Science.gov

Sample records for plutonium metal buttons

  1. 31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, A MAN-MADE SUBSTANCE, WAS RARE. SCRAPS RESULTING FROM PRODUCTION AND PLUTONIUM RECOVERED FROM RETIRED NUCLEAR WEAPONS WERE REPROCESSED INTO VALUABLE PURE-PLUTONIUM METAL (9/19/73). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  2. 16. VIEW OF GLOVE BOX WORKSTATIONS WITHIN THE PLUTONIUM BUTTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF GLOVE BOX WORKSTATIONS WITHIN THE PLUTONIUM BUTTON BREAKOUT ROOM. (9/82) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  3. 17. VIEW OF THE FIRST PLUTONIUM BUTTON PRODUCED FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF THE FIRST PLUTONIUM BUTTON PRODUCED FROM THE BUILDING 371 AQUEOUS RECOVERY OPERATION. (9/30/83) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  4. Lawrence Livermore plutonium button critical experiment benchmark

    SciTech Connect

    Trumble, E.F.; Justice, J.B.; Frost, R.L.

    1994-12-31

    The end of the Cold War and the subsequent weapons reductions have led to an increased need for the safe storage of large amounts of highly enriched plutonium. In support of code validation required to address this need, a set of critical experiments involving arrays of weapons-grade plutonium metal that were performed at the Lawrence Livermore National Laboratory (LLNL) in the late 1960s has been revisited. Although these experiments are well documented, discrepancies and omissions have been found in the earlier reports. Many of these have been resolved in the current work, and these data have been compiled into benchmark descriptions. In addition, a computational verification has been performed on the benchmarks using multiple computer codes. These benchmark descriptions are also being made available to the US Department of Energy (DOE)-sponsored Nuclear Criticality Safety Benchmark Evaluation Working Group for dissemination in the DOE Handbook on Evaluated Criticality Safety Benchmark Experiments.

  5. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  6. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  7. Mechanics of plutonium metal aerosolization

    SciTech Connect

    Alvis, J.M.

    1996-06-01

    Reliable estimates of hazards posed by a plutonium release are contingent on the availability of technical data to define the source term for aerosolization of plutonium oxide particles and the resulting size distribution. The release of aerosols from the oxidation of plutonium metal depends partly on the forces acting on the particles while they remain attached to the bulk material and partly on the ability of the airstream around the metal ingot to transport the particles when they detach. The forces that attach or detach the plutonium oxide particles can be described as binding of the particle to the metal or oxide layer around it and expansion and contraction stresses and external vibration. Experimental data forms the basis for defining size distributions and release fractions for plutonium oxide. The relevance of the data must be evaluated in the light of the chemical and physical properties of plutonium metal, plutonium oxide, and intermediate Plutonium compounds. The effects of temperature on reaction kinetics must also be understood when evaluating experimental data. Size distribution functions are remarkably similar for products of all Pu+gas reactions. The distributions are all bimodal. Marked differences are seen in the sizes of large particles depending on reaction temperature and reaction rate. However, the size distributions of small particles are very similar. The bimodal distribution of small particles vanishes as the sizes of the large particles decrease to the point of equal dimensions with the small particles. This is the situation realized for the fine plutonium oxide powder produced by air oxidation at room temperature. This report addresses important factors for defining the formation of an aerosol from the oxidation of plutonium metal. These factors are oxidation kinetics of plutonium metal and plutonium hydride, the particle distribution of products formed by the reactions, and the kinetics of processes limiting entrainment of particles.

  8. Aging phenomenon in metallic plutonium

    SciTech Connect

    Stevens, M.F.; Martz, J.C.

    1998-12-31

    Today, as with weapons science issues, the monitoring of plutonium aging becomes an important issue for surveillance. The reasons for this are many-fold. First, and perhaps most important, plutonium is radioactive, primarily through the process of alpha decay. This process has many consequences. One pragmatic one is that the alpha particles ejected near the surface can be used with an ionization gauge-type detector to assess the presence of fine plutonium particulates, allowing plutonium handlers and facilities to detect the presence of contamination in virtual real time. But this alpha decay has other consequences for weapon integrity which are not well known. The same surface alpha particles which allow it`s detection, can also cause a variety of problems with materials which may be found in contact with plutonium over extended time periods. However, when this alpha emission occurs within the bulk of the plutonium metal, it is essentially trapped. Within the metal atom lattice, it acquires valence electrons and becomes a helium atom. At the same time that these helium atoms accumulate within the lattice, atomic displacements and damage to the plutonium lattice occurs due to collisions with the energetic uranium and alpha particles. At the current time, the authors have insufficient data to either assess or postulate how or when such defect structures may cause a deleterious change in the plutonium or effect other indirect changes. The Laboratory is currently initiating a variety of enhanced surveillance technologies to asses such effects. Results of these studies to understand aging phenomena in plutonium will be reviewed.

  9. Zone refining of plutonium metal

    SciTech Connect

    1997-05-01

    The purpose of this study was to investigate zone refining techniques for the purification of plutonium metal. The redistribution of 10 impurity elements from zone melting was examined. Four tantalum boats were loaded with plutonium impurity alloy, placed in a vacuum furnace, heated to 700{degrees}C, and held at temperature for one hour. Ten passes were made with each boat. Metallographic and chemical analyses performed on the plutonium rods showed that, after 10 passes, moderate movement of certain elements were achieved. Molten zone speeds of 1 or 2 inches per hour had no effect on impurity element movement. Likewise, the application of constant or variable power had no effect on impurity movement. The study implies that development of a zone refining process to purify plutonium is feasible. Development of a process will be hampered by two factors: (1) the effect on impurity element redistribution of the oxide layer formed on the exposed surface of the material is not understood, and (2) the tantalum container material is not inert in the presence of plutonium. Cold boat studies are planned, with higher temperature and vacuum levels, to determine the effect on these factors. 5 refs., 1 tab., 5 figs.

  10. Zone refining of plutonium metal

    SciTech Connect

    Blau, M.S.

    1994-08-01

    The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

  11. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  12. METHOD FOR OBTAINING PLUTONIUM METAL AND ALLOYS OF PLUTONIUM FROM PLUTONIUM TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-11-13

    A process is given for both reducing plutonium trichloride to plutonium metal using cerium as the reductant and simultaneously alloying such plutonium metal with an excess of cerium or cerium and cobalt sufficient to yield the desired nuclear reactor fuel composition. The process is conducted at a temperature from about 550 to 775 deg C, at atmospheric pressure, without the use of booster reactants, and a substantial decontamination is effected in the product alloy of any rare earths which may be associated with the source of the plutonium. (AEC)

  13. Interaction between stainless steel and plutonium metal

    SciTech Connect

    Dunwoody, John T; Mason, Richard E; Freibert, Franz J; Willson, Stephen P; Veirs, Douglas K; Worl, Laura A; Archuleta, Alonso; Conger, Donald J

    2010-01-01

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  14. Characterization of Delta Phase Plutonium Metal

    SciTech Connect

    Rudisill, T.S.

    2000-09-21

    The FB-Line facility has developed the capability to recast plutonium metal using an M-18 reduction furnace with a new casting chamber. Plutonium metal is recast by charging a standard FB-Line magnesia crucible and placing the charge in the casting chamber. The loaded casting chamber is raised into the M-18 reduction furnace and sealed against the furnace head using a copper gasket following the same procedure used for a bomb reduction run. The interior volume of the chamber is evacuated and backfilled with argon gas. The M-18 motor-generator set is used to heat the surface of the casting chamber to nominally 750 Degrees C. Within about 2 hr, the plutonium metal reaches its melting temperature of approximately 640 Degrees C.

  15. Comparative assessment of button cells using a normalized index for potential pollution by heavy metals.

    PubMed

    Moreno-Merino, Luis; Jiménez-Hernández, Maria Emilia; de la Losa, Almudena; Huerta-Muñoz, Virginia

    2015-09-01

    Many household batteries worldwide still end up in landfills or are incinerated due to inefficient collection and recycling schemes. Toxic heavy metals from improperly discarded button cells pose a serious risk to human health and the environment, as they can pollute air, soil and water. This paper analyses a series of button cells selected from batteries available on the retail market, and compares their polluting potential. A total of 64 batteries were subjected to chemical analyses of 19 elements - including metals and metalloids - , and energy density measurements. The samples were from four different brands of each of the four most common button cell technologies (alkaline, zinc-air, silver oxide and lithium). An energy-normalized index - the Weighted Potential Pollution Index (WPPI) - was proposed to compare the polluting potential of the different batteries. The higher the battery WPPI score, the greater the content in toxic elements and the lower the energy output. The results of the chemical composition and energy density varied depending on the construction technology of the button cells. However, significant differences in both variables were also found when comparing different brands within the same technology. The differences in WPPI values confirmed the existence of a significant margin to reduce the environmental impact of discarded button cells simply by avoiding the most polluting options. The choice of the battery with the most favourable WPPI produced a reduction in potential pollution of 3-53% for silver oxide batteries, 4-39% for alkaline, 20-28% for zinc-air and 12-26% for lithium. Comparative potential pollution could be assessed when selecting batteries using an energy-normalized index such as WPPI to reduce the environmental impact of improperly disposed button cells. PMID:25933290

  16. Comparative assessment of button cells using a normalized index for potential pollution by heavy metals.

    PubMed

    Moreno-Merino, Luis; Jiménez-Hernández, Maria Emilia; de la Losa, Almudena; Huerta-Muñoz, Virginia

    2015-09-01

    Many household batteries worldwide still end up in landfills or are incinerated due to inefficient collection and recycling schemes. Toxic heavy metals from improperly discarded button cells pose a serious risk to human health and the environment, as they can pollute air, soil and water. This paper analyses a series of button cells selected from batteries available on the retail market, and compares their polluting potential. A total of 64 batteries were subjected to chemical analyses of 19 elements - including metals and metalloids - , and energy density measurements. The samples were from four different brands of each of the four most common button cell technologies (alkaline, zinc-air, silver oxide and lithium). An energy-normalized index - the Weighted Potential Pollution Index (WPPI) - was proposed to compare the polluting potential of the different batteries. The higher the battery WPPI score, the greater the content in toxic elements and the lower the energy output. The results of the chemical composition and energy density varied depending on the construction technology of the button cells. However, significant differences in both variables were also found when comparing different brands within the same technology. The differences in WPPI values confirmed the existence of a significant margin to reduce the environmental impact of discarded button cells simply by avoiding the most polluting options. The choice of the battery with the most favourable WPPI produced a reduction in potential pollution of 3-53% for silver oxide batteries, 4-39% for alkaline, 20-28% for zinc-air and 12-26% for lithium. Comparative potential pollution could be assessed when selecting batteries using an energy-normalized index such as WPPI to reduce the environmental impact of improperly disposed button cells.

  17. Air transport of plutonium metal : content expansion initiative for the Plutonium Air Transportable (PAT-1) packaging.

    SciTech Connect

    Mann, Paul T.; Caviness, Michael L.; Yoshimura, Richard Hiroyuki

    2010-06-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  18. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    SciTech Connect

    Caviness, Michael L; Mann, Paul T

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  19. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    SciTech Connect

    STAN, MARIUS; HECKER, SIEGFRIED S.

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  20. 15. VIEW OF THE SAFE GEOMETRY PLUTONIUM METAL STORAGE PALLETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF THE SAFE GEOMETRY PLUTONIUM METAL STORAGE PALLETS FROM THE INSIDE OF AN INPUT-OUTPUT STATION. INDIVIDUAL CONTAINERS OF PLUTONIUM ARE STORED IN THE WATER-FILLED, DOUBLE-WALLED STAINLESS STEEL TUBES THAT ARE WELDED ONTO THE PALLETS. (12/3/88) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  1. Determination of plutonium metal origins

    SciTech Connect

    Moody, K.J.

    1995-02-01

    Forensic signatures are present in any Pu sample that can determine the sample`s origin: isotopic ratio of Pu, progeny species that grow into the sample, and contaminant species left over from incomplete purification of the Pu in fuel reprocessing. In the context of intelligence information, this can result in attribution of responsibility for the product of clandestine proliferant operations or material smuggled from existing stockpiles. A list of signature elements and what can be determined from them have been developed. Work needs to be done in converting concentrations of signature species into a quantitative forensic analysis, particularly in regard to reactor performance, but this should require only a small effort. A radiochemical analysis scheme has been developed for measuring these nuclides; more work is needed, particularly for determining fission product concentrations. A sample of Pu metal has been analyzed and several parameters determined that are strong indicators of its point of origin.

  2. Fused salt processing of impure plutonium dioxide to high-purity plutonium metal

    SciTech Connect

    Mullins, L.J.; Christensen, D.C.; Babcock, B.R.

    1982-01-01

    A process for converting impure plutonium dioxide (approx. 96% pure) to high-purity plutonium metal (>99.9%) was developed. The process consists of reducing the oxide to an impure plutonium metal intermediate with calcium metal in molten calcium chloride. The impure intermediate metal is cast into an anode and electrorefined to produce high-purity plutonium metal. The oxide reduction step is being done now on a 0.6-kg scale with the resulting yield being >99.5%. The electrorefining is being done on a 4.0-kg scale with the resulting yield being 80 to 85%. The purity of the product, which averages 99.98%, is essentially insensitive to the purity of the feed metal. The yield, however, is directly dependent on the chemical composition of the feed. To date, approximately 250 kg of impure oxide has been converted to pure metal by this processing sequence. The availability of impure plutonium dioxide, together with the need for pure plutonium metal, makes this sequence a valuable plutonium processing tool.

  3. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  4. Liquid-metal embrittlement of refractory metals by molten plutonium

    SciTech Connect

    Lesuer, D.R.; Bergin, J.B.; McInturff, S.A.; Kuhn, B.A.

    1980-07-01

    Embrittlement by molten plutonium of the refractory metals and alloys W-25 wt % Re, tantalum, molybdenum, and Ta-10 wt % W was studied. At 900/sup 0/C and a strain rate of 10/sup -4/ s/sup -1/, the materials tested may be ranked in order of decreasing susceptibility to liquid-plutonium embrittlement as follows: molybdenum, W-25 wt % Re, Ta-10 wt % W, and tantalum. These materials exhibited a wide range in susceptibility. Embrittlement was found to exhibit a high degree of temperature and strain-rate dependence, and we present arguments that strongly support a stress-assisted, intergranular, liquid-metal corrosion mechanism. We also believe microstructure plays a key role in the extent of embrittlement. In the case of W-25 wt % Re, we have determined that a dealloying corrosion takes place in which rhenium is selectively withdrawn from the alloy.

  5. METHOD FOR OBTAINING PLUTONIUM METAL FROM ITS TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-08-14

    A method was developed for obtaining plutonium metal by direct reduction of plutonium chloride, without the use of a booster, using calcium and lanthamum as a reductant, the said reduction being carried out at temperature in the range of 700 to 850 deg C and at about atmospheric pressure. (AEC)

  6. Investigation on the heavy-metal content of zinc-air button cells.

    PubMed

    Richter, Andrea; Richter, Silke; Recknagel, Sebastian

    2008-01-01

    Within the framework of a German government project (initiated by the Federal Environment Agency) to check the compliance of commercially available batteries with the German Battery Ordinance concerning their heavy metal contents, 18 different types of commercially available zinc-air button cells were analysed for their cadmium, lead and mercury contents. After microwave assisted dissolution with aqua regia, Cd and Pb were determined using inductively coupled plasma mass spectrometry (ICP-MS), and Hg was determined using inductively coupled plasma optical emission spectrometry (ICP OES) and atomic absorption spectrometry. Cd contents were found to be much lower than the permitted limits; Pb contents were also found to be below the limits. Hg contents were found to be near the limits, and in one case the limit was exceeded. PMID:18280730

  7. Preparation of Pure Plutonium Metal Standards for Nondestructive Assay

    SciTech Connect

    S. -T. Hsue; J. E. Stewart; M. S. Krick

    2000-11-01

    To calibrate neutron coincidence and neutron multiplicity counters for passive assay of plutonium, certain detector parameters must be determined. When one is using small plutonium metal samples, biases can be introduced from non-zero multiplication and impurities. This paper describes preparing small, pure plutonium metal standards with well-known geometries to enable accurate multiplication corrections and with acceptably low levels of impurities. To minimize multiplication, these standards are designed as 2-cm-diameter foils with varying thicknesses and masses of 1.4, 3.6, and 7.2 g plutonium. These standards will significantly improve characterization and calibration of neutron coincidence and multiplicity counters. They can also be equally useful for gamma-ray spectrometry and calorimetry. Five sets will be made: four for other US Department of Energy plutonium facilities, and one set to remain at Los Alamos. We will also describe other nondestructive assay standards that are planned for the next few years.

  8. Plutonium metal and oxide container weld development and qualification

    SciTech Connect

    Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

    1996-01-01

    Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

  9. CSER 96-023: CSER for PFP glovebox HC-21A with 4.4 kilogram plutonium cans

    SciTech Connect

    Wittekind, W.D., Westinghouse Hanford

    1996-12-17

    This criticality safety evaluation report addresses the criticality impact of increasing plutonium oxide content from 2.5 kg oxide storage cans to 5.0 kg oxide Pu storage cans. Glovebox HC-21A is used to move plutonium metal buttons from cans into furnace boats prior to transferring them to the muffle furnace gloveboxes. Glovebox HC-21A supports muffle furnace operations where plutonium buttons are burned to form paw, (H/Pu < 2). The paw, is returned to glovebox HC-21A and sieved and packed into the 4.,f kg Pu cans. The plutonium mass limit is set at 7.5 kg plutonium when plutonium metal is present. The plutonium mass limit is set at 15. kg plutonium when no plutonium metal is present. Additionally, there are other requirements to assure criticality safety during this operation.

