Sample records for plutonium dioxide samples

  1. Volatile molecule PuO 3 observed from subliming plutonium dioxide

    NASA Astrophysics Data System (ADS)

    Ronchi, C.; Capone, F.; Colle, J. Y.; Hiernaut, J. P.

    2000-06-01

    Mass spectrometric measurements of effusing vapours over PuO 2 and (U, Pu)O 2 indicate the presence of volatile PuO 3 (g) molecules. The formation of plutonium trioxide vapour is due to a chemical process involving oxygen adsorbed during oxidation of the sample. Although in the examined samples, the fraction of trioxide effusing in vacuo was of the order of 0.02 ppm of the plutonium content, under steady-state oxidation conditions it has been shown that the process can have a relevant effect on the sublimation rate of the dioxide.

  2. Method for dissolving plutonium dioxide

    DOEpatents

    Tallent, Othar K.

    1978-01-01

    The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

  3. METHOD OF MAKING PLUTONIUM DIOXIDE

    DOEpatents

    Garner, C.S.

    1959-01-13

    A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

  4. MIS High-Purity Plutonium Oxide Metal Oxidation Product TS707001 (SSR123): Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veirs, Douglas Kirk; Stroud, Mary Ann; Berg, John M.

    A high-purity plutonium dioxide material from the Material Identification and Surveillance (MIS) Program inventory has been studied with regard to gas generation and corrosion in a storage environment. Sample TS707001 represents process plutonium oxides from several metal oxidation operations as well as impure and scrap plutonium from Hanford that are currently stored in 3013 containers. After calcination to 950°C, the material contained 86.98% plutonium with no major impurities. This study followed over time, the gas pressure of a sample with nominally 0.5 wt% water in a sealed container with an internal volume scaled to 1/500th of the volume of amore » 3013 container. Gas compositions were measured periodically over a six year period. The maximum observed gas pressure was 138 kPa. The increase over the initial pressure of 80 kPa was primarily due to generation of nitrogen and carbon dioxide gas in the first six months. Hydrogen and oxygen were minor components of the headspace gas. At the completion of the study, the internal components of the sealed container showed signs of corrosion, including pitting.« less

  5. MIS High-Purity Plutonium Oxide Hydride Product 5501579 (SSR124): Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veirs, Douglas Kirk; Stroud, Mary Ann; Berg, John M.

    A high-purity plutonium dioxide material from the Material Identification and Surveillance (MIS) Program inventory has been studied with regard to gas generation and corrosion in a storage environment. Sample 5501579 represents process plutonium oxides from hydride oxide from Rocky Flats that are currently stored in 3013 containers. After calcination to 950°C, the material contained 87.42% plutonium with no major impurities. This study followed over time, the gas pressure of a sample with nominally 0.5 wt% water in a sealed container with an internal volume scaled to 1/500th of the volume of a 3013 container. Gas compositions were measured periodically overmore » a six year period. The maximum observed gas pressure was 124 kPa. The increase over the initial pressure of 70 kPa was primarily due to generation of nitrogen and carbon dioxide gas. Hydrogen and oxygen were minor components of the headspace gas. At the completion of the study, the internal components of the sealed container showed signs of corrosion.« less

  6. IMPROVEMENTS IN OR RELATING TO THE PRODUCTION OF SINTERED URANIUM DIOXIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, L.E.; Harrison, J.D.L.; Brett, N.H.

    A method is described for producing a dense sintered body of uranium dioxide or a mixture thereof with plutonium dioxide. Compacted uranium dioxide or a compacted uranium dioxide-plutonium dioxide mixture is heated to at least 1300 deg C in an atmosphere of carbon dioxide or carbon dioxide mixed with carbon monoxide. (R.J.S.)

  7. Stabilizing stored PuO2 with addition of metal impurities

    NASA Astrophysics Data System (ADS)

    Moten, Shafaq; Huda, Muhammad

    Plutonium oxides is of widespread significance due its application in nuclear fuels, space missions, as well as the long-termed storage of plutonium from spent fuel and nuclear weapons. The processes to refine and store plutonium bring many other elements in contact with the plutonium metal and thereby affect the chemistry of the plutonium. Pure plutonium metal corrodes to an oxide in air with the most stable form of this oxide is stoichiometric plutonium dioxide, PuO2. Defects such as impurities and vacancies can form in the plutonium dioxide before, during and after the refining processes as well as during storage. An impurity defect manifests itself at the bottom of the conduction band and affects the band gap of the unit cell. Studying the interaction between transition metals and plutonium dioxide is critical for better, more efficient storage plans as well as gaining insights to provide a better response to potential threats of exposure to the environment. Our study explores the interaction of a few metals within the plutonium dioxide structure which have a likelihood of being exposed to the plutonium dioxide powder. Using Density Functional Theory, we calculated a substituted metal impurity in PuO2 supercell. We repeated the calculations with an additional oxygen vacancy. Our results reveal interesting volume contraction of PuO2 supercell when one plutonium atom is substituted with a metal atom. The authors acknowledge the Texas Computing Center (TACC) at The University of Texas at Austin and High Performance Computing (HPC) at The University of Texas at Arlington.

  8. SCAVENGER AND PROCESS OF SCAVENGING

    DOEpatents

    Olson, C.M.

    1960-04-26

    Carrier precipitation processes are given for the separation and recovery of plutonium from aqueous acidic solutions containing plutonium and fission products. Bismuth phosphate is precipitated in the acidic solution while plutonlum is maintained in the hexavalent oxidation state. Preformed, uncalcined, granular titanium dioxide is then added to the solution and the fission product-carrying bismuth phosphate and titanium dioxide are separated from the resulting mixture. Fluosilicic acid, which dissolves any remaining titanium dioxide particles, is then added to the purified plutonium-containing solution.

  9. SPRAY CALCINATION REACTOR

    DOEpatents

    Johnson, B.M.

    1963-08-20

    A spray calcination reactor for calcining reprocessin- g waste solutions is described. Coaxial within the outer shell of the reactor is a shorter inner shell having heated walls and with open regions above and below. When the solution is sprayed into the irner shell droplets are entrained by a current of gas that moves downwardly within the inner shell and upwardly between it and the outer shell, and while thus being circulated the droplets are calcined to solids, whlch drop to the bottom without being deposited on the walls. (AEC) H03 H0233412 The average molecular weights of four diallyl phthalate polymer samples extruded from the experimental rheometer were redetermined using the vapor phase osmometer. An amine curing agent is required for obtaining suitable silver- filled epoxy-bonded conductive adhesives. When the curing agent was modified with a 47% polyurethane resin, its effectiveness was hampered. Neither silver nor nickel filler impart a high electrical conductivity to Adiprenebased adhesives. Silver filler was found to perform well in Dow-Corning A-4000 adhesive. Two cascaded hot-wire columns are being used to remove heavy gaseous impurities from methane. This purified gas is being enriched in the concentric tube unit to approximately 20% carbon-13. Studies to count low-level krypton-85 in xenon are continuing. The parameters of the counting technique are being determined. The bismuth isotopes produced in bismuth irradiated for polonium production are being determined. Preliminary data indicate the presence of bismuth207 and bismuth-210m. The light bismuth isotopes are probably produced by (n,xn) reactions bismuth-209. The separation of uranium-234 from plutonium-238 solutions was demonstrated. The bulk of the plutonium is removed by anion exchange, and the remainder is extracted from the uranium by solvent extraction techniques. About 99% of the plutonium can be removed in each thenoyltrifluoroacetone extraction. The viscosity, liquid density, and selfdiffusion coefficient for lanthanum, cerium, and praseodymium were determined. The investigation of phase relationships in the plutonium-cerium-copper ternary system was continued on samples containing a high concentration of copper. These analyses indicate that complete solid solution exists between the binary compounds CeCu/sub 2/ and PuCu/sub 2/, thus forming a quasi-binary system. The study of high temperature ceramic fuel materials has continued with the homogenization and microspheroidization of binary mixtures of plutonium dioxide and zirconium dioxide. Sintering a die-pressed pellet of the mixed powders for one hour at 1450 deg C was not sufficient to completely react the constituents. Complete homogenization was obtained when the pellet was melted in the plasma flame. In addition to the plutonium dioxide-zirconium dioxide microspheres, pure beryllium oxide microspheres were produced in the plasma torch. The electronic distribution functions for the 10% by weight PuO/sub 2/ dissolved in a silicate glass were determined. The plutonium-oxygen interaction at about 2.2A is less than the plutonium-oxygen distance for the 5% PuO/sub 2/. The decrease in the interionic distance is indicative of a stronger plutonium-oxygen association for the more concentrated composition. Potassium plutonium sulfate is being evaluated as a reagent to quantitatively separate plutonium from aqueous solutions. The compound containing two waters of hydration was prepared for thermogravimetric studies using analytically pure plutonium-239. Because of the stability of this compound, it is being evaluated as a calorimetric standard for plutonium-238. (auth)

  10. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  11. A XAS study of the local environments of cations in (U, Ce)O 2

    NASA Astrophysics Data System (ADS)

    Martin, Philippe; Ripert, Michel; Petit, Thierry; Reich, Tobias; Hennig, Christoph; D'Acapito, Francesco; Hazemann, Jean Louis; Proux, Olivier

    2003-01-01

    Mixed oxide (MOX) fuel is usually considered as a solid solution formed by uranium and plutonium dioxides. Nevertheless, some physico-chemical properties of (U 1- y, Pu y)O 2 samples manufactured under industrial conditions showed anomalies in the domain of plutonium contents ranging between 3 and 15 at.%. Cerium is commonly used as an inactive analogue of plutonium in preliminary studies on MOX fuels. Extended X-ray Absorption Fine Structure (EXAFS) measurements performed at the European Synchrotron Radiation Facility (ESRF) at the cerium and uranium edges on (U 1- y, Ce y)O 2 samples are presented and discussed. They confirmed on an atomic scale the formation of an ideal solid solution for cerium concentrations ranging between 0 and 50 at.%.

  12. Recent advances in the study of the UO2-PuO2 phase diagram at high temperatures

    NASA Astrophysics Data System (ADS)

    Böhler, R.; Welland, M. J.; Prieur, D.; Cakir, P.; Vitova, T.; Pruessmann, T.; Pidchenko, I.; Hennig, C.; Guéneau, C.; Konings, R. J. M.; Manara, D.

    2014-05-01

    Recently, novel container-less laser heating experimental data have been published on the melting behaviour of pure PuO2 and PuO2-rich compositions in the uranium dioxide-plutonium dioxide system. Such data showed that previous data obtained by more traditional furnace heating techniques were affected by extensive interaction between the sample and its containment. It is therefore paramount to check whether data so far used by nuclear engineers for the uranium-rich side of the pseudo-binary dioxide system can be confirmed or not. In the present work, new data are presented both in the UO2-rich part of the phase diagram, most interesting for the uranium-plutonium dioxide based nuclear fuel safety, and in the PuO2 side. The new results confirm earlier furnace heating data in the uranium-dioxide rich part of the phase diagram, and more recent laser-heating data in the plutonium-dioxide side of the system. As a consequence, it is also confirmed that a minimum melting point must exist in the UO2-PuO2 system, at a composition between x(PuO2) = 0.4 and x(PuO2) = 0.7 and 2900 K ⩽ T ⩽ 3000 K. Taking into account that, especially at high temperature, oxygen chemistry has an effect on the reported phase boundary uncertainties, the current results should be projected in the ternary U-Pu-O system. This aspect has been extensively studied here by X-ray diffraction and X-ray absorption spectroscopy. The current results suggest that uncertainty bands related to oxygen behaviour in the equilibria between condensed phases and gas should not significantly affect the qualitative trend of the current solid-liquid phase boundaries.

  13. Inert matrix fuel in dispersion type fuel elements

    NASA Astrophysics Data System (ADS)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  14. METHOD FOR PREPARING URANIUM MONOCARBIDE-PLUTONIUM MONOCARBIDE SOLID SOLUTION

    DOEpatents

    Ogard, A.E.; Leary, J.A.; Maraman, W.J.

    1963-03-19

    A method is given for preparing solid solutions of uranium monocarbide- plutonium monocarbide. In this method, the powder form of uranium dioxide, plutonium dioxide, and graphite are mixed in a ratio determined by the equation: xUO/sub 2/ + yPuO/sub 2/ + (2+z)C yields UxPu/sub y/C/sub z/ +2CO, where x + y equ al 1.0 and z is greater than 0.9 but less than 1.0. The resulting mixture is compacted and heated in a vacuum at a temperature of 1850 deg C. (AEC)

  15. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  16. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg-1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (˜0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13- coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; Smith, Paul Herrick; Jarvinen, Gordon D.

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that themore » following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U 3O 8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl 3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a commercially-available phosphate buffer would significantly reduce the solubility of PuCl 3 by the precipitation of PuPO 4.« less

  18. Environmental Impact Statement for the Cassini Mission. Supplement 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Final Supplemental Environmental Impact Statement (FSEIS) to the 1995 Cassini mission Environmental Impact Statement (EIS) focuses on information recently made available from updated mission safety analyses. This information is pertinent to the consequence and risk analyses of potential accidents during the launch and cruise phases of the mission that were addressed in the EIS. The type of accidents evaluated are those which could potentially result in a release of plutonium dioxide from the three Radioisotope Thermoelectric Generators (RTGS) and the up to 129 Radioisotope Heater Units (RHUS) onboard the Cassini spacecraft. The RTGs use the heat of decay of plutonium dioxide to generate electric power for the spacecraft and instruments. The RHUs, each of which contains a small amount of plutonium dioxide, provide heat for controlling the thermal environment of the spacecraft and several of its instruments. The planned Cassini mission is an international cooperative effort of the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI) to conduct a 4-year scientific exploration of the planet Saturn, its atmosphere, moons, rings, and magnetosphere.

  19. A METHOD OF PREPARING URANIUM DIOXIDE

    DOEpatents

    Scott, F.A.; Mudge, L.K.

    1963-12-17

    A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)

  20. Modeling of selected ceramic processing parameters employed in the fabrication of 238PuO 2 fuel pellets

    DOE PAGES

    Brockman, R. A.; Kramer, D. P.; Barklay, C. D.; ...

    2011-10-01

    Recent deep space missions utilize the thermal output of the radioisotope plutonium-238 as the fuel in the thermal to electrical power system. Since the application of plutonium in its elemental state has several disadvantages, the fuel employed in these deep space power systems is typically in the oxide form such as plutonium-238 dioxide ( 238PuO 2). As an oxide, the processing of the plutonium dioxide into fuel pellets is performed via ''classical'' ceramic processing unit operations such as sieving of the powder, pressing, sintering, etc. Modeling of these unit operations can be beneficial in the understanding and control of processingmore » parameters with the goal of further enhancing the desired characteristics of the 238PuO 2 fuel pellets. A finite element model has been used to help identify the time-temperature-stress profile within a pellet during a furnace operation taking into account that 238PuO 2 itself has a significant thermal output. The results of the modeling efforts will be discussed.« less

  1. PROCESSES FOR SEPARATING AND RECOVERING CONSTITUENTS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Connick, R.E.; Gofman, J.W.; Pimentel, G.C.

    1959-11-10

    Processes are described for preparing plutonium, particularly processes of separating plutonium from uranium and fission products in neutron-irradiated uraniumcontaining matter. Specifically, plutonium solutions containing uranium, fission products and other impurities are contacted with reducing agents such as sulfur dioxide, uranous ion, hydroxyl ammonium chloride, hydrogen peroxide, and ferrous ion whereby the plutoninm is reduced to its fluoride-insoluble state. The reduced plutonium is then carried out of solution by precipitating niobic oxide therein. Uranium and certain fission products remain behind in the solution. Certain other fission products precipitate along with the plutonium. Subsequently, the plutonium and fission product precipitates are redissolved, and the solution is oxidized with oxidizing agents such as chlorine, peroxydisulfate ion in the presence of silver ion, permanganate ion, dichromate ion, ceric ion, and a bromate ion, whereby plutonium is oxidized to the fluoride-soluble state. The oxidized solution is once again treated with niobic oxide, thus precipitating the contamirant fission products along with the niobic oxide while the oxidized plutonium remains in solution. Plutonium is then recovered from the decontaminated solution.

  2. Plutonium-uranium mixed oxide characterization by coupling micro-X-ray diffraction and absorption investigations

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.

    2011-09-01

    Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.

  3. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    NASA Astrophysics Data System (ADS)

    Orr, R. M.; Sims, H. E.; Taylor, R. J.

    2015-10-01

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or 'finishing' processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles.

  4. Method of Making Uranium Dioxide Bodies

    DOEpatents

    Wilhelm, H. A.; McClusky, J. K.

    1973-09-25

    Sintered uranium dioxide bodies having controlled density are produced from U.sub.3 O.sub.8 and carbon by varying the mole ratio of carbon to U.sub.3 O.sub.8 in the mixture, which is compressed and sintered in a neutral or slightly oxidizing atmosphere to form dense slightly hyperstoichiometric uranium dioxide bodies. If the bodies are to be used as nuclear reactor fuel, they are subsequently heated in a hydrogen atmosphere to achieve stoichiometry. This method can also be used to produce fuel elements of uranium dioxide -- plutonium dioxide having controlled density.

  5. Emitted radiation characteristics of plutonium dioxide radioisotope thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.; Steyn, J. J.

    1971-01-01

    The nuclear and emitted radiation characteristics of the radioisotope elements and impurities in commercial grade plutonium dioxide are presented in detail. The development of the methods of analysis are presented. Radioisotope thermoelectric generators (RTG) of 1575, 3468 and 5679 thermal watts are characterized with respect to neutron and gamma photon source strength as well as spatial and number flux distribution. The results are presented as a function of detector position and light element contamination concentration for fuel age ranging from 'fresh' to 18 years. The data may be used to obtain results for given O-18 and Pu-236 concentrations. The neutron and gamma photon flux and dose calculations compare favorably with reported experimental values for SNAP-27.

  6. EXTRACTION METHOD FOR SEPARATING URANIUM, PLUTONIUM, AND FISSION PRODUCTS FROM COMPOSITIONS CONTAINING SAME

    DOEpatents

    Seaborg, G.T.

    1957-10-29

    Methods for separating plutonium from the fission products present in masses of neutron irradiated uranium are reported. The neutron irradiated uranium is first dissolved in an aqueous solution of nitric acid. The plutonium in this solution is present as plutonous nitrate. The aqueous solution is then agitated with an organic solvent, which is not miscible with water, such as diethyl ether. The ether extracts 90% of the uraryl nitrate leaving, substantially all of the plutonium in the aqueous phase. The aqueous solution of plutonous nitrate is then oxidized to the hexavalent state, and agitated with diethyl ether again. In the ether phase there is then obtained 90% of plutonium as a solution of plutonyl nitrate. The ether solution of plutonyl nitrate is then agitated with water containing a reducing agent such as sulfur dioxide, and the plutonium dissolves in the water and is reduced to the plutonous state. The uranyl nitrate remains in the ether. The plutonous nitrate in the water may be recovered by precipitation.

  7. FISSION PRODUCT REMOVAL FROM ORGANIC SOLUTIONS

    DOEpatents

    Moore, R.H.

    1960-05-10

    The decontamination of organic solvents from fission products and in particular the treatment of solvents that were used for the extraction of uranium and/or plutonium from aqueous acid solutions of neutron-irradiated uranium are treated. The process broadly comprises heating manganese carbonate in air to a temperature of between 300 and 500 deg C whereby manganese dioxide is formed; mixing the manganese dioxide with the fission product-containing organic solvent to be treated whereby the fission products are precipitated on the manganese dioxide; and separating the fission product-containing manganese dioxide from the solvent.

  8. Ceria-thoria pellet manufacturing in preparation for plutonia-thoria LWR fuel production

    NASA Astrophysics Data System (ADS)

    Drera, Saleem S.; Björk, Klara Insulander; Sobieska, Matylda

    2016-10-01

    Thorium dioxide (thoria) has potential to assist in niche roles as fuel for light water reactors (LWRs). One such application for thoria is its use as the fertile component to burn plutonium in a mixed oxide fuel (MOX). Thor Energy and an international consortium are currently irradiating plutonia-thoria (Th-MOX) fuel in an effort to produce data for its licensing basis. During fuel-manufacturing research and development (R&D), surrogate materials were utilized to highlight procedures and build experience. Cerium dioxide (ceria) provides a good surrogate platform to replicate the chemical nature of plutonium dioxide. The project's fuel manufacturing R&D focused on powder metallurgical techniques to ensure manufacturability with the current commercial MOX fuel production infrastructure. The following paper highlights basics of the ceria-thoria fuel production including powder milling, pellet pressing and pellet sintering. Green pellets and sintered pellets were manufactured with average densities of 67.0% and 95.5% that of theoretical density respectively.

  9. Evolution of spent nuclear fuel in dry storage conditions for millennia and beyond

    NASA Astrophysics Data System (ADS)

    Wiss, Thierry; Hiernaut, Jean-Pol; Roudil, Danièle; Colle, Jean-Yves; Maugeri, Emilio; Talip, Zeynep; Janssen, Arne; Rondinella, Vincenzo; Konings, Rudy J. M.; Matzke, Hans-Joachim; Weber, William J.

    2014-08-01

    Significant amounts of spent uranium dioxide nuclear fuel are accumulating worldwide from decades of commercial nuclear power production. While such spent fuel is intended to be reprocessed or disposed in geologic repositories, out-of-reactor radiation damage from alpha decay can be detrimental to its structural stability. Here we report on an experimental study in which radiation damage in plutonium dioxide, uranium dioxide samples doped with short-lived alpha-emitters and urano-thorianite minerals have been characterized by XRD, transmission electron microscopy, thermal desorption spectrometry and hardness measurements to assess the long-term stability of spent nuclear fuel to substantial alpha-decay doses. Defect accumulation is predicted to result in swelling of the atomic structure and decrease in fracture toughness; whereas, the accumulation of helium will produce bubbles that result in much larger gaseous-induced swelling that substantially increases the stresses in the constrained spent fuel. Based on these results, the radiation-ageing of highly-aged spent nuclear fuel over more than 10,000 years is predicted.

  10. The Association of Inbreeding With Lung Fibrosis Incidence in Beagle Dogs That Inhaled 238PuO2 or 239PuO2.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Dulaney A.; Brigantic, Andrea M.; Morgan, William F.

    Studies of health effects in animals after exposure to internally deposited radionuclides were intended to supplement observational studies in humans. Both nuclear workers and Beagle dogs have exhibited plutonium associated lung fibrosis; however, the dogs smaller gene pool may limit the applicability of findings to humans. Data on Beagles that inhaled either plutonium-238 dioxide (238PuO2) or plutonium-239 dioxide (239PuO2) were analyzed. Wright's Coefficient of Inbreeding was used to measure genetic or familial susceptibility and was assessed as an explanatory variable when modeling the association between lung fibrosis incidence and plutonium exposure. Lung fibrosis was diagnosed in approximately 80% of themore » exposed dogs compared with 23.7% of the control dogs. The maximum degree of inbreeding was 9.4%. Regardless of isotope, the addition of inbreeding significantly improved the model in female dogs but not in males. In female dogs an increased inbreeding coefficient predicted decreased hazard of a lung fibrosis diagnosis. Lung fibrosis was common in these dogs with inbreeding affecting models of lung fibrosis incidence in females but not in males. The apparent protective effect in females predicted by these models of lung fibrosis incidence is likely to be minimal given the small degree of inbreeding in these groups.« less

  11. Accumulation, organ distribution, and excretion kinetics of ²⁴¹Am in Mayak Production Association workers.

    PubMed

    Suslova, Klara G; Sokolova, Alexandra B; Efimov, Alexander V; Miller, Scott C

    2013-03-01

    Americium-241 (²⁴¹Am) is the second most significant radiation hazard after ²³⁹Pu at some of the Mayak Production Association facilities. This study summarizes current data on the accumulation, distribution, and excretion of americium compared with plutonium in different organs from former Mayak PA workers. Americium and plutonium were measured in autopsy and bioassay samples and correlated with the presence or absence of chronic disease and with biological transportability of the aerosols encountered at different workplaces. The relative accumulation of ²⁴¹Am was found to be increasing in the workers over time. This is likely from ²⁴¹Pu that increases with time in reprocessed fuel and from the increased concentrations of ²⁴¹Am and ²⁴¹Pu in inhaled alpha-active aerosols. While differences were observed in lung retention with exposures to different industrial compounds with different transportabilities (i.e., dioxide and nitrates), there were no significant differences in lung retention between americium and plutonium within each transportability group. In the non-pulmonary organs, the highest ratios of ²⁴¹Am/²⁴¹Am + SPu were observed in the skeleton. The relative ratios of americium in the skeleton versus liver were significantly greater than for plutonium. The relative amounts of americium and plutonium found in the skeleton compared with the liver were even greater in workers with documented chronic liver diseases. Excretion rates of ²⁴¹Am in ‘‘healthy’’ workers were estimated using bioassay and autopsy data. The data suggest that impaired liver function leads to reduced hepatic ²⁴¹Am retention, leading to increased ²⁴¹Am excretion.

  12. Instrumentation for studying binder burnout in an immobilized plutonium ceramic wasteform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, M; Pugh, D; Herman, C

    The Plutonium Immobilization Program produces a ceramic wasteform that utilizes organic binders. Several techniques and instruments were developed to study binder burnout on full size ceramic samples in a production environment. This approach provides a method for developing process parameters on production scale to optimize throughput, product quality, offgas behavior, and plant emissions. These instruments allow for offgas analysis, large-scale TGA, product quality observation, and thermal modeling. Using these tools, results from lab-scale techniques such as laser dilametry studies and traditional TGA/DTA analysis can be integrated. Often, the sintering step of a ceramification process is the limiting process step thatmore » controls the production throughput. Therefore, optimization of sintering behavior is important for overall process success. Furthermore, the capabilities of this instrumentation allows better understanding of plant emissions of key gases: volatile organic compounds (VOCs), volatile inorganics including some halide compounds, NO{sub x}, SO{sub x}, carbon dioxide, and carbon monoxide.« less

  13. CONCENTRATION AND DECONTAMINATION OF SOLUTIONS CONTAINING PLUTONIUM VALUES BY BISMUTH PHOSPHATE CARRIER PRECIPITATION METHODS

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.

    1960-08-23

    A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.

  14. Crystalline matrices for the immobilization of plutonium and actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.

    1996-05-01

    The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressingmore » method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.« less

  15. Neutron Radiation Characteristics of Plutonium Dioxide Fuel

    NASA Technical Reports Server (NTRS)

    Taherzadeh, M.

    1972-01-01

    The major sources of neutrons from plutonium dioxide nuclear fuel are considered in detail. These sources include spontaneous fission of several of the Pu isotopes, reactions with low Z impurities in the fuel, and reactions with O-18. For spontaneous fission neutrons a value of (1.95 plus or minus 0.07) X 1,000 n/s/q PuO2 is obtained. The neutron yield from (alpha, neutron) reactions with oxygen is calculated by integrating the reaction rate equation over all alpha particle energies and all center-of-mass angles. The results indicate a neutron emission rate of (1.42 plus or minus 0.32) X 10,000 n/s/q PuO2. The neutron yield from (alpha, neutron) reactions with low Z impurities in the fuel is presented in tabular form for one part per million of each impurity. The total neutron flux emitted from a particular fuel geometry is estimated by adding the neutron yield due to the induced fission to the other neutron sources.

  16. Toxicity of inhaled plutonium dioxide in beagle dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muggenburg, M.A.; Guilmette, R.A.; Mewhinney, J.A.

    This study was conducted to determine the biological effects of inhaled {sup 238}PuO{sub 2} over the life spans of 144 beagle dogs. The dogs inhaled one of two sizes of monodisperse aerosols of {sup 238}PuO{sub 2} to achieve graded levels of initial lung burden (ILB). The aerosols also contained {sup 169}Yb to provide a {gamma}-ray-emitting label for the {sup 238}Pu inhaled by each dog. Excreta were collected periodically over each dog`s life span to estimate plutonium excretion; at death, the tissues were analyzed radiochemically for plutonium activity. The tissue content and the amount of plutonium excreted were used to estimatemore » the ILB. These data for each dog were used in a dosimetry model to estimate the ILB. These data for each dog were used in a dosimetry model to estimate tissue doses. The lung, skeleton and liver received the highest {alpha}-particle doses, ranging from 0.16-68 Gy for the liver. At death, all dogs were necropsied, and all organs and lesions were sampled and examined by histopathology. Findings of non-neoplastic changes included neutropenia and lymphopenia that developed in a dose-related fashion soon after inhalation exposure. These effects persisted for up to 5 years in some animals, but no other health effects could be related to the blood changes observed. Radiation pneumonitis was observed among the dogs with the highest ILBs. Deaths from radiation pneumonitis occurred from 1.5 to 5.4 years after exposure. Tumors of the lung, skeleton and liver occurred beginning at about 3 years after exposure. These findings in dogs suggest that similar dose-related biological effects could be expected in humans accidentally exposed to {sup 238}PuO{sub 2}. 89 refs., 10 figs., 11 tab.« less

  17. Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations

    NASA Astrophysics Data System (ADS)

    Schneider, Stephanie; Walther, Clemens; Bister, Stefan; Schauer, Viktoria; Christl, Marcus; Synal, Hans-Arno; Shozugawa, Katsumi; Steinhauser, Georg

    2013-10-01

    The contamination of Japan after the Fukushima accident has been investigated mainly for volatile fission products, but only sparsely for actinides such as plutonium. Only small releases of actinides were estimated in Fukushima. Plutonium is still omnipresent in the environment from previous atmospheric nuclear weapons tests. We investigated soil and plants sampled at different hot spots in Japan, searching for reactor-borne plutonium using its isotopic ratio 240Pu/239Pu. By using accelerator mass spectrometry, we clearly demonstrated the release of Pu from the Fukushima Daiichi power plant: While most samples contained only the radionuclide signature of fallout plutonium, there is at least one vegetation sample whose isotope ratio (0.381 +/- 0.046) evidences that the Pu originates from a nuclear reactor (239+240Pu activity concentration 0.49 Bq/kg). Plutonium content and isotope ratios differ considerably even for very close sampling locations, e.g. the soil and the plants growing on it. This strong localization indicates a particulate Pu release, which is of high radiological risk if incorporated.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so thatmore » very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.« less

  19. Neutron radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Taherzadeh, M.

    1972-01-01

    The major sources of neutrons from plutonium dioxide nuclear fuel are considered in detail. These sources include spontaneous fission of several of the Pu isotopes, (alpha, n) reactions with low Z impurities in the fuel, and (alpha, n) reactions with O-18. For spontaneous fission neutrons a value of (1.95 + or - 0.07) X 1,000 n/s/g PuO2 is obtained. The neutron yield from (alpha, n) reactions with oxygen is calculated by integrating the reaction rate equation over all alpha-particle energies and all center-of-mass angles. The results indicate a neutron emission rate of (1.14 + or - 0.26) X 10,000 n/s/g PuO2. The neutron yield from (alpha, n) reactions with low Z impurities in the fuel is presented in tabular form for one part part per million of each impurity. The total neutron yield due to the combined effects of all the impurities depends upon the fractional weight concentration of each impurity. The total neutron flux emitted from a particular fuel geometry is estimated by adding the neutron yield due to the induced fission to the other neutron sources.

  20. Contribution of water vapor pressure to pressurization of plutonium dioxide storage containers

    NASA Astrophysics Data System (ADS)

    Veirs, D. Kirk; Morris, John S.; Spearing, Dane R.

    2000-07-01

    Pressurization of long-term storage containers filled with materials meeting the US DOE storage standard is of concern.1,2 For example, temperatures within storage containers packaged according to the standard and contained in 9975 shipping packages that are stored in full view of the sun can reach internal temperatures of 250 °C.3 Twenty five grams of water (0.5 wt.%) at 250 °C in the storage container with no other material present would result in a pressure of 412 psia, which is limited by the amount of water. The pressure due to the water can be substantially reduced due to interactions with the stored material. Studies of the adsorption of water by PuO2 and surface interactions of water with PuO2 show that adsorption of 0.5 wt.% of water is feasible under many conditions and probable under high humidity conditions.4,5,6 However, no data are available on the vapor pressure of water over plutonium dioxide containing materials that have been exposed to water.

  1. Enhanced ionization efficiency in TIMS analyses of plutonium and americium using porous ion emitters

    DOE PAGES

    Baruzzini, Matthew L.; Hall, Howard L.; Watrous, Matthew G.; ...

    2016-12-05

    Investigations of enhanced sample utilization in thermal ionization mass spectrometry (TIMS) using porous ion emitter (PIE) techniques for the analyses of trace quantities of americium and plutonium were performed. Repeat ionization efficiency (i.e., the ratio of ions detected to atoms loaded on the filament) measurements were conducted on sample sizes ranging from 10–100 pg for americium and 1–100 pg for plutonium using PIE and traditional (i.e., a single, zone-refined rhenium, flat filament ribbon with a carbon ionization enhancer) TIMS filament sources. When compared to traditional filaments, PIEs exhibited an average boost in ionization efficiency of ~550% for plutonium and ~1100%more » for americium. A maximum average efficiency of 1.09% was observed at a 1 pg plutonium sample loading using PIEs. Supplementary trials were conducted using newly developed platinum PIEs to analyze 10 pg mass loadings of plutonium. As a result, platinum PIEs exhibited an additional ~134% boost in ion yield over standard PIEs and ~736% over traditional filaments at the same sample loading level.« less

  2. Use of boiled hexamethylenetetramine and urea to increase the porosity of cerium dioxide microspheres formed in the internal gelation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, R. D.; Collins, J. L.; Cowell, B. S.

    Cerium dioxide (CeO 2) is a commonly used simulant for plutonium dioxide and for plutonium (Pu) in a mixed uranium (U) and Pu oxide [(U, Pu)O 2] in nuclear fuel development. This effort developed CeO 2 microspheres with different porosities and diameters for use in a crush-strength study. The internal gelation technique has produced CeO 2 microspheres with limited initial porosity. When an equal molar solution of urea and hexamethylenetetramine (HMTA) is gently boiling for 1 hr and used in the gelation process, the crystallite size and porosity of mixed U and thorium oxide microspheres and the (U, Pu)O 2more » microspheres increased significantly. In this study with cerium, the combination of ammonium cerium nitrate and 1-h boiled HMTA-urea failed to produce a stable feed broth. However, when the 1-h heated HMTA-urea was combined with unheated HMTA-urea in 1 to 3 volume ratio or the boiling time of the HMTA-urea was reduced to 15-20 min, a stable solution of HMTA, urea, and Ce was formed at 273 K. This new Ce solution produced CeO 2 microspheres with much higher initial porosities. Intermediate porosities were possible when the heated HMTA/urea was aged prior to use.« less

  3. Use of boiled hexamethylenetetramine and urea to increase the porosity of cerium dioxide microspheres formed in the internal gelation process

    DOE PAGES

    Hunt, R. D.; Collins, J. L.; Cowell, B. S.

    2017-05-13

    Cerium dioxide (CeO 2) is a commonly used simulant for plutonium dioxide and for plutonium (Pu) in a mixed uranium (U) and Pu oxide [(U, Pu)O 2] in nuclear fuel development. This effort developed CeO 2 microspheres with different porosities and diameters for use in a crush-strength study. The internal gelation technique has produced CeO 2 microspheres with limited initial porosity. When an equal molar solution of urea and hexamethylenetetramine (HMTA) is gently boiling for 1 hr and used in the gelation process, the crystallite size and porosity of mixed U and thorium oxide microspheres and the (U, Pu)O 2more » microspheres increased significantly. In this study with cerium, the combination of ammonium cerium nitrate and 1-h boiled HMTA-urea failed to produce a stable feed broth. However, when the 1-h heated HMTA-urea was combined with unheated HMTA-urea in 1 to 3 volume ratio or the boiling time of the HMTA-urea was reduced to 15-20 min, a stable solution of HMTA, urea, and Ce was formed at 273 K. This new Ce solution produced CeO 2 microspheres with much higher initial porosities. Intermediate porosities were possible when the heated HMTA/urea was aged prior to use.« less

  4. Tabulated Neutron Emission Rates for Plutonium Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shores, Erik Frederick

    This work tabulates neutron emission rates for 80 plutonium oxide samples as reported in the literature. Plutonium-­238 and plutonium-­239 oxides are included and such emission rates are useful for scaling tallies from Monte Carlo simulations and estimating dose rates for health physics applications.

  5. Plutonium-239 and americium-241 uptake by plants from soil. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, K.W.

    1979-03-01

    Alfalfa was grown in soil contaminated with plutonium-239 dioxide (239PuO2) at a concentration of 29.7 nanocuries per gram (nCi/g). In addition to alfalfa, radishes, wheat, rye, and tomatoes were grown in soils contaminated with americium-241 nitrate (241Am(NO3)3) at a concentration of 189 nCi/g. The length of exposure varied from 52 days for the radishes to 237 days for the alfalfa. The magnitude of plutonium incorporation by the alfalfa as indicated by the concentration ratio, 0.0000025, was similar to previously reported data using other chemical forms of plutonium. The results did indicate, however, that differences in the biological availability of plutoniummore » isotopes do exist. All of the species exposed to americium-241 assimilated and translocated this radioisotope to the stem, leaf, and fruiting structures. The magnitude of incorporation as signified by the concentration ratios varied from 0.00001 for the wheat grass to 0.0152 for the radishes. An increase in the uptake of americium also occurred as a function of time for four of the five plant species. Evidence indicates that the predominant factor in plutonium and americium uptake by plants may involve the chelation of these elements in soils by the action of compounds such as citric acid and/or other similar chelating agents released from plant roots.« less

  6. Plutonium Isotopes in the Terrestrial Environment at the Savannah River Site, USA. A Long-Term Study

    DOE PAGES

    Armstrong, Christopher R.; Nuessle, Patterson R.; Brant, Heather A.; ...

    2015-01-16

    This work presents the findings of a long term plutonium study at Savannah River Site (SRS) conducted between 2003 and 2013. Terrestrial environmental samples were obtained at Savannah River National Laboratory (SRNL) in A-area. Plutonium content and isotopic abundances were measured over this time period by alpha spectrometry and three stage thermal ionization mass spectrometry (3STIMS). Here we detail the complete sample collection, radiochemical separation, and measurement procedure specifically targeted to trace plutonium in bulk environmental samples. Total plutonium activities were determined to be not significantly above atmospheric global fallout. However, the 238Pu/ 239+240Pu activity ratios attributed to SRS aremore » above atmospheric global fallout ranges. The 240Pu/ 239Pu atom ratios are reasonably consistent from year to year and are lower than fallout, while the 242Pu/ 239Pu atom ratios are higher than fallout values. Overall, the plutonium signatures obtained in this study reflect a mixture of weapons-grade, higher burn-up, and fallout material. This study provides a blue print for long term low level monitoring of plutonium in the environment.« less

  7. Radioisotopic heat source

    DOEpatents

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  8. General statistical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberhardt, L L; Gilbert, R O

    From NAEG plutonium environmental studies program meeting; Las Vegas, Nevada, USA (2 Oct 1973). The high sampling variability encountered in environmental plutonium studies along with high analytical costs makes it very important that efficient soil sampling plans be used. However, efficient sampling depends on explicit and simple statements of the objectives of the study. When there are multiple objectives it may be difficult to devise a wholly suitable sampling scheme. Sampling for long-term changes in plutonium concentration in soils may also be complex and expensive. Further attention to problems associated with compositing samples is recommended, as is the consistent usemore » of random sampling as a basic technique. (auth)« less

  9. XANES Identification of Plutonium Speciation in RFETS Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LoPresti, V.; Conradson, S.D.; Clark, D.L.

    2009-06-03

    Using primarily X-ray absorption near edge spectroscopy (XANES) with standards run in tandem with samples, probable plutonium speciation was determined for 13 samples from contaminated soil, acid-splash or fire-deposition building interior surfaces, or asphalt pads from the Rocky Flats Environmental Technology Site (RFETS). Save for extreme oxidizing situations, all other samples were found to be of Pu(IV) speciation, supporting the supposition that such contamination is less likely to show mobility off site. EXAFS analysis conducted on two of the 13 samples supported the validity of the XANES features employed as determinants of the plutonium valence.

  10. Microprobe Analysis of Pu-Ga Standards

    DOE PAGES

    Wall, Angélique D.; Romero, Joseph P.; Schwartz, Daniel

    2017-08-04

    In order to obtain quantitative analysis using an Electron Scanning Microprobe it is essential to have a standard of known composition. Most elemental and multi-elemental standards can be easily obtained from places like Elemental Scientific or other standards organizations that are NIST (National Institute of Standards and Technology) traceable. It is, however, more challenging to find standards for plutonium. Past work performed in our group has typically involved using the plutonium sample to be analysed as its own standard as long as all other known components of the sample have standards to be compared to [1,2,3]. Finally, this method worksmore » well enough, but this experiment was performed in order to develop a more reliable standard for plutonium using five samples of known chemistry of a plutonium gallium mix that could then be used as the main plutonium and gallium standards for future experiments.« less

  11. Microprobe Analysis of Pu-Ga Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Angélique D.; Romero, Joseph P.; Schwartz, Daniel

    In order to obtain quantitative analysis using an Electron Scanning Microprobe it is essential to have a standard of known composition. Most elemental and multi-elemental standards can be easily obtained from places like Elemental Scientific or other standards organizations that are NIST (National Institute of Standards and Technology) traceable. It is, however, more challenging to find standards for plutonium. Past work performed in our group has typically involved using the plutonium sample to be analysed as its own standard as long as all other known components of the sample have standards to be compared to [1,2,3]. Finally, this method worksmore » well enough, but this experiment was performed in order to develop a more reliable standard for plutonium using five samples of known chemistry of a plutonium gallium mix that could then be used as the main plutonium and gallium standards for future experiments.« less

  12. Plutonium and americium in the foodchain lichen-reindeer-man

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaakkola, T.; Hakanen, M.; Keinonen, M.

    1977-01-01

    The atmospheric nuclear tests have produced a worldwide fallout of transuranium elements. In addition to plutonium measurable concentrations of americium are to be found in terrestrial and aquatic environments. The metabolism of plutonium in reindeer was investigated by analyzing plutonium in liver, bone, and lung collected during 1963-1976. To determine the distribution of plutonium in reindeer all tissues of four animals of different ages were analyzed. To estimate the uptake of plutonium from the gastrointestinal tract in reindeer, the tissue samples of elk were also analyzed. Elk which is of the same genus as reindeer does not feed on lichenmore » but mainly on deciduous plants, buds, young twigs, and leaves of trees and bushes. The composition of its feed corresponds fairly well to that of reindeer during the summer. Studies on behaviour of americium along the foodchain lichen-reindeer-man were started by determining the Am-241 concentrations in lichen and reindeer liver. The Am-241 results were compared with those of Pu-239,240. The plutonium contents of the southern Finns, whose diet does not contain reindeer tissues, were determined by analyzing autopsy tissue samples (liver, lung, and bone). The southern Finns form a control group to the Lapps consuming reindeer tissues. Plutonium analyses of the placenta, blood, and tooth samples of the Lapps were performed.« less

  13. Re-solution of xenon clusters in plutonium dioxide under the collision cascade impact: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Seitov, D. D.; Nekrasov, K. A.; Kupryazhkin, A. Ya.; Gupta, S. K.; Akilbekov, A. T.

    2017-09-01

    The interaction of xenon clusters with the collision cascades in the PuO2 crystals is investigated using the molecular dynamics simulation and the approximation of the pair interaction potentials. The potentials of interaction of Xe atoms with the surrounding particles in the crystal lattice are suggested, that are valid in the range of high collision energies. The cascades created by the recoil 235U ions formed as the plutonium α-decay product are considered, and the influence of such cascades on the structure of the xenon clusters is analyzed. It is shown, that the cascade-cluster interaction leads to release of the xenon atoms from the clusters and their subsequent re-solution in the crystal bulk.

  14. Estimation of Plutonium-240 Mass in Waste Tanks Using Ultra-Sensitive Detection of Radioactive Xenon Isotopes from Spontaneous Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowyer, Theodore W.; Gesh, Christopher J.; Haas, Daniel A.

    This report details efforts to develop a technique which is able to detect and quantify the mass of 240Pu in waste storage tanks and other enclosed spaces. If the isotopic ratios of the plutonium contained in the enclosed space is also known, then this technique is capable of estimating the total mass of the plutonium without physical sample retrieval and radiochemical analysis of hazardous material. Results utilizing this technique are reported for a Hanford Site waste tank (TX-118) and a well-characterized plutonium sample in a laboratory environment.

  15. Analysis of Tank 38H (HTF-38-16-26, 27) and Tank 43H (HTF-43-16-28, 29) Samples for Support of the Enrichment Control and Corrosion Control Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M. S.

    Savannah River National Laboratory analyzed samples from Tank 38H and Tank 43H to support Enrichment Control Program and Corrosion Control Program. The total uranium in the Tank 38H samples ranged from 20.5 to 34.0 mg/L while the Tank 43H samples ranged from 47.6 to 50.6 mg/L. The U-235 percentage ranged from 0.62% to 0.64% over the four samples. The total uranium and percent U-235 results appear consistent with previous Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and a somewhat higher concentration than previous sub-surfacemore » samples. The two Tank 43H samples show similar plutonium concentrations and are within the range of values measured on previous samples. The plutonium results may be biased high due to the presence of plutonium contamination in the blank samples from the cell sample preparations. The four samples analyzed show silicon concentrations ranging from 47.9 to 105 mg/L.« less

  16. Integrated approaches for reducing sample size for measurements of trace elemental impurities in plutonium by ICP-OES and ICP-MS

    DOE PAGES

    Xu, Ning; Chamberlin, Rebecca M.; Thompson, Pam; ...

