Sample records for plutonium arsenides

  1. Experimental Studies of Lateral Electron Transport in Gallium Arsenide-Aluminum Gallium Arsenide Heterostructures.

    DTIC Science & Technology

    1982-12-01

    AD-A125 858 EXPERIMENTAL STUDIES OF LATERAL ELECTRON TRANSPORT IN 1/3 GALLIUM ARSENIDE-RL..(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB N R...EXPERIMENTAL STUDIES OF LATERALXILECTRON TRANSPORT ,:g IN GALLIUM ARSENIDE -ALUMINUM GALLIUM ARSENIDE- -HETEROSTRUCTURES APRVE O PUBLICRLEAS.DSRBUINULMTE. 2...EXPERIMENTAL STUDIES OF LATERAL ELECTRON TRANSPORT IN GALLIUM ARSENIDE-ALUMINUM GALLIUM ARSENIDE Technical Report R-975 HETEROSTRUCTURES 6. PERFORMING ONG

  2. Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells

    DTIC Science & Technology

    2015-07-01

    optical loss mechanism, which limits the efficiency of the PV device.1 Photon absorption needs to occur inside the solar cell active region (near the...Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver Approved for public release; distribution unlimited...Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver

  3. Optical and Electrical Characterization of Bulk Grown Indium-Gallium-Arsenide Alloys

    DTIC Science & Technology

    2010-03-01

    OPTICAL AND ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS THESIS...Government. AFIT/GAP/ENP/10-M02 OPTICAL AND ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS THESIS Presented to...ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS Austin C Bergstrom, BS 2 nd Lieutenant, USAF

  4. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  5. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  6. Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum Gallium Arsenide (AlGaAs) Double Heterostructures

    DTIC Science & Technology

    2015-09-01

    ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide...return it to the originator. ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative ...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum

  7. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  8. Patents and Licenses Through 1994,

    DTIC Science & Technology

    1994-01-01

    Chiang was employed at Honeywell Radiation Center, where she worked on mercury cadmium telluride (HgCdTe) and gallium phosphide photoconductive...5,251,225 Gallium Indium Arsenide Phosphide 4,258,375; 4,372,791; 4,718,070;4,722,092 Gallium Indium Arsenide Phosphide /Indium Phosphide ...Indirect-Gap Semiconductor 3,636,471 Indium Arsenide 2,990,259 Indium Gallium Arsenide 4,746,620 Indium Phosphide 2,990,259; 4,376,285

  9. Window structure for passivating solar cells based on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  10. Surface photovoltage spectroscopy applied to gallium arsenide surfaces

    NASA Technical Reports Server (NTRS)

    Bynik, C. E.

    1975-01-01

    The experimental and theoretical basis for surface photovoltage spectroscopy is outlined. Results of this technique applied to gallium arsenide surfaces, are reviewed and discussed. The results suggest that in gallium arsenide the surface voltage may be due to deep bulk impurity acceptor states that are pinned at the Fermi level at the surface. Establishment of the validity of this model will indicate the direction to proceed to increase the efficiency of gallium arsenide solar cells.

  11. Modelling of the modulation properties of arsenide and nitride VCSELs

    NASA Astrophysics Data System (ADS)

    Wasiak, Michał; Śpiewak, Patrycja; Moser, Philip; Gebski, Marcin; Schmeckebier, Holger; Sarzała, Robert P.; Lott, James A.

    2017-02-01

    In this paper, using our model of capacitance in vertical-cavity surface-emitting lasers (VCSELs), we analyze certain differences between an oxide-confined arsenide VCSEL emitting in the NIR region, and a nitride VCSEL emitting violet radiation. In the nitride laser its high differential resistance, caused partially by the low conductivity of p-type GaN material and the bottom contact configuration, is one of the main reasons why the nitride VCSEL has much worse modulation properties than the arsenide VCSEL. Using the complicated arsenide structure, we also analyze different possible ways of constructing the laser's equivalent circuit.

  12. Niobium-bearing arsenides and germanides from elemental mixtures not involving niobium: a new twist to an old problem in solid-state synthesis.

    PubMed

    Baranets, Sviatoslav; He, Hua; Bobev, Svilen

    2018-05-01

    Three isostructural transition-metal arsenides and germanides, namely niobium nickel arsenide, Nb 0.92(1) NiAs, niobium cobalt arsenide, NbCoAs, and niobium nickel germanide, NbNiGe, were obtained as inadvertent side products of high-temperature reactions in sealed niobium containers. In addition to reporting for the very first time the structures of the title compounds, refined from single-crystal X-ray diffraction data, this article also serves as a reminder that niobium containers may not be suitable for the synthesis of ternary arsenides and germanides by traditional high-temperature reactions. Synthetic work involving alkali or alkaline-earth metals, transition or early post-transition metals, and elements from groups 14 or 15 under such conditions may yield Nb-containing products, which at times could be the major products of such reactions.

  13. Electron emitting device and method of making the same

    DOEpatents

    Olsen, Gregory Hammond; Martinelli, Ramon Ubaldo; Ettenberg, Michael

    1977-04-19

    A substrate of single crystalline gallium arsenide has on a surface thereof a layer of single crystalline indium gallium phosphide. A layer of single crystalline gallium arsenide is on the indium gallium phosphide layer and a work function reducing material is on the gallium arsenide layer. The substrate has an opening therethrough exposing a portion of the indium gallium phosphide layer.

  14. Low temperature recombination and trapping analysis in high purity gallium arsenide by microwave photodielectric techniques

    NASA Technical Reports Server (NTRS)

    Khambaty, M. B.; Hartwig, W. H.

    1972-01-01

    Some physical theories pertinent to the measurement properties of gallium arsenide are presented and experimental data are analyzed. A model for explaining recombination and trapping high purity gallium arsenide, valid below 77 K is assembled from points made at various places and an appraisal is given of photodielectric techniques for material property studies.

  15. Whiskerless Schottky diode

    NASA Technical Reports Server (NTRS)

    Bishop, William L. (Inventor); Mcleod, Kathleen A. (Inventor); Mattauch, Robert J. (Inventor)

    1991-01-01

    A Schottky diode for millimeter and submillimeter wave applications is comprised of a multi-layered structure including active layers of gallium arsenide on a semi-insulating gallium arsenide substrate with first and second insulating layers of silicon dioxide on the active layers of gallium arsenide. An ohmic contact pad lays on the silicon dioxide layers. An anode is formed in a window which is in and through the silicon dioxide layers. An elongated contact finger extends from the pad to the anode and a trench, preferably a transverse channel or trench of predetermined width, is formed in the active layers of the diode structure under the contact finger. The channel extends through the active layers to or substantially to the interface of the semi-insulating gallium arsenide substrate and the adjacent gallium arsenide layer which constitutes a buffer layer. Such a structure minimizes the effect of the major source of shunt capacitance by interrupting the current path between the conductive layers beneath the anode contact pad and the ohmic contact. Other embodiments of the diode may substitute various insulating or semi-insulating materials for the silicon dioxide, various semi-conductors for the active layers of gallium arsenide, and other materials for the substrate, which may be insulating or semi-insulating.

  16. Bit-systolic arithmetic arrays using dynamic differential gallium arsenide circuits

    NASA Technical Reports Server (NTRS)

    Beagles, Grant; Winters, Kel; Eldin, A. G.

    1992-01-01

    A new family of gallium arsenide circuits for fine grained bit-systolic arithmetic arrays is introduced. This scheme combines features of two recent techniques of dynamic gallium arsenide FET logic and differential dynamic single-clock CMOS logic. The resulting circuits are fast and compact, with tightly constrained series FET propagation paths, low fanout, no dc power dissipation, and depletion FET implementation without level shifting diodes.

  17. Defense Industrial Base Assessment: U.S. Imaging and Sensors Industry

    DTIC Science & Technology

    2006-10-01

    uncooled devices, but provide much higher resolution. The semiconductor material used in the detector is typically mercury cadmium telluride (HgCdTe...The material principally used in the arrays was mercury cadmium telluride (HgCdTe). Generation 2 detectors significantly improved the signal-to...Silicide (PtSi), Gallium Arsenide (GaAs), Aluminum Gallium Arsenide (AlGaAs), Mercury Cadmium Telluride (HgCdTe), Indium Gallium Arsenide (InGaAs

  18. The 13.9 GHz short pulse radar noise figure measurements utilizing silicon and gallium-arsenide mixer diodes

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.

    1977-01-01

    An analysis was made on two commercially available silicon and gallium arsenide Schottky barrier diodes. These diodes were selected because of their particularly low noise figure in the frequency range of interest. The specified noise figure for the silicon and gallium arsenide diodes were 6.3 db and 5.3 db respectively when functioning as mixers in the 13.6 GHz region with optimum local oscillator drive.

  19. System OptimizatIon of the Glow Discharge Optical Spectroscopy Technique Used for Impurity Profiling of ION Implanted Gallium Arsenide.

    DTIC Science & Technology

    1980-12-01

    AFIT/GEO/EE/80D-1 I -’ SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ...EE/80D-1 (\\) SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ARSENIDE...semiconductors, specifically annealed and unan- nealed ion implanted gallium arsenide (GaAs). Methods to improve the sensitivity of the GDOS system have

  20. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Joslin, D.; Garlick, J.; Lillington, D.; Gillanders, M.; Cavicchi, B.; Scott-Monck, J.; Kachare, R.; Anspaugh, B.

    1987-01-01

    High efficiency liquid phase epitaxy (LPE) gallium arsenide cells were irradiated with 1 Mev electrons up to fluences of 1 times 10 to the 16th power cm-2. Measurements of spectral response and dark and illuminated I-V data were made at each fluence and then, using computer codes, the experimental data was fitted to gallium arsenide cell models. In this way it was possible to determine the extent of the damage, and hence damage coefficients in both the emitter and base of the cell.

  1. A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials

    NASA Technical Reports Server (NTRS)

    Hurley, John S.

    1990-01-01

    Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor.

  2. The Growth of Expitaxial GaAs and GaAlAs on Silicon Substrates by OMVPE

    DTIC Science & Technology

    1988-08-01

    structures have been grown on semi-insulating gallium arsenide substrates, and on high-resistivity silicon substrates using a two stage growth technique...fully in Quarter 9. 2. MATERIALS GROWTH 2.1 DOPING OF GALLIUM ARSENIDE FOR FETs As reported in quarter 7, doping levels for GaAs/SI 4ere found to be a...FET structures on both GaAs and Si substrates. A number of FET layers have been grown to the GAT4 specification on semi-insulating gallium arsenide

  3. Computer simulation of radiation damage in gallium arsenide

    NASA Technical Reports Server (NTRS)

    Stith, John J.; Davenport, James C.; Copeland, Randolph L.

    1989-01-01

    A version of the binary-collision simulation code MARLOWE was used to study the spatial characteristics of radiation damage in proton and electron irradiated gallium arsenide. Comparisons made with the experimental results proved to be encouraging.

  4. Polarized electron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prepost, R.

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized sourcemore » are presented.« less

  5. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    NASA Technical Reports Server (NTRS)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  6. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  7. On the local injection of emitted electrons into micrograins on the surface of A{sup III}–B{sup V} semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, N. D., E-mail: ndzhukov@rambler.ru; Glukhovskoi, E. G.; Khazanov, A. A.

    2016-06-15

    The characteristics of the injection of electrons into a semiconductor from a microprobe–micrograin nanogap are investigated with a tunneling microscope in the mode of field emission into locally selected surface microcrystals of indium antimonide, indium arsenide, and gallium arsenide. The current mechanisms are established and their parameters are determined by comparing the experimental I–V characteristics and those calculated from formulas of current transport. The effect of limitation of the current into the micrograins of indium antimonide and indium arsenide which manifests itself at injection levels exceeding a certain critical value, e.g., 6 × 10{sup 16} cm{sup –3} for indium antimonidemore » and 4 × 10{sup 17} cm{sup –3} for indium arsenide, is discovered. A physical model, i.e., the localization of electrons in the surface area of a micrograin due to their Coulomb interaction, is proposed.« less

  8. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    DTIC Science & Technology

    2007-06-01

    models is of great interest in space applications. By increasing the efficiency of photovoltaics, the number of solar panels is decreased. Therefore...obtained in single-junction solar cells by using Gallium Arsenide. Monocrystalline Gallium Arsenide has a maximum efficiency of approximately 25.1% [10

  9. Particle-Based Simulations of Microscopic Thermal Properties of Confined Systems

    DTIC Science & Technology

    2014-11-01

    velocity versus electric field in gallium arsenide (GaAs) computed with the original CMC table structure (squares) at temperature T=150K, and the new...computer-aided design Cellular Monte Carlo Ensemble Monte Carlo gallium arsenide Heat Transport Equation DARPA Defense Advanced Research Projects

  10. Characterization of solar cells for space applications. Volume 13: Electrical characteristics of Hughes LPE gallium arsenide solar cells as a function of intensity and temperature

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1980-01-01

    Electrical characteristics of Hughes Liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature.

  11. Design of a Voltage Tunable Broadband Quantum Well Infrared Photodetector

    DTIC Science & Technology

    2002-06-01

    1 B. PROGRESS OF QWIPS ...converting some of the incident photons to an electric signal. A Quantum Well Infrared Photodetector ( QWIP ) consists of a stack of quantum wells...arsenide (GaAs ) and aluminum gallium arsenide ( AsGaAl xx −1 ) with different aluminum compositions allowed the fabrication of novel QWIP detectors

  12. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    NASA Technical Reports Server (NTRS)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  13. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    NASA Technical Reports Server (NTRS)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  14. Etching and Growth of GaAs

    NASA Technical Reports Server (NTRS)

    Seabaugh, A. C.; Mattauch, R., J.

    1983-01-01

    In-place process for etching and growth of gallium arsenide calls for presaturation of etch and growth melts by arsenic source crystal. Procedure allows precise control of thickness of etch and newly grown layer on substrate. Etching and deposition setup is expected to simplify processing and improve characteristics of gallium arsenide lasers, high-frequency amplifiers, and advanced integrated circuits.

  15. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators.

    PubMed

    Hamoumi, M; Allain, P E; Hease, W; Gil-Santos, E; Morgenroth, L; Gérard, B; Lemaître, A; Leo, G; Favero, I

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300  MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  16. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators

    NASA Astrophysics Data System (ADS)

    Hamoumi, M.; Allain, P. E.; Hease, W.; Gil-Santos, E.; Morgenroth, L.; Gérard, B.; Lemaître, A.; Leo, G.; Favero, I.

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz ) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  17. Assessment of arsenic exposures and controls in gallium arsenide production.

    PubMed

    Sheehy, J W; Jones, J H

    1993-02-01

    The electronics industry is expanding the use of gallium arsenide in the production of optoelectronic devices and integrated circuits. Workers in the electronics industry using gallium arsenide are exposed to hazardous substances such as arsenic, arsine, and various acids. Arsenic requires stringent controls to minimize exposures (the current OSHA PEL for arsenic is 10 micrograms/m3 and the NIOSH REL is 2 micrograms/m3 ceiling). Inorganic arsenic is strongly implicated in respiratory tract and skin cancer. For these reasons, NIOSH researchers conducted a study of control systems for facilities using gallium arsenide. Seven walk-through surveys were performed to identify locations for detailed study which appeared to have effective controls; three facilities were chosen for in-depth evaluation. The controls were evaluated by industrial hygiene sampling. Including personal breathing zone and area air sampling for arsenic and arsine; wipe samples for arsenic also were collected. Work practices and the use of personal protective equipment were documented. This paper reports on the controls and the arsenic exposure results from the evaluation of the following gallium arsenide processes: Liquid Encapsulated Czochralski (LEC) and Horizontal Bridgeman (HB) crystal growing, LEC cleaning operations, ingot grinding/wafer sawing, and epitaxy. Results at one plant showed that in all processes except epitaxy, average arsenic exposures were at or above the OSHA action level of 5 micrograms/m3. While cleaning the LEC crystal pullers, the average potential arsenic exposure of the cleaning operators was 100 times the OSHA PEL. At the other two plants, personal exposures for arsenic were well controlled in LEC, LEC cleaning, grinding/sawing, and epitaxy operations.

  18. Wafer-Fused Orientation-Patterned GaAs

    DTIC Science & Technology

    2008-02-13

    frequencies utilizing existing industrial foundries. 15. SUBJECT TERMS Orientation-patterned Gallium Arsenide, hydride vapor phase epitaxy, quasi-phase... Gallium Arsenide, hydride vapor phase epitaxy, quasi-phase-matching, nonlinear frequency conversion 1. INTRODUCTION Quasi-phase-matching (QPM)1...and E. Lallier, “Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy

  19. Temporal switching jitter in photoconductive switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GAUDET,JOHN A.; SKIPPER,MICHAEL C.; ABDALLA,MICHAEL D.

    This paper reports on a recent comparison made between the Air Force Research Laboratory (AFRL) gallium arsenide, optically-triggered switch test configuration and the Sandia National Laboratories (SNL) gallium arsenide, optically-triggered switch test configuration. The purpose of these measurements was to compare the temporal switch jitter times. It is found that the optical trigger laser characteristics are dominant in determining the PCSS jitter.

  20. Skylab experiment performance evaluation manual. Appendix J: Experiment M555 gallium arsenide single crystal growth (MSFC)

    NASA Technical Reports Server (NTRS)

    Byers, M. S.

    1973-01-01

    Analyses for Experiment M555, Gallium Arsenide Single Crystal Growth (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.

  1. Study of multi-kW solar arrays for Earth orbit application

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Planar and concentrator solar array configurations based on silicon and gallium arsenide solar cells were conceptualized and on-orbit maintainability was addressed. Four basic categories emerged: (1) planar (non concentrated) with silicon cells, (2) low-CR (concentration ratio = 3.4) with silicon cells, (3) low-CR with GaAs, and (4) high-CR (concentration ratio = 62.5) with GaAs. A very high-CR (concentration ratio = 200) was investigated but rejected on thermal grounds. Nonrecurring and recurring cost elements for each of the four concepts selected were compared over a 15 year life cycle. Under conditions where the gallium arsenide cells can be produced for less than $25 per 2 x 2 cm, the low CR concentrator emerges as the most cost effective configuration. However, the producibility risk remains higher on the gallium arsenide cell.

  2. Doped Aluminum Gallium Arsenide (AlGaAs)/Gallium Arsenide (GaAs) Photoconductive Semiconductor Switch (PCSS) Fabrication

    DTIC Science & Technology

    2016-09-27

    contact regions and epitaxial capping layer are fabricated to investigate the advantages of both approaches. Devices were fabricated with various... Contacts 7 2.5 Packaging 11 3. Conclusions 12 4. References 13 Appendix. Detailed Fabrication Process 15 List of Symbols, Abbreviations, and...regions in violet (overlaying previous patterns) .......7 Fig. 6 Mask 4: intrinsic device contact window regions in orange (overlaying previous

  3. Performance of a Medipix3RX spectroscopic pixel detector with a high resistivity gallium arsenide sensor.

    PubMed

    Hamann, Elias; Koenig, Thomas; Zuber, Marcus; Cecilia, Angelica; Tyazhev, Anton; Tolbanov, Oleg; Procz, Simon; Fauler, Alex; Baumbach, Tilo; Fiederle, Michael

    2015-03-01

    High resistivity gallium arsenide is considered a suitable sensor material for spectroscopic X-ray imaging detectors. These sensors typically have thicknesses between a few hundred μm and 1 mm to ensure a high photon detection efficiency. However, for small pixel sizes down to several tens of μm, an effect called charge sharing reduces a detector's spectroscopic performance. The recently developed Medipix3RX readout chip overcomes this limitation by implementing a charge summing circuit, which allows the reconstruction of the full energy information of a photon interaction in a single pixel. In this work, we present the characterization of the first Medipix3RX detector assembly with a 500 μm thick high resistivity, chromium compensated gallium arsenide sensor. We analyze its properties and demonstrate the functionality of the charge summing mode by means of energy response functions recorded at a synchrotron. Furthermore, the imaging properties of the detector, in terms of its modulation transfer functions and signal-to-noise ratios, are investigated. After more than one decade of attempts to establish gallium arsenide as a sensor material for photon counting detectors, our results represent a breakthrough in obtaining detector-grade material. The sensor we introduce is therefore suitable for high resolution X-ray imaging applications.

  4. Electro-optical characterization of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.; Dunham, Glen; Addis, F. W.; Huber, Dan; Daling, Dave

    1987-01-01

    The electro-optical characterization of gallium arsenide p/n solar cells is discussed. The objective is to identify and understand basic mechanisms which limit the performance of high efficiency gallium arsenide solar cells. The approach involves conducting photoresponse and temperature dependent current-voltage measurements, and interpretation of the data in terms of theory to determine key device parameters. Depth concentration profiles are also utilized in formulating a model to explain device performance.

  5. Characterization of solar cells for space applications. Volume 14: Electrical characteristics of Hughes liquid phase epitaxy gallium arsenide solar cells as a function of intensity, temperature and irradiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1981-01-01

    Electrical characteristics of liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. The solar cells were exposed to 1 MeV electron fluences of, respectively, 0, one hundred trillion, one quadrillion, and ten quadrillion e/sq cm.

  6. Electroluminescence Studies on Longwavelength Indium Arsenide Quantum Dot Microcavities Grown on Gallium Arsenide

    DTIC Science & Technology

    2011-12-01

    communication links using VCSEL arrays [1, 2], medical imaging using super luminescent diodes [3], and tunable lasers capable of remotely sensing...increase the efficiency of solar cells [6, 7, 8], vastly improve photo detector sensitivity [9], and provide optical memory storage densities predicted...semiconductor lasers” Applied Physics B: Lasers and Optics, Volume 90, Number 2, 2008, Pages 339-343. 6. Nozik, A.J. “Quantum dot solar cells

  7. Electrically Driven Photonic Crystal Nanocavity Devices

    DTIC Science & Technology

    2012-01-01

    material, here gallium arsenide and indium arsenide self- assembled quantum dots (QDs). QDs are preferred for the gain medium because they can have...blue points ) and 150 K (green points ). The black lines are linear fits to the above threshold output power of the lasers, which are used to find the...SHAMBAT et al.: ELECTRICALLY DRIVEN PHOTONIC CRYSTAL NANOCAVITY DEVICES 1707 Fig. 13. (a) Tilted SEM picture of a fabricated triple cavity device. The in

  8. Space-based solar power conversion and delivery systems study. Volume 4: Energy conversion systems studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Solar cells and optical configurations for the SSPS were examined. In this task, three specific solar cell materials were examined: single crystal silicon, single crystal gallium arsenide, and polycrystalline cadmium sulfide. The comparison of the three different cells on the basis of a subsystem parametric cost per kW of SSPS-generated power at the terrestrial utility interface showed that gallium arsenide was the most promising solar cell material at high concentration ratios. The most promising solar cell material with no concentration, was dependent upon the particular combination of parameters representing cost, mass and performance that were chosen to represent each cell in this deterministic comparative analysis. The potential for mass production, based on the projections of the present state-of-the-art would tend to favor cadmium sulfide in lieu of single crystal silicon or gallium arsenide solar cells.

  9. In-plane electronic anisotropy of underdoped '122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals

    NASA Astrophysics Data System (ADS)

    Fisher, I. R.; Degiorgi, L.; Shen, Z. X.

    2011-12-01

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Néel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.

  10. Solubility of platinum-arsenide melt and sperrylite in synthetic basalt at 0.1 MPa and 1200 °C with implications for arsenic speciation and platinum sequestration in mafic igneous systems

    NASA Astrophysics Data System (ADS)

    Canali, A. C.; Brenan, J. M.; Sullivan, N. A.

    2017-11-01

    To better understand the Pt-As association in natural magmas, experiments were done at 1200 °C and 0.1 MPa to measure the solubility of Pt and Pt-arsenide phases (melt and sperrylite, PtAs2), as well as to determine the oxidation state, and identify evidence for Pt-As complexing, in molten silicate. Samples consisting of synthetic basalt contained in chromite crucibles were subject to three experimental procedures. In the first, platinum solubility in the synthetic basalt was determined without added arsenic by equilibrating the sample with a platinum source (embedded wire or bead) in a gas-mixing furnace. In the second, the sample plus a Pt-arsenide source was equilibrated in a vacuum-sealed fused quartz tube containing a solid-oxide oxygen buffer. The third approach involved two steps: first equilibrating the sample in a gas-mixing furnace, then with added arsenide melt in a sealed quartz tube. Oxygen fugacity was estimated in the latter step using chromite/melt partitioning of vanadium. Method two experiments done at high initial arsenic activity (PtAs melt + PtAs2), showed significant loss of arsenic from the sample, the result of vapour transfer to newly-formed arsenide phases in the buffer. Method three experiments showed no loss of arsenic, yielding a uniform final distribution in the sample. Analyses of run-product glasses from experiments which did not show arsenic loss reveal significant increase in arsenic concentrations with fO2, varying from ∼10 ppm (FMQ-3.25) to >10,000 ppm (FMQ + 5.5). Despite very high arsenic loadings (>1000 ppm), the solubility of Pt is similar in arsenic-bearing and arsenic-free glasses. The variation in arsenic solubility with fO2 shows a linear relationship, that when corrected for the change in the activity of dissolved arsenic with the melt ferric/ferrous ratio, yields a solubility-fO2 relationship consistent with As3+ as the dissolved species. This result is confirmed by X-ray absorption near edge structure (XANES) determination on run-product glasses. Levels of arsenic required for Pt-arsenide saturation are 50-500 ppm over the fO2 range of most terrestrial basalts (FMQ to FMQ-2), >100× higher than the arsenic concentrations typical of such magmas, indicating significant enrichment of arsenic is required if Pt-arsenide saturation is to occur. In contrast, the level of dissolved Pt required to saturate in sperrylite is >8× lower than for pure Pt, suggesting that arsenic enrichment could lead to Pt removal at concentrations much less than required for pure metal saturation.

  11. CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Fried, S.; Davidson, N.R.

    1957-09-10

    A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

  12. Quaternary rare-earth arsenides REAg{sub 1−x}Zn{sub y}As{sub 2} (RE=La–Nd, Sm, Gd–Dy) with tetragonal SrZnBi{sub 2}- and HfCuSi{sub 2}-type structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, Krishna K.; Genet, Clément; Mar, Arthur, E-mail: arthur.mar@ualberta.ca

    2015-11-15

    Reactions of the elements at 800 °C with the nominal compositions REAg{sub 1−x}Zn{sub x}As{sub 2} resulted in quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2} in which the combined Ag and Zn content deviates increasingly from unity in the Zn-richer phases, reflecting the transition from the fully stoichiometric ternary silver-containing arsenides REAgAs{sub 2} to the substoichiometric zinc-containing ones REZn{sub 0.67}As{sub 2}. Powder X-ray diffraction analysis indicated SrZnBi{sub 2}-type (space group I4/mmm, Z=4; RE=La, Ce) and HfCuSi{sub 2}-type structures (space group P4/nmm, Z=2; RE=Pr, Nd, Sm, Gd, Tb, Dy). Single-crystal X-ray diffraction analysis performed on LaAg{sub 0.5}Zn{sub 0.5}As{sub 2}, PrAg{sub 0.5}Zn{sub 0.5}As{sub 2},more » and NdAg{sub 0.5}Zn{sub 0.5}As{sub 2} indicated that the Ag and Zn atoms are disordered within metal-centred tetrahedra and provided no evidence for distortion of the square As nets. The small electron excess tolerated in these quaternary arsenides and the absence of distortion in the square nets can be traced to the occurrence of As–As states that are only weakly antibonding near the Fermi level. PrAg{sub 0.5}Zn{sub 0.5}As{sub 2} and NdAg{sub 0.5}Zn{sub 0.5}As{sub 2} are paramagnetic with effective magnetic moments consistent with trivalent RE species. - Graphical abstract: On proceeding from fully stoichiometric REAgAs{sub 2} to substoichiometric REZn{sub 0.67}As{sub 2}, deficiencies in Zn content become increasingly prominent in quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2}. - Highlights: • Ag and Zn atoms are disordered within quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2}. • In Zn-richer phases, Zn deficiencies develop to counteract electron excess. • Distortions of square As net appear to be suppressed.« less

  13. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  14. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  15. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOEpatents

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  16. Microwave Semiconductor Research - Materials, Devices and Circuits and Gallium Arsenide Ballistic Electron Transistors.

    DTIC Science & Technology

    1985-04-01

    activation energies than previously possible. Electron traps and hole traps with energies less than 50 meV were observed for the first time in GaAs...developed in our laboratory to photoexcite electrons in a given energy range in the conduction band and then measure the relaxation of these carriers...limitations on the electron energy may be required. CURRENT AND FUTURE EFFORTS The possibility of ballistic electron transport in gallium arsenide has been

  17. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  18. Structural investigation of the C-O complex in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alt, H. Ch.; Kersch, A.; Wagner, H. E.

    A carbon-oxygen complex occurring in gallium arsenide crystals after annealing at around 700 °C is studied. Fourier transform infrared absorption measurements on the associated vibrational band at 2060 cm-1 under uniaxial stress reveal that the center has tetragonal symmetry. From the intensity of the {sup 18}O-related satellite band it is concluded that four oxygen atoms are involved. Ab initio local density calculations show that a tetragonal CO{sub 4} molecule forms a stable entity in the gallium arsenide lattice.

  19. Probing/Manipulating the Interfacial Atomic Bonding between High k Dielectrics and InGaAs for Ultimate CMOS

    DTIC Science & Technology

    2015-04-24

    region of n-In0.53Ga0.47As MOSCAP. 15. SUBJECT TERMS CMOS, Magneto-optical imaging , Nanotechnology, Indium Gallium Arsenide 16...Nanotechnology, Indium Gallium Arsenide 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 11 19a...more accessible to water vapor than it is in the complete TEMAHf molecule. There it is surrounded by 8 aliphatic methyl and ethyl groups with a total of

  20. An advanced space photovoltaic concentrator array using Fresnel lenses, gallium arsenide cells, and prismatic cell covers

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1988-01-01

    The current status of a space concentrator array which uses refractive optics, gallium arsenide cells, and prismatic cell covers to achieve excellent performance at a very low array mass is documented. The prismatically covered cells have established records for space cell performance (24.2 percent efficient at 100 AM0 suns and 25 C) and terrestrial single-junction cell performance (29.3 percent efficient at 200 AM1.5 suns and 25 C).

  1. 31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, A MAN-MADE SUBSTANCE, WAS RARE. SCRAPS RESULTING FROM PRODUCTION AND PLUTONIUM RECOVERED FROM RETIRED NUCLEAR WEAPONS WERE REPROCESSED INTO VALUABLE PURE-PLUTONIUM METAL (9/19/73). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  2. Solvent extraction system for plutonium colloids and other oxide nano-particles

    DOEpatents

    Soderholm, Lynda; Wilson, Richard E; Chiarizia, Renato; Skanthakumar, Suntharalingam

    2014-06-03

    The invention provides a method for extracting plutonium from spent nuclear fuel, the method comprising supplying plutonium in a first aqueous phase; contacting the plutonium aqueous phase with a mixture of a dielectric and a moiety having a first acidity so as to allow the plutonium to substantially extract into the mixture; and contacting the extracted plutonium with second a aqueous phase, wherein the second aqueous phase has a second acidity higher than the first acidity, so as to allow the extracted plutonium to extract into the second aqueous phase. The invented method facilitates isolation of plutonium polymer without the formation of crud or unwanted emulsions.

  3. SEPARATION OF PLUTONIUM

    DOEpatents

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  4. Effect of Americium-241 Content on Plutonium Radiation Source Terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainisch, R.

    1998-12-28

    The management of excess plutonium by the US Department of Energy includes a number of storage and disposition alternatives. Savannah River Site (SRS) is supporting DOE with plutonium disposition efforts, including the immobilization of certain plutonium materials in a borosilicate glass matrix. Surplus plutonium inventories slated for vitrification include materials with elevated levels of Americium-241. The Am-241 content of plutonium materials generally reflects in-growth of the isotope due to decay of plutonium and is age-dependent. However, select plutonium inventories have Am-241 levels considerably above the age-based levels. Elevated levels of americium significantly impact radiation source terms of plutonium materials andmore » will make handling of the materials more difficult. Plutonium materials are normally handled in shielded glove boxes, and the work entails both extremity and whole body exposures. This paper reports results of an SRS analysis of plutonium materials source terms vs. the Americium-241 content of the materials. Data with respect to dependence and magnitude of source terms on/vs. Am-241 levels are presented and discussed. The investigation encompasses both vitrified and un-vitrified plutonium oxide (PuO2) batches.« less

  5. Integrating the stabilization of nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, H.F.

    1996-05-01

    In response to Recommendation 94-1 of the Defense Nuclear Facilities Safety Board, the Department of Energy committed to stabilizing specific nuclear materials within 3 and 8 years. These efforts are underway. The Department has already repackaged the plutonium at Rocky Flats and metal turnings at Savannah River that had been in contact with plastic. As this effort proceeds, we begin to look at activities beyond stabilization and prepare for the final disposition of these materials. To describe the plutonium materials being stabilize, Figure 1 illustrates the quantities of plutonium in various forms that will be stabilized. Plutonium as metal comprisesmore » 8.5 metric tons. Plutonium oxide contains 5.5 metric tons of plutonium. Plutonium residues and solutions, together, contain 7 metric tons of plutonium. Figure 2 shows the quantity of plutonium-bearing material in these four categories. In this depiction, 200 metric tons of plutonium residues and 400 metric tons of solutions containing plutonium constitute most of the material in the stabilization program. So, it is not surprising that much of the work in stabilization is directed toward the residues and solutions, even though they contain less of the plutonium.« less

  6. Testing of gallium arsenide solar cells on the CRRES vehicle

    NASA Technical Reports Server (NTRS)

    Trumble, T. M.

    1985-01-01

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage.

  7. [Combined use of various laser radiations in thoracic surgery in experimental studies].

