A lead-halide perovskite molecular ferroelectric semiconductor
Liao, Wei-Qiang; Zhang, Yi; Hu, Chun-Li; Mao, Jiang-Gao; Ye, Heng-Yun; Li, Peng-Fei; Huang, Songping D.; Xiong, Ren-Gen
2015-01-01
Inorganic semiconductor ferroelectrics such as BiFeO3 have shown great potential in photovoltaic and other applications. Currently, semiconducting properties and the corresponding application in optoelectronic devices of hybrid organo-plumbate or stannate are a hot topic of academic research; more and more of such hybrids have been synthesized. Structurally, these hybrids are suitable for exploration of ferroelectricity. Therefore, the design of molecular ferroelectric semiconductors based on these hybrids provides a possibility to obtain new or high-performance semiconductor ferroelectrics. Here we investigated Pb-layered perovskites, and found the layer perovskite (benzylammonium)2PbCl4 is ferroelectric with semiconducting behaviours. It has a larger ferroelectric spontaneous polarization Ps=13 μC cm−2 and a higher Curie temperature Tc=438 K with a band gap of 3.65 eV. This finding throws light on the new properties of the hybrid organo-plumbate or stannate compounds and provides a new way to develop new semiconductor ferroelectrics. PMID:26021758
Thermoelectric Properties of Barium Plumbate Doped by Alkaline Earth Oxides
NASA Astrophysics Data System (ADS)
Eufrasio, Andreza; Bhatta, Rudra; Pegg, Ian; Dutta, Biprodas
Ceramic oxides are now being considered as a new class of thermoelectric materials because of their high stability at elevated temperatures. Such materials are especially suitable for use as prospective thermoelectric power generators because high temperatures are encountered in such operations. The present investigation uses barium plumbate (BaPbO3) as the starting material, the thermoelectric properties of which have been altered by judicious cation substitutions. BaPbO3 is known to exhibit metallic properties which may turn semiconducting as a result of compositional changes without precipitating a separate phase and/or altering the basic perovskite crystal structure. Perovskite structures are noted for their large interstitial spaces which can accommodate a large variety of ``impurity'' ions. As BaPbO3 has high electrical conductivity, σ = 2.43x105Ω-1 m-1 at room temperature, its thermopower, S, is relatively low, 23 μV/K, as expected. With a thermal conductivity, k, of 4.83Wm-1K-1, the figure of merit (ZT =S2 σ Tk-1) of BaPbO3 is only 0.01 at T = 300K. The objective of this investigation is to study the variation of thermoelectric properties of BaPbO3 as Ba and Pb ions are systematically substituted by alkaline earth ions.
Electrical and thermal transport in doped barium plumbate
NASA Astrophysics Data System (ADS)
Eufrasio, Andreza; Pegg, Ian; Dutta, Biprodas
Thermoelectric (TE) power is generated by utilizing a temperature differential created across a material. Such energy conversion takes place without the incorporation of any moving part and can often lead to substantial recovery of waste heat into useful electrical energy. Ceramic oxides have gained attention as a new class of TE materials because of their high stability at elevated temperatures, where higher conversion efficiencies are expected. The present investigation uses Barium plumbate (BaPbO3) as the starting material, the TE properties of which have been altered by reasonable cation substitutions. As BaPbO3 has high electrical conductivity, σ 1.1x105Ω-1 m-1at room temperature, its thermopower, S, is relatively low 21 μV/K. With a thermal conductivity, k, of 3.00W/m.K, the figure of merit (ZT =S2 σ Tk-1) of BaPbO3\\ is 0.01 at T = 300 K. BaPbO3\\ is a prospective TE material because it exhibits high electrical conductivity like metals. However, it exhibits remarkably low thermal conductivity, which renders it attractive TE qualities. The open perovskite structure of BaPbO3\\ allows it to accommodate a large variety of dopants in relatively large concentrations. This work investigates the variation of TE properties of BaPbO3\\ as Ba ions are systematically substituted by other cations.
Electrocatalysis for oxygen electrodes in fuel cells and water electrolyzers for space applications
NASA Technical Reports Server (NTRS)
Prakash, Jai; Tryk, Donald; Yeager, Ernest
1990-01-01
The lead ruthenate pyrochlore Pb2Ru2O6.5, in both high- and low-area forms, has been characterized using thermogravimetric analysis, X-ray photoelectron spectroscopy, X-ray diffraction, cyclic voltammetry, and O2 reduction and generation kinetic-mechanistic studies. Mechanisms are proposed. Compounds in which part of the Ru is substituted with Ir have also been prepared. They exhibit somewhat better performance for O2 reduction in porous, gas-fed electrodes than the unsubstituted compound. The anodic corrosion resistance of pyrochlore-based porous electrodes was improved by using two different anionically conducting polymer overlayers, which slow down the diffusion of ruthenate and plumbate out of the electrode. The O2 generation performance was improved with both types of electrodes. With a hydrogel overlayer, the O2 reduction performance was also improved.
Synthesis of BiPbSrCaCuO superconductor
Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.
1994-04-05
A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.
Synthesis of BiPbSrCaCuO superconductor
Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.
1994-01-01
A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.
Radiation-induced changes in electrical conductivity and structure of BaPbO3 after γ-irradiation
NASA Astrophysics Data System (ADS)
Shan, Qing; Cai, Pingkun; Zhang, Xinlei; Li, Jiatong; Chu, Shengnan; Jia, Wenbao
2015-11-01
Several barium plumbate (BaPbO3) solid samples, made from PbO and BaCO3 powder by chemistry liquid-phase coprecipitation, were investigated before and after γ-irradiation. The solid samples were irradiated by a 60Co γ-irradiation source whose dose rate is about 0.7 kGy per hour. The irradiation times were 0, 72, 144, 216, 288 and 360 h. Then, the four-probe method, X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to indicate the changes in electrical conductivity and microstructure of BaPbO3 after γ-irradiation. The XRD results indicated that the content of PbO was reduced as the irradiation dose was increased and eventually vanished from the surface of samples. However, there was no new obvious substance phase found from the XRD atlas. It seems that the PbO transformed into nearly amorphous Pb5O8. The conjecture could be proved by the results of annealing experiment and SEM. The XPS results seem to show that the microstructure of BaPbO3 was slightly changed.