    2017-10-07

    This study has demonstrated that bulk plutonium chemical analysis can be performed at small scales (\\50 mg material) through three case studies. Analytical methods were developed for ICP-OES and ICP-MS instruments to measure trace impurities and gallium content in plutonium metals with comparable or improved detection limits, measurement accuracy and precision. In two case studies, the sample size has been reduced by 109, and in the third case study, by as much as 50009, so that the plutonium chemical analysis can be performed in a facility rated for lower-hazard and lower-security operations.

  17. Integrated approaches for reducing sample size for measurements of trace elemental impurities in plutonium by ICP-OES and ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ning; Chamberlin, Rebecca M.; Thompson, Pam

    This study has demonstrated that bulk plutonium chemical analysis can be performed at small scales (\\50 mg material) through three case studies. Analytical methods were developed for ICP-OES and ICP-MS instruments to measure trace impurities and gallium content in plutonium metals with comparable or improved detection limits, measurement accuracy and precision. In two case studies, the sample size has been reduced by 109, and in the third case study, by as much as 50009, so that the plutonium chemical analysis can be performed in a facility rated for lower-hazard and lower-security operations.

  18. Plutonium isotopic signatures in soils and their variation (2011-2014) in sediment transiting a coastal river in the Fukushima Prefecture, Japan.

    PubMed

    Jaegler, Hugo; Pointurier, Fabien; Onda, Yuichi; Hubert, Amélie; Laceby, J Patrick; Cirella, Maëva; Evrard, Olivier

    2018-05-04

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in a significant release of radionuclides that were deposited on soils in Northeastern Japan. Plutonium was detected at trace levels in soils and sediments collected around the FDNPP. However, little is known regarding the spatial-temporal variation of plutonium in sediment transiting rivers in the region. In this study, plutonium isotopic compositions were first measured in soils (n = 5) in order to investigate the initial plutonium deposition. Then, plutonium isotopic compositions were measured on flood sediment deposits (n = 12) collected after major typhoon events in 2011, 2013 and 2014. After a thorough radiochemical purification, isotopic ratios ( 240 Pu/ 239 Pu, 241 Pu/ 239 Pu and 242 Pu/ 239 Pu) were measured with a Multi-Collector Inductively Coupled Mass Spectrometer (MC ICP-MS), providing discrimination between plutonium derived from global fallout, from atmospheric nuclear weapon tests, and plutonium derived from the FDNPP accident. Results demonstrate that soils with the most Fukushima-derived plutonium were in the main radiocaesium plume and that there was a variable mixture of plutonium sources in the flood sediment samples. Plutonium concentrations and isotopic ratios generally decreased between 2011 and 2014, reflecting the progressive erosion and transport of contaminated sediment in this coastal river during flood events. Exceptions to this general trend were attributed to the occurrence of decontamination works or the remobilisation of contaminated material during typhoons. The different plutonium concentrations and isotopic ratios obtained on three aliquots of a single sample suggest that the Fukushima-derived plutonium was likely borne by discrete plutonium-containing particles. In the future, these particles should be isolated and further characterized in order to better understand the fate of this long-lived radionuclide in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Plutonium and uranium determination in environmental samples: combined solvent extraction-liquid scintillation method.

    PubMed

    McDowell, W J; Farrar, D T; Billings, M R

    1974-12-01

    A method for the determination of uranium and plutonium by a combined high-resolution liquid scintillation-solvent extraction method is presented. Assuming a sample count equal to background count to be the detection limit, the lower detection limit for these and other alpha-emitting nuclides is 1.0 dpm with a Pyrex sample tube, 0.3 dpm with a quartz sample tube using present detector shielding or 0.02 d.p.m. with pulse-shape discrimination. Alpha-counting efficiency is 100%. With the counting data presented as an alpha-energy spectrum, an energy resolution of 0.2-0.3 MeV peak half-width and an energy identification to +/-0.1 MeV are possible. Thus, within these limits, identification and quantitative determination of a specific alpha-emitter, independent of chemical separation, are possible. The separation procedure allows greater than 98% recovery of uranium and plutonium from solution containing large amounts of iron and other interfering substances. In most cases uranium, even when present in 10(8)-fold molar ratio, may be quantitatively separated from plutonium without loss of the plutonium. Potential applications of this general analytical concept to other alpha-counting problems are noted. Special problems associated with the determination of plutonium in soil and water samples are discussed. Results of tests to determine the pulse-height and energy-resolution characteristics of several scintillators are presented. Construction of the high-resolution liquid scintillation detector is described.

  20. Analysis of IAEA Environmental Samples for Plutonium and Uranium by ICP/MS in Support Of International Safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Orville T.; Olsen, Khris B.; Thomas, May-Lin P.

    2008-05-01

    A method for the separation and determination of total and isotopic uranium and plutonium by ICP-MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of redox chemistries and separations using TRU® resin (Eichrom). The sample introduction system, an APEX nebulizer (Elemental Scientific, Inc), provided enhanced nebulization for a several-fold increase in sensitivity and reduction in background. Application of mass bias (ALPHA) correction factors greatly improved the precision of the data. By combining the enhancements of chemical separation, instrumentation and data processing, detection levels for uranium and plutonium approached high attogram levels.

  1. Plutonium segregation in glassy aerodynamic fallout from a nuclear weapon test

    DOE PAGES

    Holliday, K. S.; Dierken, J. M.; Monroe, M. L.; ...

    2017-01-11

    Our study combines electron microscopy equipped with energy dispersive spectroscopy to probe major element composition and autoradiography to map plutonium in order to examine the spatial relationships between plutonium and fallout composition in aerodynamic glassy fallout from a nuclear weapon test. We interrogated a sample set of 48 individual fallout specimens in order to reveal that the significant chemical heterogeneity of this sample set could be described compositionally with a relatively small number of compositional endmembers. Furthermore, high concentrations of plutonium were never associated with several endmember compositions and concentrated with the so-called mafic glass endmember. Our result suggests thatmore » it is the physical characteristics of the compositional endmembers and not the chemical characteristics of the individual component elements that govern the un-burnt plutonium distribution with respect to major element composition in fallout.« less

  2. History of fast reactor fuel development

    NASA Astrophysics Data System (ADS)

    Kittel, J. H.; Frost, B. R. T.; Mustelier, J. P.; Bagley, K. Q.; Crittenden, G. C.; Van Dievoet, J.

    1993-09-01

    The first fast breeder reactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s.

  3. EPA Method: Rapid Radiochemical Method for Americium-241, Radium-226, Plutonium-238/-239, Radiostronium, and Isotopic Uranium in Water for Environmental Restoration Following Homeland Security Events

    EPA Pesticide Factsheets

    SAM lists this method for the qualitative determination of Americium-241, Radium-226, Plutonium-238, Plutonium-239 and isotopic uranium in drinking water samples using alpha spectrometry and radiostrontium using beta counting.

  4. Combined radiochemical procedure for determination of plutonium, americium and strontium-90 in the soil samples from SNTS

    NASA Astrophysics Data System (ADS)

    Kazachevskii, I. V.; Lukashenko, S. N.; Chumikov, G. N.; Chakrova, E. T.; Smirin, L. N.; Solodukhin, V. P.; Khayekber, S.; Berdinova, N. M.; Ryazanova, L. A.; Bannyh, V. I.; Muratova, V. M.

    1999-01-01

    The results of combined radiochemical procedure for the determination of plutonium, americium and90Sr (via measurement of90Y) in the soil samples from SNTS are presented. The processes of co-precipitation of these nuclides with calcium fluoride in the strong acid solutions have been investigated. The conditions for simultaneous separation of americium and yttrium using extraction chromatography have been studied. It follows from analyses of real soil samples that the procedure developed provides the chemical recovery of plutonium and yttrium in the range of 50-95% and 60-95%, respectively. The execution of the procedure requires 3.5 working days including a sample decomposition study.

  5. Methods to improve routine bioassay monitoring for freshly separated, poorly transported plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihl, D.E.; Lynch, T.P.; Carbaugh, E.H.

    1988-09-01

    Several human cases involving inhalation of plutonium oxide at Hanford have shown clearance half-times from the lung that are much longer than the 500-day half-time recommended for class Y plutonium in Publication 30 of the International Commission on Radiological Protection(ICRP). The more tenaciously retained material is referred to as super class Y plutonium. The ability to detect super class Y plutonium by current routine bioassay measurements is shown to be poor. Pacific Northwest Laboratory staff involved in the Hanford Internal Dosimetry Program investigated four methods to se if improvements in routine monitoring of workers for fresh super class Y plutoniummore » are feasible. The methods were lung counting, urine sampling, fecal sampling, and use of diethylenetriaminepentaacetate (DTPA) to enhance urinary excretion. Use of DTPA was determined to be not feasible. Routine fecal sampling was found to be feasible but not recommended. Recommendations were made to improve the detection level for routine annual urinalysis and routine annual lung counting. 12 refs., 9 figs., 7 tabs.« less

  6. Lung, liver and bone cancer mortality after plutonium exposure in beagle dogs and nuclear workers.

    PubMed

    Wilson, Dulaney A; Mohr, Lawrence C; Frey, G Donald; Lackland, Daniel; Hoel, David G

    2010-01-01

    The Mayak Production Association (MPA) worker registry has shown evidence of plutonium-induced health effects. Workers were potentially exposed to plutonium nitrate [(239)Pu(NO(3))(4)] and plutonium dioxide ((239)PuO(2)). Studies of plutonium-induced health effects in animal models can complement human studies by providing more specific data than is possible in human observational studies. Lung, liver, and bone cancer mortality rate ratios in the MPA worker cohort were compared to those seen in beagle dogs, and models of the excess relative risk of lung, liver, and bone cancer mortality from the MPA worker cohort were applied to data from life-span studies of beagle dogs. The lung cancer mortality rate ratios in beagle dogs are similar to those seen in the MPA worker cohort. At cumulative doses less than 3 Gy, the liver cancer mortality rate ratios in the MPA worker cohort are statistically similar to those in beagle dogs. Bone cancer mortality only occurred in MPA workers with doses over 10 Gy. In dogs given (239)Pu, the adjusted excess relative risk of lung cancer mortality per Gy was 1.32 (95% CI 0.56-3.22). The liver cancer mortality adjusted excess relative risk per Gy was 55.3 (95% CI 23.0-133.1). The adjusted excess relative risk of bone cancer mortality per Gy(2) was 1,482 (95% CI 566.0-5686). Models of lung cancer mortality based on MPA worker data with additional covariates adequately described the beagle dog data, while the liver and bone cancer models were less successful.

  7. EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms

    NASA Astrophysics Data System (ADS)

    Richmann, Michael K.; Reed, Donald T.; Kropf, A. Jeremy; Aase, Scott B.; Lewis, Michele A.

    2001-09-01

    A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice.

  8. Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope

    DOE PAGES

    Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; ...

    2016-02-22

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken atmore » SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Furthermore, significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10 –15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/ 239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.« less

  9. Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope

    PubMed Central

    Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; Hall, Gregory; Cadieux, James R.

    2016-01-01

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10−15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively. PMID:26898531

  10. Second-order Kinetics of DTPA and Plutonium in Rat Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Guthrie; Poudel, Deepesh; Klumpp, John Allan

    We report that in 2008, Serandour et al. reported on their in vitro experiment involving rat plasma samples obtained after an intravenous intake of plutonium citrate. Different amounts of DTPA were added to the plasma samples and the percentage of low-molecular-weight plutonium measured. Only when the DTPA dosage was three orders of magnitude greater than the recommended 30 μmol/kg was 100% of the plutonium apparently in the form of chelate. These data were modeled assuming three competing chemical reactions with other molecules that bind with plutonium. Here, time-dependent second-order kinetics of these reactions are calculated, intended eventually to become partmore » of a complete biokinetic model of DTPA action on actinides in laboratory animals or humans. The probability distribution of the ratio of stability constants for the reactants was calculated using Markov Chain Monte Carlo. In conclusion, these calculations substantiate that the inclusion of more reactions is needed in order to be in agreement with known stability constants.« less

  11. Second-order Kinetics of DTPA and Plutonium in Rat Plasma

    DOE PAGES

    Miller, Guthrie; Poudel, Deepesh; Klumpp, John Allan; ...

    2017-11-15

    We report that in 2008, Serandour et al. reported on their in vitro experiment involving rat plasma samples obtained after an intravenous intake of plutonium citrate. Different amounts of DTPA were added to the plasma samples and the percentage of low-molecular-weight plutonium measured. Only when the DTPA dosage was three orders of magnitude greater than the recommended 30 μmol/kg was 100% of the plutonium apparently in the form of chelate. These data were modeled assuming three competing chemical reactions with other molecules that bind with plutonium. Here, time-dependent second-order kinetics of these reactions are calculated, intended eventually to become partmore » of a complete biokinetic model of DTPA action on actinides in laboratory animals or humans. The probability distribution of the ratio of stability constants for the reactants was calculated using Markov Chain Monte Carlo. In conclusion, these calculations substantiate that the inclusion of more reactions is needed in order to be in agreement with known stability constants.« less

  12. Rapid Method for Sodium Hydroxide Fusion of Concrete and ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  13. Recovery of 238PuO2 by Molten Salt Oxidation Processing of 238PuO2 Contaminated Combustibles (Part II)

    NASA Astrophysics Data System (ADS)

    Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.; VanPelt, C. E.; Reimus, M. A.; Spengler, D.; Matonic, J.; Garcia, L.; Rios, E.; Sandoval, F.; Herman, D.; Hart, R.; Ewing, B.; Lovato, M.; Romero, J. P.

    2005-02-01

    Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt as the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium.

  14. Recovery of 238PuO2 by Molten Salt Oxidation Processing of 238PuO2 Contaminated Combustibles (Part II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.

    2005-02-06

    Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt asmore » the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium.« less

  15. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples

    NASA Astrophysics Data System (ADS)

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; Spencer, Khalil J.

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10-6) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.

  16. High-Precision Plutonium Isotopic Compositions Measured on Los Alamos National Laboratory’s General’s Tanks Samples: Bearing on Model Ages, Reactor Modelling, and Sources of Material. Further Discussion of Chronometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Khalil J.; Rim, Jung Ho; Porterfield, Donivan R.

    2015-06-29

    In this study, we re-analyzed late-1940’s, Manhattan Project era Plutonium-rich sludge samples recovered from the ''General’s Tanks'' located within the nation’s oldest Plutonium processing facility, Technical Area 21. These samples were initially characterized by lower accuracy, and lower precision mass spectrometric techniques. We report here information that was previously not discernable: the two tanks contain isotopically distinct Pu not only for the major (i.e., 240Pu, 239Pu) but trace ( 238Pu , 241Pu, 242Pu) isotopes. Revised isotopics slightly changed the calculated 241Am- 241Pu model ages and interpretations.

  17. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples.

    PubMed

    Stanley, F E; Byerly, Benjamin L; Thomas, Mariam R; Spencer, Khalil J

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10(-6)) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods. Graphical Abstract ᅟ.

  18. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Variations in the concentration of plutonium, strontium-90 and total alpha-emitters in human teeth collected within the British Isles.

    PubMed

    O'Donnell, R G; Mitchell, P I; Priest, N D; Strange, L; Fox, A; Henshaw, D L; Long, S C

    1997-08-18

    Concentrations of plutonium-239, plutonium-240, strontium-90 and total alpha-emitters have been measured in children's teeth collected throughout Great Britain and Ireland. The concentrations of plutonium and strontium-90 were measured in batched samples, each containing approximately 50 teeth, using low-background radiochemical methods. The concentrations of total alpha-emitters were determined in single teeth using alpha-sensitive plastic track detectors. The results showed that the average concentrations of total alpha-emitters and strontium-90 were approximately one to three orders of magnitude greater than the equivalent concentrations of plutonium-239,240. Regression analyses indicated that the concentrations of plutonium, but not strontium-90 or total alpha-emitters, decreased with increasing distance from the Sellafield nuclear fuel reprocessing plant-suggesting that this plant is a source of plutonium contamination in the wider population of the British Isles. Nevertheless, the measured absolute concentrations of plutonium (mean = 5 +/- 4 mBq kg-1 ash wt.) were so low that they are considered to present an insignificant radiological hazard.

  20. A rapid method for quantification of 242Pu in urine using extraction chromatography and ICP-MS

    DOE PAGES

    Gallardo, Athena Marie; Than, Chit; Wong, Carolyn; ...

    2017-01-01

    Occupational exposure to plutonium is generally monitored through analysis of urine samples. Typically, plutonium is separated from the sample and other actinides, and the concentration is determined using alpha spectroscopy. Current methods for separations and analysis are lengthy and require long count times. A new method for monitoring occupational exposure levels of plutonium has been developed, which requires fewer steps and overall less time than the alpha spectroscopy method. In this method, the urine is acidified, and a 239Pu internal standard is added. The urine is digested in a microwave oven, and plutonium is separated using an Eichrom TRU Resinmore » column. The plutonium is eluted, and the eluant is injected directly into the Inductively Coupled Plasma–Mass Spectrometer (ICP-MS). Compared to a direct “dilute and shoot” method, a 30-fold improvement in sensitivity is achieved. This method was validated by analyzing several batches of spiked samples. Based on these analyses, a combined standard uncertainty plot, which relates uncertainty to concentration, was produced. As a result, the MDA 95 was calculated to be 7.0 × 10 –7 μg L –1, and the Lc95 was calculated to be 3.5 × 10 –7 μg L –1 for this method.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken atmore » SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Furthermore, significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10 –15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/ 239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.« less

  2. Characterization studies and indicated remediation methods for plutonium contaminated soils at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murarik, T.M.; Wenstrand, T.K.; Rogers, L.A.

    An initial soil characterization study was conducted to help identify possible remediation methods to remove plutonium from the Nevada Test Site and Tonapah Test Range surface soils. Results from soil samples collected across various isopleths at five sites indicate that the size-fraction distribution patterns of plutonium remain similar to findings from the Nevada Applied Ecology Group (NAEG) (1970's). The plutonium remains in the upper 10--15 cm of soils, as indicated in previous studies. Distribution of fine particles downwind'' of ground zero at each site is suggested. Whether this pattern was established immediately after each explosion or this resulted from post-shotmore » wind movement of deposited material is unclear. Several possible soil treatment scenarios are presented. Removal of plutonium from certain size fractions of the soils would alleviate the sites of much of the plutonium burden. However, the nature of association of plutonium with soil components will determine which remediation methods will most likely succeed.« less

  3. Characterization studies and indicated remediation methods for plutonium contaminated soils at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murarik, T.M.; Wenstrand, T.K.; Rogers, L.A.

    An initial soil characterization study was conducted to help identify possible remediation methods to remove plutonium from the Nevada Test Site and Tonapah Test Range surface soils. Results from soil samples collected across various isopleths at five sites indicate that the size-fraction distribution patterns of plutonium remain similar to findings from the Nevada Applied Ecology Group (NAEG) (1970`s). The plutonium remains in the upper 10--15 cm of soils, as indicated in previous studies. Distribution of fine particles ``downwind`` of ground zero at each site is suggested. Whether this pattern was established immediately after each explosion or this resulted from post-shotmore » wind movement of deposited material is unclear. Several possible soil treatment scenarios are presented. Removal of plutonium from certain size fractions of the soils would alleviate the sites of much of the plutonium burden. However, the nature of association of plutonium with soil components will determine which remediation methods will most likely succeed.« less

  4. Digital pile-up rejection for plutonium experiments with solution-grown stilbene

    NASA Astrophysics Data System (ADS)

    Bourne, M. M.; Clarke, S. D.; Paff, M.; DiFulvio, A.; Norsworthy, M.; Pozzi, S. A.

    2017-01-01

    A solution-grown stilbene detector was used in several experiments with plutonium samples including plutonium oxide, mixed oxide, and plutonium metal samples. Neutrons from different reactions and plutonium isotopes are accompanied by numerous gamma rays especially by the 59-keV gamma ray of 241Am. Identifying neutrons correctly is important for nuclear nonproliferation applications and makes neutron/gamma discrimination and pile-up rejection necessary. Each experimental dataset is presented with and without pile-up filtering using a previously developed algorithm. The experiments were simulated using MCNPX-PoliMi, a Monte Carlo code designed to accurately model scintillation detector response. Collision output from MCNPX-PoliMi was processed using the specialized MPPost post-processing code to convert neutron energy depositions event-by-event into light pulses. The model was compared to experimental data after pulse-shape discrimination identified waveforms as gamma ray or neutron interactions. We show that the use of the digital pile-up rejection algorithm allows for accurate neutron counting with stilbene to within 2% even when not using lead shielding.

  5. Source-term characterisation and solid speciation of plutonium at the Semipalatinsk NTS, Kazakhstan.

    PubMed

    Nápoles, H Jiménez; León Vintró, L; Mitchell, P I; Omarova, A; Burkitbayev, M; Priest, N D; Artemyev, O; Lukashenko, S

    2004-01-01

    New data on the concentrations of key fission/activation products and transuranium nuclides in samples of soil and water from the Semipalatinsk Nuclear Test Site are presented and interpreted. Sampling was carried out at Ground Zero, Lake Balapan, the Tel'kem craters and reference locations within the test site boundary well removed from localised sources. Radionuclide ratios have been used to characterise the source term(s) at each of these sites. The geochemical partitioning of plutonium has also been examined and it is shown that the bulk of the plutonium contamination at most of the sites examined is in a highly refractory, non-labile form.

  6. Isotope ratio measurements of pg-size plutonium samples using TIMS in combination with "multiple ion counting" and filament carburization

    NASA Astrophysics Data System (ADS)

    Jakopic, Rozle; Richter, Stephan; Kühn, Heinz; Benedik, Ljudmila; Pihlar, Boris; Aregbe, Yetunde

    2009-01-01

    A sample preparation procedure for isotopic measurements using thermal ionization mass spectrometry (TIMS) was developed which employs the technique of carburization of rhenium filaments. Carburized filaments were prepared in a special vacuum chamber in which the filaments were exposed to benzene vapour as a carbon supply and carburized electrothermally. To find the optimal conditions for the carburization and isotopic measurements using TIMS, the influence of various parameters such as benzene pressure, carburization current and the exposure time were tested. As a result, carburization of the filaments improved the overall efficiency by one order of magnitude. Additionally, a new "multi-dynamic" measurement technique was developed for Pu isotope ratio measurements using a "multiple ion counting" (MIC) system. This technique was combined with filament carburization and applied to the NBL-137 isotopic standard and samples of the NUSIMEP 5 inter-laboratory comparison campaign, which included certified plutonium materials at the ppt-level. The multi-dynamic measurement technique for plutonium, in combination with filament carburization, has been shown to significantly improve the precision and accuracy for isotopic analysis of environmental samples with low-levels of plutonium.

  7. Selected environmental plutonium research reports of the NAEG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.G.; Dunaway, P.B.

    Twenty-one papers were presented on various aspects of plutonium and radioisotope ecology at the Nevada Test Site. This includes studies of wildlife, microorganisms, and the plant-soil system. Analysis and sampling techniques are also included.

  8. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    PubMed

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation. © 2013 Elsevier B.V. All rights reserved.

  9. Static, mixed-array total evaporation for improved quantitation of plutonium minor isotopes in small samples

    DOE PAGES

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; ...

    2016-03-31

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics “toolbox”, especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10 -6) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Furthermore, results are presented for small sample (~20 ng) applications involving a well-knownmore » plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.« less

  10. Radioisotope contaminations from releases of the Tomsk-Seversk nuclear facility (Siberia, Russia).

    PubMed

    Gauthier-Lafaye, F; Pourcelot, L; Eikenberg, J; Beer, H; Le Roux, G; Rhikvanov, L P; Stille, P; Renaud, Ph; Mezhibor, A

    2008-04-01

    Soils have been sampled in the vicinity of the Tomsk-Seversk facility (Siberia, Russia) that allows us to measure radioactive contaminations due to atmospheric and aquatic releases. Indeed soils exhibit large inventories of man-made fission products including 137Cs (ranging from 33,000 to 68,500 Bq m(-2)) and actinides such as plutonium (i.e. 239+240Pu from 420 to 5900 Bq m(-2)) or 241Am (160-1220 Bq m(-2)). Among all sampling sites, the bank of the Romashka channel exhibits the highest radioisotope concentrations. At this site, some short half-life gamma emitters were detected as well indicating recent aquatic discharge in the channel. In comparison, soils that underwent atmospheric depositions like peat and forest soils exhibit lower activities of actinides and 137Cs. Soil activities are too high to be related solely to global fallout and thus the source of plutonium must be discharges from the Siberian Chemical Combine (SCC) plant. This is confirmed by plutonium isotopic ratios measured by ICP-MS; the low 241Pu/239Pu and 240Pu/239Pu atomic ratios with respect to global fallout ratio or civil nuclear fuel are consistent with weapons grade signatures. Up to now, the influence of Tomsk-Seversk plutonium discharges was speculated in the Ob River and its estuary. Isotopic data from the present study show that plutonium measured in SCC probably constitutes a significant source of plutonium in the aquatic environment, together with plutonium from global fallout and other contaminated sites including Tomsk, Mayak (Russia) and Semipalatinsk (Republic of Kazakhstan). It is estimated that the proportion of plutonium from SCC source can reach 45% for 239Pu and 60% for 241Pu in the sediments.

  11. Rapid Method for Sodium Hydroxide Fusion of Asphalt ...

    EPA Pesticide Factsheets

    Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 The method will be used for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in asphalt matrices samples.

  12. Heterogeneity Effects in Plutonium Contaminated Soil

    DTIC Science & Technology

    2009-03-01

    masses up to one kilogram once the ratio of Americium - 241 (Am- 241 ) and plutonium concentrations was established (Rademacher, 2001). Alpha...with a sample number and tared weight with a non-smearing marker. A standard control was then set using a point source of Americium - 241 on an aluminum...During the fire the weapons grade plutonium (Pu- 239, Pu-240, and Pu- 241 ) ignited and was released into the surrounding area, due to both

  13. Advances in containment methods and plutonium recovery strategies that led to the structural characterization of plutonium(IV) tetrachloride tris-diphenylsulfoxide, PuCl 4(OSPh 2) 3

    DOE PAGES

    Schrell, Samantha K.; Boland, Kevin Sean; Cross, Justin Neil; ...

    2017-01-18

    In an attempt to further advance the understanding of plutonium coordination chemistry, we report a robust method for recycling and obtaining plutonium aqueous stock solutions that can be used as a convenient starting material in plutonium synthesis. This approach was used to prepare and characterize plutonium(IV) tetrachloride tris-diphenylsulfoxide, PuCl 4(OSPh 2) 3, by single crystal X-ray diffraction. The PuCl 4(OSPh 2) 3 compound represents a rare example of a 7-coordinate plutonium(IV) complex. Structural characterization of PuCl 4(OSPh 2) 3 by X-ray diffraction utilized a new containment method for radioactive crystals. The procedure makes use of epoxy, polyimide loops, and amore » polyester sheath to provide a robust method for safely containing and easily handling radioactive samples. Lastly, the described procedure is more user friendly than traditional containment methods that employ fragile quartz capillary tubes. Additionally, moving to polyester, instead of quartz, lowers the background scattering from the heavier silicon atoms.« less

  14. Plutonium age dating reloaded

    NASA Astrophysics Data System (ADS)

    Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Mayer, Klaus; Prohaska, Thomas

    2014-05-01

    Although the age determination of plutonium is and has been a pillar of nuclear forensic investigations for many years, additional research in the field of plutonium age dating is still needed and leads to new insights as the present work shows: Plutonium is commonly dated with the help of the 241Pu/241Am chronometer using gamma spectrometry; in fewer cases the 240Pu/236U chronometer has been used. The age dating results of the 239Pu/235U chronometer and the 238Pu/234U chronometer are scarcely applied in addition to the 240Pu/236U chronometer, although their results can be obtained simultaneously from the same mass spectrometric experiments as the age dating result of latter. The reliability of the result can be tested when the results of different chronometers are compared. The 242Pu/238U chronometer is normally not evaluated at all due to its sensitivity to contamination with natural uranium. This apparent 'weakness' that renders the age dating results of the 242Pu/238U chronometer almost useless for nuclear forensic investigations, however turns out to be an advantage looked at from another perspective: the 242Pu/238U chronometer can be utilized as an indicator for uranium contamination of plutonium samples and even help to identify the nature of this contamination. To illustrate this the age dating results of all four Pu/U clocks mentioned above are discussed for one plutonium sample (NBS 946) that shows no signs of uranium contamination and for three additional plutonium samples. In case the 242Pu/238U chronometer results in an older 'age' than the other Pu/U chronometers, contamination with either a small amount of enriched or with natural or depleted uranium is for example possible. If the age dating result of the 239Pu/235U chronometer is also influenced the nature of the contamination can be identified; enriched uranium is in this latter case a likely cause for the missmatch of the age dating results of the Pu/U chronometers.

  15. Determination of ultra-low level plutonium isotopes (239Pu, 240Pu) in environmental samples with high uranium.

    PubMed

    Xing, Shan; Zhang, Weichao; Qiao, Jixin; Hou, Xiaolin

    2018-09-01

    In order to measure trace plutonium and its isotopes ratio ( 240 Pu/ 239 Pu) in environmental samples with a high uranium, an analytical method was developed using radiochemical separation for separation of plutonium from matrix and interfering elements including most of uranium and ICP-MS for measurement of plutonium isotopes. A novel measurement method was established for extensively removing the isobaric interference from uranium ( 238 U 1 H and 238 UH 2 + ) and tailing of 238 U, but significantly improving the measurement sensitivity of plutonium isotopes by employing NH 3 /He as collision/reaction cell gases and MS/MS system in the triple quadrupole ICP-MS instrument. The results show that removal efficiency of uranium interference was improved by more than 15 times, and the sensitivity of plutonium isotopes was increased by a factor of more than 3 compared to the conventional ICP-MS. The mechanism on the effective suppress of 238 U interference for 239 Pu measurement using NH 3 -He reaction gases was explored to be the formation of UNH + and UNH 2 + in the reactions of UH + and U + with NH 3 , while no reaction between NH 3 and Pu + . The detection limits of this method were estimated to be 0.55 fg mL -1 for 239 Pu, 0.09 fg mL -1 for 240 Pu. The analytical precision and accuracy of the method for Pu isotopes concentration and 240 Pu/ 239 Pu atomic ratio were evaluated by analysis of sediment reference materials (IAEA-385 and IAEA-412) with different levels of plutonium and uranium. The developed method were successfully applied to determine 239 Pu and 240 Pu concentrations and 240 Pu/ 239 Pu atomic ratios in soil samples collected in coastal areas of eastern China. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Cleaning up the Legacy of the Cold War: Plutonium Oxides and the Role of Synchrotron Radiation Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, David Lewis

    2015-01-21

    The deceptively simple binary formula of AnO 2 belies an incredibly complex structural nature, and propensity to form mixed-valent, nonstoichiometric phases of composition AnO 2±x. For plutonium, the very formation of PuO 2+x has challenged a long-established dogma, and raised fundamental questions for long-term storage and environmental migration. This presentation covers two aspects of Los Alamos synchrotron radiation studies of plutonium oxides: (1) the structural chemistry of laboratory-prepared AnO 2+x systems (An = U, Pu; 0 ≤ x ≤ 0.25) determined through a combination of x-ray absorption fine structure spectroscopy (XAFS) and x-ray scattering of laboratory prepared samples; and (2)more » the application of synchrotron radiation towards the decontamination and decommissioning of the Rocky Flats Environmental Technology Site. Making the case for particle transport mechanisms as the basis of plutonium and americium mobility, rather than aqueous sorption-desorption processes, established a successful scientific basis for the dominance of physical transport processes by wind and water. The scientific basis was successful because it was in agreement with general theory on insolubility of PuO 2 in oxidation state IV, results of ultrafiltration analyses of field water/sediment samples, XAFS analyses of soil, sediment, and concrete samples, and was also in general agreement with on-site monitoring data. This understanding allowed Site contractors to rapidly move to application of soil erosion and sediment transport models as the means of predicting plutonium and americium transport, which led to design and application of site-wide soil erosion control technology to help control downstream concentrations of plutonium and americium in streamflow.« less

  17. Measurements of actinides in soil, sediments, water and vegetation in Northern New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallaher, B. M.; Efurd, D. W.

    2002-01-01

    This study was undertaken during 1991 - 1998 to identify the origin of plutonium uranium in northern New Mexico Rio Grande and tributary stream sediments. Isotopic fingerprinting techniques help distinguish radioactivity from Los Alamos National Laboratory (LANL) and from global fallout or natural sources. The geographic area covered by the study extended from the headwaters of the Rio Grande in southern Colorado to Elephant Butte Reservoir in southern New Mexico. Over 100 samples of stream channel and reservoir bottom sediments were analyzed for the atom ratios of plutonium and uranium isotopes using thermal ionization mass spectrometry (TIMS). Comparison of thesemore » ratios against those for fallout or natural sources allowed for quantification of the Laboratory impact. Of the seven major drainages crossing LANL, movement of LANL plutonium into the Rio Grande can only be traced via Los Alamos Canyon. The majority of sampled locations within and adjacent to LANL have little or no input of plutonium from the Laboratory. Samples collected upstream and distant to L A N show an average (+ s.d.) fallout 240Pu/239Pauto m ratio of 0.169 + 0.012, consistent with published worldwide global fallout values. These regional background ratios differ significantly from the 240Pu/239Pu atom ratio of 0.015 that is representative of LANL-derived plutonium entering the Rio Grande at Los Alamos Canyon. Mixing calculations of these sources indicate that the largest proportion (60% to 90%) of the plutonium in the Rio Grande sediments is from global atmospheric fallout, with an average of about 25% from the Laboratory. The LANL plutonium is identifiable intermittently along the 35-km reach of the Rio Grande to Cochiti Reservoir. The source of the LANL-derived plutonium in the Rio Grande was traced primarily to pre-1960 discharges of liquid effluents into a canyon bottom at a distance approximately 20 km upstream of the river. Plutonium levels decline exponentially with distance downstream after mixing with cleaner sediments, yet the LANL isotopic fingerprint remains distinct for at least 55 km from the effluent source. Plutonium isotopes in Rio Grande and Pajarito Plateau sediments are not at levels known to adversely affect public health. Activities of 239+240pwui thin this sample set ranged from 0.001- 0.046 pCUg in the Rio Grande to 3.7 pCi/g near the effluent discharge point. Levels in the Rio Grande are usually more than 1000 times. lower than prescribed cleanup standards. Uranium in stream and reservoir sediments is predominantly within natural concentration ranges and is of natural uranium isotopic composition. None of the sediments from the Rio Grande show identifiable Laboratory uranium, using the isotopic ratios. These results suggest that the mass of Laboratory-derived uranium entering the Rio Grande is small relative to the natural load carried with river sediments.« less

  18. QUANTITATIVE PLUTONIUM MICRODISTRIBUTION IN BONE TISSUE OF VERTEBRA FROM A MAYAK WORKER

    PubMed Central

    Lyovkina, Yekaterina V.; Miller, Scott C.; Romanov, Sergey A.; Krahenbuhl, Melinda P.; Belosokhov, Maxim V.

    2010-01-01

    The purpose was to obtain quantitative data on plutonium microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. A sample of the thoracic vertebra was obtained from a former Mayak worker with a rather high plutonium burden. Additional information was obtained on occupational and exposure history, medical history, and measured plutonium content in organs. Plutonium was detected in bone sections from its fission tracks in polycarbonate film using neutron-induced autoradiography. Quantitative analysis of randomly selected microscopic fields on one of the autoradiographs was performed. Data included fission fragment tracks in different bone tissue and surface areas. Quantitative information on plutonium microdistribution in human bone tissue was obtained for the first time. From these data, quantitative relationship of plutonium decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. The measured quantitative relationship of decays in bone volume to decays on bone surface does not coincide with recommended models for the cortical bone fraction by the International Commission on Radiological Protection. Biokinetic model parameters of extrapulmonary compartments might need to be adjusted after expansion of the data set on quantitative plutonium microdistribution in other bone types in human as well as other cases with different exposure patterns and types of plutonium. PMID:20838087

  19. 15. VIEW OF LABORATORY EQUIPMENT IN THE BUILDING 771 ANALYTICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF LABORATORY EQUIPMENT IN THE BUILDING 771 ANALYTICAL LABORATORY. THE LAB ANALYZED SAMPLES FOR PLUTONIUM, AMERICIUM, URANIUM, NEPTUNIUM, AND OTHER RADIOACTIVE ISOTOPES. (9/25/62) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  20. Comparison of premortem and postmortem estimates of plutonium deposited in the skeleton and liver of six individuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sula, M.J.; Bihl, D.E.; Carbaugh, E.H.

    1988-04-01

    Assessment of organ burdens after internal exposures to radionuclides is often necessary to evaluate the health and regulatory implications of the exposure. The assessment of plutonium activity in skeleton and liver is usually estimated from measurements of plutonium excreted via urine. As part of the overall evaluation of internal dose assessment techniques, it is useful to compare the results of organ burden estimates made from evaluation of urinary excretion data with those made at death from tissue samples collected posthumously from the individual. Estimates of plutonium in the skeleton and liver, based on postmortem analysis of tissue samples for sixmore » individuals, were obtained from the US Transuranium Registry (USTR). Bioassay data and other radiation exposure information obtained from the individuals' files were used to estimate their skeleton and liver burdens at the times of their deaths, and these estimates were compared to those obtained through tissue analysis. 6 refs., 2 tabs.« less

  1. Plutonium Bioassay Testing of U.S. Atmospheric Nuclear Test Participants and U.S. Occupation Forces of Hiroshima and Nagasaki, Japan

    DTIC Science & Technology

    2015-10-30

    with nuclear weapons testing or plutonium work. The results for the 100 atomic veterans were compared to those of the unexposed population, and...as a marker for significant internal intakes of other associated radionuclides in nuclear weapons debris due to its low natural background. However...isotope in weapons grade plutonium, is important from a health perspective, its presence within a given urine sample being analyzed by FTA can only

  2. System for sampling and monitoring microscopic organisms and substances

    DOEpatents

    Au, Frederick H. F.; Beckert, Werner F.

    1976-01-01

    A technique and apparatus used therewith for determining the uptake of plutonium and other contaminants by soil microorganisms which, in turn, gives a measure of the plutonium and/or other contaminants available to the biosphere at that particular time. A measured quantity of uncontaminated spores of a selected mold is added to a moistened sample of the soil to be tested. The mixture is allowed to sit a predetermined number of days under specified temperature conditions. An agar layer is then applied to the top of the sample. After three or more days, when spores of the mold growing in the sample have formed, the spores are collected by a miniature vacuum collection apparatus operated under preselected vacuum conditions, which collect only the spores with essentially no contamination by mycelial fragments or culture medium. After collection, the fungal spores are dried and analyzed for the plutonium and/or other contaminants. The apparatus is also suitable for collection of pollen, small insects, dust and other small particles, material from thin-layer chromatography plates, etc.

  3. Radiation damage and annealing in plutonium tetrafluoride

    NASA Astrophysics Data System (ADS)

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey; Sweet, Lucas; McNamara, Bruce; Delegard, Calvin; Jevremovic, Tatjana

    2017-12-01

    A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, thermogravimetric/differential thermal analysis and X-ray diffraction evaluations were conducted to determine the plutonium's crystal structure, oxide content, and moisture content; these analyses reported that the plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. During the initial thermogravimetric/differential thermal analyses, it was discovered that an exothermic event occurred within the material near 414 °C. X-ray diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414 °C event. The following commentary describes the series of thermogravimetric/differential thermal and X-ray diffraction analyses that were conducted as part of this investigation at PNNL.

  4. Determination of plutonium isotopes (238,239,240Pu) and strontium (90Sr) in seafood using alpha spectrometry and liquid scintillation spectrometry.

    PubMed

    Shin, Choonshik; Choi, Hoon; Kwon, Hye-Min; Jo, Hye-Jin; Kim, Hye-Jeong; Yoon, Hae-Jung; Kim, Dong-Sul; Kang, Gil-Jin

    2017-10-01

    The present study was carried out to survey the levels of plutonium isotopes ( 238 , 239 , 240 Pu) and strontium ( 90 Sr) in domestic seafood in Korea. In current, regulatory authorities have analyzed radionuclides, such as 134 Cs, 137 Cs and 131 I, in domestic and imported food. However, people are concerned about contamination of other radionuclides, such as plutonium and strontium, in food. Furthermore, people who live in Korea have much concern about safety of seafood. Accordingly, in this study, we have investigated the activity concentrations of plutonium and strontium in seafood. For the analysis of plutonium isotopes and strontium, a rapid and reliable method developed from previous study was used. Applicability of the test method was verified by examining recovery, minimum detectable activity (MDA), analytical time, etc. Total 40 seafood samples were analyzed in 2014-2015. As a result, plutonium isotopes ( 238 , 239 , 240 Pu) and strontium ( 90 Sr) were not detected or below detection limits in seafood. The detection limits of plutonium isotopes and strontium-90 were 0.01 and 1 Bq/kg, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. High temperature radiance spectroscopy measurements of solid and liquid uranium and plutonium carbides

    NASA Astrophysics Data System (ADS)

    Manara, D.; De Bruycker, F.; Boboridis, K.; Tougait, O.; Eloirdi, R.; Malki, M.

    2012-07-01

    In this work, an experimental study of the radiance of liquid and solid uranium and plutonium carbides at wavelengths 550 nm ⩽ λ ⩽ 920 nm is reported. A fast multi-channel spectro-pyrometer has been employed for the radiance measurements of samples heated up to and beyond their melting point by laser irradiation. The melting temperature of uranium monocarbide, soundly established at 2780 K, has been taken as a radiance reference. Based on it, a wavelength-dependence has been obtained for the high-temperature spectral emissivity of some uranium carbides (1 ⩽ C/U ⩽ 2). Similarly, the peritectic temperature of plutonium monocarbide (1900 K) has been used as a reference for plutonium monocarbide and sesquicarbide. The present spectral emissivities of solid uranium and plutonium carbides are close to 0.5 at 650 nm, in agreement with previous literature values. However, their high temperature behaviour, values in the liquid, and carbon-content and wavelength dependencies in the visible-near infrared range have been determined here for the first time. Liquid uranium carbide seems to interact with electromagnetic radiation in a more metallic way than does the solid, whereas a similar effect has not been observed for plutonium carbides. The current emissivity values have also been used to convert the measured radiance spectra into real temperature, and thus perform a thermal analysis of the laser heated samples. Some high-temperature phase boundaries in the systems U-C and Pu-C are shortly discussed on the basis of the current results.

  6. Hypoadrenocorticism in beagles exposed to aerosols of plutonium-238 dioxide by inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, R.E.; Buschbom, R.L.; Dagle, G.E.

    1996-12-01

    Hypoadrenocorticism, known as Addison`s disease in humans, was diagnosed in six beagles after inhalation of at least 1.7 kBq/g lung of {sup 238}PuO{sub 2}. Histological examination of adrenal gland specimens obtained at necropsy revealed marked adrenal cortical atrophy in all cases. Autoadiographs showed only slight {alpha}-particle activity. Although the pathogenesis of adrenal cortical atrophy in these dogs is unclear, there is evidence to suggest an automimmune disorder linked to damage resulting from {alpha}-particle irradiation to the lymphatic system.

  7. Thermodynamic calculations of oxygen self-diffusion in mixed-oxide nuclear fuels

    DOE PAGES

    Parfitt, David C.; Cooper, Michael William; Rushton, Michael J.D.; ...

    2016-07-29

    Mixed-oxide fuels containing uranium with thorium and/or plutonium may play an important part in future nuclear fuel cycles. There are, however, significantly less data available for these materials than conventional uranium dioxide fuel. In the present study, we employ molecular dynamics calculations to simulate the elastic properties and thermal expansivity of a range of mixed oxide compositions. These are then used to support equations of state and oxygen self-diffusion models to provide a self-consistent prediction of the behaviour of these mixed oxide fuels at arbitrary compositions.

  8. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Jones, Susan A.

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used tomore » recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.« less

  9. Vaporization chemistry of hypo-stoichiometric (U,Pu)O 2

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Krishnaiah, M. V.

    2001-04-01

    Calculations were performed on hypo-stoichiometric uranium plutonium di-oxide to examine its vaporization behavior as a function of O/ M ( M= U+ Pu) ratio and plutonium content. The phase U (1- y) Pu yO z was treated as an ideal solid solution of (1- y)UO 2+ yPuO (2- x) such that x=(2- z)/ y. Oxygen potentials for different desired values of y, z, and temperature were used as the primary input to calculate the corresponding partial pressures of various O-, U-, and Pu-bearing gaseous species. Relevant thermodynamic data for the solid phases UO 2 and PuO (2- x) , and the gaseous species were taken from the literature. Total vapor pressure varies with O/M and goes through a minimum. This minimum does not indicate a congruently vaporizing composition. Vaporization behavior of this system can at best be quasi-congruent. Two quasi-congruently vaporizing compositions (QCVCs) exist, representing the equalities (O/M) vapor=(O/M) mixed-oxide and (U/Pu) vapor=(U/Pu) mixed-oxide, respectively. The (O/M) corresponding to QCVC1 is lower than that corresponding to QCVC2, but very close to the value where vapor pressure minimum occurs. The O/M values of both QCVCs increase with decrease in plutonium content. The vaporization chemistry of this system, on continuous vaporization under dynamic condition, is discussed.

  10. Plutonium oxalate precipitation for trace elemental determination in plutonium materials

    DOE PAGES

    Xu, Ning; Gallimore, David; Lujan, Elmer; ...

    2015-05-26

    In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.

  11. Isotopic Analysis of Plutonium by Optical Spectroscopy; ANALYSE ISOTOPIQUE DU PLUTONIUM PAR SPECTROSCOPIE OPTIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artaud, J.; Chaput, M.; Gerstenkorn, S.

