.

    PubMed

    Yang, T C; Hsu, Y C; Wang, S F

    2001-06-01

    An ozone-induced agitated reactor has been found to be very effective in degrading industrial wastewater. However, the cost of the ozone generation as well as its short residence time in reactors has restricted its application in a commercial scale. An innovated gas-induced draft tube installed inside a conventional agitated reactor was proved to effectively retain the ozone in a reactor. The setup was demonstrated to significantly promote the ozone utilization rate up to 96% from the conventional rate of 60% above the onset speed. This work investigates the mixing mechanism of an innovated gas-induced reactor for the future scale-up design by using the technique of computational fluid dynamics. A three-dimensional flow model was proposed to compute the liquid-gas free surface as well as the flow patterns inside the reactor. The turbulent effects generated by two 45 degrees pitch-blade turbines were considered and the two phases mixing phenomena were also manipulated by the Eulerian-Eulerian techniques. The consistency of the free surface profiles and the fluid flow patterns proved a good agreement between computational results and the experimental observation.

  9. Deleterious Thermal Effects due to Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.

  10. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  11. Student-Fabricated Microfluidic Devices as Flow Reactors for Organic and Inorganic Synthesis

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Edelman, Kate R.; Swanson, Benjamin P.

    2015-01-01

    Flow synthesis in microfluidic devices has been rapidly adapted in the pharmaceutical industry and in many research laboratories. Yet, the cost of commercial flow reactors is a major factor limiting the dissemination of this technology in the undergraduate curriculum. Here, we present a laboratory activity where students design and fabricate…

  12. Process optimization of an auger pyrolyzer with heat carrier using response surface methodology.

    PubMed

    Brown, J N; Brown, R C

    2012-01-01

    A 1 kg/h auger reactor utilizing mechanical mixing of steel shot heat carrier was used to pyrolyze red oak wood biomass. Response surface methodology was employed using a circumscribed central composite design of experiments to optimize the system. Factors investigated were: heat carrier inlet temperature and mass flow rate, rotational speed of screws in the reactor, and volumetric flow rate of sweep gas. Conditions for maximum bio-oil and minimum char yields were high flow rate of sweep gas (3.5 standard L/min), high heat carrier temperature (∼600 °C), high auger speeds (63 RPM) and high heat carrier mass flow rates (18 kg/h). Regression models for bio-oil and char yields are described including identification of a novel interaction effect between heat carrier mass flow rate and auger speed. Results suggest that auger reactors, which are rarely described in literature, are well suited for bio-oil production. The reactor achieved liquid yields greater than 73 wt.%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Numerical modeling of turbulent swirling flow in a multi-inlet vortex nanoprecipitation reactor using dynamic DDES

    NASA Astrophysics Data System (ADS)

    Hill, James C.; Liu, Zhenping; Fox, Rodney O.; Passalacqua, Alberto; Olsen, Michael G.

    2015-11-01

    The multi-inlet vortex reactor (MIVR) has been developed to provide a platform for rapid mixing in the application of flash nanoprecipitation (FNP) for manufacturing functional nanoparticles. Unfortunately, commonly used RANS methods are unable to accurately model this complex swirling flow. Large eddy simulations have also been problematic, as expensive fine grids to accurately model the flow are required. These dilemmas led to the strategy of applying a Delayed Detached Eddy Simulation (DDES) method to the vortex reactor. In the current work, the turbulent swirling flow inside a scaled-up MIVR has been investigated by using a dynamic DDES model. In the DDES model, the eddy viscosity has a form similar to the Smagorinsky sub-grid viscosity in LES and allows the implementation of a dynamic procedure to determine its coefficient. The complex recirculating back flow near the reactor center has been successfully captured by using this dynamic DDES model. Moreover, the simulation results are found to agree with experimental data for mean velocity and Reynolds stresses.

  14. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    NASA Astrophysics Data System (ADS)

    Aji, Indarta Kuncoro; Waris, Abdul; Permana, Sidik

    2015-09-01

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF2-ThF4-233UF4 respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.