    PubMed

    Ismailov, D A; Khoroshaev, V A; Shishkin, M A; Baĭbekov, I M

    1993-01-01

    The impact of various types of low-intensive lasers (He-Ne, copper vapour, ultraviolet, infrared, infrared gallium arsenide) on healing of a wound made by CO2 laser at an output power of 25 W was studied in an experiment on 120 albino Wistar rats. It was found that a concurrent application of high- and low-intensive lasers resulted in acceleration of reparative processes in the lung, stimulating the healing of laser-induced wounds. The infrared gallium arsenide laser was demonstrated to be the best tool in stimulating the healing process.

  8. Development of gallium arsenide high-speed, low-power serial parallel interface modules: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Final report to NASA LeRC on the development of gallium arsenide (GaAS) high-speed, low power serial/parallel interface modules. The report discusses the development and test of a family of 16, 32 and 64 bit parallel to serial and serial to parallel integrated circuits using a self aligned gate MESFET technology developed at the Honeywell Sensors and Signal Processing Laboratory. Lab testing demonstrated 1.3 GHz clock rates at a power of 300 mW. This work was accomplished under contract number NAS3-24676.

  9. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  10. Study of the structure of a thin aluminum layer on the vicinal surface of a gallium arsenide substrate by high-resolution electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovygin, M. V., E-mail: lemi@miee.ru; Borgardt, N. I.; Seibt, M.

    2015-12-15

    The results of electron-microscopy studies of a thin epitaxial aluminum layer deposited onto a misoriented gallium-arsenide substrate are reported. It is established that the layer consists of differently oriented grains, whose crystal lattices are coherently conjugated with the substrate with the formation of misfit dislocations, as in the case of a layer on a singular substrate. Atomic steps on the substrate surface are visualized, and their influence on the growth of aluminum crystal grains is discussed.

  11. Ca4As3 – a new binary calcium arsenide

    PubMed Central

    Hoffmann, Andrea V.; Hlukhyy, Viktor; Fässler, Thomas F.

    2015-01-01

    The crystal structure of the binary compound tetra­calcium triarsenide, Ca4As3, was investigated by single-crystal X-ray diffraction. Ca4As3 crystallizes in the Ba4P3 structure type and is thus a homologue of isotypic Sr4As3. The unit cell contains 32 Ca2+ cations, 16 As3− isolated anions and four centrosymmetric [As2]4– dumbbells. The As atoms in each of the dumbbells are connected by a single bond, thus this calcium arsenide is a Zintl phase. PMID:26870427

  12. Gallium-arsenide process evaluation based on a RISC microprocessor example

    NASA Astrophysics Data System (ADS)

    Brown, Richard B.; Upton, Michael; Chandna, Ajay; Huff, Thomas R.; Mudge, Trevor N.; Oettel, Richard E.

    1993-10-01

    This work evaluates the features of a gallium-arsenide E/D MESFET process in which a 32-b RISC microprocessor was implemented. The design methodology and architecture of this prototype CPU are described. The performance sensitivity of the microprocessor and other large circuit blocks to different process parameters is analyzed, and recommendations for future process features, circuit approaches, and layout styles are made. These recommendations are reflected in the design of a second microprocessor using a more advanced process that achieves much higher density and performance.

  13. Thermoelectric properties of cerium monopnictides

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Alexander, M. N.; Wood, C.; Lockwood, R. A.; Vandersande, J. W.

    1987-01-01

    Several cerium pnictides have been synthesized from the pure elements and hot pressed into test samples. Measurements of Seebeck coefficients and electrical resistivities were performed on these samples from room temperature to 1000 C. Cerium arsenide and cerium antimonide are n-type; cerium nitride changes from p-type to n-type conduction at 800 C. The materials are semimetals with resistivities below 1 mohm/cm. Cerium arsenide is the most favorable of the pnictides studied for high-temperature thermoelectric energy conversion, with an average power factor of 15 microW/cm K sq from 500 to 1000 C.

  14. Measured thermal images of a gallium arsenide power MMIC with and without RF applied to the input

    NASA Astrophysics Data System (ADS)

    Oxley, C. H.; Coaker, B. M.; Priestley, N. E.

    2003-04-01

    A gallium arsenide microwave monolithic integrated circuit (MMIC) power amplifier (M/ACom type MAAM71100) has been measured using infra-red microscope technology, with and without the application of a RF input signal. A reduction of approximately 10 °C in chip temperature was observed with the application of a RF input signal, which will influence the MTTF of the chip. Further, the measurement technique may be used to monitor the thermal impedance and dynamic cooling of RF power devices under operational conditions in complex circuits.

  15. Method for dissolving plutonium dioxide

    DOEpatents

    Tallent, Othar K.

    1978-01-01

    The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

  16. METHOD FOR OBTAINING PLUTONIUM METAL AND ALLOYS OF PLUTONIUM FROM PLUTONIUM TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-11-13

    A process is given for both reducing plutonium trichloride to plutonium metal using cerium as the reductant and simultaneously alloying such plutonium metal with an excess of cerium or cerium and cobalt sufficient to yield the desired nuclear reactor fuel composition. The process is conducted at a temperature from about 550 to 775 deg C, at atmospheric pressure, without the use of booster reactants, and a substantial decontamination is effected in the product alloy of any rare earths which may be associated with the source of the plutonium. (AEC)

  17. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-02-01

    Plutonium hexafluoride is a satisfactory fluorinating agent and may be reacted with various materials capable of forming fluorides, such as copper, iron, zinc, etc., with consequent formation of the metal fluoride and reduction of the plutonium to the form of a lower fluoride. In accordance with the present invention, it has been found that the reactivity of plutonium hexafluoride with other fluoridizable materials is so great that the process may be used as a method of separating plutonium from mixures containing plutonium hexafluoride and other vaporized fluorides even though the plutonium is present in but minute quantities. This process may be carried out by treating a mixture of fluoride vapors comprising plutonium hexafluoride and fluoride of uranium to selectively reduce the plutonium hexafluoride and convert it to a less volatile fluoride, and then recovering said less volatile fluoride from the vapor by condensation.

  18. ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Boyd, G.E.

    1960-06-28

    A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

  19. PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM

    DOEpatents

    Fried, S.; Baumbach, H.L.

    1959-12-01

    A process is described for forming plutonlum hydride powder by reacting hydrogen with massive plutonium metal at room temperature and the product obtained. The plutonium hydride powder can be converted to plutonium powder by heating to above 200 deg C.

  20. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Jones, Susan A.

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used tomore » recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.« less

  1. Plutonium-related work and cause-specific mortality at the United States Department of Energy Hanford Site.

    PubMed

    Wing, Steve; Richardson, David; Wolf, Susanne; Mihlan, Gary

    2004-02-01

    Health effects of working with plutonium remain unclear. Plutonium workers at the United States Department of Energy (US-DOE) Hanford Site in Washington State, USA were evaluated for increased risks of cancer and non-cancer mortality. Periods of employment in jobs with routine or non-routine potential for plutonium exposure were identified for 26,389 workers hired between 1944 and 1978. Life table regression was used to examine associations of length of employment in plutonium jobs with confirmed plutonium deposition and with cause specific mortality through 1994. Incidence of confirmed internal plutonium deposition in all plutonium workers was 15.4 times greater than in other Hanford jobs. Plutonium workers had low death rates compared to other workers, particularly for cancer causes. Mortality for several causes was positively associated with length of employment in routine plutonium jobs, especially for employment at older ages. At ages 50 and above, death rates for non-external causes of death, all cancers, cancers of tissues where plutonium deposits, and lung cancer, increased 2.0 +/- 1.1%, 2.6 +/- 2.0%, 4.9 +/- 3.3%, and 7.1 +/- 3.4% (+/-SE) per year of employment in routine plutonium jobs, respectively. Workers employed in jobs with routine potential for plutonium exposure have low mortality rates compared to other Hanford workers even with adjustment for demographic, socioeconomic, and employment factors. This may be due, in part, to medical screening. Associations between duration of employment in jobs with routine potential for plutonium exposure and mortality may indicate occupational exposure effects. Copyright 2004 Wiley-Liss, Inc.

  2. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  3. PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES

    DOEpatents

    Garner, C.S.

    1959-02-24

    A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.

  4. EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms

    NASA Astrophysics Data System (ADS)

    Richmann, Michael K.; Reed, Donald T.; Kropf, A. Jeremy; Aase, Scott B.; Lewis, Michele A.

    2001-09-01

    A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice.

  5. Evaluation of the male reproductive toxicity of gallium arsenide.

    PubMed

    Bomhard, Ernst M; Cohen, Samuel M; Gelbke, Heinz-Peter; Williams, Gary M

    2012-10-01

    Gallium arsenide is an important semiconductor material marketed in the shape of wafers and thus is not hazardous to the end user. Exposure to GaAs particles may, however, occur during manufacture and processing. Potential hazards require evaluation. In 14-week inhalation studies with small GaAs particles, testicular effects have been reported in rats and mice. These effects occurred only in animals whose lungs showed marked inflammation and also had hematologic changes indicating anemia and hemolysis. The time- and concentration-dependent progressive nature of the lung and blood effects together with bioavailability data on gallium and arsenic lead us to conclude that the testicular/sperm effects are secondary to hypoxemia resulting from lung damage rather than due to a direct chemical effect of gallium or arsenide. Conditions leading to such primary effects are not expected to occur in humans at production and processing sites. This has to be taken into consideration for any classification decision for reproductive toxicity; especially a category 1 according to the EU CLP system is not warranted. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% ofmore » efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.« less

  7. STRIPPING PROCESS FOR PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-10-01

    A method for removing silver, nickel, cadmium, zinc, and indium coatings from plutonium objects while simultaneously rendering the plutonium object passive is described. The coated plutonium object is immersed as the anode in an electrolyte in which the plutonium is passive and the coating metal is not passive, using as a cathode a metal which does not dissolve rapidly in the electrolyte. and passing an electrical current through the electrolyte until the coating metal is removed from the plutonium body.

  8. PLUTONIUM-CUPFERRON COMPLEX AND METHOD OF REMOVING PLUTONIUM FROM SOLUTION

    DOEpatents

    Potratz, H.A.

    1959-01-13

    A method is presented for separating plutonium from fission products present in solutions of neutronirradiated uranium. The process consists in treating such acidic solutions with cupferron so that the cupferron reacts with the plutonium present to form an insoluble complex. This plutonium cupferride precipitates and may then be separated from the solution.

  9. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  10. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOEpatents

    Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

    1958-10-01

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

  11. Volatile fluoride process for separating plutonium from other materials

    DOEpatents

    Spedding, F. H.; Newton, A. S.

    1959-04-14

    The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

  12. VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS

    DOEpatents

    Spedding, F.H.; Newton, A.S.

    1959-04-14

    The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

  13. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  14. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caviness, Michael L; Mann, Paul T; Yoshimura, Richard H

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  15. The calculation of annual limits of intake for plutonium-239 in man using a bone model which allows for plutonium burial and recycling.

    PubMed

    Priest, N D; Hunt, B W

    1979-05-01

    Values of the annual limit of intake (ALI) for plutonium-239 in man have been calculated using committed dose equivalent limits as recommended by ICRP in Publication 26. The calculations were made using a multicompartment bone model which allows for plutonium burial and recycling in the skeleton. In one skeletal compartment, the growing surfaces of cortical bone, it is assumed that plutonium deposits are retained and are not subject to resorption or recycling. In the trabecular bone compartment plutonium is taken to be resorbed with either subsequent redeposition onto bone surfaces or retention in the bone marrow. ALIs for plutonium-239 have been calculated assuming a range of rates of bone accretion (0-32 micron yr-1), different amounts of plutonium retained in the marrow (0-60%) and a 20%, 45% or 70% deposition of plutonium in the skeleton from the blood. The calculations made using this bone model suggest that 750 Bq (20 nCi) is an appropriate ALI for the inhalation of class W and class Y plutonium compounds and that 830 kBq and 5 MBq (23 muCi and 136 muCi) are the appropriate ALIs for the ingestion of soluble and insoluble forms of plutonium respectively.

  16. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  17. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOEpatents

    Upadhye, R.S.; Wang, F.T.

    1996-08-13

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic. 1 fig.

  18. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOEpatents

    Upadhye, Ravindra S.; Wang, Francis T.

    1996-01-01

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic.

  19. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  20. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.

    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  1. Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.

    PubMed

    Xiong, Yucheng; Tang, Hao; Wang, Xiaomeng; Zhao, Yang; Fu, Qiang; Yang, Juekuan; Xu, Dongyan

    2017-10-16

    In this work, we experimentally investigated the effect of sulfur passivation on thermal transport in indium arsenide (InAs) nanowires. Our measurement results show that thermal conductivity can be enhanced by a ratio up to 159% by sulfur passivation. Current-voltage (I-V) measurements were performed on both unpassivated and S-passivated InAs nanowires to understand the mechanism of thermal conductivity enhancement. We observed a remarkable improvement in electrical conductivity upon sulfur passivation and a significant contribution of electrons to thermal conductivity, which account for the enhanced thermal conductivity of the S-passivated InAs nanowires.

  2. Radionuclide Basics: Plutonium

    EPA Pesticide Factsheets

    Plutonium (chemical symbol Pu) is a radioactive metal. Plutonium is considered a man-made element. Plutonium-239 is used to make nuclear weapons. Pu-239 and Pu-240 are byproducts of nuclear reactor operations and nuclear bomb explosions.

  3. Plutonium inventories for stabilization and stabilized materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials withinmore » 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.« less

  4. Search for Plutonium Salt Deposits in the Plutonium Extraction Batteries of the Marcoule Plant; RECHERCHE DE DEPOTS DE SELS DE PLUTONIUM DANS LES BATTERIES D'EXTRACTION DU PLUTONIUM DE L'USINE DE MARCOULE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouzigues, H.; Reneaud, J.-M.

    1963-01-01

    A method and a special apparatus are described which make it possible to detach the insoluble plutonium salt deposits in the extraction chain of an irradiated fuel treatment plant. The process chosen allows the detection, in the extraction batteries or in the highly active chemical engineering equipment, of plutonium quantities of a few grams. After four years operation it has been impossible to detect measurable quantities of plutonium in any part of the extraction chain. The results have been confirmed by visual examinations carried out with a specially constructed endoscope. (auth)

  5. SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE

    DOEpatents

    Watt, G.W.

    1958-08-19

    An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

  6. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhter, W.D.; Buckley, W.M.

    1989-09-07

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.

  7. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, G.E.; Adamson, A.W.; Schubert, J.

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This processmore » provides a convenient and efficient means for isolating plutonium.« less

  8. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stablemore » state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.« less

  9. PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES

    DOEpatents

    Wahl, A.C.

    1957-11-12

    A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.

  10. PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1961-05-01

    A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.

  11. PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION

    DOEpatents

    Wolter, F.J.; Diehl, H.C. Jr.

    1958-01-01

    This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.

  12. Method of separating thorium from plutonium

    DOEpatents

    Clifton, David G.; Blum, Thomas W.

    1984-01-01

    A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  13. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  14. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    1984-07-10

    A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  15. Plutonium isotopic signatures in soils and their variation (2011-2014) in sediment transiting a coastal river in the Fukushima Prefecture, Japan.

    PubMed

    Jaegler, Hugo; Pointurier, Fabien; Onda, Yuichi; Hubert, Amélie; Laceby, J Patrick; Cirella, Maëva; Evrard, Olivier

    2018-05-04

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in a significant release of radionuclides that were deposited on soils in Northeastern Japan. Plutonium was detected at trace levels in soils and sediments collected around the FDNPP. However, little is known regarding the spatial-temporal variation of plutonium in sediment transiting rivers in the region. In this study, plutonium isotopic compositions were first measured in soils (n = 5) in order to investigate the initial plutonium deposition. Then, plutonium isotopic compositions were measured on flood sediment deposits (n = 12) collected after major typhoon events in 2011, 2013 and 2014. After a thorough radiochemical purification, isotopic ratios ( 240 Pu/ 239 Pu, 241 Pu/ 239 Pu and 242 Pu/ 239 Pu) were measured with a Multi-Collector Inductively Coupled Mass Spectrometer (MC ICP-MS), providing discrimination between plutonium derived from global fallout, from atmospheric nuclear weapon tests, and plutonium derived from the FDNPP accident. Results demonstrate that soils with the most Fukushima-derived plutonium were in the main radiocaesium plume and that there was a variable mixture of plutonium sources in the flood sediment samples. Plutonium concentrations and isotopic ratios generally decreased between 2011 and 2014, reflecting the progressive erosion and transport of contaminated sediment in this coastal river during flood events. Exceptions to this general trend were attributed to the occurrence of decontamination works or the remobilisation of contaminated material during typhoons. The different plutonium concentrations and isotopic ratios obtained on three aliquots of a single sample suggest that the Fukushima-derived plutonium was likely borne by discrete plutonium-containing particles. In the future, these particles should be isolated and further characterized in order to better understand the fate of this long-lived radionuclide in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Locating trace plutonium in contaminated soil using micro-XRF imaging

    DOE PAGES

    Worley, Christopher G.; Spencer, Khalil J.; Boukhalfa, Hakim; ...

    2014-06-01

    Micro-X-ray fluorescence (MXRF) was used to locate minute quantities of plutonium in contaminated soil. Because the specimen had previously been prepared for analysis by scanning electron microscopy, it was coated with gold to eliminate electron beam charging. However, this significantly hindered efforts to detect plutonium by MXRF. The gold L peak series present in all spectra increased background counts. Plutonium signal attenuation by the gold coating and severe peak overlap from potassium in the soil prevented detection of trace plutonium using the Pu Mα peak. However, the 14.3 keV Pu Lα peak sensitivity was not optimal due to poor transmissionmore » efficiency through the source polycapillary optic, and the instrument silicon drift detector sensitivity quickly declines for peaks with energies above ~10 keV. Instrumental parameters were optimized (eg. using appropriate source filters) in order to detect plutonium. An X-ray beam aperture was initially used to image a majority of the specimen with low spatial resolution. A small region that appeared to contain plutonium was then imaged at high spatial resolution using a polycapillary optic. Small areas containing plutonium were observed on a soil particle, and iron was co-located with the plutonium. Zinc and titanium also appeared to be correlated with the plutonium, and these elemental correlations provided useful plutonium chemical state information that helped to better understand its environmental transport properties.« less

  17. Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA

    USGS Publications Warehouse

    Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.

    2008-01-01

    Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.

  18. Stabilizing stored PuO2 with addition of metal impurities

    NASA Astrophysics Data System (ADS)

    Moten, Shafaq; Huda, Muhammad

    Plutonium oxides is of widespread significance due its application in nuclear fuels, space missions, as well as the long-termed storage of plutonium from spent fuel and nuclear weapons. The processes to refine and store plutonium bring many other elements in contact with the plutonium metal and thereby affect the chemistry of the plutonium. Pure plutonium metal corrodes to an oxide in air with the most stable form of this oxide is stoichiometric plutonium dioxide, PuO2. Defects such as impurities and vacancies can form in the plutonium dioxide before, during and after the refining processes as well as during storage. An impurity defect manifests itself at the bottom of the conduction band and affects the band gap of the unit cell. Studying the interaction between transition metals and plutonium dioxide is critical for better, more efficient storage plans as well as gaining insights to provide a better response to potential threats of exposure to the environment. Our study explores the interaction of a few metals within the plutonium dioxide structure which have a likelihood of being exposed to the plutonium dioxide powder. Using Density Functional Theory, we calculated a substituted metal impurity in PuO2 supercell. We repeated the calculations with an additional oxygen vacancy. Our results reveal interesting volume contraction of PuO2 supercell when one plutonium atom is substituted with a metal atom. The authors acknowledge the Texas Computing Center (TACC) at The University of Texas at Austin and High Performance Computing (HPC) at The University of Texas at Arlington.

  19. PROCESSES FOR SEPARATING AND RECOVERING CONSTITUENTS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Connick, R.E.; Gofman, J.W.; Pimentel, G.C.

    1959-11-10

    Processes are described for preparing plutonium, particularly processes of separating plutonium from uranium and fission products in neutron-irradiated uraniumcontaining matter. Specifically, plutonium solutions containing uranium, fission products and other impurities are contacted with reducing agents such as sulfur dioxide, uranous ion, hydroxyl ammonium chloride, hydrogen peroxide, and ferrous ion whereby the plutoninm is reduced to its fluoride-insoluble state. The reduced plutonium is then carried out of solution by precipitating niobic oxide therein. Uranium and certain fission products remain behind in the solution. Certain other fission products precipitate along with the plutonium. Subsequently, the plutonium and fission product precipitates are redissolved, and the solution is oxidized with oxidizing agents such as chlorine, peroxydisulfate ion in the presence of silver ion, permanganate ion, dichromate ion, ceric ion, and a bromate ion, whereby plutonium is oxidized to the fluoride-soluble state. The oxidized solution is once again treated with niobic oxide, thus precipitating the contamirant fission products along with the niobic oxide while the oxidized plutonium remains in solution. Plutonium is then recovered from the decontaminated solution.

  20. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

    DOEpatents

    Faris, B.F.

    1961-04-25

    Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

  1. PLUTONIUM CLEANING PROCESS

    DOEpatents

    Kolodney, M.

    1959-12-01

    A method is described for rapidly removing iron, nickel, and zinc coatings from plutonium objects while simultaneously rendering the plutonium object passive. The method consists of immersing the coated plutonium object in an aqueous acid solution containing a substantial concentration of nitrate ions, such as fuming nitric acid.

  2. Analytical and experimental procedures for determining propagation characteristics of millimeter-wave gallium arsenide microstrip lines

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1989-01-01

    In this report, a thorough analytical procedure is developed for evaluating the frequency-dependent loss characteristics and effective permittivity of microstrip lines. The technique is based on the measured reflection coefficient of microstrip resonator pairs. Experimental data, including quality factor Q, effective relative permittivity, and fringing for 50-omega lines on gallium arsenide (GaAs) from 26.5 to 40.0 GHz are presented. The effects of an imperfect open circuit, coupling losses, and loading of the resonant frequency are considered. A cosine-tapered ridge-guide text fixture is described. It was found to be well suited to the device characterization.

  3. Gallium Arsenide solar cell radiation damage experiment

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.

    1991-01-01

    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  4. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.

    PubMed

    Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena

    2011-04-11

    We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz. © 2011 Optical Society of America

  5. Insights into semiconductor nanowire conductivity using electrodeposition

    NASA Astrophysics Data System (ADS)

    Liu, C.; Salehzadeh, O.; Poole, P. J.; Watkins, S. P.; Kavanagh, K. L.

    2012-10-01

    Copper (Cu) and iron (Fe) electrical contacts to gallium arsenide (GaAs) and indium arsenide (InAs) nanowires (NWs) have been fabricated via electrodeposition. For undoped or low carbon-doped (1017/cm-3), p-type GaAs NWs, Cu or Fe nucleate and grow only on the gold catalyst at the NW tip, avoiding the sidewalls. Metal growth is limited by the Au contact resistance due to thick sidewall depletion layers. For InAs NWs and heavier-doped, core-shell (undoped core-C-doped shell) GaAs NWs, metal nucleation and growth occurs on the sidewalls as well as on the gold catalyst limited now by the ion electrolyte diffusivity.

  6. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    NASA Astrophysics Data System (ADS)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  7. Npn double heterostructure bipolar transistor with ingaasn base region

    DOEpatents

    Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.

    2004-07-20

    An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.

  8. MBE growth of nitride-arsenides for long wavelength opto-electronics

    NASA Astrophysics Data System (ADS)

    Spruytte, Sylvia Gabrielle

    2001-07-01

    Until recently, the operating wavelength of opto-electronic devices on GaAs has been limited to below 1 mum due to the lack of III-V materials with close lattice match to GaAs that have a bandgap below 1.24 eV. To enable devices operating at 1.3 mum on GaAs, MBE growth of a new III-V material formed by adding small amounts of nitrogen to InGaAs was developed. The growth of group III-nitride-arsenides (GaInNAs) is complicated by the divergent properties of the alloy constituents and the difficulty of generating a reactive nitrogen species. Nitride-arsenide materials are grown by molecular beam epitaxy (MBE) using a radio frequency (rf) nitrogen plasma source. The plasma conditions that maximize the amount of atomic nitrogen versus molecular nitrogen are determined using the emission spectrum of the plasma. To avoid phase segregation, nitride-arsenides must be grown at relatively low temperatures and high arsenic overpressures. It is shown that the group III growth rate controls the nitrogen concentration in the film. Absorption measurements allow the establishment of a range of GaInNAs alloys yielding 1.3 mum emission. The optical properties of GaInNAs and GaNAs quantum wells (QWs) are investigated with photoluminescence (PL) measurements. The peak PL intensity increases and peak wavelength shifts to shorter wavelengths when annealing. The increase in luminescence efficiency results from a decrease in non-radiative recombination centers. As the impurity concentration in the GaInNAs films is low, crystal defects associated with nitrogen incorporation were investigated and improvements in crystal quality after anneal were observed. Nuclear reaction channeling measurements show that as-grown nitride-arsenides contain a considerable amount of interstitial nitrogen and that a substantial fraction of the non-substitutional nitrogen disappears during anneal. Secondary ion mass spectroscopy depth profiling on GaInNAs quantum wells shows that during anneal, the nitrogen diffusion is more pronounced than indium diffusion, hence nitrogen diffusion is also the major cause of the shift during the anneal process of GaInNAs QWs. To limit nitrogen diffusion, the GaInNAs QWs were inserted between GaAsN barriers. This also resulted in longer wavelength emission due to decreased carrier confinement energy. This new active region resulted in devices emitting at 1.3 mum.

  9. METHOD OF MAKING PLUTONIUM DIOXIDE

    DOEpatents

    Garner, C.S.

    1959-01-13

    A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

  10. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  11. Lymph node clearance of plutonium from subcutaneous wounds in beagles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, G.E.

    1973-08-01

    The lymph node clearance of /sup 239/Pu O/sub 2/ administered as insoluble particles from subcutaneous implants was studied in adult beagles to simulate accidental contamination of hand wounds. External scintillation data were collected from the popliteal lymph nodes of each dog after 9.2 to 39.4 mu Ci of plutonium oxide was subcutaneously implanted into the left or right hind paws. The left hind paw was armputated 4 weeks after implantation to prevent continued deposition of plutonium oxide particles in the left popliteal lymph node. Groups of 3 dogs were sacrificed 4, 8, 16, and 32 weeks after plutonium implantation formore » histopathologic, electron microscopic, and radiochemical analysis of regional lymph nodes. An additional group of dogs received treatment with the chelating agent diethyenetriaminepentaacetic acid (DTPA). Plutonium rapidly accumulated in the popliteal lymph nodes after subcutaneous injection into the hind paw, and 1 to 10% of the implant dose was present in the popliteal lymph nodes at the time of necropsy. Histopathologic changes in the popliteal lymph nodes with plutonium particles were characterized primarily by reticular cell hyperplasia, increased numbers of macrophages, necrosis, and fibroplasia. Eventually, the plutonium particles became sequestered by scar tissue that often replaced the entire architecture of the lymph node. Light microscopic autoradiographs of the popliteal lymph nodes showed a time-related increase in number of alpha tracks per plutonium source. Electron microscopy showed that the plutonium particles were aggregated in phagolysosomes of macrophages. There was slight clearance of plutonium from the popliteal lymph nodes of dogs monitored for 32 weeks. The clearance of plutonium particles from the popliteal lymph nodes was associated with necrosis of macrophages. The external iliac lymph nodes contained fewer plutonium particles than the popliteal lymph nodes and histopathologic changes were less severe. The superficial inguinal lymph nodes of one dog contained appreciable amounts of plutonium. Treatment with diethylenetriaminepentaacetic acid (DTPA) did not have a measurable effect on the clearance of plutonium from the popliteal lymph nodes. (60 references) (auth)« less

  12. Plutonium in the arctic marine environment--a short review.

    PubMed

    Skipperud, Lindis

    2004-06-18

    Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers.

  13. Tabulated Neutron Emission Rates for Plutonium Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shores, Erik Frederick

    This work tabulates neutron emission rates for 80 plutonium oxide samples as reported in the literature. Plutonium-­238 and plutonium-­239 oxides are included and such emission rates are useful for scaling tallies from Monte Carlo simulations and estimating dose rates for health physics applications.

  14. PROCESS OF SEPARATING PLUTONIUM FROM URANIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-09-01

    A process is presented for recovering plutonium values from aqueous solutions. It comprises forming a uranous hydroxide precipitate in such a plutonium bearing solution, at a pH of at least 5. The plutonium values are precipitated with and carried by the uranium hydroxide. The carrier precipitate is then redissolved in acid solution and the pH is adjusted to about 2.5, causing precipitation of the uranous hydroxide but leaving the still soluble plutonium values in solution.

  15. COLUMBIC OXIDE ADSORPTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM IONS

    DOEpatents

    Beaton, R.H.

    1959-07-14

    A process is described for separating plutonium ions from a solution of neutron irradiated uranium in which columbic oxide is used as an adsorbert. According to the invention the plutonium ion is selectively adsorbed by Passing a solution containing the plutonium in a valence state not higher than 4 through a porous bed or column of granules of hydrated columbic oxide. The adsorbed plutonium is then desorbed by elution with 3 N nitric acid.

  16. PROCESS USING BISMUTH PHOSPHATE AS A CARRIER PRECIPITATE FOR FISSION PRODUCTS AND PLUTONIUM VALUES

    DOEpatents

    Finzel, T.G.

    1959-03-10

    A process is described for separating plutonium from fission products carried therewith when plutonium in the reduced oxidation state is removed from a nitric acid solution of irradiated uranium by means of bismuth phosphate as a carrier precipitate. The bismuth phosphate carrier precipitate is dissolved by treatment with nitric acid and the plutonium therein is oxidized to the hexavalent oxidation state by means of potassium dichromate. Separation of the plutonium from the fission products is accomplished by again precipitating bismuth phosphate and removing the precipitate which now carries the fission products and a small percentage of the plutonium present. The amount of plutonium carried in this last step may be minimized by addition of sodium fluoride, so as to make the solution 0.03N in NaF, prior to the oxidation and prccipitation step.

  17. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantifymore » the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.« less

  18. PROCESS FOR THE SEPARATION OF HEAVY METALS

    DOEpatents

    Gofman, J.W.; Connick, R.E.; Wahl, A.C.

    1959-01-27

    A method is presented for thc separation of plutonium from uranium and the fission products with which it is associated. The method is based on the fact that hexavalent plutonium forms an insoluble complex precipitate with sodium acetate, as does the uranyl ion, while reduced plutonium is not precipitated by sodium acetate. Several embodiments are shown, e.g., a solution containing plutonium and uranium in the hexavalent state may be contacted with sodium acetate causing the formation of a sodium uranyl acetate precipitate which carries the plutonium values while the fission products remain in solution. If the original solution is treated with a reducing agent, so that the plutonium is reduced while the uranium remains in the hexavalent state, and sodium and acetate ions are added, the uranium will precipitutc while the plutonium remains in solution effecting separation of the Pu from urarium.

  19. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  20. NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Walsh, K.A.

    1959-05-12

    A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.

  1. OXIDATIVE METHOD OF SEPARATING PLUTONIUM FROM NEPTUNIUM

    DOEpatents

    Beaufait, L.J. Jr.

    1958-06-10

    A method is described of separating neptunium from plutonium in an aqueous solution containing neptunium and plutonium in valence states not greater than +4. This may be accomplished by contacting the solution with dichromate ions, thus oxidizing the neptunium to a valence state greater than +4 without oxidizing any substantial amount of plutonium, and then forming a carrier precipitate which carries the plutonium from solution, leaving the neptunium behind. A preferred embodiment of this invention covers the use of lanthanum fluoride as the carrier precipitate.

  2. PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES

    DOEpatents

    Barrick, J.G.; Fries, B.A.

    1960-09-27

    A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.

  3. Continuous plutonium dissolution apparatus

    DOEpatents

    Meyer, F.G.; Tesitor, C.N.

    1974-02-26

    This invention is concerned with continuous dissolution of metals such as plutonium. A high normality acid mixture is fed into a boiler vessel, vaporized, and subsequently condensed as a low normality acid mixture. The mixture is then conveyed to a dissolution vessel and contacted with the plutonium metal to dissolve the plutonium in the dissolution vessel, reacting therewith forming plutonium nitrate. The reaction products are then conveyed to the mixing vessel and maintained soluble by the high normality acid, with separation and removal of the desired constituent. (Official Gazette)

  4. 23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS 771, 776/777, AND 707. BUILDING 771, IN THE FOREGROUND, WAS BUILT IN 1952 TO HOUSE ALL PLUTONIUM OPERATIONS. BY 1956, BUILDING 771 WAS NO LONGER ADEQUATE FOR PRODUCTION DEMANDS. BUILDING 776/777, TO THE SOUTH OF BUILDING 771, WAS CONSTRUCTED TO HOUSE PLUTONIUM FABRICATION AND FOUNDRY OPERATIONS. PLUTONIUM RECOVERY REMAINED IN BUILDING 771. BY 1967, CONSTRUCTION ON BUILDING 707, TO THE SOUTH OF BUILDING 776/777, BEGAN AS PRODUCTION LEVELS CONTINUED TO EXPAND NECESSITATING THE NEED FOR ADDITIONAL PLUTONIUM FABRICATION SPACE (7/1/69). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  5. PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS

    DOEpatents

    Faris, B.F.

    1960-04-01

    A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.

  6. PROCESS FOR SEPARATION OF HEAVY METALS

    DOEpatents

    Duffield, R.B.

    1958-04-29

    A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

  7. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Ritter, D.M.

    1959-01-13

    An improvement is presented in the process for recovery and decontamination of plutonium. The carrier precipitate containing plutonium is dissolved and treated with an oxidizing agent to place the plutonium in a hexavalent oxidation state. A lanthanum fluoride precipitate is then formed in and removed from the solution to carry undesired fission products. The fluoride ions in the reniaining solution are complexed by addition of a borate sueh as boric acid, sodium metaborate or the like. The plutonium is then reduced and carried from the solution by the formation of a bismuth phosphate precipitate. This process effects a better separation from unwanted flssion products along with conccntration of the plutonium by using a smaller amount of carrier.