    1961-01-01

    Isotopic analyses of mixtures of plutonium-239 and -240 were carried out by means of the photoelectric spectrometer, the source being a hollow cathode cooled by liquid nitrogen. The relative precision is of the order of 2%, for samples containieg 3% of Pu/sup 240/. The study of the reproductibility of the measurements should make it possible to increase the precision; the relative precision which can be expected from the method should be 1% for mixtures containing 1% of Pu/sup 240/. (auth)

  12. The instrumental method of plutonium determination

    NASA Astrophysics Data System (ADS)

    Knyazev, B. B.; Kazachevskiy, I. V.; Solodukhin, V. P.; Lukashenko, S. N.; Knatova, M. K.; Kashirskiy, V. V.

    2003-01-01

    A method of direct instrumental determination of plutonium isotopes in soil samples is described. For the method a special program of spectra processing and activity calculation had to be prepared. The detection limit of 239+240Pu in absence of interfering radiation is about 200 Bq/kg (by 3.3σ criteria). Examples are given of the method application for the study of radionuclide soil composition in separate objects of Semipalatinsk Nuclear Test Site (SNTS). It is shown that for different objects under study the correlation degree between plutonium and americium activities may change rather substantially.

  13. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, Cameron Russell

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, anmore » experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium disposition treaty.« less

  14. Rapid Method for Sodium Hydroxide Fusion of Asphalt ...

    EPA Pesticide Factsheets

    Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 Rapid method developed for analysis of Americium-241 (241Am), plutonium-238 (238Pu), plutonium-239 (239Pu), radium-226 (226Ra), strontium-90 (90Sr), uranium-234 (234U), uranium-235 (235U) and uranium-238 (238U) in asphalt roofing material samples

  15. Radiation damage and annealing in plutonium tetrafluoride

    DOE PAGES

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey; ...

    2017-08-03

    A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, thermogravimetric/differential thermal analysis and X-ray diffraction evaluations were conducted to determine the plutonium's crystal structure, oxide content, and moisture content; these analysesmore » reported that the plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. And during the initial thermogravimetric/differential thermal analyses, it was discovered that an exothermic event occurred within the material near 414 °C. X-ray diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414 °C event. This commentary describes the series of thermogravimetric/differential thermal and X-ray diffraction analyses that were conducted as part of this investigation at PNNL.« less

  16. Method for collecting spores from a mold

    DOEpatents

    Au, Frederick H. F.; Beckert, Werner F.

    1977-01-01

    A technique and apparatus used therewith for determining the uptake of plutonium and other contaminants by soil microorganisms which, in turn, gives a measure of the plutonium and/or other contaminants available to the biosphere at that particular time. A measured quantity of uncontaminated spores of a selected mold is added to a moistened sample of the soil to be tested. The mixture is allowed to sit a predetermined number of days under specified temperature conditions. An agar layer is then applied to the top of the sample. After three or more days, when spores of the mold growing in the sample have formed, the spores are collected by a miniature vacuum collection apparatus operated under preselected vacuum conditions, which collect only the spores with essentially no contamination by mycelial fragments or culture medium. After collection, the fungal spores are dried and analyzed for the plutonium and/or other contaminants. The apparatus is also suitable for collection of pollen, small insects, dust and other small particles, material from thin-layer chromatography plates, etc.

  17. Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides.

    PubMed

    Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M

    2016-03-07

    Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process.

  18. Dissolution of aerosol particles collected from nuclear facility plutonium production process

    DOE PAGES

    Xu, Ning; Martinez, Alexander; Schappert, Michael Francis; ...

    2015-08-14

    Here, a simple, robust analytical chemistry method has been developed to dissolve plutonium containing particles in a complex matrix. The aerosol particles collected on Marple cascade impactor substrates were shown to be dissolved completely with an acid mixture of 12 M HNO 3 and 0.1 M HF. A pressurized closed vessel acid digestion technique was utilized to heat the samples at 130 °C for 16 h to facilitate the digestion. The dissolution efficiency for plutonium particles was 99 %. The resulting particle digestate solution was suitable for trace elemental analysis and isotope composition determination, as well as radiochemistry measurements.

  19. Uncertainty propagation for the coulometric measurement of the plutonium concentration in CRM126 solution provided by JAEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales-Arteaga, Maria

    This GUM WorkbenchTM propagation of uncertainty is for the coulometric measurement of the plutonium concentration in a Pu standard material (C126) supplied as individual aliquots that were prepared by mass. The C126 solution had been prepared and as aliquoted as standard material. Samples are aliquoted into glass vials and heated to dryness for distribution as dried nitrate. The individual plutonium aliquots were not separated chemically or otherwise purified prior to measurement by coulometry in the F/H Laboratory. Hydrogen peroxide was used for valence adjustment.

  20. Assessment of need for transport tubes when continuously monitoring for radioactive aerosols.

    PubMed

    Whicker, J J; Rodgers, J C; Lopez, R C

    1999-09-01

    Aerosol transport tubes are often used to draw aerosol from desirable sampling locations to nearby air sampling equipment that cannot be placed at that location. In many plutonium laboratories at Los Alamos National Laboratory, aerosol transport tubes are used to transport aerosol from the front of room ventilation exhaust registers to continuous air monitors (CAMs) that are mounted on nearby walls. Transport tubes are used because past guidance suggests that extraction of aerosol samples from exhaust locations provides the most sensitive and reliable detection under conditions where the rooms have unpredictable release locations and significant spatial variability in aerosol concentrations after releases, and where CAMs cannot be located in front of exhaust registers without blocking worker walkways. Despite designs to minimize particle loss in tubes, aerosol transport model predictions suggest losses occur lowering the sensitivity of CAMs to accidentally released plutonium aerosol. The goal of this study was to test the hypotheses that the reliability, speed, and sensitivity of aerosol detection would be equal whether the sample was extracted from the front of the exhaust register or from the wall location of CAMs. Polydisperse oil aerosols were released from multiple locations in two plutonium laboratories to simulate plutonium aerosol releases. Networked laser particle counters (LPCs) were positioned to simultaneously measure time-resolved aerosol concentrations at each exhaust register (representative of sampling with transport tubes) and at each wall-mounted CAM location (representative of sampling without transport tubes). Results showed no significant differences in detection reliability, speed, or sensitivity for LPCs positioned at exhaust locations when compared to LPCs positioned at the CAM wall location. Therefore, elimination of transport tubes would likely improve CAM performance.

  1. Actinide-contaminated Skin: Comparing Decontamination Efficacy of Water, Cleansing Gels, and DTPA Gels.

    PubMed

    Tazrart, A; Bolzinger, M A; Lamart, S; Coudert, S; Angulo, J F; Jandard, V; Briançon, S; Griffiths, N M

    2018-07-01

    Skin contamination by alpha-emitting actinides is a risk to workers during nuclear fuel production and reactor decommissioning. Also, the list of items for potential use in radiological dispersal devices includes plutonium and americium. The actinide chemical form is important and solvents such as tributyl phosphate, used to extract plutonium, can influence plutonium behavior. This study investigated skin fixation and efficacy of decontamination products for these actinide forms using viable pig skin in the Franz cell diffusion system. Commonly used or recommended decontamination products such as water, cleansing gel, diethylenetriamine pentaacetic acid, or octadentate hydroxypyridinone compound 3,4,3-LI(1,2-HOPO), as well as diethylenetriamine pentaacetic acid hydrogel formulations, were tested after a 2-h contact time with the contaminant. Analysis of skin samples demonstrated that more plutonium nitrate is bound to skin as compared to plutonium-tributyl phosphate, and fixation of americium to skin was also significant. The data show that for plutonium-tributyl phosphate all the products are effective ranging from 80 to 90% removal of this contaminant. This may be associated with damage to the skin by this complex and suggests a mechanical/wash-out action rather than chelation. For removal of americium and plutonium, both Trait Rouge cleansing gel and diethylenetriamine pentaacetic acid are better than water, and diethylenetriamine pentaacetic acid hydrogel is better than Osmogel. The different treatments, however, did not significantly affect the activity in deeper skin layers, which suggests a need for further improvement of decontamination procedures. The new diethylenetriamine pentaacetic acid hydrogel preparation was effective in removing americium, plutonium, and plutonium-tributyl phosphate from skin; such a formulation offers advantages and thus merits further assessment.

  2. Commentary on Inhaled 239PuO 2 in Dogs — A Prophylaxis against Lung Cancer?

    DOE PAGES

    Cuttler, Jerry M.; Feinendegen, Ludwig E.

    2015-01-01

    Several studies on the effect of inhaled plutonium-dioxide particulates and the incidence of lung tumors in dogs reveal beneficial effects when the cumulative alpha-radiation dose is low. There is a threshold at an exposure level of about 100 cGy for excess tumor incidence and reduced lifespan. The observations conform to the expectations of the radiation hormesis dose-response model and contradict the predictions of the LNT hypothesis. These studies suggest investigating the possibility of employing low-dose alpha-radiation, such as from 239PuO 2 inhalation, as a prophylaxis against lung cancer.

  3. Commentary on Inhaled 239PuO 2 in Dogs — A Prophylaxis against Lung Cancer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuttler, Jerry M.; Feinendegen, Ludwig E.

    Several studies on the effect of inhaled plutonium-dioxide particulates and the incidence of lung tumors in dogs reveal beneficial effects when the cumulative alpha-radiation dose is low. There is a threshold at an exposure level of about 100 cGy for excess tumor incidence and reduced lifespan. The observations conform to the expectations of the radiation hormesis dose-response model and contradict the predictions of the LNT hypothesis. These studies suggest investigating the possibility of employing low-dose alpha-radiation, such as from 239PuO 2 inhalation, as a prophylaxis against lung cancer.

  4. MO200: a model for evaluation safeguards through material accountability for a 200 tonne per year mixed-oxide fuel-rod fabrication plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandborn, R.H.

    1976-01-01

    M0200, a computer simulation model, was used to investigate the safeguarding of plutonium dioxide. The computer program operating the model was constructed so that replicate runs could provide data for statistical analysis of the distributions of the randomized variables. The plant model was divided into material balance areas associated with definable unit processes. Indicators of plant operations studied were modified end-of-shift material balances, end-of-blend errors formed by closing material balances between blends, and cumulative sums of the differences between actual and expected performances. (auth)

  5. Development of Novel Method for Rapid Extract of Radionuclides from Solution Using Polymer Ligand Film

    NASA Astrophysics Data System (ADS)

    Rim, Jung H.

    Accurate and fast determination of the activity of radionuclides in a sample is critical for nuclear forensics and emergency response. Radioanalytical techniques are well established for radionuclides measurement, however, they are slow and labor intensive, requiring extensive radiochemical separations and purification prior to analysis. With these limitations of current methods, there is great interest for a new technique to rapidly process samples. This dissertation describes a new analyte extraction medium called Polymer Ligand Film (PLF) developed to rapidly extract radionuclides. Polymer Ligand Film is a polymer medium with ligands incorporated in its matrix that selectively and rapidly extract analytes from a solution. The main focus of the new technique is to shorten and simplify the procedure necessary to chemically isolate radionuclides for determination by alpha spectrometry or beta counting. Five different ligands were tested for plutonium extraction: bis(2-ethylhexyl) methanediphosphonic acid (H2DEH[MDP]), di(2-ethyl hexyl) phosphoric acid (HDEHP), trialkyl methylammonium chloride (Aliquat-336), 4,4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH18C6), and 2-ethylhexyl 2-ethylhexylphosphonic acid (HEH[EHP]). The ligands that were effective for plutonium extraction further studied for uranium extraction. The plutonium recovery by PLFs has shown dependency on nitric acid concentration and ligand to total mass ratio. H2DEH[MDP] PLFs performed best with 1:10 and 1:20 ratio PLFs. 50.44% and 47.61% of plutonium were extracted on the surface of PLFs with 1M nitric acid for 1:10 and 1:20 PLF, respectively. HDEHP PLF provided the best combination of alpha spectroscopy resolution and plutonium recovery with 1:5 PLF when used with 0.1M nitric acid. The overall analyte recovery was lower than electrodeposited samples, which typically has recovery above 80%. However, PLF is designed to be a rapid field deployable screening technique and consistency is more important than recovery. PLFs were also tested using blind quality control samples and the activities were accurately measured. It is important to point out that PLFs were consistently susceptible to analytes penetrating and depositing below the surface. The internal radiation within the body of PLF is mostly contained and did not cause excessive self-attenuation and peak broadening in alpha spectroscopy. The analyte penetration issue was beneficial in the destructive analysis. H2DEH[MDP] PLF was tested with environmental samples to fully understand the capabilities and limitations of the PLF in relevant environments. The extraction system was very effective in extracting plutonium from environmental water collected from Mortandad Canyon at Los Alamos National Laboratory with minimal sample processing. Soil samples were tougher to process than the water samples. Analytes were first leached from the soil matrixes using nitric acid before processing with PLF. This approach had a limitation in extracting plutonium using PLF. The soil samples from Mortandad Canyon, which are about 1% iron by weight, were effectively processed with the PLF system. Even with certain limitations of the PLF extraction system, this technique was able to considerably decrease the sample analysis time. The entire environmental sample was analyzed within one to two days. The decrease in time can be attributed to the fact that PLF is replacing column chromatography and electrodeposition with a single step for preparing alpha spectrometry samples. The two-step process of column chromatography and electrodeposition takes a couple days to a week to complete depending on the sample. The decrease in time and the simplified procedure make this technique a unique solution for application to nuclear forensics and emergency response. A large number of samples can be quickly analyzed and selective samples can be further analyzed with more sensitive techniques based on the initial data. The deployment of a PLF system as a screening method will greatly reduce a total analysis time required to gain meaningful isotopic data for the nuclear forensics application. (Abstract shortened by UMI.)

  6. Independent Verification Survey of the Clean Coral Storage Pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson-Nichols, M.J.; Egidi, P.V.; Roemer, E.K.

    2000-09-01

    f I The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficialmore » use on Johnston Island. The clean storage pile currently consists of approximately 120,000 m3 of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain wi th 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity.« less

  7. Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides

    NASA Astrophysics Data System (ADS)

    Vauchy, Romain; Belin, Renaud C.; Robisson, Anne-Charlotte; Hodaj, Fiqiri

    2016-02-01

    In situ X-ray diffraction was used to study the structural changes occurring in uranium-plutonium mixed oxides U1-yPuyO2-x with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H2 atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s-1 and 0.005 K s-1, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U1-yPuyO2-x uranium-plutonium mixed oxides.

  8. Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.

    2009-08-20

    A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55more » Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where transuranic radionuclides have been co-disposed with acidic liquid waste, transport through the vadose zone for considerable distances has occurred. For example, at the 216-Z-9 Crib, plutonium-239 and americium-241 have moved to depths in excess of 36 m (118 ft) bgs. Acidic conditions increase the solubility of these contaminants and reduce adsorption to mineral surfaces. Subsequent neutralization of the acidity by naturally occurring calcite in the vadose zone (particularly in the Cold Creek unit) appears to have effectively stopped further migration. The vast majority of transuranic contaminants disposed to the vadose zone on the Hanford Site (10,200 Ci [86%] of plutonium-239; 27,900 Ci [97%] of americium-241; and 41.8 Ci [78%] of neptunium-237) were disposed in sites within the PFP Closure Zone. This closure zone is located within the 200 West Area (see Figures 1.1 and 3.1). Other closure zones with notably high quantities of transuranic contaminant disposal include the T Farm Zone with 408 Ci (3.5%) plutonium-239, the PUREX Zone with 330 Ci (2.8%) plutonium-239, 200-W Ponds Zone with 324 Ci (2.8%) plutonium-239, B Farm Zone with 183 Ci (1.6%) plutonium-239, and the REDOX Zone with 164 Ci (1.4%) plutonium 239. Characterization studies for most of the sites reviewed in the document are generally limited. The most prevalent characterization methods used were geophysical logging methods. Characterization of a number of sites included laboratory analysis of borehole sediment samples specifically for radionuclides and other contaminants, and geologic and hydrologic properties. In some instances, more detailed research level studies were conducted. Results of these studies were summarized in the document.« less

  9. Area G Perimeter Surface-Soil and Single-Stage Water Sampling: Environmental Surveillance for Fiscal Years 1996 and 1997, Group ESH-19

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis Childs; Ron Conrad

    1998-10-01

    Area Gin Technical Area 54, has been the principal facility at Los Alamos National Laboratory for the storage and disposal of low-level, solid mixed, and transuranic radioactive waste since 1957. Soil samples were analyzed for tritium, isotopic plutonium, americium-241, and cesium-137. Thirteen metals-silver, arsenic, barium, beryllium, cadmium, chromium, mercury, nickel, lead, antimony, selenium, thallium and zinc-were analyzed on filtered-sediment fractions of the single-stage samples using standard analytical chemistry techniques. During the two years of sampling discussed in this report elevated levels of tritium (as high as 716,000 pCi/L) in soil were found for sampling sites adjacent to the tritium burialmore » shafts located on the south- central perimeter of Area G. Additionally, tritium concentrations in soil as high as 38,300 pCi/L were detected adjacent to the TRU pads in the northeast comer of Area G. Plutonium-238 activities in FY96 soils ranged from 0.001-2.866 pCi/g, with an average concentration of 0.336& 0.734 pCdg. Pu-238 activities in FY97 soils ranged from 0.002-4.890 pCi/g, with an average concentration of 0.437 & 0.928 pCdg. Pu-239 activities in FY96 soils ranged from 0.009 to 1.62 pCdg, with an average of 0.177- 0.297 pCdg. Pu-239 activities in FY97 soils ranged from 0.005 to 1.71 pCi/g, with an average of 0.290- 0.415 pCi/g. The locations of elevated plutonium readings were consistent with the history of plutonium disposal at Area G. The two areas of elevated Am-241 activity reflected the elevated activities found for plutonium, the average values for Am-241 on soils were 0.6-2.07 pCi/g, and 0.10-0.14 pCi/g respectively for samples collected in FY96 and FY97. CS-137 activities in soils had average values of 0.33 pCi/g, and 0.28 pCi/g respectively for samples collected in FY96 and 97. There was no perimeter area where soil concentrations of CS-137 were significantly elevated.« less

  10. Evaluation of continuous air monitor placement in a plutonium facility.

    PubMed

    Whicker, J J; Rodgers, J C; Fairchild, C I; Scripsick, R C; Lopez, R C

    1997-05-01

    Department of Energy appraisers found continuous air monitors at Department of Energy plutonium facilities alarmed less than 30% of the time when integrated room plutonium air concentrations exceeded 500 DAC-hours. Without other interventions, this alarm percentage suggests the possibility that workers could be exposed to high airborne concentrations without continuous air monitor alarms. Past research has shown that placement of continuous air monitors is a critical component in rapid and reliable detection of airborne releases. At Los Alamos National Laboratory and many other Department of Energy plutonium facilities, continuous air monitors have been primarily placed at ventilation exhaust points. The purpose of this study was to evaluate and compare the effectiveness of exhaust register placement of workplace continuous air monitors with other sampling locations. Polydisperse oil aerosols were released from multiple locations in two plutonium laboratories at Los Alamos National Laboratory. An array of laser particle counters positioned in the rooms measured time-resolved aerosol dispersion. Results showed alternative placement of air samplers generally resulted in aerosol detection that was faster, often more sensitive, and equally reliable compared with samplers at exhaust registers.

  11. Certified reference materials and reference methods for nuclear safeguards and security.

    PubMed

    Jakopič, R; Sturm, M; Kraiem, M; Richter, S; Aregbe, Y

    2013-11-01

    Confidence in comparability and reliability of measurement results in nuclear material and environmental sample analysis are established via certified reference materials (CRMs), reference measurements, and inter-laboratory comparisons (ILCs). Increased needs for quality control tools in proliferation resistance, environmental sample analysis, development of measurement capabilities over the years and progress in modern analytical techniques are the main reasons for the development of new reference materials and reference methods for nuclear safeguards and security. The Institute for Reference Materials and Measurements (IRMM) prepares and certifices large quantities of the so-called "large-sized dried" (LSD) spikes for accurate measurement of the uranium and plutonium content in dissolved nuclear fuel solutions by isotope dilution mass spectrometry (IDMS) and also develops particle reference materials applied for the detection of nuclear signatures in environmental samples. IRMM is currently replacing some of its exhausted stocks of CRMs with new ones whose specifications are up-to-date and tailored for the demands of modern analytical techniques. Some of the existing materials will be re-measured to improve the uncertainties associated with their certified values, and to enable laboratories to reduce their combined measurement uncertainty. Safeguards involve the quantitative verification by independent measurements so that no nuclear material is diverted from its intended peaceful use. Safeguards authorities pay particular attention to plutonium and the uranium isotope (235)U, indicating the so-called 'enrichment', in nuclear material and in environmental samples. In addition to the verification of the major ratios, n((235)U)/n((238)U) and n((240)Pu)/n((239)Pu), the minor ratios of the less abundant uranium and plutonium isotopes contain valuable information about the origin and the 'history' of material used for commercial or possibly clandestine purposes, and have therefore reached high level of attention for safeguards authorities. Furthermore, IRMM initiated and coordinated the development of a Modified Total Evaporation (MTE) technique for accurate abundance ratio measurements of the "minor" isotope-amount ratios of uranium and plutonium in nuclear material and, in combination with a multi-dynamic measurement technique and filament carburization, in environmental samples. Currently IRMM is engaged in a study on the development of plutonium reference materials for "age dating", i.e. determination of the time elapsed since the last separation of plutonium from its daughter nuclides. The decay of a radioactive parent isotope and the build-up of a corresponding amount of daughter nuclide serve as chronometer to calculate the age of a nuclear material. There are no such certified reference materials available yet. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Plutonium isotopes in the Hungarian environment.

    PubMed

    Varga, Beata; Tarján, Sandor; Vajda, Nora

    2008-04-01

    More than 50 soil samples were analysed from different parts of the country, the activity concentration of 239+240Pu was in the range of 0.01-0.84 Bq/kg dry soil with the average of 0.10 Bq/kg. 238Pu could be detected only in few moss samples and 238Pu/239+240Pu ratio determines the origin of plutonium. 241Pu was determined by liquid scintillation spectrometry. The activity concentration of this isotope in the soil is between 0.04 and 3.74 Bq/kg with the average of 0.82 Bq/kg, while in the moss is also similar 0.01-2.07 Bq/kg fresh mass with the average of 0.43 Bq/kg. Significant difference could not be observed between the different types of soils occurring in the country, but the results could be sorted according to the sampling carried out on undisturbed or cultivated area. The isotope ratios 241Pu/239+240Pu prove that the origin of the plutonium in Hungary is the global fallout determined by the atmospheric nuclear weapon tests.

  13. Resuspension studies in the Marshall Islands.

    PubMed

    Shinn, J H; Homan, D N; Robison, W L

    1997-07-01

    The contribution of inhalation exposure to the total dose for residents of the Marshall Islands was monitored at occasions of opportunity on several islands in the Bikini and Enewetak Atolls. To determine the long-term potential for inhalation exposure, and to understand the mechanisms of redistribution and personal exposure, additional investigations were undertaken on Bikini Island under modified and controlled conditions. Experiments were conducted to provide key parameters for the assessment of inhalation exposure from plutonium-contaminated dust aerosols: characterization of the contribution of plutonium in soil-borne aerosols as compared to sea spray and organic aerosols, determination of plutonium resuspension rates as measured by the meteorological flux-gradient method during extreme conditions of a bare-soil vs. a stabilized surface, determination of the approximate individual exposures to resuspended plutonium by traffic, and studies of exposures to individuals in different occupational environments simulated by personal air sampling of workers assigned to a variety of tasks. Enhancement factors (defined as ratios of the plutonium-activity of suspended aerosols relative to the plutonium-activity of the soil) were determined to be less than 1 (typically 0.4 to 0.7) in the undisturbed, vegetated areas, but greater than 1 (as high as 3) for the case studies of disturbed bare soil, roadside travel, and for occupational duties in fields and in and around houses.

  14. Uncertainty propagation for the coulometric measurement of the plutonium concentration in MOX-PU4.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This GUM WorkbenchTM propagation of uncertainty is for the coulometric measurement of the plutonium concentration in a Pu standard material (C126) supplied as individual aliquots that were prepared by mass. The C126 solution had been prepared and as aliquoted as standard material. Samples are aliquoted into glass vials and heated to dryness for distribution as dried nitrate. The individual plutonium aliquots were not separated chemically or otherwise purified prior to measurement by coulometry in the F/H Laboratory. Hydrogen peroxide was used for valence adjustment. The Pu assay measurement results were corrected for the interference from trace iron in the solutionmore » measured for assay. Aliquot mass measurements were corrected for air buoyancy. The relative atomic mass (atomic weight) of the plutonium from X126 certoficate was used. The isotopic composition was determined by thermal ionization mass spectrometry (TIMS) for comparison but not used in calculations.« less

  15. DEVELOPMENT AND DEPLOYMENT OF VACUUM SALT DISTILLATION AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Pak, D.; Edwards, T.

    2010-10-28

    The Savannah River Site has a mission to dissolve fissile materials and disposition them. The primary fissile material is plutonium dioxide (PuO{sub 2}). To support dissolution of these materials, the Savannah River National Laboratory (SRNL) designed and demonstrated a vacuum salt distillation (VSD) apparatus using both representative radioactive samples and non-radioactive simulant materials. Vacuum salt distillation, through the removal of chloride salts, increases the quantity of materials suitable for processing in the site's HB-Line Facility. Small-scale non-radioactive experiments at 900-950 C show that >99.8 wt % of the initial charge of chloride salt distilled from the sample boat with recoverymore » of >99.8 wt % of the ceric oxide (CeO{sub 2}) - the surrogate for PuO{sub 2} - as a non-chloride bearing 'product'. Small-scale radioactive testing in a glovebox demonstrated the removal of sodium chloride (NaCl) and potassium chloride (KCl) from 13 PuO{sub 2} samples. Chloride concentrations were distilled from a starting concentration of 1.8-10.8 wt % to a final concentration <500 mg/kg chloride. Initial testing of a non-radioactive, full-scale production prototype is complete. A designed experiment evaluated the impact of distillation temperature, time at temperature, vacuum, product depth, and presence of a boat cover. Significant effort has been devoted to mechanical considerations to facilitate simplified operation in a glovebox.« less

  16. Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Günther-Leopold, I.; Waldis, J. Kobler; Wernli, B.; Kopajtic, Z.

    2005-04-01

    Radioactive isotopes are traditionally quantified by means of radioactivity counting techniques ([alpha], [beta], [gamma]). However, these methods often require extensive matrix separation and sample purification before the identification of specific isotopes and their relative abundance is possible as it is necessary in the frame of post-irradiation examinations on nuclear fuel samples. The technique of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is attracting much attention because it permits the precise measurement of the isotope compositions for a wide range of elements combined with excellent limits of detection due to high ionization efficiencies. The present paper describes one of the first applications of an online high-performance liquid chromatographic separation system coupled to a MC-ICP-MS in order to overcome isobaric interferences for the determination of the plutonium isotope composition and concentrations in irradiated nuclear fuels. The described chromatographic separation is sufficient to prevent any isobaric interference between 238Pu present at trace concentrations and 238U present as the main component of the fuel samples. The external reproducibility of the uncorrected plutonium isotope ratios was determined to be between 0.04 and 0.2% (2 s) resulting in a precision in the [per mille sign] range for the isotopic vectors of the irradiated fuel samples.

  17. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near-infrared range

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir F.

    2016-09-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.

  18. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 95. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, M.; Conrad, R.

    1997-09-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory (LANL) during FY 95 to characterize possible radionuclide movement out of Area G through surface water and entrained sediment runoff. Soil samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. The single-stage water samples were analyzed for tritium and plutonium isotopes. All radiochemical data was compared with analogous samples collected during FY 93 and 94 and reported in LA-12986 and LA-13165-PR. Six surface soils were also submitted for metal analyses. These data were included with similar data generatedmore » for soil samples collected during FY 94 and compared with metals in background samples collected at the Area G expansion area.« less

  19. Selection of Russian Plutonium Beryllium Sources for Inclusion in the Nuclear Mateirals Information Program Archive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narlesky, Joshua E; Padilla, Dennis D; Watts, Joe

    2009-01-01

    Throughout the 1960s and 1970s, the former Soviet Union produced and exported Plutonium-Beryllium (PuBe) neutron sources to various Eastern European countries. The Russian sources consist of an intermetallic compound of plutonium and beryllium encapsulated in an inner welded, sealed capsule and consisting of a body and one or more covers. The amount of plutonium in the sources ranges from 0.002 g up to 15 g. A portion of the sources was originally exported to East Germany. A portion of these sources were acquired by Los Alamos National Laboratory (LANL) in the late 1990s for destruction in the Offsite Source Recoverymore » Program. When the OSRP was canceled, the remaining 88 PuBe neutron sources were packaged and stored in a 55-gal drum at T A-55. This storage configuration is no longer acceptable for PuBe sources, and the sources must either be repackaged or disposed of. Repackaging would place the sources into Hagan container, and depending on the dose rates, some sources may be packaged individually increasing the footprint and cost of storage. In addition, each source will be subject to leak-checking every six months. Leaks have already been detected in some of the sources, and due to the age of these sources, it is likely that additional leaks may be detected over time, which will increase the overall complexity of handling and storage. Therefore, it was decided that the sources would be disposed of at the Waste Isolation Pilot Plant (WIPP) due to the cost and labor associated with continued storage at TA-55. However, the plutonium in the sources is of Russian origin and needs to be preserved for research purposes. Therefore, it is important that a representative sample of the sources retained and archived for future studies. This report describes the criteria used to obtain a representative sample of the sources. Nine Russian PuBe neutron sources have been selected out of a collection of 77 sources for inclusion in the NMIP archive. Selection criteria were developed so that the largest sources that are representative of the collection are included. One representative source was chosen for every 20 sources in the collection, and effort was made to preserve sources unique to the collection. In total, four representative sources and five unique sources were selected for the archive. The archive samples contain 40 grams of plutonium with an isotopic composition similar to that of weapon grade material and three grams of plutonium with an isotopic composition similar to that of reactor grade plutonium.« less

  20. Tritium and plutonium in waters from the Bering and Chukchi Seas

    USGS Publications Warehouse

    Landa, E.R.; Beals, D.M.; Halverson, J.E.; Michel, R.L.; Cefus, G.R.

    1999-01-01

    During the summer of 1993, seawater in the Bering and Chukchi Seas was sampled on a joint Russian-American cruise [BERPAC] of the RV Okean to determine concentrations of tritium, 239Pu and 240Pu. Concentrations of tritium were determined by electrolytic enrichment and liquid scintilation counting. Tritium levels ranged up to 420 mBq L-1 showed no evidence of inputs other than those attribute atmospheric nuclear weapons testing. Plutonium was recovered from water samples by ferric hydroxide precipitation, and concentrations were determined by thermal ionization mass spectrometry. 239+240Pu concentrations ranged from <1 to 5.5 [mu]Bq L-1. These concentrations are lower than those measured in water samples from other parts of the ocean during the mid-1960's to the late 1980's. The 240Pu:239Pu ratios, although associated with large uncertainties, suggest that most of the plutonium is derived from world-wide fallout. As points of comparison, the highest concentrations of tritium and plutonium observed here were about five orders of magnitude lower than the maximum permissible concentrations allowed in water released to the off-site environs from licensed nuclear facilities in the United States. This study and others sponsored by the International Atomic Energy Agency and the Office of Naval Research's Arctic Nuclear Waste Assessment Program are providing data for the assessment of potential radiological impacts in the Arctic regions associated with nuclear waste disposal by the former Soviet Union.

  1. NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2013 and FY2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Julianne J.; Nikolich, George; Mizell, Steve

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. Emphasis is given to collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans that are beingmore » developed, which will facilitate appropriate closure design and postclosure monitoring. Desert Research Institute installed two meteorological monitoring stations south (station number 1) and north (station number 2) of the Plutonium Valley CA and a runoff sediment sampling station within the CA in 2011. Temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and airborne particulate concentration are collected at both meteorological stations. The maximum, minimum, and average or total (as appropriate) for each of these parameters is recorded for each 10-minute interval. The sediment sampling station includes an automatically activated ISCO sampling pump with collection bottles for suspended sediment, which is activated when sufficient flow is present in the channel, and passive traps for bedload material that is transported down the channel during runoff events. This report presents data collected from these stations during FY2013 and FY2014.« less

  2. NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolich, George; Mizell, Steve; McCurdy, Greg

    Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. The emphasis of the work is on collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans thatmore » are being developed, which will facilitate the appropriate closure design and post-closure monitoring. In 2011, DRI installed two meteorological monitoring stations south (station #1) and north (station #2) of the Plutonium Valley CA and a runoff sediment sampling station within the CA. Temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and airborne particulate concentration are collected at both meteorological stations. The maximum, minimum, and average or total (as appropriate) for each of these parameters are recorded for each 10-minute interval. The sediment sampling station includes an automatically activated ISCO sampling pump with collection bottles for suspended sediment, which is activated when sufficient flow is present in the channel, and passive traps for bedload material that is transported down the channel during runoff events. This report presents data collected from these stations during fiscal year (FY) 2015.« less

  3. Evaluating bis(2-ethylhexyl) methanediphosphonic acid (H 2DEH[MDP]) based polymer ligand film (PLF) for plutonium and uranium extraction

    DOE PAGES

    Rim, Jung H.; Armenta, Claudine E.; Gonzales, Edward R.; ...

    2015-09-12

    This paper describes a new analyte extraction medium called polymer ligand film (PLF) that was developed to rapidly extract radionuclides. PLF is a polymer medium with ligands incorporated in its matrix that selectively and quickly extracts analytes. The main focus of the new technique is to shorten and simplify the procedure for chemically isolating radionuclides for determination through alpha spectroscopy. The PLF system was effective for plutonium and uranium extraction. The PLF was capable of co-extracting or selectively extracting plutonium over uranium depending on the PLF composition. As a result, the PLF and electrodeposited samples had similar alpha spectra resolutions.

  4. Characterization of Representative Materials in Support of Safe, Long Term Storage of Surplus Plutonium in DOE-STD-3013 Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narlesky, Joshua E.; Stroud, Mary Ann; Smith, Paul Herrick

    2013-02-15

    The Surveillance and Monitoring Program is a joint Los Alamos National Laboratory/Savannah River Site effort funded by the Department of Energy-Environmental Management to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5,000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metalmore » and oxide to very impure oxide. The performance of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on 54 samples of plutonium, with 53 chosen to represent the broader population of materials in storage. This paper summarizes the characterization data, moisture analysis, particle size, surface area, density, wattage, actinide composition, trace element impurity analysis, and shelf life surveillance data and includes origin and process history information. Limited characterization data on fourteen nonrepresentative samples is also presented.« less

  5. Nuclear Archeology in a Bottle: Evidence of Pre-Trinity U.S. Weapons Activities from a Waste Burial Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, Jon M.; Douglas, Matthew; Bonde, Steven E.

    2009-02-15

    During World War II, the Hanford Site in Washington was chosen for plutonium production. In 2004, a bottle containing a sample of plutonium was recovered from a Hanford waste trench. Isotopic age dating indicated the sample was separated from the fuel pellet 64 ±2.8 years earlier. Detectable products of secondary nuclear reactions, such as 22Na, proved useful as 1) a detectable analog for alpha emitting actinides, 2) an indicator of sample splitting, and 3) a measure of the time since sample splitting. The sample origin was identified as the X-10 reactor, Oak Ridge, TN. Corroborated by historical documents, we concludedmore » this sample was part of the first batch of Pu separated at T-Plant, Hanford, the world’s first industrial-scale reprocessing facility, on December 9, 1944.« less

  6. Multi-isotopic determination of plutonium (239Pu, 240Pu, 241Pu and 242Pu) in marine sediments using sector-field inductively coupled plasma mass spectrometry.

    PubMed

    Donard, O F X; Bruneau, F; Moldovan, M; Garraud, H; Epov, V N; Boust, D

    2007-03-28

    Among the transuranic elements present in the environment, plutonium isotopes are mainly attached to particles, and therefore they present a great interest for the study and modelling of particle transport in the marine environment. Except in the close vicinity of industrial sources, plutonium concentration in marine sediments is very low (from 10(-4) ng kg(-1) for (241)Pu to 10 ng kg(-1) for (239)Pu), and therefore the measurement of (238)Pu, (239)Pu, (240)Pu, (241)Pu and (242)Pu in sediments at such concentration level requires the use of very sensitive techniques. Moreover, sediment matrix contains huge amounts of mineral species, uranium and organic substances that must be removed before the determination of plutonium isotopes. Hence, an efficient sample preparation step is necessary prior to analysis. Within this work, a chemical procedure for the extraction, purification and pre-concentration of plutonium from marine sediments prior to sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) analysis has been optimized. The analytical method developed yields a pre-concentrated solution of plutonium from which (238)U and (241)Am have been removed, and which is suitable for the direct and simultaneous measurement of (239)Pu, (240)Pu, (241)Pu and (242)Pu by SF-ICP-MS.

  7. On the multi-reference nature of plutonium oxides: PuO22+, PuO2, PuO3 and PuO2(OH)2.

    PubMed

    Boguslawski, Katharina; Réal, Florent; Tecmer, Paweł; Duperrouzel, Corinne; Gomes, André Severo Pereira; Legeza, Örs; Ayers, Paul W; Vallet, Valérie

    2017-02-08

    Actinide-containing complexes present formidable challenges for electronic structure methods due to the large number of degenerate or quasi-degenerate electronic states arising from partially occupied 5f and 6d shells. Conventional multi-reference methods can treat active spaces that are often at the upper limit of what is required for a proper treatment of species with complex electronic structures, leaving no room for verifying their suitability. In this work we address the issue of properly defining the active spaces in such calculations, and introduce a protocol to determine optimal active spaces based on the use of the Density Matrix Renormalization Group algorithm and concepts of quantum information theory. We apply the protocol to elucidate the electronic structure and bonding mechanism of volatile plutonium oxides (PuO 3 and PuO 2 (OH) 2 ), species associated with nuclear safety issues for which little is known about the electronic structure and energetics. We show how, within a scalar relativistic framework, orbital-pair correlations can be used to guide the definition of optimal active spaces which provide an accurate description of static/non-dynamic electron correlation, as well as to analyse the chemical bonding beyond a simple orbital model. From this bonding analysis we are able to show that the addition of oxo- or hydroxo-groups to the plutonium dioxide species considerably changes the π-bonding mechanism with respect to the bare triatomics, resulting in bent structures with a considerable multi-reference character.

  8. Assessment of the global fallout of plutonium isotopes and americium-241 in the soil of the central region of Saudi Arabia.

    PubMed

    Shabana, E I; Al-Shammari, H L

    2001-01-01

    A radiochemical technique for determination of plutonium isotopes and 241Am in soil samples is tested against IAEA-standard reference materials to determine its accuracy and precision for reliable results. The technique is then used in the investigation of topsoil samples, collected from the natural environment of the central region of Saudi Arabia, to assess the effect of fallout accumulation of these radionuclides in the region. Plutonium and americium were sequentially separated from all other components of the sample by anion-exchange chromatography and co-precipitated with Nd3+ as fluorides. The precipitates were mounted on membrane filters and measured using a high-resolution alpha-spectrometer. The results of the analysis of the reference materials showed satisfactory sensitivity and precision of the technique. The results of the analyzed soil samples show activity levels ranging from < LLD to 0.089 and from

  9. The plutonium isotopic composition of marine biota on Enewetak Atoll: a preliminary assessment.

    PubMed

    Hamilton, Terry F; Martinelli, Roger E; Kehl, Steven R; McAninch, Jeffrey E

    2008-10-01

    We have determined the level and distribution of gamma-emitting radionuclides, plutonium activity concentrations, and 240Pu/239Pu atom ratios in tissue samples of giant clam (Tridacna gigas and Hippopus hippopus), a top snail (Trochus nilaticas) and sea cucumber (Holothuria atra) collected from different locations around Enewetak Atoll. The plutonium isotopic measurements were performed using ultra-high sensitivity accelerator mass spectrometry (AMS). Elevated levels of plutonium were observed in the stomachs (includes the stomach lining) of Tridacna clam (0.62 to 2.98 Bq kg(-1), wet wt.), in the soft parts (edible portion) of top snails (0.25 to 1.7 Bq kg(-1)), wet wt.) and, to a lesser extent, in sea cucumber (0.015 to 0.22 Bq kg(-1), wet wt.) relative to muscle tissue concentrations in clam (0.006 to 0.021 Bq kg(-1), wet wt.) and in comparison with previous measurements of plutonium in fish. These data and information provide a basis for re-evaluating the relative significance of dietary intakes of plutonium from marine foods on Enewetak Atoll and, perhaps most importantly, demonstrate that discrete 240Pu239Pu isotope signatures might well provide a useful investigative tool to monitor source-term attribution and consequences on Enewetak Atoll. One potential application of immediate interest is to monitor and assess the health and ecological impacts of leakage of plutonium (as well as other radionuclides) from a low-level radioactive waste repository on Runit Island relative to background levels of fallout contamination in Enewetak Atoll lagoon.

  10. Spall fracture and strength of uranium, plutonium and their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir

    2015-06-01

    Numerous results on studying the spall fracture phenomenon of uranium, two its alloys with molybdenum and zirconium, plutonium and its alloy with gallium under shock wave loading are presented in the paper. The majority of tests were conducted with the samples in the form of disks 4mm in thickness. They were loaded by the impact of aluminum plates 4mm thick through a copper screen serving as the cover or bottom part of a special container. The initial temperature of samples was changed in the range of -196 - 800 C degree for uranium and 40 - 315 C degree for plutonium. The character of spall failure of materials and the degree of damage for all tested samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. Numerical calculations of the conditions of shock wave loading and spall fracture of samples were performed in the elastoplastic approach. Several two- and three-dimensional effects of loading were taken into account. Some results obtained under conditions of intensive impulse irradiation and intensive explosive loading are presented too. The rather complete analysis and comparison of obtained results with the data of other researchers on the spall fracture of examined materials were conducted.

  11. Determination of origin and intended use of plutonium metal using nuclear forensic techniques.

    PubMed

    Rim, Jung H; Kuhn, Kevin J; Tandon, Lav; Xu, Ning; Porterfield, Donivan R; Worley, Christopher G; Thomas, Mariam R; Spencer, Khalil J; Stanley, Floyd E; Lujan, Elmer J; Garduno, Katherine; Trellue, Holly R

    2017-04-01

    Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials' properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240 Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modeling feedback and trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. Based on this investigation, the most likely intended use for these plutonium foils was 239 Pu fission foil targets for physics experiments, such as cross-section measurements, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Determination of origin and intended use of plutonium metal using nuclear forensic techniques

    DOE PAGES

    Rim, Jung H.; Kuhn, Kevin J.; Tandon, Lav; ...

    2017-04-01

    Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials’ properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modelling feedback andmore » trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. In conclusion, based on this investigation, the most likely intended use for these plutonium foils was 239Pu fission foil targets for physics experiments, such as cross-section measurements, etc.« less

  13. In-vitro analysis of the dissolution kinetics and systemic availability of plutonium ingested in the form of 'hot' particles from the Semipalatinsk NTS.

    PubMed

    Conway, M; León Vintró, L; Mitchell, P I; García-Tenorio, R; Jimenez-Ramos, M C; Burkitbayev, M; Priest, N D

    2009-05-01

    In-vitro leaching of radioactive 'hot' particles isolated from soils sampled at the Semipalatinsk Nuclear Test Site has been carried out in order to evaluate the fraction of plutonium activity released into simulated human stomach and small intestine fluids during digestion. Characterisation of the particles (10-100 Bq(239,240)Pu) and investigation of their dissolution kinetics in simulated fluids has been accomplished using a combination of high-resolution alpha-spectrometry, gamma-spectrometry and liquid scintillation counting. The results of these analyses indicate that plutonium transfer across the human gut following the ingestion of 'hot' particles can be up to two orders of magnitude lower than that expected for plutonium in a more soluble form, and show that for areas affected by local fallout, use of published ingestion dose coefficients, together with bulk radionuclide concentrations in soil, may lead to a considerable overestimation of systemic uptake via the ingestion pathway.

  14. Excreta Sampling as an Alternative to In Vivo Measurements at the Hanford Site.

    PubMed

    Carbaugh, Eugene H; Antonio, Cheryl L; Lynch, Timothy P

    2015-08-01

    The capabilities of indirect radiobioassay by urine and fecal sample analysis were compared with the direct radiobioassay methods of whole body counting and lung counting for the most common radionuclides and inhalation exposure scenarios encountered by Hanford workers. Radionuclides addressed by in vivo measurement included 137Cs, 60Co, 154Eu, and 241Am as an indicator for plutonium mixtures. The same radionuclides were addressed using gamma energy analysis of urine samples, augmented by radiochemistry and alpha spectrometry methods for plutonium in urine and fecal samples. It was concluded that in vivo whole body counting and lung counting capability should be maintained at the Hanford Site for the foreseeable future, however, urine and fecal sample analysis could provide adequate, though degraded, monitoring capability for workers as a short-term alternative, should in vivo capability be lost due to planned or unplanned circumstances.

  15. Radionuclides in ground water at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Knobel, LeRoy L.; Mann, Larry J.