  10. Criteria for safe storage of plutonium metals and oxides

    SciTech Connect

    Not Available

    1994-12-01

    This standard establishes safety criteria for safe storage of plutonium metals and plutonium oxides at DOE facilities; materials packaged to meet these criteria should not need subsequent repackaging to ensure safe storage for at least 50 years or until final disposition. The standard applied to Pu metals, selected alloys (eg., Ga and Al alloys), and stabilized oxides containing at least 50 wt % Pu; it does not apply to Pu-bearing liquids, process residues, waste, sealed weapon components, or material containing more than 3 wt % {sup 238}Pu. Requirements for a Pu storage facility and safeguards and security considerations are not stressed as they are addressed in detail by other DOE orders.

  11. Button batteries

    MedlinePlus

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  12. Massive subcritical compact arrays of plutonium metal

    SciTech Connect

    Rothe, R.E.

    1998-04-01

    Two experimental critical-approach programs are reported. Both were performed at the Rocky Flats Plant near Denver, Colorado; and both date back to the late 1960s. Both involve very large arrays of massive plutonium ingots. These ingots had been cast in the foundry at the Rocky Flats Plant as part of their routine production operations; they were not specially prepared for either study. Consequently, considerable variation in ingot mass is encountered. This mass varied between approximately 7 kg and a little more than 10 kg. One program, performed in the spring of 1969, involved stacked arrays of ingots contained within cylindrical, disk-shaped, thin, steel cans. This program studied four arrays defined by the pattern of steel cans in a single layer. The four were: 1 x N, 3 x N, 2 x 2 x N, and 3 x 3 x N. The second was a tightly-packed, triangular-pitched patterns; the last two were square-pitched patterns. The other program, performed about a year earlier, involved similar ingots also contained in similar steel cans, but these canned plutonium ingots were placed in commercial steel drums. This study pertained to one-, two-, and three-layered horizontal arrays of drums. All cases proved to be well subcritical. Most would have remained subcritical had the parameters of the array under study been continued infinitely beyond the reciprocal multiplication safety limit. In one case for the drum arrays, an uncertain extrapolation of the data of the earlier program suggests that criticality might have eventually been attained had several thousand additional kilograms of plutonium been available for use.

  13. DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID

    SciTech Connect

    Rudisill, T.; Pierce, R.

    2012-02-21

    The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu up to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.1-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a 'standard' 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 C (boiling). These conditions will result in an estimated Pu metal dissolution rate of {approx}11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The maximum KF concentration is dictated by a potential room-temperature Pu-Gd-F precipitation issue at low Pu concentrations. The purpose of the experimental work described in this report was two-fold. Initially a series of screening experiments was performed to measure the dissolution rate of Pu metal as functions of the HNO{sub 3}, KF, and Gd or B concentrations. The objective of the screening tests was to propose optimized conditions for subsequent flowsheet demonstration tests. Based on the rate measurements, this study found that optimal dissolution conditions in solutions containing 0.5-1.0 g/L Gd occurred in 8

  14. Minutes of the 28th Annual Plutonium Sample Exchange Meeting. Part II: metal sample exchange

    SciTech Connect

    Not Available

    1984-01-01

    Contents of this publication include the following list of participating laboratories; agenda; attendees; minutes of October 25 and 26 meeting; and handout materials supplied by speakers. The handout materials cover the following: statistics and reporting; plutonium - chemical assay 100% minus impurities; americium neptunium, uranium, carbon and iron data; emission spectroscopy data; plutonium metal sample exchange; the calorimetry sample exchange; chlorine determination in plutonium metal using phyrohydrolysis; spectrophotometric determination of 238-plutonium in oxide; plutonium measurement capabilities at the Savannah River Plant; and robotics in radiochemical laboratory.

  15. Plutonium metal exchange program : current status and statistical analysis

    SciTech Connect

    Tandon, L.; Eglin, J. L.; Michalak, S. E.; Picard, R. R.; Temer, D. J.

    2004-01-01

    The Rocky Flats Plutonium (Pu) Metal Sample Exchange program was conducted to insure the quality and intercomparability of measurements such as Pu assay, Pu isotopics, and impurity analyses. The Rocky Flats program was discontinued in 1989 after more than 30 years. In 2001, Los Alamos National Laboratory (LANL) reestablished the Pu Metal Exchange program. In addition to the Atomic Weapons Establishment (AWE) at Aldermaston, six Department of Energy (DOE) facilities Argonne East, Argonne West, Livermore, Los Alamos, New Brunswick Laboratory, and Savannah River are currently participating in the program. Plutonium metal samples are prepared and distributed to the sites for destructive measurements to determine elemental concentration, isotopic abundance, and both metallic and nonmetallic impurity levels. The program provides independent verification of analytical measurement capabilies for each participating facility and allows problems in analytical methods to be identified. The current status of the program will be discussed with emphasis on the unique statistical analysis and modeling of the data developed for the program. The discussion includes the definition of the consensus values for each analyte (in the presence and absence of anomalous values and/or censored values), and interesting features of the data and the results.

  16. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    SciTech Connect

    Wayne, David M.

    2014-01-13

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  17. Experimental critical parameters of plutonium metal cylinders flooded with water

    SciTech Connect

    1996-07-01

    Forty-nine critical configurations are reported for experiments involving arrays of 3 kg plutonium metal cylinders moderated and reflected by water. Thirty-four of these describe systems assembled in the laboratory, while 15 others are derived critical parameters inferred from 46 subcritical cases. The arrays included 2x2xN, N = 2, 3, 4, and 5, in one program and 3x3x3 configurations in a later study. All were three-dimensional, nearly square arrays with equal horizontal lattice spacings but a different vertical lattice spacing. Horizontal spacings ranged from units in contact to 180 mm center-to-center; and vertical spacings ranged from about 80 mm to almost 400 mm center-to-center. Several nearly-equilateral 3x3x3 arrays exhibit an extremely sensitive dependence upon horizontal separation for identical vertical spacings. A line array of unreflected and essentially unmoderated canned plutonium metal units appeared to be well subcritical based on measurements made to assure safety during the manual assembly operations. All experiments were performed at two widely separated times in the mid-1970s and early 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory.

  18. Plutonium

    NASA Astrophysics Data System (ADS)

    Clark, David L.; Hecker, Siegfried S.; Jarvinen, Gordon D.; Neu, Mary P.

    The element plutonium occupies a unique place in the history of chemistry, physics, technology, and international relations. After the initial discovery based on submicrogram amounts, it is now generated by transmutation of uranium in nuclear reactors on a large scale, and has been separated in ton quantities in large industrial facilities. The intense interest in plutonium resulted fromthe dual-use scenario of domestic power production and nuclear weapons - drawing energy from an atomic nucleus that can produce a factor of millions in energy output relative to chemical energy sources. Indeed, within 5 years of its original synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of unprecedented power, and it seemed that the new element might lead the human race to the brink of self-annihilation. Instead, it has forced the human race to govern itself without resorting to nuclear war over the past 60 years. Plutonium evokes the entire gamut of human emotions, from good to evil, from hope to despair, from the salvation of humanity to its utter destruction. There is no other element in the periodic table that has had such a profound impact on the consciousness of mankind.

  19. In situ purification, alloying and casting methodology for metallic plutonium

    NASA Astrophysics Data System (ADS)

    Lashley, Jason C.; Blau, Michael S.; Staudhammer, Karl P.; Pereyra, Ramiro A.

    Plutonium metal that has been double ER (electrorefined/electrorefining) was further purified via zone refining, using a floating molten zone to minimize the introduction of impurities. The temperature of the molten zone was 750°C, and the atmosphere was 10 -5 Pa. A total of ten zone refining passes were made at a travel rate of 1.5 cm/h. There were 19 elements reduced to quantities below the minimum detectable limits (MDL) by zone refining, while P, K, and W were significantly reduced. The zone-refined metal was then used in an in situ distillation, alloying, and casting step to prepare tapered specimens for single-crystal growth experiments. Specifically, 241Am was distilled from Pu metal by levitating Pu metal with 1 wt% Ga in the melt in a Crystallox vertical electromagnetic levitation crucible at 10 -5 Pa. The Pu is alloyed with Ga to stabilize the δ phase (fcc symmetry) upon solidification. The Pu was chill-cast directly from the electromagnetic levitation field into 1- cm tapered specimens. A water-cooled ceramic mold was used, and the Pu metal was cooled at a rate of 100°C/min. A microstructure examination of the specimen showed 10 × 25 μm acicular grains with a density of 15.938 g/cm 3 (±0.002 g/cm 3).

  20. Atomistic models of point defects in plutonium metal.

    SciTech Connect

    Valone, S. M.; Baskes, M. I.; Uberuaga, B. P.; Voter, A. F.

    2003-01-01

    The aging properties of plutonium (Pu) metal and alloys are. driven by a combination of materials composit ion, p rocessing history, and self-irradiat ion effects . Understanding these driving forces requires a knowledge of both t h ermodynamic and defect properties of the material . The multiplicity of phases and the small changes in tempe rat u re, pressure, and/or stress that can induce phase changes lie at the heart of these properties . In terms of radiation damage, Pu metal represents a unique situation because of the large volume chan ges that accompany the phase changes . The most workable form of the meta l is the fcc (S-) phase, which in practice is stabi l ized by addit io n of a ll oying el eme n ts s u c h as Ga or Al. The thermodynamically stable phase at ambient conditions is the monoclinic (a-) phase, which, however, is 2 0 % lower i n volume th an the S phase . In stabilized Pu metal, there is an in t er play between th e n atu ral swe l li n g tendencies of fcc metals and the volume-contraction tendency of the u n d erlyin g thermodynamicall y stable phase. This study exp lores the point d efect pr operties that are necessary to model the long-term outcome of this interplay.

  1. Criteria for Preparing and Packaging Plutonium Metals and Oxides for Long-Term Storage

    SciTech Connect

    1994-12-01

    This Standard provides criteria for packaging of plutonium metals and stabilized oxides for storage periods of at least 50 years. To meet the criteria, plutonium-bearing materials must be in stable forms and be packaged in containers designed to maintain their integrity both under normal storage conditions and during anticipated handling accidents.

  2. PROCESS OF REMOVING PLUTONIUM VALUES FROM SOLUTION WITH GROUP IVB METAL PHOSPHO-SILICATE COMPOSITIONS

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Schubert, J.; Boyd, G.E.

    1957-10-29

    A process for separating plutonium values from aqueous solutions which contain the plutonium in minute concentrations is described. These values can be removed from an aqueous solution by taking an aqueous solution containing a salt of zirconium, titanium, hafnium or thorium, adding an aqueous solution of silicate and phosphoric acid anions to the metal salt solution, and separating, washing and drying the precipitate which forms when the two solutions are mixed. The aqueous plutonium containing solution is then acidified and passed over the above described precipi-tate causing the plutonium values to be adsorbed by the precipitate.

  3. Using magnetization measurements to detect small amounts of plutonium hydride formation in plutonium metal

    SciTech Connect

    Kim, Jae Wook; Mielke, Charles H.; Zapf, Vivien; Baiardo, Joseph P.; Mitchell, Jeremy N.; Richmond, Scott; Schwartz, Daniel S.; Mun, Eun D.; Smith, Alice Iulia

    2014-10-20

    We report the formation of plutonium hydride in 2 at % Ga-stabilized δ-Pu, with 1 atomic % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here we use magnetization, X-ray and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuHx, largely on the surface of the sample with x ~ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with precipitates of ferromagnetic PuH1.9.

  4. Dissolution of plutonium metal in HNO/sub 3/-N/sub 2/H/sub 4/-KF

    SciTech Connect

    Karraker, D G

    1983-07-01

    Plutonium metal dissolves in HNO/sub 3/-N/sub 2/H/sub 4/.HNO/sub 3/-KF solution to yield a Pu/sup 3 +/ solution without an accompanying precipitation of plutonium oxide solids. The reaction evolves less than 0.2 mole of gas per mole of plutonium dissolved; the gas contains only 3% H/sub 2/. About 10/sup -3/ moles of HN/sub 3/ are produced per mole of plutonium dissolved. Optimum conditions for dissolving both alpha-phase and delta-phase plutonium metal were developed. Possible applications are to the recovery of plutonium metal or the processing of irradiated plutonium metal and alloys.

  5. Dissolution of Plutonium Metal Using a HAN Process

    SciTech Connect

    CROWDER, MARKL.

    2004-06-30

    study. This study was the first part of a larger flowsheet development / demonstration program for the plutonium metal dissolving process. The results of the study may be useful for similar flowsheets.

  6. DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID

    SciTech Connect

    Rudisill, T. S.; Pierce, R. A.

    2012-07-02

    The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu up to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.05-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a “standard” 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 °C (boiling). These conditions will result in an estimated Pu metal dissolution rate of ~11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The data also indicate that lower KF concentrations would yield dissolution rates for B comparable to those observed with Gd at the same HNO{sub 3} concentration and dissolution temperature. To confirm that the optimal conditions identified by the dissolution rate measurements can be used to dissolve Pu metal up to 6.75 g/L in the presence of representative concentrations of Fe and Gd or B, a series of experiments was performed to demonstrate the flowsheets. In three of the five experiments, the offgas generation rate during the dissolution was measured and samples were analyzed for hydrogen gas (H{sub 2}). The use of

  7. Simulation and analysis of the plutonium oxide/metal storage containers subject to various loading conditions

    SciTech Connect

    Gong, C.; Miller, R.F.

    1995-05-01

    The structural and functional requirements of the Plutonium Oxide/Metal Storage Containers are specified in the Report ``Complex 21 Plutonium Storage Facility Material Containment Team Technical Data Report`` [Complex 21, 1993]. There are no existing storage containers designed for long term storage of plutonium and current codes, standards or regulations do not adequately cover this case. As there is no extensive experience with the long term (50+ years) storage of plutonium, the design of high integrity storage containers must address many technical considerations. This analysis discusses a few potential natural phenomena that could theoretically adversely affect the container integrity over time. The plutonium oxide/metal storage container consists of a primary containment vessel (the outer container), a bagless transfer can (the inner container), two vertical plates on top of the primary containment vessel, a circular plate (the flange) supported by the two plates, tube for gas sampling operations mounted at the center of the primary containment vessel top and a spring system being inserted in the cavity between the primary containment vessel and the cap of the bagless transfer can. The dimensions of the plutonium oxide/metal storage container assembly can be found in Figure 2-1. The primary container, the bagless transfer can, and all the attached components are made of Type 304L stainless steel.

  8. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  9. Separating Metallic Beryllium from Plutonium by Selective Dissolution with Ammonium Fluoride

    SciTech Connect

    Torres, R A

    2006-11-29

    Plutonium metal is stabilized for long-term storage by calcining to produce PuO{sub 2}. However, if beryllium is present, the calcined product may have a high neutron dose rate because of the {sup 9}Be({alpha},n){sup 12}C reaction in the finely divided oxide mixture. (At LLNL, inadvertent calcining of a mixture of {approx}500 g Pu/50 g Be produced a neutron source of {approx}5 R/hr.) Therefore, for health physics reasons, we would like a convenient procedure to remove beryllium from plutonium with high selectivity. Two reagents, sodium hydroxide and ammonium fluoride, were considered for aqueous processing. Each reagent selectively dissolves beryllium, which can be separated from the insoluble plutonium by decanting/filtering operations followed by water washes to remove the excess reagent. The washed plutonium is calcined for storage; the beryllium and wash fractions are solidified for disposal.

  10. Recent irradiation tests of uranium-plutonium-zirconium metal fuel elements

    SciTech Connect

    Pahl, R.G.; Lahm, C.E.; Villarreal, R.; Hofman, G.L.; Beck, W.N.

    1986-09-01

    Uranium-Plutonium-Zirconium metal fuel irradiation tests to support the ANL Integral Fast Reactor concept are discussed. Satisfactory performance has been demonstrated to 2.9 at.% peak burnup in three alloys having 0, 8, and 19 wt % plutonium. Fuel swelling measurements at low burnup in alloys to 26 wt % plutonium show that fuel deformation is primarily radial in direction. Increasing the plutonium content in the fuel diminishes the rate of fuel-cladding gap closure and axial fuel column growth. Chemical redistribution occurs by 2.1 at.% peak burnup and generally involves the inward migration of zirconium and outward migration of uranium. Fission gas release to the plenum ranges from 46% to 56% in the alloys irradiated to 2.9 at.% peak burnup. No evidence of deleterious fuel-cladding chemical or mechanical interaction was observed.

  11. Virtual button interface

    DOEpatents

    Jones, Jake S.

    1999-01-01

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.

  12. Virtual button interface

    DOEpatents

    Jones, J.S.

    1999-01-12

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  13. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    SciTech Connect

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-09-30

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl{sub 4}) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl{sub 4}. Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet.

  14. Use of calorimetric assay for operational and accountability measurements of pure plutonium metal

    SciTech Connect

    Cremers, Teresa L; Sampson, Thomas E

    2010-01-01

    Plutonium pure metal products (PMP) are high purity plutonium metal items produced by electrorefining. The plutonium metal is produced as an approximately 3-kg ring. Accountability measurements for the electro-refining runs are typically balance/weight factor (incoming impure metal), chemistry (pure metal rings), and calorimetric assay or neutron counting of the crucibles and other wastes. The PMP items are qualified for their end use by extensive chemical assay. After PMP materials are made they are often sent to the vault for storage before being sent to the casting process, the next step in the production chain. The chemical assay of PMP items often takes a few weeks; however, before the metal items are allowed into the vault they must be measured. Non-destructive assay personnel measure the metals either by multiplicity neutron counting or calorimetric assay, depending on which instrument is available, thus generating comparisons between non-destructive assay and chemical assay. The suite of measurements, calorimetric assay, chemical assay, and neutron mUltiplicity counting is compared for a large group of PMP items.