  8. Stabilization and immobilization of military plutonium: A non-proliferation perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leventhal, P.

    1996-05-01

    The Nuclear Control Institute welcomes this DOE-sponsored technical workshop on stabilization and immobilization of weapons plutonium (W Pu) because of the significant contribution it can make toward the ultimate non-proliferation objective of eliminating weapons-usable nuclear material, plutonium and highly enriched uranium (HEU), from world commerce. The risk of theft or diversion of these materials warrants concern, as only a few kilograms in the hands of terrorists or threshold states would give them the capability to build nuclear weapons. Military plutonium disposition questions cannot be addressed in isolation from civilian plutonium issues. The National Academy of Sciences has urged that {open_quotes}furthermore » steps should be taken to reduce the proliferation risks posed by all of the world`s plutonium stocks, military and civilian, separated and unseparated...{close_quotes}. This report discusses vitrification and a mixed oxide fuels option, and the effects of disposition choices on civilian plutonium fuel cycles.« less

  9. PRECIPITATION OF PLUTONOUS PEROXIDE

    DOEpatents

    Barrick, J.G.; Manion, J.P.

    1961-08-15

    A precipitation process for recovering plutonium values contained in an aqueous solution is described. In the process for precipitating plutonium as plutonous peroxide, hydroxylamine or hydrazine is added to the plutoniumcontaining solution prior to the addition of peroxide to precipitate plutonium. The addition of hydroxylamine or hydrazine increases the amount of plutonium precipitated as plutonous peroxide. (AEC)

  10. PROCESS USING POTASSIUM LANTHANUM SULFATE FOR FORMING A CARRIER PRECIPITATE FOR PLUTONIUM VALUES

    DOEpatents

    Angerman, A.A.

    1958-10-21

    A process is presented for recovering plutonium values in an oxidation state not greater than +4 from fluoride-soluble fission products. The process consists of adding to an aqueous acidic solution of such plutonium values a crystalline potassium lanthanum sulfate precipitate which carries the plutonium values from the solution.

  11. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  12. The Fireball integrated code package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobranich, D.; Powers, D.A.; Harper, F.T.

    1997-07-01

    Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state ofmore » the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.« less

  13. Experimental and Numerical Investigations on Colloid-facilitated Plutonium Reactive Transport in Fractured Tuffaceous Rocks

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.

    2017-12-01

    Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.

  14. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, John P.

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  16. Variations in the concentration of plutonium, strontium-90 and total alpha-emitters in human teeth collected within the British Isles.

    PubMed

    O'Donnell, R G; Mitchell, P I; Priest, N D; Strange, L; Fox, A; Henshaw, D L; Long, S C

    1997-08-18

    Concentrations of plutonium-239, plutonium-240, strontium-90 and total alpha-emitters have been measured in children's teeth collected throughout Great Britain and Ireland. The concentrations of plutonium and strontium-90 were measured in batched samples, each containing approximately 50 teeth, using low-background radiochemical methods. The concentrations of total alpha-emitters were determined in single teeth using alpha-sensitive plastic track detectors. The results showed that the average concentrations of total alpha-emitters and strontium-90 were approximately one to three orders of magnitude greater than the equivalent concentrations of plutonium-239,240. Regression analyses indicated that the concentrations of plutonium, but not strontium-90 or total alpha-emitters, decreased with increasing distance from the Sellafield nuclear fuel reprocessing plant-suggesting that this plant is a source of plutonium contamination in the wider population of the British Isles. Nevertheless, the measured absolute concentrations of plutonium (mean = 5 +/- 4 mBq kg-1 ash wt.) were so low that they are considered to present an insignificant radiological hazard.

  17. Plutonium from Above-Ground Nuclear Tests in Milk Teeth: Investigation of Placental Transfer in Children Born between 1951 and 1995 in Switzerland

    PubMed Central

    Froidevaux, Pascal; Haldimann, Max

    2008-01-01

    Background Occupational risks, the present nuclear threat, and the potential danger associated with nuclear power have raised concerns regarding the metabolism of plutonium in pregnant women. Objective We measured plutonium levels in the milk teeth of children born between 1951 and 1995 to assess the potential risk that plutonium incorporated by pregnant women might pose to the radiosensitive tissues of the fetus through placenta transfer. Methods We used milk teeth, whose enamel is formed during pregnancy, to investigate the transfer of plutonium from the mother’s blood plasma to the fetus. We measured plutonium using sensitive sector field inductively coupled plasma mass spectrometry techniques. We compared our results with those of a previous study on strontium-90 (90Sr) released into the atmosphere after nuclear bomb tests. Results Results show that plutonium activity peaks in the milk teeth of children born about 10 years before the highest recorded levels of plutonium fallout. By contrast, 90Sr, which is known to cross the placenta barrier, manifests differently in milk teeth, in accordance with 90Sr fallout deposition as a function of time. Conclusions These findings demonstrate that plutonium found in milk teeth is caused by fallout that was inhaled around the time the milk teeth were shed and not from any accumulation during pregnancy through placenta transfer. Thus, plutonium may not represent a radiologic risk for the radiosensitive tissues of the fetus. PMID:19079728

  18. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Kerry A.; Bellamy, J. Steve; Chandler, Greg T.

    2013-08-18

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States wasmore » the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; Smith, Paul Herrick; Jarvinen, Gordon D.

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that themore » following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U 3O 8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl 3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a commercially-available phosphate buffer would significantly reduce the solubility of PuCl 3 by the precipitation of PuPO 4.« less

  20. Excess Weapons Plutonium Immobilization in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L.; Borisov, G.B.

    2000-04-15

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R&D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R&Dmore » on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the excellent Russian plutonium immobilization contract work. This proceedings document presents the wide extent of Russian immobilization activities, provides a reference for their work, and makes it available to others.« less

  1. Holographic fabrication of gratings in metal substrates

    NASA Technical Reports Server (NTRS)

    Fletcher, R. M.; Wagner, D. K.; Ballantyne, J. M.

    1982-01-01

    A program for investigating the grain enlargement resulting from the laser recrystallization of a thin gallium arsenide film on a patterned substrate, a technique known as graphoepitaxy was evaluated. More specifically, the effects of recrystallizing an uncapped gallium arsenide film using a continuous wave neodymium YAG laser operating at 1.06 microns were studied. In an effort to minimize arsenic loss from the film, the specimens were held in an arsine atmosphere during recrystallization. Two methods for fabricating patterned substrates were developed, one using reactive ion etching of a molybdenum film on both sapphire and silicon substates and another by preferential wet etching of a silicon substrate onto which a film of molybdenum was subsequently deposited.

  2. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers

    NASA Astrophysics Data System (ADS)

    Mokhov, D. V.; Berezovskaya, T. N.; Kuzmenkov, A. G.; Maleev, N. A.; Timoshnev, S. N.; Ustinov, V. M.

    2017-10-01

    An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.

  3. Solar-Electrochemical Power System for a Mars Mission

    NASA Technical Reports Server (NTRS)

    Withrow, Colleen A.; Morales, Nelson

    1994-01-01

    This report documents a sizing study of a variety of solar electrochemical power systems for the intercenter NASA study known as 'Mars Exploration Reference Mission'. Power systems are characterized for a variety of rovers, habitation modules, and space transport vehicles based on requirements derived from the reference mission. The mission features a six-person crew living on Mars for 500 days. Mission power requirements range from 4 kWe to 120 kWe. Primary hydrogen and oxygen fuel cells, regenerative hydrogen and oxygen fuel cells, sodium sulfur batteries advanced photovoltaic solar arrays of gallium arsenide on germanium with tracking and nontracking mechanisms, and tent solar arrays of gallium arsenide on germanium are evaluated and compared.

  4. Gallium arsenide solar cells-status and prospects for use in space

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W.; Flood, D.; Weinberg, I.

    1981-01-01

    Gallium Arsenide solar cells now equal or surpass the ubiquitous silicon solar cells in efficiency, radiation resistance, annealability, and in the capability for producing usable power output at elevated temperatures. NASA has developed a long-range research and development program to capitalize on these manifold advantages. In this paper we review the current state and future prospects for R&D in this promising solar cell material, and indicate the progress being made toward development of GaAs cells suitable for a variety of space missions. Results are presented from studies which demonstrate conclusively that GaAs cells can provide a net mission cost and weight savings for certain important mission classes.

  5. Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1987-01-01

    A novel photovoltaic concentrator system is currently being developed. Phase I of the program, completed in late 1986, produced a conceptual design for the concentrator system, including an array weight and performance estimates based on optical, electrical, and thermal analyses. Phase II of the program, just underway, concerns the fabrication and testing of prototype concentrator panels of the design. The concentrator system uses dome Fresnel lenses for optical concentration; gallium arsenide concentrator cells for power generation; prismatic cell covers to eliminate gridline obscuration losses; a backplane radiator for heat rejection; and a honeycomb structure for the deployable panel assembly. The conceptual design of the system, its anticipated performance, and its estimated weight are reported.

  6. Insertion Demonstrations of Digital Gallium Arsenide. OBP-80 Final Technical Report. Volume 1. Chip Set Schematics

    DTIC Science & Technology

    1992-01-01

    In First Out FMEA Failure Mode Effects Analysis EDM Engineering Development Model GALU Generic Arithmetic Logic Unit GaAs Gallium Arsenide GTE Ground...Bl B>55 * 1585/IS1/B1 = B56 I$11146/I$3/B1 B= 57 I$2S146/I$2/B1 B= 58 * $1146/1$1/81 =>B59 * 1590/IS3/Bl B= 60 *1$590/IS2/Bl== B61 * 1590/IS1/B1 - B62...vote circuitry. It is known that only 60 fC of charge is needed to upset the latch elements. It is interesting to speculate how much charge is required

  7. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Heal, H.G.

    1960-02-16

    BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.

  8. PLUTONIUM AND ITS METALLURGY. A STAGE IN ITS DEVELOPMENT: THE INTERNATIONAL CONFERENCE ON THE METALLURGY OF PLUTONIUM (GRENOBLE, APRIL 1960) (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grison, E.

    1961-01-01

    A discussion is given on physical properties of plutonium, allotropic variations; kinetics of transformation; electrica; and magnetic properties; and electronic structure of the external layers of the atom. Plutonium can be used only as nuclear fuel; it is very expensive and toxic. (auth)

  9. Siegfried S. Hecker, Plutonium, and Nonproliferation

    Science.gov Websites

    controversy involving the stability of certain structures (or phases) in plutonium alloys near equilibrium Cold War is Over. What Now?, DOE Technical Report, April, 1995 6th US-Russian Pu Science Workshop * Aging of Plutonium and Its Alloys * A Tale of Two Diagrams * Plutonium and Its Alloys-From Atoms to

  10. SEPARATION OF PLUTONIUM FROM FISSION PRODUCTS BY A COLLOID REMOVAL PROCESS

    DOEpatents

    Schubert, J.

    1960-05-24

    A method is given for separating plutonium from uranium fission products. An acidic aqueous solution containing plutonium and uranium fission products is subjected to a process for separating ionic values from colloidal matter suspended therein while the pH of the solution is maintained between 0 and 4. Certain of the fission products, and in particular, zirconium, niobium, lanthanum, and barium are in a colloidal state within this pH range, while plutonium remains in an ionic form, Dialysis, ultracontrifugation, and ultrafiltration are suitable methods of separating plutonium ions from the colloids.

  11. PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL

    DOEpatents

    Moore, R.H.

    1962-04-10

    A process of recovering plutonium from neutronbombarded uranium fuel by dissolving the fuel in equimolar aluminum chloride-potassium chloride; heating the mass to above 700 deg C for decomposition of plutonium tetrachloride to the trichloride; extracting the plutonium trichloride into a molten salt containing from 40 to 60 mole % of lithium chloride, from 15 to 40 mole % of sodium chloride, and from 0 to 40 mole % of potassium chloride or calcium chloride; and separating the layer of equimolar chlorides containing the uranium from the layer formed of the plutonium-containing salt is described. (AEC)

  12. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  13. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    DOEpatents

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  14. Microdistribution and Long-Term Retention of 239Pu (NO3)4 in the Respiratory Tracts of an Acutely Exposed Plutonium Worker and Experimental Beagle Dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Christopher E.; Wilson, Dulaney A.; Brooks, Antone L.

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [239Pu (NO3)4] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histological lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a non-uniform distribution of plutonium throughout the lung tissue. Fibroticmore » scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the sub-pleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential increase in cancer risk.« less

  15. CONCENTRATION AND DECONTAMINATION OF SOLUTIONS CONTAINING PLUTONIUM VALUES BY BISMUTH PHOSPHATE CARRIER PRECIPITATION METHODS

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.

    1960-08-23

    A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.

  16. QUANTITATIVE PLUTONIUM MICRODISTRIBUTION IN BONE TISSUE OF VERTEBRA FROM A MAYAK WORKER

    PubMed Central

    Lyovkina, Yekaterina V.; Miller, Scott C.; Romanov, Sergey A.; Krahenbuhl, Melinda P.; Belosokhov, Maxim V.

    2010-01-01

    The purpose was to obtain quantitative data on plutonium microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. A sample of the thoracic vertebra was obtained from a former Mayak worker with a rather high plutonium burden. Additional information was obtained on occupational and exposure history, medical history, and measured plutonium content in organs. Plutonium was detected in bone sections from its fission tracks in polycarbonate film using neutron-induced autoradiography. Quantitative analysis of randomly selected microscopic fields on one of the autoradiographs was performed. Data included fission fragment tracks in different bone tissue and surface areas. Quantitative information on plutonium microdistribution in human bone tissue was obtained for the first time. From these data, quantitative relationship of plutonium decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. The measured quantitative relationship of decays in bone volume to decays on bone surface does not coincide with recommended models for the cortical bone fraction by the International Commission on Radiological Protection. Biokinetic model parameters of extrapulmonary compartments might need to be adjusted after expansion of the data set on quantitative plutonium microdistribution in other bone types in human as well as other cases with different exposure patterns and types of plutonium. PMID:20838087

  17. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  18. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  19. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  20. Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs{sub 2} (A = K, Rb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya, E-mail: Souraya.Goumri-Said@chemistry.gatech.edu

    Highlights: • Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) are chalcopyrite and semiconductors. • Their direct band gap is suitable for PV, optolectronic and thermoelectric applications. • Combination of DFT and Boltzmann transport theory is employed. • The present arsenides are found to be covalent materials. - Abstract: Chalcopyrite semiconductors have attracted much attention due to their potential implications in photovoltaic and thermoelectric applications. First principle calculations were performed to investigate the electronic, optical and thermoelectric properties of the Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) using the full potential linear augmented plane wave method andmore » the Engle–Vosko GGA (EV–GGA) approximation. The present compounds are found semiconductors with direct band gap and covalent bonding character. The optical transitions are investigated via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity and energy-loss spectrum. Combining results from DFT and Boltzmann transport theory, we reported the thermoelectric properties such as the Seebeck’s coefficient, electrical and thermal conductivity, figure of merit and power factor as function of temperatures. The present chalcopyrite Zintl quaternary arsenides deserve to be explored for their potential applications as thermoelectric materials and for photovoltaic devices.« less

  1. Monte Carlo simulation to calculate the rate of 137Cs gamma rays dispersion in gallium arsenide compound

    NASA Astrophysics Data System (ADS)

    Haider, F. A.; Chee, F. P.; Abu Hassan, H.; Saafie, S.

    2017-01-01

    Radiation effects on Gallium Arsenide (GaAs) have been tested by exposing samples to Cesium-137 (137Cs) gamma rays. Gallium Arsenide is a basic photonic material for most of the space technology communication, and, therefore, lends itself for applications where this is of concern. Monte Carlo simulations of interaction between direct ionizing radiation and GaAs structure have been performed in TRIM software, being part of SRIM 2011 programming package. An adverse results shows that energy dose does not govern the displacement of atoms and is dependent on the changes of incident angles and thickness of the GaAs target element. At certain thickness of GaAs and incident angle of 137Cs ion, the displacement damage is at its highest value. From the simulation result, it is found that if the thickness of the GaAs semiconductor material is small compared to the projected range at that particular incident energy, the energy loss in the target GaAs will be small. Hence, when the depth of semiconductor material is reduced, the range of damage in the target also decreased. However, the other factors such as quantum size effect, the energy gap between the conduction and valence band must also be taken into consideration when the dimension of the device is diminished.

  2. Circuit quantum electrodynamics with a spin qubit.

    PubMed

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  3. Group III-arsenide-nitride long wavelength laser diodes

    NASA Astrophysics Data System (ADS)

    Coldren, Christopher W.

    Semiconductor laser diodes transmitting data over silica optical fiber form the backbone of modern day communications systems, enabling terabit per second data transmission over hundreds to thousands of kilometers of distance. The wavelength of emission of the transmission semiconductor laser diode is a critical parameter that determines the performance of the communications system. In high performance fiber optic communications systems, lasers emitting at 1300nm and 1550nm are used because of the low loss and distortion properties of the fiber in these spectral windows. The available lasers today that operate in these fiber optic transmission windows suffer from high cost and poor performance under the typical environmental conditions and require costly and unreliable cooling systems. This dissertation presents work that demonstrates that it is possible to make lasers devices with 1300nm laser emission that are compatible with low cost and operation under extreme operating conditions. The key enabling technology developed is a novel semiconductor material based structure. A group III-Arsenide-Nitride quantum well structure was developed that can be grown expitaxially on GaAs substrates. The properties of this group III-Arsenide-Nitride structure allowed high performance edge emitting and vertical cavity surface emitting lasers to be fabricated which exhibited low threshold currents and low sensitivity to operating temperature.

  4. Characterization studies and indicated remediation methods for plutonium contaminated soils at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murarik, T.M.; Wenstrand, T.K.; Rogers, L.A.

    An initial soil characterization study was conducted to help identify possible remediation methods to remove plutonium from the Nevada Test Site and Tonapah Test Range surface soils. Results from soil samples collected across various isopleths at five sites indicate that the size-fraction distribution patterns of plutonium remain similar to findings from the Nevada Applied Ecology Group (NAEG) (1970's). The plutonium remains in the upper 10--15 cm of soils, as indicated in previous studies. Distribution of fine particles downwind'' of ground zero at each site is suggested. Whether this pattern was established immediately after each explosion or this resulted from post-shotmore » wind movement of deposited material is unclear. Several possible soil treatment scenarios are presented. Removal of plutonium from certain size fractions of the soils would alleviate the sites of much of the plutonium burden. However, the nature of association of plutonium with soil components will determine which remediation methods will most likely succeed.« less

  5. Characterization studies and indicated remediation methods for plutonium contaminated soils at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murarik, T.M.; Wenstrand, T.K.; Rogers, L.A.

    An initial soil characterization study was conducted to help identify possible remediation methods to remove plutonium from the Nevada Test Site and Tonapah Test Range surface soils. Results from soil samples collected across various isopleths at five sites indicate that the size-fraction distribution patterns of plutonium remain similar to findings from the Nevada Applied Ecology Group (NAEG) (1970`s). The plutonium remains in the upper 10--15 cm of soils, as indicated in previous studies. Distribution of fine particles ``downwind`` of ground zero at each site is suggested. Whether this pattern was established immediately after each explosion or this resulted from post-shotmore » wind movement of deposited material is unclear. Several possible soil treatment scenarios are presented. Removal of plutonium from certain size fractions of the soils would alleviate the sites of much of the plutonium burden. However, the nature of association of plutonium with soil components will determine which remediation methods will most likely succeed.« less

  6. Developing a physiologically based approach for modeling plutonium decorporation therapy with DTPA.

    PubMed

    Kastl, Manuel; Giussani, Augusto; Blanchardon, Eric; Breustedt, Bastian; Fritsch, Paul; Hoeschen, Christoph; Lopez, Maria Antonia

    2014-11-01

    To develop a physiologically based compartmental approach for modeling plutonium decorporation therapy with the chelating agent Diethylenetriaminepentaacetic acid (Ca-DTPA/Zn-DTPA). Model calculations were performed using the software package SAAM II (©The Epsilon Group, Charlottesville, Virginia, USA). The Luciani/Polig compartmental model with age-dependent description of the bone recycling processes was used for the biokinetics of plutonium. The Luciani/Polig model was slightly modified in order to account for the speciation of plutonium in blood and for the different affinities for DTPA of the present chemical species. The introduction of two separate blood compartments, describing low-molecular-weight complexes of plutonium (Pu-LW) and transferrin-bound plutonium (Pu-Tf), respectively, and one additional compartment describing plutonium in the interstitial fluids was performed successfully. The next step of the work is the modeling of the chelation process, coupling the physiologically modified structure with the biokinetic model for DTPA. RESULTS of animal studies performed under controlled conditions will enable to better understand the principles of the involved mechanisms.

  7. BASIC PEROXIDE PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINANTS

    DOEpatents

    Seaborg, G.T.; Perlman, I.

    1959-02-10

    A process is described for the separation from each other of uranyl values, tetravalent plutonium values and fission products contained in an aqueous acidic solution. First the pH of the solution is adjusted to between 2.5 and 8 and hydrogen peroxide is then added to the solution causing precipitation of uranium peroxide which carries any plutonium values present, while the fission products remain in solution. Separation of the uranium and plutonium values is then effected by dissolving the peroxide precipitate in an acidic solution and incorporating a second carrier precipitate, selective for plutonium. The plutonium values are thus carried from the solution while the uranium remains flissolved. The second carrier precipitate may be selected from among the group consisting of rare earth fluorides, and oxalates, zirconium phosphate, and bismuth lihosphate.

  8. Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite

    USGS Publications Warehouse

    Zhu, W.; Young, L.Y.; Yee, N.; Serfes, M.; Rhine, E.D.; Reinfelder, J.R.

    2008-01-01

    We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black shale formations. ?? 2008 Elsevier Ltd. All rights reserved.

  9. PREPARATION OF PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-07-01

    Methods are presented for the electro-deposition of plutonium from fused mixtures of plutonium halides and halides of the alkali metals and alkaline earth metals. Th salts, preferably chlorides and with the plutonium prefer ably in the trivalent state, are placed in a refractory crucible such as tantalum or molybdenam and heated in a non-oxidizing atmosphere to 600 to 850 deg C, the higher temperatatures being used to obtain massive plutonium and the lower for the powder form. Electrodes of graphite or non reactive refractory metals are used, the crucible serving the cathode in one apparatus described in the patent.

  10. 30. VIEW OF A GLOVEBOX LINE USED IN PLUTONIUM OPERATIONS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF A GLOVEBOX LINE USED IN PLUTONIUM OPERATIONS. SAFETY AND HEALTH CONCERNS WERE OF MAJOR IMPORTANCE AT THE PLANT, BECAUSE OF THE RADIOACTIVE NATURE OF THE MATERIALS USED. PLUTONIUM GIVES OFF ALPHA AND BETA PARTICLES, GAMMA PROTONS, NEUTRONS, AND IS ALSO PYROPHORIC. AS A RESULT, PLUTONIUM OPERATIONS ARE PERFORMED UNDER CONTROLLED CONDITIONS THAT INCLUDE CONTAINMENT, FILTERING, SHIELDING, AND CREATING AN INERT ATMOSPHERE. PLUTONIUM WAS HANDLED WITHIN GLOVEBOXES THAT WERE INTERCONNECTED AND RAN SEVERAL HUNDRED FEET IN LENGTH (5/5/70). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  11. Rapid Method for Sodium Hydroxide/Sodium Peroxide Fusion ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Plutonium-238 and plutonium-239 in water and air filters Method Selected for: SAM lists this method as a pre-treatment technique supporting analysis of refractory radioisotopic forms of plutonium in drinking water and air filters using the following qualitative techniques: • Rapid methods for acid or fusion digestion • Rapid Radiochemical Method for Plutonium-238 and Plutonium 239/240 in Building Materials for Environmental Remediation Following Radiological Incidents. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  12. US Department of Energy Plutonium Stabilization and Immobilization Workshop, December 12-14, 1995: Final proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-01

    The purpose of the workshop was to foster communication within the technical community on issues surrounding stabilization and immobilization of the Department`s surplus plutonium and plutonium- contaminated wastes. The workshop`s objectives were to: build a common understanding of the performance, economics and maturity of stabilization and immobilization technologies; provide a system perspective on stabilization and immobilization technology options; and address the technical issues associated with technologies for stabilization and immobilization of surplus plutonium and plutonium- contaminated waste. The papers presented during this workshop have been indexed separately.

  13. PROCESS OF REMOVING PLUTONIUM VALUES FROM SOLUTION WITH GROUP IVB METAL PHOSPHO-SILICATE COMPOSITIONS

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Schubert, J.; Boyd, G.E.

    1957-10-29

    A process for separating plutonium values from aqueous solutions which contain the plutonium in minute concentrations is described. These values can be removed from an aqueous solution by taking an aqueous solution containing a salt of zirconium, titanium, hafnium or thorium, adding an aqueous solution of silicate and phosphoric acid anions to the metal salt solution, and separating, washing and drying the precipitate which forms when the two solutions are mixed. The aqueous plutonium containing solution is then acidified and passed over the above described precipi-tate causing the plutonium values to be adsorbed by the precipitate.

  14. Plutonium controversy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)

  15. PREPARATION OF PLUTONIUM TRIFLUORIDE

    DOEpatents

    Burger, L.L.; Roake, W.E.

    1961-07-11

    A process of producing plutonium trifluoride by reacting dry plutonium(IV) oxalate with chlorofluorinated methane or ethane at 400 to 450 deg C and cooling the product in the absence of oxygen is described.

  16. MCNP Parametric Studies of Plutonium Metal and Various Interstitial Moderating Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazener, Natasha; Kamm, Ryan James

    2017-03-31

    Nuclear Criticality Safety (NCS) has performed calculations evaluating the effect of different interstitial materials on 5.0-kg of plutonium metal. As with all non-fissionable interstitials, the results here illustrate that it requires significant quantities of oil to be intimately mixed with plutonium, reflected by a thick layer of full-density water, to achieve the same reactivity as that of solid plutonium metal.

  17. SEPARATION OF PLUTONIUM IONS FROM SOLUTION BY ADSORPTION ON ZIRCONIUM PYROPHOSPHATE

    DOEpatents

    Stoughton, R.W.

    1961-01-31

    A method is given for separating plutonium in its reduced, phosphate- insoluble state from other substances. It involves contacting a solution containing the plutonium with granular zirconium pyrophosphate.

  18. Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Recknagle, K.

    Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause amore » criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.« less

  19. Plutonium and americium separation from salts

    DOEpatents

    Hagan, Paul G.; Miner, Frend J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.

  20. Plutonium storage criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, D.; Ascanio, X.

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less thanmore » 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.« less

  1. PROCESS OF PRODUCING SHAPED PLUTONIUM

    DOEpatents

    Anicetti, R.J.

    1959-08-11

    A process is presented for producing and casting high purity plutonium metal in one step from plutonium tetrafluoride. The process comprises heating a mixture of the plutonium tetrafluoride with calcium while the mixture is in contact with and defined as to shape by a material obtained by firing a mixture consisting of calcium oxide and from 2 to 10% by its weight of calcium fluoride at from 1260 to 1370 deg C.

  2. WET METHOD OF PREPARING PLUTONIUM TRIBROMIDE

    DOEpatents

    Davidson, N.R.; Hyde, E.K.

    1958-11-11

    S> The preparation of anhydrous plutonium tribromide from an aqueous acid solution of plutonium tetrabromide is described, consisting of adding a water-soluble volatile bromide to the tetrabromide to provide additional bromide ions sufficient to furnish an oxidation-reduction potential substantially more positive than --0.966 volt, evaporating the resultant plutonium tribromides to dryness in the presence of HBr, and dehydrating at an elevated temperature also in the presence of HBr.

  3. Spectrophotometers for plutonium monitoring in HB-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lascola, R. J.; O'Rourke, P. E.; Kyser, E. A.

    2016-02-12

    This report describes the equipment, control software, calibrations for total plutonium and plutonium oxidation state, and qualification studies for the instrument. It also provides a detailed description of the uncertainty analysis, which includes source terms associated with plutonium calibration standards, instrument drift, and inter-instrument variability. Also included are work instructions for instrument, flow cell, and optical fiber setup, work instructions for routine maintenance, and drawings and schematic diagrams.

  4. Plutonium radiation surrogate

    DOEpatents

    Frank, Michael I [Dublin, CA

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  5. Magneto-electric transition in nickel-gallium arsenide-nickel multiferroic structure

    NASA Astrophysics Data System (ADS)

    Galichyan, T. A.; Filippov, D. A.; Laletin, V. M.; Firsova, T. O.; Poddubnaya, N. N.

    2018-04-01

    Experimental studies of the magnetoelectric effect are presented in structures manufactured by electrolytic deposition of nickel on a substrate of gallium arsenide. It is shown that the use of gold-germanium-nickel sublayer, when sprayed on a substrate, significantly improves the adhesion between electrolytically deposited nickel and substrate. Linear and nonlinear magnetoelectric effects on the alternating magnetic field are observed in these structures. Both effects have resonant character and the resonance frequency of the nonlinear effect is twice less than that of the linear effect. In weak fields, the value of the nonlinear magnetoelectric effect is in quadratic dependence on the alternating magnetic field and unlike the linear magnetoelectric effect, it does not depend on the bias field.

  6. Gallium arsenide quantum well-based far infrared array radiometric imager

    NASA Technical Reports Server (NTRS)

    Forrest, Kathrine A.; Jhabvala, Murzy D.

    1991-01-01

    We have built an array-based camera (FIRARI) for thermal imaging (lambda = 8 to 12 microns). FIRARI uses a square format 128 by 128 element array of aluminum gallium arsenide quantum well detectors that are indium bump bonded to a high capacity silicon multiplexer. The quantum well detectors offer good responsivity along with high response and noise uniformity, resulting in excellent thermal images without compensation for variation in pixel response. A noise equivalent temperature difference of 0.02 K at a scene temperature of 290 K was achieved with the array operating at 60 K. FIRARI demonstrated that AlGaAS quantum well detector technology can provide large format arrays with performance superior to mercury cadmium telluride at far less cost.

  7. Growth of indium gallium arsenide thin film on silicon substrate by MOCVD technique

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sisir; Das, Anish; Banerji, Pallab

    2018-05-01

    Indium gallium arsenide (InGaAs) thin film with indium phosphide (InP) buffer has been grown on p-type silicon (100) by Metal Organic Chemical Vapor Deposition (MOCVD) technique. To get a lattice matched substrate an Indium Phosphide buffer thin film is deposited onto Si substrate prior to InGaAs growth. The grown films have been investigated by UV-Vis-NIR reflectance spectroscopy. The band gap energy of the grown InGaAs thin films determined to be 0.82 eV from reflectance spectrum and the films are found to have same thickness for growth between 600 °C and 650 °C. Crystalline quality of the grown films has been studied by grazing incidence X-ray diffractometry (GIXRD).

  8. A I-V analysis of irradiated Gallium Arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Heulenberg, A.; Maurer, R. H.; Kinnison, J. D.

    1991-01-01

    A computer program was used to analyze the illuminated I-V characteristics of four sets of gallium arsenide (GaAs) solar cells irradiated with 1-MeV electrons and 10-MeV protons. It was concluded that junction regions (J sub r) dominate nearly all GaAs cells tested, except for irradiated Mitsubishi cells, which appear to have a different doping profile. Irradiation maintains or increases the dominance by J sub r. Proton irradiation increases J sub r more than does electron irradiation. The U.S. cells were optimized for beginning of life (BOL) and the Japanese for end of life (EOL). I-V analysis indicates ways of improving both the BOL and EOL performance of GaAs solar cells.

  9. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  10. Intermediate orthorhombic phases in Ba-122 Iron Arsenides

    NASA Astrophysics Data System (ADS)

    Ruff, J. P. C.; Islam, Z.; Das, R. K.; Kuo, H.-H.; Fisher, I. R.

    2013-03-01

    Despite widespread interest, there are details of the tetragonal-orthorhombic structural phase transition in the iron arsenide superconductors that remain controversial. We have revisited the transition in three characteristic compositions of the canonical ``122'' family Ba(Fe/Co)2(As/P)2 using single crystal synchrotron x-ray diffraction. In the parent compound, we confirm previous observations of a sequence of structural transitions which are closely spaced in temperature, and uncover pronounced magnetoelastic effects in the intermediate orthorhombic phase. Modification of the structural transitions by doping is observed to differ significantly depending on whether the dopant is Co or P. Work performed at the Advanced Photon Source was supported by the DOE, under Contract No. DE-AC02-06CH11357.

  11. Gallium arsenide solar array subsystem study

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.

    1982-01-01

    The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.

  12. PLUTONIUM ALLOYS CONTAINING CONTROLLED AMOUNTS OF PLUTONIUM ALLOTROPES OBTAINED BY APPLICATION OF HIGH PRESSURES

    DOEpatents

    Elliott, R.O.; Gschneidner, K.A. Jr.

    1962-07-10

    A method of making stabilized plutonium alloys which are free of voids and cracks and have a controlled amount of plutonium allotropes is described. The steps include adding at least 4.5 at.% of hafnium, indium, or erbium to the melted plutonium metal, homogenizing the resulting alloy at a temperature of 450 deg C, cooling to room temperature, and subjecting the alloy to a pressure which produces a rapid increase in density with a negligible increase in pressure. The pressure required to cause this rapid change in density or transformation ranges from about 800 to 2400 atmospheres, and is dependent on the alloying element. (AEC)

  13. PROCESS OF SECURING PLUTONIUM IN NITRIC ACID SOLUTIONS IN ITS TRIVALENT OXIDATION STATE

    DOEpatents

    Thomas, J.R.

    1958-08-26

    >Various processes for the recovery of plutonium require that the plutonium be obtalned and maintained in the reduced or trivalent state in solution. Ferrous ions are commonly used as the reducing agent for this purpose, but it is difficult to maintain the plutonium in a reduced state in nitric acid solutions due to the oxidizing effects of the acid. It has been found that the addition of a stabilizing or holding reductant to such solution prevents reoxidation of the plutonium. Sulfamate ions have been found to be ideally suitable as such a stabilizer even in the presence of nitric acid.