    1988-01-01

    Sampling for radionuclides in groundwater was conducted at the Idaho National Engineering Laboratory during September to November 5 1987. Water samples from 80 wells that obtain water from the Snake River Plain aquifer and 1 well that obtains water from a shallow, discontinuous perched-water body at the Radioactive Waste Management Complex were collected and analyzed for tritium, strontium-90, plutonium-238, plutonium-239, -240 (undivided), americium-241, cesium-137, cobalt-60, and potassium-40--a naturally occurring radionuclide. The groundwater samples were analyzed at the Idaho National Engineering Laboratory in Idaho. Tritium and strontium-90 concentrations ranged from below the reporting level to 80.6 +/-0.000005 and 193 +/-5x10 to the minus eight micrograms Ci/ml, respectively. Water from a disposal well at Test Area North--which has not been used to dispose of waste water since September 1972--contained 122 +/-9x10 to the minus eleven micrograms Ci/ml of plutonium-238, 500 +/-20x10 to the minus eleven of plutonium-239, -240 (undivided), 21 +/-4x10 to the minus eleven micrograms Ci/ml of americium-241, and 750 +/-20x10 to the minus eight micrograms Ci/ml cesium-137; the presence of these radionuclides was verified by resampling and reanalysis. The disposal well had 8.9 +/-0.0000009 micrograms Ci/ml of cobalt-60 on October 28, 1987, but cobalt-60 was not detected when the well was resampled on January 11, 1988. Potassium-40 concentrations were less than the reporting level in all wells. (USGS)

  16. A rapid method for the sequential separation of polonium, plutonium, americium and uranium in drinking water.

    PubMed

    Lemons, B; Khaing, H; Ward, A; Thakur, P

    2018-06-01

    A new sequential separation method for the determination of polonium and actinides (Pu, Am and U) in drinking water samples has been developed that can be used for emergency response or routine water analyses. For the first time, the application of TEVA chromatography column in the sequential separation of polonium and plutonium has been studied. This method utilizes a rapid Fe +3 co-precipitation step to remove matrix interferences, followed by plutonium oxidation state adjustment to Pu 4+ and an incubation period of ~ 1 h at 50-60 °C to allow Po 2+ to oxidize to Po 4+ . The polonium and plutonium were then separated on a TEVA column, while separation of americium from uranium was performed on a TRU column. After separation, polonium was micro-precipitated with copper sulfide (CuS), while actinides were micro co-precipitated using neodymium fluoride (NdF 3 ) for counting by the alpha spectrometry. The method is simple, robust and can be performed quickly with excellent removal of interferences, high chemical recovery and very good alpha peak resolution. The efficiency and reliability of the procedures were tested by using spiked samples. The effect of several transition metals (Cu 2+ , Pb 2+ , Fe 3+ , Fe 2+ , and Ni 2+ ) on the performance of this method were also assessed to evaluate the potential matrix effects. Studies indicate that presence of up to 25 mg of these cations in the samples had no adverse effect on the recovery or the resolution of polonium alpha peaks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Preliminary Assessment for CAU 485: Cactus Spring Ranch Pu and Du Site, CAS No. TA-39-001-TAGR: Soil Contamination, Tonapah Test Range, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ITLV

    1998-07-01

    Corrective Action Unit 485, Corrective Action Site TA-39-001-TAGR, the Cactus Spring Ranch Soil Contamination Area, is located approximately six miles southwest of the Area 3 Compound at the eastern mouth of Sleeping Column Canyon in the Cactus Range on the Tonopah Test Range. This site was used in conjunction with animal studies involving the biological effects of radionuclides (specifically plutonium) associated with Operation Roller Coaster. According to field records, a hardened layer of livestock feces ranging from 2.54 centimeters (cm) (1 inch [in.]) to 10.2 cm (4 in.) thick is present in each of the main sheds. IT personnel conductedmore » a field visit on December 3, 1997, and noted that the only visible feces were located within the east shed, the previously fenced area near the east shed, and a small area southwest of the west shed. Other historical records indicate that other areas may still be covered with animal feces, but heavy vegetation now covers it. It is possible that radionuclides are present in this layer, given the history of operations in this area. Chemicals of concern may include plutonium and depleted uranium. Surface soil sampling was conducted on February 18, 1998. An evaluation of historical documentation indicated that plutonium should not be and depleted uranium could not be present at levels significantly above background as the result of test animals being penned at the site. The samples were analyzed for isotopic plutonium using method NAS-NS-3058. The results of the analysis indicated that plutonium levels of the feces and surface soil were not significantly elevated above background.« less

  18. Carcinogenesis and Inflammatory Effects of Plutonium-Nitrate Retention in an Exposed Nuclear Worker and Beagle Dogs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Christopher E.; Wang, Xihai; Robinson, Robert J.

    The genetic and inflammatory response pathways elicited following plutonium exposure in archival lung tissue of an occupationally exposed human and experimentally exposed beagle dogs were investigated. These pathways include: tissue injury, apoptosis and gene expression modifications related to carcinogenesis and inflammation. In order to determine which pathways are involved, multiple lung samples from a plutonium exposed worker (Case 0269), a human control (Case 0385), and plutonium exposed beagle dogs were examined using histological staining and immunohistochemistry. Examinations were performed to identify target tissues at risk of radiation-induced fibrosis, inflammation, and carcinogenesis. Case 0269 showed interstitial fibrosis in peripheral and subpleuralmore » regions of the lung, but no pulmonary tumors. In contrast, the dogs with similar and higher doses showed pulmonary tumors primarily in brochiolo-alveolar, peripheral and subpleural alveolar regions. The TUNEL assay showed slight elevation of apoptosis in tracheal mucosa, tumor cells, and nuclear debris was present in the inflammatory regions of alveoli and lymph nodes of both the human and the dogs. The expression of apoptosis and a number of chemokine/cytokine genes was slightly but not significantly elevated in protein or gene levels compared to that of the control samples. In the beagles, mucous production was increased in the airway epithelial goblet cells and glands of trachea, and a number of chemokine/cytokine genes showed positive immunoreactivity. This analysis of archival tissue from an accidentally exposed worker and in a large animal model provides valuable information on the effects of long-term retention of plutonium in the respiratory tract and the histological evaluation study may impact mechanistic studies of radiation carcinogenesis.« less

  19. Actinides in deer tissues at the rocky flats environmental technology site.

    PubMed

    Todd, Andrew S; Sattelberg, R Mark

    2005-11-01

    Limited hunting of deer at the future Rocky Flats National Wildlife Refuge has been proposed in U.S. Fish and Wildlife planning documents as a compatible wildlife-dependent public use. Historically, Rocky Flats site activities resulted in the contamination of surface environmental media with actinides, including isotopes of americium, plutonium, and uranium. In this study, measurements of actinides [Americium-241 (241Am); Plutonium-238 (238Pu); Plutonium-239,240 (239,240Pu); uranium-233,244 (233,234U); uranium-235,236 (235,236U); and uranium-238 (238U)] were completed on select liver, muscle, lung, bone, and kidney tissue samples harvested from resident Rocky Flats deer (N = 26) and control deer (N = 1). In total, only 17 of the more than 450 individual isotopic analyses conducted on Rocky Flats deer tissue samples measured actinide concentrations above method detection limits. Of these 17 detects, only 2 analyses, with analytical uncertainty values added, exceeded threshold values calculated around a 1 x 10(-6) risk level (isotopic americium, 0.01 pCi/g; isotopic plutonium, 0.02 pCi/g; isotopic uranium, 0.2 pCi/g). Subsequent, conservative risk calculations suggest minimal human risk associated with ingestion of these edible deer tissues. The maximum calculated risk level in this study (4.73 x 10(-6)) is at the low end of the U.S. Environmental Protection Agency's acceptable risk range.

  20. Investigation Of In-Line Monitoring Options At H Canyon/HB Line For Plutonium Oxide Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, L.

    2015-10-14

    H Canyon and HB Line have a production goal of 1 MT per year of plutonium oxide feedstock for the MOX facility by FY17 (AFS-2 mission). In order to meet this goal, steps will need to be taken to improve processing efficiency. One concept for achieving this goal is to implement in-line process monitoring at key measurement points within the facilities. In-line monitoring during operations has the potential to increase throughput and efficiency while reducing costs associated with laboratory sample analysis. In the work reported here, we mapped the plutonium oxide process, identified key measurement points, investigated alternate technologies thatmore » could be used for in-line analysis, and initiated a throughput benefit analysis.« less

  1. THE MAYAK WORKER DOSIMETRY SYSTEM (MWDS-2013) FOR INTERNALLY DEPOSITED PLUTONIUM: AN OVERVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birchall, A.; Vostrotin, V.; Puncher, M.

    The Mayak Worker Dosimetry System (MWDS-2013) is a system for interpreting measurement data from Mayak workers from both internal and external sources. This paper is concerned with the calculation of annual organ doses for Mayak workers exposed to plutonium aerosols, where the measurement data consists mainly of activity of plutonium in urine samples. The system utilises the latest biokinetic and dosimetric models, and unlike its predecessors, takes explicit account of uncertainties in both the measurement data and model parameters. The aim of this paper is to describe the complete MWDS-2013 system (including model parameter values and their uncertainties) and themore » methodology used (including all the relevant equations) and the assumptions made. Where necessary, supplementary papers which justify specific assumptions are cited.« less

  2. Selected quality assurance data for water samples collected by the US Geological Survey, Idaho National Engineering Laboratory, Idaho, 1980 to 1988

    USGS Publications Warehouse

    Wegner, S.J.

    1989-01-01

    Multiple water samples from 115 wells and 3 surface water sites were collected between 1980 and 1988 for the ongoing quality assurance program at the Idaho National Engineering Laboratory. The reported results from the six laboratories involved were analyzed for agreement using descriptive statistics. The constituents and properties included: tritium, plutonium-238, plutonium-239, -240 (undivided), strontium-90, americium-241, cesium-137, total dissolved chromium, selected dissolved trace metals, sodium, chloride, nitrate, selected purgeable organic compounds, and specific conductance. Agreement could not be calculated for purgeable organic compounds, trace metals, some nitrates and blank sample analyses because analytical uncertainties were not consistently reported. However, differences between results for most of these data were calculated. The blank samples were not analyzed for differences. The laboratory results analyzed using descriptive statistics showed a median agreement between all useable data pairs of 95%. (USGS)

  3. The Raman fingerprint of plutonium dioxide: Some example applications for the detection of PuO2 in host matrices

    NASA Astrophysics Data System (ADS)

    Manara, D.; Naji, M.; Mastromarino, S.; Elorrieta, J. M.; Magnani, N.; Martel, L.; Colle, J.-Y.

    2018-02-01

    Some example applications are presented, in which the peculiar Raman fingerprint of PuO2 can be used for the detection of crystalline Pu4+ with cubic symmetry in an oxide environment in various host materials, like mixed oxide fuels, inert matrices and corium sub-systems. The PuO2 Raman fingerprint was previously observed to consist of one main T2g vibrational mode at 478 cm-1 and two crystal electric field transition lines at 2130 cm-1 and 2610 cm-1. This particular use of Raman spectroscopy is promising for applications in nuclear waste management, safety and safeguard.

  4. Analysis of the 2H-evaporator scale samples (HTF-17-56, -57)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.; Coleman, C.; Diprete, D.

    Savannah River National Laboratory analyzed scale samples from both the wall and cone sections of the 242-16H Evaporator prior to chemical cleaning. The samples were analyzed for uranium and plutonium isotopes required for a Nuclear Criticality Safety Assessment of the scale removal process. The analysis of the scale samples found the material to contain crystalline nitrated cancrinite and clarkeite. Samples from both the wall and cone contain depleted uranium. Uranium concentrations of 16.8 wt% 4.76 wt% were measured in the wall and cone samples, respectively. The ratio of plutonium isotopes in both samples is ~85% Pu-239 and ~15% Pu-238 bymore » mass and shows approximately the same 3.5 times higher concentration in the wall sample versus the cone sample as observed in the uranium concentrations. The mercury concentrations measured in the scale samples were higher than previously reported values. The wall sample contains 19.4 wt% mercury and the cone scale sample 11.4 wt% mercury. The results from the current scales samples show reasonable agreement with previous 242-16H Evaporator scale sample analysis; however, the uranium concentration in the current wall sample is substantially higher than previous measurements.« less

  5. AMS of the Minor Plutonium Isotopes

    NASA Astrophysics Data System (ADS)

    Steier, P.; Hrnecek, E.; Priller, A.; Quinto, F.; Srncik, M.; Wallner, A.; Wallner, G.; Winkler, S.

    2013-01-01

    VERA, the Vienna Environmental Research Accelerator, is especially equipped for the measurement of actinides, and performs a growing number of measurements on environmental samples. While AMS is not the optimum method for each particular plutonium isotope, the possibility to measure 239Pu, 240Pu, 241Pu, 242Pu and 244Pu on the same AMS sputter target is a great simplification. We have obtained a first result on the global fallout value of 244Pu/239Pu = (5.7 ± 1.0) × 10-5 based on soil samples from Salzburg prefecture, Austria. Furthermore, we suggest using the 242Pu/240Pu ratio as an estimate of the initial 241Pu/239Pu ratio, which allows dating of the time of irradiation based solely on Pu isotopes. We have checked the validity of this estimate using literature data, simulations, and environmental samples from soil from the Salzburg prefecture (Austria), from the shut down Garigliano Nuclear Power Plant (Sessa Aurunca, Italy) and from the Irish Sea near the Sellafield nuclear facility. The maximum deviation of the estimated dates from the expected ages is 6 years, while relative dating of material from the same source seems to be possible with a precision of less than 2 years. Additional information carried by the minor plutonium isotopes may allow further improvements of the precision of the method.

  6. Effect of temperature and radiation damage on the local atomic structure of elemental plutonium and related compounds

    DOE PAGES

    Booth, Corwin H.; Olive, Daniel Thomas

    2016-10-26

    This focused review provides an overview and a framework for understanding local structure in metallic plutonium (especially the metastable fcc δ-phase alloyed with Ga) as it relates to self-irradiation damage. Of particular concern is the challenge of understanding self-irradiation damage in plutonium-bearing materials where theoretical challenges of the unique involvement of the 5f electrons in bonding limit the efficacy of molecular dynamics simulations and experimental challenges of working with radioactive material have limited the ability to confirm the results of such simulations and to further push the field forward. The main concentration is on extended X-ray absorption fine-structure measurements ofmore » -phase Pu, but the scope is broadened to include certain studies on plutonium intermetallics and oxides insofar as they inform the physics of damage and healing processes in elemental Pu. Here, the studies reviewed here provide insight into lattice distortions and their production, damage annealing and defect migration, and the importance of understanding and controlling sample morphology when interpreting such experiments.« less

  7. Reconstructed plutonium fallout in the GV7 firn core from Northern Victoria Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Hwang, H.; Han, Y.; Kang, J.; Lee, K.; Hong, S.; Hur, S. D.; Narcisi, B.; Frezzotti, M.

    2017-12-01

    Atmospheric nuclear explosions during the period from the 1940s to the 1980s are the major anthropogenic source of plutonium (Pu) in the environment. In this work, we analyzed fg g-1 levels of artificial Pu, released predominantly by atmospheric nuclear weapons tests. We measured 351 samples which collected a 78 m-depth fire core at the site of GV7 (S 70°41'17.1", E 158°51'48.9", 1950 m a.s.l.), Northern Victoria Land, East Antarctica. To determine the Pu concentration in the samples, we used an inductively coupled plasma sector field mass spectrometry coupled with an Apex high-efficiency sample introduction system, which has the advantages of small sample consumption and simple sample preparation. We reconstructed the firn core Pu fallout record for the period after 1954 CE shows a significant fluctuation in agreement with past atmospheric nuclear testing. These data will contribute to ice core research by providing depth-age information.

  8. The incorporation of plutonium in lanthanum zirconate pyrochlore

    NASA Astrophysics Data System (ADS)

    Gregg, Daniel J.; Zhang, Yingjie; Middleburgh, Simon C.; Conradson, Steven D.; Triani, Gerry; Lumpkin, Gregory R.; Vance, Eric R.

    2013-11-01

    The incorporation of plutonium (Pu) within lanthanum zirconate pyrochlore was investigated using air, argon, and N2-3.5%H2 sintering atmospheres together with Ca2+ and Sr2+ incorporation for charge compensation. The samples have been characterised in the first instance by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectroscopy (DRS). The results show Pu can be exchanged for La3+ on the A-site with and without charge compensation and for Zr4+ on the B-site. DRS measurements were made over the wavenumber range of 4000-19,000 cm-1 and the Pu in all air- and argon-sintered samples was found to be present as Pu4+ while that in samples sintered in N2-3.5%H2 was present as Pu3+. The Pu valence was confirmed for three of the samples using X-ray near-edge absorption spectroscopy (XANES). Pu valences >4+ were not observed in any of the samples.

  9. Raman spectroscopy characterization of actinide oxides (U 1-yPu y)O 2: Resistance to oxidation by the laser beam and examination of defects

    NASA Astrophysics Data System (ADS)

    Jégou, C.; Caraballo, R.; Peuget, S.; Roudil, D.; Desgranges, L.; Magnin, M.

    2010-10-01

    Structural changes in four (U 1-yPu y)O 2 materials with very different plutonium concentrations (0 ⩽ y ⩽ 1) and damage levels (up to 110 dpa) were studied by Raman spectroscopy. The novel experimental approach developed for this purpose consisted in using a laser beam as a heat source to assess the reactivity and structural changes of these materials according to the power supplied locally by the laser. The experiments were carried out in air and in water with or without hydrogen peroxide. As expected, the material response to oxidation in air depends on the plutonium content of the test oxide. At the highest power levels U 3O 8 generally forms with UO 2 whereas no significant change in the spectra indicating oxidation is observed for samples with high plutonium content ( 239PuO 2). Samples containing 25 wt.% plutonium exhibit intermediate behavior, typified mainly by a higher-intensity 632 cm -1 peak and the disappearance of the 1LO peak at 575 cm -1. This can be attributed to the presence of anion sublattice defects without any formation of higher oxides. The range of materials examined also allowed us to distinguish partly the chemical effects of alpha self-irradiation. The results obtained with water and hydrogen peroxide (a water radiolysis product) on a severely damaged 238PuO 2 specimen highlight a specific behavior, observed for the first time.

  10. Determination of 240Pu/239Pu isotopic ratios in human tissues collected from areas around the Semipalatinsk Nuclear Test Site by sector-field high resolution ICP-MS.

    PubMed

    Yamamoto, M; Oikawa, S; Sakaguchi, A; Tomita, J; Hoshi, M; Apsalikov, K N

    2008-09-01

    Information on the 240Pu/239Pu isotope ratios in human tissues for people living around the Semipalatinsk Nuclear Test Site (SNTS) was deduced from 9 sets of soft tissues and bones, and 23 other bone samples obtained by autopsy. Plutonium was radiochemically separated and purified, and plutonium isotopes (239Pu and 240Pu) were determined by sector-field high resolution inductively coupled plasma-mass spectrometry. For most of the tissue samples from the former nine subjects, low 240Pu/239Pu isotope ratios were determined: bone, 0.125 +/- 0.018 (0.113-0.145, n = 4); lungs, 0.063 +/- 0.010 (0.051-0.078, n = 5); and liver, 0.148 +/- 0.026 (0.104-0.189, n = 9). Only 239Pu was detected in the kidney samples; the amount of 240Pu was too small to be measured, probably due to the small size of samples analyzed. The mean 240Pu/239Pu isotope ratio for bone samples from the latter 23 subjects was 0.152 +/- 0.034, ranging from 0.088 to 0.207. A significant difference (a two-tailed Student's t test; 95% significant level, alpha = 0.05) between mean 240Pu/239Pu isotope ratios for the tissue samples and for the global fallout value (0.178 +/- 0.014) indicated that weapons-grade plutonium from the atomic bombs has been incorporated into the human tissues, especially lungs, in the residents living around the SNTS. The present 239,240Pu concentrations in bone, lung, and liver samples were, however, not much different from ranges found for human tissues from other countries that were due solely to global fallout during the 1970's-1980's.

  11. Preparation of alpha-emitting nuclides by electrodeposition

    NASA Astrophysics Data System (ADS)

    Lee, M. H.; Lee, C. W.

    2000-06-01

    A method is described for electrodepositing the alpha-emitting nuclides. To determine the optimum conditions for plating plutonium, the effects of electrolyte concentration, chelating reagent, current, pH of electrolyte and the time of plating on the electrodeposition were investigated on the base of the ammonium oxalate-ammonium sulfate electrolyte containing diethyl triamino pentaacetic acid. An optimized electrodeposition procedure for the determination of plutonium was validated by application to environmental samples. The chemical yield of the optimized method of electrodeposition step in the environmental sample was a little higher than that of Talvitie's method. The developed electrodeposition procedure in this study was applied to determine the radionuclides such as thorium, uranium and americium that the electrodeposition yields were a little higher than those of the conventional method.

  12. CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Fried, S.; Davidson, N.R.

    1957-09-10

    A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

  13. Analysis of large soil samples for actinides

    DOEpatents

    Maxwell, III; Sherrod, L [Aiken, SC

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  14. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  15. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  16. CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S.

    2012-08-29

    The primary source of waste solids received into the F Area Tank Farm (FTF) was from PUREX processing performed to recover uranium and plutonium from irradiated depleted uranium targets. In contrast, two primary sources of waste solids were received into the H Area Tank Farm (HTF): a) waste from PUREX processing; and b) waste from H-modified (HM) processing performed to recover uranium and neptunium from burned enriched uranium fuel. Due to the differences between the irradiated depleted uranium targets and the burned enriched uranium fuel, the average compositions of the F and H Area wastes are markedly different from onemore » another. Both F and H Area wastes contain significant amounts of iron and aluminum compounds. However, because the iron content of PUREX waste is higher than that of HM waste, and the aluminum content of PUREX waste is lower than that of HM waste, the iron to aluminum ratios of typical FTF waste solids are appreciably higher than those of typical HTF waste solids. Other constituents present at significantly higher concentrations in the typical FTF waste solids include uranium, nickel, ruthenium, zinc, silver, cobalt and copper. In contrast, constituents present at significantly higher concentrations in the typical HTF waste solids include mercury, thorium, oxalate, and radionuclides U-233, U-234, U-235, U-236, Pu-238, Pu-242, Cm-244, and Cm-245. Because of the higher concentrations of Pu-238 in HTF, the long-term concentrations of Th-230 and Ra-226 (from Pu-238 decay) will also be higher in HTF. The uranium and plutonium distributions of the average FTF waste were found to be consistent with depleted uranium and weapons grade plutonium, respectively (U-235 comprised 0.3 wt% of the FTF uranium, and Pu-240 comprised 6 wt% of the FTF plutonium). In contrast, at HTF, U-235 comprised 5 wt% of the uranium, and Pu-240 comprised 17 wt% of the plutonium, consistent with enriched uranium and high burn-up plutonium. X-ray diffraction analyses of various FTF and HTF samples indicated that the primary crystalline compounds of iron in sludge solids are Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and FeO(OH), and the primary crystalline compounds of aluminum are Al(OH){sub 3} and AlO(OH). Also identified were carbonate compounds of calcium, magnesium, and sodium; a nitrated sodium aluminosilicate; and various uranium compounds. Consistent with expectations, oxalate compounds were identified in solids associated with oxalic acid cleaning operations. The most likely oxidation states and chemical forms of technetium are assessed in the context of solubility, since technetium-99 is a key risk driver from an environmental fate and transport perspective. The primary oxidation state of technetium in SRS sludge solids is expected to be Tc(IV). In salt waste, the primary oxidation state is expected to be Tc(VII). The primary form of technetium in sludge is expected to be a hydrated technetium dioxide, TcO{sub 2} {center_dot} xH{sub 2}O, which is relatively insoluble and likely co-precipitated with iron. In salt waste solutions, the primary form of technetium is expected to be the very soluble pertechnetate anion, TcO{sub 4}{sup -}. The relative differences between the F and H Tank Farm waste provide a basis for anticipating differences that will occur as constituents of FTF and HTF waste residue enter the environment over the long-term future. If a constituent is significantly more dominant in one of the Tank Farms, its long-term environmental contribution will likely be commensurately higher, assuming the environmental transport conditions of the two Tank Farms share some commonality. It is in this vein that the information cited in this document is provided - for use during the generation, assessment, and validation of Performance Assessment modeling results.« less

  17. Natural radionuclide and plutonium content in Black Sea bottom sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strezov, A.; Stoilova, T.; Yordanova, I.

    1996-01-01

    The content of uranium, thorium, radium, lead, polonium, and plutonium in bottom sediments and algae from two locations at the Bulgarian Black Sea coast have been determined. Some parent:progeny ratios for evaluation of the geochemical behavior of the nuclides have been estimated as well. The extractable and total uranium and thorium are determined by two separate radiochemical procedures to differentiate the more soluble chemical forms of the elements and to estimate the potential hazard for the biosphere and for humans. No distinct seasonal variation as well as no significant change in total and extractable uranium (also for {sup 226}Ra) contentmore » is observed. The same is valid for extractable thorium while the total thorium content in the first two seasons is slightly higher. Our data show that {sup 210}Po content is accumulated more in the sediments than {sup 210}Pb, and the evaluated disequilibria suggest that the two radionuclides belong to more recent sediment layers deposited in the slime samples compared to the silt ones for the different seasons. The obtained values for plutonium are in the lower limits of the data cited in literature, which is quite clear as there are no plutonium discharge facilities at the Bulgarian Black Sea coast. The obtained values for the activity ratio {sup 238}Pu: {sup 239+240}Pu are higher for Bjala sediments compared to those of Kaliakra. The ratio values are out of the variation range for the global contamination with weapon tests fallout plutonium which is probably due to Chernobyl accident contribution. The dependence of natural radionuclide content on the sediment type as well as the variation of nuclide accumulation for two types of algae in two sampling locations for five consecutive seasons is evaluated. No serious contamination with natural radionuclides in the algae is observed. 38 refs., 6 figs., 7 tabs.« less

  18. Environmental monitoring at Mound: 1986 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carfagno, D.G.; Farmer, B.M.

    1987-05-11

    The local environment around Mound was monitored for tritium and plutonium-238. The results are reported for 1986. Environmental media analyzed included air, water, vegetation, foodstuffs, and sediment. The average concentrations of plutonium-238 and tritium were within the DOE interim air and water Derived Concentration Guides (DCG) for these radionuclides. The average incremental concentrations of plutonium-238 and tritium oxide in air measured at all offsite locations during 1986 were 0.03% and 0.01%, respectively, of the DOE DCGs for uncontrolled areas. The average incremental concentration of plutonium-238 measured at all locations in the Great Miami River during 1986 was 0.0005% of themore » DOE DCG. The average incremental concentration of tritium measured at all locations in the Great Miami River during 1986 was 0.005% of the DOE DCG. The average incremental concentrations of plutonium-238 found during 1986 in surface and area drinking water were less than 0.00006% of the DOE DCG. The average incremental concentration of tritium in surface water was less than 0.005% of the DOE DCG. All tritium in drinking water data is compared to the US EPA Drinking Water Standard. The average concentrations in local private and municipal drinking water systems were less than 25% and 1.5%, respectively. Although no DOE DCG is available for foodstuffs, the average concentrations are a small fraction of the water DCG (0.04%). The concentrations of sediment samples obtained at offsite surface water sampling locations were extremely low and therefore represent no adverse impact to the environment. The dose equivalent estimates for the average air, water, and foodstuff concentrations indicate that the levels are within 1% of the DOE standard of 100 mrem. None of these exceptions, however, had an adverse impact on the water quality of the Great Miami River or caused the river to exceed Ohio Stream Standards. 20 refs., 5 figs., 31 tabs.« less

  19. Concentrations of plutonium and americium in plankton from the western Mediterranean Sea.

    PubMed

    Sanchez-Cabeza, Joan-Albert; Merino, Juan; Masqué, Pere; Mitchell, Peter I; Vintró, L León; Schell, William R; Cross, Lluïsa; Calbet, Albert

    2003-07-20

    Understanding the transfer of radionuclides through the food chain leading to man and in particular, the uptake of transuranic nuclides by plankton, is basic to assess the potential radiological risk of the consumption of marine products by man. The main sources of transuranic elements in the Mediterranean Sea in the past were global fallout and the Palomares accident, although at present smaller amounts are released from nuclear establishments in the northwestern region. Plankton from the western Mediterranean Sea was collected and analyzed for plutonium and americium in order to study their biological uptake. The microplankton fractions accounted for approximately 50% of the total plutonium contents in particulate form. At Garrucha (Palomares area), microplankton showed much higher 239,240 Pu activity, indicating the contamination with plutonium from the bottom sediments. Concentration factors were within the range of the values recommended by the International Atomic Energy Agency. Continental shelf mesoplankton was observed to efficiently concentrate transuranics. In open seawaters, concentrations were much lower. We speculate that sediments might play a role in the transfer of transuranics to mesoplankton in coastal waters, although we cannot discard that the difference in species composition may also play a role. In Palomares, both 239,240 Pu and 241Am showed activities five times higher than the mean values observed in continental shelf mesoplankton. As the plutonium isotopic ratios in the contaminated sample were similar to those found in material related to the accident, the contamination was attributed to bomb debris from the Palomares accident. Concentration factors in mesoplankton were also in relatively good agreement with the ranges recommended by IAEA. In the Palomares station the highest concentration factor was observed in the sample that showed predominance of the dynoflagellate Ceratium spp. Mean values of the enrichment factors showed, on average, discrimination rather than enrichment in the primary producer trophic chain.

  20. Self-irradiation damage to the local structure of plutonium and plutonium intermetallics

    NASA Astrophysics Data System (ADS)

    Booth, C. H.; Jiang, Yu; Medling, S. A.; Wang, D. L.; Costello, A. L.; Schwartz, D. S.; Mitchell, J. N.; Tobash, P. H.; Bauer, E. D.; McCall, S. K.; Wall, M. A.; Allen, P. G.

    2013-03-01

    The effect of self-irradiation damage on the local structure of δ-Pu, PuAl2, PuGa3, and other Pu intermetallics has been determined for samples stored at room temperature using the extended x-ray absorption fine-structure (EXAFS) technique. These measurements indicate that the intermetallic samples damage at a similar rate as indicated in previous studies of PuCoGa5. In contrast, δ-Pu data indicate a much slower damage accumulation rate. To explore the effect of storage temperature and possible room temperature annealing effects, we also collected EXAFS data on a δ-Pu sample that was held at less than 32 K for a two month period. This sample damaged much more quickly. In addition, the measurable damage was annealed out at above only 135 K. Data from samples of δ-Pu with different Ga concentrations and results on all samples collected from different absorption edges are also reported. These results are discussed in terms of the vibrational properties of the materials and the role of Ga in δ-Pu as a network former.

  1. Test and evaluation of the Argonne BPAC10 Series air chamber calorimeter designed for 20 minute measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, R.B.; Fiarman, S.; Jung, E.A.

    1990-10-01

    This paper is the final report on DOE-OSS Task ANLE88002 Fast Air Chamber Calorimetry.'' The task objective was to design, construct, and test an isothermal air chamber calorimeter for plutonium assay of bulk samples that would meet the following requirements for sample power measurement: average sample measurement time less than 20 minutes. Measurement of samples with power output up to 10 W. Precision of better than 1% RSD for sample power greater than 1 W. Precision better than 0.010 watt SD, for sample power less than 1 W. This report gives a description of the calorimeter hardware and software andmore » discusses the test results. The instrument operating procedure, included as an appendix, gives examples of typical input/output and explains the menu driven software. Sample measurement time of less than 20 minutes was attained by pre-equilibration of the samples in low cost precision preheaters and by prediction of equilibrium measurements. Tests at the TA55 Plutonium Facility at Los Alamos National Laboratory, on typical samples, indicates that the instrument meets all the measurement requirements.« less

  2. Strength and fracture of uranium, plutonium and several their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, V. K.

    2012-08-01

    Results on studying the spall fracture of uranium, plutonium and several their alloys under shock wave loading are presented in the paper. The problems of influence of initial temperature in a range of - 196 - 800∘C and loading time on the spall strength and failure character of uranium and two its alloys with molybdenum and both molybdenum and zirconium were studied. The results for plutonium and its alloy with gallium were obtained at a normal temperature and in a temperature range of 40-315∘C, respectively. The majority of tests were conducted with the samples in the form of disks 4 mm in thickness. They were loaded by the impact of aluminum plates 4 mm thick through a copper screen 12 mm thick serving as the cover or bottom part of a special container. The character of spall failure of materials and the damage degree of samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. The conditions of shock wave loading were calculated using an elastic-plastic computer program. The comparison of obtained results with the data of other researchers on the spall fracture of examined materials was conducted.

  3. Sensitivity and Uncertainty Analysis of Plutonium and Cesium Isotopes in Modeling of BR3 Reactor Spent Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conant, Andrew; Erickson, Anna; Robel, Martin

    Nuclear forensics has a broad task to characterize recovered nuclear or radiological material and interpret the results of investigation. One approach to isotopic characterization of nuclear material obtained from a reactor is to chemically separate and perform isotopic measurements on the sample and verify the results with modeling of the sample history, for example, operation of a nuclear reactor. The major actinide plutonium and fission product cesium are commonly measured signatures of the fuel history in a reactor core. This study investigates the uncertainty of the plutonium and cesium isotope ratios of a fuel rod discharged from a research pressurizedmore » water reactor when the location of the sample is not known a priori. A sensitivity analysis showed overpredicted values for the 240Pu/ 239Pu ratio toward the axial center of the rod and revealed a lower probability of the rod of interest (ROI) being on the periphery of the assembly. The uncertainty analysis found the relative errors due to only the rod position and boron concentration to be 17% to 36% and 7% to 15% for the 240Pu/ 239Pu and 137Cs/ 135Cs ratios, respectively. Lastly, this study provides a method for uncertainty quantification of isotope concentrations due to the location of the ROI. Similar analyses can be performed to verify future chemical and isotopic analyses.« less

  4. Sensitivity and Uncertainty Analysis of Plutonium and Cesium Isotopes in Modeling of BR3 Reactor Spent Fuel

    DOE PAGES

    Conant, Andrew; Erickson, Anna; Robel, Martin; ...

    2017-02-03

    Nuclear forensics has a broad task to characterize recovered nuclear or radiological material and interpret the results of investigation. One approach to isotopic characterization of nuclear material obtained from a reactor is to chemically separate and perform isotopic measurements on the sample and verify the results with modeling of the sample history, for example, operation of a nuclear reactor. The major actinide plutonium and fission product cesium are commonly measured signatures of the fuel history in a reactor core. This study investigates the uncertainty of the plutonium and cesium isotope ratios of a fuel rod discharged from a research pressurizedmore » water reactor when the location of the sample is not known a priori. A sensitivity analysis showed overpredicted values for the 240Pu/ 239Pu ratio toward the axial center of the rod and revealed a lower probability of the rod of interest (ROI) being on the periphery of the assembly. The uncertainty analysis found the relative errors due to only the rod position and boron concentration to be 17% to 36% and 7% to 15% for the 240Pu/ 239Pu and 137Cs/ 135Cs ratios, respectively. Lastly, this study provides a method for uncertainty quantification of isotope concentrations due to the location of the ROI. Similar analyses can be performed to verify future chemical and isotopic analyses.« less

  5. Analysis of Tank 38H (HTF-38-16-80, 81) and Tank 43H (HTF-43-16-82, 83) Samples for Support of the Enrichment Control and Corrosion Control Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.

    2016-10-24

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 57.6 mg/L, while the sub-surface sample was 106 mg/L. The Tank 43H samples ranged from 50.0 to 51.9 mg/L total uranium. The U-235 percentage was consistent for all four samples at 0.62%. The total uranium and percent U-235 results appear consistent with recent Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and somewhat higher concentrations than previous samples. The Pu-238 concentrationmore » is more than forty times higher in the Tank 38H sub-surface sample than the surface sample. The surface and sub-surface Tank 43H samples contain similar plutonium concentrations and are within the range of values measured on previous samples. The four samples analyzed show silicon concentrations somewhat higher than the previous sample with values ranging from 104 to 213 mg/L.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rim, Jung H.; Kuhn, Kevin J.; Tandon, Lav

    Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials’ properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modelling feedback andmore » trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. In conclusion, based on this investigation, the most likely intended use for these plutonium foils was 239Pu fission foil targets for physics experiments, such as cross-section measurements, etc.« less

  7. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  8. 40 CFR 141.132 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... discretion. (2) Chlorite. Community and nontransient noncommunity water systems using chlorine dioxide, for... samples. (ii) Reduced monitoring. Monitoring may not be reduced. (2) Chlorine dioxide—(i) Routine... three chlorine dioxide distribution system samples. If chlorine dioxide or chloramines are used to...

  9. Technique for Simultaneous Determination of [35S]Sulfide and [14C]Carbon Dioxide in Anaerobic Aqueous Samples †

    PubMed Central

    Taylor, Craig D.; Ljungdahl, Per O.; Molongoski, John J.

    1981-01-01

    A technique for the simultaneous determination of [35S]sulfide and [14C]carbon dioxide produced in anaerobic aqueous samples dual-labeled with [35S]sulfate and a 14C-organic substrate is described. The method involves the passive distillation of sulfide and carbon dioxide from an acidified water sample and their subsequent separation by selective chemical absorption. The recovery of sulfide was 93% for amounts ranging from 0.35 to 50 μmol; recovery of carbon dioxide was 99% in amounts up to 20 μmol. Within these delineated ranges of total sulfide and carbon dioxide, 1 nmol of [35S]sulfide and 7.5 nmol of [14C]carbon dioxide were separated and quantified. Correction factors were formulated for low levels of radioisotopic cross-contamination by sulfide, carbon dioxide, and volatile organic acids. The overall standard error of the method was ±4% for sulfide and ±6% for carbon dioxide. PMID:16345742

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Mary Patricia

    The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pK as and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pK a = 5.94, logβ 120 = 10.92; acetohydroxamic acid, pK a = 9.34, logβ 120 = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinatemore » geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is logβ 120 = 41.7. The solubility limited speciation of 242Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods.« less

  11. Analysis of plutonium isotope ratios including 238Pu/239Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    PubMed

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Application of isotope-dilution laser ablation ICP-MS for direct determination of Pu concentrations in soils at pg g(-1) levels.

    PubMed

    Boulyga, Sergei F; Tibi, Markus; Heumann, Klaus G

    2004-01-01

    The methods available for determination of environmental contamination by plutonium at ultra-trace levels require labor-consuming sample preparation including matrix removal and plutonium extraction in both nuclear spectroscopy and mass spectrometry. In this work, laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for direct analysis of Pu in soil and sediment samples. Application of a LINA-Spark-Atomizer system (a modified laser ablation system providing high ablation rates) coupled with a sector-field ICP-MS resulted in detection limits as low as 3x10(-13) g g(-1) for Pu isotopes in soil samples containing uranium at a concentration of a few microg g(-1). The isotope dilution (ID) technique was used for quantification, which compensated for matrix effects in LA-ICP-MS. Interferences by UH+ and PbO2+ ions and by the peak tail of 238U+ ions were reduced or separated by use of dry plasma conditions and a mass resolution of 4000, respectively. No other effects affecting measurement accuracy, except sample inhomogeneity, were revealed. Comparison of results obtained for three contaminated soil samples by use of alpha-spectrometry, ICP-MS with sample decomposition, and LA-ICP-IDMS showed, in general, satisfactory agreement of the different methods. The specific activity of (239+240)Pu (9.8 +/- 3.0 mBq g(-1)) calculated from LA-ICP-IDMS analysis of SRM NIST 4357 coincided well with the certified value of 10.4 +/- 0.2 mBq g(-1). However, the precision of LA-ICP-MS for determination of plutonium in inhomogeneous samples, i.e. if "hot" particles are present, is limited. As far as we are aware this paper reports the lowest detection limits and element concentrations yet measured in direct LA-ICP-MS analysis of environmental samples.

  13. 31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, A MAN-MADE SUBSTANCE, WAS RARE. SCRAPS RESULTING FROM PRODUCTION AND PLUTONIUM RECOVERED FROM RETIRED NUCLEAR WEAPONS WERE REPROCESSED INTO VALUABLE PURE-PLUTONIUM METAL (9/19/73). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  14. Measurements of plutonium, 237Np, and 137Cs in the BCR 482 lichen reference material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavelle, Kevin B.; Miller, Jeffrey L.; Hanson, Susan K.

    Select anthropogenic radionuclides were measured in lichen reference material, BCR 482. This material was originally collected in Axalp, Switzerland in 1991 and is composed of the epiphytic lichen Pseudevernia furfuracea. Samples from three separate bottles of BCR 482 were analyzed for uranium, neptunium, and plutonium isotopes by inductively coupled plasma mass spectrometry (ICP-MS) and analyzed for cesium-137 by gamma-ray spectrometry. The isotopic composition of the radionuclides measured in BCR 482 suggests contributions from both global fallout resulting from historical nuclear weapons testing and more volatile materials released following the Chernobyl accident.

  15. Measurements of plutonium, 237Np, and 137Cs in the BCR 482 lichen reference material

    DOE PAGES

    Lavelle, Kevin B.; Miller, Jeffrey L.; Hanson, Susan K.; ...

    2015-10-01

    Select anthropogenic radionuclides were measured in lichen reference material, BCR 482. This material was originally collected in Axalp, Switzerland in 1991 and is composed of the epiphytic lichen Pseudevernia furfuracea. Samples from three separate bottles of BCR 482 were analyzed for uranium, neptunium, and plutonium isotopes by inductively coupled plasma mass spectrometry (ICP-MS) and analyzed for cesium-137 by gamma-ray spectrometry. The isotopic composition of the radionuclides measured in BCR 482 suggests contributions from both global fallout resulting from historical nuclear weapons testing and more volatile materials released following the Chernobyl accident.

  16. Melting behavior of mixed U-Pu oxides under oxidizing conditions

    NASA Astrophysics Data System (ADS)

    Strach, Michal; Manara, Dario; Belin, Renaud C.; Rogez, Jacques

    2016-05-01

    In order to use mixed U-Pu oxide ceramics in present and future nuclear reactors, their physical and chemical properties need to be well determined. The behavior of stoichiometric (U,Pu)O2 compounds is relatively well understood, but the effects of oxygen stoichiometry on the fuel performance and stability are often still obscure. In the present work, a series of laser melting experiments were carried out to determine the impact of an oxidizing atmosphere, and in consequence the departure from a stoichiometric composition on the melting behavior of six mixed uranium plutonium oxides with Pu content ranging from 14 to 62 wt%. The starting materials were disks cut from sintered stoichiometric pellets. For each composition we have performed two laser melting experiments in pressurized air, each consisting of four shots of different duration and intensity. During the experiments we recorded the temperature at the surface of the sample with a pyrometer. Phase transitions were qualitatively identified with the help of a reflected blue laser. The observed phase transitions occur at a systematically lower temperature, the lower the Pu content of the studied sample. It is consistent with the fact that uranium dioxide is easily oxidized at elevated temperatures, forming chemical species rich in oxygen, which melt at a lower temperature and are more volatile. To our knowledge this campaign is a first attempt to quantitatively determine the effect of O/M on the melting temperature of MOX.

  17. Improved sample utilization in thermal ionization mass spectrometry isotope ratio measurements: refined development of porous ion emitters for nuclear forensic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baruzzini, Matthew Louis

    The precise and accurate determination of isotopic composition in nuclear forensic samples is vital for assessing origin, intended use and process history. Thermal ionization mass spectrometry (TIMS) is widely accepted as the gold standard for high performance isotopic measurements and has long served as the workhorse in the isotopic ratio determination of nuclear materials. Nuclear forensic and safeguard specialists have relied heavily on such methods for both routine and atypical e orts. Despite widespread use, TIMS methods for the assay of actinide systems continue to be hindered by poor ionization e ciency, often less than tenths of a percent; themore » majority of a sample is not measured. This represents a growing challenge in addressing nextgeneration nuclear detection needs by limiting the ability to analyze ultratrace quantities of high priority elements that could potentially provide critical nuclear forensic signatures. Porous ion emitter (PIE) thermal ion sources were developed in response to the growing need for new TIMS ion source strategies for improved ionization e ciency, PIEs have proven to be simple to implement, straightforward approach to boosting ion yield. This work serves to expand the use of PIE techniques for the analysis of trace quantities of plutonium and americium. PIEs exhibited superior plutonium and americium ion yields when compared to direct lament loading and the resin bead technique, one of the most e cient methods for actinide analysis, at similar mass loading levels. Initial attempts at altering PIE composition for the analysis of plutonium proved to enhance sample utilization even further. Preliminary investigations of the instrumental fractionation behavior of plutonium and uranium analyzed via PIE methods were conducted. Data collected during these initial trial indicate that PIEs fractionate in a consistent, reproducible manner; a necessity for high precision isotope ratio measurements. Ultimately, PIEs methods were applied for the age determination of various uranium isotopic standards. PIEs did not exhibit signi cant advantages for the determination of model ages when compared to traditional laments; however, this trial was able to provide valuable insight for guiding future investigations.« less

  18. Phonon spectra and the one-phonon and two-phonon densities of states of UO2 and PuO2

    NASA Astrophysics Data System (ADS)

    Poplavnoi, A. S.; Fedorova, T. P.; Fedorov, I. A.

    2017-04-01

    The vibrational spectra of uranium dioxide UO2 and plutonium dioxide PuO2, as well as the one-phonon densities of states and thermal occupation number weighted two-phonon densities of states, have been calculated within the framework of the phenomenological rigid ion model. It has been shown that the acoustic and optical branches of the spectra are predominantly determined by vibrations of the metal and oxygen atoms, respectively, because the atomic masses of the metal and oxygen differ from each other by an order of magnitude. On this basis, the vibrational spectra can be represented in two Brillouin zones, i.e., in the Brillouin zone of the crystal and the Brillouin zone of the oxygen sublattice. In this case, the number of optical branches decreases by a factor of two. The two-phonon densities of states consist of two broad structured peaks. The temperature dependences of the upper peak exhibit a thermal broadening of the phonon lines L01 and L02 in the upper part of the optical branches. The lower peak is responsible for the thermal broadening of the lowest two optical (T02, T01) and acoustic (LA, TA) branches.