  15. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Dongqing; Chien Jen, Tien; Li, Tao

    2014-01-15

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domainmore » with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.« less

  16. Combustion Chemistry of Fuels: Quantitative Speciation Data Obtained from an Atmospheric High-temperature Flow Reactor with Coupled Molecular-beam Mass Spectrometer.

    PubMed

    Köhler, Markus; Oßwald, Patrick; Krueger, Dominik; Whitside, Ryan

    2018-02-19

    This manuscript describes a high-temperature flow reactor experiment coupled to the powerful molecular beam mass spectrometry (MBMS) technique. This flexible tool offers a detailed observation of chemical gas-phase kinetics in reacting flows under well-controlled conditions. The vast range of operating conditions available in a laminar flow reactor enables access to extraordinary combustion applications that are typically not achievable by flame experiments. These include rich conditions at high temperatures relevant for gasification processes, the peroxy chemistry governing the low temperature oxidation regime or investigations of complex technical fuels. The presented setup allows measurements of quantitative speciation data for reaction model validation of combustion, gasification and pyrolysis processes, while enabling a systematic general understanding of the reaction chemistry. Validation of kinetic reaction models is generally performed by investigating combustion processes of pure compounds. The flow reactor has been enhanced to be suitable for technical fuels (e.g. multi-component mixtures like Jet A-1) to allow for phenomenological analysis of occurring combustion intermediates like soot precursors or pollutants. The controlled and comparable boundary conditions provided by the experimental design allow for predictions of pollutant formation tendencies. Cold reactants are fed premixed into the reactor that are highly diluted (in around 99 vol% in Ar) in order to suppress self-sustaining combustion reactions. The laminar flowing reactant mixture passes through a known temperature field, while the gas composition is determined at the reactors exhaust as a function of the oven temperature. The flow reactor is operated at atmospheric pressures with temperatures up to 1,800 K. The measurements themselves are performed by decreasing the temperature monotonically at a rate of -200 K/h. With the sensitive MBMS technique, detailed speciation data is acquired and quantified for almost all chemical species in the reactive process, including radical species.

  17. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki, E-mail: szaki@fi.itba.c.id; Sekimoto, H., E-mail: hsekimot@gmail.com

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature canmore » be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.« less

  18. Flow characteristics of a pilot-scale high temperature, short time pasteurizer.

    PubMed

    Tomasula, P M; Kozempel, M F

    2004-09-01

    In this study, we present a method for determining the fastest moving particle (FMP) and residence time distribution (RTD) in a pilot-scale high temperature, short time (HTST) pasteurizer to ensure that laboratory or pilot-scale HTST apparatus meets the Pasteurized Milk Ordinance standards for pasteurization of milk and can be used for obtaining thermal inactivation data. The overall dimensions of the plate in the pasteurizer were 75 x 115 mm, with a thickness of 0.5 mm and effective diameter of 3.0 mm. The pasteurizer was equipped with nominal 21.5- and 52.2-s hold tubes, and flow capacity was variable from 0 to 20 L/h. Tracer studies were used to determine FMP times and RTD data to establish flow characteristics. Using brine milk as tracer, the FMP time for the short holding section was 18.6 s and for the long holding section was 36 s at 72 degrees C, compared with the nominal times of 21.5 and 52.2 s, respectively. The RTD study indicates that the short hold section was 45% back mixed and 55% plug flow for whole milk at 72 degrees C. The long hold section was 91% plug and 9% back mixed for whole milk at 72 degrees C. This study demonstrates that continuous laboratory and pilot-scale pasteurizers may be used to study inactivation of microorganisms only if the flow conditions in the holding tube are established for comparison with commercial HTST systems.

  19. Pressure regulator

    DOEpatents

    Ebeling, Jr., Robert W.; Weaver, Robert B.

    1979-01-01

    The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.

  20. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    PubMed

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

Top