  14. The effect of the composition of plutonium loaded on the reactivity change and the isotopic composition of fuel produced in a fast reactor

    NASA Astrophysics Data System (ADS)

    Blandinskiy, V. Yu.

    2014-12-01

    This paper presents the results of a numerical investigation into burnup and breeding of nuclides in metallic fuel consisting of a mixture of plutonium and depleted uranium in a fast reactor with sodium coolant. The feasibility of using plutonium contained in spent nuclear fuel from domestic thermal reactors and weapons-grade plutonium is discussed. It is shown that the largest production of secondary fuel and the least change in the reactivity over the reactor lifetime can be achieved when employing plutonium contained in spent nuclear fuel from a reactor of the RBMK-1000 type.

  15. METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.

  16. CONCENTRATION OF Pu USING AN IODATE PRECIPITATE

    DOEpatents

    Fries, B.A.

    1960-02-23

    A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.

  17. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  18. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    DOEpatents

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  19. Advances in containment methods and plutonium recovery strategies that led to the structural characterization of plutonium(IV) tetrachloride tris-diphenylsulfoxide, PuCl 4(OSPh 2) 3

    DOE PAGES

    Schrell, Samantha K.; Boland, Kevin Sean; Cross, Justin Neil; ...

    2017-01-18

    In an attempt to further advance the understanding of plutonium coordination chemistry, we report a robust method for recycling and obtaining plutonium aqueous stock solutions that can be used as a convenient starting material in plutonium synthesis. This approach was used to prepare and characterize plutonium(IV) tetrachloride tris-diphenylsulfoxide, PuCl 4(OSPh 2) 3, by single crystal X-ray diffraction. The PuCl 4(OSPh 2) 3 compound represents a rare example of a 7-coordinate plutonium(IV) complex. Structural characterization of PuCl 4(OSPh 2) 3 by X-ray diffraction utilized a new containment method for radioactive crystals. The procedure makes use of epoxy, polyimide loops, and amore » polyester sheath to provide a robust method for safely containing and easily handling radioactive samples. Lastly, the described procedure is more user friendly than traditional containment methods that employ fragile quartz capillary tubes. Additionally, moving to polyester, instead of quartz, lowers the background scattering from the heavier silicon atoms.« less

  20. JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Jay M.; Lopez, Jacquelyn C.; Wayne, David M.

    2012-07-05

    The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs. We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists. Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in amore » world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.« less

  1. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  2. Plutonium recovery from organic materials

    DOEpatents

    Deaton, R.L.; Silver, G.L.

    1973-12-11

    A method is described for removing plutonium or the like from organic material wherein the organic material is leached with a solution containing a strong reducing agent such as titanium (III) (Ti/sup +3None)/, chromium (II) (Cr/ sup +2/), vanadium (II) (V/sup +2/) ions, or ferrous ethylenediaminetetraacetate (EDTA), the leaching yielding a plutonium-containing solution that is further processed to recover plutonium. The leach solution may also contain citrate or tartrate ion. (Official Gazette)

  3. SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE

    DOEpatents

    Schubert, J.

    1958-06-01

    A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.

  4. 14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE REMOTE CONTROL STATION. THE STACKER-RETRIEVER, A REMOTELY-OPERATED, MECHANIZED TRANSPORT SYSTEM, RETRIEVES CONTAINERS OF PLUTONIUM FROM SAFE GEOMETRY PALLETS STORED ALONG THE LENGTH OF THE VAULT. THE STACKER-RETRIEVER RUNS ALONG THE AISLE BETWEEN THE PALLETS OF THE STORAGE CHAMBER. (3/2/86) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  5. AMINE EXTRACTION OF PLUTONIUM FROM NITRIC ACID SOLUTIONS LOADING AND STRIPPING EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A.S.

    1961-01-19

    Information is presented on a suitable amine processing system for plutonium nitrate. Experiments with concentrated plutonium nitrate solutions show that trilaurylamine (TLA) - xylene solvent systems did not form a second organic phase. Experiments are also reported with tri-noctylamine (TnOA)-xylene and TLA-Amsco - octyl alcohol. Two organic phases appear in both these systems at high plutonium nitrate concentrations. Data are tabulated from loading and stripping experiments. (J.R.D.)

  6. PROCESS OF TREATING URANIUM HEXAFLUORIDE AND PLUTONIUM HEXAFLUORIDE MIXTURES WITH SULFUR TETRAFLUORIDE TO SEPARATE SAME

    DOEpatents

    Steindler, M.J.

    1962-07-24

    A process was developed for separating uranium hexafluoride from plutonium hexafluoride by the selective reduction of the plutonium hexafluoride to the tetrafluoride with sulfur tetrafluoride at 50 to 120 deg C, cooling the mixture to --60 to -100 deg C, and volatilizing nonreacted sulfur tetrafluoride and sulfur hexafluoride formed at that temperature. The uranium hexafluoride is volatilized at room temperature away from the solid plutonium tetrafluoride. (AEC)

  7. THE CHEMICAL ANALYSIS OF TERNARY ALLOYS OF PLUTONIUM WITH MOLYBDENUM AND URANIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, G.; Woodhead, J.; Jenkins, E.N.

    1958-09-01

    It is shown that the absorptiometric determination of molybdenum as thiocyanate may be used in the presence of plutonium. Molybdenum interferes with previously published methods for determining uranium and plutonium but conditlons have been established for its complete removal by solvent extraction of the compound with alpha -benzoin oxime. The previous methods for uranium and plutonium are satisfactory when applied to the residual aqueous phase following this solvent extraction. (auth)

  8. PROCESS OF SEPARATING PLUTONIUM VALUES BY ELECTRODEPOSITION

    DOEpatents

    Whal, A.C.

    1958-04-15

    A process is described of separating plutonium values from an aqueous solution by electrodeposition. The process consists of subjecting an aqueous 0.1 to 1.0 N nitric acid solution containing plutonium ions to electrolysis between inert metallic electrodes. A current density of one milliampere io one ampere per square centimeter of cathode surface and a temperature between 10 and 60 d C are maintained. Plutonium is electrodeposited on the cathode surface and recovered.

  9. SEPARATION OF PLUTONIUM VALUES FROM URANIUM AND FISSION PRODUCT VALUES

    DOEpatents

    Maddock, A.G.; Booth, A.H.

    1960-09-13

    Separation of plutonium present in small amounts from neutron irradiated uranium by making use of the phenomenon of chemisorption is described. Plutonium in the tetravalent state is chemically absorbed on a fluoride in solid form. The steps for the separation comprise dissolving the irradiated uranium in nitric acid, oxidizing the plutonium in the resulting solution to the hexavalent state, adding to the solution a soluble calcium salt which by the common ion effect inhibits dissolution of the fluoride by the solution, passing the solution through a bed or column of subdivided calcium fluoride which has been sintered to about 8OO deg C to remove the chemisorbable fission products, reducing the plutonium in the solution thus obtained to the tetravalent state, and again passing the solution through a similar bed or column of calcium fluoride to selectively absorb the plutonium, which may then be recovered by treating the calcium fluoride with a solution of ammonium oxalate.

  10. Using Biomolecules to Separate Plutonium

    NASA Astrophysics Data System (ADS)

    Gogolski, Jarrod

    Used nuclear fuel has traditionally been treated through chemical separations of the radionuclides for recycle or disposal. This research considers a biological approach to such separations based on a series of complex and interdependent interactions that occur naturally in the human body with plutonium. These biological interactions are mediated by the proteins serum transferrin and the transferrin receptor. Transferrin to plutonium in vivo and can deposit plutonium into cells after interacting with the transferrin receptor protein at the cell surface. Using cerium as a non-radioactive surrogate for plutonium, it was found that cerium(IV) required multiple synergistic anions to bind in the N-lobe of the bilobal transferrin protein, creating a conformation of the cerium-loaded protein that would be unable to interact with the transferrin receptor protein to achieve a separation. The behavior of cerium binding to transferrin has contributed to understanding how plutonium(IV)-transferrin interacts in vivo and in biological separations.

  11. CARBONATE METHOD OF SEPARATION OF TETRAVALENT PLUTONIUM FROM FISSION PRODUCT VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    It has been found that plutonium forms an insoluble precipitate with carbonate ion when the carbonate ion is present in stoichiometric proportions, while an excess of the carbonate ion complexes plutonium and renders it soluble. A method for separating tetravalent plutonium from lanthanum-group rare earths has been based on this discovery, since these rare earths form insoluble carbonates in approximately neutral solutions. According to the process the pH is adjusted to between 5 and 7, and approximately stoichiometric amounts of carbonate ion are added to the solution causing the formation of a precipitate of plutonium carbonate and the lanthanum-group rare earth carbonates. The precipitate is then separated from the solution and contacted with a carbonate solution of a concentration between 1 M and 3 M to complex and redissolve the plutonium precipitate, and thus separate it from the insoluble rare earth precipitate.

  12. PROCESS FOR PRODUCTION OF PLUTONIUM FROM ITS OXIDES

    DOEpatents

    Weissman, S.I.; Perlman, M.L.; Lipkin, D.

    1959-10-13

    A method is described for obtaining a carbide of plutonium and two methods for obtaining plutonium metal from its oxides. One of the latter involves heating the oxide, in particular PuO/sub 2/, to a temperature of 1200 to 1500 deg C with the stoichiometrical amount of carbon to fornn CO in a hard vacuum (3 to 10 microns Hg), the reduced and vaporized plutonium being collected on a condensing surface above the reaction crucible. When an excess of carbon is used with the PuO/sub 2/, a carbide of plutonium is formed at a crucible temperature of 1400 to 1500 deg C. The process may be halted and the carbide removed, or the reaction temperature can be increased to 1900 to 2100 deg C at the same low pressure to dissociate the carbide, in which case the plutonium is distilled out and collected on the same condensing surface.

  13. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46more » Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.« less

  14. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1, 1997--July 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Progress summaries are provided from the Amarillo National Center for Plutonium. Programs include the plutonium information resource center, environment, public health, and safety, education and training, nuclear and other material studies.

  15. SEPARATION OF PLUTONIUM FROM URANIUM

    DOEpatents

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  16. 1. West facade of Plutonium Concentration Facility (Building 233S), ReductionOxidation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West facade of Plutonium Concentration Facility (Building 233-S), Reduction-Oxidation Building (REDOX-202-S) to the right. Looking east. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA

  17. 69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH DOOR-WAY INTO PLUTONIUM STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  18. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOEpatents

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  19. Volatile Impurities in the Plutonium Immobilization Ceramic Wasteform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A.D.

    1999-10-15

    Approximately 18 of the 50 metric tons of plutonium identified for disposition contain significant quantities of impurities. A ceramic waste form is the chosen option for immobilization of the excess plutonium. The impurities associated with the stored plutonium have been identified (CaCl2, MgF2, Pb, etc.). For this study, only volatile species are investigated. The impurities are added individually. Cerium is used as the surrogate for plutonium. Three compositions, including the baseline composition, were used to verify the ability of the ceramic wasteform to accommodate impurities. The criteria for evaluation of the effect of the impurities were the apparent porosity andmore » phase assemblage of sintered pellets.« less

  20. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Sutton, J.B.

    1958-02-18

    This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

  1. Progress on plutonium stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, D.

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  2. NON-CORROSIVE PLUTONIUM FUEL SYSTEMS

    DOEpatents

    Coffinberry, A.S.; Waber, J.T.

    1962-10-23

    An improved plutonium reactor liquid fuel is described for utilization in a nuclear reactor having a tantalum fuel containment vessel. The fuel consists of plutonium and a diluent such as iron, cobalt, nickel, cerium, cerium-- iron, cerium--cobalt, cerium--nickel, and cerium--copper, and an additive of carbon and silicon. The carbon and silicon react with the tantalum container surface to form a coating that is self-healing and prevents the corrosive action of liquid plutonium on the said tantalum container. (AEC)

  3. Plutonium in the atmosphere: A global perspective.

    PubMed

    Thakur, P; Khaing, H; Salminen-Paatero, S

    2017-09-01

    A number of potential source terms have contributed plutonium isotopes to the atmosphere. The atmospheric nuclear weapon tests conducted between 1945 and 1980 and the re-entry of the burned SNAP-9A satellite in 1964, respectively. It is generally believed that current levels of plutonium in the stratosphere are negligible and compared with the levels generally found at surface-level air. In this study, the time trend analysis and long-term behavior of plutonium isotopes ( 239+240 Pu and 238 Pu) in the atmosphere were assessed using historical data collected by various national and international monitoring networks since 1960s. An analysis of historical data indicates that 239+240 Pu concentration post-1984 is still frequently detectable, whereas 238 Pu is detected infrequently. Furthermore, the seasonal and time-trend variation of plutonium concentration in surface air followed the stratospheric trends until the early 1980s. After the last Chinese test of 1980, the plutonium concentrations in surface air dropped to the current levels, suggesting that the observed concentrations post-1984 have not been under stratospheric control, but rather reflect the environmental processes such as resuspension. Recent plutonium atmospheric air concentrations data show that besides resuspension, other environmental processes such as global dust storms and biomass burning/wildfire also play an important role in redistributing plutonium in the atmosphere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Plutonium and americium in the foodchain lichen-reindeer-man

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaakkola, T.; Hakanen, M.; Keinonen, M.

    1977-01-01

    The atmospheric nuclear tests have produced a worldwide fallout of transuranium elements. In addition to plutonium measurable concentrations of americium are to be found in terrestrial and aquatic environments. The metabolism of plutonium in reindeer was investigated by analyzing plutonium in liver, bone, and lung collected during 1963-1976. To determine the distribution of plutonium in reindeer all tissues of four animals of different ages were analyzed. To estimate the uptake of plutonium from the gastrointestinal tract in reindeer, the tissue samples of elk were also analyzed. Elk which is of the same genus as reindeer does not feed on lichenmore » but mainly on deciduous plants, buds, young twigs, and leaves of trees and bushes. The composition of its feed corresponds fairly well to that of reindeer during the summer. Studies on behaviour of americium along the foodchain lichen-reindeer-man were started by determining the Am-241 concentrations in lichen and reindeer liver. The Am-241 results were compared with those of Pu-239,240. The plutonium contents of the southern Finns, whose diet does not contain reindeer tissues, were determined by analyzing autopsy tissue samples (liver, lung, and bone). The southern Finns form a control group to the Lapps consuming reindeer tissues. Plutonium analyses of the placenta, blood, and tooth samples of the Lapps were performed.« less

  5. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOEpatents

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  6. 71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO PLUTONIUM STORAGE ROOM SHOWING CUBICLES FOR STORAGE. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  7. Lattice parameters guide superconductivity in iron-arsenides

    NASA Astrophysics Data System (ADS)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  8. Lattice parameters guide superconductivity in iron-arsenides.

    PubMed

    Konzen, Lance M N; Sefat, Athena S

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped 'parent' materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which 'dopants' can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce 'in-plane' superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  9. Plutonium Isotopes in the Terrestrial Environment at the Savannah River Site, USA. A Long-Term Study

    DOE PAGES

    Armstrong, Christopher R.; Nuessle, Patterson R.; Brant, Heather A.; ...

    2015-01-16

    This work presents the findings of a long term plutonium study at Savannah River Site (SRS) conducted between 2003 and 2013. Terrestrial environmental samples were obtained at Savannah River National Laboratory (SRNL) in A-area. Plutonium content and isotopic abundances were measured over this time period by alpha spectrometry and three stage thermal ionization mass spectrometry (3STIMS). Here we detail the complete sample collection, radiochemical separation, and measurement procedure specifically targeted to trace plutonium in bulk environmental samples. Total plutonium activities were determined to be not significantly above atmospheric global fallout. However, the 238Pu/ 239+240Pu activity ratios attributed to SRS aremore » above atmospheric global fallout ranges. The 240Pu/ 239Pu atom ratios are reasonably consistent from year to year and are lower than fallout, while the 242Pu/ 239Pu atom ratios are higher than fallout values. Overall, the plutonium signatures obtained in this study reflect a mixture of weapons-grade, higher burn-up, and fallout material. This study provides a blue print for long term low level monitoring of plutonium in the environment.« less

  10. Electronic structure, phase transitions and diffusive properties of elemental plutonium

    NASA Astrophysics Data System (ADS)

    Setty, Arun; Cooper, B. R.

    2003-03-01

    We present a SIC-LDA-LMTO based study of the electronic structure of the delta, alpha and gamma phases of plutonium, and also of the alpha and gamma phases of elemental cerium. We find excellent agreement with the experimental densities and magnetic properties [1]. Furthermore, detailed studies of the computational densities of states for delta plutonium, and comparison with the experimental photoemission spectrum [2], provide evidence for the existence of an unusual fluctuating valence state. Results regarding the vacancy formation and self-diffusion in delta plutonium will be presented. Furthermore, a study of interface diffusion between plutonium and steel (technologically relevant in the storage of spent fuel) or other technologically relevant alloys will be included. Preliminary results regarding gallium stabilization of delta plutonium, and of plutonium alloys will be presented. [1] M. Dormeval et al., private communication (2001). [2] A. J. Arko, J. J. Joyce, L. Morales, J. Wills, and J. Lashley et. al., Phys. Rev. B, 62, 1773 (2000). [3] B. R. Cooper et al, Phil. Mag. B 79, 683 (1999); B.R. Cooper, Los Alamos Science 26, 106 (2000)); B.R. Cooper, A.K. Setty and D.L.Price, to be published.

  11. Radiation damage and annealing in plutonium tetrafluoride

    NASA Astrophysics Data System (ADS)

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey; Sweet, Lucas; McNamara, Bruce; Delegard, Calvin; Jevremovic, Tatjana

    2017-12-01

    A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, thermogravimetric/differential thermal analysis and X-ray diffraction evaluations were conducted to determine the plutonium's crystal structure, oxide content, and moisture content; these analyses reported that the plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. During the initial thermogravimetric/differential thermal analyses, it was discovered that an exothermic event occurred within the material near 414 °C. X-ray diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414 °C event. The following commentary describes the series of thermogravimetric/differential thermal and X-ray diffraction analyses that were conducted as part of this investigation at PNNL.

  12. Determination of plutonium isotopes (238,239,240Pu) and strontium (90Sr) in seafood using alpha spectrometry and liquid scintillation spectrometry.

    PubMed

    Shin, Choonshik; Choi, Hoon; Kwon, Hye-Min; Jo, Hye-Jin; Kim, Hye-Jeong; Yoon, Hae-Jung; Kim, Dong-Sul; Kang, Gil-Jin

    2017-10-01

    The present study was carried out to survey the levels of plutonium isotopes ( 238 , 239 , 240 Pu) and strontium ( 90 Sr) in domestic seafood in Korea. In current, regulatory authorities have analyzed radionuclides, such as 134 Cs, 137 Cs and 131 I, in domestic and imported food. However, people are concerned about contamination of other radionuclides, such as plutonium and strontium, in food. Furthermore, people who live in Korea have much concern about safety of seafood. Accordingly, in this study, we have investigated the activity concentrations of plutonium and strontium in seafood. For the analysis of plutonium isotopes and strontium, a rapid and reliable method developed from previous study was used. Applicability of the test method was verified by examining recovery, minimum detectable activity (MDA), analytical time, etc. Total 40 seafood samples were analyzed in 2014-2015. As a result, plutonium isotopes ( 238 , 239 , 240 Pu) and strontium ( 90 Sr) were not detected or below detection limits in seafood. The detection limits of plutonium isotopes and strontium-90 were 0.01 and 1 Bq/kg, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. EXTRACTION OF TETRAVALENT PLUTONIUM VALUES WITH METHYL ETHYL KETONE, METHYL ISOBUTYL KETONE ACETOPHENONE OR MENTHONE

    DOEpatents

    Seaborg, G.T.

    1961-08-01

    A process is described for extracting tetravalent plutonium from an aqueous acid solution with methyl ethyl ketone, methyl isobutyl ketone, or acetophenone and with the extraction of either tetravalent or hexavalent plutonium into menthone. (AEC)

  14. 10 CFR 830.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified... reaction (e.g., uranium-233, uranium-235, plutonium-238, plutonium-239, plutonium-241, neptunium-237...

  15. 3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER CONSTRUCTION. THE BASEMENT HOUSES HEATING, VENTILATION, AND AIR CONDITIONING EQUIPMENT AND MECHANICAL UTILITIES, THE UPPER PART OF THE PLUTONIUM STORAGE VAULT AND MAINTENANCE BAY, AND SMALL PLUTONIUM PROCESSING AREAS. THE BASEMENT LEVEL IS DIVIDED INTO NEARLY EQUAL NORTH AND SOUTH PARTS BY THE UPPER PORTION OF THE PLUTONIUM STORAGE VAULT. (10/7/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  16. PLATINUM HEXAFLUORIDE AND METHOD OF FLUORINATING PLUTONIUM CONTAINING MIXTURES THERE-WITH

    DOEpatents

    Malm, J.G.; Weinstock, B.; Claassen, H.H.

    1959-07-01

    The preparation of platinum hexafluoride and its use as a fluorinating agent in a process for separating plutonium from fission products is presented. According to the invention, platinum is reacted with fluorine gas at from 900 to 1100 deg C to form platinum hexafluoride. The platinum hexafluoride is then contacted with the plutonium containing mixture at room temperature to form plutonium hexafluoride which is more volatile than the fission products fluorides and therefore can be isolated by distillation.

  17. Uranium daughter growth must not be neglected when adjusting plutonium materials for assay and isotopic contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, S.F.; Spall, W.D.; Abernathey, R.M.

    1976-11-01

    Relationships are provided to compute the decreasing plutonium content and changing isotopic distribution of plutonium materials for the radioactive decay of /sup 238/Pu, /sup 239/Pu, /sup 240/Pu and /sup 242/Pu to long-lived uranium daughters and of /sup 241/Pu to /sup 241/Am. This computation is important to the use of plutonium reference materials to calibrate destructive and nondestructive methods for assay and isotopic measurements, as well as to accountability inventory calculations.

  18. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  19. Actinide-contaminated Skin: Comparing Decontamination Efficacy of Water, Cleansing Gels, and DTPA Gels.

    PubMed

    Tazrart, A; Bolzinger, M A; Lamart, S; Coudert, S; Angulo, J F; Jandard, V; Briançon, S; Griffiths, N M

    2018-07-01

    Skin contamination by alpha-emitting actinides is a risk to workers during nuclear fuel production and reactor decommissioning. Also, the list of items for potential use in radiological dispersal devices includes plutonium and americium. The actinide chemical form is important and solvents such as tributyl phosphate, used to extract plutonium, can influence plutonium behavior. This study investigated skin fixation and efficacy of decontamination products for these actinide forms using viable pig skin in the Franz cell diffusion system. Commonly used or recommended decontamination products such as water, cleansing gel, diethylenetriamine pentaacetic acid, or octadentate hydroxypyridinone compound 3,4,3-LI(1,2-HOPO), as well as diethylenetriamine pentaacetic acid hydrogel formulations, were tested after a 2-h contact time with the contaminant. Analysis of skin samples demonstrated that more plutonium nitrate is bound to skin as compared to plutonium-tributyl phosphate, and fixation of americium to skin was also significant. The data show that for plutonium-tributyl phosphate all the products are effective ranging from 80 to 90% removal of this contaminant. This may be associated with damage to the skin by this complex and suggests a mechanical/wash-out action rather than chelation. For removal of americium and plutonium, both Trait Rouge cleansing gel and diethylenetriamine pentaacetic acid are better than water, and diethylenetriamine pentaacetic acid hydrogel is better than Osmogel. The different treatments, however, did not significantly affect the activity in deeper skin layers, which suggests a need for further improvement of decontamination procedures. The new diethylenetriamine pentaacetic acid hydrogel preparation was effective in removing americium, plutonium, and plutonium-tributyl phosphate from skin; such a formulation offers advantages and thus merits further assessment.

  20. NASA-OAST photovoltaic energy conversion program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  1. Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation

    NASA Astrophysics Data System (ADS)

    Salas, R.; Guchhait, S.; Sifferman, S. D.; McNicholas, K. M.; Dasika, V. D.; Krivoy, E. M.; Jung, D.; Lee, M. L.; Bank, S. R.

    2015-02-01

    We explore the electrical, optical, and structural properties of fast photoconductors of In0.53Ga0.47As containing a number of different rare-earth arsenide nanostructures. The rare-earth species provides a route to tailor the properties of the photoconductive materials. LuAs, GdAs, and LaAs nanostructures were embedded into InGaAs in a superlattice structure and compared to the relatively well-studied ErAs:InGaAs system. LaAs:InGaAs was found to have the highest dark resistivities, while GdAs:InGaAs had the lowest carrier lifetimes and highest carrier mobility at moderate depositions. The quality of the InGaAs overgrowth appears to have the most significant effect on the properties of these candidate fast photoconductors.

  2. Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots

    NASA Astrophysics Data System (ADS)

    Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping

    2018-02-01

    Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.

  3. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

    PubMed Central

    Nitti, Maria Angela; Valentini, Marco; Valentini, Antonio; Ligonzo, Teresa; De Pascali, Giuseppe; Ambrico, Marianna

    2014-01-01

    Summary In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current–voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed. PMID:25383309

  4. Gallium arsenide/gold nanostructures deposited using plasma method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.

    2016-05-23

    The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that ofmore » bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.« less

  5. Study of Gallium Arsenide Etching in a DC Discharge in Low-Pressure HCl-Containing Mixtures

    NASA Astrophysics Data System (ADS)

    Dunaev, A. V.; Murin, D. B.

    2018-04-01

    Halogen-containing plasmas are often used to form topological structures on semiconductor surfaces; therefore, spectral monitoring of the etching process is an important diagnostic tool in modern electronics. In this work, the emission spectra of gas discharges in mixtures of hydrogen chloride with argon, chlorine, and hydrogen in the presence of a semiconducting gallium arsenide plate were studied. Spectral lines and bands of the GaAs etching products appropriate for monitoring the etching rate were determined. It is shown that the emission intensity of the etching products is proportional to the GaAs etching rate in plasmas of HCl mixtures with Ar and Cl2, which makes it possible to monitor the etching process in real time by means of spectral methods.

  6. Sources of plutonium in the atmosphere and stratosphere-troposphere mixing

    PubMed Central

    Hirose, Katsumi; Povinec, Pavel P.

    2015-01-01

    Plutonium isotopes have primarily been injected to the stratosphere by the atmospheric nuclear weapon tests and the burn-up of the SNAP-9A satellite. Here we show by using published data that the stratospheric plutonium exponentially decreased with apparent residence time of 1.5 ± 0.5 years, and that the temporal variations of plutonium in surface air followed the stratospheric trends until the early 1980s. In the 2000s, plutonium and its isotope ratios in the atmosphere varied dynamically, and sporadic high concentrations of 239,240Pu reported for the lower stratospheric and upper tropospheric aerosols may be due to environmental events such as the global dust outbreaks and biomass burning. PMID:26508010

  7. 25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23105, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  8. 24. Plutonium Recovery From Contaminated Materials, Architectural Details, Building 232z, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Plutonium Recovery From Contaminated Materials, Architectural Details, Building 232-z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23106, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  9. 26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & Dets., Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23106, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  10. 13. VIEW OF THE MOLTEN SALT EXTRACTION LINE. THE MOLTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF THE MOLTEN SALT EXTRACTION LINE. THE MOLTEN SALT EXTRACTION PROCESS WAS USED TO PURIFY PLUTONIUM BY REMOVING AMERICIUM, A DECAY BY-PRODUCT OF PLUTONIUM. (1/98) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  11. CONCENTRATION PROCESS FOR PLUTONIUM IONS, IN AN OXIDATION STATE NOT GREATER THAN +4, IN AQUEOUS ACID SOLUTION

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.

    1960-06-14

    A process for concentrating plutonium is given in which plutonium is first precipitated with bismuth phosphate and then, after redissolution, precipitated with a different carrier such as lanthanum fluoride, uranium acetate, bismuth hydroxide, or niobic oxide.

  12. METHOD OF SEPARATION OF PLUTONIUM FROM CARRIER PRECIPITATES

    DOEpatents

    Dawson, I.R.

    1959-09-22

    The recovery of plutonium from fluoride carrier precipitates is described. The precipitate is dissolved in zirconyl nitrate, ferric nitrate, aluminum nitrate, or a mixture of these complexing agents, and the plutonium is then extracted from the aqueous solution formed with a water-immiscible organic solvent.

  13. EXTRACTION METHOD FOR SEPARATING URANIUM, PLUTONIUM, AND FISSION PRODUCTS FROM COMPOSITIONS CONTAINING SAME

    DOEpatents

    Seaborg, G.T.

    1957-10-29

    Methods for separating plutonium from the fission products present in masses of neutron irradiated uranium are reported. The neutron irradiated uranium is first dissolved in an aqueous solution of nitric acid. The plutonium in this solution is present as plutonous nitrate. The aqueous solution is then agitated with an organic solvent, which is not miscible with water, such as diethyl ether. The ether extracts 90% of the uraryl nitrate leaving, substantially all of the plutonium in the aqueous phase. The aqueous solution of plutonous nitrate is then oxidized to the hexavalent state, and agitated with diethyl ether again. In the ether phase there is then obtained 90% of plutonium as a solution of plutonyl nitrate. The ether solution of plutonyl nitrate is then agitated with water containing a reducing agent such as sulfur dioxide, and the plutonium dissolves in the water and is reduced to the plutonous state. The uranyl nitrate remains in the ether. The plutonous nitrate in the water may be recovered by precipitation.

  14. Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations

    NASA Astrophysics Data System (ADS)

    Schneider, Stephanie; Walther, Clemens; Bister, Stefan; Schauer, Viktoria; Christl, Marcus; Synal, Hans-Arno; Shozugawa, Katsumi; Steinhauser, Georg

    2013-10-01

    The contamination of Japan after the Fukushima accident has been investigated mainly for volatile fission products, but only sparsely for actinides such as plutonium. Only small releases of actinides were estimated in Fukushima. Plutonium is still omnipresent in the environment from previous atmospheric nuclear weapons tests. We investigated soil and plants sampled at different hot spots in Japan, searching for reactor-borne plutonium using its isotopic ratio 240Pu/239Pu. By using accelerator mass spectrometry, we clearly demonstrated the release of Pu from the Fukushima Daiichi power plant: While most samples contained only the radionuclide signature of fallout plutonium, there is at least one vegetation sample whose isotope ratio (0.381 +/- 0.046) evidences that the Pu originates from a nuclear reactor (239+240Pu activity concentration 0.49 Bq/kg). Plutonium content and isotope ratios differ considerably even for very close sampling locations, e.g. the soil and the plants growing on it. This strong localization indicates a particulate Pu release, which is of high radiological risk if incorporated.

  15. Plutonium release from the 903 pad at Rocky Flats.

    PubMed

    Mongan, T R; Ripple, S R; Winges, K D

    1996-10-01

    The Colorado Department of Public Health and Environment (CDH) sponsored a study to reconstruct contaminant doses to the public from operations at the Rocky Flats nuclear weapons plant. This analysis of the accidental release of plutonium from the area known as the 903 Pad is part of the CDH study. In the 1950's and 1960's, 55-gallon drums of waste oil contaminated with plutonium, and uranium were stored outdoors at the 903 Pad. The drums corroded, leaking contaminated oil onto soil subsequently carried off-site by the wind. The plutonium release is estimated using environmental data from the 1960's and 1970's and an atmospheric transport model for fugitive dust. The best estimate of total plutonium release to areas beyond plant-owned property is about 0.26 TBq (7 Ci). Off-site airborne concentrations and deposition of plutonium are estimated for dose calculation purposes. The best estimate of the highest predicted off-site effective dose is approximately 72 microSv (7.2 mrem).

  16. An analysis of the background and development of regulations for the air transport of plutonium in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, J.D.; Luna, R.E.

    1989-01-01

    Several aspects of special packagings of plutonium for air transport should be recognized. The accident cases cited by Congressman Scheuer were incidents of local plutonium contamination in military aircraft accidents that had nuclear weapons on board. There is no disputing the occurrence of these military accidents but military weapon shipments were exempted from the provisions of the Scheuer amendment. There have been no recorded civilian aircraft crashes involving plutonium dispersal although there have been civilian aircraft crashes that were severe. Shortly after the introduction of the amendment by Mr. Scheuer on June 20, 1975, there was a serious aircraft crashmore » at JFK International. In his remarks to the House on July 24, 1975 Mr. Scheuer called attention to this event. The NRC originally opposed the provisions of the Scheuer amendment but with the passing of the amendment NRC compiled with its provisions. This led to the development of the plutonium air transport package PAT-1 in the US. The introduction of special rules for the air transport of plutonium into the US packaging regulations has been made them more severe than the provision of the international regulations, IAEA Safety Series 6. The IAEA is now discussing proposed regulations related to the air transport of plutonium. An additional legislative action was introduced the US in December 1987 which would require actual crash tests of packages intended for the air transport of plutonium, the Murkowski amendment. 13 refs.« less

  17. Effects of Aging on PuO2∙xH2O Particle Size in Alkaline Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.

    Between 1944 and 1989, 54.5 metric tons of the United States’ weapons-grade plutonium and an additional 12.9 metric tons of fuel-grade plutonium were produced and separated from irradiated fuel at the Hanford Site. Acidic high-activity wastes containing around 600 kg of plutonium were made alkaline and discharged to underground storage tanks from separations, isolation, and recycle processes to yield average plutonium concentration of about 0.003 grams per liter (or ~0.0002 wt%) in the ~200 million liter tank waste volume. The plutonium is largely associated with low-solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g.,more » iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO2∙xH2O, could undergo sufficient crystal growth through dissolution and reprecipitation in the alkaline tank waste to potentially become separable from neutron absorbing constituents by settling or sedimentation. Thermodynamic considerations and laboratory studies of systems chemically analogous to tank waste show that the plutonium formed in the alkaline tank waste by precipitation through neutralization from acid solution probably entered as 2–4-nm PuO2∙xH2O crystallite particles that, because of their low solubility and opposition from radiolytic processes, grow from that point at exceedingly slow rates, thus posing no risk of physical segregation.« less

  18. Radioecology of natural systems. Fifteenth annual progress report, August 1, 1976--July 31, 1977. [Plutonium transport in terrestrial ecosystems at Rocky Flats Plant with emphasis on biological effects on mule deer and coyotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whicker, F.W.