  19. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, J. K. R.; Alderman, O. L. G.; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439

    2016-07-15

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment wasmore » integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less

  20. Solvent extraction system for plutonium colloids and other oxide nano-particles

    DOEpatents

    Soderholm, Lynda; Wilson, Richard E; Chiarizia, Renato; Skanthakumar, Suntharalingam

    2014-06-03

    The invention provides a method for extracting plutonium from spent nuclear fuel, the method comprising supplying plutonium in a first aqueous phase; contacting the plutonium aqueous phase with a mixture of a dielectric and a moiety having a first acidity so as to allow the plutonium to substantially extract into the mixture; and contacting the extracted plutonium with second a aqueous phase, wherein the second aqueous phase has a second acidity higher than the first acidity, so as to allow the extracted plutonium to extract into the second aqueous phase. The invented method facilitates isolation of plutonium polymer without the formation of crud or unwanted emulsions.

  1. SEPARATION OF PLUTONIUM

    DOEpatents

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  2. Effect of Americium-241 Content on Plutonium Radiation Source Terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainisch, R.

    1998-12-28

    The management of excess plutonium by the US Department of Energy includes a number of storage and disposition alternatives. Savannah River Site (SRS) is supporting DOE with plutonium disposition efforts, including the immobilization of certain plutonium materials in a borosilicate glass matrix. Surplus plutonium inventories slated for vitrification include materials with elevated levels of Americium-241. The Am-241 content of plutonium materials generally reflects in-growth of the isotope due to decay of plutonium and is age-dependent. However, select plutonium inventories have Am-241 levels considerably above the age-based levels. Elevated levels of americium significantly impact radiation source terms of plutonium materials andmore » will make handling of the materials more difficult. Plutonium materials are normally handled in shielded glove boxes, and the work entails both extremity and whole body exposures. This paper reports results of an SRS analysis of plutonium materials source terms vs. the Americium-241 content of the materials. Data with respect to dependence and magnitude of source terms on/vs. Am-241 levels are presented and discussed. The investigation encompasses both vitrified and un-vitrified plutonium oxide (PuO2) batches.« less

  3. Integrating the stabilization of nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, H.F.

    1996-05-01

    In response to Recommendation 94-1 of the Defense Nuclear Facilities Safety Board, the Department of Energy committed to stabilizing specific nuclear materials within 3 and 8 years. These efforts are underway. The Department has already repackaged the plutonium at Rocky Flats and metal turnings at Savannah River that had been in contact with plastic. As this effort proceeds, we begin to look at activities beyond stabilization and prepare for the final disposition of these materials. To describe the plutonium materials being stabilize, Figure 1 illustrates the quantities of plutonium in various forms that will be stabilized. Plutonium as metal comprisesmore » 8.5 metric tons. Plutonium oxide contains 5.5 metric tons of plutonium. Plutonium residues and solutions, together, contain 7 metric tons of plutonium. Figure 2 shows the quantity of plutonium-bearing material in these four categories. In this depiction, 200 metric tons of plutonium residues and 400 metric tons of solutions containing plutonium constitute most of the material in the stabilization program. So, it is not surprising that much of the work in stabilization is directed toward the residues and solutions, even though they contain less of the plutonium.« less

  4. KSC-97PC1537

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  5. KSC-97PC1535

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  6. KSC-97PC1533

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  7. KSC-97PC1538

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  8. METHOD FOR OBTAINING PLUTONIUM METAL AND ALLOYS OF PLUTONIUM FROM PLUTONIUM TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-11-13

    A process is given for both reducing plutonium trichloride to plutonium metal using cerium as the reductant and simultaneously alloying such plutonium metal with an excess of cerium or cerium and cobalt sufficient to yield the desired nuclear reactor fuel composition. The process is conducted at a temperature from about 550 to 775 deg C, at atmospheric pressure, without the use of booster reactants, and a substantial decontamination is effected in the product alloy of any rare earths which may be associated with the source of the plutonium. (AEC)

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Lav; Colletti, Lisa M.; Drake, Lawrence R.

    This report discusses the process used to prove in the SRNL-Rev.2 coulometer for isotopic data analysis used in the special plutonium material project. In May of 2012, the PAR 173 coulometer system that had been the workhorse of the Plutonium Assay team since the early 1970s became inoperable. A new coulometer system had been purchased from Savannah River National Laboratory (SRNL) and installed in August of 2011. Due to funding issues the new system was not qualified at that time. Following the failure of the PAR 173, it became necessary to qualify the new system for use in Process 3401a,more » Plutonium Assay by Controlled Coulometry. A qualification plan similar to what is described in PQR -141a was followed. Experiments were performed to establish a statistical summary of the performance of the new system by monitoring the repetitive analysis of quality control sample, PEOL, and the assay of plutonium metals obtained from the Plutonium Exchange Program. The data for the experiments was acquired using work instructions ANC125 and ANC195. Figure 1 shows approximately 2 years of data for the PEOL material obtained using the PAR 173. The required acceptance criteria for the sample are that it returns the correct value for the quality control material of 88.00% within 2 sigma (95% Confidence Interval). It also must meet daily precision standards that are set from the historical data analysis of decades of data. The 2 sigma value that is currently used is 0.146 % as evaluated by the Statistical Science Group, CCS-6. The average value of the PEOL quality control material run in 10 separate days on the SRNL-03 coulometer is 87.98% with a relative standard deviation of 0.04 at the 95% Confidence interval. The date of data acquisition is between 5/23/2012 to 8/1/2012. The control samples are run every day experiments using the coulometer are carried out. It is also used to prove an instrument is in statistical control before any experiments are undertaken. The total number of replicate controls run with the new coulometer to date, is n=18. This value is identical to that calculated by the LANL statistical group for this material from data produced by the PAR 173 system over the period of October 2007 to May 2011. The final validation/verification test was to run a blind sample over multiple days. AAC participates in a plutonium exchange program which supplies blind Pu metal samples to the group on a regular basis. The Pu material supplied for this study was ran using the PAR 173 in the past and more recently with the new system. Table 1a contains the values determined through the use of the PAR 173 and Table 1b contains the values obtained with the new system. The Pu assay value obtained on the SRNL system is for paired analysis and had a value of 98.88+/-0.07% RSD at 95% CI. The Pu assay value (decay corrected to July 2012) of the material determined in prior measurements using the PAR173 is 99.05 +/- 0.06 % RSD at 95% CI. We believe that the instrument is adequate to meet the needs of the program.« less

  10. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-02-01

    Plutonium hexafluoride is a satisfactory fluorinating agent and may be reacted with various materials capable of forming fluorides, such as copper, iron, zinc, etc., with consequent formation of the metal fluoride and reduction of the plutonium to the form of a lower fluoride. In accordance with the present invention, it has been found that the reactivity of plutonium hexafluoride with other fluoridizable materials is so great that the process may be used as a method of separating plutonium from mixures containing plutonium hexafluoride and other vaporized fluorides even though the plutonium is present in but minute quantities. This process may be carried out by treating a mixture of fluoride vapors comprising plutonium hexafluoride and fluoride of uranium to selectively reduce the plutonium hexafluoride and convert it to a less volatile fluoride, and then recovering said less volatile fluoride from the vapor by condensation.

  11. ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Boyd, G.E.

    1960-06-28

    A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

  12. PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM

    DOEpatents

    Fried, S.; Baumbach, H.L.

    1959-12-01

    A process is described for forming plutonlum hydride powder by reacting hydrogen with massive plutonium metal at room temperature and the product obtained. The plutonium hydride powder can be converted to plutonium powder by heating to above 200 deg C.

  13. Characterization of representative materials in support of safe, long term storage of surplus plutonium in DOE-STD-3013 containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Paul H; Narlesky, Joshua E; Worl, Laura A

    2010-01-01

    The Surveillance and Monitoring Program (SMP) is a joint LANL/SRS effort funded by DOE/EM to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performancemore » of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. The chlorides (NaCl, KCl, CaCl{sub 2}, and MgCl{sub 2}) range from less than half of the impurities present to nearly all the impurities. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on over 60 samples of plutonium chosen to represent the broader population of materials in storage. This paper will summarize the characterization data, including the origin and process history, particle size, surface area, density, calorimetry, chemical analysis, moisture analysis, prompt gamma, gas generation and corrosion behavior.« less

  14. Plutonium-related work and cause-specific mortality at the United States Department of Energy Hanford Site.

    PubMed

    Wing, Steve; Richardson, David; Wolf, Susanne; Mihlan, Gary

    2004-02-01

    Health effects of working with plutonium remain unclear. Plutonium workers at the United States Department of Energy (US-DOE) Hanford Site in Washington State, USA were evaluated for increased risks of cancer and non-cancer mortality. Periods of employment in jobs with routine or non-routine potential for plutonium exposure were identified for 26,389 workers hired between 1944 and 1978. Life table regression was used to examine associations of length of employment in plutonium jobs with confirmed plutonium deposition and with cause specific mortality through 1994. Incidence of confirmed internal plutonium deposition in all plutonium workers was 15.4 times greater than in other Hanford jobs. Plutonium workers had low death rates compared to other workers, particularly for cancer causes. Mortality for several causes was positively associated with length of employment in routine plutonium jobs, especially for employment at older ages. At ages 50 and above, death rates for non-external causes of death, all cancers, cancers of tissues where plutonium deposits, and lung cancer, increased 2.0 +/- 1.1%, 2.6 +/- 2.0%, 4.9 +/- 3.3%, and 7.1 +/- 3.4% (+/-SE) per year of employment in routine plutonium jobs, respectively. Workers employed in jobs with routine potential for plutonium exposure have low mortality rates compared to other Hanford workers even with adjustment for demographic, socioeconomic, and employment factors. This may be due, in part, to medical screening. Associations between duration of employment in jobs with routine potential for plutonium exposure and mortality may indicate occupational exposure effects. Copyright 2004 Wiley-Liss, Inc.

  15. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  16. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    DOE PAGES

    Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; ...

    2016-07-01

    We integrated an aerodynamic levitator with carbon dioxide laser beam heating with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. Furthermore, the chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The samplemore » environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. Our system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less

  17. Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF

    DOE PAGES

    McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; ...

    2015-03-29

    The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy andmore » micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.« less

  18. Determination of the 240Pu/ 239Pu atomic ratio in soils from Palomares (Spain) by low-energy accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chamizo, E.; García-León, M.; Synal, H.-A.; Suter, M.; Wacker, L.

    2006-08-01

    In 1966, the nuclear fuel of two thermonuclear bombs was released over the Spanish region of Palomares, due to a B52 bomber accident during a refuelling operation. Since then, much effort has been made to assess its impact to the different environmental compartments of this area in South-East Spain, mostly by measuring the 239+240Pu activity concentration and the 238Pu/239+240Pu activity ratio. Nevertheless, these measurements do not give enough information on the problem. In order to recognize unambiguously small traces of the weapon-grade plutonium released in the accident, the ratio of the two major isotopes of plutonium, 240Pu/239Pu, has to be determined. In this work, this ratio has been measured in low- and high-activity samples from Palomares by means of low-energy accelerator mass spectrometry (AMS). That way, we will show the potential of the new generation of compact AMS facilities in terms of plutonium characterization at ultra-trace levels.

  19. Transportability Class of Americium in K Basin Sludge under Ambient and Hydrothermal Processing Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.

    2006-08-01

    This report establishes the technical bases for using a ''slow uptake'' instead of a ''moderate uptake'' transportability class for americium-241 (241Am) for the K Basin Sludge Treatment Project (STP) dose consequence analysis. Slow uptake classes are used for most uranium and plutonium oxides. A moderate uptake class has been used in prior STP analyses for 241Am based on the properties of separated 241Am and its associated oxide. However, when 241Am exists as an ingrown progeny (and as a small mass fraction) within plutonium mixtures, it is appropriate to assign transportability factors of the predominant plutonium mixtures (typically slow) to themore » Am241. It is argued that the transportability factor for 241Am in sludge likewise should be slow because it exists as a small mass fraction as the ingrown progeny within the uranium oxide in sludge. In this report, the transportability class assignment for 241Am is underpinned with radiochemical characterization data on K Basin sludge and with studies conducted with other irradiated fuel exposed to elevated temperatures and conditions similar to the STP. Key findings and conclusions from evaluation of the characterization data and published literature are summarized here. Plutonium and 241Am make up very small fractions of the uranium within the K Basin sludge matrix. Plutonium is present at about 1 atom per 500 atoms of uranium and 241Am at about 1 atom per 19000 of uranium. Plutonium and americium are found to remain with uranium in the solid phase in all of the {approx}60 samples taken and analyzed from various sources of K Basin sludge. The uranium-specific concentrations of plutonium and americium also remain approximately constant over a uranium concentration range (in the dry sludge solids) from 0.2 to 94 wt%, a factor of {approx}460. This invariability demonstrates that 241Am does not partition from the uranium or plutonium fraction for any characterized sludge matrix. Most of the K Basin sludge characterization data is derived spent nuclear fuel corroded within the K Basins at 10-15?C. The STP process will place water-laden sludges from the K Basin in process vessels at {approx}150-180 C. Therefore, published studies with other irradiated (uranium oxide) fuel were examined. From these studies, the affinity of plutonium and americium for uranium in irradiated UO2 also was demonstrated at hydrothermal conditions (150 C anoxic liquid water) approaching those proposed for the STP process and even for hydrothermal conditions outside of the STP operating envelope (e.g., 150 C oxic and 100 C oxic and anoxic liquid water). In summary, by demonstrating that the chemical and physical behavior of 241Am in the sludge matrix is similar to that of the predominant species (uranium and for the plutonium from which it originates), a technical basis is provided for using the slow uptake transportability factor for 241Am that is currently used for plutonium and uranium oxides. The change from moderate to slow uptake for 241Am could reduce the overall analyzed dose consequences for the STP by more than 30%.« less

  20. PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES

    DOEpatents

    Garner, C.S.

    1959-02-24

    A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.

  1. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed tomore » mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.« less

  2. 40 CFR 141.133 - Compliance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to lower the level of chlorine dioxide below the MRDL and must notify the public pursuant to the.... Failure to take samples in the distribution system the day following an exceedance of the chlorine dioxide... corrective action to lower the level of chlorine dioxide below the MRDL at the point of sampling and will...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savina, Joseph A.; Steeb, Jennifer L.; Savina, Michael R.

    A plutonium alpha standard dating from 1948 was discovered at Argonne National Laboratory and characterized using a number of non-destructive analytical techniques. The principle radioactive isotope was found to be 239Pu and unique ring structures were found across the surface of the deposition area. Due to chronological constraints on possible sources and its high isotopic purity, the plutonium in the sample was likely produced by the Oak Ridge National Lab X-10 Reactor. As a result, it is proposed that the rings are resultant through a combination of polishing and electrodeposition, though the hypothesis fails to address a few key featuresmore » of the ring structures.« less

  4. Characterization of (241)Pu occurrence, distribution, and bioaccumulation in seabirds from northern Eurasia.

    PubMed

    Strumińska-Parulska, Dagmara I; Skwarzec, Bogdan

    2015-05-01

    The paper presents unique data of plutonium (241)Pu study in seabirds from northern Eurasia, permanently or temporally living at the southern Baltic Sea coast. Together, ten marine birds species were examined, as follows: three species that permanently reside at the southern Baltic, four species of wintering birds, and three species of migrating birds; 366 samples were analyzed. The obtained results indicated plutonium was non-uniformly distributed in organs and tissues of analyzed seabirds. The highest (241)Pu content was found in the digestion organs and feathers, the lowest in muscles. Also, the internal radiation doses from (241)Pu were evaluated.

  5. Comparison of radionuclide levels in soil, sagebrush, plant litter, cryptogams, and small mammals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landeen, D.S.

    1994-09-01

    Soil, sagebrush, plant litter, cryptogam, and small mammal samples were collected and analyzed for cesium-137, strontium-90, plutonium-238, plutonium 239/240, technetium-99, and iodine-129 from 1981 to 1986 at the US Department of Energy Hanford Site in southeastern Washington State as part of site characterization and environmental monitoring activities. Samples were collected on the 200 Areas Plateau, downwind from ongoing waste management activities. Plant litter, cryptogams, and small mammals are media that are not routinely utilized in monitoring or characterization efforts for determination of radionuclide concentrations. Studies at Hanford, other US Department of Energy sites, and in eastern Europe have indicated thatmore » plant litter and cryptogams may serve as effective ``natural`` monitors of air quality. Plant litter in this study consists of fallen leaves from sagebrush and ``cryptogams`` describes that portion of the soil crust composed of mosses, lichens, algae, and fungi. Comparisons of cesium-137 and strontium-90 concentrations in the soil, sagebrush, litter, and cryptogams revealed significantly higher (p<0.05) levels in plant litter and cryptogams. Technetium-99 values were the highest in sagebrush and litter. Plutonium-238 and 239/40 and iodine-129 concentrations never exceeded 0.8 pCi/gm in all media. No evidence of any significant amounts of any radionuclides being incorporated into the small mammal community was discovered. The data indicate that plant litter and cryptogams may be better, indicators of environmental quality than soil or vegetation samples. Augmenting a monitoring program with samples of litter and cryptogams may provide a more accurate representation of radionuclide environmental uptake and/or contamination levels in surrounding ecosystems. The results of this study may be applied directly to other radioecological monitoring conducted at other nuclear sites and to the monitoring of other pollutants.« less

  6. Analysis of Tank 38H (HTF-38-17-52, -53) and Tank 43H (HTF-43-17-54, -55) Samples for Support of the Enrichment Control and Corrosion Control Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.; Coleman, C.; Diprete, D.

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 41.3 mg/L while the sub-surface sample was 43.5 mg/L. The Tank 43H samples contained total uranium concentrations of 28.5 mg/L in the surface sample and 28.1 mg/L in the sub-surface sample. The U-235 percentage ranged from 0.62% to 0.63% for the Tank 38H samples and Tank 43H samples. The total uranium and percent U-235 results in the table appear slightly lower than recent Tank 38H and Tank 43H uranium measurements. The plutonium results in the tablemore » show a large difference between the surface and sub-surface sample concentrations for Tank 38H. The Tank 43H plutonium results closely match the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and sub-surface samples show similar concentrations slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples also show similar concentrations within the range of values measured on previous samples. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 124 to 168 mg/L.« less

  7. 1. VIEW IN ROOM 125, BIOASSAY LABORATORY, SHOWN IS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW IN ROOM 125, BIOASSAY LABORATORY, SHOWN IS THE FIRST STEP IN A SIX-STEP PROCESS TO ANALYZE URINE SAMPLES FOR PLUTONIUM AND URANIUM CONTAMINATION. IN THIS STEP, NITRIC ACID IS ADDED TO SAMPLE, AND THE SAMPLE IS BOILED DOWN TO A WHITE POWDER. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  8. STRIPPING PROCESS FOR PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-10-01

    A method for removing silver, nickel, cadmium, zinc, and indium coatings from plutonium objects while simultaneously rendering the plutonium object passive is described. The coated plutonium object is immersed as the anode in an electrolyte in which the plutonium is passive and the coating metal is not passive, using as a cathode a metal which does not dissolve rapidly in the electrolyte. and passing an electrical current through the electrolyte until the coating metal is removed from the plutonium body.

  9. PLUTONIUM-CUPFERRON COMPLEX AND METHOD OF REMOVING PLUTONIUM FROM SOLUTION

    DOEpatents

    Potratz, H.A.

    1959-01-13

    A method is presented for separating plutonium from fission products present in solutions of neutronirradiated uranium. The process consists in treating such acidic solutions with cupferron so that the cupferron reacts with the plutonium present to form an insoluble complex. This plutonium cupferride precipitates and may then be separated from the solution.

  10. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  11. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOEpatents

    Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

    1958-10-01

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

  12. Volatile fluoride process for separating plutonium from other materials

    DOEpatents

    Spedding, F. H.; Newton, A. S.

    1959-04-14

    The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

  13. VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS

    DOEpatents

    Spedding, F.H.; Newton, A.S.

    1959-04-14

    The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

  14. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  15. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caviness, Michael L; Mann, Paul T; Yoshimura, Richard H

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  16. The calculation of annual limits of intake for plutonium-239 in man using a bone model which allows for plutonium burial and recycling.

    PubMed

    Priest, N D; Hunt, B W

    1979-05-01

    Values of the annual limit of intake (ALI) for plutonium-239 in man have been calculated using committed dose equivalent limits as recommended by ICRP in Publication 26. The calculations were made using a multicompartment bone model which allows for plutonium burial and recycling in the skeleton. In one skeletal compartment, the growing surfaces of cortical bone, it is assumed that plutonium deposits are retained and are not subject to resorption or recycling. In the trabecular bone compartment plutonium is taken to be resorbed with either subsequent redeposition onto bone surfaces or retention in the bone marrow. ALIs for plutonium-239 have been calculated assuming a range of rates of bone accretion (0-32 micron yr-1), different amounts of plutonium retained in the marrow (0-60%) and a 20%, 45% or 70% deposition of plutonium in the skeleton from the blood. The calculations made using this bone model suggest that 750 Bq (20 nCi) is an appropriate ALI for the inhalation of class W and class Y plutonium compounds and that 830 kBq and 5 MBq (23 muCi and 136 muCi) are the appropriate ALIs for the ingestion of soluble and insoluble forms of plutonium respectively.

  17. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    DOEpatents

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  18. Bioassay vs. Air Sampling: Practical Guidance and Experience at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Carlson, Eric W.; Hill, Robin L.

    2004-02-08

    The Hanford Site has implemented a policy to guide in determining whether air sampling data or special fecal bioassay data are more appropriate for determining doses of record for low-level plutonium exposures. The basis for the policy and four years of experience in comparing DAC-hours exposure with bioassay-based dosimetry is discussed.

  19. Radionuclide Basics: Plutonium

    EPA Pesticide Factsheets

    Plutonium (chemical symbol Pu) is a radioactive metal. Plutonium is considered a man-made element. Plutonium-239 is used to make nuclear weapons. Pu-239 and Pu-240 are byproducts of nuclear reactor operations and nuclear bomb explosions.

  20. Plutonium inventories for stabilization and stabilized materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials withinmore » 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.« less

  1. Search for Plutonium Salt Deposits in the Plutonium Extraction Batteries of the Marcoule Plant; RECHERCHE DE DEPOTS DE SELS DE PLUTONIUM DANS LES BATTERIES D'EXTRACTION DU PLUTONIUM DE L'USINE DE MARCOULE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouzigues, H.; Reneaud, J.-M.

    1963-01-01

    A method and a special apparatus are described which make it possible to detach the insoluble plutonium salt deposits in the extraction chain of an irradiated fuel treatment plant. The process chosen allows the detection, in the extraction batteries or in the highly active chemical engineering equipment, of plutonium quantities of a few grams. After four years operation it has been impossible to detect measurable quantities of plutonium in any part of the extraction chain. The results have been confirmed by visual examinations carried out with a specially constructed endoscope. (auth)

  2. SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE

    DOEpatents

    Watt, G.W.

    1958-08-19

    An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

  3. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhter, W.D.; Buckley, W.M.

    1989-09-07

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.

  4. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, G.E.; Adamson, A.W.; Schubert, J.

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This processmore » provides a convenient and efficient means for isolating plutonium.« less

  5. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stablemore » state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.« less

  6. PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES

    DOEpatents

    Wahl, A.C.

    1957-11-12

    A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.

  7. PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1961-05-01

    A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.

  8. PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION

    DOEpatents

    Wolter, F.J.; Diehl, H.C. Jr.

    1958-01-01

    This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.

  9. Method of separating thorium from plutonium

    DOEpatents

    Clifton, David G.; Blum, Thomas W.

    1984-01-01

    A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  10. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  11. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    1984-07-10

    A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  12. Determination of actinides in urine and fecal samples

    DOEpatents

    McKibbin, Terry T.

    1993-01-01

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  13. Determination of actinides in urine and fecal samples

    DOEpatents

    McKibbin, T.T.

    1993-03-02

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  14. Locating trace plutonium in contaminated soil using micro-XRF imaging

    DOE PAGES

    Worley, Christopher G.; Spencer, Khalil J.; Boukhalfa, Hakim; ...

    2014-06-01

    Micro-X-ray fluorescence (MXRF) was used to locate minute quantities of plutonium in contaminated soil. Because the specimen had previously been prepared for analysis by scanning electron microscopy, it was coated with gold to eliminate electron beam charging. However, this significantly hindered efforts to detect plutonium by MXRF. The gold L peak series present in all spectra increased background counts. Plutonium signal attenuation by the gold coating and severe peak overlap from potassium in the soil prevented detection of trace plutonium using the Pu Mα peak. However, the 14.3 keV Pu Lα peak sensitivity was not optimal due to poor transmissionmore » efficiency through the source polycapillary optic, and the instrument silicon drift detector sensitivity quickly declines for peaks with energies above ~10 keV. Instrumental parameters were optimized (eg. using appropriate source filters) in order to detect plutonium. An X-ray beam aperture was initially used to image a majority of the specimen with low spatial resolution. A small region that appeared to contain plutonium was then imaged at high spatial resolution using a polycapillary optic. Small areas containing plutonium were observed on a soil particle, and iron was co-located with the plutonium. Zinc and titanium also appeared to be correlated with the plutonium, and these elemental correlations provided useful plutonium chemical state information that helped to better understand its environmental transport properties.« less

  15. KSC-97PC1534

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, one of three Radioisotope Thermoelectric Generators (RTGs) is being installed on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  16. KSC-97PC1532

    NASA Image and Video Library

    1997-10-10

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  17. KSC-97PC1536

    NASA Image and Video Library

    1997-10-10

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  18. Workers install the RTGs on the Cassini spacecraft at LC 40, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13.

  19. Corrosion Testing of 304L SS 3013 Inner Container and Teardrop Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokash, Justin Charles; Hill, Mary Ann; Lillard, Scott

    The Department of Energy (DOE) 3013 Standard specifies a minimum of two containers to be used for the storage of plutonium-bearing materials containing at least 30 wt.% plutonium and uranium. Three nested containers are typically used, the outer, inner, and convenience containers, shown in Figure 1. Both the outer and inner containers are sealed with a weld while the innermost convenience container must not be sealed. Lifetime of the containers is expected to be fifty years. The containers are fabricated of austenitic stainless steels (SS) due to their high corrosion resistance. Potential failure mechanisms of the storage containers have beenmore » examined by Kolman and Lillard et al.« less

  20. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

    DOEpatents

    Faris, B.F.

    1961-04-25

    Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

  1. PLUTONIUM CLEANING PROCESS

    DOEpatents

    Kolodney, M.

    1959-12-01

    A method is described for rapidly removing iron, nickel, and zinc coatings from plutonium objects while simultaneously rendering the plutonium object passive. The method consists of immersing the coated plutonium object in an aqueous acid solution containing a substantial concentration of nitrate ions, such as fuming nitric acid.

  2. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Lav; Kuhn, Kevin J; Drake, Lawrence R

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguardsmore » Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.« less

  3. Real-Time, Fast Neutron Coincidence Assay of Plutonium With a 4-Channel Multiplexed Analyzer and Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Joyce, Malcolm J.; Gamage, Kelum A. A.; Aspinall, M. D.; Cave, F. D.; Lavietes, A.

    2014-06-01

    The design, principle of operation and the results of measurements made with a four-channel organic scintillator system are described. The system comprises four detectors and a multiplexed analyzer for the real-time parallel processing of fast neutron events. The function of the real-time, digital multiple-channel pulse-shape discrimination analyzer is described together with the results of laboratory-based measurements with 252Cf, 241Am-Li and plutonium. The analyzer is based on a single-board solution with integrated high-voltage supplies and graphical user interface. It has been developed to meet the requirements of nuclear materials assay of relevance to safeguards and security. Data are presented for the real-time coincidence assay of plutonium in terms of doubles count rate versus mass. This includes an assessment of the limiting mass uncertainty for coincidence assay based on a 100 s measurement period and samples in the range 0-50 g. Measurements of count rate versus order of multiplicity for 252Cf and 241Am-Li and combinations of both are also presented.

  4. Evaluation of phases in Pu-C-O and (U, Pu)-C-O systems by X-ray diffractometry and chemical analysis

    NASA Astrophysics Data System (ADS)

    Jain, G. C.; Ganguly, C.

    1993-12-01

    Preparation and characterisation of the carbides of uranium, plutonium and mixed uranium and plutonium form a part of advanced fuel development programs for fast breeder reactors. In the present study, the compositions of the phases of Pu-C-O and (U.Pu)-C-O systems have been determined by chemical analysis and lattice parameter measurement. The carbide samples have been prepared by vacuum carbothermic synthesis of tabletted oxide-graphite powder mixture. Dependence of stoichiometry of Pu 2C 3 phase on the oxygen content of Pu(C,O) phase in Pu(C,O) + Pu 2C 3 phase mixture has been evaluated. Stoichiometry and oxygen solubility of (U 0.3Pu 0.7)(C,O) phase in multiple phase mixture have been determined. Segregation of plutonium in (U,Pu) 2C 3 phase of (U,Pu)(C,O) + (U,Pu) 2C 3 phase mixture and its dependence on the oxygen content of (U,Pu)(C,O) phase have also been determined from the measurement of the lattice parameter of (U,Pu) 2C 3 phase.

  5. NATIONAL PERFORMANCE AUDIT PROGRAM: 1979 PROFICIENCY SURVEYS FOR SULFUR DIOXIDE, NITROGEN DIOXIDE, CARBON MONOXIDE, SULFATE, NITRATE, LEAD AND HIGH VOLUME FLOW

    EPA Science Inventory

    The Quality Assurance Division of the Environmental Monitoring Systems Laboratory, Research Triangle Park, North Carolina, administers semiannual Surveys of Analytical Proficiency for sulfur dioxide, nitrogen dioxide, carbon monoxide, sulfate, nitrate and lead. Sample material, s...

  6. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  7. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  8. Lymph node clearance of plutonium from subcutaneous wounds in beagles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, G.E.

    1973-08-01

    The lymph node clearance of /sup 239/Pu O/sub 2/ administered as insoluble particles from subcutaneous implants was studied in adult beagles to simulate accidental contamination of hand wounds. External scintillation data were collected from the popliteal lymph nodes of each dog after 9.2 to 39.4 mu Ci of plutonium oxide was subcutaneously implanted into the left or right hind paws. The left hind paw was armputated 4 weeks after implantation to prevent continued deposition of plutonium oxide particles in the left popliteal lymph node. Groups of 3 dogs were sacrificed 4, 8, 16, and 32 weeks after plutonium implantation formore » histopathologic, electron microscopic, and radiochemical analysis of regional lymph nodes. An additional group of dogs received treatment with the chelating agent diethyenetriaminepentaacetic acid (DTPA). Plutonium rapidly accumulated in the popliteal lymph nodes after subcutaneous injection into the hind paw, and 1 to 10% of the implant dose was present in the popliteal lymph nodes at the time of necropsy. Histopathologic changes in the popliteal lymph nodes with plutonium particles were characterized primarily by reticular cell hyperplasia, increased numbers of macrophages, necrosis, and fibroplasia. Eventually, the plutonium particles became sequestered by scar tissue that often replaced the entire architecture of the lymph node. Light microscopic autoradiographs of the popliteal lymph nodes showed a time-related increase in number of alpha tracks per plutonium source. Electron microscopy showed that the plutonium particles were aggregated in phagolysosomes of macrophages. There was slight clearance of plutonium from the popliteal lymph nodes of dogs monitored for 32 weeks. The clearance of plutonium particles from the popliteal lymph nodes was associated with necrosis of macrophages. The external iliac lymph nodes contained fewer plutonium particles than the popliteal lymph nodes and histopathologic changes were less severe. The superficial inguinal lymph nodes of one dog contained appreciable amounts of plutonium. Treatment with diethylenetriaminepentaacetic acid (DTPA) did not have a measurable effect on the clearance of plutonium from the popliteal lymph nodes. (60 references) (auth)« less

  9. Plutonium in the arctic marine environment--a short review.

    PubMed

    Skipperud, Lindis

    2004-06-18

    Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers.

  10. Plutonium activities and 240Pu/ 239Pu atom ratios in sediment cores from the east China sea and Okinawa Trough: Sources and inventories

    NASA Astrophysics Data System (ADS)

    Wang, Zhong-liang; Yamada, Masatoshi

    2005-05-01

    Plutonium concentrations and 240Pu/ 239Pu atom ratios in the East China Sea and Okinawa Trough sediment cores were determined by isotope dilution inductively coupled plasma mass spectrometry after separation using ion-exchange chromatography. The results showed that 240Pu/ 239Pu atom ratios in the East China Sea and Okinawa Trough sediments, ranging from 0.21 to 0.33, were much higher than the reported value of global fallout (0.18). The highest 240Pu/ 239Pu ratios (0.32-0.33) were observed in the deepest Okinawa Trough sediment samples. These ratios suggested the US nuclear weapons tests in the early 1950s at the Pacific Proving Grounds in the Marshall Islands were a major source of plutonium in the East China Sea and Okinawa Trough sediments, in addition to the global fallout source. It was proposed that close-in fallout plutonium was delivered from the Pacific Proving Grounds test sites via early direct tropospheric fallout and transportation by the North Pacific Equatorial Circulation system and Kuroshio Current into the Okinawa Trough and East China Sea. The total 239 + 240 Pu inventories in the cores were about 150-200% of that expected from direct global fallout; about 46-67% of the total inventories were delivered from the Pacific Proving Grounds. Much higher 239 + 240 Pu inventories were observed in the East China Sea sediments than in sediments of the Okinawa Trough, because in the open oceans, part of the 239 + 240 Pu was still retained in the water column, and continued Pu scavenging was higher over the margin than the trough. According to the vertical distributions of 239 + 240 Pu activities and 240Pu/ 239Pu atom ratios in these cores, it was concluded that sediment mixing was the dominant process in controlling profiles of plutonium in this area. Faster mixing in the coastal samples has homogenized the entire 240Pu/ 239Pu ratio record today; slightly slower mixing and less scavenging in the Okinawa Trough have left the surface sediment ratios closer to the modern North Pacific water end member and higher ratios (0.30-0.34) at the bottom of the cores.

  11. PROCESS OF SEPARATING PLUTONIUM FROM URANIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-09-01

    A process is presented for recovering plutonium values from aqueous solutions. It comprises forming a uranous hydroxide precipitate in such a plutonium bearing solution, at a pH of at least 5. The plutonium values are precipitated with and carried by the uranium hydroxide. The carrier precipitate is then redissolved in acid solution and the pH is adjusted to about 2.5, causing precipitation of the uranous hydroxide but leaving the still soluble plutonium values in solution.

  12. COLUMBIC OXIDE ADSORPTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM IONS

    DOEpatents

    Beaton, R.H.

    1959-07-14

    A process is described for separating plutonium ions from a solution of neutron irradiated uranium in which columbic oxide is used as an adsorbert. According to the invention the plutonium ion is selectively adsorbed by Passing a solution containing the plutonium in a valence state not higher than 4 through a porous bed or column of granules of hydrated columbic oxide. The adsorbed plutonium is then desorbed by elution with 3 N nitric acid.

  13. Industrial safety and applied health physics. Annual report for 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    Information is reported in sections entitled: radiation monitoring; Environmental Management Program; radiation and safety surveys; industrial safety and special projects; Office of Operational Safety; and training, lectures, publications, and professional activities. There were no external or internal exposures to personnel which exceeded the standards for radiation protection as defined in DOE Manual Chapter 0524. Only 35 employees received whole body dose equivalents of 10 mSv (1 rem) or greater. There were no releases of gaseous waste from the Laboratory which were of a level that required an incident report to DOE. There were no releases of liquid radioactive waste frommore » the Laboratory which were of a level that required an incident report to DOE. The quantity of those radionuclides of primary concern in the Clinch River, based on the concentration measured at White Oak Dam and the dilution afforded by the Clinch River, averaged 0.16 percent of the concentration guide. The average background level at the Perimeter Air Monitoring (PAM) stations during 1980 was 9.0 ..mu..rad/h (0.090 ..mu..Gy/h). Soil samples were collected at all perimeter and remote monitoring stations and analyzed for eleven radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.37 Bq/kg (0.01 pCi/g) to 1.5 Bq/kg (0.04 pCi/g), and the uranium-235 content ranged from 0.7 Bq/kg (0.02 pCi/g) to 16 Bq/kg (0.43 pCi/g). Grass samples were collected at all perimeter and remote monitoring stations and analyzed for twelve radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.04 Bq/kg (0.001 pCi/g) to 0.07 Bq/kg (0.002 pCi/g), and the uranium-235 content ranged from 0.37 Bq/kg (0.01 pCi/g) to 12 Bq/kg (0.33 pCi/g).« less

  14. PROCESS USING BISMUTH PHOSPHATE AS A CARRIER PRECIPITATE FOR FISSION PRODUCTS AND PLUTONIUM VALUES

    DOEpatents

    Finzel, T.G.

    1959-03-10

    A process is described for separating plutonium from fission products carried therewith when plutonium in the reduced oxidation state is removed from a nitric acid solution of irradiated uranium by means of bismuth phosphate as a carrier precipitate. The bismuth phosphate carrier precipitate is dissolved by treatment with nitric acid and the plutonium therein is oxidized to the hexavalent oxidation state by means of potassium dichromate. Separation of the plutonium from the fission products is accomplished by again precipitating bismuth phosphate and removing the precipitate which now carries the fission products and a small percentage of the plutonium present. The amount of plutonium carried in this last step may be minimized by addition of sodium fluoride, so as to make the solution 0.03N in NaF, prior to the oxidation and prccipitation step.

  15. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantifymore » the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.« less

  16. PROCESS FOR THE SEPARATION OF HEAVY METALS

    DOEpatents

    Gofman, J.W.; Connick, R.E.; Wahl, A.C.

    1959-01-27

    A method is presented for thc separation of plutonium from uranium and the fission products with which it is associated. The method is based on the fact that hexavalent plutonium forms an insoluble complex precipitate with sodium acetate, as does the uranyl ion, while reduced plutonium is not precipitated by sodium acetate. Several embodiments are shown, e.g., a solution containing plutonium and uranium in the hexavalent state may be contacted with sodium acetate causing the formation of a sodium uranyl acetate precipitate which carries the plutonium values while the fission products remain in solution. If the original solution is treated with a reducing agent, so that the plutonium is reduced while the uranium remains in the hexavalent state, and sodium and acetate ions are added, the uranium will precipitutc while the plutonium remains in solution effecting separation of the Pu from urarium.

  17. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  18. Analysis of tank 38H (HTF-38-17-18, -19) and tank 43H (HTF-43-17-20, -21) samples for support of the enrichment control and corrosion control programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M. S.; Coleman, C. J.; Diprete, D. P.

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H samples ranged from 53.7 mg/L for the surface sample to 57.0 mg/L in the sub-surface sample. The Tank 43H samples showed uranium concentrations of 46.2 mg/L for the surface sample and 45.7 mg/L in the sub-surface sample. The U-235 percentage was 0.63% in the Tank 38H samples and 0.62% in the Tank 43H samples. The total uranium and percent U-235 results appear consistent with recent Tank 38H and Tank 43H uranium measurements. The plutonium results for the Tank 38Hmore » surface sample are slightly higher than recent sample results, while the Tank 43H plutonium results are within the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and subsurface samples are slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples are within the range of values measured on previous samples. The comparison of the sum of the cations in each sample versus the sum of the anions shows a difference of 23% for the Tank 38H surface sample and 18% for the Tank 43H surface sample. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 80.2 to 105 mg/L.« less

  19. Spatial analysis of plutonium-239 + 240 and Americium-241 in soils around Rocky Flats, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litaor, M.I.

    1995-05-01

    Plutonium and american contamination of soils around Rocky Flats, Colorado resulted from past outdoor storage practices. Four previous studies produce four different Pu isopleth maps. Spatial estimation techniques were not used in the construction of these maps and were also based on an extremely small number of soil samples. The purpose of this study was to elucidate the magnitude of Pu-239 + 240 and Am-241 dispersion in the soil environment east of Rocky Flats using robust spatial estimation techniques. Soils were sampled from 118 plots of 1.01 and 4.05 ha by compositing 25 evenly spaced samples in each plot frommore » the top 0.64 cm. Plutonium-239 + 240 activity ranged from 1.85 to 53 560 Bq/kg with a mean of 1924 Bq/kg and a standard deviation of 6327 Bq/kg. Americium-241 activity ranged from 0.18 to 9990 Bq/kg with a mean of 321 Bq/kg and a standard deviation of 1143 Bq/kg. Geostatistical techniques were used to model the spatial dependency and construct isopleth maps showing Pu-239 + 240 and Am-241 distribution. The isopleth configuration was consistent with the hypothesis that the dominant dispersal mechanism of Pu-239 + 240 was wind dispersion from west to east. The Pu-239 + 240 isopleth map proposed to this study differed significantly in the direction and distance of dispersal from the previously published maps. This ispleth map as well as the Am-241 map should be used as the primary data for future risk assessment associated with public exposure to Pu-239 + 240 and Am-241. 37 refs., 7 figs., 2 tabs.« less

  20. Soil plutonium and cesium in stream channels and banks of Los Alamos liquid effluent-receiving areas.

    PubMed

    Nyhan, J W; White, G C; Trujillo, G

    1982-10-01

    Stream channel sediments and adjacent bank soils found in three intermittent streams used for treated liquid effluent disposal at Los Alamos, New Mexico were sampled to determine the distribution of 238Pu, 239,240Pu and 137Cs. Radionuclide concentrations and inventories were determined as functions of distance downstream from the waste outfall and from the center of the stream channel, soil sampling depth, stream channel-bank physiography, and the waste use history of each disposal area. Radionuclide concentrations in channel sediments were inversely related to distances up to 10 km downstream from the outfalls. For sites receiving appreciable waste effluent additions, contaminant concentrations in bank soils decreased with perpendicular distances greater than 0.38 m from the stream channel, and with stream bank sampling depths greater than 20-40 cm. Concentrations and total inventories of radionuclides in stream bank soils generally decreased as stream bank height increased. Inventory estimates of radionuclides in channel sediments exhibited coefficients of variation that ranged 0.41-2.6, reflecting the large variation in radionuclide concentrations at each site. Several interesting temporal relationships of these radionuclides in intermittent streams were gleaned from the varying waste use histories of the three effluent-receiving areas. Eleven yr after liquid wastes were added to one canyon, the major radionuclide inventories were found in the stream bank soils, unlike most of the other currently-used receiving areas. A period of time greater than 6 yr seems to be required before the plutonium in liquid wastes currently added to the canyon is approximately equilibrated with the plutonium in the bank soils. These observations are discussed relative to waste management practices in these southwestern intermittent streams.

  1. Plutonium in the WIPP environment: its detection, distribution and behavior.

    PubMed

    Thakur, P; Ballard, S; Nelson, R

    2012-05-01

    The Waste Isolation Pilot Plant (WIPP) is the only operating deep underground geologic nuclear repository in the United States. It is located in southeastern New Mexico, approximately 655 m (2150 ft) below the surface of the Earth in a bedded Permian evaporite salt formation. This mined geologic repository is designed for the safe disposal of transuranic (TRU) wastes generated from the US defense program. Aerosol and soil samples have been collected near the WIPP site to investigate the sources of plutonium in the WIPP environment since the late 1990s, well before WIPP received its first shipment. Activities of (238)Pu, (239+240)Pu and (241)Am were determined by alpha spectrometry following a series of chemical separations. The concentrations of Al and U were determined in a separate set of samples by inductively coupled plasma mass spectrometry. The annual airborne concentrations of (239+240)Pu during the period from 1998 to 2010 show no systematic interannual variations. However, monthly (239+240)Pu particulate concentrations show a typical seasonal variation with a maximum in spring, the time when strong and gusty winds frequently give rise to blowing dust. Resuspension of soil particles containing weapons fallout is considered to be the predominant source of plutonium in the WIPP area. Further, this work characterizes the source, temporal variation and its distribution with depth in a soil profile to evaluate the importance of transport mechanisms affecting the fate of these radionuclides in the WIPP environment. The mean (137)Cs/(239+240)Pu, (241)Am/(239+240)Pu activity ratio and (240)Pu/(239)Pu atom ratio observed in the WIPP samples are consistent with the source being largely global fallout. There is no evidence of any release from the WIPP contributing to radionuclide concentrations in the environment.

  2. NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Walsh, K.A.

    1959-05-12

    A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.

  3. OXIDATIVE METHOD OF SEPARATING PLUTONIUM FROM NEPTUNIUM

    DOEpatents

    Beaufait, L.J. Jr.

    1958-06-10

    A method is described of separating neptunium from plutonium in an aqueous solution containing neptunium and plutonium in valence states not greater than +4. This may be accomplished by contacting the solution with dichromate ions, thus oxidizing the neptunium to a valence state greater than +4 without oxidizing any substantial amount of plutonium, and then forming a carrier precipitate which carries the plutonium from solution, leaving the neptunium behind. A preferred embodiment of this invention covers the use of lanthanum fluoride as the carrier precipitate.

  4. PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES

    DOEpatents

    Barrick, J.G.; Fries, B.A.

    1960-09-27

    A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.

  5. Continuous plutonium dissolution apparatus

    DOEpatents

    Meyer, F.G.; Tesitor, C.N.

    1974-02-26

    This invention is concerned with continuous dissolution of metals such as plutonium. A high normality acid mixture is fed into a boiler vessel, vaporized, and subsequently condensed as a low normality acid mixture. The mixture is then conveyed to a dissolution vessel and contacted with the plutonium metal to dissolve the plutonium in the dissolution vessel, reacting therewith forming plutonium nitrate. The reaction products are then conveyed to the mixing vessel and maintained soluble by the high normality acid, with separation and removal of the desired constituent. (Official Gazette)

  6. 23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS 771, 776/777, AND 707. BUILDING 771, IN THE FOREGROUND, WAS BUILT IN 1952 TO HOUSE ALL PLUTONIUM OPERATIONS. BY 1956, BUILDING 771 WAS NO LONGER ADEQUATE FOR PRODUCTION DEMANDS. BUILDING 776/777, TO THE SOUTH OF BUILDING 771, WAS CONSTRUCTED TO HOUSE PLUTONIUM FABRICATION AND FOUNDRY OPERATIONS. PLUTONIUM RECOVERY REMAINED IN BUILDING 771. BY 1967, CONSTRUCTION ON BUILDING 707, TO THE SOUTH OF BUILDING 776/777, BEGAN AS PRODUCTION LEVELS CONTINUED TO EXPAND NECESSITATING THE NEED FOR ADDITIONAL PLUTONIUM FABRICATION SPACE (7/1/69). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  7. PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS

    DOEpatents

    Faris, B.F.