  15. Forensic investigation of plutonium metal: a case study of CRM 126

    DOE PAGES

    Byerly, Benjamin L.; Stanley, Floyd; Spencer, Khal; Colletti, Lisa; Garduno, Katherine; Kuhn, Kevin; Lujan, Elmer; Martinez, Alex; Porterfield, Donivan; Rim, Jung; et al

    2016-06-27

    In our study, a certified plutonium metal reference material (CRM 126) with a known production history is examined using analytical methods that are commonly employed in nuclear forensics for provenancing and attribution. Moreover, the measured plutonium isotopic composition and actinide assay are consistent with values reported on the reference material certificate. Model ages from U/Pu and Am/Pu chronometers agree with the documented production timeline. Finally, these results confirm the utility of these analytical methods and highlight the importance of a holistic approach for forensic study of unknown materials.

  16. Modeling of Diffusion of Plutonium in Other Metals and of Gaseous Species in Plutonium-Based Systems

    SciTech Connect

    Bernard R. Cooper; Gayanath W. Fernando; S. Beiden; A. Setty; E.H. Sevilla

    2004-07-02

    Establish standards for temperature conditions under which plutonium, uranium, or neptunium from nuclear wastes permeates steel, with which it is in contact, by diffusion processes. The primary focus is on plutonium because of the greater difficulties created by the peculiarities of face-centered-cubic-stabilized (delta) plutonium (the form used in the technology generating the waste).

  17. STRIPPING PROCESS FOR PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-10-01

    A method for removing silver, nickel, cadmium, zinc, and indium coatings from plutonium objects while simultaneously rendering the plutonium object passive is described. The coated plutonium object is immersed as the anode in an electrolyte in which the plutonium is passive and the coating metal is not passive, using as a cathode a metal which does not dissolve rapidly in the electrolyte. and passing an electrical current through the electrolyte until the coating metal is removed from the plutonium body.

  18. CSER 98-003: criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    SciTech Connect

    ERICKSON, D.G.

    1999-02-25

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21 A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into Glovebox HC-21A are limited to those with a hydrogen to fissile atom ratio (H/X) {le} 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k{sub eff} = 0.95 (including uncertainties). Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle.

  19. CSER 98-003: Criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    SciTech Connect

    ERICKSON, D.G.

    1999-02-23

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into GloveboxHC-21 A are limited to those with a hydrogen to fissile atom ratio (H/X) {le} 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k{sub eff} = 0.95. Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle.

  20. Technical documentation to support the evaluation of handling of plutonium metal

    SciTech Connect

    COOPER, T.D.

    1999-08-31

    In 1997, a can containing a plutonium metal ingot was opened. The sides of the inner storage can had collapsed. As the inner can was opened, an apparent flame appeared to issue from the opening. Based on the reaction and possible pressurization of the glovebox, a positive Unreviewed Safety Question (USQ) screening was issued. This document contains some of the technical documents to resolve the screening.

  1. OCH Button Test

    SciTech Connect

    Kurita, C.H.; /Fermilab

    1987-05-01

    A test was conducted to make a check on the yield stress of the copper spacer buttons to be used in OCH. The tested button was made from Copper no. 110, cold drawn rod, which has a documented yield stress value of 48,000 psi. The button was put into compression with the load applied to the face of the button. The resulting deflection vs. the applied cross load was then charted with the width of the chart having a 10,000 kg scale. While the chart speed was set at 1 cm/min, the cross head speed was set at .05 cm/min. To find a value of Young's Modulus for the OCH button, the compression test was run again with a chart width scale of 5,000 kg. The chart speed was set at 10 cm/min and the cross head speed at .05 cm/min. The curve generated on the chart was linear in nature until the button reached its yield point. Here, the slope of the curve began to change, increasing over a small area until a new linear curve was established. The point at which the slope changed would be considered the yielding point of the material, but here, there was no single distinct point. Instead there was a smooth transition between the two linear portions of the curve. In order to find where the yield point would occur, two lines were drawn, representing the best fit of each of the two slopes of the curve (before and after the yield point). The intersection of these lines was taken to be the point from which the yield stress could be calculated.

  2. Polyethylene-reflected plutonium metal sphere : subcritical neutron and gamma measurements.

    SciTech Connect

    Mattingly, John K.

    2009-11-01

    Numerous benchmark measurements have been performed to enable developers of neutron transport models and codes to evaluate the accuracy of their calculations. In particular, for criticality safety applications, the International Criticality Safety Benchmark Experiment Program (ICSBEP) annually publishes a handbook of critical and subcritical benchmarks. Relatively fewer benchmark measurements have been performed to validate photon transport models and codes, and unlike the ICSBEP, there is no program dedicated to the evaluation and publication of photon benchmarks. Even fewer coupled neutron-photon benchmarks have been performed. This report documents a coupled neutron-photon benchmark for plutonium metal reflected by polyethylene. A 4.5-kg sphere of ?-phase, weapons-grade plutonium metal was measured in six reflected configurations: (1) Bare; (2) Reflected by 0.5 inch of high density polyethylene (HDPE); (3) Reflected by 1.0 inch of HDPE; (4) Reflected by 1.5 inches of HDPE; (5) Reflected by 3.0 inches of HDPE; and (6) Reflected by 6.0 inches of HDPE. Neutron and photon emissions from the plutonium sphere were measured using three instruments: (1) A gross neutron counter; (2) A neutron multiplicity counter; and (3) A high-resolution gamma spectrometer. This report documents the experimental conditions and results in detail sufficient to permit developers of radiation transport models and codes to construct models of the experiments and to compare their calculations to the measurements. All of the data acquired during this series of experiments are available upon request.

  3. Rapid Separation Methods to Characterize Actinides and Metallic Impurities in Plutonium Scrap Materials at SRS

    SciTech Connect

    Maxwell, S.L. III; Jones, V.D.

    1998-07-01

    The Nuclear Materials Stabilization and Storage Division at SRS plans to stabilize selected plutonium scrap residue materials for long term storage by dissolution processing and plans to stabilize other plutonium vault materials via high-temperature furnace processing. To support these nuclear material stabilization activities, the SRS Analytical Laboratories Department (ALD) will provide characterization of materials required prior to the dissolution or the high-firing of these materials. Lab renovations to install new analytical instrumentation are underway to support these activities that include glove boxes with simulated-process dissolution and high- pressure microwave dissolution capability. Inductively-coupled plasma atomic emission spectrometry (ICP-AES), inductively- coupled mass spectrometry (ICP-MS) and thermal-ionization mass spectrometry (TIMS) will be used to measure actinide isotopics and metallic impurities. New high-speed actinide separation methods have been developed that will be applied to isotopic characterization of nuclear materials by TIMS and ICP-MS to eliminate isobaric interferences between Pu-238 /U- 238 and Pu-241/Am-241. TEVA Resin, UTEVA Resin, and TRU Resin columns will be used with vacuum-assisted flow rates to minimize TIMS and ICP-MS sample turnaround times. For metallic impurity analysis, rapid column removal methods using UTEVA Resin, AGMP-1 anion resin and AG MP-50 cation resin have also been developed to remove plutonium and uranium matrix interferences prior to ICP-AES and ICP- MS measurements.

  4. 2nd Annual Los Alamos Plutonium Metal Standard Exchange Workshop : "preliminary" results

    SciTech Connect

    Tandon, L.; Slemmons, A. K.

    2002-01-01

    The Rocky Flats Plutonium (Pu) Metal Sample Exchange program was conducted to insure the quality and intercomparability of measurements such as Pu assay, Pu isotopics, and impurity analyses. This program was discontinued in 1989 after more than 30 years. Los Alamos National Laboratory (LANL) has reestablished the Pu metal exchange program. During the first year, five DOE facilities, Argonne East, Argonne West, Livermore, Los Alamos, and New Brunswick Laboratory, Savannah River and the Atomic Weapons Establishment (AWE)' at Aldermaston are participating in the program. Plutonium metal samples are being prepared and distributed to the various sites primarily for destructive measurements for elemental concentration, isotopic abundance, and both metallic and nonmetallic impurity levels. The program is intended to provide independent verification of analytical measurement capability for each participating facility and to allow problems to be identified. Significants achievements in FY02 will be described. Results from category 1 elements and comparisons with Rocky Flats standards exchange metal historical data will also be presented. The roles and responsibilities of LANL and the external laboratories have been defined.

  5. Buttons and Beaux (Arts).

    ERIC Educational Resources Information Center

    Busch, David D.

    1997-01-01

    Describes graphical elements--backgrounds, buttons, rules, and enhancements like drop shadows--that can transform Web pages without significantly increasing download time. Used thoughtfully and consistently, such graphical elements can create a unique style that serves as a personal Web page trademark. (AEF)

  6. The Button Project

    ERIC Educational Resources Information Center

    Armstrong, Charley

    2005-01-01

    In this article, the author describes The Button Project. It started as a dream, a need to educate future generations about the Holocaust, to teach tolerance, and to remember the past. Under the auspices of the Jewish Federation of Peoria, a small band of people joined together with the goal of teaching people about the Holocaust so that it will…

  7. The Haida Button Blanket.

    ERIC Educational Resources Information Center

    Johnson, Vesta

    In the Haida nation, there are two phratries, Eagle and Raven, divided into a number of clans sharing one or more emblems. These emblems, inherited from the mother's line, adorn the button blankets which are the traditional ceremonial robes that serve to identify the family of the wearer. Written instructions and diagrams guide students in…

  8. Nickel dermatitis provoked by buttons in blue jeans.

    PubMed

    Brandrup, F; Larsen, F S

    1979-05-01

    A total of 79 nickel-sensitive patients (65 women, 14 men) were examined with regard to a present or past eczema corresponding to contact with metallic buttons in blue jeans; 63% of the women and 64% of the men had or had had eczema of this kind. Among 40% of the women below 30 years this was the primary site of manifestation. The seriousness of this sensitivity is illustrated by the fact that two-thirds of the nickel sensitive patients with button dermatitis had or had had eczema of the hands. The conclusion is that blue jean buttons should be made of a material which does not contain nickel, for instance zinc alloys which are presently used for some metallic buttons, or they should be designed in such a way that the button does not directly contact the skin.

  9. Illuminated push-button switch

    NASA Technical Reports Server (NTRS)

    Iwagiri, T.

    1983-01-01

    An illuminated push-button switch is described. It is characterized by the fact that is consists of a switch group, an operator button opening and closing the switch group, and a light-emitting element which illuminates the face of the operator button.

  10. Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Freiboth, Cameron J.; Gibbs, Frank E.

    2000-03-01

    This report documents the position that the concentration of Uranium-233 ({sup 233}U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The {sup 233}U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ({sup 233}U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns.

  11. Combined exposure of F344 rats to beryllium metal and plutonium-239 dioxide

    SciTech Connect

    Finch, G.L.; Carlton, W.W.; Rebar, A.H.

    1995-12-01

    Nuclear weapons industry workers have the potential for inhalation exposures to plutonium (Pu) and other agents, such as beryllium (Be) metal. The purpose of this ongoing study is to investigate potential interactions between Pu and Be in the production of lung tumors in rats exposed by inhalation to particles of {sup 239}PuO{sub 2}, Be metal, or these agents in combination. Inhaled Pu deposited in the lung delivers high-linear-energy transfer, alpha-particle radiation and is known to induce pulmonary cancer in laboratory animals. Although the epidemiological evidence implicating Be in the induction of human lung cancer is weak and controversial, various studies in laboratory animals have demonstrated the pulmonary carcinogenicity of Be. As a result, Be is classified as a suspect human carcinogen in the United STates and as a demonstrated human carcinogen by the International Agency for Research on Cancer. This study is in progress.

  12. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  13. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    DOE PAGES

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-03-03

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less

  14. An Evaluation of Monte Carlo Simulations of Neutron Multiplicity Measurements of Plutonium Metal

    SciTech Connect

    Mattingly, John; Miller, Eric; Solomon, Clell J. Jr.; Dennis, Ben; Meldrum, Amy; Clarke, Shaun; Pozzi, Sara

    2012-06-21

    In January 2009, Sandia National Laboratories conducted neutron multiplicity measurements of a polyethylene-reflected plutonium metal sphere. Over the past 3 years, those experiments have been collaboratively analyzed using Monte Carlo simulations conducted by University of Michigan (UM), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and North Carolina State University (NCSU). Monte Carlo simulations of the experiments consistently overpredict the mean and variance of the measured neutron multiplicity distribution. This paper presents a sensitivity study conducted to evaluate the potential sources of the observed errors. MCNPX-PoliMi simulations of plutonium neutron multiplicity measurements exhibited systematic over-prediction of the neutron multiplicity distribution. The over-prediction tended to increase with increasing multiplication. MCNPX-PoliMi had previously been validated against only very low multiplication benchmarks. We conducted sensitivity studies to try to identify the cause(s) of the simulation errors; we eliminated the potential causes we identified, except for Pu-239 {bar {nu}}. A very small change (-1.1%) in the Pu-239 {bar {nu}} dramatically improved the accuracy of the MCNPX-PoliMi simulation for all 6 measurements. This observation is consistent with the trend observed in the bias exhibited by the MCNPX-PoliMi simulations: a very small error in {bar {nu}} is 'magnified' by increasing multiplication. We applied a scalar adjustment to Pu-239 {bar {nu}} (independent of neutron energy); an adjustment that depends on energy is probably more appropriate.

  15. View of button board which accommodates the 1200 button switches ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of button board which accommodates the 1200 button switches which manually control the indicating pilot lights on the model board. Not all switches are active, some switches were installed for a planned, but never constructed, system expansion. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA

  16. [Button gastrostomy in children].

    PubMed

    Kozlov, Iu A; Novozhilov, V A; Rasputin, A A; Us, G P; Kuznetsova, N N

    2015-01-01

    For the period January 2002 to December 2013 it was performed 84 interventions for introduction of gastrostomy tube. The first group included 24 open operations and the second group had 60 laparoscopic operations by using of button devices MIC-KEY (Kimberly-Clark, Roswell, USA) in neonates and infants. Statistically significant difference was not observed during comparison of demographic data of patients. Differences in groups were found in statistical analysis of intra- and postoperative parameters (p<0.05). Mean duration of surgery in the first group was 37.29 min, in the second group - 23.97 min. Time to start of feeding and transition to complete enteral nutrition was less in patients who underwent laparoscopic surgery than after open intervention (10.5 and 19.13 hours, 23.79 and 35.88 hours respectively; p<0.05). It was revealed augmentation of hospital stay in the 1st group in comparison with the 2(nd) group (11.71 and 7.09 days respectively; p<0.05). Frequency of postoperative complications was 18.33% in the 2(nd) group and 24% - in the 1st group (p<0.05). The authors consider that button devices are simply and effective technique of gastrostomy establishment in children. It is associated with minimal surgery duration and allows to start early enteral nutrition in comparison with open techniques.

  17. Plutonium Immobilization Puck Handling

    SciTech Connect

    Kriikku, E.

    1999-01-26

    The Plutonium Immobilization Project (PIP) will immobilize excess plutonium and store the plutonium in a high level waste radiation field. To accomplish these goals, the PIP will process various forms of plutonium into plutonium oxide, mix the oxide powder with ceramic precursors, press the mixture into pucks, sinter the pucks into a ceramic puck, load the pucks into metal cans, seal the cans, load the cans into magazines, and load the magazines into a Defense Waste Processing Facility (DPWF) canister. These canisters will be sent to the DWPF, an existing Savannah River Site (SRS) facility, where molten high level waste glass will be poured into the canisters encapsulating the ceramic pucks. Due to the plutonium radiation, remote equipment will perform these operations in a contained environment. The Plutonium Immobilization Project is in the early design stages and the facility will begin operation in 2005. This paper will discuss the Plutonium Immobilization puck handling conceptual design and the puck handling equipment testing.

  18. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-02-01

    Plutonium hexafluoride is a satisfactory fluorinating agent and may be reacted with various materials capable of forming fluorides, such as copper, iron, zinc, etc., with consequent formation of the metal fluoride and reduction of the plutonium to the form of a lower fluoride. In accordance with the present invention, it has been found that the reactivity of plutonium hexafluoride with other fluoridizable materials is so great that the process may be used as a method of separating plutonium from mixures containing plutonium hexafluoride and other vaporized fluorides even though the plutonium is present in but minute quantities. This process may be carried out by treating a mixture of fluoride vapors comprising plutonium hexafluoride and fluoride of uranium to selectively reduce the plutonium hexafluoride and convert it to a less volatile fluoride, and then recovering said less volatile fluoride from the vapor by condensation.

  19. PREPARATION OF PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-07-01

    Methods are presented for the electro-deposition of plutonium from fused mixtures of plutonium halides and halides of the alkali metals and alkaline earth metals. Th salts, preferably chlorides and with the plutonium prefer ably in the trivalent state, are placed in a refractory crucible such as tantalum or molybdenam and heated in a non-oxidizing atmosphere to 600 to 850 deg C, the higher temperatatures being used to obtain massive plutonium and the lower for the powder form. Electrodes of graphite or non reactive refractory metals are used, the crucible serving the cathode in one apparatus described in the patent.