    1977-08-01

    This report summarizes project activities during the period August 1, 1976 through July 31, 1977. Four major areas of effort are reported, namely plutonium behavior in a terrestrial ecosystem at Rocky Flats, mule deer and coyote studies at Rocky Flats, ecological consequences of transuranics in the terrestrial environment, and lead geochemistry of an alpine lake ecosystem. Much of the first area of effort involved the synthesis of data and preparation of manuscripts, although some new data are reported on plutonium levels in small mammals, plant uptake of plutonium from contaminated soil, and plutonium deposition rates on macroplot 1. The mulemore » deer studies generated a substantial body of new information which will permit quantitative assessment of plutonium dispersion by deer that utilize contaminated areas. These studies involve population dynamics, movement and use patterns, food habits, ingestion rates of contaminated soil and vegetation and plutonium burdens of deer tissues. A related study of coyote food habits in summer at Rocky Flats is reported. A manuscript dealing with the question of ecological effects of transuranics was prepared. This manuscript incorporates data from Rocky Flats on characteristics of natural populations which occupy ecologically similar areas having differing levels of plutonium contamination. The lead geochemistry studies continued to generate new data but the data are not yet reported.« less

  19. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  20. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  1. RECOVERY OF PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Goeckermann, R.H.

    1961-04-01

    A process is given for recovering plutonium from an aqueous nitric acid zirconium-containing solution of an acidity between 0.2 and 1 N by adding fluoride anions (1.5 to 5 mg/l) and precipitating the plutonium with an excess of hydrogen peroxide at from 53 to 65 deg C.

  2. EPA Method: Rapid Radiochemical Method for Americium-241, Radium-226, Plutonium-238/-239, Radiostronium, and Isotopic Uranium in Water for Environmental Restoration Following Homeland Security Events

    EPA Pesticide Factsheets

    SAM lists this method for the qualitative determination of Americium-241, Radium-226, Plutonium-238, Plutonium-239 and isotopic uranium in drinking water samples using alpha spectrometry and radiostrontium using beta counting.

  3. METHOD FOR OBTAINING PLUTONIUM METAL FROM ITS TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-08-14

    A method was developed for obtaining plutonium metal by direct reduction of plutonium chloride, without the use of a booster, using calcium and lanthamum as a reductant, the said reduction being carried out at temperature in the range of 700 to 850 deg C and at about atmospheric pressure. (AEC)

  4. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOEpatents

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  5. ELECTRODEPOSITION OF PLUTONIUM

    DOEpatents

    Wolter, F.J.

    1957-09-10

    A process of electrolytically recovering plutonium from dilute aqueous solutions containing plutonium ions comprises electrolyzing the solution at a current density of about 0.44 ampere per square centimeter in the presence of an acetate-sulfate buffer while maintaining the pH of the solution at substantially 5 and using a stirred mercury cathode.

  6. Removal of plutonium from hepatic tissue

    DOEpatents

    Lindenbaum, Arthur; Rosenthal, Marcia W.

    1979-01-01

    A method is provided for removing plutonium from hepatic tissues by introducing into the body and blood stream a solution of the complexing agent DTPA and an adjunct thereto. The adjunct material induces aberrations in the hepatic tissue cells and removes intracellularly deposited plutonium which is normally unavailable for complexation with the DTPA. Once the intracellularly deposited plutonium has been removed from the cell by action of the adjunct material, it can be complexed with the DTPA present in the blood stream and subsequently removed from the body by normal excretory processes.

  7. Rapid Method for Sodium Hydroxide Fusion of Concrete and ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  8. METHOD OF SEPARATING PLUTONIUM FROM LANTHANUM FLUORIDE CARRIER

    DOEpatents

    Watt, G.W.; Goeckermann, R.H.

    1958-06-10

    An improvement in oxidation-reduction type methods of separating plutoniunn from elements associated with it in a neutron-irradiated uranium solution is described. The method relates to the separating of plutonium from lanthanum ions in an aqueous 0.5 to 2.5 N nitric acid solution by 'treating the solution, at room temperature, with ammonium sulfite in an amount sufficient to reduce the hexavalent plutonium present to a lower valence state, and then treating the solution with H/sub 2/O/sub 2/ thereby forming a tetravalent plutonium peroxide precipitate.

  9. PROCESS OF TREATING OR FORMING AN INSOLUBLE PLUTONIUM PRECIPITATE IN THE PRESENCE OF AN ORGANIC ACTIVE AGENT

    DOEpatents

    Balthis, J.H.

    1961-07-18

    Carrier precipitation processes for the separation of plutonium from fission products are described. In a process in which an insoluble precipitate is formed in a solution containing plutonium and fission products under conditions whereby plutonium is carried by the precipitate, and the precipitate is then separated from the remaining solution, an organic surface active agent is added to the mixture of precipitate and solution prior to separation of the precipitate from the supernatant solution, thereby improving the degree of separation of the precipitate from the solution.

  10. 1. VIEW OF THE CONTROL ROOM FOR THE XY RETRIEVER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF THE CONTROL ROOM FOR THE X-Y RETRIEVER. USING THE X-Y RETRIEVER, OPERATORS RETRIEVED PLUTONIUM METAL FROM THE PLUTONIUM STORAGE VAULTS (IN MODULE K) AND CONVEYED IT TO THE X-Y SHUTTLE AREA WHERE IT WAS CUT AND WEIGHED. FROM THE SHUTTLE AREA THE PLUTONIUM WAS CONVEYED TO MODULES A, J OR K FOR CASTING, OR MODULE B FOR ROLLING AND FORMING. (5/17/71) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  11. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  12. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS

    DOEpatents

    Nicholls, C.M.; Wells, I.; Spence, R.

    1959-10-13

    The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

  13. Radiation from plutonium 238 used in space applications

    NASA Technical Reports Server (NTRS)

    Keenan, T. K.; Vallee, R. E.; Powers, J. A.

    1972-01-01

    The principal mode of the nuclear decay of plutonium 238 is by alpha particle emission at a rate of 17 curies per gram. Gamma radiation also present in nuclear fuels arises primarily from the nuclear de-excitation of daughter nuclei as a result of the alpha decay of plutonium 238 and reactor-produced impurities. Plutonium 238 has a spontaneous fission half life of 4.8 x 10 to the 10th power years. Neutrons associated with this spontaneous fission are emitted at a rate of 28,000 neutrons per second per gram. Since the space fuel form of plutonium 238 is the oxide pressed into a cermet with molybdenum, a contribution to the neutron emission rate arises from (alpha, n) reactions with 0-17 and 0-18 which occur in natural oxygen.

  14. Evaluating ligands for use in polymer ligand film (PLF) for plutonium and uranium extraction

    DOE PAGES

    Rim, Jung H.; Peterson, Dominic S.; Armenta, Claudine E.; ...

    2015-05-08

    We describe a new analyte extraction technique using Polymer Ligand Film (PLF). PLFs were synthesized to perform direct sorption of analytes onto its surface for direct counting using alpha spectroscopy. The main focus of the new technique is to shorten and simplify the procedure for chemically isolating radionuclides for determination through a radiometric technique. 4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH 18C 6) and 2-ethylhexylphosphonic acid (HEH[EHP]) were examined for plutonium extraction. Di(2-ethyl hexyl) phosphoric acid (HDEHP) were examined for plutonium and uranium extraction. DtBuCH 18C 6 and HEH[EHP] were not effective in plutonium extraction. HDEHP PLFs were effective for plutonium but not formore » uranium.« less

  15. METHOD OF FORMING PLUTONIUM-BEARING CARRIER PRECIPITATES AND WASHING SAME

    DOEpatents

    Faris, B.F.

    1959-02-24

    An improvement of the lanthanum fluoride carrier precipitation process for the recovery of plutonium is presented. In this process the plutonium is first segregated in the LaF/su precipitate and this precipitate is later dissolved and the plutonium reprecipitated as the peroxide. It has been found that the loss of plutonium by its remaining in the supernatant liquid associated with the peroxide precipitate is greatly reduced if, before dissolution, the LaF/ sub 3/ precipitate is subjected to a novel washing step which constitutes the improvement of this patent. The step consists in intimately contactifng the LaF/ sub 3/ precipitate with a 4 to 10 percent solution of sodium hydrogen sulfate at a temperature between 10 and 95 deg C for 1/2 to 3 hours.

  16. Plutonium dissolution process

    DOEpatents

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  17. Structures of plutonium coordination compounds: A review of past work, recent single crystal x-ray diffraction results, and what we're learning about plutonium coordination chemistry

    NASA Astrophysics Data System (ADS)

    Neu, M. P.; Matonic, J. H.; Smith, D. M.; Scott, B. L.

    2000-07-01

    The compounds we have isolated and characterized include plutonium(III) and plutonium(IV) bound by ligands with a range of donor types and denticity (halide, phosphine oxide, hydroxamate, amine, sulfide) in a variety of coordination geometries. For example, we have obtained the first X-ray structure of Pu(III) complexed by a soft donor ligand. Using a "one pot" synthesis beginning with Pu metal strips and iodine in acetonitrile and adding trithiacyclononane we isolated the complex, PuI3(9S3)(MeCN)2 (Figure 1). On the other end of the coordination chemistry spectrum, we have obtained the first single crystal structure of the Pu(IV) hexachloro anion (Figure 2). Although this species has been used in plutonium purification via anion exchange chromatography for decades, the bond distances and exact structure were not known. We have also characterized the first plutonium-biomolecule complex, Pu(IV) bound by the siderophore desferrioxamine E.In this presentation we will review the preparation, structures, and importance of previously known coordination compounds and of those we have recently isolated. We will show the coordination chemistry of plutonium is rich and varied, well worth additional exploration.

  18. Radiation damage and annealing in plutonium tetrafluoride

    DOE PAGES

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey; ...

    2017-08-03

    A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, thermogravimetric/differential thermal analysis and X-ray diffraction evaluations were conducted to determine the plutonium's crystal structure, oxide content, and moisture content; these analysesmore » reported that the plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. And during the initial thermogravimetric/differential thermal analyses, it was discovered that an exothermic event occurred within the material near 414 °C. X-ray diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414 °C event. This commentary describes the series of thermogravimetric/differential thermal and X-ray diffraction analyses that were conducted as part of this investigation at PNNL.« less

  19. Straw man trade between multi-junction, gallium arsenide, and silicon solar cells

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.

    1995-01-01

    Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar cells and cost approximately five times as much per unit power at the cell level. A straw man trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A straw man trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552 thousand dollars per kilogram to launch and service science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. If the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and serviced at a price of approximately $58 thousand per kilogram. The trade shows that even if the multi-junction arrays are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $182 thousand per kilogram. This is still much less than original $552 thousand per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency solar cells for TRMM is far greater than the uncertainties in the analysis.

  20. The origin of the Avram Iancu U-Ni-Co-Bi-As mineralization, Băiţa (Bihor) metallogenic district, Bihor Mts., Romania

    NASA Astrophysics Data System (ADS)

    Zajzon, Norbert; Szentpéteri, Krisztián; Szakáll, Sándor; Kristály, Ferenc

    2015-10-01

    The Băiţa metallogenic district in the Bihor Mountains is a historically important mining area in Romania. Uranium mining took place between 1952 and 1998 from various deposits, but very little is known about the geology and mineralogy of these deposits. In this paper, we describe geology and mineralogy of uranium mineralization of the Avram Iancu uranium mine from waste dump samples collected before complete remediation of the site. Texturally and mineralogically complex assemblages of nickeline, cobaltite-gersdorffite solid solution, native Bi, Bi-sulfosalts, molybdenite, and pyrite-chalcopyrite-sphalerite occur with uraninite, "pitchblende," and brannerite in most of the ore samples. The association of nickel, cobalt, and arsenic with uranium is reminiscent of five-element association of vein type U-Ni-Co-Bi-As deposits; however, the Avram Iancu ores appear to be more replacement-type stratiform/stratabound. Avram Iancu ore samples contain multistage complex, skarn, uranium sulfide, arsenide assemblages that can be interpreted to have been formed in the retrograde cooling stages of the skarn hydrothermal system. This mineralizing system may have built-up along Upper Cretaceous-Paleogene "Banatite" intrusions of diorite-to-granite composition. The intrusions crosscut the underlying uraniferous Permian formations in the stacked NW-verging Biharia Nappe System. The mineralization forms stacked, multilayer replacement horizons, along carbonate-rich lithologies within the metavolcanic (tuffaceous) Muncel Series. Mineral paragenesis and some mineral chemistry suggest moderate-to-high <450, i.e., 350-310 °C, formation temperatures for the uranium sulfide stage along stratigraphically controlled replacement zones and minor veins. Uranium minerals formed abundantly in this early stage and include botryoidal, sooty and euhedral uraninite, brannerite, and coffinite. Later and/or lower-temperature mineral assemblages include heterogeneous, complexly zoned arsenide-sulfarsenide solid solutions associated with minute but abundant uranium minerals. Within the later arsenide-sulfarsenide mineral assemblage, there is great variation in Ni, Co, and S content with generally increasing arsenic content. Uranium minerals in this late-stage assemblage include very fine euhedral uraninite and brannerite inclusions in arsenide-sulfarsenide minerals. Native bismuth and Bi-sulfosalt krupkaite are observed in this As-S-rich assemblage strongly associated with cobaltite.

  1. Cost Trade Between Multi-Junction, Gallium Arsenide, and Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.

    1995-01-01

    Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar 2 cells and cost approximately five times as much per unit power at the cell level. A trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552,000 dollars per kilogram to launch and suppon3science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. ff the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and supported at a price of approximately $58,000 per kilogram. The trade shows that even if the multi-junction cells are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $180,000 per kilogram. This is still much less than the original $552,000 per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency solar cells for TRMM is far greater than the uncertainties in the analysis.

  2. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.S.

    1999-08-11

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitationmore » process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec ay of plutonium-241) in the dissolved precipitate, a value consistent with the recovery of europium, the americium surrogate.In a subsequent experiment, the plutonium solubility following an oxalate precipitation to simulate the preparation of a slurry feed for a batch melter was 21 mg/mL at 35 degrees C. The increase in solubility compared to the value measured during the pretreatment experiment was attributed to the increased nitrate concentration and ensuing increase in plutonium complexation. The solubility of the plutonium following a precipitant wash with 0.1M oxalic acid was unchanged. The recovery of plutonium from the precipitate slurry was greater than 97 percent allowing an estimation that approximately 92 percent of the plutonium in Tank 17.1 will report to the glass. The behavior of the lanthanides and soluble metal impurities was consistent with the behavior seen during the pretreatment experiment. A trace level material balance showed that 99.9 percent of the americium w as recovered from the precipitate slurry. The overall recovery of americium from the pretreatment and feed preparation processes was greater than 97 percent, which was consistent with the measured recovery of the europium surrogate.« less

  3. Radiological analysis of plutonium glass batches with natural/enriched boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainisch, R.

    2000-06-22

    The disposition of surplus plutonium inventories by the US Department of Energy (DOE) includes the immobilization of certain plutonium materials in a borosilicate glass matrix, also referred to as vitrification. This paper addresses source terms of plutonium masses immobilized in a borosilicate glass matrix where the glass components include both natural boron and enriched boron. The calculated source terms pertain to neutron and gamma source strength (particles per second), and source spectrum changes. The calculated source terms corresponding to natural boron and enriched boron are compared to determine the benefits (decrease in radiation source terms) for to the use ofmore » enriched boron. The analysis of plutonium glass source terms shows that a large component of the neutron source terms is due to (a, n) reactions. The Americium-241 and plutonium present in the glass emit alpha particles (a). These alpha particles interact with low-Z nuclides like B-11, B-10, and O-17 in the glass to produce neutrons. The low-Z nuclides are referred to as target particles. The reference glass contains 9.4 wt percent B{sub 2}O{sub 3}. Boron-11 was found to strongly support the (a, n) reactions in the glass matrix. B-11 has a natural abundance of over 80 percent. The (a, n) reaction rates for B-10 are lower than for B-11 and the analysis shows that the plutonium glass neutron source terms can be reduced by artificially enriching natural boron with B-10. The natural abundance of B-10 is 19.9 percent. Boron enriched to 96-wt percent B-10 or above can be obtained commercially. Since lower source terms imply lower dose rates to radiation workers handling the plutonium glass materials, it is important to know the achievable decrease in source terms as a result of boron enrichment. Plutonium materials are normally handled in glove boxes with shielded glass windows and the work entails both extremity and whole-body exposures. Lowering the source terms of the plutonium batches will make the handling of these materials less difficult and will reduce radiation exposure to operating workers.« less

  4. Neutronics calculations on the impact of burnable poisons to safety and non-proliferation aspects of inert matrix fuel

    NASA Astrophysics Data System (ADS)

    Pistner, C.; Liebert, W.; Fujara, F.

    2006-06-01

    Inert matrix fuels (IMF) with plutonium may play a significant role to dispose of stockpiles of separated plutonium from military or civilian origin. For reasons of reactivity control of such fuels, burnable poisons (BP) will have to be used. The impact of different possible BP candidates (B, Eu, Er and Gd) on the achievable burnup as well as on safety and non-proliferation aspects of IMF are analyzed. To this end, cell burnup calculations have been performed and burnup dependent reactivity coefficients (boron worth, fuel temperature and moderator void coefficient) were calculated. All BP candidates were analyzed for one initial BP concentration and a range of different initial plutonium-concentrations (0.4-1.0 g cm-3) for reactor-grade plutonium isotopic composition as well as for weapon-grade plutonium. For the two most promising BP candidates (Er and Gd), a range of different BP concentrations was investigated to study the impact of BP concentration on fuel burnup. A set of reference fuels was identified to compare the performance of uranium-fuels, MOX and IMF with respect to (1) the fraction of initial plutonium being burned, (2) the remaining absolute plutonium concentration in the spent fuel and (3) the shift in the isotopic composition of the remaining plutonium leading to differences in the heat and neutron rate produced. In the case of IMF, the remaining Pu in spent fuel is unattractive for a would be proliferator. This underlines the attractiveness of an IMF approach for disposal of Pu from a non-proliferation perspective.

  5. Comparisons of the skeletal locations of putative plutonium-induced osteosarcomas in humans with those in beagle dogs and with naturally occurring tumors in both species.

    PubMed

    Miller, Scott C; Lloyd, Ray D; Bruenger, Fred W; Krahenbuhl, Melinda P; Polig, Erich; Romanov, Sergey A

    2003-11-01

    Osteosarcomas occur from exposures to bone-seeking, alpha-particle-emitting isotopes, particularly plutonium. The skeletal distribution of putative 239Pu-induced osteosarcomas reported in Mayak Metallurgical and Radiochemical Plutonium Plant workers is compared with those observed in canine studies, and these are compared with distributions of naturally occurring osteosarcomas in both species. In the Mayak workers, 29% and 71% of the osteosarcomas were in the peripheral and central skeleton, respectively, with the spine having the most tumors (36%). An almost identical distribution of plutonium-induced osteosarcomas was reported for dogs injected with 239Pu as young adults. This distribution of osteosarcomas is quite different from the distributions of naturally occurring osteosarcomas for both species. In the Cooperative Osteosarcoma Study Group in humans (1,736 osteosarcomas from all ages), over 91% of the tumors occurred in the peripheral skeleton. In the Mayo Clinic group of older individuals (>40 years old), over 60% of the osteosarcomas appeared in the peripheral skeleton. The distribution of naturally occurring osteosarcomas in the canine is similar to that in the adult human. The similarities of the distributions of plutonium-associated osteosarcomas in the Mayak workers with those found in experimental studies suggest that many of the reported osteosarcomas may have been associated with plutonium exposures. These results also support the experimental paradigm that plutonium osteosarcomas have a preference for well vascularized cancellous bone sites. These sites have a greater initial deposition of plutonium, but also greater turnover due to elevated bone remodeling rates.

  6. Study on Characteristic of Temperature Coefficient of Reactivity for Plutonium Core of Pebbled Bed Reactor

    NASA Astrophysics Data System (ADS)

    Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.

  7. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  8. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...

  9. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...

  10. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...

  11. 11. SIDE VIEW OF INSTALLATION OF A CONTINUOUS ROTARYTUBE HYDROFLUORINATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SIDE VIEW OF INSTALLATION OF A CONTINUOUS ROTARY-TUBE HYDROFLUORINATOR LOCATED IN ROOM 146. THE HYDROFLUORINATOR IS BEING INSTALLED INSIDE A GLOVE BOX. HYDROFLUORINATION CONVERTED PLUTONIUM OXIDE TO PLUTONIUM TETRAFLUORIDE. (1/11/62) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  12. 10. VIEW OF CALCINER IN ROOM 146148. THE CALCINER HEATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF CALCINER IN ROOM 146-148. THE CALCINER HEATED PLUTONIUM PEROXIDE TO CONVERT IT TO PLUTONIUM OXIDE. THE PROCESS REMOVED RESIDUAL WATER AND NITRIC ACID LEAVING A DRY, POWDERED PRODUCT. (4/29/65) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  13. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...

  14. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  15. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...

  16. PREPARATION OF HALIDES OF PLUTONIUM

    DOEpatents

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  17. SEPARATION OF FISSION PRODUCT VALUES FROM THE HEXAVALENT PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Davies, T.H.

    1959-12-15

    An improved precipitation of fission products on bismuth phosphate from an aqueous mineral acid solution also containing hexavalent plutonium by incorporating, prior to bismuth phosphate precipitation, from 0.05 to 2.5 grams/ liter of zirconium phosphate, niobium oxide. and/or lanthanum fluoride is described. The plutonium remains in solution.

  18. Enhanced ionization efficiency in TIMS analyses of plutonium and americium using porous ion emitters

    DOE PAGES

    Baruzzini, Matthew L.; Hall, Howard L.; Watrous, Matthew G.; ...

    2016-12-05

    Investigations of enhanced sample utilization in thermal ionization mass spectrometry (TIMS) using porous ion emitter (PIE) techniques for the analyses of trace quantities of americium and plutonium were performed. Repeat ionization efficiency (i.e., the ratio of ions detected to atoms loaded on the filament) measurements were conducted on sample sizes ranging from 10–100 pg for americium and 1–100 pg for plutonium using PIE and traditional (i.e., a single, zone-refined rhenium, flat filament ribbon with a carbon ionization enhancer) TIMS filament sources. When compared to traditional filaments, PIEs exhibited an average boost in ionization efficiency of ~550% for plutonium and ~1100%more » for americium. A maximum average efficiency of 1.09% was observed at a 1 pg plutonium sample loading using PIEs. Supplementary trials were conducted using newly developed platinum PIEs to analyze 10 pg mass loadings of plutonium. As a result, platinum PIEs exhibited an additional ~134% boost in ion yield over standard PIEs and ~736% over traditional filaments at the same sample loading level.« less

  19. Mortality among workers with chronic radiation sickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shilnikova, N.S.; Koshurnikova, N.A.; Bolotnikova, M.G.

    1996-07-01

    This study is based on a registry containing medical and dosimetric data of the employees who began working at different plants of the Mayak nuclear complex between 1948 and 1958 who developed chronic radiation sickness. Mayak is the first nuclear weapons plutonium production enterprise built in Russia and includes nuclear reactors, a radiochemical plant for plutonium separation, and a plutonium production enterprise built in Russia and includes nuclear reactors, a radiochemical plant for plutonium separation, and a plutonium production plant.Workers whose employment began between 1948 and 1958 exhibited a 6-28% incidence of chronic radiation sickness at the different facilities. Theremore » were no cases of chronic radiation sickness among those who began working after 1958. Data on doses of external whole-body gamma-irradiation and mortality in workers with chronic radiation sickness are presented. 6 refs., 5 tabs.« less

  20. Real-time monitoring of plutonium content in uranium-plutonium alloys

    DOEpatents

    Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas

    2015-09-01

    A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.

  1. Plutonium segregation in glassy aerodynamic fallout from a nuclear weapon test

    DOE PAGES

    Holliday, K. S.; Dierken, J. M.; Monroe, M. L.; ...

    2017-01-11

    Our study combines electron microscopy equipped with energy dispersive spectroscopy to probe major element composition and autoradiography to map plutonium in order to examine the spatial relationships between plutonium and fallout composition in aerodynamic glassy fallout from a nuclear weapon test. We interrogated a sample set of 48 individual fallout specimens in order to reveal that the significant chemical heterogeneity of this sample set could be described compositionally with a relatively small number of compositional endmembers. Furthermore, high concentrations of plutonium were never associated with several endmember compositions and concentrated with the so-called mafic glass endmember. Our result suggests thatmore » it is the physical characteristics of the compositional endmembers and not the chemical characteristics of the individual component elements that govern the un-burnt plutonium distribution with respect to major element composition in fallout.« less

  2. Producing gallium arsenide crystals in space

    NASA Technical Reports Server (NTRS)

    Randolph, R. L.

    1984-01-01

    The production of high quality crystals in space is a promising near-term application of microgravity processing. Gallium arsenide is the selected material for initial commercial production because of its inherent superior electronic properties, wide range of market applications, and broad base of on-going device development effort. Plausible product prices can absorb the high cost of space transportation for the initial flights provided by the Space Transportation System. The next step for bulk crystal growth, beyond the STS, is planned to come later with the use of free flyers or a space station, where real benefits are foreseen. The use of these vehicles, together with refinement and increasing automation of space-based crystal growth factories, will bring down costs and will support growing demands for high quality GaAs and other specialty electronic and electro-optical crystals grown in space.

  3. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  4. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garlick, G. F. J.

    1987-01-01

    High-efficiency gallium arsenide cells, made by the liquid epitaxy method (LPE), have been irradiated with 1-MeV electrons up to fluences of 10 to the 16th e/sq cm. Measurements have been made of cell spectral response and dark and light-excited current-voltage characteristics and analyzed using computer-based models to determine underlying parameters such as damage coefficients. It is possible to use spectral response to sort out damage effects in the different cell component layers. Damage coefficients are similar to other reported in the literature for the emitter and buffer (base). However, there is also a damage effect in the window layer and possibly at the window emitter interface similar to that found for proton-irradiated liquid-phase epitaxy-grown cells. Depletion layer recombination is found to be less than theoretically expected at high fluence.

  5. Temperature dependence of carrier capture by defects in gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Modine, Normand A.

    2015-08-01

    This report examines the temperature dependence of the capture rate of carriers by defects in gallium arsenide and compares two previously published theoretical treatments of this based on multi phonon emission (MPE). The objective is to reduce uncertainty in atomistic simulations of gain degradation in III-V HBTs from neutron irradiation. A major source of uncertainty in those simulations is poor knowledge of carrier capture rates, whose values can differ by several orders of magnitude between various defect types. Most of this variation is due to different dependence on temperature, which is closely related to the relaxation of the defect structuremore » that occurs as a result of the change in charge state of the defect. The uncertainty in capture rate can therefore be greatly reduced by better knowledge of the defect relaxation.« less

  6. The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Anikara, R.

    1972-01-01

    The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.

  7. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.

    PubMed

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P

    2015-06-11

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

  8. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    PubMed Central

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  9. Monolayer-by-monolayer compositional analysis of InAs/InAsSb superlattices with cross-sectional STM

    DOE PAGES

    Wood, M. R.; Kanedy, K.; Lopez, F.; ...

    2015-02-23

    In this paper, we use cross-sectional scanning tunneling microscopy (STM) to reconstruct the monolayer-by-monolayer composition profile across a representative subset of MBE-grown InAs/InAsSb superlattice layers and find that antimony segregation frustrates the intended compositional discontinuities across both antimonide-on-arsenide and arsenide-on-antimonide heterojunctions. Graded, rather than abrupt, interfaces are formed in either case. We likewise find that the incorporated antimony per superlattice period varies measurably from beginning to end of the multilayer stack. Finally, although the intended antimony discontinuities predict significant discrepancies with respect to the experimentally observed high-resolution x-ray diffraction spectrum, dynamical simulations based on the STM-derived profiles provide an excellentmore » quantitative match to all important aspects of the x-ray data.« less

  10. Two stream instability in n-type gallium arsenide semiconductor quantum plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Muley, Apurva

    2018-01-01

    By using quantum hydrodynamic model, we derive a generalized dielectric response function for two stream instability (convective only) in n-type gallium arsenide semiconductor plasma. We investigate the phase and amplification profiles of two stream instability with externally applied electric field ranging from 2600 to 4000 kV m-1 in presence of non-dimensional quantum parameter- H. In this range, a significant number of electrons in satellite valley become comparable to the number of electrons in central valley. The presence of quantum corrections in plasma medium induces two novel modes; one of it has amplifying nature and propagates in forward direction. It also modifies the spectral profile of four pre-existing modes in classical plasma. The existence of two stream instability is also established analytically by deriving the real part of longitudinal electrokinetic power flow density.

  11. A FETISH for gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barron, A.R.

    1996-12-31

    An overview of the development of a new dielectric material, cubic-GaS, from the synthesis of new organometallic compounds to the fabrication of a new class of gallium arsenide based transistor is presented as a representative example of the possibility that inorganic chemistry can directly effect the development of new semiconductor devices. The gallium sulfido compound [({sup t}Bu)GaS]{sub 4}, readily prepared from tri-tert-butyl gallium, may be used as a precursor for the growth of GaS thin films by metal organic chemical vapor deposition (MOCVD). Photoluminescence and electronic measurements indicate that this material provides a passivation coating for GaAs. Furthermore, the insulatingmore » properties of cubic-GaS make it suitable as the insulating gate layer in a new class of GaAs transistor: a field effect transistor with a sulfide heterojunction (FETISH).« less

  12. Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors.

    PubMed

    Dong, Xiaoli; Zhou, Huaxue; Yang, Huaixin; Yuan, Jie; Jin, Kui; Zhou, Fang; Yuan, Dongna; Wei, Linlin; Li, Jianqi; Wang, Xinqiang; Zhang, Guangming; Zhao, Zhongxian

    2015-01-14

    Previous experimental results have shown important differences between iron selenide and arsenide superconductors which seem to suggest that the high-temperature superconductivity in these two subgroups of iron-based families may arise from different electronic ground states. Here we report the complete phase diagram of a newly synthesized superconducting (SC) system, (Li1-xFex)OHFeSe, with a structure similar to that of FeAs-based superconductors. In the non-SC samples, an antiferromagnetic (AFM) spin-density-wave (SDW) transition occurs at ∼127 K. This is the first example to demonstrate such an SDW phase in an FeSe-based superconductor system. Transmission electron microscopy shows that a well-known √5×√5 iron vacancy ordered state, resulting in an AFM order at ∼500 K in AyFe2-xSe2 (A = metal ions) superconductor systems, is absent in both non-SC and SC samples, but a unique superstructure with a modulation wave vector q = (1)/2(1,1,0), identical to that seen in the SC phase of KyFe2-xSe2, is dominant in the optimal SC sample (with an SC transition temperature Tc = 40 K). Hence, we conclude that the high-Tc superconductivity in (Li1-xFex)OHFeSe stems from the similarly weak AFM fluctuations as FeAs-based superconductors, suggesting a universal physical picture for both iron selenide and arsenide superconductors.

  13. Assessment of plutonium in the Savannah River Site environment. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.

    1992-12-31

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclearmore » weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.« less

  14. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration of plutonium in the subsurface.

  15. Estimation of Plutonium-240 Mass in Waste Tanks Using Ultra-Sensitive Detection of Radioactive Xenon Isotopes from Spontaneous Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowyer, Theodore W.; Gesh, Christopher J.; Haas, Daniel A.

    This report details efforts to develop a technique which is able to detect and quantify the mass of 240Pu in waste storage tanks and other enclosed spaces. If the isotopic ratios of the plutonium contained in the enclosed space is also known, then this technique is capable of estimating the total mass of the plutonium without physical sample retrieval and radiochemical analysis of hazardous material. Results utilizing this technique are reported for a Hanford Site waste tank (TX-118) and a well-characterized plutonium sample in a laboratory environment.

  16. PLUTONIUM ELECTROREFINING CELLS

    DOEpatents

    Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

    1963-07-16

    Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

  17. PLUTONIUM SEPARATION METHOD

    DOEpatents

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  18. Development of first ever scanning probe microscopy capabilities for plutonium

    NASA Astrophysics Data System (ADS)

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; Vodnik, Douglas R.; Ramos, Michael; Richmond, Scott; Moore, David P.; Venhaus, Thomas J.; Joyce, Stephen A.; Usov, Igor O.

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. These first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  19. Development of first ever scanning probe microscopy capabilities for plutonium

    DOE PAGES

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; ...

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. In conclusion, these first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  20. URANOUS IODATE AS A CARRIER FOR PLUTONIUM

    DOEpatents

    Miller, D.R.; Seaborg, G.T.; Thompson, S.G.

    1959-12-15

    A process is described for precipitating plutonium on a uranous iodate carrier from an aqueous acid solution conA plutonium solution more concentrated than the original solution can then be obtained by oxidizing the uranium to the hexavalent state and dissolving the precipitate, after separating the latter from the original solution, by means of warm nitric acid.

  1. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  2. Radioisotope contaminations from releases of the Tomsk-Seversk nuclear facility (Siberia, Russia).