    1960-04-01

    A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.

  8. PROCESS FOR SEPARATION OF HEAVY METALS

    DOEpatents

    Duffield, R.B.

    1958-04-29

    A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

  9. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Ritter, D.M.

    1959-01-13

    An improvement is presented in the process for recovery and decontamination of plutonium. The carrier precipitate containing plutonium is dissolved and treated with an oxidizing agent to place the plutonium in a hexavalent oxidation state. A lanthanum fluoride precipitate is then formed in and removed from the solution to carry undesired fission products. The fluoride ions in the reniaining solution are complexed by addition of a borate sueh as boric acid, sodium metaborate or the like. The plutonium is then reduced and carried from the solution by the formation of a bismuth phosphate precipitate. This process effects a better separation from unwanted flssion products along with conccntration of the plutonium by using a smaller amount of carrier.

  10. Stabilization and immobilization of military plutonium: A non-proliferation perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leventhal, P.

    1996-05-01

    The Nuclear Control Institute welcomes this DOE-sponsored technical workshop on stabilization and immobilization of weapons plutonium (W Pu) because of the significant contribution it can make toward the ultimate non-proliferation objective of eliminating weapons-usable nuclear material, plutonium and highly enriched uranium (HEU), from world commerce. The risk of theft or diversion of these materials warrants concern, as only a few kilograms in the hands of terrorists or threshold states would give them the capability to build nuclear weapons. Military plutonium disposition questions cannot be addressed in isolation from civilian plutonium issues. The National Academy of Sciences has urged that {open_quotes}furthermore » steps should be taken to reduce the proliferation risks posed by all of the world`s plutonium stocks, military and civilian, separated and unseparated...{close_quotes}. This report discusses vitrification and a mixed oxide fuels option, and the effects of disposition choices on civilian plutonium fuel cycles.« less

  11. Clues in the rare gas isotopes to early solar system history

    NASA Technical Reports Server (NTRS)

    Reynolds, J. H.

    1974-01-01

    Rare gases in meteorites and lunar samples are discussed stimulating the discovery of the solar wind. Radioactive isotopes are examined, making a correlation to the origin of the solar system. It is shown that the heights of the peaks above the horizontal lines represent the spectrum of the fissiogenic sample. Nuclear tracks of iodine, xenon, and plutonium detected in lunar rocks are also explained.

  12. PRECIPITATION OF PLUTONOUS PEROXIDE

    DOEpatents

    Barrick, J.G.; Manion, J.P.

    1961-08-15

    A precipitation process for recovering plutonium values contained in an aqueous solution is described. In the process for precipitating plutonium as plutonous peroxide, hydroxylamine or hydrazine is added to the plutoniumcontaining solution prior to the addition of peroxide to precipitate plutonium. The addition of hydroxylamine or hydrazine increases the amount of plutonium precipitated as plutonous peroxide. (AEC)

  13. PROCESS USING POTASSIUM LANTHANUM SULFATE FOR FORMING A CARRIER PRECIPITATE FOR PLUTONIUM VALUES

    DOEpatents

    Angerman, A.A.

    1958-10-21

    A process is presented for recovering plutonium values in an oxidation state not greater than +4 from fluoride-soluble fission products. The process consists of adding to an aqueous acidic solution of such plutonium values a crystalline potassium lanthanum sulfate precipitate which carries the plutonium values from the solution.

  14. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  15. The Fireball integrated code package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobranich, D.; Powers, D.A.; Harper, F.T.

    1997-07-01

    Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state ofmore » the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.« less

  16. Experimental and Numerical Investigations on Colloid-facilitated Plutonium Reactive Transport in Fractured Tuffaceous Rocks

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.

    2017-12-01

    Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.

  17. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, John P.

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  18. Plutonium from Above-Ground Nuclear Tests in Milk Teeth: Investigation of Placental Transfer in Children Born between 1951 and 1995 in Switzerland

    PubMed Central

    Froidevaux, Pascal; Haldimann, Max

    2008-01-01

    Background Occupational risks, the present nuclear threat, and the potential danger associated with nuclear power have raised concerns regarding the metabolism of plutonium in pregnant women. Objective We measured plutonium levels in the milk teeth of children born between 1951 and 1995 to assess the potential risk that plutonium incorporated by pregnant women might pose to the radiosensitive tissues of the fetus through placenta transfer. Methods We used milk teeth, whose enamel is formed during pregnancy, to investigate the transfer of plutonium from the mother’s blood plasma to the fetus. We measured plutonium using sensitive sector field inductively coupled plasma mass spectrometry techniques. We compared our results with those of a previous study on strontium-90 (90Sr) released into the atmosphere after nuclear bomb tests. Results Results show that plutonium activity peaks in the milk teeth of children born about 10 years before the highest recorded levels of plutonium fallout. By contrast, 90Sr, which is known to cross the placenta barrier, manifests differently in milk teeth, in accordance with 90Sr fallout deposition as a function of time. Conclusions These findings demonstrate that plutonium found in milk teeth is caused by fallout that was inhaled around the time the milk teeth were shed and not from any accumulation during pregnancy through placenta transfer. Thus, plutonium may not represent a radiologic risk for the radiosensitive tissues of the fetus. PMID:19079728

  19. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Kerry A.; Bellamy, J. Steve; Chandler, Greg T.

    2013-08-18

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States wasmore » the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.« less

  20. A non-destructive internal nuclear forensic investigation at Argonne: discovery of a Pu planchet from 1948

    DOE PAGES

    Savina, Joseph A.; Steeb, Jennifer L.; Savina, Michael R.; ...

    2016-06-02

    A plutonium alpha standard dating from 1948 was discovered at Argonne National Laboratory and characterized using a number of non-destructive analytical techniques. The principle radioactive isotope was found to be 239Pu and unique ring structures were found across the surface of the deposition area. Due to chronological constraints on possible sources and its high isotopic purity, the plutonium in the sample was likely produced by the Oak Ridge National Lab X-10 Reactor. As a result, it is proposed that the rings are resultant through a combination of polishing and electrodeposition, though the hypothesis fails to address a few key featuresmore » of the ring structures.« less

  1. Excess Weapons Plutonium Immobilization in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L.; Borisov, G.B.

    2000-04-15

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R&D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R&Dmore » on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the excellent Russian plutonium immobilization contract work. This proceedings document presents the wide extent of Russian immobilization activities, provides a reference for their work, and makes it available to others.« less

  2. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  3. Extracting metals directly from metal oxides

    DOEpatents

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  4. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Heal, H.G.

    1960-02-16

    BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.

  5. PLUTONIUM AND ITS METALLURGY. A STAGE IN ITS DEVELOPMENT: THE INTERNATIONAL CONFERENCE ON THE METALLURGY OF PLUTONIUM (GRENOBLE, APRIL 1960) (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grison, E.

    1961-01-01

    A discussion is given on physical properties of plutonium, allotropic variations; kinetics of transformation; electrica; and magnetic properties; and electronic structure of the external layers of the atom. Plutonium can be used only as nuclear fuel; it is very expensive and toxic. (auth)

  6. Siegfried S. Hecker, Plutonium, and Nonproliferation

    Science.gov Websites

    controversy involving the stability of certain structures (or phases) in plutonium alloys near equilibrium Cold War is Over. What Now?, DOE Technical Report, April, 1995 6th US-Russian Pu Science Workshop * Aging of Plutonium and Its Alloys * A Tale of Two Diagrams * Plutonium and Its Alloys-From Atoms to

  7. SEPARATION OF PLUTONIUM FROM FISSION PRODUCTS BY A COLLOID REMOVAL PROCESS

    DOEpatents

    Schubert, J.

    1960-05-24

    A method is given for separating plutonium from uranium fission products. An acidic aqueous solution containing plutonium and uranium fission products is subjected to a process for separating ionic values from colloidal matter suspended therein while the pH of the solution is maintained between 0 and 4. Certain of the fission products, and in particular, zirconium, niobium, lanthanum, and barium are in a colloidal state within this pH range, while plutonium remains in an ionic form, Dialysis, ultracontrifugation, and ultrafiltration are suitable methods of separating plutonium ions from the colloids.

  8. PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL

    DOEpatents

    Moore, R.H.

    1962-04-10

    A process of recovering plutonium from neutronbombarded uranium fuel by dissolving the fuel in equimolar aluminum chloride-potassium chloride; heating the mass to above 700 deg C for decomposition of plutonium tetrachloride to the trichloride; extracting the plutonium trichloride into a molten salt containing from 40 to 60 mole % of lithium chloride, from 15 to 40 mole % of sodium chloride, and from 0 to 40 mole % of potassium chloride or calcium chloride; and separating the layer of equimolar chlorides containing the uranium from the layer formed of the plutonium-containing salt is described. (AEC)

  9. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  10. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    DOEpatents

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  11. Microdistribution and Long-Term Retention of 239Pu (NO3)4 in the Respiratory Tracts of an Acutely Exposed Plutonium Worker and Experimental Beagle Dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Christopher E.; Wilson, Dulaney A.; Brooks, Antone L.

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [239Pu (NO3)4] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histological lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a non-uniform distribution of plutonium throughout the lung tissue. Fibroticmore » scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the sub-pleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential increase in cancer risk.« less

  12. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  13. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  14. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  15. Developing a physiologically based approach for modeling plutonium decorporation therapy with DTPA.

    PubMed

    Kastl, Manuel; Giussani, Augusto; Blanchardon, Eric; Breustedt, Bastian; Fritsch, Paul; Hoeschen, Christoph; Lopez, Maria Antonia

    2014-11-01

    To develop a physiologically based compartmental approach for modeling plutonium decorporation therapy with the chelating agent Diethylenetriaminepentaacetic acid (Ca-DTPA/Zn-DTPA). Model calculations were performed using the software package SAAM II (©The Epsilon Group, Charlottesville, Virginia, USA). The Luciani/Polig compartmental model with age-dependent description of the bone recycling processes was used for the biokinetics of plutonium. The Luciani/Polig model was slightly modified in order to account for the speciation of plutonium in blood and for the different affinities for DTPA of the present chemical species. The introduction of two separate blood compartments, describing low-molecular-weight complexes of plutonium (Pu-LW) and transferrin-bound plutonium (Pu-Tf), respectively, and one additional compartment describing plutonium in the interstitial fluids was performed successfully. The next step of the work is the modeling of the chelation process, coupling the physiologically modified structure with the biokinetic model for DTPA. RESULTS of animal studies performed under controlled conditions will enable to better understand the principles of the involved mechanisms.

  16. BASIC PEROXIDE PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINANTS

    DOEpatents

    Seaborg, G.T.; Perlman, I.

    1959-02-10

    A process is described for the separation from each other of uranyl values, tetravalent plutonium values and fission products contained in an aqueous acidic solution. First the pH of the solution is adjusted to between 2.5 and 8 and hydrogen peroxide is then added to the solution causing precipitation of uranium peroxide which carries any plutonium values present, while the fission products remain in solution. Separation of the uranium and plutonium values is then effected by dissolving the peroxide precipitate in an acidic solution and incorporating a second carrier precipitate, selective for plutonium. The plutonium values are thus carried from the solution while the uranium remains flissolved. The second carrier precipitate may be selected from among the group consisting of rare earth fluorides, and oxalates, zirconium phosphate, and bismuth lihosphate.

  17. PREPARATION OF PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-07-01

    Methods are presented for the electro-deposition of plutonium from fused mixtures of plutonium halides and halides of the alkali metals and alkaline earth metals. Th salts, preferably chlorides and with the plutonium prefer ably in the trivalent state, are placed in a refractory crucible such as tantalum or molybdenam and heated in a non-oxidizing atmosphere to 600 to 850 deg C, the higher temperatatures being used to obtain massive plutonium and the lower for the powder form. Electrodes of graphite or non reactive refractory metals are used, the crucible serving the cathode in one apparatus described in the patent.

  18. 30. VIEW OF A GLOVEBOX LINE USED IN PLUTONIUM OPERATIONS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF A GLOVEBOX LINE USED IN PLUTONIUM OPERATIONS. SAFETY AND HEALTH CONCERNS WERE OF MAJOR IMPORTANCE AT THE PLANT, BECAUSE OF THE RADIOACTIVE NATURE OF THE MATERIALS USED. PLUTONIUM GIVES OFF ALPHA AND BETA PARTICLES, GAMMA PROTONS, NEUTRONS, AND IS ALSO PYROPHORIC. AS A RESULT, PLUTONIUM OPERATIONS ARE PERFORMED UNDER CONTROLLED CONDITIONS THAT INCLUDE CONTAINMENT, FILTERING, SHIELDING, AND CREATING AN INERT ATMOSPHERE. PLUTONIUM WAS HANDLED WITHIN GLOVEBOXES THAT WERE INTERCONNECTED AND RAN SEVERAL HUNDRED FEET IN LENGTH (5/5/70). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  19. Rapid Method for Sodium Hydroxide/Sodium Peroxide Fusion ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Plutonium-238 and plutonium-239 in water and air filters Method Selected for: SAM lists this method as a pre-treatment technique supporting analysis of refractory radioisotopic forms of plutonium in drinking water and air filters using the following qualitative techniques: • Rapid methods for acid or fusion digestion • Rapid Radiochemical Method for Plutonium-238 and Plutonium 239/240 in Building Materials for Environmental Remediation Following Radiological Incidents. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  20. US Department of Energy Plutonium Stabilization and Immobilization Workshop, December 12-14, 1995: Final proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-01

    The purpose of the workshop was to foster communication within the technical community on issues surrounding stabilization and immobilization of the Department`s surplus plutonium and plutonium- contaminated wastes. The workshop`s objectives were to: build a common understanding of the performance, economics and maturity of stabilization and immobilization technologies; provide a system perspective on stabilization and immobilization technology options; and address the technical issues associated with technologies for stabilization and immobilization of surplus plutonium and plutonium- contaminated waste. The papers presented during this workshop have been indexed separately.

  1. PROCESS OF REMOVING PLUTONIUM VALUES FROM SOLUTION WITH GROUP IVB METAL PHOSPHO-SILICATE COMPOSITIONS

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Schubert, J.; Boyd, G.E.

    1957-10-29

    A process for separating plutonium values from aqueous solutions which contain the plutonium in minute concentrations is described. These values can be removed from an aqueous solution by taking an aqueous solution containing a salt of zirconium, titanium, hafnium or thorium, adding an aqueous solution of silicate and phosphoric acid anions to the metal salt solution, and separating, washing and drying the precipitate which forms when the two solutions are mixed. The aqueous plutonium containing solution is then acidified and passed over the above described precipi-tate causing the plutonium values to be adsorbed by the precipitate.

  2. Reanalysis of Plutonium and Americium-241 in the Tank 19F Closure Grab and Core Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swingle, R.F.

    2003-02-11

    Tank 19F is scheduled to be closed by March 2004. To close this tank, a characterization of the waste remaining in the tank was required to confirm the inventory of various species for input into groundwater transport models. This characterization has been developed by a combination of process knowledge, visual observation and sample analysis. The characterization samples were obtained by High Level Waste Division (HLWD) personnel and characterized by SRTC personnel.

  3. Plutonium controversy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)

  4. Chemical trends in background air quality and the ionic composition of precipitation for the period 1980-2004 from samples collected at Valentia Observatory, Co. Kerry, Ireland.

    PubMed

    Bashir, Wasim; McGovern, Frank; O'Brien, Phillip; Ryan, Margaret; Burke, Liam; Paull, Brett

    2008-06-01

    A major Irish study, based upon more than 8000 samples collected over the measurement period of 22 years, for sulfur dioxide (SO2-S), sulfate (SO4-S) and nitrogen dioxide (NO2-N) concentrations (microg m(-3)) within air, and the ionic composition of precipitation samples based on sodium (Na+), potassium (K+), magnesium (Mg2+), calcium (Ca2+), chloride (Cl-), sulfate (SO4-S), non-sea salt sulfate (nssSO4-S), ammonium (NH4-N), and nitrate (NO3-N) weighted mean concentrations (mg l(-1)), has been completed. For the air samples, the sulfur dioxide and sulfate concentrations decreased over the sampling period (1980-2004) by 75% and 45%, respectively, whereas no significant trend was observed for nitrogen dioxide. The highest concentrations for sulfur dioxide, sulfate and nitrogen dioxide were associated with wind originating from the easterly and northeasterly directions i.e. those influenced by Irish and European sources. The lowest concentrations were associated with the westerly directions i.e. for air masses originating in the North Atlantic region. This was further verified with the use of backward (back) trajectory analysis, which allowed tracing the movement of air parcels using the European Centre for Medium range Weather Forecasting (ECMWF) ERA-40 re-analysis data. High non-sea salt sulfate levels were being associated with air masses originating from Europe (easterlies) with lower levels from the Atlantic (westerlies). With the precipitation data, analysis of the non-sea salt sulfate concentrations showed a decrease by 47% since the measurements commenced.

  5. Rapid separation and purification of uranium and plutonium from dilute-matrix samples

    DOE PAGES

    Armstrong, Christopher R.; Ticknor, Brian W.; Hall, Gregory; ...

    2014-03-11

    This work presents a streamlined separation and purification approach for trace uranium and plutonium from dilute (carrier-free) matrices. The method, effective for nanogram quantities of U and femtogram to picogram quantities of Pu, is ideally suited for environmental swipe samples that contain a small amount of collected bulk material. As such, it may be applicable for processing swipe samples such as those collected in IAEA inspection activities as well as swipes that are loaded with unknown analytes, such as those implemented in interlaboratory round-robin or proficiency tests. Additionally, the simplified actinide separation could find use in internal laboratory monitoring ofmore » clean room conditions prior to or following more extensive chemical processing. We describe key modifications to conventional techniques that result in a relatively rapid, cost-effective, and efficient U and Pu separation process. We demonstrate the efficacy of implementing anion exchange chromatography in a single column approach. We also show that hydrobromic acid is an effective substitute in lieu of hydroiodoic acid for eluting Pu. Lastly, we show that nitric acid is an effective digestion agent in lieu of perchloric acid and/or hydrofluoric acid. A step by step procedure of this process is detailed.« less

  6. Stability of zinc stearate under alpha irradiation in the manufacturing process of SFR nuclear fuels

    NASA Astrophysics Data System (ADS)

    Gracia, J.; Vermeulen, J.; Baux, D.; Sauvage, T.; Venault, L.; Audubert, F.; Colin, X.

    2018-03-01

    The manufacture of new fuels for sodium-cooled fast reactors (SFRs) will involve powders derived from recycling existing fuels in order to keep on producing electricity while saving natural resources and reducing the amount of waste produced by spent MOX fuels. Using recycled plutonium in this way will significantly increase the amount of 238Pu, a high energy alpha emitter, in the powders. The process of shaping powders by pressing requires the use of a solid lubricant, zinc stearate, to produce pellets with no defects compliant with the standards. The purpose of this study is to determine the impact of alpha radiolysis on this additive and its lubrication properties. Experiments were conducted on samples in contact with PuO2, as well as under external helium ion beam irradiation, in order to define the kinetics of radiolytic gas generation. The yield results relating to the formation of these gases (G0) show that the alpha radiation of plutonium can be simulated using external helium ion beam irradiation. The isotopic composition of plutonium has little impact on the yield. However, an increased yield was globally observed with increasing the mean linear energy transfer (LET). A radiolytic degradation process is proposed.

  7. PREPARATION OF PLUTONIUM TRIFLUORIDE

    DOEpatents

    Burger, L.L.; Roake, W.E.

    1961-07-11

    A process of producing plutonium trifluoride by reacting dry plutonium(IV) oxalate with chlorofluorinated methane or ethane at 400 to 450 deg C and cooling the product in the absence of oxygen is described.

  8. MCNP Parametric Studies of Plutonium Metal and Various Interstitial Moderating Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazener, Natasha; Kamm, Ryan James

    2017-03-31

    Nuclear Criticality Safety (NCS) has performed calculations evaluating the effect of different interstitial materials on 5.0-kg of plutonium metal. As with all non-fissionable interstitials, the results here illustrate that it requires significant quantities of oil to be intimately mixed with plutonium, reflected by a thick layer of full-density water, to achieve the same reactivity as that of solid plutonium metal.

  9. Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures

    NASA Technical Reports Server (NTRS)

    Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.

    1992-01-01

    There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.

  10. Particulate, colloidal, and dissolved-phase associations of plutonium and americium in a water sample from well 1587 at the Rocky Flats Plant, Colorado

    USGS Publications Warehouse

    Harnish, R.A.; McKnight, Diane M.; Ranville, James F.

    1994-01-01

    In November 1991, the initial phase of a study to determine the dominant aqueous phases that control the transport of plutonium (Pu), americium (Am), and uranium (U) in surface and groundwater at the Rocky Flats Plant was undertaken by the U.S. Geological Survey. By use of the techniques of stirred-cell spiral-flow filtration and crossflow ultrafiltration, particles of three size fractions were collected from a 60-liter sample of water from well 1587 at the Rocky Flats Plant. These samples and corresponding filtrate samples were analyzed for Pu and Am. As calculated from the analysis of filtrates, 65 percent of Pu 239 and 240 activity in the sample was associated with particulate and largest colloidal size fractions. Particulate (22 percent) and colloidal (43 percent) fractions were determined to have significant activities in relation to whole-water Pu activity. Am and Pu 238 activities were too low to be analyzed. Examination and analyses of the particulate and colloidal phases indicated the presence of mineral species (iron oxyhydroxides and clay minerals) and natural organic matter that can facilitate the transport of actinides in ground water. High concentrations of the transition metals copper and zinc in the smallest colloid fractions strongly indicate a potential for organic complexation of metals, and potentially of actinides, in this size fraction.

  11. SEPARATION OF PLUTONIUM IONS FROM SOLUTION BY ADSORPTION ON ZIRCONIUM PYROPHOSPHATE

    DOEpatents

    Stoughton, R.W.

    1961-01-31

    A method is given for separating plutonium in its reduced, phosphate- insoluble state from other substances. It involves contacting a solution containing the plutonium with granular zirconium pyrophosphate.

  12. Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Recknagle, K.

    Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause amore » criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.« less

  13. Plutonium and americium separation from salts

    DOEpatents

    Hagan, Paul G.; Miner, Frend J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.

  14. Plutonium storage criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, D.; Ascanio, X.

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less thanmore » 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.« less

  15. PROCESS OF PRODUCING SHAPED PLUTONIUM

    DOEpatents

    Anicetti, R.J.

    1959-08-11

    A process is presented for producing and casting high purity plutonium metal in one step from plutonium tetrafluoride. The process comprises heating a mixture of the plutonium tetrafluoride with calcium while the mixture is in contact with and defined as to shape by a material obtained by firing a mixture consisting of calcium oxide and from 2 to 10% by its weight of calcium fluoride at from 1260 to 1370 deg C.

  16. WET METHOD OF PREPARING PLUTONIUM TRIBROMIDE

    DOEpatents

    Davidson, N.R.; Hyde, E.K.

    1958-11-11

    S> The preparation of anhydrous plutonium tribromide from an aqueous acid solution of plutonium tetrabromide is described, consisting of adding a water-soluble volatile bromide to the tetrabromide to provide additional bromide ions sufficient to furnish an oxidation-reduction potential substantially more positive than --0.966 volt, evaporating the resultant plutonium tribromides to dryness in the presence of HBr, and dehydrating at an elevated temperature also in the presence of HBr.

  17. Spectrophotometers for plutonium monitoring in HB-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lascola, R. J.; O'Rourke, P. E.; Kyser, E. A.

    2016-02-12

    This report describes the equipment, control software, calibrations for total plutonium and plutonium oxidation state, and qualification studies for the instrument. It also provides a detailed description of the uncertainty analysis, which includes source terms associated with plutonium calibration standards, instrument drift, and inter-instrument variability. Also included are work instructions for instrument, flow cell, and optical fiber setup, work instructions for routine maintenance, and drawings and schematic diagrams.

  18. Plutonium radiation surrogate

    DOEpatents

    Frank, Michael I [Dublin, CA

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  19. Theory of Positron Annihilation in Helium-Filled Bubbles in Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterne, P A; Pask, J E

    2003-02-13

    Positron annihilation lifetime spectroscopy is a sensitive probe of vacancies and voids in materials. This non-destructive measurement technique can identify the presence of specific defects in materials at the part-per-million level. Recent experiments by Asoka-Kumar et al. have identified two lifetime components in aged plutonium samples--a dominant lifetime component of around 182 ps and a longer lifetime component of around 350-400ps. This second component appears to increase with the age of the sample, and accounts for only about 5 percent of the total intensity in 35 year-old plutonium samples. First-principles calculations of positron lifetimes are now used extensively to guidemore » the interpretation of positron lifetime data. At Livermore, we have developed a first-principles finite-element-based method for calculating positron lifetimes for defects in metals. This method is capable of treating system cell sizes of several thousand atoms, allowing us to model defects in plutonium ranging in size from a mono-vacancy to helium-filled bubbles of over 1 nm in diameter. In order to identify the defects that account for the observed lifetime values, we have performed positron lifetime calculations for a set of vacancies, vacancy clusters, and helium-filled vacancy clusters in delta-plutonium. The calculations produced values of 143ps for defect-free delta-Pu and 255ps for a mono-vacancy in Pu, both of which are inconsistent with the dominant experimental lifetime component of 182ps. Larger vacancy clusters have even longer lifetimes. The observed positron lifetime is significantly shorter than the calculated lifetimes for mono-vacancies and larger vacancy clusters, indicating that open vacancy clusters are not the dominant defect in the aged plutonium samples. When helium atoms are introduced into the vacancy cluster, the positron lifetime is reduced due to the increased density of electrons available for annihilation. For a mono-vacancy in Pu containing one helium atom, the calculated lifetime is 190 ps, while a di-vacancy containing two helium atoms has a positron lifetime of 205 ps. In general, increasing the helium density in a vacancy cluster or He-filled bubble reduces the positron lifetime, so that the same lifetime value can arise fi-om a range of vacancy cluster sizes with different helium densities. In order to understand the variation of positron lifetime with vacancy cluster size and helium density in the defect, we have performed over 60 positron lifetime calculations with vacancy cluster sizes ranging from 1 to 55 vacancies and helium densities ranging fi-om zero to five helium atoms per vacancy. The results indicate that the experimental lifetime of 182 ps is consistent with the theoretical value of 190 ps for a mono-vacancy with a single helium atom, but that slightly better agreement is obtained for larger clusters of 6 or more vacancies containing 2-3 helium atoms per vacancy. For larger vacancy clusters with diameters of about 3-5 nm or more, the annihilation with helium electrons dominates the positron annihilation rate; the observed lifetime of 180ps is then consistent with a helium concentration in the range of 3 to 3.5 Hehacancy, setting an upper bound on the helium concentration in the vacancy clusters. In practice, the single lifetime component is most probably associated with a family of helium-filled bubbles rather than with a specific unique defect size. The longer 350-400ps lifetime component is consistent with a relatively narrow range of defect sizes and He concentration. At zero He concentration, the lifetime values are matched by small vacancy clusters containing 6-12 vacancies. With increasing vacancy cluster size, a small amount of He is required to keep the lifetime in the 350-400 ps range, until the value saturates for larger helium bubbles of more than 50 vacancies (bubble diameter > 1.3 nm) at a helium concentration close to 1 He/vacancy. These results, taken together with the experimental data, indicate that the features observed in TEM data by Schwartz et al are not voids, but are in fact helium-filled bubbles with a helium pressure of around 2-3 helium atoms per vacancy, depending on the bubble size. This is consistent with the conclusions of recently developed models of He-bubble growth in aged plutonium.« less

  20. PLUTONIUM ALLOYS CONTAINING CONTROLLED AMOUNTS OF PLUTONIUM ALLOTROPES OBTAINED BY APPLICATION OF HIGH PRESSURES

    DOEpatents

    Elliott, R.O.; Gschneidner, K.A. Jr.

    1962-07-10

    A method of making stabilized plutonium alloys which are free of voids and cracks and have a controlled amount of plutonium allotropes is described. The steps include adding at least 4.5 at.% of hafnium, indium, or erbium to the melted plutonium metal, homogenizing the resulting alloy at a temperature of 450 deg C, cooling to room temperature, and subjecting the alloy to a pressure which produces a rapid increase in density with a negligible increase in pressure. The pressure required to cause this rapid change in density or transformation ranges from about 800 to 2400 atmospheres, and is dependent on the alloying element. (AEC)

  1. PROCESS OF SECURING PLUTONIUM IN NITRIC ACID SOLUTIONS IN ITS TRIVALENT OXIDATION STATE

    DOEpatents

    Thomas, J.R.

    1958-08-26

    >Various processes for the recovery of plutonium require that the plutonium be obtalned and maintained in the reduced or trivalent state in solution. Ferrous ions are commonly used as the reducing agent for this purpose, but it is difficult to maintain the plutonium in a reduced state in nitric acid solutions due to the oxidizing effects of the acid. It has been found that the addition of a stabilizing or holding reductant to such solution prevents reoxidation of the plutonium. Sulfamate ions have been found to be ideally suitable as such a stabilizer even in the presence of nitric acid.

  2. The effect of the composition of plutonium loaded on the reactivity change and the isotopic composition of fuel produced in a fast reactor

    NASA Astrophysics Data System (ADS)

    Blandinskiy, V. Yu.

    2014-12-01

    This paper presents the results of a numerical investigation into burnup and breeding of nuclides in metallic fuel consisting of a mixture of plutonium and depleted uranium in a fast reactor with sodium coolant. The feasibility of using plutonium contained in spent nuclear fuel from domestic thermal reactors and weapons-grade plutonium is discussed. It is shown that the largest production of secondary fuel and the least change in the reactivity over the reactor lifetime can be achieved when employing plutonium contained in spent nuclear fuel from a reactor of the RBMK-1000 type.

  3. METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.

  4. CONCENTRATION OF Pu USING AN IODATE PRECIPITATE

    DOEpatents

    Fries, B.A.

    1960-02-23

    A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.

  5. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  6. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    DOEpatents

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  7. JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Jay M.; Lopez, Jacquelyn C.; Wayne, David M.

    2012-07-05

    The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs. We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists. Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in amore » world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.« less

  8. Analysis of a nuclear accident: fission and activation product releases from the Fukushima Daiichi nuclear facility as remote indicators of source identification, extent of release, and state of damaged spent nuclear fuel.

    PubMed

    Schwantes, Jon M; Orton, Christopher R; Clark, Richard A

    2012-08-21

    Researchers evaluated radionuclide measurements of environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Co. Website following the 2011 tsunami-initiated catastrophe. This effort identified Units 1 and 3 as the major source of radioactive contamination to the surface soil near the facility. Radionuclide trends identified in the soils suggested that: (1) chemical volatility driven by temperature and reduction potential within the vented reactors' primary containment vessels dictated the extent of release of radiation; (2) all coolant had likely evaporated by the time of venting; and (3) physical migration through the fuel matrix and across the cladding wall were minimally effective at containing volatile species, suggesting damage to fuel bundles was extensive. Plutonium isotopic ratios and their distance from the source indicated that the damaged reactors were the major contributor of plutonium to surface soil at the source, decreasing rapidly with distance from the facility. Two independent evaluations estimated the fraction of the total plutonium inventory released to the environment relative to cesium from venting Units 1 and 3 to be ∼0.002-0.004%. This study suggests significant volatile radionuclides within the spent fuel at the time of venting, but not as yet observed and reported within environmental samples, as potential analytes of concern for future environmental surveys around the site. The majority of the reactor inventories of isotopes of less volatile elements like Pu, Nb, and Sr were likely contained within the damaged reactors during venting.

  9. Variation in Baiting Intensity Among CO2-Baited Traps Used to Collect Hematophagous Arthropods

    PubMed Central

    Springer, Yuri P.; Taylor, Jeffrey R.; Travers, Patrick D.

    2015-01-01

    Hematophagous arthropods transmit the etiological agents of numerous diseases and as a result are frequently the targets of sampling to characterize vector and pathogen populations. Arguably, the most commonly used sampling approach involves traps baited with carbon dioxide. We report results of a laboratory study in which the performance of carbon dioxide-baited traps was evaluated using measures of baiting intensity, the amount of carbon dioxide released per unit time during trap deployment. We evaluated the effects of trap design, carbon dioxide source, and wind speed on baiting intensity and documented significant effects of these factors on the length of sampling (time to baiting intensity = 0), maximum baiting intensity, and variation in baiting intensity during experimental trials. Among the three dry ice-baited trap types evaluated, traps utilizing insulated beverage coolers as dry ice containers sampled for the longest period of time, had the lowest maximum but most consistent baiting intensity within trials and were least sensitive to effects of wind speed and dry ice form (block vs. pellet) on baiting intensity. Results of trials involving traps baited with carbon dioxide released from pressurized cylinders suggested that this trap type had performance comparable to dry ice-baited insulated cooler traps but at considerably higher cost. PMID:26160803

  10. Assessment of Residual Stresses in 3013 Inner and Outer Containers and Teardrop Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroud, Mary Ann; Prime, Michael Bruce; Veirs, Douglas Kirk

    2015-12-08

    This report is an assessment performed by LANL that examines packaging for plutonium-bearing materials and the resilience of its design. This report discusses residual stresses in the 3013 outer, the SRS/Hanford and RFETS/LLNL inner containers, and teardrop samples used in studies to assess the potential for SCC in 3013 containers. Residual tensile stresses in the heat affected zones of the closure welds are of particular concern.

  11. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  12. Plutonium recovery from organic materials

    DOEpatents

    Deaton, R.L.; Silver, G.L.

    1973-12-11

    A method is described for removing plutonium or the like from organic material wherein the organic material is leached with a solution containing a strong reducing agent such as titanium (III) (Ti/sup +3None)/, chromium (II) (Cr/ sup +2/), vanadium (II) (V/sup +2/) ions, or ferrous ethylenediaminetetraacetate (EDTA), the leaching yielding a plutonium-containing solution that is further processed to recover plutonium. The leach solution may also contain citrate or tartrate ion. (Official Gazette)

  13. SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE

    DOEpatents

    Schubert, J.

    1958-06-01

    A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.

  14. 14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE REMOTE CONTROL STATION. THE STACKER-RETRIEVER, A REMOTELY-OPERATED, MECHANIZED TRANSPORT SYSTEM, RETRIEVES CONTAINERS OF PLUTONIUM FROM SAFE GEOMETRY PALLETS STORED ALONG THE LENGTH OF THE VAULT. THE STACKER-RETRIEVER RUNS ALONG THE AISLE BETWEEN THE PALLETS OF THE STORAGE CHAMBER. (3/2/86) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  15. AMINE EXTRACTION OF PLUTONIUM FROM NITRIC ACID SOLUTIONS LOADING AND STRIPPING EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A.S.

    1961-01-19

    Information is presented on a suitable amine processing system for plutonium nitrate. Experiments with concentrated plutonium nitrate solutions show that trilaurylamine (TLA) - xylene solvent systems did not form a second organic phase. Experiments are also reported with tri-noctylamine (TnOA)-xylene and TLA-Amsco - octyl alcohol. Two organic phases appear in both these systems at high plutonium nitrate concentrations. Data are tabulated from loading and stripping experiments. (J.R.D.)

  16. PROCESS OF TREATING URANIUM HEXAFLUORIDE AND PLUTONIUM HEXAFLUORIDE MIXTURES WITH SULFUR TETRAFLUORIDE TO SEPARATE SAME

    DOEpatents

    Steindler, M.J.

    1962-07-24

    A process was developed for separating uranium hexafluoride from plutonium hexafluoride by the selective reduction of the plutonium hexafluoride to the tetrafluoride with sulfur tetrafluoride at 50 to 120 deg C, cooling the mixture to --60 to -100 deg C, and volatilizing nonreacted sulfur tetrafluoride and sulfur hexafluoride formed at that temperature. The uranium hexafluoride is volatilized at room temperature away from the solid plutonium tetrafluoride. (AEC)

  17. THE CHEMICAL ANALYSIS OF TERNARY ALLOYS OF PLUTONIUM WITH MOLYBDENUM AND URANIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, G.; Woodhead, J.; Jenkins, E.N.

    1958-09-01

    It is shown that the absorptiometric determination of molybdenum as thiocyanate may be used in the presence of plutonium. Molybdenum interferes with previously published methods for determining uranium and plutonium but conditlons have been established for its complete removal by solvent extraction of the compound with alpha -benzoin oxime. The previous methods for uranium and plutonium are satisfactory when applied to the residual aqueous phase following this solvent extraction. (auth)

  18. PROCESS OF SEPARATING PLUTONIUM VALUES BY ELECTRODEPOSITION

    DOEpatents

    Whal, A.C.

    1958-04-15

    A process is described of separating plutonium values from an aqueous solution by electrodeposition. The process consists of subjecting an aqueous 0.1 to 1.0 N nitric acid solution containing plutonium ions to electrolysis between inert metallic electrodes. A current density of one milliampere io one ampere per square centimeter of cathode surface and a temperature between 10 and 60 d C are maintained. Plutonium is electrodeposited on the cathode surface and recovered.

  19. SEPARATION OF PLUTONIUM VALUES FROM URANIUM AND FISSION PRODUCT VALUES

    DOEpatents

    Maddock, A.G.; Booth, A.H.

    1960-09-13

    Separation of plutonium present in small amounts from neutron irradiated uranium by making use of the phenomenon of chemisorption is described. Plutonium in the tetravalent state is chemically absorbed on a fluoride in solid form. The steps for the separation comprise dissolving the irradiated uranium in nitric acid, oxidizing the plutonium in the resulting solution to the hexavalent state, adding to the solution a soluble calcium salt which by the common ion effect inhibits dissolution of the fluoride by the solution, passing the solution through a bed or column of subdivided calcium fluoride which has been sintered to about 8OO deg C to remove the chemisorbable fission products, reducing the plutonium in the solution thus obtained to the tetravalent state, and again passing the solution through a similar bed or column of calcium fluoride to selectively absorb the plutonium, which may then be recovered by treating the calcium fluoride with a solution of ammonium oxalate.

  20. Using Biomolecules to Separate Plutonium

    NASA Astrophysics Data System (ADS)

    Gogolski, Jarrod

    Used nuclear fuel has traditionally been treated through chemical separations of the radionuclides for recycle or disposal. This research considers a biological approach to such separations based on a series of complex and interdependent interactions that occur naturally in the human body with plutonium. These biological interactions are mediated by the proteins serum transferrin and the transferrin receptor. Transferrin to plutonium in vivo and can deposit plutonium into cells after interacting with the transferrin receptor protein at the cell surface. Using cerium as a non-radioactive surrogate for plutonium, it was found that cerium(IV) required multiple synergistic anions to bind in the N-lobe of the bilobal transferrin protein, creating a conformation of the cerium-loaded protein that would be unable to interact with the transferrin receptor protein to achieve a separation. The behavior of cerium binding to transferrin has contributed to understanding how plutonium(IV)-transferrin interacts in vivo and in biological separations.

  1. CARBONATE METHOD OF SEPARATION OF TETRAVALENT PLUTONIUM FROM FISSION PRODUCT VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    It has been found that plutonium forms an insoluble precipitate with carbonate ion when the carbonate ion is present in stoichiometric proportions, while an excess of the carbonate ion complexes plutonium and renders it soluble. A method for separating tetravalent plutonium from lanthanum-group rare earths has been based on this discovery, since these rare earths form insoluble carbonates in approximately neutral solutions. According to the process the pH is adjusted to between 5 and 7, and approximately stoichiometric amounts of carbonate ion are added to the solution causing the formation of a precipitate of plutonium carbonate and the lanthanum-group rare earth carbonates. The precipitate is then separated from the solution and contacted with a carbonate solution of a concentration between 1 M and 3 M to complex and redissolve the plutonium precipitate, and thus separate it from the insoluble rare earth precipitate.

  2. PROCESS FOR PRODUCTION OF PLUTONIUM FROM ITS OXIDES

    DOEpatents

    Weissman, S.I.; Perlman, M.L.; Lipkin, D.

    1959-10-13

    A method is described for obtaining a carbide of plutonium and two methods for obtaining plutonium metal from its oxides. One of the latter involves heating the oxide, in particular PuO/sub 2/, to a temperature of 1200 to 1500 deg C with the stoichiometrical amount of carbon to fornn CO in a hard vacuum (3 to 10 microns Hg), the reduced and vaporized plutonium being collected on a condensing surface above the reaction crucible. When an excess of carbon is used with the PuO/sub 2/, a carbide of plutonium is formed at a crucible temperature of 1400 to 1500 deg C. The process may be halted and the carbide removed, or the reaction temperature can be increased to 1900 to 2100 deg C at the same low pressure to dissociate the carbide, in which case the plutonium is distilled out and collected on the same condensing surface.

  3. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46more » Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.« less

  4. Development of a Portable Binary Chlorine Dioxide Generator for Decontamination

    DTIC Science & Technology

    2010-03-01

    chlorine dioxide forms slowly from chlorite solutions through either acid release or a radical chain reaction that we observed at neutral pH. Task 7... Chlorine dioxide and water in methanol - no agent control F. 5.25% Bleach G. Methanol only 3.0 PROCEDURES 3.1 METHOD VALIDATION The reaction...error range in gas chromatography measurements. For the chlorine dioxide containing samples, mass spectra were analyzed to determine potential

  5. Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA.

    PubMed

    Zhao, Xin; Han, Meng; Ding, Lili; Calin, Adrian Cantemir

    2018-01-01

    The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.

  6. Determination of sulfur dioxide in wine using headspace gas chromatography and electron capture detection.

    PubMed

    Aberl, A; Coelhan, M

    2013-01-01

    Sulfites are routinely added as preservatives and antioxidants in wine production. By law, the total sulfur dioxide content in wine is restricted and therefore must be monitored. Currently, the method of choice for determining the total content of sulfur dioxide in wine is the optimised Monier-Williams method, which is time consuming and laborious. The headspace gas chromatographic method described in this study offers a fast and reliable alternative method for the detection and quantification of the sulfur dioxide content in wine. The analysis was performed using an automatic headspace injection sampler, coupled with a gas chromatograph and an electron capture detector. The method is based on the formation of gaseous sulfur dioxide subsequent to acidification and heating of the sample. In addition to free sulfur dioxide, reversibly bound sulfur dioxide in carbonyl compounds, such as acetaldehyde, was also measured with this method. A total of 20 wine samples produced using diverse grape varieties and vintages of varied provenance were analysed using the new method. For reference and comparison purposes, 10 of the results obtained by the proposed method were compared with those acquired by the optimised Monier-Williams method. Overall, the results from the headspace analysis showed good correlation (R = 0.9985) when compared with the conventional method. This new method requires minimal sample preparation and is simple to perform, and the analysis can also be completed within a short period of time.

  7. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1, 1997--July 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Progress summaries are provided from the Amarillo National Center for Plutonium. Programs include the plutonium information resource center, environment, public health, and safety, education and training, nuclear and other material studies.

  8. SEPARATION OF PLUTONIUM FROM URANIUM

    DOEpatents

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  9. 1. West facade of Plutonium Concentration Facility (Building 233S), ReductionOxidation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West facade of Plutonium Concentration Facility (Building 233-S), Reduction-Oxidation Building (REDOX-202-S) to the right. Looking east. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA

  10. 69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH DOOR-WAY INTO PLUTONIUM STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  11. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOEpatents

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  12. Volatile Impurities in the Plutonium Immobilization Ceramic Wasteform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A.D.

    1999-10-15

    Approximately 18 of the 50 metric tons of plutonium identified for disposition contain significant quantities of impurities. A ceramic waste form is the chosen option for immobilization of the excess plutonium. The impurities associated with the stored plutonium have been identified (CaCl2, MgF2, Pb, etc.). For this study, only volatile species are investigated. The impurities are added individually. Cerium is used as the surrogate for plutonium. Three compositions, including the baseline composition, were used to verify the ability of the ceramic wasteform to accommodate impurities. The criteria for evaluation of the effect of the impurities were the apparent porosity andmore » phase assemblage of sintered pellets.« less

  13. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Sutton, J.B.

    1958-02-18

    This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

  14. Progress on plutonium stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, D.

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  15. NON-CORROSIVE PLUTONIUM FUEL SYSTEMS

    DOEpatents

    Coffinberry, A.S.; Waber, J.T.

    1962-10-23

    An improved plutonium reactor liquid fuel is described for utilization in a nuclear reactor having a tantalum fuel containment vessel. The fuel consists of plutonium and a diluent such as iron, cobalt, nickel, cerium, cerium-- iron, cerium--cobalt, cerium--nickel, and cerium--copper, and an additive of carbon and silicon. The carbon and silicon react with the tantalum container surface to form a coating that is self-healing and prevents the corrosive action of liquid plutonium on the said tantalum container. (AEC)

  16. Plutonium in the atmosphere: A global perspective.

    PubMed

    Thakur, P; Khaing, H; Salminen-Paatero, S

    2017-09-01

    A number of potential source terms have contributed plutonium isotopes to the atmosphere. The atmospheric nuclear weapon tests conducted between 1945 and 1980 and the re-entry of the burned SNAP-9A satellite in 1964, respectively. It is generally believed that current levels of plutonium in the stratosphere are negligible and compared with the levels generally found at surface-level air. In this study, the time trend analysis and long-term behavior of plutonium isotopes ( 239+240 Pu and 238 Pu) in the atmosphere were assessed using historical data collected by various national and international monitoring networks since 1960s. An analysis of historical data indicates that 239+240 Pu concentration post-1984 is still frequently detectable, whereas 238 Pu is detected infrequently. Furthermore, the seasonal and time-trend variation of plutonium concentration in surface air followed the stratospheric trends until the early 1980s. After the last Chinese test of 1980, the plutonium concentrations in surface air dropped to the current levels, suggesting that the observed concentrations post-1984 have not been under stratospheric control, but rather reflect the environmental processes such as resuspension. Recent plutonium atmospheric air concentrations data show that besides resuspension, other environmental processes such as global dust storms and biomass burning/wildfire also play an important role in redistributing plutonium in the atmosphere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Soil and sediment sample analysis for the sequential determination of natural and anthropogenic radionuclides.