  20. Dynamic and quasi-static simulation and analysis of the plutonium oxide/metal containers subject to 30-foot dropping

    SciTech Connect

    Gong, C.; Miller, R.F.

    1995-01-01

    This analysis of the plutonium oxide/metal storage containers is in support of the design and testing project The results from the dynamic analysis show some important facts that have not been considered before. The internal bagless transfer can will have higher stress than the primary container. The quasi-static analysis provides a conservative solution. In both vertical upright drop (dynamic) and inclined upside down drop (quasi-static) the containers are structurally sound.

  1. Continuous plutonium dissolution apparatus

    DOEpatents

    Meyer, F.G.; Tesitor, C.N.

    1974-02-26

    This invention is concerned with continuous dissolution of metals such as plutonium. A high normality acid mixture is fed into a boiler vessel, vaporized, and subsequently condensed as a low normality acid mixture. The mixture is then conveyed to a dissolution vessel and contacted with the plutonium metal to dissolve the plutonium in the dissolution vessel, reacting therewith forming plutonium nitrate. The reaction products are then conveyed to the mixing vessel and maintained soluble by the high normality acid, with separation and removal of the desired constituent. (Official Gazette)

  2. PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM

    DOEpatents

    Fried, S.; Baumbach, H.L.

    1959-12-01

    A process is described for forming plutonlum hydride powder by reacting hydrogen with massive plutonium metal at room temperature and the product obtained. The plutonium hydride powder can be converted to plutonium powder by heating to above 200 deg C.

  3. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    SciTech Connect

    Richmond, Scott; Bridgewater, Jon S; Ward, John W; Allen, Thomas A

    2009-01-01

    Pressure-Composition-Temperature (PCT) data are presented for the plutonium-hydrogen (Pu-H) and plutonium-deuterium (Pu-D) systems in the solubility region up to terminal solubility (precipitation of PuH{sub 2}). The heats of solution for PuH{sub s} and PuD{sub s} are determined from PCT data in the ranges 350-625 C for gallium alloyed Pu and 400-575 C for unalloyed Pu. The solubility of high purity plutonium alloyed with 2 at.% gallium is compared to high purity unalloyed plutonium. Significant differences are found in hydrogen solubility for unalloyed Pu versus gallium alloyed Pu. Differences in hydrogen solubility due to an apparent phase change are observable in the alloyed and unalloyed solubilities. The effect of iron impurities on Pu-Ga alloyed Pu is shown via hydrogen solubility data as preventing complete homogenization.

  4. SEPARATION OF PLUTONIUM VALUES FROM OTHER METAL VALUES IN AQUEOUS SOLUTIONS BY SELECTIVE COMPLEXING AND ADSORPTION

    DOEpatents

    Beaton, R.H.

    1960-06-28

    A process is given for separating tri- or tetravalent plutonium from fission products in an aqueous solution by complexing the fission products with oxalate, tannate, citrate, or tartrate anions at a pH value of at least 2.4 (preferably between 2.4 and 4), and contacting a cation exchange resin with the solution whereby the plutonium is adsorbed while the complexed fission products remain in solution.

  5. Arthroscopically confirmed femoral button deployment.

    PubMed

    Sonnery-Cottet, Bertrand; Rezende, Fernando C; Martins Neto, Ayrton; Fayard, Jean M; Thaunat, Mathieu; Kader, Deiary F

    2014-06-01

    The anterior cruciate ligament TightRope RT (Arthrex, Naples, FL) is a graft suspension device for cruciate ligament reconstruction. It is an adjustable-length graft loop cortical fixation device designed to eliminate the requirement for loop length calculation and to facilitate complete graft fill of short femoral sockets that are common with anatomic anterior cruciate ligament placement. The adjustable loop length means "one size fits all," thus removing the need for multiple implant sizes and allowing graft tensioning even after fixation. However, the device has been associated with the same complications that have been described with EndoButton (Smith & Nephew Endoscopy, Andover, MA) fixation. The button of the TightRope RT may remain in the femoral tunnel rather than flipping outside of the tunnel to rest on the lateral femoral cortex, or it may become jammed inside the femoral canal. Conversely, the button may be pulled too far off the femoral cortex into the overlying soft tissue and flip in the substance of the vastus lateralis. We describe a new and simple arthroscopic technique to directly visualize the deployment and seating of the TightRope button on the lateral cortex of the femur to avoid all the aforementioned complications. PMID:25126492

  6. Arthroscopically confirmed femoral button deployment.

    PubMed

    Sonnery-Cottet, Bertrand; Rezende, Fernando C; Martins Neto, Ayrton; Fayard, Jean M; Thaunat, Mathieu; Kader, Deiary F

    2014-06-01

    The anterior cruciate ligament TightRope RT (Arthrex, Naples, FL) is a graft suspension device for cruciate ligament reconstruction. It is an adjustable-length graft loop cortical fixation device designed to eliminate the requirement for loop length calculation and to facilitate complete graft fill of short femoral sockets that are common with anatomic anterior cruciate ligament placement. The adjustable loop length means "one size fits all," thus removing the need for multiple implant sizes and allowing graft tensioning even after fixation. However, the device has been associated with the same complications that have been described with EndoButton (Smith & Nephew Endoscopy, Andover, MA) fixation. The button of the TightRope RT may remain in the femoral tunnel rather than flipping outside of the tunnel to rest on the lateral femoral cortex, or it may become jammed inside the femoral canal. Conversely, the button may be pulled too far off the femoral cortex into the overlying soft tissue and flip in the substance of the vastus lateralis. We describe a new and simple arthroscopic technique to directly visualize the deployment and seating of the TightRope button on the lateral cortex of the femur to avoid all the aforementioned complications.

  7. Plutonium storage criteria

    SciTech Connect

    Chung, D.; Ascanio, X.

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  8. PLUTONIUM ELECTROREFINING CELLS

    DOEpatents

    Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

    1963-07-16

    Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

  9. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  10. Effect of the electron decay of metallic fission products on the chemical and phase compositions of an uranium-plutonium fuel irradiated by fast neutrons

    NASA Astrophysics Data System (ADS)

    Bondarenko, G. G.; Bulatov, G. S.; Gedgovd, K. N.; Lyubimov, D. Yu.; Yakushkin, M. M.

    2011-11-01

    After fast-neutron irradiation, uranium-plutonium nitride U0.8Pu0.2N is shown to acquire a complex structure consisting of a solid solution that is based on the nitrides of uranium, plutonium, americium, neptunium, zirconium, yttrium, and lanthanides and contains condensed phases U2N3, CeRu2, BaTe, Ba3N2, CsI, Sr3N2, LaSe, metallic molybdenum, technetium, and U(Ru, Rh, Pd)3 intermetallics. The contents and compositions of these phases are calculated at a temperature of 900 K and a burn-up fraction up to 14% (U + Pu). The change in the composition of the irradiated uranium-plutonium nitride is studied during the electron decay of metallic radionuclides. The kinetics of transformation of U103Ru3, 137CsI, 140Ba3N2, and 241PuN is calculated.

  11. Plutonium dissolution process

    DOEpatents

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  12. Preconcentration of low levels of americium and plutonium from waste waters by synthetic water-soluble metal-binding polymers with ultrafiltration

    SciTech Connect

    Smith, B.F.; Gibson, R.R.; Jarvinen, G.D.; Robison, T.W.; Schroeder, N.C.; Stalnaker, N.D.

    1997-12-31

    A preconcentration approach to assist in the measurement of low levels of americium and plutonium in waste waters has been developed based on the concept of using water-soluble metal-binding polymers in combination with ultrafiltration. The method has been optimized to give over 90% recovery and accountability from actual waste water.

  13. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  14. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  15. Physicochemical characterization of discrete weapons grade plutonium metal particles originating from the 1960 BOMARC incident

    NASA Astrophysics Data System (ADS)

    Bowen, James M.

    The goal of this research was to investigate the physicochemical properties of weapons grade plutonium particles originating from the 1960 BOMARC incident for the purpose of predicting their fate in the environment and to address radiation protection and nuclear security concerns. Methods were developed to locate and isolate the particles in order to characterize them. Physical, chemical, and radiological characterization was performed using a variety of techniques. And finally, the particles were subjected to a sequential extraction procedure, a series of increasingly aggressive reagents, to simulate an accelerated environmental exposure. A link between the morphology of the particles and their partitioning amongst environmental mechanisms was established.

  16. Plutonium and americium separation from salts

    DOEpatents

    Hagan, Paul G.; Miner, Frend J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.

  17. Plutonium controversy

    SciTech Connect

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)

  18. Potential pitfall of the EndoButton.

    PubMed

    Simonian, P T; Behr, C T; Stechschulte, D J; Wickiewicz, T L; Warren, R F

    1998-01-01

    A clinical and cadaveric example show the EndoButton (Acufex Microsurgical Inc, Mansfield, MA), used for anterior cruciate ligament endoscopic fixation, flipping outside the extensor mechanism or vastus lateralis rather than flipping directly outside the lateral femoral cortex. This pitfall was caused by overdrilling the femoral socket beyond the recommended 6 mm and overadvancing the EndoButton beyond the required depth to flip the EndoButton. Overdrilling the femoral socket to a depth of 10 mm still allows the EndoButton to rest properly on the cortex without soft tissue interposition. Increasing angles of knee flexion at the time of Endobutton placement decrease the safe distance beyond the lateral femoral cortex for flipping without soft tissue interposition. There is also potential to flip the EndoButton within the substance of the vastus lateralis, but the flipping action is blunted and not discrete.

  19. PROCESS OF PRODUCING SHAPED PLUTONIUM

    DOEpatents

    Anicetti, R.J.

    1959-08-11

    A process is presented for producing and casting high purity plutonium metal in one step from plutonium tetrafluoride. The process comprises heating a mixture of the plutonium tetrafluoride with calcium while the mixture is in contact with and defined as to shape by a material obtained by firing a mixture consisting of calcium oxide and from 2 to 10% by its weight of calcium fluoride at from 1260 to 1370 deg C.

  20. Evaluation of synthetic water-soluble metal-binding polymers with ultrafiltration for selective concentration of americium and plutonium

    SciTech Connect

    Smith, B.F.; Gibson, R.R.; Jarvinen, G.D.; Jones, M.M.; Lu, M.T.; Robison, T.W.; Schroeder, N.C.; Stalnaker, N.

    1997-12-31

    Routine counting methods and ICP-MS are unable to directly measure the new US Department of Energy (DOE) regulatory level for discharge waters containing alpha-emitting radionuclides of 30 pCi/L total alpha or the 0.05 pCi/L regulatory level for Pu or Am activity required for surface waters at the Rocky Flats site by the State of Colorado. This inability indicates the need to develop rapid, reliable, and robust analytical techniques for measuring actinide metal ions, particularly americium and plutonium. Selective separation or preconcentration techniques would aid in this effort. Water-soluble metal-binding polymers in combination with ultrafiltration are shown to be an effective method for selectively removing dilute actinide ions from acidic solutions of high ionic strength. The actinide-binding properties of commercially available water-soluble polymers and several polymers which have been reported in the literature were evaluated. The functional groups incorporated in the polymers were pyrrolidone, amine, oxime, and carboxylic, phosphonic, or sulfonic acid. The polymer containing phosphonic acid groups gave the best results with high distribution coefficients and concentration factors for {sup 241}Am(III) and {sup 238}Pu(III)/(IV) at pH 4 to 6 and ionic strengths of 0.1 to 4.

  1. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  2. SEPARATION OF PLUTONIUM FROM URANIUM

    DOEpatents

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  3. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    SciTech Connect

    Richmond, Scott; Bridgewater, Jon S; Ward, John W; Allen, Thomas H

    2010-01-01

    Hydrogen is exothermically absorbed in many transition metals, all rare earths and the actinides. The hydrogen gas adsorbs, dissociates and diffuses into these metals as atomic hydrogen. Absorbed hydrogen is generally detrimental to Pu, altering its properties and greatly enhancing corrosion. Measuring the heat of solution of hydrogen in Pu and its alloys provides significant insight into the thermodynamics driving these changes. Hydrogen is present in all Pu metal unless great care is taken to avoid it. Heats of solution and formation are provided along with evidence for spinodal decomposition.

  4. Pneumopericardium due to ingestion of button battery

    PubMed Central

    Soni, Jai Prakash; Choudhary, Sandeep; Sharma, Pramod; Makwana, Mohan

    2016-01-01

    Mostly ingested button batteries passed through the gastrointestinal tract without any adverse effects. But button battery can lead to hazardous complications including tracheoesophageal fistula (TEF), especially when the battery is impacted in the esophagus. Urgent esophagoscopic removal of the battery is essential in all cases. Once the TEF is identified, conservative management is the initial treatment of choice. Delayed primary repair can be tried if spontaneous closure does not occur. Here in we want to report a rare case of air leak syndrome, pneumo-pericardium secondary to the corrosive effect of a button battery and child recovered completely with conservative management. PMID:27011705

  5. Pneumopericardium due to ingestion of button battery.

    PubMed

    Soni, Jai Prakash; Choudhary, Sandeep; Sharma, Pramod; Makwana, Mohan

    2016-01-01

    Mostly ingested button batteries passed through the gastrointestinal tract without any adverse effects. But button battery can lead to hazardous complications including tracheoesophageal fistula (TEF), especially when the battery is impacted in the esophagus. Urgent esophagoscopic removal of the battery is essential in all cases. Once the TEF is identified, conservative management is the initial treatment of choice. Delayed primary repair can be tried if spontaneous closure does not occur. Here in we want to report a rare case of air leak syndrome, pneumo-pericardium secondary to the corrosive effect of a button battery and child recovered completely with conservative management.

  6. Modeling of diffusion of plutonium in other metals and of gaseous species in plutonium-based systems. 1998 annual progress report

    SciTech Connect

    Cooper, B.R.; Fernando, G.W.

    1998-06-01

    'The problem being addressed is to establish standards for storage conditions for containers (e.g. stainless steel containers) meant to hold nuclear waste for long periods of time, e.g. fifty years, such as to ensure the integrity of the containers without being excessively conservative, i.e., being unnecessarily costly. Allowable storage temperature is an important parameter for the standards. Diffusion processes are central to certain processes that initiate corrosion of the containers or that lead to the release of gases increasing pressure that can rupture the container. The scientific goals of this project are: (1) to predict diffusion constants on an ab initio basis, i.e. diffusion distances in specified time at specified temperature, for atomic species from plutonium-based waste materials into storage container materials such as stainless steel or vice versa, (2) to predict the time development at specified temperature of complex diffusion processes in plutonium-based oxide type waste materials in the presence of water vapor such that gases may be released within a container. This predictive ability will help to provide information relevant to setting standards for waste container vessels and storage conditions. This project was initiated on September 15, 1997, so that this summary reports progress after about 2/3 of the first year of a three-year project.'

  7. Benchmark Analysis of Subcritical Noise Measurements on a Nickel-Reflected Plutonium Metal Sphere

    SciTech Connect

    John D. Bess; Jesson Hutchinson

    2009-09-01

    Subcritical experiments using californium source-driven noise analysis (CSDNA) and Feynman variance-to-mean methods were performed with an alpha-phase plutonium sphere reflected by nickel shells, up to a maximum thickness of 7.62 cm. Both methods provide means of determining the subcritical multiplication of a system containing nuclear material. A benchmark analysis of the experiments was performed for inclusion in the 2010 edition of the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Benchmark models have been developed that represent these subcritical experiments. An analysis of the computed eigenvalues and the uncertainty in the experiment and methods was performed. The eigenvalues computed using the CSDNA method were very close to those calculated using MCNP5; however, computed eigenvalues are used in the analysis of the CSDNA method. Independent calculations using KENO-VI provided similar eigenvalues to those determined using the CSDNA method and MCNP5. A slight trend with increasing nickel-reflector thickness was seen when comparing MCNP5 and KENO-VI results. For the 1.27-cm-thick configuration the MCNP eigenvalue was approximately 300 pcm greater. The calculated KENO eigenvalue was about 300 pcm greater for the 7.62-cm-thick configuration. The calculated results were approximately the same for a 5-cm-thick shell. The eigenvalues determined using the Feynman method are up to approximately 2.5% lower than those determined using either the CSDNA method or the Monte Carlo codes. The uncertainty in the results from either method was not large enough to account for the bias between the two experimental methods. An ongoing investigation is being performed to assess what potential uncertainties and/or biases exist that have yet to be properly accounted for. The dominant uncertainty in the CSDNA analysis was the uncertainty in selecting a neutron cross-section library for performing the analysis of the data. The uncertainty in the

  8. Effect of the electron decay of metallic fission products on the chemical and phase compositions of an irradiated uranium-plutonium fuel

    NASA Astrophysics Data System (ADS)

    Bondarenko, G. G.; Bulatov, G. S.; Gedgovd, K. N.; Lyubimov, D. Yu.; Yakushkin, M. M.

    2009-10-01

    A complex structure is shown to form in the uranium-plutonium nitride U0.8Pu0.2N irradiated by fast neutrons. It consists of a uranium-based solid solution; plutonium, zirconium, yttrium, and lanthanide nitrides; and individual condensed phases such as U2N3, BaTe, CeRu2, LaSe, Rh3Te2, USe, Ba3N2, CsI, Sr3N2, metallic molybdenum, and U(Ru, Rh, Pd)3 intermetallic compounds. The amount and composition of these phases are calculated at temperatures of 900 and 1900 K in the process of depletion to 18% heavy atoms (U + Pu). The variation of the composition of the irradiated uranium-plutonium nitride is studied upon the electron decay of metallic radionuclides. The kinetics of the transformations of 89Sr3N2 and 90Sr3N2 to 89YN + 89Y and 90ZrN + 90Zr, respectively, is calculated.