    PubMed

    Gauthier-Lafaye, F; Pourcelot, L; Eikenberg, J; Beer, H; Le Roux, G; Rhikvanov, L P; Stille, P; Renaud, Ph; Mezhibor, A

    2008-04-01

    Soils have been sampled in the vicinity of the Tomsk-Seversk facility (Siberia, Russia) that allows us to measure radioactive contaminations due to atmospheric and aquatic releases. Indeed soils exhibit large inventories of man-made fission products including 137Cs (ranging from 33,000 to 68,500 Bq m(-2)) and actinides such as plutonium (i.e. 239+240Pu from 420 to 5900 Bq m(-2)) or 241Am (160-1220 Bq m(-2)). Among all sampling sites, the bank of the Romashka channel exhibits the highest radioisotope concentrations. At this site, some short half-life gamma emitters were detected as well indicating recent aquatic discharge in the channel. In comparison, soils that underwent atmospheric depositions like peat and forest soils exhibit lower activities of actinides and 137Cs. Soil activities are too high to be related solely to global fallout and thus the source of plutonium must be discharges from the Siberian Chemical Combine (SCC) plant. This is confirmed by plutonium isotopic ratios measured by ICP-MS; the low 241Pu/239Pu and 240Pu/239Pu atomic ratios with respect to global fallout ratio or civil nuclear fuel are consistent with weapons grade signatures. Up to now, the influence of Tomsk-Seversk plutonium discharges was speculated in the Ob River and its estuary. Isotopic data from the present study show that plutonium measured in SCC probably constitutes a significant source of plutonium in the aquatic environment, together with plutonium from global fallout and other contaminated sites including Tomsk, Mayak (Russia) and Semipalatinsk (Republic of Kazakhstan). It is estimated that the proportion of plutonium from SCC source can reach 45% for 239Pu and 60% for 241Pu in the sediments.

  3. 40 CFR 469.26 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Pollutant or pollutant property Maximum for any 1 day Average of daily values for 30 consecutive days.... 3 The arsenic (T) limitation only applies to manufacturers of gallium or indium arsenide crystals...

  4. Optical Refrigeration

    DTIC Science & Technology

    2007-12-01

    confined to either glasses and crystals doped with rare-earth (RE) elements or direct-bandgap semiconductors such as gallium arsenide. Although laser...condition. Highly controlled epitaxial growth techniques, such as metal–organic chemical vapour deposition (MOCVD) can produce very low surface

  5. High-Temperature Oxidation of Plutonium Surrogate Metals and Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, Joshua C.; Krantz, Kelsie E.; Christian, Jonathan H.

    The Plutonium Management and Disposition Agreement (PMDA) is a nuclear non-proliferation agreement designed to remove 34 tons of weapons-grade plutonium from Russia and the United States. While several removal options have been proposed since the agreement was first signed in 2000, processing the weapons-grade plutonium to mixed-oxide (MOX) fuel has remained the leading candidate for achieving the goals of the PMDA. However, the MOX program has received its share of criticisms, which causes its future to be uncertain. One alternative pathway for plutonium disposition would involve oxidizing the metal followed by impurity down blending and burial in the Waste Isolationmore » Pilot Plant (WIPP) in Carlsbad, New Mexico. This pathway was investigated by use of a hybrid microwave and a muffle furnace with Fe and Al as surrogate materials. Oxidation occurred similarly in the microwave and muffle furnace; however, the microwave process time was significantly faster.« less

  6. The underwater coincidence counter (UWCC) for plutonium measurements in mixed oxide fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccleston, G.W.; Menlove, H.O.; Abhold, M.

    1998-12-31

    The use of fresh uranium-plutonium mixed oxide (MOX) fuel in light-water reactors (LWR) is increasing in Europe and Japan and it is necessary to verify the plutonium content in the fuel for international safeguards purposes. The UWCC is a new instrument that has been designed to operate underwater and nondestructively measure the plutonium in unirradiated MOX fuel assemblies. The UWCC can be quickly configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies. The plutonium loading per unit length is measured using the UWCC to precisions of less than 1% in a measurement time of 2 tomore » 3 minutes. Initial calibrations of the UWCC were completed on measurements of MOX fuel in Mol, Belgium. The MCNP-REN Monte Carlo simulation code is being benchmarked to the calibration measurements to allow accurate simulations for extended calibrations of the UWCC.« less

  7. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  8. Microprobe Analysis of Pu-Ga Standards

    DOE PAGES

    Wall, Angélique D.; Romero, Joseph P.; Schwartz, Daniel

    2017-08-04

    In order to obtain quantitative analysis using an Electron Scanning Microprobe it is essential to have a standard of known composition. Most elemental and multi-elemental standards can be easily obtained from places like Elemental Scientific or other standards organizations that are NIST (National Institute of Standards and Technology) traceable. It is, however, more challenging to find standards for plutonium. Past work performed in our group has typically involved using the plutonium sample to be analysed as its own standard as long as all other known components of the sample have standards to be compared to [1,2,3]. Finally, this method worksmore » well enough, but this experiment was performed in order to develop a more reliable standard for plutonium using five samples of known chemistry of a plutonium gallium mix that could then be used as the main plutonium and gallium standards for future experiments.« less

  9. Radiolysis of hexavalent plutonium in solutions of uranyl nitrate containing fission product simulants

    NASA Astrophysics Data System (ADS)

    Rance, Peter J. W.; Zilberman, B. Ya.; Akopov, G. A.

    2000-07-01

    The effect of the inherent radioactivity on the chemical state of plutonium ions in solution was recognized very shortly after the first macroscopic amounts of plutonium became available and early studies were conducted as part of the Manhattan Project. However, the behavior of plutonium ions, in nitric acid especially, has been found to be somewhat complex, so much so that a relatively modern summary paper included the comment that, "The vast amount of work carried out in nitric acid solutions can not be adequately summarized. Suffice it to say results in these solutions are plagued with irreproducibility and induction periods…" Needless to say, the presence of other ions in solution, as occurs when irradiated nuclear fuel is dissolved, further complicates matters. The purpose of the work described below was to add to the rather small amount of qualitative data available relating to the radiolytic behavior of plutonium in solutions of irradiated nuclear fuel.

  10. Microprobe Analysis of Pu-Ga Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Angélique D.; Romero, Joseph P.; Schwartz, Daniel

    In order to obtain quantitative analysis using an Electron Scanning Microprobe it is essential to have a standard of known composition. Most elemental and multi-elemental standards can be easily obtained from places like Elemental Scientific or other standards organizations that are NIST (National Institute of Standards and Technology) traceable. It is, however, more challenging to find standards for plutonium. Past work performed in our group has typically involved using the plutonium sample to be analysed as its own standard as long as all other known components of the sample have standards to be compared to [1,2,3]. Finally, this method worksmore » well enough, but this experiment was performed in order to develop a more reliable standard for plutonium using five samples of known chemistry of a plutonium gallium mix that could then be used as the main plutonium and gallium standards for future experiments.« less

  11. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Duffield, R.B.

    1959-02-24

    S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.

  12. Density of Plutonium Turnings Generated from Machining Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, John Robert; Vigil, Duane M.; Jachimowski, Thomas A.

    The purpose of this project was to determine the density of plutonium (Pu) turnings generated from the range of machining activities, using both surrogate material and machined Pu turnings. Verify that 500 grams (g) of plutonium will fit in a one quart container using a surrogate equivalent volume and that 100 grams of Pu will fit in a one quart Savy container.

  13. Airborne plutonium-239 and americium-241 concentrations measured from the 125-meter Hanford Meteorological Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehmel, G.A.

    1978-01-01

    Airborne plutonium-239 and americium-241 concentrations and fluxes were measured at six heights from 1.9 to 122 m on the Hanford meteorological tower. The data show that plutonium-239 was transported on nonrespirable and small particles at all heights. Airborne americium-241 concentrations on small particles were maximum at the 91 m height.

  14. PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL

    DOEpatents

    Moore, R.H.

    1964-03-24

    A process of recovering plutonium from fuel by dissolution in molten KAlCl/sub 4/ double salt is described. Molten lithium chloride plus stannous chloride is added to reduce plutonium tetrachloride to the trichloride, which is dissolved in a lithium chloride phase while the uranium, as the tetrachloride, is dissolved in a double-salt phase. Separation of the two phases is discussed. (AEC)

  15. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY ADSORPTION

    DOEpatents

    Seaborg, G.T.; Willard, J.E.

    1958-01-01

    A method is presented for the separation of plutonium from solutions containing that element in a valence state not higher than 41 together with uranium ions and fission products. This separation is accomplished by contacting the solutions with diatomaceous earth which preferentially adsorbs the plutonium present. Also mentioned as effective for this adsorbtive separation are silica gel, filler's earth and alumina.

  16. METHOD OF RECOVERING PLUTONIUM VALUES FROM AQUEOUS SOLUTIONS BY CARRIER PRECIPITATION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1959-11-01

    A process is presented for pretreating aqueous nitric acid- plutonium solutions containing a small quantity of hydrazine that has formed as a decomposition product during the dissolution of neutron-bombarded uranium in nitric acid and that impairs the precipitation of plutonium on bismuth phosphate. The solution is digested with alkali metal dichromate or potassium permanganate at between 75 and 100 deg C; sulfuric acid at approximately 75 deg C and sodium nitrate, oxaiic acid plus manganous nitrate, or hydroxylamine are added to the solution to secure the plutonium in the tetravalent state and make it suitable for precipitation on BiPO/sub 4/.

  17. Integrated approaches for reducing sample size for measurements of trace elemental impurities in plutonium by ICP-OES and ICP-MS

    DOE PAGES

    Xu, Ning; Chamberlin, Rebecca M.; Thompson, Pam; ...

    2017-10-07

    This study has demonstrated that bulk plutonium chemical analysis can be performed at small scales (\\50 mg material) through three case studies. Analytical methods were developed for ICP-OES and ICP-MS instruments to measure trace impurities and gallium content in plutonium metals with comparable or improved detection limits, measurement accuracy and precision. In two case studies, the sample size has been reduced by 109, and in the third case study, by as much as 50009, so that the plutonium chemical analysis can be performed in a facility rated for lower-hazard and lower-security operations.

  18. METHOD AND MEANS FOR ELECTROLYTIC PURIFICATION OF PLUTONIUM

    DOEpatents

    Bjorklund, C.W.; Benz, R.; Maraman, W.J.; Leary, J.A.; Walsh, K.A.

    1960-02-01

    The technique of electrodepositing pure plutonium from a fused salt electrolyte of PuCl/sub 3/ and aixati metal halides is described. When an iron cathode is used, the plutonium deposit alloys therewith in the liquid state at the 400 to 600 deg C operating temperature, such liquid being allowed to drip through holes in the cathode and collect in a massive state in a tantallum cup. The process is adaptable to continuous processing by the use of depleted plutonium fuel as the anode: good to excellent separation from fission products is obtained with a Pu--Fe "fission" anode containing representative fractions of Ce, Ru, Zr, La, Mo, and Nb.

  19. Integrated approaches for reducing sample size for measurements of trace elemental impurities in plutonium by ICP-OES and ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ning; Chamberlin, Rebecca M.; Thompson, Pam

    This study has demonstrated that bulk plutonium chemical analysis can be performed at small scales (\\50 mg material) through three case studies. Analytical methods were developed for ICP-OES and ICP-MS instruments to measure trace impurities and gallium content in plutonium metals with comparable or improved detection limits, measurement accuracy and precision. In two case studies, the sample size has been reduced by 109, and in the third case study, by as much as 50009, so that the plutonium chemical analysis can be performed in a facility rated for lower-hazard and lower-security operations.

  20. PROCESSING OF NEUTRON-IRRADIATED URANIUM

    DOEpatents

    Hopkins, H.H. Jr.

    1960-09-01

    An improved "Purex" process for separating uranium, plutonium, and fission products from nitric acid solutions of neutron-irradiated uranium is offered. Uranium is first extracted into tributyl phosphate (TBP) away from plutonium and fission products after adjustment of the acidity from 0.3 to 0.5 M and heating from 60 to 70 deg C. Coextracted plutonium, ruthenium, and fission products are fractionally removed from the TBP by three scrubbing steps with a 0.5 M nitric acid solution of ferrous sulfamate (FSA), from 3.5 to 5 M nitric acid, and water, respectively, and the purified uranium is finally recovered from the TBP by precipitation with an aqueous solution of oxalic acid. The plutonium in the 0.3 to 0.5 M acid solution is oxidized to the tetravalent state with sodium nitrite and extracted into TBP containing a small amount of dibutyl phosphate (DBP). Plutonium is then back-extracted from the TBP-DBP mixture with a nitric acid solution of FSA, reoxidized with sodium nitrite in the aqueous strip solution obtained, and once more extracted with TBP alone. Finally the plutonium is stripped from the TBP with dilute acid, and a portion of the strip solution thus obtained is recycled into the TBPDBP for further purification.

  1. Selecting a plutonium vitrification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouan, A.

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing ofmore » plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.« less

  2. Preserving Plutonium-244 as a National Asset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Bradley D; Alexander, Charles W; Benker, Dennis

    Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium.more » Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is separated, it would occupy a small volume and would be inexpensive to store while an enrichment capability is developed. Very small quantities could be enriched in existing mass separators to support critical needs.« less

  3. Photoemission Spectroscopy of Delta- Plutonium: Experimental Review

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.

    2002-03-01

    The electronic structure of Plutonium, particularly delta- Plutonium, remains ill defined and without direct experimental verification. Recently, we have embarked upon a program of study of alpha- and delta- Plutonium, using synchrotron radiation from the Advanced Light Source in Berkeley, CA, USA [1]. This work is set within the context of Plutonium Aging [2] and the complexities of Plutonium Science [3]. The resonant photoemission of delta-plutonium is in partial agreement with an atomic, localized model of resonant photoemission, which would be consistent with a correlated electronic structure. The results of our synchrotron- based studies will be compared with those of recent laboratory- based works [4,5,6]. The talk will conclude with a brief discussion of our plans for the future, such as the performance of spin-resolving and dichroic photoemission measurements of Plutonium [7] and the development of single crystal ultrathin films of Plutonium. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, D.K. Shuh, G. van der Laan, D.A. Arena, and J.G. Tobin, “5f Resonant Photoemission from Plutonium”, UCRL-JC-140782, Surf. Sci. Lett., accepted October 2001. 2. B.D. Wirth, A.J. Schwartz, M.J. Fluss, M.J. Caturla, M.A. Wall, and W.G. Wolfer, MRS Bulletin 26, 679 (2001). 3. S.S. Hecker, MRS Bulletin 26, 667 (2001). 4. T. Gouder, L. Havela, F. Wastin, and J. Rebizant, Europhys. Lett. 55, 705 (2001); MRS Bulletin 26, 684 (2001); Phys. Rev. Lett. 84, 3378 (2000). 5. A.J. Arko, J.J. Joyce, L. Morales, J. Wills, J. Lashley, F. Wastin, and J. Rebizant, Phys. Rev. B 62, 1773 (2000). 6. L.E. Cox, O. Eriksson, and B.R. Cooper, Phys. Rev. B 46, 13571 (1992). 7. J. Tobin, D.A. Arena, B. Chung, P. Roussel, J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, and D.K. Shuh, “Photoelectron Spectroscopy of Plutonium at the Advanced Light Source”, UCRL-JC-145703, J. Nucl. Sci. Tech./ Proc. of Actinides 2001, submitted November 2001.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so thatmore » very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.« less

  5. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near-infrared range

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir F.

    2016-09-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.

  6. 40 CFR 469.28 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... property Maximum for any 1 day Average of daily values for 30 consecutive days Milligrams per liter (mg/l...) limitation only applies to manufacturers of gallium or indium arsenide crystals. (b) A new source submitting...

  7. Evaluation of solar cell materials for a Solar Power Satellite

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.; Almgren, D. W.; Csigi, K. I.

    1980-01-01

    Alternative solar cell materials being considered for the solar power satellite are described and price, production, and availability projections through the year 2000 are presented. The chief materials considered are silicon and gallium arsenide.

  8. Cuprous selenide and sulfide form improved photovoltaic barriers

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Photovoltaic barriers formed by depositing a layer of polycrystalline cuprous sulfide or cuprous selenide on gallium arsenide are chemically and electrically stable. The stability of these barrier materials is significantly greater than that of cuprous iodide.

  9. Activities of the Solid State Physics Research Institute

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics addressed include: muon spin rotation; annealing problems in gallium arsenides; Hall effect in semiconductors; computerized simulation of radiation damage; single-nucleon removal from Mg-24; and He-3 reaction at 200 and 400 MeV.

  10. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    PubMed Central

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-01-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials. PMID:26006731

  11. Boron arsenide phonon dispersion from inelastic x-ray scattering: Potential for ultrahigh thermal conductivity

    NASA Astrophysics Data System (ADS)

    Ma, Hao; Li, Chen; Tang, Shixiong; Yan, Jiaqiang; Alatas, Ahmet; Lindsay, Lucas; Sales, Brian C.; Tian, Zhiting

    2016-12-01

    Cubic boron arsenide (BAs) was predicted to have an exceptionally high thermal conductivity (k ) ˜2000 W m-1K-1 at room temperature, comparable to that of diamond, based on first-principles calculations. Subsequent experimental measurements, however, only obtained a k of ˜200 W m-1K-1 . To gain insight into this discrepancy, we measured phonon dispersion of single-crystal BAs along high symmetry directions using inelastic x-ray scattering and compared these with first-principles calculations. Based on the measured phonon dispersion, we have validated the theoretical prediction of a large frequency gap between acoustic and optical modes and bunching of acoustic branches, which were considered the main reasons for the predicted ultrahigh k . This supports its potential to be a super thermal conductor if very-high-quality single-crystal samples can be synthesized.

  12. A combined kick-out and dissociative diffusion mechanism of grown-in Be in InGaAs and InGaAsP. A new finite difference-Bairstow method for solution of the diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koumetz, Serge D., E-mail: Serge.Koumetz@univ-rouen.fr; Martin, Patrick; Murray, Hugues

    Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method,more » is proposed.« less

  13. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.

  14. Contact formation in gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.

  15. Computer modelling of aluminum-gallium arsenide/gallium arsenide multilayer photovoltaics. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wagner, Michael Broderick

    1987-01-01

    The modeled cascade cells offer an alternative to conventional series cascade designs that require a monolithic intercell ohmic contact. Selective electrodes provide a simple means of fabricating three-terminal devices, which can be configured in complementary pairs to circumvent the attendant losses and fabrication complexities of intercell ohmic contacts. Moreover, selective electrodes allow incorporation of additional layers in the upper subcell which can improve spectral response and increase radiation tolerance. Realistic simulations of such cells operating under one-sun AMO conditions show that the seven-layer structure is optimum from the standpoint of beginning-of-life efficiency and radiation tolerance. Projected efficiencies exceed 26 percent. Under higher concentration factors, it should be possible to achieve efficiencies beyond 30 percent. However, to simulate operation at high concentration will require a model for resistive losses. Overall, these devices appear to be a promising contender for future space applications.

  16. The interaction of gold with gallium arsenide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar-cell contact materials, are known to react readily with gallium arsenide. Experiments designed to identify the mechanisms involved in these GaAs-metal interactions have yielded several interesting results. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are also explained by invoking this mechanism.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katayama, Naoyuki; Onari, Seiichiro; Matsubayashi, Kazuyuki

    We report the comprehensive studies between synchrotron X-ray diffraction, electrical resistivity and magnetic susceptibility experiments for the iron arsenides Can(n+1)/2(Fe1-xPtx)(2+3n)Ptn(n -1)/2As(n+1)(n+2)/2 for n=2 and 3. Both structures crystallize in the monoclinic space group P21/m (#11) with three-dimensional FeAs structures. The horizontal FeAs layers are bridged by inclined FeAs planes through edge-sharing FeAs5 square pyramids, resulting in triangular tunneling structures rather than the simple layered structures found in conventional iron arsenides. n=3 system shows a sign of superconductivity with a small volume fraction. Our first-principles calculations of these systems clearly indicate that the Fermi surfaces originate from strong Fe-3d characters andmore » the three-dimensional nature of the electric structures for both systems, thus offering the playgrounds to study the effects of dimensionality on high Tc superconductivity.« less

  18. Imaging of nonlocal hot-electron energy dissipation via shot noise.

    PubMed

    Weng, Qianchun; Komiyama, Susumu; Yang, Le; An, Zhenghua; Chen, Pingping; Biehs, Svend-Age; Kajihara, Yusuke; Lu, Wei

    2018-05-18

    In modern microelectronic devices, hot electrons accelerate, scatter, and dissipate energy in nanoscale dimensions. Despite recent progress in nanothermometry, direct real-space mapping of hot-electron energy dissipation is challenging because existing techniques are restricted to probing the lattice rather than the electrons. We realize electronic nanothermometry by measuring local current fluctuations, or shot noise, associated with ultrafast hot-electron kinetic processes (~21 terahertz). Exploiting a scanning and contact-free tungsten tip as a local noise probe, we directly visualize hot-electron distributions before their thermal equilibration with the host gallium arsenide/aluminium gallium arsenide crystal lattice. With nanoconstriction devices, we reveal unexpected nonlocal energy dissipation at room temperature, which is reminiscent of ballistic transport of low-temperature quantum conductors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. III-V arsenide-nitride semiconductor

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    III-V arsenide-nitride semiconductor are disclosed. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V materials varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V material can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  20. Methods for forming group III-arsenide-nitride semiconductor materials

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2002-01-01

    Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  1. Methods for forming group III-V arsenide-nitride semiconductor materials

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  2. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  3. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMICs to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMICs is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  4. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.

    PubMed

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-26

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  5. Boron arsenide phonon dispersion from inelastic x-ray scattering: Potential for ultrahigh thermal conductivity

    DOE PAGES

    Ma, Hao; Li, Chen; Tang, Shixiong; ...

    2016-12-14

    Cubic boron arsenide (BAs) was predicted to have an exceptionally high thermal conductivity (k) ~2000 Wm -1K -1 at room temperature, comparable to that of diamond, based on first-principles calculations. Subsequent experimental measurements, however, only obtained a k of ~200 Wm-1K-1. To gain insight into this discrepancy, we measured phonon dispersion of single crystal BAs along high symmetry directions using inelastic x-ray scattering (IXS) and compared these with first-principles calculations. Based on the measured phonon dispersion, we have validated the theoretical prediction of a large frequency gap between acoustic and optical modes and bunching of acoustic branches, which were consideredmore » the main reasons for the predicted ultrahigh k. This supports its potential to be a super thermal conductor if very high-quality single crystal samples can be synthesized.« less

  6. Nanobonding: A key technology for emerging applications in health and environmental sciences

    NASA Astrophysics Data System (ADS)

    Howlader, Matiar M. R.; Deen, M. Jamal; Suga, Tadatomo

    2015-03-01

    In this paper, surface-activation-based nanobonding technology and its applications are described. This bonding technology allows for the integration of electronic, photonic, fluidic and mechanical components into small form-factor systems for emerging sensing and imaging applications in health and environmental sciences. Here, we describe four different nanobonding techniques that have been used for the integration of various substrates — silicon, gallium arsenide, glass, and gold. We use these substrates to create electronic (silicon), photonic (silicon and gallium arsenide), microelectromechanical (glass and silicon), and fluidic (silicon and glass) components for biosensing and bioimaging systems being developed. Our nanobonding technologies provide void-free, strong, and nanometer scale bonding at room temperature or at low temperatures (<200 °C), and do not require chemicals, adhesives, or high external pressure. The interfaces of the nanobonded materials in ultra-high vacuum and in air correspond to covalent bonds, and hydrogen or hydroxyl bonds, respectively.

  7. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    NASA Astrophysics Data System (ADS)

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  8. Method of forming grooves in the [011] crystalline direction

    NASA Technical Reports Server (NTRS)

    Marinelli, Donald Paul (Inventor)

    1977-01-01

    An A-B etchant is applied to a (100) surface of a body of semiconductor material, a portion of which along the (100) surface of the body is either gallium arsenide or gallium aluminum arsenide. The etchant is applied for at least 15 seconds at a temperature of approximately 80.degree. C. The A-B etchant is a solution by weight percent of 47.5%, water, 0.2% silver nitrate, 23.8% chromium trioxide and 28.5% of a 48% aqueous solution of hydrofluoric acid. As a result of the application of the A-B etchant a pattern of elongated etch pits form having their longitudinal axes along the [011] crystalline direction. Grooves are formed in the body at a surface opposite the (100) surface on which was applied the etchant. The grooves are formed along the [011] crystalline direction by aligning the longitudinal axes of the grooves with the longitudinal axes of the etch pits.

  9. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitablemore » water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.« less

  10. Properties of GaAs:Cr-based Timepix detectors

    NASA Astrophysics Data System (ADS)

    Smolyanskiy, P.; Bergmann, B.; Chelkov, G.; Kotov, S.; Kruchonak, U.; Kozhevnikov, D.; Mora Sierra, Y.; Stekl, I.; Zhemchugov, A.

    2018-02-01

    The hybrid pixel detector technology brought to the X-ray imaging a low noise level at a high spatial resolution, thanks to the single photon counting. However, silicon as the most widespread detector material is marginally sensitive to photons with energies above 30 keV. Therefore, the high-Z alternatives to silicon such as gallium arsenide and cadmium telluride are increasingly attracting attention of the community for the development of X-ray imaging systems. The results of our investigations of the Timepix detectors bump bonded to sensors made of gallium arsenide compensated by chromium (GaAs:Cr) are presented in this work. The following properties are most important from the practical point of view: the IV characteristics, the charge transport characteristics, photon detection efficiency, operational stability, homogeneity, temperature dependence, as well as energy and spatial resolution are considered. The applicability of these detectors for spectroscopic X-ray imaging is discussed.

  11. Elastic properties of some transition metal arsenides

    NASA Astrophysics Data System (ADS)

    Nayak, Vikas; Verma, U. P.; Bisht, P. S.

    2018-05-01

    The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.

  12. Amarillo National Resource Center for Plutonium quarterly technical progress report, August 1, 1997--October 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report summarizes activities of the Amarillo National Resource Center for Plutonium during the quarter. The report describes the Electronic Resource Library; DOE support activities; current and future environmental health and safety programs; pollution prevention and pollution avoidance; communication, education, training, and community involvement programs; and nuclear and other material studies, including plutonium storage and disposition studies.

  13. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, Anthony P.; Stachowski, Russell E.

    1995-01-01

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

  14. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, A.P.; Stachowski, R.E.

    1995-08-08

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

  15. PLUTONIUM PROCESSING OPTIMIZATION IN SUPPORT OF THE MOX FUEL PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GRAY, DEVIN W.; COSTA, DAVID A.

    2007-02-02

    After Los Alamos National Laboratory (LANL) personnel completed polishing 125 Kg of plutonium as highly purified PuO{sub 2} from surplus nuclear weapons, Duke, COGEMA, Stone, and Webster (DCS) required as the next process stage, the validation and optimization of all phases of the plutonium polishing flow sheet. Personnel will develop the optimized parameters for use in the upcoming 330 kg production mission.

  16. Nuclear Matters. A Practical Guide

    DTIC Science & Technology

    2008-01-01

    plutonium science and engineering. Figure 4.6 depicts LANL workers in Technical Area (TA)-55, the Los Alamos plutonium facility. LANL oversees...facility at Los Alamos to produce plutonium pits in a laboratory environment, with a capacity to produce a small number of pits per year . At that...Office of Secure Transportation (OST). Technical Advisors represent the following organizations: Los Alamos National Chair ATSD(NCB) Vice-Chair

  17. Ternary arsenides ATt{sub 3}As{sub 3} (A=K, Rb; Tt=Ge, Sn) with layered structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatun, Mansura; Stoyko, Stanislav S.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca

    2016-06-15

    The four ternary arsenides ATt{sub 3}As{sub 3} (A=K, Rb; Tt=Ge, Sn) were obtained by reaction of the elements at 600–650 °C. They adopt an orthorhombic structure (space group Pnma, Z=4, with cell parameters ranging from a=9.9931(11) Å, b=3.7664(4) Å, c=18.607(2) Å for KGe{sub 3}As{sub 3} to a=10.3211(11) Å, b=4.0917(4) Å, c=19.570(2) Å for RbSn{sub 3}As{sub 3}) containing corrugated [Tt{sub 3}As{sub 3}] layers built from Tt-centred trigonal pyramids and tetrahedra forming five-membered rings decorated with As handles. They can be considered to be Zintl phases with Tt atoms in +4, +3, and +1 oxidation states. Band structure calculations predict that thesemore » compounds are semiconductors with narrow band gaps (0.71 eV in KGe{sub 3}As{sub 3}, 0.50 eV in KSn{sub 3}As{sub 3}). - Graphical abstract: Ternary arsenides ATt{sub 3}As{sub 3} (A=K, Rb; Tt=Ge, Sn) contain corrugated layers with Tt atoms in three different oxidation states and are narrow band gap semiconductors. Display Omitted - Highlights: • ATt{sub 3}As{sub 3} (A=K, Rb; Tt=Ge, Sn) contains Tt atoms in three oxidation states. • The structure differs from NaGe{sub 3}P{sub 3} in terms of layer stacking arrangement. • The compounds are predicted to be narrow band gap semiconductors.« less

  18. Density functional theory study of defects in unalloyed δ-Pu

    DOE PAGES

    Hernandez, S. C.; Freibert, F. J.; Wills, J. M.

    2017-03-19

    Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less

  19. Method for dissolving delta-phase plutonium

    DOEpatents

    Karraker, David G.

    1992-01-01

    A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

  20. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    NASA Astrophysics Data System (ADS)

    Py, J.; Groetz, J.-E.; Hubinois, J.-C.; Cardona, D.

    2015-04-01

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1-20 g L-1 is given.

  1. Preparation of high purity plutonium oxide for radiochemistry instrument calibration standards and working standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, A.S.; Stalnaker, N.D.

    1997-04-01

    Due to the lack of suitable high level National Institute of Standards and Technology (NIST) traceable plutonium solution standards from the NIST or commercial vendors, the CST-8 Radiochemistry team at Los Alamos National Laboratory (LANL) has prepared instrument calibration standards and working standards from a well-characterized plutonium oxide. All the aliquoting steps were performed gravimetrically. When a {sup 241}Am standardized solution obtained from a commercial vendor was compared to these calibration solutions, the results agreed to within 0.04% for the total alpha activity. The aliquots of the plutonium standard solutions and dilutions were sealed in glass ampules for long termmore » storage.« less

  2. Density functional theory study of defects in unalloyed δ-Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, S. C.; Freibert, F. J.; Wills, J. M.

    Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less

  3. SPRAY CALCINATION REACTOR

    DOEpatents

    Johnson, B.M.

    1963-08-20

    A spray calcination reactor for calcining reprocessin- g waste solutions is described. Coaxial within the outer shell of the reactor is a shorter inner shell having heated walls and with open regions above and below. When the solution is sprayed into the irner shell droplets are entrained by a current of gas that moves downwardly within the inner shell and upwardly between it and the outer shell, and while thus being circulated the droplets are calcined to solids, whlch drop to the bottom without being deposited on the walls. (AEC) H03 H0233412 The average molecular weights of four diallyl phthalate polymer samples extruded from the experimental rheometer were redetermined using the vapor phase osmometer. An amine curing agent is required for obtaining suitable silver- filled epoxy-bonded conductive adhesives. When the curing agent was modified with a 47% polyurethane resin, its effectiveness was hampered. Neither silver nor nickel filler impart a high electrical conductivity to Adiprenebased adhesives. Silver filler was found to perform well in Dow-Corning A-4000 adhesive. Two cascaded hot-wire columns are being used to remove heavy gaseous impurities from methane. This purified gas is being enriched in the concentric tube unit to approximately 20% carbon-13. Studies to count low-level krypton-85 in xenon are continuing. The parameters of the counting technique are being determined. The bismuth isotopes produced in bismuth irradiated for polonium production are being determined. Preliminary data indicate the presence of bismuth207 and bismuth-210m. The light bismuth isotopes are probably produced by (n,xn) reactions bismuth-209. The separation of uranium-234 from plutonium-238 solutions was demonstrated. The bulk of the plutonium is removed by anion exchange, and the remainder is extracted from the uranium by solvent extraction techniques. About 99% of the plutonium can be removed in each thenoyltrifluoroacetone extraction. The viscosity, liquid density, and selfdiffusion coefficient for lanthanum, cerium, and praseodymium were determined. The investigation of phase relationships in the plutonium-cerium-copper ternary system was continued on samples containing a high concentration of copper. These analyses indicate that complete solid solution exists between the binary compounds CeCu/sub 2/ and PuCu/sub 2/, thus forming a quasi-binary system. The study of high temperature ceramic fuel materials has continued with the homogenization and microspheroidization of binary mixtures of plutonium dioxide and zirconium dioxide. Sintering a die-pressed pellet of the mixed powders for one hour at 1450 deg C was not sufficient to completely react the constituents. Complete homogenization was obtained when the pellet was melted in the plasma flame. In addition to the plutonium dioxide-zirconium dioxide microspheres, pure beryllium oxide microspheres were produced in the plasma torch. The electronic distribution functions for the 10% by weight PuO/sub 2/ dissolved in a silicate glass were determined. The plutonium-oxygen interaction at about 2.2A is less than the plutonium-oxygen distance for the 5% PuO/sub 2/. The decrease in the interionic distance is indicative of a stronger plutonium-oxygen association for the more concentrated composition. Potassium plutonium sulfate is being evaluated as a reagent to quantitatively separate plutonium from aqueous solutions. The compound containing two waters of hydration was prepared for thermogravimetric studies using analytically pure plutonium-239. Because of the stability of this compound, it is being evaluated as a calorimetric standard for plutonium-238. (auth)

  4. METHOD FOR SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY SOLVENT EXTRACTION

    DOEpatents

    Seaborg, G.T.; Blaedel, W.J.; Walling, M.T. Jr.

    1960-08-23

    A process is given for separating from each other uranium, plutonium, and fission products in an aqueous nitric acid solution by the so-called Redox process. The plutonium is first oxidized to the hexavalent state, e.g., with a water-soluble dichromate or sodium bismuthate, preferably together with a holding oxidant such as potassium bromate. potassium permanganate, or an excess of the oxidizing agent. The solution is then contacted with a water-immiscible organic solvent, preferably hexone. whereby uranium and plutonium are extracted while the fission products remain in the aqueous solution. The separated organic phase is then contacted with an aqueous solution of a reducing agent, with or without a holding reductant (e.g., with a ferrous salt plus hydrazine or with ferrous sulfamate), whereby plutonium is reduced to the trivalent state and back- extracted into the aqueous solution. The uranium may finally be back-extracted from the organic solvent (e.g., with a 0.1 N nitric acid).