    PubMed

    Michel, H; Levent, D; Barci, V; Barci-Funel, G; Hurel, C

    2008-02-15

    A new sequential method for the determination of both natural (U, Th) and anthropogenic (Sr, Cs, Pu, Am) radionuclides has been developed for application to soil and sediment samples. The procedure was optimised using a reference sediment (IAEA-368) and reference soils (IAEA-375 and IAEA-326). Reference materials were first digested using acids (leaching), 'total' acids on hot plate, and acids in microwave in order to compare the different digestion technique. Then, the separation and purification were made by anion exchange resin and selective extraction chromatography: transuranic (TRU) and strontium (SR) resins. Natural and anthropogenic alpha radionuclides were separated by uranium and tetravalent actinide (UTEVA) resin, considering different acid elution medium. Finally, alpha and gamma semiconductor spectrometer and liquid scintillation spectrometer were used to measure radionuclide activities. The results obtained for strontium-90, cesium-137, thorium-232, uranium-238, plutonium-239+240 and americium-241 isotopes by the proposed method for the reference materials provided excellent agreement with the recommended values and good chemical recoveries. Plutonium isotopes in alpha spectrometry planchet deposits could be also analysed by ICPMS.

  18. Characteristics of radionuclide accumulation in benthic organisms and fish of the Barents and Kara Seas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matishov, G.G.; Matishov, D.G.; Rissanen, C.

    1995-05-01

    Artificial radionuclides play a specific role in the hydrochemical, geochemical, and hydrobiological processes that are currently occurring in the western Arctic. The existing data on radioactive contamination of different plant and animal species inhabiting the sea shelf are fragmentary. Hence, it was difficult to follow the transformation of radionuclides during their transmission along food chains, from phyto- and zoo-plankton to benthos, fish, birds, and marine mammals. In 1990-1994, the Murmansk Institute of Marine Biology organized expeditions to collect samples of residues on the sea floor and also of benthos, benthic fish, macrophytes, and other organisms inhabiting the shelf of themore » Barents and Kara Seas. These samples were tested for cesium-137, cesium-134, strontium-90, plutonium-239, plutonium-240, americium-241, and cobalt-60 in Rovaniemi (Finland) by the regional radiation administration of the Finnish Centre for Radiation and Nuclear Safety. Over 1000 tests were made. Their results provided new data on the content and distribution of these radionuclides among different components of marine ecosystems. 7 refs.« less

  19. Source and long-term behavior of transuranic aerosols in the WIPP environment.

    PubMed

    Thakur, P; Lemons, B G

    2016-10-01

    Source and long-term behavior transuranic aerosols ((239+240)Pu, (238)Pu, and (241)Am) in the ambient air samples collected at and near the Waste Isolation Pilot Plant (WIPP) deep geologic repository site were investigated using historical data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring and Research Center and an oversight monitoring program conducted by the management and operating contractor for WIPP at and near the facility. An analysis of historical data indicates frequent detections of (239+240)Pu and (241)Am, whereas (238)Pu is detected infrequently. Peaks in (239+240)Pu and (241)Am concentrations in ambient air generally occur from March to June timeframe, which is when strong and gusty winds in the area frequently give rise to blowing dust. Long-term measurements of plutonium isotopes (1985-2015) in the WIPP environment suggest that the resuspension of previously contaminated soils is likely the primary source of plutonium in the ambient air samples from WIPP and its vicinity. There is no evidence that WIPP is a source of environmental contamination that can be considered significant by any health-based standard.

  20. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOEpatents

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  1. 71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO PLUTONIUM STORAGE ROOM SHOWING CUBICLES FOR STORAGE. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  2. Radionuclide Concentrations in Terrestrial Vegetation and Soil Samples On and Around the Hanford Site, 1971 Through 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Mary Ann; Poston, Ted M.; Fritz, Brad G.

    2011-07-29

    Environmental monitoring is conducted on the U.S. Department of Energy (DOE) Hanford Site to comply with DOE Orders and federal and state regulations. Major objectives of the monitoring are to characterize contaminant levels in the environment and to determine site contributions to the contaminant inventory. This report focuses on surface soil and perennial vegetation samples collected between 1971 and 2008 as part of the Pacific Northwest National Laboratory Surface Environmental Surveillance Project performed under contract to DOE. Areas sampled under this program are located on the Hanford Site but outside facility boundaries and on public lands surrounding the Hanford Site.more » Additional samples were collected during the past 8 years under DOE projects that evaluated parcels of land for radiological release. These data were included because the same sampling methodology and analytical laboratory were used for the projects. The spatial and temporal trends of six radionuclides collected over a 38-year period were evaluated. The radionuclides----cobalt-60, cesium-137, strontium-90, plutonium-238, plutonium-239/240, and uranium (reported either as uranium-238 or total uranium)----were selected because they persist in the environment and are still being monitored routinely and reported in Hanford Site environmental reports. All these radionuclides were associated with plutonium production and waste management of activities occurring on the site. Other sources include fallout from atmospheric testing of nuclear weapons, which ended in 1980, and the Chernobyl explosion in 1986. Uranium is also a natural component of the soil. This assessment of soil and vegetation data provides important information on the distribution of radionuclides in areas adjacent to industrial areas, established perimeter locations and buffer areas, and more offsite nearby and distant locations. The concentrations reflect a tendency for detection of some radionuclides close to where they were utilized onsite, but as one moves to unindustrialized areas on the site, surrounding buffer areas and perimeter location into the more distant sites, concentrations of these radionuclides approach background and cannot be distinguished from fallout activity. More importantly, concentrations in soil and vegetation samples did not exceed environmental benchmark concentrations, and associated exposure to human and ecological receptors were well below levels that are demonstratively hazardous to human health and the environment.« less

  3. Electronic structure, phase transitions and diffusive properties of elemental plutonium

    NASA Astrophysics Data System (ADS)

    Setty, Arun; Cooper, B. R.

    2003-03-01

    We present a SIC-LDA-LMTO based study of the electronic structure of the delta, alpha and gamma phases of plutonium, and also of the alpha and gamma phases of elemental cerium. We find excellent agreement with the experimental densities and magnetic properties [1]. Furthermore, detailed studies of the computational densities of states for delta plutonium, and comparison with the experimental photoemission spectrum [2], provide evidence for the existence of an unusual fluctuating valence state. Results regarding the vacancy formation and self-diffusion in delta plutonium will be presented. Furthermore, a study of interface diffusion between plutonium and steel (technologically relevant in the storage of spent fuel) or other technologically relevant alloys will be included. Preliminary results regarding gallium stabilization of delta plutonium, and of plutonium alloys will be presented. [1] M. Dormeval et al., private communication (2001). [2] A. J. Arko, J. J. Joyce, L. Morales, J. Wills, and J. Lashley et. al., Phys. Rev. B, 62, 1773 (2000). [3] B. R. Cooper et al, Phil. Mag. B 79, 683 (1999); B.R. Cooper, Los Alamos Science 26, 106 (2000)); B.R. Cooper, A.K. Setty and D.L.Price, to be published.

  4. EXTRACTION OF TETRAVALENT PLUTONIUM VALUES WITH METHYL ETHYL KETONE, METHYL ISOBUTYL KETONE ACETOPHENONE OR MENTHONE

    DOEpatents

    Seaborg, G.T.

    1961-08-01

    A process is described for extracting tetravalent plutonium from an aqueous acid solution with methyl ethyl ketone, methyl isobutyl ketone, or acetophenone and with the extraction of either tetravalent or hexavalent plutonium into menthone. (AEC)

  5. 10 CFR 830.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified... reaction (e.g., uranium-233, uranium-235, plutonium-238, plutonium-239, plutonium-241, neptunium-237...

  6. 3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER CONSTRUCTION. THE BASEMENT HOUSES HEATING, VENTILATION, AND AIR CONDITIONING EQUIPMENT AND MECHANICAL UTILITIES, THE UPPER PART OF THE PLUTONIUM STORAGE VAULT AND MAINTENANCE BAY, AND SMALL PLUTONIUM PROCESSING AREAS. THE BASEMENT LEVEL IS DIVIDED INTO NEARLY EQUAL NORTH AND SOUTH PARTS BY THE UPPER PORTION OF THE PLUTONIUM STORAGE VAULT. (10/7/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  7. PLATINUM HEXAFLUORIDE AND METHOD OF FLUORINATING PLUTONIUM CONTAINING MIXTURES THERE-WITH

    DOEpatents

    Malm, J.G.; Weinstock, B.; Claassen, H.H.

    1959-07-01

    The preparation of platinum hexafluoride and its use as a fluorinating agent in a process for separating plutonium from fission products is presented. According to the invention, platinum is reacted with fluorine gas at from 900 to 1100 deg C to form platinum hexafluoride. The platinum hexafluoride is then contacted with the plutonium containing mixture at room temperature to form plutonium hexafluoride which is more volatile than the fission products fluorides and therefore can be isolated by distillation.

  8. Uranium daughter growth must not be neglected when adjusting plutonium materials for assay and isotopic contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, S.F.; Spall, W.D.; Abernathey, R.M.

    1976-11-01

    Relationships are provided to compute the decreasing plutonium content and changing isotopic distribution of plutonium materials for the radioactive decay of /sup 238/Pu, /sup 239/Pu, /sup 240/Pu and /sup 242/Pu to long-lived uranium daughters and of /sup 241/Pu to /sup 241/Am. This computation is important to the use of plutonium reference materials to calibrate destructive and nondestructive methods for assay and isotopic measurements, as well as to accountability inventory calculations.

  9. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  10. Boeing Michigan Aeronautical Research Center (BOMARC) Missile Shelters and Bunkers Scoping Survey Workplan

    DTIC Science & Technology

    2007-08-01

    Characterization (OHM 1998). From the plot, it is clear that the HEU dominates DU in the overall isotopic characteristic. Among the three uranium ... isotopes , 234U comprised about 90 % of the total activity, including naturally-occurring background sources. However, in comparison to the WGP, uranium ...listed for a few sampling locations that had isotopic plutonium analysis of wipe samples. Figure A-19 contains a scatterplot of the paired Table 4-13

  11. NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2017-01-01

    We perform a combined analysis of recent NEOS and Daya Bay data on the reactor antineutrino spectrum. This analysis includes approximately 1.5 million antineutrino events, which is the largest neutrino event sample analyzed to date. We use a double ratio which cancels flux model dependence and related uncertainties as well as the effects of the detector response model. We find at 3-4 standard deviation significance level, that plutonium-239 and plutonium-241 are disfavored as the single source for the so-called 5 MeV bump. This analysis method has general applicability and, in particular, with higher statistics data sets, will be able to shed significant light on the issue of the bump. With some caveats, this should also allow us to improve the sensitivity for sterile neutrino searches in NEOS.

  12. Sources of plutonium in the atmosphere and stratosphere-troposphere mixing

    PubMed Central

    Hirose, Katsumi; Povinec, Pavel P.

    2015-01-01

    Plutonium isotopes have primarily been injected to the stratosphere by the atmospheric nuclear weapon tests and the burn-up of the SNAP-9A satellite. Here we show by using published data that the stratospheric plutonium exponentially decreased with apparent residence time of 1.5 ± 0.5 years, and that the temporal variations of plutonium in surface air followed the stratospheric trends until the early 1980s. In the 2000s, plutonium and its isotope ratios in the atmosphere varied dynamically, and sporadic high concentrations of 239,240Pu reported for the lower stratospheric and upper tropospheric aerosols may be due to environmental events such as the global dust outbreaks and biomass burning. PMID:26508010

  13. Rapid habitability assessment of Mars samples by pyrolysis-FTIR

    NASA Astrophysics Data System (ADS)

    Gordon, Peter R.; Sephton, Mark A.

    2016-02-01

    Pyrolysis Fourier transform infrared spectroscopy (pyrolysis FTIR) is a potential sample selection method for Mars Sample Return missions. FTIR spectroscopy can be performed on solid and liquid samples but also on gases following preliminary thermal extraction, pyrolysis or gasification steps. The detection of hydrocarbon and non-hydrocarbon gases can reveal information on sample mineralogy and past habitability of the environment in which the sample was created. The absorption of IR radiation at specific wavenumbers by organic functional groups can indicate the presence and type of any organic matter present. Here we assess the utility of pyrolysis-FTIR to release water, carbon dioxide, sulfur dioxide and organic matter from Mars relevant materials to enable a rapid habitability assessment of target rocks for sample return. For our assessment a range of minerals were analyzed by attenuated total reflectance FTIR. Subsequently, the mineral samples were subjected to single step pyrolysis and multi step pyrolysis and the products characterised by gas phase FTIR. Data from both single step and multi step pyrolysis-FTIR provide the ability to identify minerals that reflect habitable environments through their water and carbon dioxide responses. Multi step pyrolysis-FTIR can be used to gain more detailed information on the sources of the liberated water and carbon dioxide owing to the characteristic decomposition temperatures of different mineral phases. Habitation can be suggested when pyrolysis-FTIR indicates the presence of organic matter within the sample. Pyrolysis-FTIR, therefore, represents an effective method to assess whether Mars Sample Return target rocks represent habitable conditions and potential records of habitation and can play an important role in sample triage operations.

  14. 25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23105, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  15. 24. Plutonium Recovery From Contaminated Materials, Architectural Details, Building 232z, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Plutonium Recovery From Contaminated Materials, Architectural Details, Building 232-z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23106, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  16. 26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & Dets., Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23106, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  17. 13. VIEW OF THE MOLTEN SALT EXTRACTION LINE. THE MOLTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF THE MOLTEN SALT EXTRACTION LINE. THE MOLTEN SALT EXTRACTION PROCESS WAS USED TO PURIFY PLUTONIUM BY REMOVING AMERICIUM, A DECAY BY-PRODUCT OF PLUTONIUM. (1/98) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  18. CONCENTRATION PROCESS FOR PLUTONIUM IONS, IN AN OXIDATION STATE NOT GREATER THAN +4, IN AQUEOUS ACID SOLUTION

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.

    1960-06-14

    A process for concentrating plutonium is given in which plutonium is first precipitated with bismuth phosphate and then, after redissolution, precipitated with a different carrier such as lanthanum fluoride, uranium acetate, bismuth hydroxide, or niobic oxide.

  19. METHOD OF SEPARATION OF PLUTONIUM FROM CARRIER PRECIPITATES

    DOEpatents

    Dawson, I.R.

    1959-09-22

    The recovery of plutonium from fluoride carrier precipitates is described. The precipitate is dissolved in zirconyl nitrate, ferric nitrate, aluminum nitrate, or a mixture of these complexing agents, and the plutonium is then extracted from the aqueous solution formed with a water-immiscible organic solvent.

  20. Plutonium release from the 903 pad at Rocky Flats.

    PubMed

    Mongan, T R; Ripple, S R; Winges, K D

    1996-10-01

    The Colorado Department of Public Health and Environment (CDH) sponsored a study to reconstruct contaminant doses to the public from operations at the Rocky Flats nuclear weapons plant. This analysis of the accidental release of plutonium from the area known as the 903 Pad is part of the CDH study. In the 1950's and 1960's, 55-gallon drums of waste oil contaminated with plutonium, and uranium were stored outdoors at the 903 Pad. The drums corroded, leaking contaminated oil onto soil subsequently carried off-site by the wind. The plutonium release is estimated using environmental data from the 1960's and 1970's and an atmospheric transport model for fugitive dust. The best estimate of total plutonium release to areas beyond plant-owned property is about 0.26 TBq (7 Ci). Off-site airborne concentrations and deposition of plutonium are estimated for dose calculation purposes. The best estimate of the highest predicted off-site effective dose is approximately 72 microSv (7.2 mrem).

  1. Thermal properties of nonstoichiometry uranium dioxide

    NASA Astrophysics Data System (ADS)

    Kavazauri, R.; Pokrovskiy, S. A.; Baranov, V. G.; Tenishev, A. V.

    2016-04-01

    In this paper, was developed a method of oxidation pure uranium dioxide to a predetermined deviation from the stoichiometry. Oxidation was carried out using the thermogravimetric method on NETZSCH STA 409 CD with a solid electrolyte galvanic cell for controlling the oxygen potential of the environment. 4 samples uranium oxide were obtained with a different ratio of oxygen-to-metal: O / U = 2.002, O / U = 2.005, O / U = 2.015, O / U = 2.033. For the obtained samples were determined basic thermal characteristics of the heat capacity, thermal diffusivity, thermal conductivity. The error of heat capacity determination is equal to 5%. Thermal diffusivity and thermal conductivity of the samples decreased with increasing deviation from stoichiometry. For the sample with O / M = 2.033, difference of both values with those of stoichiometric uranium dioxide is close to 50%.

  2. Laboratory study of adsorption and deliquescence on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Nikolakakos, George; Whiteway, James A.

    2018-07-01

    A sample of the zeolitic mineral chabazite was subjected to a range of water vapor pressures and temperatures found on present day Mars. Laser Raman scattering was applied to detect the relative amounts of water and carbon dioxide adsorbed by the sample. Results show that zeolites are capable of adsorbing water from the atmosphere on diurnal time scales and that Raman scattering spectroscopy provides a promising method for detecting this process during a landed mission. When the water vapor pressure and temperature were sufficiently low, the zeolite sample also adsorbed carbon dioxide, resulting in the simultaneous adsorption of water and carbon dioxide on the surface mineral grains. Additional experiments were carried out using a mixture of magnesium perchlorate and chabazite. The sample of mixed surface material remained visually unchanged during water adsorption, but was found to darken during deliquescence.

  3. Variation in Baiting Intensity Among CO2-Baited Traps Used to Collect Hematophagous Arthropods.

    PubMed

    Springer, Yuri P; Taylor, Jeffrey R; Travers, Patrick D

    2015-01-01

    Hematophagous arthropods transmit the etiological agents of numerous diseases and as a result are frequently the targets of sampling to characterize vector and pathogen populations. Arguably, the most commonly used sampling approach involves traps baited with carbon dioxide. We report results of a laboratory study in which the performance of carbon dioxide-baited traps was evaluated using measures of baiting intensity, the amount of carbon dioxide released per unit time during trap deployment. We evaluated the effects of trap design, carbon dioxide source, and wind speed on baiting intensity and documented significant effects of these factors on the length of sampling (time to baiting intensity = 0), maximum baiting intensity, and variation in baiting intensity during experimental trials. Among the three dry ice-baited trap types evaluated, traps utilizing insulated beverage coolers as dry ice containers sampled for the longest period of time, had the lowest maximum but most consistent baiting intensity within trials and were least sensitive to effects of wind speed and dry ice form (block vs. pellet) on baiting intensity. Results of trials involving traps baited with carbon dioxide released from pressurized cylinders suggested that this trap type had performance comparable to dry ice-baited insulated cooler traps but at considerably higher cost. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  4. An analysis of the background and development of regulations for the air transport of plutonium in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, J.D.; Luna, R.E.

    1989-01-01

    Several aspects of special packagings of plutonium for air transport should be recognized. The accident cases cited by Congressman Scheuer were incidents of local plutonium contamination in military aircraft accidents that had nuclear weapons on board. There is no disputing the occurrence of these military accidents but military weapon shipments were exempted from the provisions of the Scheuer amendment. There have been no recorded civilian aircraft crashes involving plutonium dispersal although there have been civilian aircraft crashes that were severe. Shortly after the introduction of the amendment by Mr. Scheuer on June 20, 1975, there was a serious aircraft crashmore » at JFK International. In his remarks to the House on July 24, 1975 Mr. Scheuer called attention to this event. The NRC originally opposed the provisions of the Scheuer amendment but with the passing of the amendment NRC compiled with its provisions. This led to the development of the plutonium air transport package PAT-1 in the US. The introduction of special rules for the air transport of plutonium into the US packaging regulations has been made them more severe than the provision of the international regulations, IAEA Safety Series 6. The IAEA is now discussing proposed regulations related to the air transport of plutonium. An additional legislative action was introduced the US in December 1987 which would require actual crash tests of packages intended for the air transport of plutonium, the Murkowski amendment. 13 refs.« less

  5. Effects of Aging on PuO2∙xH2O Particle Size in Alkaline Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.

    Between 1944 and 1989, 54.5 metric tons of the United States’ weapons-grade plutonium and an additional 12.9 metric tons of fuel-grade plutonium were produced and separated from irradiated fuel at the Hanford Site. Acidic high-activity wastes containing around 600 kg of plutonium were made alkaline and discharged to underground storage tanks from separations, isolation, and recycle processes to yield average plutonium concentration of about 0.003 grams per liter (or ~0.0002 wt%) in the ~200 million liter tank waste volume. The plutonium is largely associated with low-solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g.,more » iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO2∙xH2O, could undergo sufficient crystal growth through dissolution and reprecipitation in the alkaline tank waste to potentially become separable from neutron absorbing constituents by settling or sedimentation. Thermodynamic considerations and laboratory studies of systems chemically analogous to tank waste show that the plutonium formed in the alkaline tank waste by precipitation through neutralization from acid solution probably entered as 2–4-nm PuO2∙xH2O crystallite particles that, because of their low solubility and opposition from radiolytic processes, grow from that point at exceedingly slow rates, thus posing no risk of physical segregation.« less

  6. Radioecology of natural systems. Fifteenth annual progress report, August 1, 1976--July 31, 1977. [Plutonium transport in terrestrial ecosystems at Rocky Flats Plant with emphasis on biological effects on mule deer and coyotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whicker, F.W.

    1977-08-01

    This report summarizes project activities during the period August 1, 1976 through July 31, 1977. Four major areas of effort are reported, namely plutonium behavior in a terrestrial ecosystem at Rocky Flats, mule deer and coyote studies at Rocky Flats, ecological consequences of transuranics in the terrestrial environment, and lead geochemistry of an alpine lake ecosystem. Much of the first area of effort involved the synthesis of data and preparation of manuscripts, although some new data are reported on plutonium levels in small mammals, plant uptake of plutonium from contaminated soil, and plutonium deposition rates on macroplot 1. The mulemore » deer studies generated a substantial body of new information which will permit quantitative assessment of plutonium dispersion by deer that utilize contaminated areas. These studies involve population dynamics, movement and use patterns, food habits, ingestion rates of contaminated soil and vegetation and plutonium burdens of deer tissues. A related study of coyote food habits in summer at Rocky Flats is reported. A manuscript dealing with the question of ecological effects of transuranics was prepared. This manuscript incorporates data from Rocky Flats on characteristics of natural populations which occupy ecologically similar areas having differing levels of plutonium contamination. The lead geochemistry studies continued to generate new data but the data are not yet reported.« less

  7. APPROACHING CRYOGENIC GE PERFORMANCE WITH PELTIER COOLED CDTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khusainov, A. K.; Iwanczyk, J. S.; Patt, B. E.

    A new class of hand-held, portable spectrometers based on large area (lcm2) CdTe detectors of thickness up to 3mm has been demonstrated to produce energy resolution of between 0.3 and 0.5% FWHM at 662 keV. The system uses a charge loss correction circuit for improved efficiency, and detector temperature stabilization to ensure consistent operation of the detector during field measurements over a wide range of ambient temperature. The system can operate continuously for up to 8hrs on rechargeable batteries. The signal output from the charge loss corrector is compatible with most analog and digital spectroscopy amplifiers and multi channel analyzers.more » Using a detector measuring 11.2 by 9.1 by 2.13 mm3, we have recently been able to obtain the first wide-range plutonium gamma-ray isotopic analysis with other than a cryogenically cooled germanium spectrometer. The CdTe spectrometer is capable of measuring small plutonium reference samples in about one hour, covering the range from low to high burnup. The isotopic analysis software used to obtain these results was FRAM, Version 4 from LANL. The new spectrometer is expected to be useful for low-grade assay, as well as for some in-situ plutonium gamma-ray isotopics in lieu of cryogenically cooled Ge.« less

  8. DETERMINATION OF SULFUR DIOXIDE, NITROGEN OXIDES, AND CARBON DIOXIDE IN EMISSIONS FROM ELECTRIC UTILITY PLANTS BY ALKALINE PERMANGANATE SAMPLING AND ION CHROMATOGRAPHY

    EPA Science Inventory

    A manual 24-h integrated method for determining SO2, NOx, and CO2 in emissions from electric utility plants was developed and field tested downstream from an SO2 control system. Samples were collected in alkaline potassium permanganate solution contained in restricted-orifice imp...

  9. Plutonium isotopes and 241Am in the atmosphere of Lithuania: A comparison of different source terms

    NASA Astrophysics Data System (ADS)

    Lujanienė, G.; Valiulis, D.; Byčenkienė, S.; Šakalys, J.; Povinec, P. P.

    2012-12-01

    137Cs, 241Am and Pu isotopes collected in aerosol samples during 1994-2011 were analyzed with special emphasis on better understanding of Pu and Am behavior in the atmosphere. The results from long-term measurements of 240Pu/239Pu atom ratios showed a bimodal frequency distribution with median values of 0.195 and 0.253, indicating two main sources contributing to the Pu activities at the Vilnius sampling station. The low Pu atom ratio of 0.141 could be attributed to the weapon-grade plutonium derived from the nuclear weapon test sites. The frequency of air masses arriving from the North-West and North-East correlated with the Pu atom ratio indicating the input from the sources located in these regions (the Novaya Zemlya test site, Siberian nuclear plants), while no correlation with the Chernobyl region was observed. Measurements carried out during the Fukushima accident showed a negligible impact of this source with Pu activities by four orders of magnitude lower as compared to the Chernobyl accident. The activity concentration of actinides measured in the integrated sample collected in March-April, 2011 showed a small contribution of Pu with unusual activity and atom ratios indicating the presence of the spent fuel of different origin than that of the Chernobyl accident.

  10. Radiochemical determination of 237NP in soil samples contaminated with weapon grade plutonium

    NASA Astrophysics Data System (ADS)

    Antón, M. P.; Espinosa, A.; Aragón, A.

    2006-01-01

    The Palomares terrestrial ecosystem (Spain) constitutes a natural laboratory to study transuranics. This scenario is partially contaminated with weapon-grade plutonium since the burnout and fragmentation of two thermonuclear bombs accidentally dropped in 1966. While performing radiometric measurements in the field, the possible presence of 237Np was observed through its 29 keV gamma emission. To accomplish a detailed characterization of the source term in the contaminated area using the isotopic ratios Pu-Am-Np, the radiochemical isolation and quantification by alpha spectrometry of 237Np was initiated. The selected radiochemical procedure involves separation of Np from Am, U and Pu with ionic resins, given that in soil samples from Palomares 239+240Pu levels are several orders of magnitude higher than 237Np. Then neptunium is isolated using TEVA organic resins. After electrodeposition, quantification is performed by alpha spectrometry. Different tests were done with blank solutions spiked with 236Pu and 237Np, solutions resulting from the total dissolution of radioactive particles and soil samples. Results indicate that the optimal sequential radionuclide separation order is Pu-Np, with decontamination percentages obtained with the ionic resins ranging from 98% to 100%. Also, the addition of NaNO2 has proved to be necessary, acting as a stabilizer of Pu-Np valences.

  11. Trench 'bathtubbing' and surface plutonium contamination at a legacy radioactive waste site.

    PubMed

    Payne, Timothy E; Harrison, Jennifer J; Hughes, Catherine E; Johansen, Mathew P; Thiruvoth, Sangeeth; Wilsher, Kerry L; Cendón, Dioni I; Hankin, Stuart I; Rowling, Brett; Zawadzki, Atun

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (~12 Bq/L of (239+240)Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest (239+240)Pu soil activity was 829 Bq/kg in a shallow sample (0-1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the 'bathtub' effect.

  12. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  13. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  14. SEMIANNUAL PROGRESS REPORT ON CHEMISTRY FOR THE PERIOD, JANUARY 1961-JULY 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-03-01

    A procedure is presented for the determination of both Mo and Sn in a wide variety of samples with 8-quinolinol (oxine). The Mo complex is extracted with chloroform from a sulfate solution of the sample at pH 0.85 and determined spectrophotometrically at 385 m mu . The Sn complex is then similarly extracted and determined after the addition of chloride to the sample solution. A procedure is also given in which B is separated quantitatively from various B minerals by pyrohydrolysis. The distillate is passed through a cation-exchange resin column to remove interfering Sr, Ru, and other cations, after whichmore » the effluent is neutralized to pH 9.3 tc 9.4 and evaporated to dryness. The residue is suitable for the mass spectrometric determination of the B/sup 11//B/sup 10/ ratio. In other work, a single-focusing mass spectrometer of 6-in. radius, 60 deg sector magnetic analyzer was designed to analyze a wide range of sample materials that require high precision and accuracy in the low-mass range but which offers considerable flexibility to evaluate highmass materials for comparison purposes. A gas, solid, or liquid type of analysis may be performed. A change-over can be raade from one type of analysis to another with minimum loss of instrument tirae and requiring minimum technical knowledge. Single peak measurement, or ratio measurement may be made from M/e 6/7 to M/e 238/235, with the use of vibrating reed electrometers or an electron multiplier for measuring the ion beams. The stability of plutonium sulfate tetrshydrate and anhydrous plutonium sulfate was evaluated. Recent tests disclose no signlficant change in the Pu content of the tetrahydrate or the anhydrous salt for periods of at least 18 and 6 months, respectively. Both thermogravimetry and chemical analysis showed the formula of anhydrous plutonium sulfate to be Pu(SO/sub 4/)/sub 2.000/ / sub plus or minus / /sub 0.002/. Preparation of dicesium plutoniu m hexachloride is reported along with evaluation of its suitability as a primary standard for Pu. The composition of the material was determined by analysis and fits the formula susceptible to changes in relative humidities greater than 17%, and showed a small but significant weight loss during a six-month testing period. A procedure is described for Si separation from Pu using a cation-exchange procedure prior to spectrographic determination. Plutonium(III) in 0.2N nitric acid is adsorbed on Dowex-50 cation resin while Si, as silicate anion or colloid, passes unadsorbed into the effluent. The effluent is evaporated to dryness and the residue is dissolved in dilute nitric acid containing hydrofluoric acid. Aliquots of the solution are dried on graphite electrodes and excited in a d-c arc. Typical results on synthetic solutions give an estimated over-all average deviation of plus or minus 25% and sensitivities from 1 to 5 ppm Si. This method offers an alternate procedure to the carrier distillation technique which employs large amounts of PuO/sub 2/ as matrix for the determination of Si in Pu. The development of a sensitive method for the spectrographic determination of trace impurities in Pu is continuing. The method was modified for use with plutonium sulfate samples, and enlarged to include the determination of B, Cd, and some alkali elements, and also for the estimation of Am. Pu breakthrough during the ion-exchange separation of Pu from its impurities was found to be < 0.001%. Methods were investigated for preparing high-purity reagents and reducing reference blank values in order to obtain greater sensitivity. At present seventeen elements may be determined in the 1st and 2nd optical orders using only 200 mg. of sample. (auth)« less

  15. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants

    NASA Technical Reports Server (NTRS)

    Quinn, R. C.; Zent, A. P.

    1999-01-01

    Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the thermal stability of the titanium-peroxide complexes in this work is lower than the stability seen in the Viking experiments, it is expected that similar types of complexes will form in titanium containing minerals other than anatase and the stability of these complexes will vary with surface hydroxylation and mineralogy.

  16. RECOVERY OF PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Goeckermann, R.H.

    1961-04-01

    A process is given for recovering plutonium from an aqueous nitric acid zirconium-containing solution of an acidity between 0.2 and 1 N by adding fluoride anions (1.5 to 5 mg/l) and precipitating the plutonium with an excess of hydrogen peroxide at from 53 to 65 deg C.

  17. METHOD FOR OBTAINING PLUTONIUM METAL FROM ITS TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-08-14

    A method was developed for obtaining plutonium metal by direct reduction of plutonium chloride, without the use of a booster, using calcium and lanthamum as a reductant, the said reduction being carried out at temperature in the range of 700 to 850 deg C and at about atmospheric pressure. (AEC)

  18. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOEpatents

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  19. ELECTRODEPOSITION OF PLUTONIUM

    DOEpatents

    Wolter, F.J.

    1957-09-10

    A process of electrolytically recovering plutonium from dilute aqueous solutions containing plutonium ions comprises electrolyzing the solution at a current density of about 0.44 ampere per square centimeter in the presence of an acetate-sulfate buffer while maintaining the pH of the solution at substantially 5 and using a stirred mercury cathode.

  20. Removal of plutonium from hepatic tissue

    DOEpatents

    Lindenbaum, Arthur; Rosenthal, Marcia W.

    1979-01-01

    A method is provided for removing plutonium from hepatic tissues by introducing into the body and blood stream a solution of the complexing agent DTPA and an adjunct thereto. The adjunct material induces aberrations in the hepatic tissue cells and removes intracellularly deposited plutonium which is normally unavailable for complexation with the DTPA. Once the intracellularly deposited plutonium has been removed from the cell by action of the adjunct material, it can be complexed with the DTPA present in the blood stream and subsequently removed from the body by normal excretory processes.

  1. METHOD OF SEPARATING PLUTONIUM FROM LANTHANUM FLUORIDE CARRIER

    DOEpatents

    Watt, G.W.; Goeckermann, R.H.

    1958-06-10

    An improvement in oxidation-reduction type methods of separating plutoniunn from elements associated with it in a neutron-irradiated uranium solution is described. The method relates to the separating of plutonium from lanthanum ions in an aqueous 0.5 to 2.5 N nitric acid solution by 'treating the solution, at room temperature, with ammonium sulfite in an amount sufficient to reduce the hexavalent plutonium present to a lower valence state, and then treating the solution with H/sub 2/O/sub 2/ thereby forming a tetravalent plutonium peroxide precipitate.

  2. PROCESS OF TREATING OR FORMING AN INSOLUBLE PLUTONIUM PRECIPITATE IN THE PRESENCE OF AN ORGANIC ACTIVE AGENT

    DOEpatents

    Balthis, J.H.

    1961-07-18

    Carrier precipitation processes for the separation of plutonium from fission products are described. In a process in which an insoluble precipitate is formed in a solution containing plutonium and fission products under conditions whereby plutonium is carried by the precipitate, and the precipitate is then separated from the remaining solution, an organic surface active agent is added to the mixture of precipitate and solution prior to separation of the precipitate from the supernatant solution, thereby improving the degree of separation of the precipitate from the solution.

  3. 1. VIEW OF THE CONTROL ROOM FOR THE XY RETRIEVER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF THE CONTROL ROOM FOR THE X-Y RETRIEVER. USING THE X-Y RETRIEVER, OPERATORS RETRIEVED PLUTONIUM METAL FROM THE PLUTONIUM STORAGE VAULTS (IN MODULE K) AND CONVEYED IT TO THE X-Y SHUTTLE AREA WHERE IT WAS CUT AND WEIGHED. FROM THE SHUTTLE AREA THE PLUTONIUM WAS CONVEYED TO MODULES A, J OR K FOR CASTING, OR MODULE B FOR ROLLING AND FORMING. (5/17/71) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  4. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS

    DOEpatents

    Nicholls, C.M.; Wells, I.; Spence, R.

    1959-10-13

    The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

  5. Radiation from plutonium 238 used in space applications

    NASA Technical Reports Server (NTRS)

    Keenan, T. K.; Vallee, R. E.; Powers, J. A.

    1972-01-01

    The principal mode of the nuclear decay of plutonium 238 is by alpha particle emission at a rate of 17 curies per gram. Gamma radiation also present in nuclear fuels arises primarily from the nuclear de-excitation of daughter nuclei as a result of the alpha decay of plutonium 238 and reactor-produced impurities. Plutonium 238 has a spontaneous fission half life of 4.8 x 10 to the 10th power years. Neutrons associated with this spontaneous fission are emitted at a rate of 28,000 neutrons per second per gram. Since the space fuel form of plutonium 238 is the oxide pressed into a cermet with molybdenum, a contribution to the neutron emission rate arises from (alpha, n) reactions with 0-17 and 0-18 which occur in natural oxygen.

  6. Evaluating ligands for use in polymer ligand film (PLF) for plutonium and uranium extraction

    DOE PAGES

    Rim, Jung H.; Peterson, Dominic S.; Armenta, Claudine E.; ...

    2015-05-08

    We describe a new analyte extraction technique using Polymer Ligand Film (PLF). PLFs were synthesized to perform direct sorption of analytes onto its surface for direct counting using alpha spectroscopy. The main focus of the new technique is to shorten and simplify the procedure for chemically isolating radionuclides for determination through a radiometric technique. 4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH 18C 6) and 2-ethylhexylphosphonic acid (HEH[EHP]) were examined for plutonium extraction. Di(2-ethyl hexyl) phosphoric acid (HDEHP) were examined for plutonium and uranium extraction. DtBuCH 18C 6 and HEH[EHP] were not effective in plutonium extraction. HDEHP PLFs were effective for plutonium but not formore » uranium.« less

  7. METHOD OF FORMING PLUTONIUM-BEARING CARRIER PRECIPITATES AND WASHING SAME

    DOEpatents

    Faris, B.F.

    1959-02-24

    An improvement of the lanthanum fluoride carrier precipitation process for the recovery of plutonium is presented. In this process the plutonium is first segregated in the LaF/su precipitate and this precipitate is later dissolved and the plutonium reprecipitated as the peroxide. It has been found that the loss of plutonium by its remaining in the supernatant liquid associated with the peroxide precipitate is greatly reduced if, before dissolution, the LaF/ sub 3/ precipitate is subjected to a novel washing step which constitutes the improvement of this patent. The step consists in intimately contactifng the LaF/ sub 3/ precipitate with a 4 to 10 percent solution of sodium hydrogen sulfate at a temperature between 10 and 95 deg C for 1/2 to 3 hours.

  8. Plutonium dissolution process

    DOEpatents

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  9. Structures of plutonium coordination compounds: A review of past work, recent single crystal x-ray diffraction results, and what we're learning about plutonium coordination chemistry

    NASA Astrophysics Data System (ADS)

    Neu, M. P.; Matonic, J. H.; Smith, D. M.; Scott, B. L.

    2000-07-01

    The compounds we have isolated and characterized include plutonium(III) and plutonium(IV) bound by ligands with a range of donor types and denticity (halide, phosphine oxide, hydroxamate, amine, sulfide) in a variety of coordination geometries. For example, we have obtained the first X-ray structure of Pu(III) complexed by a soft donor ligand. Using a "one pot" synthesis beginning with Pu metal strips and iodine in acetonitrile and adding trithiacyclononane we isolated the complex, PuI3(9S3)(MeCN)2 (Figure 1). On the other end of the coordination chemistry spectrum, we have obtained the first single crystal structure of the Pu(IV) hexachloro anion (Figure 2). Although this species has been used in plutonium purification via anion exchange chromatography for decades, the bond distances and exact structure were not known. We have also characterized the first plutonium-biomolecule complex, Pu(IV) bound by the siderophore desferrioxamine E.In this presentation we will review the preparation, structures, and importance of previously known coordination compounds and of those we have recently isolated. We will show the coordination chemistry of plutonium is rich and varied, well worth additional exploration.

  10. Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakkila, E.A.

    1978-10-01

    Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references.

  11. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.S.

    1999-08-11

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitationmore » process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec ay of plutonium-241) in the dissolved precipitate, a value consistent with the recovery of europium, the americium surrogate.In a subsequent experiment, the plutonium solubility following an oxalate precipitation to simulate the preparation of a slurry feed for a batch melter was 21 mg/mL at 35 degrees C. The increase in solubility compared to the value measured during the pretreatment experiment was attributed to the increased nitrate concentration and ensuing increase in plutonium complexation. The solubility of the plutonium following a precipitant wash with 0.1M oxalic acid was unchanged. The recovery of plutonium from the precipitate slurry was greater than 97 percent allowing an estimation that approximately 92 percent of the plutonium in Tank 17.1 will report to the glass. The behavior of the lanthanides and soluble metal impurities was consistent with the behavior seen during the pretreatment experiment. A trace level material balance showed that 99.9 percent of the americium w as recovered from the precipitate slurry. The overall recovery of americium from the pretreatment and feed preparation processes was greater than 97 percent, which was consistent with the measured recovery of the europium surrogate.« less

  12. Radiological analysis of plutonium glass batches with natural/enriched boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainisch, R.

    2000-06-22

    The disposition of surplus plutonium inventories by the US Department of Energy (DOE) includes the immobilization of certain plutonium materials in a borosilicate glass matrix, also referred to as vitrification. This paper addresses source terms of plutonium masses immobilized in a borosilicate glass matrix where the glass components include both natural boron and enriched boron. The calculated source terms pertain to neutron and gamma source strength (particles per second), and source spectrum changes. The calculated source terms corresponding to natural boron and enriched boron are compared to determine the benefits (decrease in radiation source terms) for to the use ofmore » enriched boron. The analysis of plutonium glass source terms shows that a large component of the neutron source terms is due to (a, n) reactions. The Americium-241 and plutonium present in the glass emit alpha particles (a). These alpha particles interact with low-Z nuclides like B-11, B-10, and O-17 in the glass to produce neutrons. The low-Z nuclides are referred to as target particles. The reference glass contains 9.4 wt percent B{sub 2}O{sub 3}. Boron-11 was found to strongly support the (a, n) reactions in the glass matrix. B-11 has a natural abundance of over 80 percent. The (a, n) reaction rates for B-10 are lower than for B-11 and the analysis shows that the plutonium glass neutron source terms can be reduced by artificially enriching natural boron with B-10. The natural abundance of B-10 is 19.9 percent. Boron enriched to 96-wt percent B-10 or above can be obtained commercially. Since lower source terms imply lower dose rates to radiation workers handling the plutonium glass materials, it is important to know the achievable decrease in source terms as a result of boron enrichment. Plutonium materials are normally handled in glove boxes with shielded glass windows and the work entails both extremity and whole-body exposures. Lowering the source terms of the plutonium batches will make the handling of these materials less difficult and will reduce radiation exposure to operating workers.« less

  13. Neutronics calculations on the impact of burnable poisons to safety and non-proliferation aspects of inert matrix fuel

    NASA Astrophysics Data System (ADS)

    Pistner, C.; Liebert, W.; Fujara, F.

    2006-06-01

    Inert matrix fuels (IMF) with plutonium may play a significant role to dispose of stockpiles of separated plutonium from military or civilian origin. For reasons of reactivity control of such fuels, burnable poisons (BP) will have to be used. The impact of different possible BP candidates (B, Eu, Er and Gd) on the achievable burnup as well as on safety and non-proliferation aspects of IMF are analyzed. To this end, cell burnup calculations have been performed and burnup dependent reactivity coefficients (boron worth, fuel temperature and moderator void coefficient) were calculated. All BP candidates were analyzed for one initial BP concentration and a range of different initial plutonium-concentrations (0.4-1.0 g cm-3) for reactor-grade plutonium isotopic composition as well as for weapon-grade plutonium. For the two most promising BP candidates (Er and Gd), a range of different BP concentrations was investigated to study the impact of BP concentration on fuel burnup. A set of reference fuels was identified to compare the performance of uranium-fuels, MOX and IMF with respect to (1) the fraction of initial plutonium being burned, (2) the remaining absolute plutonium concentration in the spent fuel and (3) the shift in the isotopic composition of the remaining plutonium leading to differences in the heat and neutron rate produced. In the case of IMF, the remaining Pu in spent fuel is unattractive for a would be proliferator. This underlines the attractiveness of an IMF approach for disposal of Pu from a non-proliferation perspective.

  14. Comparisons of the skeletal locations of putative plutonium-induced osteosarcomas in humans with those in beagle dogs and with naturally occurring tumors in both species.

    PubMed

    Miller, Scott C; Lloyd, Ray D; Bruenger, Fred W; Krahenbuhl, Melinda P; Polig, Erich; Romanov, Sergey A

    2003-11-01

    Osteosarcomas occur from exposures to bone-seeking, alpha-particle-emitting isotopes, particularly plutonium. The skeletal distribution of putative 239Pu-induced osteosarcomas reported in Mayak Metallurgical and Radiochemical Plutonium Plant workers is compared with those observed in canine studies, and these are compared with distributions of naturally occurring osteosarcomas in both species. In the Mayak workers, 29% and 71% of the osteosarcomas were in the peripheral and central skeleton, respectively, with the spine having the most tumors (36%). An almost identical distribution of plutonium-induced osteosarcomas was reported for dogs injected with 239Pu as young adults. This distribution of osteosarcomas is quite different from the distributions of naturally occurring osteosarcomas for both species. In the Cooperative Osteosarcoma Study Group in humans (1,736 osteosarcomas from all ages), over 91% of the tumors occurred in the peripheral skeleton. In the Mayo Clinic group of older individuals (>40 years old), over 60% of the osteosarcomas appeared in the peripheral skeleton. The distribution of naturally occurring osteosarcomas in the canine is similar to that in the adult human. The similarities of the distributions of plutonium-associated osteosarcomas in the Mayak workers with those found in experimental studies suggest that many of the reported osteosarcomas may have been associated with plutonium exposures. These results also support the experimental paradigm that plutonium osteosarcomas have a preference for well vascularized cancellous bone sites. These sites have a greater initial deposition of plutonium, but also greater turnover due to elevated bone remodeling rates.