  9. Plutonium inventories for stabilization and stabilized materials

    SciTech Connect

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials within 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.

  10. Cleanup of plutonium oxide reduction black salts

    SciTech Connect

    Giebel, R.E.; Wing, R.O.

    1986-12-17

    This work describes pyrochemical processes employed to convert direc oxide reduction (DOR) black salts into discardable white salt and plutonium metal. The DOR process utilizes calcium metal as the reductant in a molten calcium chloride solvent salt to convert plutonium oxide to plutonium metal. An insoluble plutonium-rich dispersion called black salt sometimes forms between the metal phase and the salt phase. Black salts accumulated for processing were treated by one of two methods. One method utilized a scrub alloy of 70 wt % magnesium/30 wt % zinc. The other method utilized a pool of plutonium metal to agglomerate the metal phase. The two processes were similar in that calcium metal reductant and calcium chloride solvent salt were used in both cases. Four runs were performed by each method, and each method produced greater than 93% conversion of the black salt.

  11. Volatile fluoride process for separating plutonium from other materials

    DOEpatents

    Spedding, F. H.; Newton, A. S.

    1959-04-14

    The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

  12. VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS

    DOEpatents

    Spedding, F.H.; Newton, A.S.

    1959-04-14

    The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

  13. PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES

    DOEpatents

    Wahl, A.C.

    1957-11-12

    A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.

  14. Plutonium aging

    SciTech Connect

    Olivas, J.D.

    1999-03-01

    The author describes the plutonium aging program at the Los Alamos National Laboratory. The aging of plutonium components in the US nuclear weapons stockpile has become a concern due to several events: the end of the cold war, the cessation of full scale underground nuclear testing as a result of the Comprehensive Test Ban Treaty (CTBT) and the closure of the Rocky Flats Plant--the site where the plutonium components were manufactured. As a result, service lifetimes for nuclear weapons have been lengthened. Dr. Olivas will present a brief primer on the metallurgy of plutonium, and will then describe the technical approach to ascertaining the long-term changes that may be attributable to self-radiation damage. Facilities and experimental techniques which are in use to study aging will be described. Some preliminary results will also be presented.

  15. Purification of aqueous plutonium chloride solutions via precipitation and washing.

    SciTech Connect

    Stroud, M. A.; Salazar, R. R.; Abney, Kent David; Bluhm, E. A.; Danis, J. A.

    2003-01-01

    Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

  16. Low temperature oxidation of plutonium

    SciTech Connect

    Nelson, Art J.; Roussel, Paul

    2013-05-15

    The initial oxidation of gallium stabilized {delta}-plutonium metal at 193 K has been followed using x-ray photoelectron spectroscopy. On exposure to Langmuir quantities of oxygen, plutonium rapidly forms a trivalent oxide followed by a tetravalent plutonium oxide. The growth modes of both oxides have been determined. Warming the sample in vacuum, the tetravalent oxide reduces to the trivalent oxide. The kinetics of this reduction reaction have followed and the activation energy has been determined to be 38.8 kJ mol{sup -1}.

  17. Button Osteoma: A Review of Ten Cases

    PubMed Central

    Chae, Soo Yuhl; Sim, Hyun Bo; Kim, Min Ji; Jang, Yong Hyun; Lee, Seok-Jong; Kim, Do Won

    2015-01-01

    Background Button osteoma presents as small circumscribed ivory-like lumps on the skull vault. Although not rare, its diagnosis can be challenging for dermatologists. Objective To clarify the clinical characteristics of button osteoma by reviewing 10 cases. Methods Ten patients diagnosed with button osteoma at the Department of Dermatology, Kyungpook National University Hospital, between January 2011 and August 2014 were enrolled. We retrospectively reviewed medical records and analyzed demographic and clinical characteristics including sex, age, sites, number of lesions, symptoms, duration, histopathological finding, radiological findings, and treatment. Results All patients presented with an asymptomatic small circumscribed hard lump fixed to a bony structure. There were 9 female and 1 male patient, and the mean age was 54 years (range, 28~61 years). The most common site was the forehead, and disease duration ranged from 2 weeks to more than 20 years. The differential diagnosis included cranial exostosis, ballooned osteoma, epidermal cyst, and lipoma. Simple radiography, ultrasonography, and computed tomography (CT) were used to make a confirmative diagnosis. Histopathological findings showed lamellated bony structures with poor vascularization. Ostectomy was performed for 5 patients, and no recurrence was detected within an average of 13.4 months after treatment. Conclusion This review characterized button osteoma. Surgical excision is a useful therapeutic modality after CT-based diagnosis. Further studies with more patients are required to confirm the findings. PMID:26273154

  18. Mass-Loss Buttons Monitor Material Degradation

    NASA Technical Reports Server (NTRS)

    Webster, C. N.

    1982-01-01

    Small button-sized samples attached to parent materials are simple way of monitoring degradation of parent in harsh environments. Samples determine effects of multiple exposures to environmental extremes without disturbing fit or function of parent. They are less costly and more convenient than complex instrumentation normally required to measure complete temperature/pressure time history of parent component.

  19. NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Walsh, K.A.

    1959-05-12

    A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.

  20. Activities to Grow On: Buttons, Beads, and Beans.

    ERIC Educational Resources Information Center

    Gonzolis, Amy; And Others

    1992-01-01

    Presents new ideas for using buttons, beans, and beads as teaching manipulatives for elementary school children. The ideas include a button scavenger hunt, a button count, a cup puppet bean game, a numbers guessing game with beans in jars, and a bead stringing activity. (SM)

  1. SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE

    DOEpatents

    Watt, G.W.

    1958-08-19

    An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

  2. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  3. Device for mechanically stabilizing web ribbon buttons during growth initiation

    NASA Technical Reports Server (NTRS)

    Henry, Paul K. (Inventor); Fortier, Edward P. (Inventor)

    1992-01-01

    The invention relates to a stabilization device for stabilizing dendritic web seed buttons during initiation of crystal growth from a float melt zone. The invention includes angular maintenance means for maintaining a constant angular orientation between the axis of a growth initiation seed and the upper surface of a web button during withdrawal of the web button from the melt. In the preferred embodiment, the angular means includes an adjustable elevation tube which surrounds the seed, the weight of which may be selectively supported by the seed button during web button withdrawal.

  4. PROCESS OF SEPARATING PLUTONIUM VALUES BY ELECTRODEPOSITION

    DOEpatents

    Whal, A.C.

    1958-04-15

    A process is described of separating plutonium values from an aqueous solution by electrodeposition. The process consists of subjecting an aqueous 0.1 to 1.0 N nitric acid solution containing plutonium ions to electrolysis between inert metallic electrodes. A current density of one milliampere io one ampere per square centimeter of cathode surface and a temperature between 10 and 60 d C are maintained. Plutonium is electrodeposited on the cathode surface and recovered.

  5. CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Fried, S.; Davidson, N.R.

    1957-09-10

    A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

  6. Probing phonons in plutonium

    SciTech Connect

    Farber, D; Chiang, T; Krisch, M; Occelli, F; Schwartz, A; Wall, M; Xu, R; Boro, C

    2003-12-17

    Plutonium (Pu) is well known to have complex and unique physico-chemical properties [1]. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}' {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts. Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimental data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter-atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single-grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc {delta}-Pu-Ga alloy using the high resolution

  7. The Blue Button Project: Engaging Patients in Healthcare by a Click of a Button.

    PubMed

    Mohsen, Mona Omar; Aziz, Hassan A

    2015-01-01

    The Blue Button project has become a way for many Americans to download their health records by just a click in any way that suits them, such as in print, on a thumb drive, or on their mobile devices and smartphones. Several organizations have developed and applied Blue Buttons on their websites to allow beneficiaries to securely access and view personal medical information and claims. The purpose of this literature review is to highlight the significance of the Blue Button project in the field of health information management. Findings suggest that the project could empower and engage consumers and patients in a healthcare system by allowing access to medical records, thereby promoting better management and overall improvement of their healthcare. To date, the project has gained wide support from insurers, technology companies, and health providers despite the challenges of standardization and interoperability. PMID:26755898

  8. The Blue Button Project: Engaging Patients in Healthcare by a Click of a Button

    PubMed Central

    Mohsen, Mona Omar; Aziz, Hassan A.

    2015-01-01

    The Blue Button project has become a way for many Americans to download their health records by just a click in any way that suits them, such as in print, on a thumb drive, or on their mobile devices and smartphones. Several organizations have developed and applied Blue Buttons on their websites to allow beneficiaries to securely access and view personal medical information and claims. The purpose of this literature review is to highlight the significance of the Blue Button project in the field of health information management. Findings suggest that the project could empower and engage consumers and patients in a healthcare system by allowing access to medical records, thereby promoting better management and overall improvement of their healthcare. To date, the project has gained wide support from insurers, technology companies, and health providers despite the challenges of standardization and interoperability. PMID:26755898

  9. Investigation of equation of states and electronic properties of Am and Cm metals in their gamma plutonium phase using GGA+SO+U method

    NASA Astrophysics Data System (ADS)

    Verma, Ashok K.; Modak, P.; Sharma, Surinder M.; Sikka, S. K.

    2013-06-01

    Pressure-volume equation of state for Am and Cm metals were studied in their gamma plutonium phase using GGA+SO+U method. Non-magnetic density functional theory with GGA exchange-correlation failed to estimate structural parameters and equation of states accurately. As expected, inclusion of onsite Hubbard interaction (U) between 5f electrons shows enormous effect on electronic and bulk properties. Nonmagnetic GGA+SO+U (=4.0 eV for Am and 5.5 eV for Cm) calculated EOS gives very good match with that of experimental data. Equally good match of EOS was found for spin-polarized GGA+SO+U calculations with much smaller Hubbard parameter.

  10. Plutonium Story

    DOE R&D Accomplishments Database

    Seaborg, G. T.

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  11. Plutonium story

    SciTech Connect

    Seaborg, G T

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  12. Evaluation of Heat Dissipation in the BPM Buttons

    SciTech Connect

    Pinayev,I.; Blednyhk, A.

    2009-05-04

    Growth of circulating current in the storage rings drastically increases heating of the beam position monitor (BPM) buttons due to the induced trapped modes is drastically increasing. Excessive heating can lead to the errors in the measuring of beam position or even catastrophic failures of the pick-up assembly. In this paper we present calculations of heat generated in the button for different geometries and materials. The obtained results are used for the optimization of the NSLS-II BPM buttons design.

  13. Button osteoma: its etiology and pathophysiology.

    PubMed

    Eshed, Vered; Latimer, Bruce; Greenwald, Charles M; Jellema, Lyman M; Rothschild, Bruce M; Wish-Baratz, Susanne; Hershkovitz, Israel

    2002-07-01

    The present study investigates a circumscribed bony overgrowth on the cranial vault, known as button osteoma (BtO) and referred to here as button lesion (BtL). We discuss its anthropological implications. Data on its histology, location, and population distribution (by age, race, and gender) are provided. Microscopically, BtL is composed of well-organized dense lamellated bone which is poorly vascularized and with very few osteocytes. It forms a dome-shaped roof over an underlying diploeized area which includes the ectocranial table. The frequency of BtL is similar in modern (37.6%) and archaeological (41.1%) populations, in blacks, whites, males, and females, and correlates with age. It is rare in nonhuman primates. Fifty-five percent of the human skulls studied by us had BtL only on the parietal, 23.6% on the frontal, and 3.6% on the occipital bones. Fifteen percent had BtL on both the frontal and parietal bones. No lateral preference was found. Most skulls with BtL (64.1%) had only one lesion, 20.4% had two BtL, and 15.4% demonstrated multiple BtL. The average number of button osteomas on an affected skull was 1.97. The frequency of large osteomas (0.5-1.0 cm) was similar in young and old age groups. The demographic characteristics of BtL, mainly its high frequency among ancient and modern populations, its independence of sex and race, its scarcity in other primates, and the fact that its macro- and microstruture are indicative of an hamartoma (and not an osteoma or exostosis) suggest an evolutionary background to the phenomenon.

  14. Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors

    SciTech Connect

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

  15. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    SciTech Connect

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  16. Spectrophotometric determination of plutonium-239 based on the spectrum of plutonium(III) chloride

    SciTech Connect

    Temer, D.J.; Walker, L.F.

    1994-07-01

    This report describes a spectrophotometric method for determining plutonium-239 (Pu-239) based on the spectrum of Pu(III) chloride. The authors used the sealed-reflux technique for the dissolution of plutonium oxide with hydrochloric acid (HCl) and small amounts of nitric and hydrofluoric acids. To complex the fluoride, they added zirconium, and to reduce plutonium to Pu(III), they added ascorbic acid. They then adjusted the solution to a concentration of 2 M HCl and measured the absorbances at five wavelengths of the Pu(III) chloride spectrum. This spectrophotometric determination can also be applied to samples of plutonium metal dissolved in HCl.

  17. Plutonium stabilization and packaging system

    SciTech Connect

    1996-05-01

    This document describes the functional design of the Plutonium Stabilization and Packaging System (Pu SPS). The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements of the DOE standard for safe storage of these materials for 50 years. This system will support completion of stabilization and packaging campaigns of the inventory at a number of affected sites before the year 2002. The package will be standard for all sites and will provide a minimum of two uncontaminated, organics free confinement barriers for the packaged material.

  18. Button Battery Foreign Bodies in Children: Hazards, Management, and Recommendations

    PubMed Central

    Thabet, Mohammed Hossam; Basha, Waleed Mohamed; Askar, Sherif

    2013-01-01

    Objective. The demand and usage of button batteries have risen. They are frequently inadvertently placed by children in their ears or noses and occasionally are swallowed and lodged along the upper aerodigestive tract. The purpose of this work is to study the different presentations of button battery foreign bodies and present our experience in the diagnosis and management of this hazardous problem in children. Patients and Methods. This study included 13 patients. The diagnostic protocol was comprised of a thorough history, head and neck physical examination, and appropriate radiographic evaluation. The button batteries were emergently extracted under general anesthesia. Results. The average follow-up period was 4.3 months. Five patients had a nasal button battery. Four patients had an esophageal button battery. Three patients had a button battery in the stomach. One patient had a button battery impacted in the left external ear canal. Apart from a nasal septal perforation and a tympanic membrane perforation, no major complications were detected. Conclusion. Early detection is the key in the management of button battery foreign bodies. They have a distinctive appearance on radiography, and its prompt removal is mandatory, especially for batteries lodged in the esophagus. Physicians must recognize the hazardous potential and serious implications of such an accident. There is a need for more public education about this serious problem. PMID:23936851

  19. SEPARATION OF PLUTONIUM

    DOEpatents

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  20. Selecting a plutonium vitrification process

    SciTech Connect

    Jouan, A.

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing of plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.

  1. Button battery ingestion: assessment of therapeutic modalities and battery discharge state.

    PubMed

    Litovitz, T; Butterfield, A B; Holloway, R R; Marion, L I

    1984-12-01

    Button batteries immersed in a simulated gastric environment (0.1N hydrochloric acid) demonstrated less crimp dissolution (corrosion of the metal can) after the addition of neutralizing doses of eight of nine antacids tested. Of 64 ingestion episodes in dogs, clinical manifestations of button battery-induced injury were limited to a single animal developing guaiac-positive stools. Endoscopic lesions included only mild gastritis, occurring with a frequency comparable to that observed in dogs prior to battery ingestion. After ingestion blood mercury levels were not significantly elevated. Crimp dissolution was absent in discharged cells, implying a decreased risk of electrolyte leakage or subsequent tissue injury in patients who ingest spent cells. No protective effect of metoclopramide, cimetidine, or magnesium citrate could be demonstrated in the canine model. PMID:6502334

  2. Alternative technical summary report for direct disposition in deep boreholes: Direct disposal of plutonium metal/plutonium dioxide in compound canisters, Version 4.0. Fissile Materials Disposition Program

    SciTech Connect

    Wijesinghe, A.M.

    1996-08-23

    This report summarizes and compares the Immobilized and Direct Beep Borehole Disposition Alternatives. The important design concepts, facility features and operational procedures are briefly described, and a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

  3. Safe disposal of surplus plutonium

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  4. Coordination chemistry of two heavy metals: I, Ligand preferences in lead(II) complexation, toward the development of therapeutic agents for lead poisoning: II, Plutonium solubility and speciation relevant to the environment

    SciTech Connect

    Neu, M.P.

    1993-11-01

    The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pK{sub a}s and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pK{sub a} = 5.94, log{beta}{sub 120} = 10.92; acetohydroxamic acid, pK{sub a} = 9.34, log{beta}{sub l20} = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinate geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is log{beta}{sub 110} = 41.7. The solubility limited speciation of {sup 242}Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods.

  5. PLUTONIUM CARRIER METATHESIS WITH ORGANIC REAGENT

    DOEpatents

    Thompson, S.G.

    1958-07-01

    A method is described for converting a plutonium containing bismuth phosphate carrier precipitate Into a compositton more readily soluble in acid. The method consists of dissolving the bismuth phosphate precipitate in an aqueous solution of alkali metal hydroxide, and adding one of a certaia group of organic compounds, e.g., polyhydric alcohols or a-hydrorycarboxylic acids. The mixture is then heated causiing formation of a bismuth hydroxide precipitate containing plutonium which may be readily dissolved in nitric acid for further processing.