  5. Second-order Kinetics of DTPA and Plutonium in Rat Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Guthrie; Poudel, Deepesh; Klumpp, John Allan

    We report that in 2008, Serandour et al. reported on their in vitro experiment involving rat plasma samples obtained after an intravenous intake of plutonium citrate. Different amounts of DTPA were added to the plasma samples and the percentage of low-molecular-weight plutonium measured. Only when the DTPA dosage was three orders of magnitude greater than the recommended 30 μmol/kg was 100% of the plutonium apparently in the form of chelate. These data were modeled assuming three competing chemical reactions with other molecules that bind with plutonium. Here, time-dependent second-order kinetics of these reactions are calculated, intended eventually to become partmore » of a complete biokinetic model of DTPA action on actinides in laboratory animals or humans. The probability distribution of the ratio of stability constants for the reactants was calculated using Markov Chain Monte Carlo. In conclusion, these calculations substantiate that the inclusion of more reactions is needed in order to be in agreement with known stability constants.« less

  6. Long-term retrievability and safeguards for immobilized weapons plutonium in geologic storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, P.F.

    1996-05-01

    If plutonium is not ultimately used as an energy source, the quantity of excess weapons plutonium (w-Pu) that would go into a US repository will be small compared to the quantity of plutonium contained in the commercial spent fuel in the repository, and the US repository(ies) will likely be only one (or two) locations out of many around the world where commercial spent fuel will be stored. Therefore excess weapons plutonium creates a small perturbation to the long-term (over 200,000 yr) global safeguard requirements for spent fuel. There are details in the differences between spent fuel and immobilized w-Pu wastemore » forms (i.e. chemical separation methods, utility for weapons, nuclear testing requirements), but these are sufficiently small to be unlikely to play a significant role in any US political decision to rebuild weapons inventories, or to change the long-term risks of theft by subnational groups.« less

  7. Second-order Kinetics of DTPA and Plutonium in Rat Plasma

    DOE PAGES

    Miller, Guthrie; Poudel, Deepesh; Klumpp, John Allan; ...

    2017-11-15

    We report that in 2008, Serandour et al. reported on their in vitro experiment involving rat plasma samples obtained after an intravenous intake of plutonium citrate. Different amounts of DTPA were added to the plasma samples and the percentage of low-molecular-weight plutonium measured. Only when the DTPA dosage was three orders of magnitude greater than the recommended 30 μmol/kg was 100% of the plutonium apparently in the form of chelate. These data were modeled assuming three competing chemical reactions with other molecules that bind with plutonium. Here, time-dependent second-order kinetics of these reactions are calculated, intended eventually to become partmore » of a complete biokinetic model of DTPA action on actinides in laboratory animals or humans. The probability distribution of the ratio of stability constants for the reactants was calculated using Markov Chain Monte Carlo. In conclusion, these calculations substantiate that the inclusion of more reactions is needed in order to be in agreement with known stability constants.« less

  8. Plutonium Immobilization Project System Design Description for Can Loading System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.

    2001-02-15

    The purpose of this System Design Description (SDD) is to specify the system and component functions and requirements for the Can Loading System and provide a complete description of the system (design features, boundaries, and interfaces), principles of operation (including upsets and recovery), and the system maintenance approach. The Plutonium Immobilization Project (PIP) will immobilize up to 13 metric tons (MT) of U.S. surplus weapons usable plutonium materials.

  9. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    DOEpatents

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  10. METHOD OF SEPARATING URANIUM, PLUTONIUM AND FISSION PRODUCTS BY BROMINATION AND DISTILLATION

    DOEpatents

    Jaffey, A.H.; Seaborg, G.T.

    1958-12-23

    The method for separation of plutonium from uranium and radioactive fission products obtained by neutron irradiation of uranlum consists of reacting the lrradiated material with either bromine, hydrogen bromide, alumlnum bromide, or sulfur and bromine at an elevated temperature to form the bromides of all the elements, then recovering substantlally pure plutonium bromide by dlstillatlon in combinatlon with selective condensatlon at prescribed temperature and pressure.

  11. Update on the Department of Energy's 1994 plutonium vulnerability assessment for the plutonium finishing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HERZOG, K.R.

    1999-09-01

    A review of the environmental, safety, and health vulnerabilities associated with the continued storage of PFP's inventory of plutonium bearing materials and other SNM. This report re-evaluates the five vulnerabilities identified in 1994 at the PFP that are associated with SNM storage. This new evaluation took a more detailed look and applied a risk ranking process to help focus remediation efforts.

  12. METHOD OF PREPARING METAL HALIDES

    DOEpatents

    Hendrickson, A.V.

    1958-11-18

    The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.

  13. REDUCTION OF PLUTONIUM TO Pu$sup +3$ BY SODIUM DITHIONITE IN POTASSIUM CARBONATE

    DOEpatents

    Miller, D.R.; Hoekstra, H.R.

    1958-12-16

    Plutonium values are reduced in an alkaline aqueous medlum to the trlvalent state by means of sodium dlthionite. Plutonlum values are also separated from normally assoclated contaminants by metathesizing a lanthanum fluoride carrier precipitate containing plutonium with a hydroxide solution, performing the metathesis in the presence of about 0.2 M sodium dithionite at a temperature of between 40 and 90 icient laborato C.

  14. METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM

    DOEpatents

    Koshland, D.E. Jr.; Willard, J.E.

    1961-08-01

    A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

  15. Literature Review: Crud Formation at the Liquid/Liquid Interface of TBP-Based Solvent-Extraction Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Casella, Amanda J.

    2016-09-30

    This report summarizes the literature reviewed on crud formation at the liquid:liquid interface of solvent extraction processes. The review is focused both on classic PUREX extraction for industrial reprocessing, especially as practiced at the Hanford Site, and for those steps specific to plutonium purification that were used at the Plutonium Reclamation Facility (PRF) within the Plutonium Finishing Plant (PFP) at the Hanford Site.

  16. RECOVERY OF Pu VALUES BY FLUORINATION AND FRACTIONATION

    DOEpatents

    Brown, H.S.; Webster, D.S.

    1959-01-20

    A method is presented for the concentration and recovery of plutonium by fluorination and fractionation. A metallic mass containing uranium and plutonium is heated to 250 C and contacted with a stream of elemental fluorine. After fluorination of the metallic mass, the rcaction products are withdrawn and subjected to a distillation treatment to separate the fluorination products of uranium and to obtain a residue containing the fluorination products of plutonium.

  17. METHOD OF PREPARING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Beede, R.L.; Hopkins, H.H. Jr.

    1959-11-17

    C rystalline plutonium tetrafluoride is precipitated from aqueous up to 1.6 N mineral acid solutions of a plutorium (IV) salt with fluosilicic acid anions, preferably at room temperature. Hydrogen fluoride naay be added after precipitation to convert any plutonium fluosilicate to the tetrafluoride and any silica to fluosilicic acid. This process results in a purer product, especially as to iron and aluminum, than does the precipitation by the addition of hydrogen fluoride.

  18. Method of immobilizing weapons plutonium to provide a durable, disposable waste product

    DOEpatents

    Ewing, Rodney C.; Lutze, Werner; Weber, William J.

    1996-01-01

    A method of atomic scale fixation and immobilization of plutonium to provide a durable waste product. Plutonium is provided in the form of either PuO.sub.2 or Pu(NO.sub.3).sub.4 and is mixed with and SiO.sub.2. The resulting mixture is cold pressed and then heated under pressure to form (Zr,Pu)SiO.sub.4 as the waste product.

  19. Radiation damage and annealing in plutonium tetrafluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey

    Plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an off-normal color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, Thermogravimetric/Differential Thermal Analysis and X-ray Diffraction evaluations were conducted to determine the plutonium’s crystal structure, oxide content, and moisture content; these analyses reported that themore » plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. During the initial Thermogravimetric/Differential Thermal analyses, it was discovered that an exothermic event occurred within the material near 414°C. X-ray Diffraction analyses were conducted on the annealed tetrafluoride. The X-ray Diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414°C event. The following commentary describes the series of Thermogravimetric/Differential Thermal and X-ray Diffraction analyses that were conducted as part of this investigation at PNNL, in collaboration with the University of Utah Nuclear Engineering Program.« less

  20. Resuspension studies in the Marshall Islands.

    PubMed

    Shinn, J H; Homan, D N; Robison, W L

    1997-07-01

    The contribution of inhalation exposure to the total dose for residents of the Marshall Islands was monitored at occasions of opportunity on several islands in the Bikini and Enewetak Atolls. To determine the long-term potential for inhalation exposure, and to understand the mechanisms of redistribution and personal exposure, additional investigations were undertaken on Bikini Island under modified and controlled conditions. Experiments were conducted to provide key parameters for the assessment of inhalation exposure from plutonium-contaminated dust aerosols: characterization of the contribution of plutonium in soil-borne aerosols as compared to sea spray and organic aerosols, determination of plutonium resuspension rates as measured by the meteorological flux-gradient method during extreme conditions of a bare-soil vs. a stabilized surface, determination of the approximate individual exposures to resuspended plutonium by traffic, and studies of exposures to individuals in different occupational environments simulated by personal air sampling of workers assigned to a variety of tasks. Enhancement factors (defined as ratios of the plutonium-activity of suspended aerosols relative to the plutonium-activity of the soil) were determined to be less than 1 (typically 0.4 to 0.7) in the undisturbed, vegetated areas, but greater than 1 (as high as 3) for the case studies of disturbed bare soil, roadside travel, and for occupational duties in fields and in and around houses.

  1. Ultra-small plutonium oxide nanocrystals: an innovative material in plutonium science.

    PubMed

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Janssen, Arne; Manara, Dario; Griveau, Jean-Christophe; Colineau, Eric; Vitova, Tonya; Prüssmann, Tim; Wang, Di; Kübel, Christian; Meyer, Daniel

    2014-08-11

    Apart from its technological importance, plutonium (Pu) is also one of the most intriguing elements because of its non-conventional physical properties and fascinating chemistry. Those fundamental aspects are particularly interesting when dealing with the challenging study of plutonium-based nanomaterials. Here we show that ultra-small (3.2±0.9 nm) and highly crystalline plutonium oxide (PuO2 ) nanocrystals (NCs) can be synthesized by the thermal decomposition of plutonyl nitrate ([PuO2 (NO3 )2 ]⋅3 H2 O) in a highly coordinating organic medium. This is the first example reporting on the preparation of significant quantities (several tens of milligrams) of PuO2 NCs, in a controllable and reproducible manner. The structure and magnetic properties of PuO2 NCs have been characterized by a wide variety of techniques (powder X-ray diffraction (PXRD), X-ray absorption fine structure (XAFS), X-ray absorption near edge structure (XANES), TEM, IR, Raman, UV/Vis spectroscopies, and superconducting quantum interference device (SQUID) magnetometry). The current PuO2 NCs constitute an innovative material for the study of challenging problems as diverse as the transport behavior of plutonium in the environment or size and shape effects on the physics of transuranium elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Environmental consequences of postulate plutonium releases from Atomics International's Nuclear Materials Development Facility (NMDF), Santa Susana, California, as a result of severe natural phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamison, J.D.; Watson, E.C.

    1982-02-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the Atomics International's Nuclear Materials Development Facility (NMDF), in the Santa Susana site, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are alsomore » given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquake, and the 150-mph and 170-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 110-mph and the 130-mph tornadoes are below the EPA proposed guideline.« less

  3. Environmental consequences of postulated plutonium releases from General Electric Company Vallecitos Nuclear Center, Vallecitos, California, as a result of severe natural phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamison, J.D.; Watson, E.C.

    1980-11-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the General Electric Company Vallecitos Nuclear Center, Vallecitos, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are also given. The most likelymore » calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquakes, and the 180-mph and 230-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 135-mph tornado are below the EPA proposed guidelines.« less

  4. Plutonium interaction studies with the Mont Terri Opalinus Clay isolate Sporomusa sp. MT-2.99: changes in the plutonium speciation by solvent extractions.

    PubMed

    Moll, Henry; Cherkouk, Andrea; Bok, Frank; Bernhard, Gert

    2017-05-01

    Since plutonium could be released from nuclear waste disposal sites, the exploration of the complex interaction processes between plutonium and bacteria is necessary for an improved understanding of the fate of plutonium in the vicinity of such a nuclear waste disposal site. In this basic study, the interaction of plutonium with cells of the bacterium, Sporomusa sp. MT-2.99, isolated from Mont Terri Opalinus Clay, was investigated anaerobically (in 0.1 M NaClO 4 ) with or without adding Na-pyruvate as an electron donor. The cells displayed a strong pH-dependent affinity for Pu. In the absence of Na-pyruvate, a strong enrichment of stable Pu(V) in the supernatants was discovered, whereas Pu(IV) polymers dominated the Pu oxidation state distribution on the biomass at pH 6.1. A pH-dependent enrichment of the lower Pu oxidation states (e.g., Pu(III) at pH 6.1 which is considered to be more mobile than Pu(IV) formed at pH 4) was observed in the presence of up to 10 mM Na-pyruvate. In all cases, the presence of bacterial cells enhanced removal of Pu from solution and accelerated Pu interaction reactions, e.g., biosorption and bioreduction.

  5. Improved plutonium identification and characterization results with NaI(Tl) detector using ASEDRA

    NASA Astrophysics Data System (ADS)

    Detwiler, R.; Sjoden, G.; Baciak, J.; LaVigne, E.

    2008-04-01

    The ASEDRA algorithm (Advanced Synthetically Enhanced Detector Resolution Algorithm) is a tool developed at the University of Florida to synthetically enhance the resolved photopeaks derived from a characteristically poor resolution spectra collected at room temperature from scintillator crystal-photomultiplier detector, such as a NaI(Tl) system. This work reports on analysis of a side-by-side test comparing the identification capabilities of ASEDRA applied to a NaI(Tl) detector with HPGe results for a Plutonium Beryllium (PuBe) source containing approximately 47 year old weapons-grade plutonium (WGPu), a test case of real-world interest with a complex spectra including plutonium isotopes and 241Am decay products. The analysis included a comparison of photopeaks identified and photopeak energies between the ASEDRA and HPGe detector systems, and the known energies of the plutonium isotopes. ASEDRA's performance in peak area accuracy, also important in isotope identification as well as plutonium quality and age determination, was evaluated for key energy lines by comparing the observed relative ratios of peak areas, adjusted for efficiency and attenuation due to source shielding, to the predicted ratios from known energy line branching and source isotopics. The results show that ASEDRA has identified over 20 lines also found by the HPGe and directly correlated to WGPu energies.

  6. The plutonium isotopic composition of marine biota on Enewetak Atoll: a preliminary assessment.

    PubMed

    Hamilton, Terry F; Martinelli, Roger E; Kehl, Steven R; McAninch, Jeffrey E

    2008-10-01

    We have determined the level and distribution of gamma-emitting radionuclides, plutonium activity concentrations, and 240Pu/239Pu atom ratios in tissue samples of giant clam (Tridacna gigas and Hippopus hippopus), a top snail (Trochus nilaticas) and sea cucumber (Holothuria atra) collected from different locations around Enewetak Atoll. The plutonium isotopic measurements were performed using ultra-high sensitivity accelerator mass spectrometry (AMS). Elevated levels of plutonium were observed in the stomachs (includes the stomach lining) of Tridacna clam (0.62 to 2.98 Bq kg(-1), wet wt.), in the soft parts (edible portion) of top snails (0.25 to 1.7 Bq kg(-1)), wet wt.) and, to a lesser extent, in sea cucumber (0.015 to 0.22 Bq kg(-1), wet wt.) relative to muscle tissue concentrations in clam (0.006 to 0.021 Bq kg(-1), wet wt.) and in comparison with previous measurements of plutonium in fish. These data and information provide a basis for re-evaluating the relative significance of dietary intakes of plutonium from marine foods on Enewetak Atoll and, perhaps most importantly, demonstrate that discrete 240Pu239Pu isotope signatures might well provide a useful investigative tool to monitor source-term attribution and consequences on Enewetak Atoll. One potential application of immediate interest is to monitor and assess the health and ecological impacts of leakage of plutonium (as well as other radionuclides) from a low-level radioactive waste repository on Runit Island relative to background levels of fallout contamination in Enewetak Atoll lagoon.

  7. Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockhart, Madeline Louise; McMath, Garrett Earl

    Although the production of PuBe neutron sources has discontinued, hundreds of sources with unknown or inaccurately declared plutonium content are in existence around the world. Institutions have undertaken the task of assaying these sources, measuring, and calculating the isotopic composition, plutonium content, and neutron yield. The nominal plutonium content, based off the neutron yield per gram of pure 239Pu, has shown to be highly inaccurate. New methods of measuring the plutonium content allow a more accurate estimate of the true Pu content, but these measurements need verification. Using the TENDL 2012 nuclear data libraries, MCNP6 has the capability to simulatemore » the (α, n) interactions in a PuBe source. Theoretically, if the source is modeled according to the plutonium content, isotopic composition, and other source characteristics, the calculated neutron yield in MCNP can be compared to the experimental yield, offering an indication of the accuracy of the declared plutonium content. In this study, three sets of PuBe sources from various backgrounds were modeled in MCNP6 1.2 Beta, according to the source specifications dictated by the individuals who assayed the source. Verification of the source parameters with MCNP6 also serves as a means to test the alpha transport capabilities of MCNP6 1.2 Beta with TENDL 2012 alpha transport libraries. Finally, good agreement in the comparison would indicate the accuracy of the source parameters in addition to demonstrating MCNP's capabilities in simulating (α, n) interactions.« less

  8. Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries

    DOE PAGES

    Lockhart, Madeline Louise; McMath, Garrett Earl

    2017-10-26

    Although the production of PuBe neutron sources has discontinued, hundreds of sources with unknown or inaccurately declared plutonium content are in existence around the world. Institutions have undertaken the task of assaying these sources, measuring, and calculating the isotopic composition, plutonium content, and neutron yield. The nominal plutonium content, based off the neutron yield per gram of pure 239Pu, has shown to be highly inaccurate. New methods of measuring the plutonium content allow a more accurate estimate of the true Pu content, but these measurements need verification. Using the TENDL 2012 nuclear data libraries, MCNP6 has the capability to simulatemore » the (α, n) interactions in a PuBe source. Theoretically, if the source is modeled according to the plutonium content, isotopic composition, and other source characteristics, the calculated neutron yield in MCNP can be compared to the experimental yield, offering an indication of the accuracy of the declared plutonium content. In this study, three sets of PuBe sources from various backgrounds were modeled in MCNP6 1.2 Beta, according to the source specifications dictated by the individuals who assayed the source. Verification of the source parameters with MCNP6 also serves as a means to test the alpha transport capabilities of MCNP6 1.2 Beta with TENDL 2012 alpha transport libraries. Finally, good agreement in the comparison would indicate the accuracy of the source parameters in addition to demonstrating MCNP's capabilities in simulating (α, n) interactions.« less

  9. Survey of glass plutonium contents and poison selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plodinec, M.J.; Ramsey, W.G.; Ellison, A.J.G.

    1996-05-01

    If plutonium and other actinides are to be immobilized in glass, then achieving high concentrations in the glass is desirable. This will lead to reduced costs and more rapid immobilization. However, glasses with high actinide concentrations also bring with them undersirable characteristics, especially a greater concern about nuclear criticality, particularly in a geologic repository. The key to achieving a high concentration of actinide elements in a glass is to formulate the glass so that the solubility of actinides is high. At the same time, the glass must be formulated so that the glass also contains neutron poisons, which will preventmore » criticality during processing and in a geologic repository. In this paper, the solubility of actinides, particularly plutonium, in three types of glasses are discussed. Plutonium solubilities are in the 2-4 wt% range for borosilicate high-level waste (HLW) glasses of the type which will be produced in the US. This type of glass is generally melted at relatively low temperatures, ca. 1150{degrees}C. For this melting temperature, the glass can be reformulated to achieve plutonium solubilities of at least 7 wt%. This low melting temperature is desirable if one must retain volatile cesium-137 in the glass. If one is not concerned about cesium volatility, then glasses can be formulated which can contain much larger amounts of plutonium and other actinides. Plutonium concentrations of at least 15 wt% have been achieved. Thus, there is confidence that high ({ge}5 wt%) concentrations of actinides can be achieved under a variety of conditions.« less

  10. Quantitative determination of environmental levels of uranium, thorium and plutonium in bone by solvent extraction and alpha spectrometry

    NASA Astrophysics Data System (ADS)

    Singh, Narayani P.; Zimmerman, Carol J.; Lewis, Laura L.; Wrenn, McDonald E.

    1984-06-01

    Solvent extraction and alpha-spectrometry have been emplyed in the quantitative simultaneous determination of uranium. thorium and plutonium. The bone specimens, spiked with 232U, 229Th and 242Pu tracers, are wet ashed with HNO 3 followed by alternate additions of a new drops of HNO 3 and H 2O 2. Uranium is reduced to the tetravalent state with 200 mg SnCl 2 and 25 ml HI. Uranium, thorium and plutonium are then coprecipitated with calcium as oxalate, heated to 550°C, dissolved in 50 ml HCl, and the acidity adjusted to 10 M. Uranium and plutonium are extracted into a 20% tri-lauryl amine (TLA) solution in xylene, leaving thorium in the aqueous phase. Plutonium is first back-extracted from the TLA phase by shaking with a 1:1.5 volume of 0.05 M NH 4I in 8 M HCl, which reduces Pu(IV) to Pu(III). Uranium is then back-extracted with an equal volume of 0.1 M HCl. Thorium, which was left in the aqueous phase, is evaporated to dryness, dissolved in 4 M HNO 3, and the acidity adjusted to 4 M. Thorium is then extracted into 20% TLA solution in xylene pre-equilibrated with 4 M HNO 3, and back-extracted with 10 M HCl. Uranium, thorium, and plutonium are then electrodeposited separately onto platinum discs and counted by an alpha-spectrometer with a multi-channel analyzer and surface barrier silicon diodes. The mean recoveries of uranium, thorium, and plutonium in bovine, dog, and human bones were over 70%.

  11. An independent evaluation of plutonium body burdens in populations near Los Alamos Laboratory using human autopsy data.

    PubMed

    Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E

    2013-06-01

    In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readilymore » achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.« less

  13. Further evaluations of the toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Edwards, Geoffrey W R; Priest, Nicholas D

    2014-11-01

    The neutron economy and online refueling capability of heavy water moderated reactors enable them to use many different fuel types, such as low enriched uranium, plutonium mixed with uranium, or plutonium and/or U mixed with thorium, in addition to their traditional natural uranium fuel. However, the toxicity and radiological protection methods for fuels other than natural uranium are not well established. A previous paper by the current authors compared the composition and toxicity of irradiated natural uranium to that of three potential advanced heavy water fuels not containing plutonium, and this work uses the same method to compare irradiated natural uranium to three other fuels that do contain plutonium in their initial composition. All three of the new fuels are assumed to incorporate plutonium isotopes characteristic of those that would be recovered from light water reactor fuel via reprocessing. The first fuel investigated is a homogeneous thorium-plutonium fuel designed for a once-through fuel cycle without reprocessing. The second fuel is a heterogeneous thorium-plutonium-U bundle, with graded enrichments of U in different parts of a single fuel assembly. This fuel is assumed to be part of a recycling scenario in which U from previously irradiated fuel is recovered. The third fuel is one in which plutonium and Am are mixed with natural uranium. Each of these fuels, because of the presence of plutonium in the initial composition, is determined to be considerably more radiotoxic than is standard natural uranium. Canadian nuclear safety regulations require that techniques be available for the measurement of 1 mSv of committed effective dose after exposure to irradiated fuel. For natural uranium fuel, the isotope Pu is a significant contributor to the committed effective dose after exposure, and thermal ionization mass spectrometry is sensitive enough that the amount of Pu excreted in urine is sufficient to estimate internal doses, from all isotopes, as low as 1 mSv. In addition, if this method is extended so that Pu is also measured, then the combined amount of Pu and Pu is sufficiently high in the thorium-plutonium fuel that a committed effective dose of 1 mSv would be measurable. However, the fraction of Pu and Pu in the other two fuels is sufficiently low that a 1 mSv dose would remain below the detection limit using this technique. Thus new methods, such as fecal measurements of Pu (or other alpha emitters), will be required to measure exposure to these new fuels.

  14. Photovoltaic Bias Generator

    DTIC Science & Technology

    2018-02-01

    Research Laboratory Sensors and Electron Devices Directorate (ATTN: RDRL-SER-M) 2800 Powder Mill Rd Adelphi, MD 20783-1138 8. PERFORMING...that may be set between 200 mV and 400 mV, developed for an application using gallium arsenide pseudomorphic high electron mobility transistor

  15. Selenium bond decreases ON resistance of light-activated switch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Vitrified amorphous selenium bond decreases the ON resistance of a gallium arsenide-silicon light-activated, low-level switch. The switch is used under a pulse condition to prolong switch life and minimize errors due to heating, devitrification, and overdrawing.

  16. 40 CFR 469.27 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Limitations Pollutant or pollutant property Maximum for any 1 day Average of daily values for 30 consecutive... manufacturers of gallium or indium arsenide crystals. 4 Within the range of 6.0 to 9.0. [48 FR 15394, Apr. 8...

  17. METHOD OF MAINTAINING PLUTONIUM IN A HIGHER STATE OF OXIDATION DURING PROCESSING

    DOEpatents

    Thompson, S.G.; Miller, D.R.

    1959-06-30

    This patent deals with the oxidation of tetravalent plutonium contained in an aqueous acid solution together with fission products to the hexavalent state, prior to selective fission product precipitation, by adding to the solution bismuthate or ceric ions as the oxidant and a water-soluble dichromate as a holding oxidant. Both oxidant and holding oxidant are preferably added in greater than stoichiometric quantities with regard to the plutonium present.

  18. Exploding the myths about the fast breeder reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, S.

    1979-01-01

    This paper discusses the facts and figures about the effects of conservation policies, the benefits of the Clinch River Breeder Reactor demonstration plant, the feasibility of nuclear weapons manufacture from reactor-grade plutonium, diversion of plutonium from nuclear plants, radioactive waste disposal, and the toxicity of plutonium. The paper concludes that the U.S. is not proceeding with a high confidence strategy for breeder development because of a variety of false assumptions.

  19. NUCLEAR CLEANUP: Progress Made at Rocky Flats, but Closure by 2006 Is Unlikely, and Costs May Increase

    DTIC Science & Technology

    2001-02-01

    liquids or residues from process pipes and tanks. The contractor also dismantled plutonium - processing furnaces, stripped out contaminated process...Soil Cleanup Levels on the Scope and Cost of the 903 Pad Cleanup 30 Figures Figure 1: Workers in Protective Clothing Handling Plutonium - Contaminated ...activities—shipping nuclear materials such as plutonium - contaminated metals and powders—is expected to be completed in 2002. Another activity

  20. SEPARATION OF PLUTONIUM VALUES FROM OTHER METAL VALUES IN AQUEOUS SOLUTIONS BY SELECTIVE COMPLEXING AND ADSORPTION

    DOEpatents

    Beaton, R.H.

    1960-06-28

    A process is given for separating tri- or tetravalent plutonium from fission products in an aqueous solution by complexing the fission products with oxalate, tannate, citrate, or tartrate anions at a pH value of at least 2.4 (preferably between 2.4 and 4), and contacting a cation exchange resin with the solution whereby the plutonium is adsorbed while the complexed fission products remain in solution.

  1. Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Kyle Shelton; Kimball, David Bryan; Skidmore, Bradley Evan

    These are a set of slides intended for an information session as part of recruiting activities at Brigham Young University. It gives an overview of aqueous chloride operations, specifically on plutonium and americium purification/recovery. This presentation details the steps taken perform these processes, from plutonium size reduction, dissolution, solvent extraction, oxalate precipitation, to calcination. For americium recovery, it details the CLEAR (chloride extraction and actinide recovery) Line, oxalate precipitation and calcination.

  2. Heterogeneity Effects in Plutonium Contaminated Soil

    DTIC Science & Technology

    2009-03-01

    masses up to one kilogram once the ratio of Americium - 241 (Am- 241 ) and plutonium concentrations was established (Rademacher, 2001). Alpha...with a sample number and tared weight with a non-smearing marker. A standard control was then set using a point source of Americium - 241 on an aluminum...During the fire the weapons grade plutonium (Pu- 239, Pu-240, and Pu- 241 ) ignited and was released into the surrounding area, due to both

  3. SEPARATION PROCESS USING COMPLEXING AND ADSORPTION

    DOEpatents

    Spedding, J.H.; Ayers, J.A.

    1958-06-01

    An adsorption process is described for separating plutonium from a solution of neutron-irradiated uranium containing ions of a compound of plutonium and other cations. The method consists of forming a chelate complex compound with plutoniunn ions in the solution by adding a derivative of 8- hydroxyquinoline, which derivative contains a sulfonic acid group, and adsorbing the remaining cations from the solution on a cation exchange resin, while the complexed plutonium remains in the solution.

  4. PURIFICATION OF PLUTONIUM USING A CERIUM PRECIPITATE AS A CARRIER FOR FISSION PRODUCTS

    DOEpatents

    Faris, B.F.; Olson, C.M.

    1961-07-01

    Bismuth phosphate carrier precipitation processes are described for the separation of plutonium from fission products wherein in at least one step bismuth phosphate is precipitated in the presence of hexavalent plutonium thereby carrying a portion of the fission products from soluble plu tonium values. In this step, a cerium phosphate precipitate is formed in conjunction with the bismuth phosphate precipitate, thereby increasing the amount of fission products removed from solution.

  5. Electrolysis of plutonium nitride in LiCl-KCl eutectic melts

    NASA Astrophysics Data System (ADS)

    Shirai, O.; Iwai, T.; Shiozawa, K.; Suzuki, Y.; Sakamura, Y.; Inoue, T.

    2000-01-01

    The electrolysis of plutonium nitride, PuN, was investigated in the LiCl-KCl eutectic salt with 0.54 wt% PuCl 3 at 773 K in order to understand the dissolution of PuN at the anode and the deposition of metal at the cathode from the viewpoint of the application of a pyrochemical process to nitride fuel cycle. It was found from cyclic voltammetry that the electrochemical dissolution of PuN began nearly at the theoretically evaluated potential and this reaction was irreversible. Several grams of plutonium metal were successfully recovered at the molybdenum electrode as a deposit with a current efficiency of about 90%, although some fractions of the deposited plutonium often fell from the molybdenum electrode.

  6. Removal of dissolved actinides from alkaline solutions by the method of appearing reagents

    DOEpatents

    Krot, Nikolai N.; Charushnikova, Iraida A.

    1997-01-01

    A method of reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH.sup.- concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO.sub.2 (O.sub.2).sub.3 ].sup.4- ion is added to the radwastes in the presence of catalytic amounts of Cu.sup.+2, Co.sup.+2 or Fe.sup.+2 with heating to a temperature in excess of about 60.degree. C. or 85.degree. C., depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste.

  7. PYROMETALLURGICAL METHOD

    DOEpatents

    Nelson, P.A.

    1961-07-18

    The liquid--liquid extraction of plutonium by magnesium from uranium or uranium--chromium alloy is described. Calcium is added to magnesium in about eutectic proportions, which results in a purer plutonium.

  8. Lung Cancer Risk from Plutonium: A Pooled Analysis of the Mayak and Sellafield Worker Cohorts.

    PubMed

    Gillies, Michael; Kuznetsova, Irina; Sokolnikov, Mikhail; Haylock, Richard; O'Hagan, Jackie; Tsareva, Yulia; Labutina, Elena

    2017-12-01

    In this study, lung cancer risk from occupational plutonium exposure was analyzed in a pooled cohort of Mayak and Sellafield workers, two of the most informative cohorts in the world with detailed plutonium urine monitoring programs. The pooled cohort comprised 45,817 workers: 23,443 Sellafield workers first employed during 1947-2002 with follow-up until the end of 2005 and 22,374 Mayak workers first employed during 1948-1982 with follow-up until the end of 2008. In the pooled cohort 1,195 lung cancer deaths were observed (789 Mayak, 406 Sellafield) but only 893 lung cancer incidences (509 Mayak, 384 Sellafield, due to truncated follow-up in the incidence analysis). Analyses were performed using Poisson regression models, and were based on doses derived from individual radiation monitoring data using an updated dose assessment methodology developed in the study. There was clear evidence of a linear association between cumulative internal plutonium lung dose and risk of both lung cancer mortality and incidence in the pooled cohort. The pooled point estimates of the excess relative risk (ERR) from plutonium exposure for both lung cancer mortality and incidence were within the range of 5-8 per Gy for males at age 60. The ERR estimates in relationship to external gamma radiation were also significantly raised and in the range 0.2-0.4 per Gy of cumulative gamma dose to the lung. The point estimates of risk, for both external and plutonium exposure, were comparable between the cohorts, which suggests that the pooling of these data was valid. The results support point estimates of relative biological effectiveness (RBE) in the range of 10-25, which is in broad agreement with the value of 20 currently adopted in radiological protection as the radiation weighting factor for alpha particles, however, the uncertainty on this value (RBE = 21; 95% CI: 9-178) is large. The results provide direct evidence that the plutonium risks in each cohort are of the same order of magnitude but the uncertainty on the Sellafield cohort plutonium risk estimates is large, with observed risks consistent with no plutonium risk, and risks five times larger than those observed in the Mayak cohort.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, Jon; Hayes, Steven; Walters, L. C.

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO 2 and UO 2-PuO 2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availabilitymore » are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.« less

  10. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    NASA Astrophysics Data System (ADS)

    Orr, R. M.; Sims, H. E.; Taylor, R. J.

    2015-10-01

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or 'finishing' processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles.