  15. Study on Characteristic of Temperature Coefficient of Reactivity for Plutonium Core of Pebbled Bed Reactor

    NASA Astrophysics Data System (ADS)

    Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.

  16. Assessment of the Free-piston Stirling Convertor as a Long Life Power Convertor for Space

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2001-01-01

    There is currently a renewed interest in the use of free-piston Stirling power convertors for space power applications. More specifically, the Stirling convertor is being developed to be part of the Stirling Radioisotope Power System to supply electric power to spacecraft for NASA deep space science missions. The current development effort involves the Department of Energy, Germantown, MD, the NASA Glenn Research Center, Cleveland, OH, and the Stirling Technology Company, Kennewick, WA. The Stirling convertor will absorb heat supplied from the decay of plutonium dioxide contained in the General Purpose Heat Source modules and convert it into electricity to power the spacecraft. For many years the "potentials" of the free-piston Stirling convertor have been publicized by it's developers. Among these "potentials" were long life and high reliability. This paper will present an overview of the critical areas that enable long life of the free-piston Stirling power convertor, and present some of the techniques that have been used when long life has been achieved.

  17. Supercritical Fluid Extraction and Separation of Uranium from Other Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2014-06-01

    This paper investigates the feasibility of separating uranium from other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of an extraction and counter current stripping technique, which would be a more efficient and environmentally benign technology for used nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U(VI), Np(VI), Pu(IV), and Am(III)) were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, the separation of uraniummore » from plutonium in sc-CO2 modified with TBP was successful at nitric acid concentrations of less than 3 M in the presence of acetohydroxamic acid or oxalic acid, and the separation of uranium from neptunium was successful at nitric acid concentrations of less than 1 M in the presence of acetohydroxamic acid, oxalic acid, or sodium nitrite.« less

  18. Density-functional theory applied to d- and f-electron systems

    NASA Astrophysics Data System (ADS)

    Wu, Xueyuan

    Density functional theory (DFT) has been applied to study the electronic and geometric structures of prototype d- and f-electron systems. For the d-electron system, all electron DFT with gradient corrections to the exchange and correlation functionals has been used to investigate the properties of small neutral and cationic vanadium clusters. Results are in good agreement with available experimental and other theoretical data. For the f-electron system, a hybrid DFT, namely, B3LYP (Becke's 3-parameter hybrid functional using the correlation functional of Lee, Yang and Parr) with relativistic effective core potentials and cluster models has been applied to investigate the nature of chemical bonding of both the bulk and the surfaces of plutonium monoxide and dioxide. Using periodic models, the electronic and geometric structures of PuO2 and its (110) surface, as well as water adsorption on this surface have also been investigated using DFT in both local density approximation (LDA) and generalized gradient approximation (GGA) formalisms.

  19. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Bandy, Alan R.; Thornton, Donald C.; Driedger, Arthur R., III

    1993-01-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  20. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  1. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...

  2. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...

  3. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...

  4. 11. SIDE VIEW OF INSTALLATION OF A CONTINUOUS ROTARYTUBE HYDROFLUORINATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SIDE VIEW OF INSTALLATION OF A CONTINUOUS ROTARY-TUBE HYDROFLUORINATOR LOCATED IN ROOM 146. THE HYDROFLUORINATOR IS BEING INSTALLED INSIDE A GLOVE BOX. HYDROFLUORINATION CONVERTED PLUTONIUM OXIDE TO PLUTONIUM TETRAFLUORIDE. (1/11/62) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  5. 10. VIEW OF CALCINER IN ROOM 146148. THE CALCINER HEATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF CALCINER IN ROOM 146-148. THE CALCINER HEATED PLUTONIUM PEROXIDE TO CONVERT IT TO PLUTONIUM OXIDE. THE PROCESS REMOVED RESIDUAL WATER AND NITRIC ACID LEAVING A DRY, POWDERED PRODUCT. (4/29/65) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  6. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...

  7. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  8. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...

  9. PREPARATION OF HALIDES OF PLUTONIUM

    DOEpatents

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  10. SEPARATION OF FISSION PRODUCT VALUES FROM THE HEXAVALENT PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Davies, T.H.

    1959-12-15

    An improved precipitation of fission products on bismuth phosphate from an aqueous mineral acid solution also containing hexavalent plutonium by incorporating, prior to bismuth phosphate precipitation, from 0.05 to 2.5 grams/ liter of zirconium phosphate, niobium oxide. and/or lanthanum fluoride is described. The plutonium remains in solution.

  11. Maximum likelihood analysis of bioassay data from long-term follow-up of two refractory PuO2 inhalation cases.

    PubMed

    Avtandilashvili, Maia; Brey, Richard; James, Anthony C

    2012-07-01

    The U.S. Transuranium and Uranium Registries' tissue donors 0202 and 0407 are the two most highly exposed of the 18 registrants who were involved in the 1965 plutonium fire accident at a defense nuclear facility. Material released during the fire was well characterized as "high fired" refractory plutonium dioxide with 0.32-μm mass median diameter. The extensive bioassay data from long-term follow-up of these two cases were used to evaluate the applicability of the Human Respiratory Tract Model presented by International Commission on Radiological Protection in Publication 66 and its revision proposed by Gregoratto et al. in order to account for the observed long-term retention of insoluble material in the lungs. The maximum likelihood method was used to calculate the point estimates of intake and tissue doses and to examine the effect of different lung clearance, blood absorption, and systemic models on the goodness-of-fit and estimated dose values. With appropriate adjustments, Gregoratto et al. particle transport model coupled with the customized blood absorption parameters yielded a credible fit to the bioassay data for both cases and predicted the Case 0202 liver and skeletal activities measured postmortem. PuO2 particles produced by the plutonium fire are extremely insoluble. About 1% of this material is absorbed from the respiratory tract relatively rapidly, at a rate of about 1 to 2 d (half-time about 8 to 16 h). The remainder (99%) is absorbed extremely slowly, at a rate of about 5 × 10(-6) d (half-time about 400 y). When considering this situation, it appears that doses to other body organs are negligible in comparison to those to tissues of the respiratory tract. About 96% of the total committed weighted dose equivalent is contributed by the lungs. Doses absorbed by these workers' lungs were high: 3.2 Gy to AI and 6.5 Gy to LNTH for Case 0202 (18 y post-intake) and 3.2 Gy to AI and 55.5 Gy to LNTH for Case 0407 (43 y post-intake). This evaluation supports the Gregoratto et al. proposed revision to the ICRP 66 model when considering situations of extremely insoluble particles.

  12. Optoacoustic Determination of Carbon Dioxide Concentration in Exhaled Breath in Various Human Diseases*

    NASA Astrophysics Data System (ADS)

    Ageev, V. G.; Nikiforova, O. Yu.

    2016-11-01

    We determined the carbon dioxide concentrations in exhaled breath from healthy donors and patients with various diseases from the absorption spectra of test samples, recorded on a laser optoacoustic gas analyzer based on a CO2 laser. We observed that the carbon dioxide concentrations in exhaled breath from healthy donors is higher than in patients with various diseases.

  13. Mortality among workers with chronic radiation sickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shilnikova, N.S.; Koshurnikova, N.A.; Bolotnikova, M.G.

    1996-07-01

    This study is based on a registry containing medical and dosimetric data of the employees who began working at different plants of the Mayak nuclear complex between 1948 and 1958 who developed chronic radiation sickness. Mayak is the first nuclear weapons plutonium production enterprise built in Russia and includes nuclear reactors, a radiochemical plant for plutonium separation, and a plutonium production enterprise built in Russia and includes nuclear reactors, a radiochemical plant for plutonium separation, and a plutonium production plant.Workers whose employment began between 1948 and 1958 exhibited a 6-28% incidence of chronic radiation sickness at the different facilities. Theremore » were no cases of chronic radiation sickness among those who began working after 1958. Data on doses of external whole-body gamma-irradiation and mortality in workers with chronic radiation sickness are presented. 6 refs., 5 tabs.« less

  14. Real-time monitoring of plutonium content in uranium-plutonium alloys

    DOEpatents

    Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas

    2015-09-01

    A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.

  15. Assessment of plutonium in the Savannah River Site environment. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.

    1992-12-31

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclearmore » weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.« less

  16. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration of plutonium in the subsurface.

  17. The production and certification of a plutonium equal-atom reference material: NBL CRM 128

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, D.W.; Gradle, C.G.; Soriano, M.D.

    This report describes the design, production, and certification of the New Brunswick Laboratory plutonium equal-atom certified reference material (CRM), NBL CRM 128. The primary use of this CRM is for the determination of bias corrections encountered in the operation of a mass spectrometer. This reference material is available to the US Department of Energy contractor-operated and government-operated laboratories, as well as to the international nuclear safeguards community. The absolute, or unbiased, certified value for the CRM's Pu-242/Pu-239 ratio is 1.00063 {plus minus} 0.00026 (95% confidence interval) as of October 1, 1984. This value was obtained through the quantitative blending ofmore » high-purity, chemically and isotopically characterized separated isotopes, as well as through intercomparisons of CRM samples with calibration mixtures using thermal ionization mass spectrometry. 32 tabs.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven A. Belinsky, PhD

    The molecular mechanisms that result in the elevated risk for lung cancer associated with exposure to radiation have not been well characterized. Workers from the MAYAK nuclear enterprise are an ideal cohort in which to study the molecular epidemiology of cancer associated with radiation exposure and to identify the genes targeted for inactivation that in turn affect individual risk for radiation-induced lung cancer. Epidemiology studies of the MAYAK cohort indicate a significantly higher frequency for adenocarcinoma and squamous cell carcinoma (SCC) in workers than in a control population and a strong correlation between these tumor types and plutonium exposure. Twomore » hypotheses will be evaluated through the proposed studies. First, radiation exposure targets specific genes for inactivation by promoter methylation. This hypothesis is supported by our recent studies with the MAYAK population that demonstrated the targeting of the p16 gene for inactivation by promoter methylation in adenocarcinomas from workers (1). Second, genes inactivated in tumors can serve as biomarkers for lung cancer risk in a cancer-free population of workers exposed to plutonium. Support for this hypothesis is based on exciting preliminary results of our nested, case-control study of persons from the Colorado cohort. In that study, a panel of methylation markers for predicting lung cancer risk is being evaluated in sputum samples from incident lung cancer cases and controls. The first hypothesis will be tested by determining the prevalence for promoter hypermethylation of a panel of genes shown to play a critical role in the development of either adenocarcinoma and/or SCC associated with tobacco. Our initial studies on adenocarcinoma in MAYAK workers will be extended to evaluate methylation of the PAX5 {alpha}, PAX5 {beta}, H-cadherin, GATA5, and bone morphogenesis 3B (BMP3B) genes in the original sample set described under Preliminary studies. In addition, studies will be initiated in SCC from workers and controls to identify genes targeted for inactivation by plutonium in this other common histologic form of lung cancer. We will examine methylation of the p16, O{sup 6}-methylguanine-DNA methyl-transferase (MGMT), and death associated protein kinase genes ([DAP-K], evaluated previously in adenocarcinomas) as well as the new genes being assessed in the adenocarcinomas. The second hypothesis will be tested in a cross-sectional study of cancer-free workers exposed to plutonium and an unexposed population. A cohort of 700 cancer-free workers and 700 unexposed persons is being assembled, exposures are being defined, and induced sputum collected at initial entry into the study and approximately 1-year later. Exposed and unexposed persons will be matched by 5-year age intervals and smoking status (current and former). The frequency for methylation of four genes that show the greatest difference in prevalence in tumors from workers and controls will be determined in exfoliated cells within sputum. These studies will extend those in primary tumors to determine whether difference in prevalence for individual or multiple genes are detected in sputum samples from high-risk subjects exposed to plutonium. Follow-up of this cohort offers the opportunity to validate these endpoints and future biomarkers as true markers for lung cancer risk.« less

  19. PLUTONIUM ELECTROREFINING CELLS

    DOEpatents

    Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

    1963-07-16

    Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

  20. PLUTONIUM SEPARATION METHOD

    DOEpatents

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  1. Development of first ever scanning probe microscopy capabilities for plutonium

    NASA Astrophysics Data System (ADS)

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; Vodnik, Douglas R.; Ramos, Michael; Richmond, Scott; Moore, David P.; Venhaus, Thomas J.; Joyce, Stephen A.; Usov, Igor O.

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. These first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  2. Development of first ever scanning probe microscopy capabilities for plutonium

    DOE PAGES

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; ...

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. In conclusion, these first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  3. Ultra-trace determination of plutonium in marine samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Lindahl, Patric; Keith-Roach, Miranda; Worsfold, Paul; Choi, Min-Seok; Shin, Hyung-Seon; Lee, Sang-Hoon

    2010-06-25

    Sources of plutonium isotopes to the marine environment are well defined, both spatially and temporally, which makes Pu a potential tracer for oceanic processes. This paper presents the selection, optimisation and validation of a sample preparation method for the ultra-trace determination of Pu isotopes ((240)Pu and (239)Pu) in marine samples by multi-collector (MC) ICP-MS. The method was optimised for the removal of the interference from (238)U and the chemical recovery of Pu. Comparison of various separation strategies using AG1-X8, TEVA, TRU, and UTEVA resins to determine Pu in marine calcium carbonate samples is reported. A combination of anion-exchange (AG1-X8) and extraction chromatography (UTEVA/TRU) was the most suitable, with a radiochemical Pu yield of 87+/-5% and a U decontamination factor of 1.2 x 10(4). Validation of the method was accomplished by determining Pu in various IAEA certified marine reference materials. The estimated MC-ICP-MS instrumental limit of detection for (239)Pu and (240)Pu was 0.02 fg mL(-1), with an absolute limit of quantification of 0.11 fg. The proposed method allows the determination of ultra-trace Pu, at femtogram levels, in small size marine samples (e.g., 0.6-2.0 g coral or 15-20 L seawater). Finally, the analytical method was applied to determining historical records of the Pu signature in coral samples from the tropical Northwest Pacific and (239+240)Pu concentrations and (240)Pu/(239)Pu atom ratios in seawater samples as part of the 2008 GEOTRACES intercalibration exercise. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Determination of $sup 241$Am in soil using an automated nuclear radiation measurement laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engstrom, D.E.; White, M.G.; Dunaway, P.B.

    The recent completion of REECo's Automated Laboratory and associated software systems has provided a significant increase in capability while reducing manpower requirements. The system is designed to perform gamma spectrum analyses on the large numbers of samples required by the current Nevada Applied Ecology Group (NAEG) and Plutonium Distribution Inventory Program (PDIP) soil sampling programs while maintaining sufficient sensitivities as defined by earlier investigations of the same type. The hardware and systems are generally described in this paper, with emphasis being placed on spectrum reduction and the calibration procedures used for soil samples. (auth)

  5. URANOUS IODATE AS A CARRIER FOR PLUTONIUM

    DOEpatents

    Miller, D.R.; Seaborg, G.T.; Thompson, S.G.

    1959-12-15

    A process is described for precipitating plutonium on a uranous iodate carrier from an aqueous acid solution conA plutonium solution more concentrated than the original solution can then be obtained by oxidizing the uranium to the hexavalent state and dissolving the precipitate, after separating the latter from the original solution, by means of warm nitric acid.

  6. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  7. Soils element history, sampling, analyses, and recommendations. [Plutonium isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, E.B.; Essington, E.H.

    A five year history of the Soils Element of the Nevada Applied Ecology Group (NAEG) is presented. Major projects are reviewed. Emphasis is placed on mound studies and profile studies for the period March 1, 1975, through February 1, 1976. A series of recommendations is made relative to extensions of past efforts of the Soils Element of the NAEG.

  8. High-Temperature Oxidation of Plutonium Surrogate Metals and Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, Joshua C.; Krantz, Kelsie E.; Christian, Jonathan H.

    The Plutonium Management and Disposition Agreement (PMDA) is a nuclear non-proliferation agreement designed to remove 34 tons of weapons-grade plutonium from Russia and the United States. While several removal options have been proposed since the agreement was first signed in 2000, processing the weapons-grade plutonium to mixed-oxide (MOX) fuel has remained the leading candidate for achieving the goals of the PMDA. However, the MOX program has received its share of criticisms, which causes its future to be uncertain. One alternative pathway for plutonium disposition would involve oxidizing the metal followed by impurity down blending and burial in the Waste Isolationmore » Pilot Plant (WIPP) in Carlsbad, New Mexico. This pathway was investigated by use of a hybrid microwave and a muffle furnace with Fe and Al as surrogate materials. Oxidation occurred similarly in the microwave and muffle furnace; however, the microwave process time was significantly faster.« less

  9. The underwater coincidence counter (UWCC) for plutonium measurements in mixed oxide fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccleston, G.W.; Menlove, H.O.; Abhold, M.

    1998-12-31

    The use of fresh uranium-plutonium mixed oxide (MOX) fuel in light-water reactors (LWR) is increasing in Europe and Japan and it is necessary to verify the plutonium content in the fuel for international safeguards purposes. The UWCC is a new instrument that has been designed to operate underwater and nondestructively measure the plutonium in unirradiated MOX fuel assemblies. The UWCC can be quickly configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies. The plutonium loading per unit length is measured using the UWCC to precisions of less than 1% in a measurement time of 2 tomore » 3 minutes. Initial calibrations of the UWCC were completed on measurements of MOX fuel in Mol, Belgium. The MCNP-REN Monte Carlo simulation code is being benchmarked to the calibration measurements to allow accurate simulations for extended calibrations of the UWCC.« less

  10. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  11. Radiolysis of hexavalent plutonium in solutions of uranyl nitrate containing fission product simulants

    NASA Astrophysics Data System (ADS)

    Rance, Peter J. W.; Zilberman, B. Ya.; Akopov, G. A.

    2000-07-01

    The effect of the inherent radioactivity on the chemical state of plutonium ions in solution was recognized very shortly after the first macroscopic amounts of plutonium became available and early studies were conducted as part of the Manhattan Project. However, the behavior of plutonium ions, in nitric acid especially, has been found to be somewhat complex, so much so that a relatively modern summary paper included the comment that, "The vast amount of work carried out in nitric acid solutions can not be adequately summarized. Suffice it to say results in these solutions are plagued with irreproducibility and induction periods…" Needless to say, the presence of other ions in solution, as occurs when irradiated nuclear fuel is dissolved, further complicates matters. The purpose of the work described below was to add to the rather small amount of qualitative data available relating to the radiolytic behavior of plutonium in solutions of irradiated nuclear fuel.

  12. Proton conduction in electrolyte made of manganese dioxide for hydrogen gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanaka, Hideki; Ueda, Yoshikatsu; Takeuchi, K

    2012-01-01

    We propose a network model of oxygen-pairs to store and conduct protons on the surface of manganese dioxide with a weak covalent bond like protons stored in pressured ice. The atomic distances of oxygen-pairs were estimated between 2.57 and 2.60 angstroms in crystal structures of ramsdellite-type and lambda-type manganese dioxides by using protonated samples and inelastic neutron scattering measurements. Good properties for a hydrogen gas sensor using electrolytes made of manganese dioxides that contain such oxygen-pairs were confirmed experimentally.

  13. LIBS Spectral Data for a Mixed Actinide Fuel Pellet Containing Uranium, Plutonium, Neptunium and Americium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judge, Elizabeth J.; Berg, John M.; Le, Loan A.

    2012-06-18

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze a mixed actinide fuel pellet containing 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2}. The preliminary data shown here is the first report of LIBS analysis of a mixed actinide fuel pellet, to the authors knowledge. The LIBS spectral data was acquired in a plutonium facility at Los Alamos National Laboratory where the sample was contained within a glove box. The initial installation of the glove box was not intended for complete ultraviolet (UV), visible (VIS) and near infrared (NIR) transmission, therefore the LIBS spectrum is truncated in the UV andmore » NIR regions due to the optical transmission of the window port and filters that were installed. The optical collection of the emission from the LIBS plasma will be optimized in the future. However, the preliminary LIBS data acquired is worth reporting due to the uniqueness of the sample and spectral data. The analysis of several actinides in the presence of each other is an important feature of this analysis since traditional methods must chemically separate uranium, plutonium, neptunium, and americium prior to analysis. Due to the historic nature of the sample fuel pellet analyzed, the provided sample composition of 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2} cannot be confirm without further analytical processing. Uranium, plutonium, and americium emission lines were abundant and easily assigned while neptunium was more difficult to identify. There may be several reasons for this observation, other than knowing the exact sample composition of the fuel pellet. First, the atomic emission wavelength resources for neptunium are limited and such techniques as hollow cathode discharge lamp have different dynamics than the plasma used in LIBS which results in different emission spectra. Secondly, due to the complex sample of four actinide elements, which all have very dense electronic energy levels, there may be reactions and interactions occurring within the plasma, such as collisional energy transfer, that might be a factor in the reduction in neptunium emission lines. Neptunium has to be analyzed alone using LIBS to further understand the dynamics that may be occurring in the plasma of the mixed actinide fuel pellet sample. The LIBS data suggests that the emission spectrum for the mixed actinide fuel pellet is not simply the sum of the emission spectra of the pure samples but is dependent on the species present in the plasma and the interactions and reactions that occur within the plasma. Finally, many of the neptunium lines are in the near infrared region which is drastically reduced in intensity by the current optical setup and possibly the sensitivity of the emission detector in the spectral region. Once the optics are replaced and the optical collection system is modified and optimized, the probability of observing emission lines for neptunium might be increased significantly. The mixed actinide fuel pellet was analyzed under the experimental conditions listed in Table 1. The LIBS spectra of the fuel pellet are shown in Figures 1-49. The spectra are labeled with the observed wavelength and atomic species (both neutral (I) and ionic (II)). Table 2 is a complete list of the observed and literature based emission wavelengths. The literature wavelengths have references including NIST Atomic Spectra Database (NIST), B.A. Palmer et al. 'An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge' taken at the Kitt Peak National Observatory (KPNO), R.L. Kurucz 1995 Atomic Line Data from the Smithsonian Astrophysical Observatory (SAO), J. Blaise et al. 'The Atomic Spectrum of Plutonium' from Argonne National Laboratory (BFG), and M. Fred and F.S. Tomkins, 'Preliminary Term Analysis of Am I and Am II Spectra' (FT). The dash (-) shown under Ionic State indicates that the ionic state of the transition was not available. In the spectra, the dash (-) is replaced with a question mark (?). Peaks that are not assigned are most likely real features and not noise but cannot be confidently assigned to a transition without further investigation. Several peaks have multiple assignments due to limited resolution of the spectrometer used (20,000, {lambda}/{Delta}{lambda}) and without the availability, at this point in time, of pure PuO{sub 2}, AmO{sub 2}, and NpO{sub 2} to confirm the identity of the peaks. A different spectrometer was used in the plutonium facility to collect the mixed actinide fuel pellet data (Echelle 3000) than the DUO{sub 2}, ThO{sub 2} and uranium ore previously reported [6-8] (Echelle 4000) which accounts for the slight shift in the observed wavelength of the uranium emission lines.« less

  14. Effects of Water Vapor on the Data Quality of the Stable Oxygen Isotopic Ratio of Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Evans, C. U.; White, J. W.; Vaughn, B.; Tans, P. P.; Pardo, L.

    2007-12-01

    The stable oxygen isotopic ratio of carbon dioxide can potentially track fundamental indicators of environmental change such as the balance between photosynthesis and respiration on regional to global scales. The Stable Isotope Laboratory (SIL) at the Institute of Arctic and Alpine Research (INSTAAR), University of Colorado at Boulder, has measured the stable isotopes of atmospheric carbon dioxide from more than 60 NOAA/Earth System Research Laboratory (ESRL) air flask-sampling sites since the early 1990s. If air is sampled without drying, oxygen can exchange between carbon dioxide and water in the flasks, entirely masking the desired signal. An attempt to investigate how water vapor is affecting the δ18O signal is accomplished by comparing the SIL measurements with specific humidity, calculated from the National Climatic Data Center (NCDC) global integrated surface hourly temperature and dew point database, at the time of sampling. Analysis of sites where samples have been collected initially without drying, and subsequently with a drying kit, in conjunction with the humidity data, has led to several conclusions. Samples that initially appear isotopically unaltered, in that their δ18O values are within the expected range, are being subtly influenced by the water vapor in the air. At Bermuda and other tropical to semi-tropical sites, the 'wet' sampling values have a seasonal cycle that is strongly anti-correlated to the specific humidity, while the 'dry' values have a seasonal cycle that is shifted earlier than the specific humidity cycle by 1-2 months. The latter phasing is expected given the seasonal phasing between climate over the ocean and land, while the former is consistent with a small, but measurable isotope exchange in the flasks. In addition, we note that there is a strong (r > 0.96) correlation between the average specific humidity and the percent of rejected samples for 'wet' sampling. This presents an opportunity for determining a threshold of specific humidity, below which air flask samples can be trusted. This approach may allow segregation of suspect and trusted data, and thus provide an improved record of oxygen isotopic ratios of carbon dioxide over the past two decades.

  15. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Duffield, R.B.

    1959-02-24

    S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.

  16. Density of Plutonium Turnings Generated from Machining Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, John Robert; Vigil, Duane M.; Jachimowski, Thomas A.

    The purpose of this project was to determine the density of plutonium (Pu) turnings generated from the range of machining activities, using both surrogate material and machined Pu turnings. Verify that 500 grams (g) of plutonium will fit in a one quart container using a surrogate equivalent volume and that 100 grams of Pu will fit in a one quart Savy container.

  17. Airborne plutonium-239 and americium-241 concentrations measured from the 125-meter Hanford Meteorological Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehmel, G.A.

    1978-01-01

    Airborne plutonium-239 and americium-241 concentrations and fluxes were measured at six heights from 1.9 to 122 m on the Hanford meteorological tower. The data show that plutonium-239 was transported on nonrespirable and small particles at all heights. Airborne americium-241 concentrations on small particles were maximum at the 91 m height.

  18. PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL

    DOEpatents

    Moore, R.H.

    1964-03-24

    A process of recovering plutonium from fuel by dissolution in molten KAlCl/sub 4/ double salt is described. Molten lithium chloride plus stannous chloride is added to reduce plutonium tetrachloride to the trichloride, which is dissolved in a lithium chloride phase while the uranium, as the tetrachloride, is dissolved in a double-salt phase. Separation of the two phases is discussed. (AEC)

  19. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY ADSORPTION

    DOEpatents

    Seaborg, G.T.; Willard, J.E.

    1958-01-01

    A method is presented for the separation of plutonium from solutions containing that element in a valence state not higher than 41 together with uranium ions and fission products. This separation is accomplished by contacting the solutions with diatomaceous earth which preferentially adsorbs the plutonium present. Also mentioned as effective for this adsorbtive separation are silica gel, filler's earth and alumina.

  20. METHOD OF RECOVERING PLUTONIUM VALUES FROM AQUEOUS SOLUTIONS BY CARRIER PRECIPITATION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1959-11-01

    A process is presented for pretreating aqueous nitric acid- plutonium solutions containing a small quantity of hydrazine that has formed as a decomposition product during the dissolution of neutron-bombarded uranium in nitric acid and that impairs the precipitation of plutonium on bismuth phosphate. The solution is digested with alkali metal dichromate or potassium permanganate at between 75 and 100 deg C; sulfuric acid at approximately 75 deg C and sodium nitrate, oxaiic acid plus manganous nitrate, or hydroxylamine are added to the solution to secure the plutonium in the tetravalent state and make it suitable for precipitation on BiPO/sub 4/.

  1. METHOD AND MEANS FOR ELECTROLYTIC PURIFICATION OF PLUTONIUM

    DOEpatents

    Bjorklund, C.W.; Benz, R.; Maraman, W.J.; Leary, J.A.; Walsh, K.A.

    1960-02-01

    The technique of electrodepositing pure plutonium from a fused salt electrolyte of PuCl/sub 3/ and aixati metal halides is described. When an iron cathode is used, the plutonium deposit alloys therewith in the liquid state at the 400 to 600 deg C operating temperature, such liquid being allowed to drip through holes in the cathode and collect in a massive state in a tantallum cup. The process is adaptable to continuous processing by the use of depleted plutonium fuel as the anode: good to excellent separation from fission products is obtained with a Pu--Fe "fission" anode containing representative fractions of Ce, Ru, Zr, La, Mo, and Nb.

  2. PROCESSING OF NEUTRON-IRRADIATED URANIUM

    DOEpatents

    Hopkins, H.H. Jr.

    1960-09-01

    An improved "Purex" process for separating uranium, plutonium, and fission products from nitric acid solutions of neutron-irradiated uranium is offered. Uranium is first extracted into tributyl phosphate (TBP) away from plutonium and fission products after adjustment of the acidity from 0.3 to 0.5 M and heating from 60 to 70 deg C. Coextracted plutonium, ruthenium, and fission products are fractionally removed from the TBP by three scrubbing steps with a 0.5 M nitric acid solution of ferrous sulfamate (FSA), from 3.5 to 5 M nitric acid, and water, respectively, and the purified uranium is finally recovered from the TBP by precipitation with an aqueous solution of oxalic acid. The plutonium in the 0.3 to 0.5 M acid solution is oxidized to the tetravalent state with sodium nitrite and extracted into TBP containing a small amount of dibutyl phosphate (DBP). Plutonium is then back-extracted from the TBP-DBP mixture with a nitric acid solution of FSA, reoxidized with sodium nitrite in the aqueous strip solution obtained, and once more extracted with TBP alone. Finally the plutonium is stripped from the TBP with dilute acid, and a portion of the strip solution thus obtained is recycled into the TBPDBP for further purification.

  3. Selecting a plutonium vitrification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouan, A.

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing ofmore » plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.« less

  4. Preserving Plutonium-244 as a National Asset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Bradley D; Alexander, Charles W; Benker, Dennis

    Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium.more » Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is separated, it would occupy a small volume and would be inexpensive to store while an enrichment capability is developed. Very small quantities could be enriched in existing mass separators to support critical needs.« less

  5. Photoemission Spectroscopy of Delta- Plutonium: Experimental Review

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.

    2002-03-01

    The electronic structure of Plutonium, particularly delta- Plutonium, remains ill defined and without direct experimental verification. Recently, we have embarked upon a program of study of alpha- and delta- Plutonium, using synchrotron radiation from the Advanced Light Source in Berkeley, CA, USA [1]. This work is set within the context of Plutonium Aging [2] and the complexities of Plutonium Science [3]. The resonant photoemission of delta-plutonium is in partial agreement with an atomic, localized model of resonant photoemission, which would be consistent with a correlated electronic structure. The results of our synchrotron- based studies will be compared with those of recent laboratory- based works [4,5,6]. The talk will conclude with a brief discussion of our plans for the future, such as the performance of spin-resolving and dichroic photoemission measurements of Plutonium [7] and the development of single crystal ultrathin films of Plutonium. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, D.K. Shuh, G. van der Laan, D.A. Arena, and J.G. Tobin, “5f Resonant Photoemission from Plutonium”, UCRL-JC-140782, Surf. Sci. Lett., accepted October 2001. 2. B.D. Wirth, A.J. Schwartz, M.J. Fluss, M.J. Caturla, M.A. Wall, and W.G. Wolfer, MRS Bulletin 26, 679 (2001). 3. S.S. Hecker, MRS Bulletin 26, 667 (2001). 4. T. Gouder, L. Havela, F. Wastin, and J. Rebizant, Europhys. Lett. 55, 705 (2001); MRS Bulletin 26, 684 (2001); Phys. Rev. Lett. 84, 3378 (2000). 5. A.J. Arko, J.J. Joyce, L. Morales, J. Wills, J. Lashley, F. Wastin, and J. Rebizant, Phys. Rev. B 62, 1773 (2000). 6. L.E. Cox, O. Eriksson, and B.R. Cooper, Phys. Rev. B 46, 13571 (1992). 7. J. Tobin, D.A. Arena, B. Chung, P. Roussel, J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, and D.K. Shuh, “Photoelectron Spectroscopy of Plutonium at the Advanced Light Source”, UCRL-JC-145703, J. Nucl. Sci. Tech./ Proc. of Actinides 2001, submitted November 2001.

  6. Minimizing Glovebox Glove Breaches, Part III: Deriving Service Lifetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, M.E.; Wilson, K.V.; Maestas, M.M.

    At the Los Alamos Plutonium Facility, various isotopes of plutonium along with other actinides are handled in a glove box environment. Weapons-grade plutonium consists mainly in Pu-239. Pu-238 is another isotope used for heat sources. The Pu-238 is more aggressive regarding gloves due to its higher alpha-emitting characteristic ({approx}300 times more active than Pu-239), which modifies the change-out intervals for gloves. Optimization of the change-out intervals for gloves is fundamental since Nuclear Materials Technology (NMT) Division generates approximately 4 m{sup 3}/yr of TRU waste from the disposal of glovebox gloves. To reduce the number of glovebox glove failures, the NMTmore » Division pro-actively investigates processes and procedures that minimize glove failures. Aging studies have been conducted that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on mechanical data of thermally aged Hypalon{sup R}, and Butasol{sup R} glove samples. Information from this study represent an important baseline in gauging the acceptable standards for polymeric gloves used in a laboratory glovebox environment and will be used later to account for possible presence of dose-rate or synergistic effects in 'combined-environment'. In addition, excursions of contaminants into the operator's breathing zone and excess exposure to the radiological sources associated with unplanned breaches in the glovebox are reduced. (authors)« less

  7. Standard test method for nitrogen dioxide content of the atmosphere (Griess-Saltzman reaction)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1975-01-01

    This method covers the manual determination of nitrogen dioxide (NO/sub 2/) in the atmosphere in the range from 4 to 10,000 ..mu..g/m/sup 3/ (0.002 to 5 ppM) when sampling is conducted in fritted-tip bubblers. For concentrations of NO/sub 2/ in excess of 10 mg/m/sup 3/ (5 ppM), as occur in industrial atmospheres, gas burner stacks, or automotive exhaust, or for samples relatively high in sulfur dioxide content, other methods should be applied. The maximum sampling period is 60 min at a flow rate of 0.4 liter/min. The NO/sub 2/ is absorbed in an azo-dye-forming reagent. A red-violet color is producedmore » within 15 min, the intensity of which is measured spectrophotometrically at 550 nm.« less

  8. Improving the Estimates of Waste from the Recycling of Used Nuclear Fuel - 13410

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Chris; Willis, William; Carter, Robert

    2013-07-01

    Estimates are presented of wastes arising from the reprocessing of 50 GWD/tonne, 5 year and 50 year cooled used nuclear fuel (UNF) from Light Water Reactors (LWRs), using the 'NUEX' solvent extraction process. NUEX is a fourth generation aqueous based reprocessing system, comprising shearing and dissolution in nitric acid of the UNF, separation of uranium and mixed uranium-plutonium using solvent extraction in a development of the PUREX process using tri-n-butyl phosphate in a kerosene diluent, purification of the plutonium and uranium-plutonium products, and conversion of them to uranium trioxide and mixed uranium-plutonium dioxides respectively. These products are suitable for usemore » as new LWR uranium oxide and mixed oxide fuel, respectively. Each unit process is described and the wastes that it produces are identified and quantified. Quantification of the process wastes was achieved by use of a detailed process model developed using the Aspen Custom Modeler suite of software and based on both first principles equilibrium and rate data, plus practical experience and data from the industrial scale Thermal Oxide Reprocessing Plant (THORP) at the Sellafield nuclear site in the United Kingdom. By feeding this model with the known concentrations of all species in the incoming UNF, the species and their concentrations in all product and waste streams were produced as the output. By using these data, along with a defined set of assumptions, including regulatory requirements, it was possible to calculate the waste forms, their radioactivities, volumes and quantities. Quantification of secondary wastes, such as plant maintenance, housekeeping and clean-up wastes, was achieved by reviewing actual operating experience from THORP during its hot operation from 1994 to the present time. This work was carried out under a contract from the United States Department of Energy (DOE) and, so as to enable DOE to make valid comparisons with other similar work, a number of assumptions were agreed. These include an assumed reprocessing capacity of 800 tonnes per year, the requirement to remove as waste forms the volatile fission products carbon-14, iodine-129, krypton-85, tritium and ruthenium-106, the restriction of discharge of any water from the facility unless it meets US Environmental Protection Agency drinking water standards, no intentional blending of wastes to lower their classification, and the requirement for the recovered uranium to be sufficiently free from fission products and neutron-absorbing species to allow it to be re-enriched and recycled as nuclear fuel. The results from this work showed that over 99.9% of the radioactivity in the UNF can be concentrated via reprocessing into a fission-product-containing vitrified product, bottles of compressed krypton storage and a cement grout containing the tritium, that together have a volume of only about one eighth the volume of the original UNF. The other waste forms have larger volumes than the original UNF but contain only the remaining 0.1% of the radioactivity. (authors)« less

  9. Trench ‘Bathtubbing’ and Surface Plutonium Contamination at a Legacy Radioactive Waste Site

    PubMed Central

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (∼12 Bq/L of 239+240Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest 239+240Pu soil activity was 829 Bq/kg in a shallow sample (0–1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the ‘bathtub’ effect. PMID:24256473

  10. An optical method for carbon dioxide isotopes and mole fractions in small gas samples: tracing microbial respiration from soil, litter, and lignin.

    Treesearch

    Steven J. Hall; Wenjuan Huang; Kenneth Hammel

    2017-01-01

    RATIONALE: Carbon dioxide isotope (Δ13C value) measurements enable quantification of the sources of soil microbial respiration, thus informing ecosystem C dynamics. Tunable diode lasers (TDLs) can precisely measure CO2 isotopes at low cost and high throughput, but are seldom used for small samples (≤5 mL). We developed a...

  11. Airborne Bacteria in an Urban Environment

    PubMed Central

    Mancinelli, Rocco L.; Shulls, Wells A.

    1978-01-01

    Samples were taken at random intervals over a 2-year period from urban air and tested for viable bacteria. The number of bacteria in each sample was determined, and each organism isolated was identified by its morphological and biochemical characteristics. The number of bacteria found ranged from 0.013 to 1.88 organisms per liter of air sampled. Representatives of 19 different genera were found in 21 samples. The most frequently isolated organisms and their percent of occurence were Micrococcus (41%), Staphylococcus (11%), and Aerococcus (8%). The bacteria isolated were correlated with various weather and air pollution parameters using the Pearson product-moment correlation coefficient method. Statistically significant correlations were found between the number of viable bacteria isolated and the concentrations of nitric oxide (−0.45), nitrogen dioxide (+0.43), and suspended particulate pollutants (+0.56). Calculated individually, the total number of Micrococcus, Aerococcus, and Staphylococcus, number of rods, and number of cocci isolated showed negative correlations with nitric oxide and positive correlations with nitrogen dioxide and particulates. Statistically significant positive correlations were found between the total number of rods isolated and the concentration of nitrogen dioxide (+0.54) and the percent relative humidity (+0.43). The other parameters tested, sulfur dioxide, hydrocarbons, and temperature, showed no significant correlations. Images PMID:677875

  12. Long Term δ17O, δ18O measurements of tropospheric carbon dioxide and potential application to the global carbon cycle. (Invited)

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.

    2009-12-01

    Stable isotope ratio measurements have played an important role in defining the global carbon cycle for the past half century. In the past decades, mass independent isotopic measurements of stratospheric carbon dioxide have been shown to be an important indice for understanding stratospheric ozone chemistry and the interaction with carbon dioxide. In this specific role, it is the O(1D) produced from ozone photolysis that interacts with CO2 and inscribes a mass independent isotopic composition (see review by (1)). This photochemical process simultaneously provides an isotopic record in carbon dioxide of the integrated exposure to ozone/atomic oxygen and stratosphere troposphere mixing. As a consequence of these processes, it has been observed that tropospheric oxygen possesses a mass independent composition that may be used as a tracer of bioproductivity (2) and as a potential measure of carbon dioxide levels during and following the snowball earth event (3). In addition, the magnitude of the stratospheric anomaly in the troposphere may directly reflect the atmospheric turnover rates of carbon dioxide, which is an important component of the carbon cycle (4, 5). To further develop this new methodology, the rates and magnitude of the relevant processes must be identified and quantified. Samples of tropospheric carbon dioxide were obtained in La Jolla, Ca. over a 10 year plus time period. All samples were taken under identical conditions and analyzed immediately for all three oxygen isotopes. There was no sample storage and samples were thoroughly isolated from water. All conditions, including standardization and mass spectrometry were constant throughout that time period. The data are consistent with an identifiable steady state component of stratospheric carbon dioxide. In addition, other features of the data suggest other processes operative that are presently unaccounted for, and, are only observable in the mass independent composition. References 1. Thiemens, M.H. (2006). Annual Rev. earth Planet Sci. 34, 217 (2006). 2.Luz, B., Bender, M.L., Thiemens, M.H., Boering, K. Nature 400, 547 (2002). 3.Bao, H., Lyons, J.R., Zhou, Chuanming. Nature 453, 504 (2008). 4.Hoag, K.J., Still, C.J., Fung, I.Y., Boering, K.A. Geophys. Res. Lett 32, L02802 (2005). 5.Liang, M-C., Blake, G.A., Yung, Y.L. J. Geophys. Res 113, D12305 (2008).

  13. Temperature dependence and P/Ti ratio in phosphoric acid treatment of titanium dioxide and powder properties.

    PubMed

    Onoda, H; Matsukura, A

    2015-02-01

    Titanium dioxide has photocatalytic activity and is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium dioxide was shaken with phosphoric acid to synthesize a white pigment for cosmetics. Titanium dioxide was treated with 0.1 mol/L of phosphoric acid at various P/Ti molar ratios, and then shaken in hot water for 1 h. The chemical composition, powder properties, photocatalytic activity, colour phase, and smoothness of the obtained powder were studied. The obtained materials indicated XRD peaks of titanium dioxide, however the peaks diminished subsequent to phosphoric acid treatment. The samples included small particles with sub-micrometer size. The photocatalytic activity of the obtained powders decreased, decomposing less sebum on the skin. Samples prepared at high P/Ti ratio with high shaking temperature indicated low whiteness in in L*a*b* colour space. The shaking and heating temperature and P/Ti ratio had influence on the smoothness of the obtained materials. Phosphoric acid treatment of titanium dioxide is an effective method to inhibit photocatalytic activity for a white pigment. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. Controlling Processes on Carbonate Chemistry across the Pacific

    NASA Astrophysics Data System (ADS)

    Hartman, S. E.

    2016-12-01

    The SWIRE NOC Ocean Monitoring System (SNOMS) project is an innovative programme helping to answer important questions about global climate change by using a commercial ship of opportunity to measure carbon in the surface of the ocean. Daily sampling coupled to continuous underway observation from a ship of opportunity (MV Shengking) provides new insights into the processes controlling variability in the carbonate system across the Pacific. The ships track runs from Vancouver (Canada) to Brisbane (Australia). Daily samples were taken on-board and measurements of Total alkalinity (TA) and total dissolved inorganic carbon (DIC) were determined. This was alongside measurements of nutrients and continuous records of temperature, salinity, chlorophyll-fluorescence, carbon dioxide and dissolved oxygen (DO). These sensor based measurements were validated using the discrete samples. Carbon dioxide calculated from DIC and TA showed an offset from the sensor data of up to 8uatm. This and comparisons with climatology were used to calibrate the sensor data. The data have been compared with previous data from the MV Pacific Celebes that ran a similar route until 2012. The data show a clear increase in seawater carbon dioxide, tracking the atmospheric increases. Along track the partial pressure of seawater carbon dioxide varied by over 150 uatm. The highest values were seen just south of the equator in the Pacific, which is an important source region for carbon dioxide to the atmosphere.

  15. Amarillo National Resource Center for Plutonium quarterly technical progress report, August 1, 1997--October 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report summarizes activities of the Amarillo National Resource Center for Plutonium during the quarter. The report describes the Electronic Resource Library; DOE support activities; current and future environmental health and safety programs; pollution prevention and pollution avoidance; communication, education, training, and community involvement programs; and nuclear and other material studies, including plutonium storage and disposition studies.

  16. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, Anthony P.; Stachowski, Russell E.

    1995-01-01

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

  17. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, A.P.; Stachowski, R.E.

    1995-08-08

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

  18. PLUTONIUM PROCESSING OPTIMIZATION IN SUPPORT OF THE MOX FUEL PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GRAY, DEVIN W.; COSTA, DAVID A.

    2007-02-02

    After Los Alamos National Laboratory (LANL) personnel completed polishing 125 Kg of plutonium as highly purified PuO{sub 2} from surplus nuclear weapons, Duke, COGEMA, Stone, and Webster (DCS) required as the next process stage, the validation and optimization of all phases of the plutonium polishing flow sheet. Personnel will develop the optimized parameters for use in the upcoming 330 kg production mission.

  19. Nuclear Matters. A Practical Guide

    DTIC Science & Technology

    2008-01-01

    plutonium science and engineering. Figure 4.6 depicts LANL workers in Technical Area (TA)-55, the Los Alamos plutonium facility. LANL oversees...facility at Los Alamos to produce plutonium pits in a laboratory environment, with a capacity to produce a small number of pits per year . At that...Office of Secure Transportation (OST). Technical Advisors represent the following organizations: Los Alamos National Chair ATSD(NCB) Vice-Chair

  20. Radionuclide concentrations in honey bees from Area G at TA-54 during 1997. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haarmann, T.K.; Fresquez, P.R.

    Honey bees were collected from two colonies located at Los Alamos National Laboratory`s Area G, Technical Area 54, and from one control (background) colony located near Jamez Springs, NM. Samples were analyzed for the following: cesium ({sup 137}Cs), americium ({sup 241}Am), plutonium ({sup 238}Pu and {sup 239,240}Pu), tritium ({sup 3}H), total uranium, and gross gamma activity. Area G sample results from both colonies were higher than the upper (95%) level background concentration for {sup 238}Pu and {sup 3}H.

Top