  6. A Note on the Reaction of Hydrogen and Plutonium

    SciTech Connect

    Noone, Bailey C

    2012-08-15

    Plutonium hydride has many practical and experimental purposes. The reaction of plutonium and hydrogen has interesting characteristics, which will be explored in the following analysis. Plutonium is a radioactive actinide metal that emits alpha particles. When plutonium metal is exposed to air, the plutonium oxides and hydrides, and the volume increases. PuH{sub 2} and Pu{sub 2}O{sub 3} are the products. Hydrogen is a catalyst for plutonium's corrosion in air. The reaction can take place at room temperature because it is fairly insensitive to temperature. Plutonium hydride, or PuH{sub 2}, is black and metallic. After PuH{sub 2} is formed, it quickly flakes off and burns. The reaction of hydrogen and plutonium is described as pyrophoric because the product will spontaneously ignite when oxygen is present. This tendency must be considered in the storage of metal plutonium. The reaction is characterized as reversible and nonstoichiometric. The reaction goes as such: Pu + H{sub 2} {yields} PuH{sub 2}. When PuH{sub 2} is formed, the hydrogen/plutonium ratio is between 2 and 2.75 (approximately). As more hydrogen is added to the system, the ratio increases. When the ratio exceeds 2.75, PuH{sub 3} begins to form along with PuH{sub 2}. Once the ratio surpasses 2.9, only PuH{sub 3} remains. The volume of the plutonium sample increases because of the added hydrogen and the change in crystal structure which the sample undergoes. As more hydrogen is added to a system of metal plutonium, the crystal structure evolves. Plutonium has a crystal structure classified as monoclinic. A monoclinic crystal structure appears to be a rectangular prism. When plutonium reacts with hydrogen, the product PuH{sub 2}, becomes a fluorite structure. It can also be described as a face centered cubic structure. PuH{sub 3} forms a hexagonal crystal structure. As plutonium evolves from metal plutonium to plutonium hydride to plutonium trihydride, the crystal structure evolves from monoclinic to

  7. Behind the Scenes: Leinbach Is Shuttle's 'Button Pusher'

    NASA Video Gallery

    He's the guy who, figuratively, pushes "the big red button" to send the shuttle into space. Astronaut Mike Massimino takes you inside the firing room at the Kennedy Space Center to meet Shuttle Lau...

  8. 15. MAGAZINE P INTERIOR, ELEVATOR OPERATIONS BUTTON DETAIL. NIKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. MAGAZINE P INTERIOR, ELEVATOR OPERATIONS BUTTON DETAIL. - NIKE Missile Base C-84, Underground Storage Magazines & Launcher-Loader Assemblies, Easternmost portion of launch area, Barrington, Cook County, IL

  9. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, Jr., Jerry; Avens, Larry R.; Trujillo, Eddie A.

    1992-01-01

    A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.

  10. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

    1992-03-24

    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  11. Plutonium Immobilization Project -- Can loading

    SciTech Connect

    Kriikku, E.

    2000-01-18

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP scope includes unloading transportation containers, preparing the feed streams, converting the metal feed to an oxide, adding the ceramic precursors, pressing the pucks, inspecting pucks, and sintering pucks. The PIP scope also includes loading the pucks into metal cans, sealing the cans, inspecting the cans, loading the cans into magazines, loading magazines into Defense Waste Processing Facility (DWPF) canisters, and transporting the canisters to the DWPF. The DWPF fills the canister with a mixture of high level radioactive waste and glass for permanent storage. Due to the radiation, remote equipment must perform PIP operations in a contained environment.

  12. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    DOEpatents

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  13. PREPARATION OF PLUTONIUM TRIFLUORIDE

    DOEpatents

    Burger, L.L.; Roake, W.E.

    1961-07-11

    A process of producing plutonium trifluoride by reacting dry plutonium(IV) oxalate with chlorofluorinated methane or ethane at 400 to 450 deg C and cooling the product in the absence of oxygen is described.

  14. PROCESS FOR PURIFYING PLUTONIUM

    DOEpatents

    Mastick, D.F.; Wigner, E.P.

    1958-05-01

    A method is described of separating plutonium from small amounts of uranium and other contaminants. An acidic aqueous solution of higher valent plutonium and hexavalent uranium is treated with a soluble iodide to obtain the plutonium in the plus three oxidation state while leaving the uranium in the hexavalent state, adding a soluble oxalate such as oxalic acid, and then separating the insoluble plus the plutonium trioxalate from the solution.

  15. PLUTONIUM CLEANING PROCESS

    DOEpatents

    Kolodney, M.

    1959-12-01

    A method is described for rapidly removing iron, nickel, and zinc coatings from plutonium objects while simultaneously rendering the plutonium object passive. The method consists of immersing the coated plutonium object in an aqueous acid solution containing a substantial concentration of nitrate ions, such as fuming nitric acid.

  16. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  17. PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS

    DOEpatents

    Faris, B.F.

    1960-04-01

    A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.

  18. Plutonium oxalate precipitation for trace elemental determination in plutonium materials

    DOE PAGES

    Xu, Ning; Gallimore, David; Lujan, Elmer; Garduno, Katherine; Walker, Laurie; Taylor, Fiona; Thompson, Pam; Tandon, Lav

    2015-05-26

    In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.

  19. A DGT technique for plutonium bioavailability measurements.

    PubMed

    Cusnir, Ruslan; Steinmann, Philipp; Bochud, François; Froidevaux, Pascal

    2014-09-16

    The toxicity of heavy metals in natural waters is strongly dependent on the local chemical environment. Assessing the bioavailability of radionuclides predicts the toxic effects to aquatic biota. The technique of diffusive gradients in thin films (DGT) is largely exploited for bioavailability measurements of trace metals in waters. However, it has not been applied for plutonium speciation measurements yet. This study investigates the use of DGT technique for plutonium bioavailability measurements in chemically different environments. We used a diffusion cell to determine the diffusion coefficients (D) of plutonium in polyacrylamide (PAM) gel and found D in the range of 2.06-2.29 × 10(-6) cm(2) s(-1). It ranged between 1.10 and 2.03 × 10(-6) cm(2) s(-1) in the presence of fulvic acid and in natural waters with low DOM. In the presence of 20 ppm of humic acid of an organic-rich soil, plutonium diffusion was hindered by a factor of 5, with a diffusion coefficient of 0.50 × 10(-6) cm(2) s(-1). We also tested commercially available DGT devices with Chelex resin for plutonium bioavailability measurements in laboratory conditions and the diffusion coefficients agreed with those from the diffusion cell experiments. These findings show that the DGT methodology can be used to investigate the bioaccumulation of the labile plutonium fraction in aquatic biota.

  20. Estimation of the formation rates of polyatomic species of heavy metals in plutonium analyses using a multicollector ICP-MS with a desolvating nebulizer

    SciTech Connect

    Mitroshkov, Alexandre V.; Olsen, Khris B.; Thomas, Linda M.

    2015-01-01

    The analyses of IAEA and environmental samples for Plutonium isotopic content are conducted normally at very low concentrations of Pu–usually in the range of part per trillion level and even more often at the parts per quadrillion level. To analyze such low concentrations, the interferences in the analytical solution must be reduced as much as possible. Polyatomic interferences (PIs), formed by the heavy metals (HMs) from Hf to Bi are known to create the problems for Pu isotopic analyses, because even the relatively high resolution of a modern multicollector ICP-MS is not enough to separate Pu isotopes from this PIs in most of the cases. Desolvating nebulizers (DSN) (e.g. APEX and AridusII) reduce significantly the formation of PIs compare to the use of wet plasma. The purpose of this work was to investigate the rate of formation of PIs, produced by HMs, when high resolution MC ICP-MS with desolvating nebulizer was used for Pu isotopic analyses and to estimate the influence of the metals present in the sample on the results of analyses. The NU Plasma HR Multicollector and AridusII desolvating nebulizer were used in this investigation. This investigation was done for all Pu isotopes normally analyzed by ICP-MS, including ²⁴⁴Pu, with the exception of ²³⁸Pu, which most of the time can’t be analyzed by ICP-MS, because of the overwhelming presence of ²³⁸U in the solutions. The PI formation rates were determined and reported for all 12 HMs from Hf to Bi. Selected IAEA samples were scanned for the presence of HMs and the influence of HMs on the results of Pu isotopic analyses was evaluated. It was found that the implemented separation procedure provides sufficient separation of HM from Pu, although the effect of PIs on the measurement of low level isotopes like ²⁴¹Pu and ²⁴²Pu in some cases can still be observed.

  1. Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors

    SciTech Connect

    Hikaru Hiruta; Gilles Youinou

    2013-09-01

    This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  2. PLUTONIUM ALLOYS CONTAINING CONTROLLED AMOUNTS OF PLUTONIUM ALLOTROPES OBTAINED BY APPLICATION OF HIGH PRESSURES

    DOEpatents

    Elliott, R.O.; Gschneidner, K.A. Jr.

    1962-07-10

    A method of making stabilized plutonium alloys which are free of voids and cracks and have a controlled amount of plutonium allotropes is described. The steps include adding at least 4.5 at.% of hafnium, indium, or erbium to the melted plutonium metal, homogenizing the resulting alloy at a temperature of 450 deg C, cooling to room temperature, and subjecting the alloy to a pressure which produces a rapid increase in density with a negligible increase in pressure. The pressure required to cause this rapid change in density or transformation ranges from about 800 to 2400 atmospheres, and is dependent on the alloying element. (AEC)

  3. The floor effect: impoverished spatial memory for elevator buttons.

    PubMed

    Vendetti, Michael; Castel, Alan D; Holyoak, Keith J

    2013-05-01

    People typically remember objects to which they have frequently been exposed, suggesting that memory is a by-product of perception. However, prior research has shown that people have exceptionally poor memory for the features of some objects (e.g., coins) to which they have been exposed over the course of many years. Here, we examined how people remember the spatial layout of the buttons on a frequently used elevator panel, to determine whether physical interaction (rather than simple exposure) would ensure the incidental encoding of spatial information. Participants who worked in an eight-story office building displayed very poor recall for the elevator panel but above-chance performance on a recognition test. Performance was related to how often and how recently the person had used the elevator. In contrast to their poor memory for the spatial layout of the elevator buttons, most people readily recalled small distinctive graffiti on the elevator walls. In a more implicit test, the majority were able to locate their office floor and the eighth floor button when asked to point toward these buttons when in the actual elevator, with the button labels covered. However, identification was very poor for other floors (including the first floor), suggesting that even frequent interaction with information does not always lead to accurate spatial memory. These findings have implications for understanding the complex relationships among attention, expertise, and memory.

  4. The Newport Button: The Large Scale Replication Of Combined Three-And Two-Dimensional Holographic Images

    NASA Astrophysics Data System (ADS)

    Cowan, James J.

    1984-05-01

    A unique type of holographic imagery and its large scale replication are described. The "Newport Button", which was designed as an advertising premium item for the Newport Corporation, incorporates a complex overlay of holographic diffraction gratings surrounding a three-dimensional holographic image of a real object. The combined pattern is recorded onto a photosensitive medium from which a metal master is made. The master is subsequently used to repeatedly emboss the pattern into a thin plastic sheet. Individual patterns are then die cut from the metallized plastic and mounted onto buttons. A discussion is given of the diffraction efficiencies of holograms made in this particular fashion and of the special requirements of the replication process.

  5. Button battery injury in children - a primary care issue?

    PubMed

    Shepherd, Michael; Hamill, James K; Barker, Ruth

    2014-03-01

    There is a well-described increase in the incidence of significant injury associated with button batteries in children. Button battery ingestion or insertion (ear/nose) is a time-sensitive injury mechanism, with severe injury occurring within hours. Prevention efforts are being developed that may include changes to packaging, public awareness campaigns, safe disposal mechanisms, changes to battery design and changes to device design. However, there is not a single, simple and effective prevention strategy available. This community hazard has significant implications for primary care. This article presents the clinical characteristics and epidemiology of button battery exposure and subsequent injury. It also describes the clinical recommendations, specifically an emphasis on early diagnosis, including maintaining a high index of suspicion; rapid removal where possible or urgent referral for operative intervention. PMID:24624414

  6. Method for dissolving delta-phase plutonium

    DOEpatents

    Karraker, David G.

    1992-01-01

    A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

  7. Plutonium Finishing Plant safety evaluation report

    SciTech Connect

    Not Available

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  8. PREPARATION OF PLUTONIUM HALIDES

    DOEpatents

    Davidson, N.R.; Katz, J.J.

    1958-11-01

    A process ls presented for the preparation of plutonium trihalides. Plutonium oxide or a compound which may be readily converted to plutonlum oxide, for example, a plutonium hydroxide or plutonlum oxalate is contacted with a suitable halogenating agent. Speciflc agents mentioned are carbon tetrachloride, carbon tetrabromide, sulfur dioxide, and phosphorus pentachloride. The reaction is carried out under superatmospberic pressure at about 300 icient laborato C.

  9. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Heal, H.G.

    1960-02-16

    BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.

  10. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  11. Probing phonons in plutonium

    SciTech Connect

    Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing

    2010-11-16

    Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the

  12. Peach fruit set and buttoning after spring frost

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A spring frost occurred on 29 Mar. 2015 at the USDA-ARS Byron station after three weeks of blooming when most fruitlets were forming. Due to severe fruitlet drop, the overall fruit set on a scale of 0-9 was substantially reduced, from 5.61 averaged in 2014 to 2.61 in 2015. In addition, buttons (abno...

  13. Napoleon's Buttons: Teaching the Role of Chemistry in History

    ERIC Educational Resources Information Center

    Samet, Cindy; Higgins, Pamela J.

    2005-01-01

    A course designed on the theme of Napoleon's Buttons, which states that there is a connection between the chemical structure of a compound and its pivotal moments in history affecting the development of society is explained. Students liked the book choice for the course because the focus was not on straight chemistry, but the intersection of…

  14. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    SciTech Connect

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

  15. ELECTRODEPOSITION OF PLUTONIUM

    DOEpatents

    Wolter, F.J.

    1957-09-10

    A process of electrolytically recovering plutonium from dilute aqueous solutions containing plutonium ions comprises electrolyzing the solution at a current density of about 0.44 ampere per square centimeter in the presence of an acetate-sulfate buffer while maintaining the pH of the solution at substantially 5 and using a stirred mercury cathode.

  16. PROCESS OF OXIDIZING PLUTONIUM

    DOEpatents

    Coryell, C.D.

    1959-08-25

    The oxidation of plutonium to the plus six valence state is described. The oxidation is accomplished by treating the plutonium in aqueous solution with a solution above 0.01 molar in argentic ion, above 1.1 molar in nitric acid, and above 0.02 molar in argentous ion.

  17. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  18. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  19. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    SciTech Connect

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  20. Plutonium Immobilization Canister Loading

    SciTech Connect

    Hamilton, E.L.

    1999-01-26

    This disposition of excess plutonium is determined by the Surplus Plutonium Disposition Environmental Impact Statement (SPD-EIS) being prepared by the Department of Energy. The disposition method (Known as ''can in canister'') combines cans of immobilized plutonium-ceramic disks (pucks) with vitrified high-level waste produced at the SRS Defense Waste Processing Facility (DWPF). This is intended to deter proliferation by making the plutonium unattractive for recovery or theft. The envisioned process remotely installs cans containing plutonium-ceramic pucks into storage magazines. Magazines are then remotely loaded into the DWPF canister through the canister neck with a robotic arm and locked into a storage rack inside the canister, which holds seven magazines. Finally, the canister is processed through DWPF and filled with high-level waste glass, thereby surrounding the product cans. This paper covers magazine and rack development and canister loading concepts.

  1. Plutonium bioaccumulation in seabirds.

    PubMed

    Strumińska-Parulska, Dagmara I; Skwarzec, Bogdan; Fabisiak, Jacek

    2011-12-01

    The aim of the paper was plutonium (²³⁸Pu and ²³⁹⁺²⁴⁰Pu) determination in seabirds, permanently or temporarily living in northern Poland at the Baltic Sea coast. Together 11 marine birds species were examined: 3 species permanently residing in the southern Baltic, 4 species of wintering birds and 3 species of migrating birds. The obtained results indicated plutonium is non-uniformly distributed in organs and tissues of analyzed seabirds. The highest plutonium content was found in the digestion organs and feathers, the smallest in skin and muscles. The plutonium concentration was lower in analyzed species which feed on fish and much higher in herbivorous species. The main source of plutonium in analyzed marine birds was global atmospheric fallout.

  2. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  3. Field comparison of three inhalable samplers (IOM, PGP-GSP 3.5 and Button) for welding fumes.

    PubMed

    Zugasti, Agurtzane; Montes, Natividad; Rojo, José M; Quintana, M José

    2012-02-01

    Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations. PMID:22037834

  4. Field comparison of three inhalable samplers (IOM, PGP-GSP 3.5 and Button) for welding fumes.

    PubMed

    Zugasti, Agurtzane; Montes, Natividad; Rojo, José M; Quintana, M José

    2012-02-01

    Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations.

  5. Method for dissolving plutonium dioxide

    DOEpatents

    Tallent, Othar K.

    1978-01-01

    The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

  6. Chemical species of plutonium in Hanford radioactive tank waste

    SciTech Connect

    Barney, G.S.

    1997-10-22

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  7. Disposing of the world`s excess plutonium

    SciTech Connect

    McCormick, J.M.; Bullen, D.B.