  11. PLUTONIUM CARRIER METATHESIS WITH ORGANIC REAGENT

    DOEpatents

    Thompson, S.G.

    1958-07-01

    A method is described for converting a plutonium containing bismuth phosphate carrier precipitate Into a compositton more readily soluble in acid. The method consists of dissolving the bismuth phosphate precipitate in an aqueous solution of alkali metal hydroxide, and adding one of a certaia group of organic compounds, e.g., polyhydric alcohols or a-hydrorycarboxylic acids. The mixture is then heated causiing formation of a bismuth hydroxide precipitate containing plutonium which may be readily dissolved in nitric acid for further processing.

  12. Nonproliferation and Threat Reduction Assistance: U.S, Programs in the Former Soviet Union

    DTIC Science & Technology

    2008-03-26

    reconfigure its large - scale former BW-related facilities so that they can perform peaceful research issues such as infectious diseases. For FY2004, the Bush...program to eliminate its plutonium, opting instead for the construction of fast breeder reactors that could burn plutonium directly for energy production...The United States might not fund this effort, as many in the United States argue that breeder reactors , which produce more plutonium than they

  13. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the 233U isotope in the VVER reactors using thorium and heavy water

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. E.; Povyshev, V. M.

    2015-12-01

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium-uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D2O, H2O) is proposed. The method is characterized by efficient breeding of the 233U isotope and safe reactor operation and is comparatively simple to implement.

  14. Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope

    DOE PAGES

    Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; ...

    2016-02-22

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken atmore » SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Furthermore, significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10 –15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/ 239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.« less

  15. The benefits of an advanced fast reactor fuel cycle for plutonium management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.

    1996-12-31

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less

  16. Introduction to Pits and Weapons Systems (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kautz, D.

    2012-07-02

    A Nuclear Explosive Package includes the Primary, Secondary, Radiation Case and related components. This is the part of the weapon that produces nuclear yield and it converts mechanical energy into nuclear energy. The pit is composed of materials that allow mechanical energy to be converted to electromagnetic energy. Fabrication processes used are typical of any metal fabrication facility: casting, forming, machining and welding. Some of the materials used in pits include: Plutonium, Uranium, Stainless Steel, Beryllium, Titanium, and Aluminum. Gloveboxes are used for three reasons: (1) Protect workers and public from easily transported, finely divided plutonium oxides - (a) Plutoniummore » is very reactive and produces very fine particulate oxides, (b) While not the 'Most dangerous material in the world' of Manhattan Project lore, plutonium is hazardous to health of workers if not properly controlled; (2) Protect plutonium from reactive materials - (a) Plutonium is extremely reactive at ambient conditions with several components found in air: oxygen, water, hydrogen, (b) As with most reactive metals, reactions with these materials may be violent and difficult to control, (c) As with most fabricated metal products, corrosion may significantly affect the mechanical, chemical, and physical properties of the product; and (3) Provide shielding from radioactive decay products: {alpha}, {gamma}, and {eta} are commonly associated with plutonium decay, as well as highly radioactive materials such as {sup 241}Am and {sup 238}Pu.« less

  17. Technical Basis Document: A Statistical Basis for Interpreting Urinary Excretion of Plutonium Based on Accelerator Mass Spectrometry (AMS) for Selected Atoll Populations in the Marshall Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogen, K; Hamilton, T F; Brown, T A

    2007-05-01

    We have developed refined statistical and modeling techniques to assess low-level uptake and urinary excretion of plutonium from different population group in the northern Marshall Islands. Urinary excretion rates of plutonium from the resident population on Enewetak Atoll and from resettlement workers living on Rongelap Atoll range from <1 to 8 {micro}Bq per day and are well below action levels established under the latest Department regulation 10 CFR 835 in the United States for in vitro bioassay monitoring of {sup 239}Pu. However, our statistical analyses show that urinary excretion of plutonium-239 ({sup 239}Pu) from both cohort groups is significantly positivelymore » associated with volunteer age, especially for the resident population living on Enewetak Atoll. Urinary excretion of {sup 239}Pu from the Enewetak cohort was also found to be positively associated with estimates of cumulative exposure to worldwide fallout. Consequently, the age-related trends in urinary excretion of plutonium from Marshallese populations can be described by either a long-term component from residual systemic burdens acquired from previous exposures to worldwide fallout or a prompt (and eventual long-term) component acquired from low-level systemic intakes of plutonium associated with resettlement of the northern Marshall Islands, or some combination of both.« less

  18. Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope

    PubMed Central

    Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; Hall, Gregory; Cadieux, James R.

    2016-01-01

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10−15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively. PMID:26898531

  19. Multi-isotopic determination of plutonium (239Pu, 240Pu, 241Pu and 242Pu) in marine sediments using sector-field inductively coupled plasma mass spectrometry.

    PubMed

    Donard, O F X; Bruneau, F; Moldovan, M; Garraud, H; Epov, V N; Boust, D

    2007-03-28

    Among the transuranic elements present in the environment, plutonium isotopes are mainly attached to particles, and therefore they present a great interest for the study and modelling of particle transport in the marine environment. Except in the close vicinity of industrial sources, plutonium concentration in marine sediments is very low (from 10(-4) ng kg(-1) for (241)Pu to 10 ng kg(-1) for (239)Pu), and therefore the measurement of (238)Pu, (239)Pu, (240)Pu, (241)Pu and (242)Pu in sediments at such concentration level requires the use of very sensitive techniques. Moreover, sediment matrix contains huge amounts of mineral species, uranium and organic substances that must be removed before the determination of plutonium isotopes. Hence, an efficient sample preparation step is necessary prior to analysis. Within this work, a chemical procedure for the extraction, purification and pre-concentration of plutonium from marine sediments prior to sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) analysis has been optimized. The analytical method developed yields a pre-concentrated solution of plutonium from which (238)U and (241)Am have been removed, and which is suitable for the direct and simultaneous measurement of (239)Pu, (240)Pu, (241)Pu and (242)Pu by SF-ICP-MS.

  20. LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrea Alfonsi; Gilles Youinou; Sonat Sen

    2013-02-01

    Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can bemore » used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.« less

  1. LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrea Alfonsi; Gilles Youinou

    2012-07-01

    Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can bemore » used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.« less

  2. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes

    NASA Astrophysics Data System (ADS)

    Hays, Kevin A.

    An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale arsenic particles that were synthesized on melt away carbon nanotubes by akalide reduction. The performance of these anodes proved sensitive to electrolyte composition, which was significantly improved by using fluorinated ethylene carbonate. Additionally, further gains in capacity retention can be made by limiting the loading voltage to 0.75 V vs lithium metal. The arsenic and melt away carbon nanotube composite was found to have excellent cycle life and capacity at high mass loading (80% arsenic) when the nanoparticles were directly synthesized on the melt away carbon nanotubes. Gallium arsenide is well known for its semiconducting properties, but its performance as in Li-ion battery anodes is first reported here. Gallium is a metal with a low melting point that has been touted as a possible self-healing material for lithium ion anodes. Alone, gallium proves to be unstable as a lithium ion battery anode, but when synthesized as gallium arsenide nanoparticles and mixed with melt away carbon nanotubes it can charge and discharge in a battery 100 times with approximately twice the capacity of graphite anodes. This first study of gallium arsenide shows dramatic cycle life improvements by using nanoscale rather that micron size gallium arsenide.

  3. Fundamental studies of the metallurgical, electrical, and optical properties of gallium phosphide and gallium phosphide alloys

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Abstracts, bibliographic data, oral presentations, and published papers on (1) Diffusion of Sulfur in Gallium Phosphide and Gallium Arsenide, and (2) Properties of Gallium Phosphide Schottky Barrier Rectifiers for Use at High Temperature are presented.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friesen, H.N.

    This summary document presents results in a broad context; it is not limited to findings of the Nevada Applied Ecology Group. This book is organized to present the findings of the Nevada Applied Ecology Group and correlative programs in accordance with the originally stated objectives of the Nevada Applied Ecology Group. This plan, in essence, traces plutonium from its injection into the environment to movement in the ecosystem to development of cleanup techniques. Information on other radionuclides was also obtained and will be presented briefly. Chapter 1 presents a brief description of the ecological setting of the Test Range Complex.more » The results of investigations for plutonium distribution are presented in Chapter 2 for the area surrounding the Test Range Complex and in Chapter 3 for on-site locations. Chapters 4 and 5 present the results of investigations concerned with concentrations and movement, respectively, of plutonium in the ecosystem of the Test Range Complex, and Chapter 6 summarizes the potential hazard from this plutonium. Development of techniques for cleanup and treatment is presented in Chapter 7, and the inventory of radionuclides other than plutonium is presented briefly in Chapter 8.« less

  5. Evaluation of continuous air monitor placement in a plutonium facility.

    PubMed

    Whicker, J J; Rodgers, J C; Fairchild, C I; Scripsick, R C; Lopez, R C

    1997-05-01

    Department of Energy appraisers found continuous air monitors at Department of Energy plutonium facilities alarmed less than 30% of the time when integrated room plutonium air concentrations exceeded 500 DAC-hours. Without other interventions, this alarm percentage suggests the possibility that workers could be exposed to high airborne concentrations without continuous air monitor alarms. Past research has shown that placement of continuous air monitors is a critical component in rapid and reliable detection of airborne releases. At Los Alamos National Laboratory and many other Department of Energy plutonium facilities, continuous air monitors have been primarily placed at ventilation exhaust points. The purpose of this study was to evaluate and compare the effectiveness of exhaust register placement of workplace continuous air monitors with other sampling locations. Polydisperse oil aerosols were released from multiple locations in two plutonium laboratories at Los Alamos National Laboratory. An array of laser particle counters positioned in the rooms measured time-resolved aerosol dispersion. Results showed alternative placement of air samplers generally resulted in aerosol detection that was faster, often more sensitive, and equally reliable compared with samplers at exhaust registers.

  6. Safe disposal of surplus plutonium

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  7. Adaptation of the ICRP publication 66 respiratory tract model to data on plutonium biokinetics for Mayak workers.

    PubMed

    Khokhryakov, V F; Suslova, K G; Vostrotin, V V; Romanov, S A; Eckerman, K F; Krahenbuhl, M P; Miller, S C

    2005-02-01

    The biokinetics of inhaled plutonium were analyzed using compartment models representing their behavior within the respiratory tract, the gastrointestinal tract, and in systemic tissues. The processes of aerosol deposition, particle transport, absorption, and formation of a fixed deposit in the respiratory tract were formulated in the framework of the Human Respiratory Tract Model described in ICRP Publication 66. The values of parameters governing absorption and formation of the fixed deposit were established by fitting the model to the observations in 530 autopsy cases. The influence of smoking on mechanical clearance of deposited plutonium activity was considered. The dependence of absorption on the aerosol transportability, as estimated by in vitro methods (dialysis), was demonstrated. The results of this study were compared to those obtained from an earlier model of plutonium behavior in the respiratory tract, which was based on the same set of autopsy data. That model did not address the early phases of respiratory clearance and hence underestimated the committed lung dose by about 25% for plutonium oxides. Little difference in lung dose was found for nitrate forms.

  8. Methods to improve routine bioassay monitoring for freshly separated, poorly transported plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihl, D.E.; Lynch, T.P.; Carbaugh, E.H.

    1988-09-01

    Several human cases involving inhalation of plutonium oxide at Hanford have shown clearance half-times from the lung that are much longer than the 500-day half-time recommended for class Y plutonium in Publication 30 of the International Commission on Radiological Protection(ICRP). The more tenaciously retained material is referred to as super class Y plutonium. The ability to detect super class Y plutonium by current routine bioassay measurements is shown to be poor. Pacific Northwest Laboratory staff involved in the Hanford Internal Dosimetry Program investigated four methods to se if improvements in routine monitoring of workers for fresh super class Y plutoniummore » are feasible. The methods were lung counting, urine sampling, fecal sampling, and use of diethylenetriaminepentaacetate (DTPA) to enhance urinary excretion. Use of DTPA was determined to be not feasible. Routine fecal sampling was found to be feasible but not recommended. Recommendations were made to improve the detection level for routine annual urinalysis and routine annual lung counting. 12 refs., 9 figs., 7 tabs.« less

  9. Crystalline matrices for the immobilization of plutonium and actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.

    1996-05-01

    The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressingmore » method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.« less

  10. Digital pile-up rejection for plutonium experiments with solution-grown stilbene

    NASA Astrophysics Data System (ADS)

    Bourne, M. M.; Clarke, S. D.; Paff, M.; DiFulvio, A.; Norsworthy, M.; Pozzi, S. A.

    2017-01-01

    A solution-grown stilbene detector was used in several experiments with plutonium samples including plutonium oxide, mixed oxide, and plutonium metal samples. Neutrons from different reactions and plutonium isotopes are accompanied by numerous gamma rays especially by the 59-keV gamma ray of 241Am. Identifying neutrons correctly is important for nuclear nonproliferation applications and makes neutron/gamma discrimination and pile-up rejection necessary. Each experimental dataset is presented with and without pile-up filtering using a previously developed algorithm. The experiments were simulated using MCNPX-PoliMi, a Monte Carlo code designed to accurately model scintillation detector response. Collision output from MCNPX-PoliMi was processed using the specialized MPPost post-processing code to convert neutron energy depositions event-by-event into light pulses. The model was compared to experimental data after pulse-shape discrimination identified waveforms as gamma ray or neutron interactions. We show that the use of the digital pile-up rejection algorithm allows for accurate neutron counting with stilbene to within 2% even when not using lead shielding.

  11. Some Thermodynamic Features of Uranium-Plutonium Nitride Fuel in the Course of Burnup

    NASA Astrophysics Data System (ADS)

    Rusinkevich, A. A.; Ivanov, A. S.; Belov, G. V.; Skupov, M. V.

    2017-12-01

    Calculation studies on the effect of carbon and oxygen impurities on the chemical and phase compositions of nitride uranium-plutonium fuel in the course of burnup are performed using the IVTANTHERMO code. It is shown that the number of moles of UN decreases with increasing burnup level, whereas UN1.466, UN1.54, and UN1.73 exhibit a considerable increase. The presence of oxygen and carbon impurities causes an increase in the content of the UN1.466, UN1.54 and UN1.73 phases in the initial fuel by several orders of magnitude, in particular, at a relatively low temperature. At the same time, the presence of impurities abruptly reduces the content of free uranium in unburned fuel. Plutonium in the considered system is contained in form of Pu, PuC, PuC2, Pu2C3, and PuN. Plutonium carbides, as well as uranium carbides, are formed in small amounts. Most of the plutonium remains in the form of nitride PuN, whereas unbound Pu is present only in the areas with a low burnup level and high temperatures.

  12. Plutonium

    NASA Astrophysics Data System (ADS)

    Clark, David L.; Hecker, Siegfried S.; Jarvinen, Gordon D.; Neu, Mary P.

    The element plutonium occupies a unique place in the history of chemistry, physics, technology, and international relations. After the initial discovery based on submicrogram amounts, it is now generated by transmutation of uranium in nuclear reactors on a large scale, and has been separated in ton quantities in large industrial facilities. The intense interest in plutonium resulted fromthe dual-use scenario of domestic power production and nuclear weapons - drawing energy from an atomic nucleus that can produce a factor of millions in energy output relative to chemical energy sources. Indeed, within 5 years of its original synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of unprecedented power, and it seemed that the new element might lead the human race to the brink of self-annihilation. Instead, it has forced the human race to govern itself without resorting to nuclear war over the past 60 years. Plutonium evokes the entire gamut of human emotions, from good to evil, from hope to despair, from the salvation of humanity to its utter destruction. There is no other element in the periodic table that has had such a profound impact on the consciousness of mankind.

  13. 49 CFR 176.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., spillage, or other accident. INF cargo means packaged irradiated nuclear fuel, plutonium or high-level... Irradiated Nuclear Fuel, Plutonium and High-Level Radioactive Wastes on Board Ships” (INF Code) contained in...

  14. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, John P.; Miller, William E.

    1989-01-01

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  15. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, J.P.; Miller, W.E.

    1987-11-05

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.

  16. Ceramics: Durability and radiation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, R.C.; Lutze, W.; Weber, W.J.

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramicsmore » apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document, Volume 1, presents a technical description of the various elements of the System 80 + Standard Plant Design upon which the Plutonium Disposition Study wasmore » based. The System 80 + Standard Design is fully developed and directly suited to meeting the mission objectives for plutonium disposal. The bass U0{sub 2} plant design is discussed here.« less

  18. Risks of fatal cancer from inhalation of 239,240plutonium by humans: a combined four-method approach with uncertainty evaluation.

    PubMed

    Grogan, H A; Sinclair, W K; Voillequé, P G

    2001-05-01

    The risk per unit dose to the four primary cancer sites for plutonium inhalation exposure (lung, liver, bone, bone marrow) is estimated by combining the risk estimates that are derived from four independent approaches. Each approach represents a fundamentally different source of data from which plutonium risk estimates can be derived. These are: (1) epidemiologic studies of workers exposed to plutonium; (2) epidemiologic studies of persons exposed to low-LET radiation combined with a factor for the relative biological effectiveness (RBE) of plutonium alpha particles appropriate for each cancer site of concern; (3) epidemiologic studies of persons exposed to alpha-emitting radionuclides other than plutonium; and (4) controlled studies of animals exposed to plutonium and other alpha-emitting radionuclides extrapolated to humans. This procedure yielded the following organ-specific estimates of the distribution of mortality risk per unit dose from exposure to plutonium expressed as the median estimate with the 5th to 95th percentiles of the distribution in parentheses: lung 0.13 Gy(-1) (0.022-0.53 Gy(-1)); liver 0.057 Gy(-1) (0.011-0.47 Gy(-1)); bone 0.0013 Gy(-1) (0.000060-0.025 Gy(-1)); bone marrow (leukemia), 0.013 Gy(-1) (0.00061-0.05 Gy(-1)). Because the different tissues do not receive the same dose following an inhalation exposure, the mortality risk per unit intake of activity via inhalation of a 1-microm AMAD plutonium aerosol also was determined. To do this, inhalation dose coefficients based on the most recent ICRP models and accounting for input parameter uncertainties were combined with the risk coefficients described above. The following estimates of the distribution of mortality risk per unit intake were determined for a 1-microm AMAD plutonium aerosol with a geometric standard deviation of 2.5: lung 5.3 x 10(-7) Bq(-1) (0.65-35 x 10(-7) Bq(-1)), liver 1.2 x 10(-7) Bq(-1) (0.091-20 x 10(-7) Bq(-1)), bone 0.11 x 10(-7) Bq(-1) (0.0030-4.3 x 10(-7) Bq(-1)), bone marrow (leukemia) 0.049 x 10(-7) Bq(-1) (0.0017-0.59 x 10(-7) Bq(-1)). The cancer mortality risk for all sites was estimated to be 10 x 10(-7) Bq(-1) (2.1-55 x 10(-7) Bq(-1))--a result that agrees very well with other recent estimates. The large uncertainties in the risks per unit intake of activity reflect the combined uncertainty in the dose and risk coefficients.

  19. Plutonium Bioassay Testing of U.S. Atmospheric Nuclear Test Participants and U.S. Occupation Forces of Hiroshima and Nagasaki, Japan

    DTIC Science & Technology

    2015-10-30

    with nuclear weapons testing or plutonium work. The results for the 100 atomic veterans were compared to those of the unexposed population, and...as a marker for significant internal intakes of other associated radionuclides in nuclear weapons debris due to its low natural background. However...isotope in weapons grade plutonium, is important from a health perspective, its presence within a given urine sample being analyzed by FTA can only

  20. PRECIPITATION METHOD OF SEPARATION OF NEPTUNIUM

    DOEpatents

    Magnusson, L.B.

    1958-07-01

    A process is described for the separation of neptunium from plutonium in an aqueous solution containing neptunium ions in a valence state not greater than +4, plutonium ioms in a valence state not greater than +4, and sulfate ions. The Process consists of adding hypochlorite ions to said solution in order to preferentially oxidize the neptunium and then adding lanthanum ions and fluoride ions to form a precipitate of LaF/sub 3/ carrying the plutonium, and thereafter separating the supernatant solution from the precipitate.

  1. Lens of Eye Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallett, Michael Wesley

    An analysis of LANL occupational dose measurements was made with respect to lens of eye dose (LOE), in particular, for plutonium workers. Table 1 shows the reported LOE as a ratio of the “deep” (photon only) and “deep+neutron” dose for routine monitored workers at LANL for the past ten years. The data compares the mean and range of these values for plutonium workers* and non-routine plutonium workers. All doses were reported based on measurements with the LANL Model 8823 TLD.

  2. Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources

    NASA Technical Reports Server (NTRS)

    Neff, R. A.; Anderson, M. E.; Campbell, A. R.; Haas, F. X.

    1972-01-01

    Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities.

  3. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the {sup 233}U isotope in the VVER reactors using thorium and heavy water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshalkin, V. E., E-mail: marshalkin@vniief.ru; Povyshev, V. M.

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium–uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D{sub 2}O, H{sub 2}O) is proposed. The method is characterized by efficient breeding of the {sup 233}U isotope and safe reactor operation and is comparatively simple to implement.

  4. Natural Transmutation of Actinides via the Fission Reaction in the Closed Thorium-Uranium-Plutonium Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2017-12-01

    It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.

  5. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    DOEpatents

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  6. SCAVENGER AND PROCESS OF SCAVENGING

    DOEpatents

    Olson, C.M.

    1960-04-26

    Carrier precipitation processes are given for the separation and recovery of plutonium from aqueous acidic solutions containing plutonium and fission products. Bismuth phosphate is precipitated in the acidic solution while plutonlum is maintained in the hexavalent oxidation state. Preformed, uncalcined, granular titanium dioxide is then added to the solution and the fission product-carrying bismuth phosphate and titanium dioxide are separated from the resulting mixture. Fluosilicic acid, which dissolves any remaining titanium dioxide particles, is then added to the purified plutonium-containing solution.

  7. METHOD FOR REMOVING CONTAMINATION FROM PRECIPITATES

    DOEpatents

    Stahl, G.W.

    1959-01-01

    An improvement in the bismuth phosphate carrier precipitation process is presented for the recovery and purification of plutonium. When plutonium, in the tetravalent state, is carried on a bismuth phosphate precipitate, amounts of centain of the fission products are carried along with the plutonium. The improvement consists in washing such fission product contaminated preeipitates with an aqueous solution of ammonium hydrogen fluoride. since this solution has been found to be uniquely effective in washing fission production contamination from the bismuth phosphate precipitate.

  8. METHOD OF PREPARING URANIUM, THORIUM, OR PLUTONIUM OXIDES IN LIQUID BISMUTH

    DOEpatents

    Davidson, J.K.; Robb, W.L.; Salmon, O.N.

    1960-11-22

    A method is given for forming compositions, as well as the compositions themselves, employing uranium hydride in a liquid bismuth composition to increase the solubility of uranium, plutonium and thorium oxides in the liquid bismuth. The finely divided oxide of uranium, plutonium. or thorium is mixed with the liquid bismuth and uranium hydride, the hydride being present in an amount equal to about 3 at. %, heated to about 5OO deg C, agitated and thereafter cooled and excess resultant hydrogen removed therefrom.

  9. Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.

    2009-08-20

    A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55more » Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where transuranic radionuclides have been co-disposed with acidic liquid waste, transport through the vadose zone for considerable distances has occurred. For example, at the 216-Z-9 Crib, plutonium-239 and americium-241 have moved to depths in excess of 36 m (118 ft) bgs. Acidic conditions increase the solubility of these contaminants and reduce adsorption to mineral surfaces. Subsequent neutralization of the acidity by naturally occurring calcite in the vadose zone (particularly in the Cold Creek unit) appears to have effectively stopped further migration. The vast majority of transuranic contaminants disposed to the vadose zone on the Hanford Site (10,200 Ci [86%] of plutonium-239; 27,900 Ci [97%] of americium-241; and 41.8 Ci [78%] of neptunium-237) were disposed in sites within the PFP Closure Zone. This closure zone is located within the 200 West Area (see Figures 1.1 and 3.1). Other closure zones with notably high quantities of transuranic contaminant disposal include the T Farm Zone with 408 Ci (3.5%) plutonium-239, the PUREX Zone with 330 Ci (2.8%) plutonium-239, 200-W Ponds Zone with 324 Ci (2.8%) plutonium-239, B Farm Zone with 183 Ci (1.6%) plutonium-239, and the REDOX Zone with 164 Ci (1.4%) plutonium 239. Characterization studies for most of the sites reviewed in the document are generally limited. The most prevalent characterization methods used were geophysical logging methods. Characterization of a number of sites included laboratory analysis of borehole sediment samples specifically for radionuclides and other contaminants, and geologic and hydrologic properties. In some instances, more detailed research level studies were conducted. Results of these studies were summarized in the document.« less

  10. SSI/MSI/LSI/VLSI/ULSI.

    ERIC Educational Resources Information Center

    Alexander, George

    1984-01-01

    Discusses small-scale integrated (SSI), medium-scale integrated (MSI), large-scale integrated (LSI), very large-scale integrated (VLSI), and ultra large-scale integrated (ULSI) chips. The development and properties of these chips, uses of gallium arsenide, Josephson devices (two superconducting strips sandwiching a thin insulator), and future…

  11. Study of sulfur bonding on gallium arsenide (100) surfaces using supercritical fluid extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabauy, P.; Darici, Y.; Furton, K.G.

    1995-12-01

    In the last decades Gallium Arsenide (GaAs) has been considered the semiconductor that will replace silicon because of its direct band gap and high electron mobility. Problems with GaAs Fermi level pinning has halted its widespread use in the electronics industry. The formation of oxides on GaAs results in a high density of surface states that effectively pin the surface Fermi level at the midgap. Studies on sulfur passivation have eliminated oxidation and virtually unpinned the Fermi level on the GaAs surface. This has given rise to interest in sulfur-GaAs bonds. In this presentation, we will discuss the types ofmore » sulfur bonds extracted from a sulfur passivated GaAs (100) using Supercritical Fluid (CO2) Extraction (SFE). SFE can be a valuable tool in the study of chemical speciations on semiconductor surfaces. The variables evaluated to effectively study the sulfur species from the GaAs surface include passivation techniques, supercritical fluid temperatures, densities, and extraction times.« less

  12. Method of Fabricating Schottky Barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1982-01-01

    On a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive is deposited a thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range. A passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 micros to serve as a base layer on which a thin layer of gallium arsenide is vapor epitaxially grown to a selected thickness. A thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer. A metal layer, of not more about 100 angstroms thick, is deposited on the oxide layer, and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. An antireflection coating may be deposited on the exposed top surface of the metal layer.

  13. New LaMAsH(x) (M = Co, Ni, or Cu) arsenides with covalent M-H chains.

    PubMed

    Mizoguchi, Hiroshi; Park, SangWon; Hiraka, Haruhiro; Ikeda, Kazutaka; Otomo, Toshiya; Hosono, Hideo

    2014-12-17

    A new series of tetragonal LaPtSi-type mixed-anion arsenides, LaMAsH(x) (M = Co, Ni, or Cu), has been synthesized using high-temperature and high-pressure techniques. The crystal structure of these intermetallic compounds determined via powder neutron diffraction is composed of a 3D framework of three connected planes with the La ions filling the cavities in the structure. Each late transition-metal ion M, all of which have relatively large electronegativities, behaves like a main group element and forms a planar coordination configuration with three As ions. The trigonal-bipyramidal coordination adopted by the H in the cavity, HM2La3, is compressed along the C3 axis, and unusual M-H chains run along the x and y directions, reinforcing the covalent framework. These chains, which are unique in solids, are stabilized by covalent interactions between the M 4s and H 1s orbitals.

  14. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  15. Development of a unique laboratory standard: Indium gallium arsenide detector for the 500-1700 nm spectral region

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A planar (5 mm diameter) indium gallium arsenide detector having a high (greater than 50 pct) quantum efficiency from the visible into the infrared spectrum (500 to 1700 nm) was fabricated. Quantum efficiencies as high as 37 pct at 510 nm, 58 pct at 820 nm and 62 pct at 1300 nm and 1550 nm were measured. A planar InP/InGaAs detector structure was also fabricated using vapor phase epitaxy to grow device structures with 0, 0.2, 0.4 and 0.6 micrometer thick InP caps. Quantum efficiency was studied as a function of cap thickness. Conventional detector structures were also used by completely etching off the InP cap after zinc diffusion. Calibrated quantum efficiencies were measured. Best results were obtained with devices whose caps were completely removed by etching. Certain problems still remain with these detectors including non-uniform shunt resistance, reproducibility, contact resistance and narrow band anti-reflection coatings.

  16. MOCVD process technology for affordable, high-yield, high-performance MESFET structures. Phase 3: MIMIC

    NASA Astrophysics Data System (ADS)

    1993-01-01

    Under the MIMIC Program, Spire has pursued improvements in the manufacturing of low cost, high quality gallium arsenide MOCVD wafers for advanced MIMIC FET applications. As a demonstration of such improvements, Spire was tasked to supply MOCVD wafers for comparison to MBE wafers in the fabrication of millimeter and microwave integrated circuits. In this, the final technical report for Spire's two-year MIMIC contract, we report the results of our work. The main objectives of Spire's MIMIC Phase 3 Program, as outlined in the Statement of Work, were as follows: Optimize the MOCVD growth conditions for the best possible electrical and morphological gallium arsenide. Optimization should include substrate and source qualification as well as determination of the optimum reactor growth conditions; Perform all work on 75 millimeter diameter wafers, using a reactor capable of at least three wafers per run; and Evaluate epitaxial layers using electrical, optical, and morphological tests to obtain thickness, carrier concentration, and mobility data across wafers.

  17. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    PubMed

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  18. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, H.Q.; Reinhardt, K.C.

    1999-08-31

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

  19. New Fluoride-arsenide Diluted Magnetic Semiconductor (Ba,K)F(Zn,Mn)As with Independent Spin and Charge Doping

    NASA Astrophysics Data System (ADS)

    Chen, Bijuan; Deng, Zheng; Li, Wenmin; Gao, Moran; Liu, Qingqing; Gu, C. Z.; Hu, F. X.; Shen, B. G.; Frandsen, Benjamin; Cheung, Sky; Lian, Liu; Uemura, Yasutomo J.; Ding, Cui; Guo, Shengli; Ning, Fanlong; Munsie, Timothy J. S.; Wilson, Murray Neff; Cai, Yipeng; Luke, Graeme; Guguchia, Zurab; Yonezawa, Shingo; Li, Zhi; Jin, Changqing

    2016-11-01

    We report the discovery of a new fluoride-arsenide bulk diluted magnetic semiconductor (Ba,K)F(Zn,Mn)As with the tetragonal ZrCuSiAs-type structure which is identical to that of the “1111” iron-based superconductors. The joint hole doping via (Ba,K) substitution & spin doping via (Zn,Mn) substitution results in ferromagnetic order with Curie temperature up to 30 K and demonstrates that the ferromagnetic interactions between the localized spins are mediated by the carriers. Muon spin relaxation measurements confirm the intrinsic nature of the long range magnetic order in the entire volume in the ferromagnetic phase. This is the first time that a diluted magnetic semiconductor with decoupled spin and charge doping is achieved in a fluoride compound. Comparing to the isostructure oxide counterpart of LaOZnSb, the fluoride DMS (Ba,K)F(Zn,Mn)As shows much improved semiconductive behavior that would be benefit for further application developments.

  20. Transportability Class of Americium in K Basin Sludge under Ambient and Hydrothermal Processing Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.

    2006-08-01

    This report establishes the technical bases for using a ''slow uptake'' instead of a ''moderate uptake'' transportability class for americium-241 (241Am) for the K Basin Sludge Treatment Project (STP) dose consequence analysis. Slow uptake classes are used for most uranium and plutonium oxides. A moderate uptake class has been used in prior STP analyses for 241Am based on the properties of separated 241Am and its associated oxide. However, when 241Am exists as an ingrown progeny (and as a small mass fraction) within plutonium mixtures, it is appropriate to assign transportability factors of the predominant plutonium mixtures (typically slow) to themore » Am241. It is argued that the transportability factor for 241Am in sludge likewise should be slow because it exists as a small mass fraction as the ingrown progeny within the uranium oxide in sludge. In this report, the transportability class assignment for 241Am is underpinned with radiochemical characterization data on K Basin sludge and with studies conducted with other irradiated fuel exposed to elevated temperatures and conditions similar to the STP. Key findings and conclusions from evaluation of the characterization data and published literature are summarized here. Plutonium and 241Am make up very small fractions of the uranium within the K Basin sludge matrix. Plutonium is present at about 1 atom per 500 atoms of uranium and 241Am at about 1 atom per 19000 of uranium. Plutonium and americium are found to remain with uranium in the solid phase in all of the {approx}60 samples taken and analyzed from various sources of K Basin sludge. The uranium-specific concentrations of plutonium and americium also remain approximately constant over a uranium concentration range (in the dry sludge solids) from 0.2 to 94 wt%, a factor of {approx}460. This invariability demonstrates that 241Am does not partition from the uranium or plutonium fraction for any characterized sludge matrix. Most of the K Basin sludge characterization data is derived spent nuclear fuel corroded within the K Basins at 10-15?C. The STP process will place water-laden sludges from the K Basin in process vessels at {approx}150-180 C. Therefore, published studies with other irradiated (uranium oxide) fuel were examined. From these studies, the affinity of plutonium and americium for uranium in irradiated UO2 also was demonstrated at hydrothermal conditions (150 C anoxic liquid water) approaching those proposed for the STP process and even for hydrothermal conditions outside of the STP operating envelope (e.g., 150 C oxic and 100 C oxic and anoxic liquid water). In summary, by demonstrating that the chemical and physical behavior of 241Am in the sludge matrix is similar to that of the predominant species (uranium and for the plutonium from which it originates), a technical basis is provided for using the slow uptake transportability factor for 241Am that is currently used for plutonium and uranium oxides. The change from moderate to slow uptake for 241Am could reduce the overall analyzed dose consequences for the STP by more than 30%.« less

Top