    1998-12-31

    The authors undertake three key objectives in addressing the issue of plutonium disposition at the end of the Cold War. First, the authors estimate the total global inventory of plutonium both from weapons dismantlement and civil nuclear power reactors. Second, they review past and current policy toward handling this metal by the US, Russia, and other key countries. Third, they evaluate the feasibility of several options (but especially the vitrification and mixed oxide fuel options announced by the Clinton administration) for disposing of the increasing amounts of plutonium available today. To undertake this analysis, the authors consider both the political and scientific problems confronting policymakers in dealing with this global plutonium issue. Interview data with political and technical officials in Washington and at the International Atomic Energy Agency in Vienna, Austria, and empirical inventory data on plutonium from a variety of sources form the basis of their analysis.

  8. PROCESS FOR PRODUCTION OF PLUTONIUM FROM ITS OXIDES

    DOEpatents

    Weissman, S.I.; Perlman, M.L.; Lipkin, D.

    1959-10-13

    A method is described for obtaining a carbide of plutonium and two methods for obtaining plutonium metal from its oxides. One of the latter involves heating the oxide, in particular PuO/sub 2/, to a temperature of 1200 to 1500 deg C with the stoichiometrical amount of carbon to fornn CO in a hard vacuum (3 to 10 microns Hg), the reduced and vaporized plutonium being collected on a condensing surface above the reaction crucible. When an excess of carbon is used with the PuO/sub 2/, a carbide of plutonium is formed at a crucible temperature of 1400 to 1500 deg C. The process may be halted and the carbide removed, or the reaction temperature can be increased to 1900 to 2100 deg C at the same low pressure to dissociate the carbide, in which case the plutonium is distilled out and collected on the same condensing surface.

  9. Long-term plutonium storage: Design concepts

    SciTech Connect

    Wilkey, D.D.; Wood, W.T.; Guenther, C.D.

    1994-08-01

    An important part of the Department of Energy (DOE) Weapons Complex Reconfiguration (WCR) Program is the development of facilities for long-term storage of plutonium. The WCR design goals are to provide storage for metals, oxides, pits, and fuel-grade plutonium, including material being held as part of the Strategic Reserve and excess material. Major activities associated with plutonium storage are sorting the plutonium inventory, material handling and storage support, shipping and receiving, and surveillance of material in storage for both safety evaluations and safeguards and security. A variety of methods for plutonium storage have been used, both within the DOE weapons complex and by external organizations. This paper discusses the advantages and disadvantages of proposed storage concepts based upon functional criteria. The concepts discussed include floor wells, vertical and horizontal sleeves, warehouse storage on vertical racks, and modular storage units. Issues/factors considered in determining a preferred design include operational efficiency, maintenance and repair, environmental impact, radiation and criticality safety, safeguards and security, heat removal, waste minimization, international inspection requirements, and construction and operational costs.

  10. Plutonium radiation surrogate

    DOEpatents

    Frank, Michael I.

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  11. PLUTONIUM SEPARATION METHOD

    DOEpatents

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  12. Plutonium Vulnerability Management Plan

    SciTech Connect

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

  13. Progress on plutonium stabilization

    SciTech Connect

    Hurt, D.

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  14. Real-time monitoring of plutonium content in uranium-plutonium alloys

    SciTech Connect

    Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas

    2015-09-01

    A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.

  15. Plutonium: Requiem or reprieve

    SciTech Connect

    Pillay, K.K.S.

    1996-01-01

    Many scientific discoveries have had profound effects on humanity and its future. However, the discovery of fissionable characteristics of a man-made element, plutonium, discovered in 1941 by Glenn Seaborg and associates, has probably had the greatest impact on world affairs. Although about 20 new elements have been synthesized since 1940, element 94 unarguably had the most dramatic impact when it was introduced to the world as the core of the nuclear bomb dropped on Nagasaki. Ever since, large quantities of this element have been produced, and it has had a major role in maintaining peace during the past 50 years. in addition, the rapid spread of nuclear power technology worldwide contributed to major growth in the production of plutonium as a by-product. This article discusses the following issues related to plutonium: plutonium from Nuclear Power Generation; environmental safety and health issues; health effects; safeguards issues; extended storage; disposal options.

  16. Recommended plutonium release fractions from postulated fires. Final report

    SciTech Connect

    Kogan, V.; Schumacher, P.M.

    1993-12-01

    This report was written at the request of EG&G Rocky Flats, Inc. in support of joint emergency planning for the Rocky Flats Plant (RFP) by EG&G and the State of Colorado. The intent of the report is to provide the State of Colorado with an independent assessment of any respirable plutonium releases that might occur in the event of a severe fire at the plant. Fire releases of plutonium are of interest because they have been used by EG&G to determine the RFP emergency planning zones. These zones are based on the maximum credible accident (MCA) described in the RFP Final Environmental Impact Statement (FEIS) of 1980, that MCA is assumed to be a large airplane crashing into a RFP plutonium building.The objective of this report was first, to perform a worldwide literature review of relevant release experiments from 1960 to the present and to summarize those findings, and second, to provide recommendations for application of the experimental data to fire release analyses at Rocky Flats. The latter step requires translation between experimental and expected RFP accident parameters, or ``scaling.`` The parameters of particular concern are: quantities of material, environmental parameters such as the intensity of a fire, and the physico-chemical forms of the plutonium. The latter include plutonium metal, bulk plutonium oxide powder, combustible and noncombustible wastes contaminated with plutonium oxide powder, and residues from plutonium extraction processes.

  17. Plutonium recovery from spent reactor fuel by uranium displacement

    SciTech Connect

    Ackerman, J.P.

    1991-12-31

    This report discusses a process for separating uranium values and transuranic values from fission products containing rare earth values when the values which are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is re-established.

  18. Plutonium recovery from spent reactor fuel by uranium displacement

    SciTech Connect

    Ackerman, J.P.

    1991-01-01

    This report discusses a process for separating uranium values and transuranic values from fission products containing rare earth values when the values which are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is re-established.

  19. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, John P.

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  20. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  1. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Sutton, J.B.

    1958-02-18

    This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

  2. Spiked Alloy Production for Accelerated Aging of Plutonium

    SciTech Connect

    Wilk, P A; McNeese, J A; Dodson, K E; Williams, W L; Krikorian, O H; Blau, M S; Schmitz, J E; Bajao, F G; Mew, D A; Matz, T E; Torres, R A; Holck, D M; Moody, K J; Kenneally, J M

    2009-07-10

    The accelerated aging effects on weapons grade plutonium alloys are being studied using {sup 238}Pu-enriched plutonium metal to increase the rate of formation of defect structures. Pyrochemical processing methods have been used to produce two {sup 238}Pu-spiked plutonium alloys with nominal compositions of 7.5 wt% {sup 238}Pu. Processes used in the preparation of the alloys include direct oxide reduction of PuO{sub 2} with calcium and electrorefining. Rolled disks were prepared from the spiked alloys for sampling. Test specimens were cut out of the disks for physical property measurements.

  3. METHOD AND MEANS FOR ELECTROLYTIC PURIFICATION OF PLUTONIUM

    DOEpatents

    Bjorklund, C.W.; Benz, R.; Maraman, W.J.; Leary, J.A.; Walsh, K.A.

    1960-02-01

    The technique of electrodepositing pure plutonium from a fused salt electrolyte of PuCl/sub 3/ and aixati metal halides is described. When an iron cathode is used, the plutonium deposit alloys therewith in the liquid state at the 400 to 600 deg C operating temperature, such liquid being allowed to drip through holes in the cathode and collect in a massive state in a tantallum cup. The process is adaptable to continuous processing by the use of depleted plutonium fuel as the anode: good to excellent separation from fission products is obtained with a Pu--Fe "fission" anode containing representative fractions of Ce, Ru, Zr, La, Mo, and Nb.

  4. The optical constants of plutonium metal between .7 and 4.3 eV measured by spectroscopic ellipsometry using a double-windowed experimental chamber.

    SciTech Connect

    Mookerji, B; Stratman, M; Wall, M; Siekhaus, W

    2006-07-06

    A double-windowed vacuum-tight experimental chamber was developed, and calibrated on the spectroscopic ellipsometer over the energy range from .7 to 4.5 eV using a silicon wafer with approximately 25 nm oxide thickness to remove the multiple-window effects from measurements. The ellipsometric measurements were done such that incident and exit beam were at 65 degree from surface normal. The plutonium sample (3 mm diameter, .1 mm thick) was electro-polished and mounted into the sample chamber in a glove box having a nitrogen atmosphere with less than 100ppm moisture and oxygen content. The index of refraction n and the extinction coefficient k decrease from 3.7 to 1 and 5.5 to 1.1 respectively as the photon energy increases from .7 to 4.3 eV.

  5. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  6. METHOD OF MAKING PLUTONIUM DIOXIDE

    DOEpatents

    Garner, C.S.

    1959-01-13

    A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

  7. Modification and miniaturization of Thermochron iButtons for surgical implantation into small animals.

    PubMed

    Lovegrove, Barry G

    2009-05-01

    Thermochron iButtons are being used increasingly by animal physiologists to measure long-term patterns of body temperature in reptiles, birds and mammals. Typically, iButtons are surgically implanted into the intraperitoneal cavity where they measure and store body temperature together with the date and time from an onboard real-time clock. In 16-bit resolution, the DS1922L iButton can store a total of 4,096 data points over pre-determined sampling intervals. iButtons have proved invaluable in measuring patterns of torpor and hibernation in animals larger than 70 g. Weighing around 3.5 g after potting with wax, iButtons are too heavy and large to implant into animals smaller than 70 g because their weight exceeds 5% of the animal's total body weight. This paper describes how the stainless steel canister housing the DS 1922L iButton battery and circuit board can be removed to reduce the weight of the components to 1.49 g after waxing (ready for implantation) without compromising the function or battery life of the iButton. The modified iButton can be implanted into animals as small as 20-30 g. Calibration data revealed an offset of ca. 1 degrees C on average, confirming that iButtons must be calibrated prior to implantation.

  8. Plutonium 239 Equivalency Calculations

    SciTech Connect

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  9. Uranium plutonium oxide fuels. [LMFBR

    SciTech Connect

    Cox, C.M.; Leggett, R.D.; Weber, E.T.

    1981-01-01

    Uranium plutonium oxide is the principal fuel material for liquid metal fast breeder reactors (LMFBR's) throughout the world. Development of this material has been a reasonably straightforward evolution from the UO/sub 2/ used routinely in the light water reactor (LWR's); but, because of the lower neutron capture cross sections and much lower coolant pressures in the sodium cooled LMFBR's, the fuel is operated to much higher discharge exposures than that of a LWR. A typical LMFBR fuel assembly is shown. Depending on the required power output and the configuration of the reactor, some 70 to 400 such fuel assemblies are clustered to form the core. There is a wide variation in cross section and length of the assemblies where the increasing size reflects a chronological increase in plant size and power output as well as considerations of decreasing the net fuel cycle cost. Design and performance characteristics are described.

  10. Opportunities in Plutonium Metallurgical Research

    SciTech Connect

    Schwartz, A J

    2006-12-19

    This is an exciting time to be involved in plutonium metallurgical research. Over the past few years, there have been significant advances in our understanding of the fundamental materials science of this unusual metal, particularly in the areas of self-irradiation induced aging of Pu, the equilibrium phase diagram, the homogenization of {delta}-phase alloys, the crystallography and morphology of the {alpha}{prime}-phase resulting from the isothermal martensitic phase transformation, and the phonon dispersion curves, among many others. In addition, tremendous progress has been made, both experimentally and theoretically, in our understanding of the condensed matter physics and chemistry of the actinides, particularly in the area of electronic structure. Although these communities have made substantial progress, many challenges still remain. This brief overview will address a number of important challenges that we face in fully comprehending the metallurgy of Pu with a specific focus on aging and phase transformations.

  11. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  12. Sudden death following accidental ingestion of a button battery by a 17-month-old child: a case study.

    PubMed

    Guinet, T; Gaulier, J M; Moesch, C; Bagur, J; Malicier, D; Maujean, G

    2016-09-01

    Cases of ingesting button batteries by children are not common clinical situations in forensic medicine. Although it can be a cause of death when associated with digestive perforations, no cases of sudden death have been reported in the literature. We report the case of a 17-month-old girl who presented at home with haematemesis, followed by failed cardiopulmonary resuscitation. The child had been treated on two occasions for nasopharyngitis, 14 and 18 days prior to her death. The post-mortem scan revealed a radio-opaque foreign body in the oesophagus. The autopsy revealed the presence of a round button battery, 20 mm in diameter, blocking the lumen of the oesophagus in its upper third, associated with two parietal oesophageal ruptures opposite each other. There was limited digestive haemorrhage, but above all significant bronchial inhalation of blood. Toxicology analyses showed slightly increased blood levels of the heavy metals of which the battery was composed (lithium, chromium, manganese and molybdenum). The anatomopathological analyses confirmed the recent nature of these ruptures. Ingestions of button batteries localised at the level of the oesophagus are the cases linking to the highest risk of complications, particularly for batteries with a diameter of more than 20 mm and in children under the age of 4. The main difficulty in such clinical situations is identifying when the ingestion occurred, as more often than not, no witnesses are present. We discuss the advantages of anatomopathology and toxicology examinations targeted towards heavy metals in these forensic situations.

  13. A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal

    SciTech Connect

    Donald, Ian W.; Metcalfe, Brian; Fong, Shirley K.; Gerrard, Lee A.; Strachan, Denis M.; Scheele, Randall D.

    2007-03-31

    The presence of halide anions in four types of wastes arising from the pyrochemical reprocessing of plutonium required an immobilization process to be developed in which not only the actinide cations but also the halide anions were immobilized in a durable waste form. At AWE, we have developed such a process using Ca3(PO4)2 as the host material. Successful trials of the process with actinide- and Cl-bearing Type I waste were carried out at PNNL where the immobilization of the waste in a form resistant to aqueous leaching was confirmed. Normalized mass losses determined at 40°C and 28 days were 12 x 10-6 g∙m-2 and 2.7 x 10-3 g∙m-2 for Pu and Cl, respectively. Accelerated radiation-induced damage effects are being determined with specimens containing 238Pu. No changes in the crystalline lattice have been detected with XRD after the 239Pu equivalent of 400 years ageing. Confirmation of the process for Type II waste (a oxyhydroxide-based waste) is currently underway at PNNL. Differences in the ionic state of Pu in the four types of waste have required different surrogates to be used. Samarium chloride was used successfully as a surrogate for both Pu(III) and Am(III) chlorides. Initial investigations into the use of HfO2 as the surrogate for Pu(IV) oxide in Type II waste indicated no significant differences.

  14. Handling, Storage, and Disposition of Plutonium and Uranium

    NASA Astrophysics Data System (ADS)

    Haschke, John M.; Stakebake, Jerry L.

    The need to address topics of handling, storage, and disposal of plutonium and uranium is driven by concern about hazards posed by the element and by the worldwide quantity of civilian and military materials. The projected inventory of separated civilian plutonium for use in fabricating mixed-oxide (MOX) reactor fuel during initial decades of this century is constant at about 120 metric tons and a comparable amount of excess military plutonium is anticipated from reductions in nuclear weapon stockpiles (IAEA Report, 1998). Although inventories of civilian material are in oxide form, Pu from weapons programs exists primarily as metal. Plutonium is a radiological toxin (Voelz, 2000); its management in a safe and secure manner is essential for protecting workers, the public, and the environment.

  15. Plutonium: An introduction

    SciTech Connect

    Condit, R.H.

    1993-10-01

    This report is a summary of the history and properties of plutonium. It presents information on the atoms, comparing chemical and nuclear properties. It looks at the history of the atom, including its discovery and production methods. It summarizes the metallurgy and chemistry of the element. It also describes means of detecting and measuring the presence and quantity of the element.

  16. Hydride-catalyzed corrosion of plutonium by air: Initiation by plutonium monoxide monohydride

    SciTech Connect

    Allen, T.H.; Haschke, J.M.

    1998-06-01

    Chemistry and kinetics of air reactions with plutonium monoxide monohydride (PuOH) and with mixtures of the oxide hydride and plutonium metal are defined by results of pressure-volume-temperature (PVT) measurements. Test with specimens prepared by total and partial corrosion of plutonium in 0.05 M sodium chloride solution show that reaction of residual water continues to generate H{sub 2} after liquid water is removed by evacuation. Rapid exposure of PuOH to air at room temperature does not produce a detectable reaction, but similar exposure of a partially corroded metal sample containing Pu and PuOH results in hydride (PuH{sub x})-catalyzed corrosion of the residual Pu. Kinetics of he first-order reaction resulting in formation of the PuH{sub x} catalyst and of the indiscriminate reaction of N{sub 2} and O{sub 2} with plutonium metal are defined. The rate of the catalyzed Pu+air reaction is independent of temperature (E{sub a} = 0), varies as the square of air pressure, and equals 0.78 {+-} 0.03 g Pu/cm{sup 2} min in air at one atmosphere. The absence of pyrophoric behavior for PuOH and differences in the reactivities of PuOH and PuOH + Pu mixtures are attributed to kinetic control by gaseous reaction products. Thermodynamic properties of the oxide hydride are estimated, particle size distributions of corrosion products are presented, and potential hazards associated with products formed by aqueous corrosion of plutonium are discussed.

  17. Pyrochemical processes for the recovery of weapons grade plutonium either as a metal or as PuO{sub 2} for use in mixed oxide reactor fuel pellets

    SciTech Connect

    Colmenares, C.A.; Ebbinghaus, B.B.; Bronson, M.C.

    1995-11-03

    The authors have developed two processes for the recovery of weapons grade Pu, as either Pu metal or PuO{sub 2}, that are strictly pyrochemical and do not produce any liquid waste. Large amounts of Pu metal (up to 4 kg.), in various geometric shapes, have been recovered by a hydride/dehydride/casting process (HYDEC) to produce metal ingots of any desired shape. The three processing steps are carried out in a single compact apparatus. The experimental technique and results obtained will be described. The authors have prepared PuO{sub 2} powders from weapons grade Pu by a process that hydrides the Pu metal followed by the oxidation of the hydride (HYDOX process). Experimental details of the best way to carry out this process will be presented, as well as the characterization of both hydride and oxide powders produced.

  18. METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.

  19. Zirconia ceramics for excess weapons plutonium waste

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Lutze, W.; Ewing, R. C.

    2000-01-01

    We synthesized a zirconia (ZrO 2)-based single-phase ceramic containing simulated excess weapons plutonium waste. ZrO 2 has large solubility for other metallic oxides. More than 20 binary systems A xO y-ZrO 2 have been reported in the literature, including PuO 2, rare-earth oxides, and oxides of metals contained in weapons plutonium wastes. We show that significant amounts of gadolinium (neutron absorber) and yttrium (additional stabilizer of the cubic modification) can be dissolved in ZrO 2, together with plutonium (simulated by Ce 4+, U 4+ or Th 4+) and impurities (e.g., Ca, Mg, Fe, Si). Sol-gel and powder methods were applied to make homogeneous, single-phase zirconia solid solutions. Pu waste impurities were completely dissolved in the solid solutions. In contrast to other phases, e.g., zirconolite and pyrochlore, zirconia is extremely radiation resistant and does not undergo amorphization. Baddeleyite (ZrO 2) is suggested as the natural analogue to study long-term radiation resistance and chemical durability of zirconia-based waste forms.

  20. Button battery injuries in the pediatric aerodigestive tract.

    PubMed

    Ettyreddy, Abhinav R; Georg, Matthew W; Chi, David H; Gaines, Barbara A; Simons, Jeffrey P

    2015-12-01

    Children with a button battery impaction present with nonspecific symptoms that may account for a delay in medical care. We conducted a retrospective study of the clinical presentation, management, and complications associated with button battery ingestion in the pediatric aerodigestive tract and to evaluate the associated long-term morbidity. We reviewed the medical records of 23 patients who were treated for button battery impaction at our tertiary care children's hospital from Jan. 1, 2000, through July 31, 2013. This population was made up of 14 boys and 9 girls, aged 7 days to 12 years (mean: 4 yr). Patients were divided into three groups based on the site of impaction; there were 9 impactions in the esophagus and 7 each in the nasal cavity and stomach. We compiled information on the type and size of each battery, the duration of the impaction, presenting symptoms, treatment, and outcomes. The mean duration of battery impaction was 40.6, 30.7, and 21.0 hours in the esophagus, nasal cavity, and stomach, respectively. We were able to identify the specific type of battery in 13 cases; 11 of these cases (85%) involved a 3-V 20-mm lithium ion battery, including all cases of esophageal impaction in which the type of battery was identified. The most common presenting signs and symptoms were vomiting (n = 7 [30%]), difficulty feeding (n = 5 [22%]), cough (n = 5), and bloody nasal discharge (n = 5); none of the presenting signs and symptoms predicted the severity of the injury or the outcome. The median length of hospital stay was far greater in the esophageal group (12 days) than in the nasal and stomach groups (1 day each; p = 0.006). Battery impaction in the esophagus for more than 15 hours was associated with a significantly longer postoperative hospital stay than impaction for less than 15 hours (p = 0.04). Esophageal complications included strictures (n = 5), perforation (n = 3), and tracheoesophageal fistula formation (n = 2). Clinicians should consider battery

  1. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    DOEpatents

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  2. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    SciTech Connect

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  3. Plutonium immobilization plant using ceramic in existing facilities at the Savannah River site

    SciTech Connect

    DiSabatino, A., LLNL

    1998-06-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources, and through a ceramic immobilization process converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans.

  4. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  5. 4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS COLLECTED INTO CANS AT INDIVIDUAL WORKSTATIONS. THE CANS WERE TRANSFERRED VIA THE CHAIN CONVEYOR TO A WORKSTATION IN MODULE C WHERE THE MATERIAL WAS COMPRESSED INTO BRIQUETTES FOR LATER USE. (6/20/93) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  6. Surprising Coordination for Plutonium in the First Plutonium (III) Borate

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2011-02-22

    The first plutonium(III) borate, Pu2[B12O18(OH)4Br2(H2O)3]·0.5H2O, has been prepared by reacting plutonium(III) with molten boric acid under strictly anaerobic conditions. This compound contains a three-dimensional polyborate network with triangular holes that house the plutonium(III) sites. The plutonium sites in this compound are 9- and 10-coordinate and display atypical geometries.

  7. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    SciTech Connect

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  8. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  9. Recovery of plutonium from electrorefining anode heels at Savannah River

    SciTech Connect

    Gray, J H; Gray, L W; Karraker, D G

    1987-03-01

    In a joint effort, the Savannah River Laboratory (SRL), Savannah River Plant (SRP), and the Rocky Flats Plant (RFP) have developed two processes to recover plutonium from electrorefining anode heel residues. Aqueous dissolution of anode heel metal was demonstrated at SRL on a laboratory scale and on a larger pilot scale using either sulfamic acid or nitric acid-hydrazine-fluoride solutions. This direct anode heel metal dissolution requires the use of a geometrically favorable dissolver. The second process developed involves first diluting the plutonium in the anode heel residues by alloying with aluminum. The alloyed anode heel plutonium can then be dissolved using a nitric acid-fluoride-mercury(II) solution in large non-geometrically favorable equipment where nuclear safety is ensured by concentration control.

  10. Plutonium recovery from organic materials

    DOEpatents

    Deaton, R.L.; Silver, G.L.

    1973-12-11

    A method is described for removing plutonium or the like from organic material wherein the organic material is leached with a solution containing a strong reducing agent such as titanium (III) (Ti/sup +3None)/, chromium (II) (Cr/ sup +2/), vanadium (II) (V/sup +2/) ions, or ferrous ethylenediaminetetraacetate (EDTA), the leaching yielding a plutonium-containing solution that is further processed to recover plutonium. The leach solution may also contain citrate or tartrate ion. (Official Gazette)

  11. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  12. Gamma radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.

    1969-01-01

    Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

  13. Plutonium worker dosimetry.

    PubMed

    Birchall, Alan; Puncher, M; Harrison, J; Riddell, A; Bailey, M R; Khokryakov, V; Romanov, S

    2010-05-01

    Epidemiological studies of the relationship between risk and internal exposure to plutonium are clearly reliant on the dose estimates used. The International Commission on Radiological Protection (ICRP) is currently reviewing the latest scientific information available on biokinetic models and dosimetry, and it is likely that a number of changes to the existing models will be recommended. The effect of certain changes, particularly to the ICRP model of the respiratory tract, has been investigated for inhaled forms of (239)Pu and uncertainties have also been assessed. Notable effects of possible changes to respiratory tract model assumptions are (1) a reduction in the absorbed dose to target cells in the airways, if changes under consideration are made to the slow clearing fraction and (2) a doubling of absorbed dose to the alveolar region for insoluble forms, if evidence of longer retention times is taken into account. An important factor influencing doses for moderately soluble forms of (239)Pu is the extent of binding of dissolved plutonium to lung tissues and assumptions regarding the extent of binding in the airways. Uncertainty analyses have been performed with prior distributions chosen for application in epidemiological studies. The resulting distributions for dose per unit intake were lognormal with geometric standard deviations of 2.3 and 2.6 for nitrates and oxides, respectively. The wide ranges were due largely to consideration of results for a range of experimental data for the solubility of different forms of nitrate and oxides. The medians of these distributions were a factor of three times higher than calculated using current default ICRP parameter values. For nitrates, this was due to the assumption of a bound fraction, and for oxides due mainly to the assumption of slower alveolar clearance. This study highlights areas where more research is needed to reduce biokinetic uncertainties, including more accurate determination of particle transport rates

  14. CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY

    SciTech Connect

    Steeper, T.

    2010-09-15

    This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that

  15. Criticality Experiments with Mixed Plutonium and Uranium Nitrate Solution at a Plutonium Fraction of 0.5 in Annular Cylindrical Geometry

    SciTech Connect

    Lloyd, RC

    1988-04-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.5. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in annular cylindrical geometry. The measurements were made with a water reflector. The central region included a concrete annular cylinder containing B{sub 4}C. Interior to the concrete insert was a stainless steel bottle containing plutonium-uranium solution. The concentration of the solution in the annular region was varied from 116 to 433 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 52% for all experiments.

  16. Atomistic modeling of thermodynamic equilibrium of plutonium

    NASA Astrophysics Data System (ADS)

    Lee, Tongsik; Valone, Steve; Baskes, Mike; Chen, Shao-Ping; Lawson, Andrew

    2012-02-01

    Plutonium metal has complex thermodynamic properties. Among its six allotropes at ambient pressure, the fcc delta-phase exhibits a wide range of anomalous behavior: extraordinarily high elastic anisotropy, largest atomic volume despite the close-packed structure, negative thermal expansion, strong elastic softening at elevated temperature, and extreme sensitivity to dilute alloying. An accurate description of these thermodynamic properties goes far beyond the current capability of first-principle calculations. An elaborate modeling strategy at the atomic level is hence an urgent need. We propose a novel atomistic scheme to model elemental plutonium, in particular, to reproduce the anomalous characteristics of the delta-phase. A modified embedded atom method potential is fitted to two energy-volume curves that represent the distinct electronic states of plutonium in order to embody the mechanism of the two-state model of Weiss, in line with the insight originally proposed by Lawson et al. [Philos. Mag. 86, 2713 (2006)]. By the use of various techniques in Monte Carlo simulations, we are able to provide a unified perspective of diverse phenomenological aspects among thermal expansion, elasticity, and phase stability.

  17. Review of operating experience at the Los Alamos Plutonium Electrorefining Facility, 1963-1977

    SciTech Connect

    Mullins, L.J.; Morgan, A.N.

    1981-12-01

    This report reviews the operation of the Los Alamos Plutonium Electrorefining Plant at Technical Area 21 for the period 1964 through 1977. During that period, approximately 1568 kg of plutonium metal, > 99.95% pure, was produced in 653 runs from 1930 kg of metal fabrication scrap, 99% pure. General considerations of the electrorefining process and facility operation and recommendations for further improvement of the process are discussed.

  18. REVIEW OF PLUTONIUM OXIDATION LITERATURE

    SciTech Connect

    Korinko, P.

    2009-11-12

    A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for

  19. Magnesium-zinc reduction is effective in preparation of metals

    NASA Technical Reports Server (NTRS)

    Knighton, J. B.; Steuneberg, R. K.

    1967-01-01

    Uranium, thorium, and plutonium are effectively prepared by magnesium-zinc reduction, using uranium oxides, thorium dioxide, and plutonium dioxide as starting materials. This technique is also useful in performing reduction of metals such as zirconium and titanium.

  20. Plutonium Immobilization Program cold pour tests

    SciTech Connect

    Hovis, G.L.; Stokes, M.W.; Smith, M.E.; Wong, J.W.

    1999-07-01

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory to carry out the disposition of excess weapons-grade plutonium. This program uses the can-in-canister (CIC) approach. CIC involves encapsulating plutonium in ceramic forms (or pucks), placing the pucks in sealed stainless steel cans, placing the cans in long cylindrical magazines, latching the magazines to racks inside Defense Waste Processing Facility (DWPF) canisters, and filling the DWPF canisters with high-level waste glass. This process puts the plutonium in a stable form and makes it attractive for reuse. At present, the DWPF pours glass into empty canisters. In the CIC approach, the addition of a stainless steel rack, magazines, cans, and ceramic pucks to the canisters introduces a new set of design and operational challenges: All of the hardware installed in the canisters must maintain structural integrity at elevated (molten-glass) temperatures. This suggests that a robust design is needed. However, the amount of material added to the DWPF canister must be minimized to prevent premature glass cooling and excessive voiding caused by a large internal thermal mass. High metal temperatures, minimizing thermal mass, and glass flow paths are examples of the types of technical considerations of the equipment design process. To determine the effectiveness of the design in terms of structural integrity and glass-flow characteristics, full-scale testing will be conducted. A cold (nonradioactive) pour test program is planned to assist in the development and verification of a baseline design for the immobilization canister to be used in the PIP process. The baseline design resulting from the cold pour test program and CIC equipment development program will provide input to Title 1 design for second-stage immobilization. The cold pour tests will be conducted in two

  1. Improved Radiation Dosimetry/Risk Estimates to Facilitate Environmental Management of Plutonium Contaminated Sites

    SciTech Connect

    Scott, Bobby R.; Cheng, Yung-Sung; Zhou, Yue; Tokarskaya, Zoya B.; Zhuntova, Galina V.

    2003-06-11

    Our Phase II research evaluated health risks associated with inhaled plutonium. Our research objectives were to: (1) extend our stochastic model for deposition of plutonium in the respiratory tract to include additional key variability and uncertainty; (2) generate and analyze risk distributions for deterministic effects in the lung from inhaled plutonium that reflect risk model uncertainty; (3) acquire an improved understanding of key physiological effects of inhaled plutonium, based on evaluations of clinical data (e.g., hematological, respiratory function, chromosomal aberrations in lymphocytes) for Mayak workers in Russia who inhaled plutonium-239; (4) develop biological dosimetry for plutonium-239 that was inhaled by some Mayak workers (with unknown intake) based on clinical data for other workers with known plutonium-239 intake; (5) critically evaluate the validity of the linear no-threshold (LNT) risk model as it relates to cancer risks from inhaled plutonium-239 (base d on Mayak worker data); and (6) evaluate respirator filter penetration frequencies for airborne plutonium aerosols using surrogate high-density metals.

  2. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    SciTech Connect

    Rudisill, T.S.

    1999-08-11

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitation process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec

  3. Photochemical preparation of plutonium pentafluoride

    DOEpatents

    Rabideau, Sherman W.; Campbell, George M.

    1987-01-01

    The novel compound plutonium pentafluoride may be prepared by the photodissociation of gaseous plutonium hexafluoride. It is a white solid of low vapor pressure, which consists predominantly of a face-centered cubic structure with a.sub.o =4.2709.+-.0.0005 .ANG..

  4. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Anderson, H.H.; Asprey, L.B.

    1960-02-01

    A process of separating plutonium in at least the tetravalent state from fission products contained in an aqueous acidic solution by extraction with alkyl phosphate is reported. The plutonium can then be back-extracted from the organic phase by contact with an aqueous solution of sulfuric, phosphoric, or oxalic acid as a complexing agent.

  5. PREPARATION OF HALIDES OF PLUTONIUM

    DOEpatents

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  6. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  7. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOEpatents

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  8. Plutonium hexaboride is a correlated topological insulator

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel; Department of Physics and Astronomy, Rutgers University Team

    2014-03-01

    We predict that plutonium hexaboride (PuB6) is a strongly correlated topological insulator, with Pu in an intermediate valence state of Pu2 . 7 +. Within the combination of dynamical mean field theory and density functional theory, we show that PuB6 is an insulator in the bulk, with non-trivial Z2 topological invariants. Its metallic surface states have large Fermi pocket at X point and the Dirac cones inside the bulk derived electronic states causing a large surface thermal conductivity. PB6 has also a very high melting temperature therefore it has ideal solid state properties for a nuclear fuel material.

  9. 77 FR 60435 - Announcement of Requirements and Registration for Blue Button Video Challenge

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... completed Video Consent Forms must include a handwritten signature, and be scanned, combined in to a single file (ZIP, PDF, or doc), and uploaded on the submission form on BlueButtonVideo.Challenge.gov ....

  10. Modeling the impact of pedestrian behavior diversity on traffic dynamics at a crosswalk with push button

    NASA Astrophysics Data System (ADS)

    Xie, Dong-Fan; Zhao, Xiao-Mei; Li, Xin-Gang; Zhu, Tai-Lang

    2016-01-01

    Crosswalk with push button is prevalent in lots of cities for the purpose of promoting the efficiency of the crosswalk, and thus the delays of both vehicles and pedestrians can be reduced. This strategy has been confirmed to be effective in several developed countries. However, it is a pity that application of push button is aborted in some cities in China. In this work, diverse behaviors of vehicles and pedestrians are analyzed and discussed. Then, a microscopic model is developed by incorporating the interaction between vehicles and pedestrians. Numerical simulations are performed to reveal the characteristics of traffic flow and the efficiency of the signal control strategy. Also, the impacts of risker proportion and button reaction time, as well as the impacts of various behaviors as mass behavior, the patience of pedestrian and push button habit are investigated. It is expected that the results will be helpful to the strategy design of a signalized crosswalk in such developing countries as China.

  11. Critical experiments on single-unit spherical plutonium geometries reflected and moderated by oil

    SciTech Connect

    Rothe, R.E.

    1997-05-01

    Experimental critical configurations are reported for several dozen spherical and hemispherical single-unit assemblies of plutonium metal. Most were solid but many were hollow-centered, thick, shell-like geometries. All were constructed of nested plutonium (mostly {sup 2139}Pu) metal hemispherical shells. Three kinds of critical configurations are reported. Two required interpolation and/or extrapolation of data to obtain the critical mass because reflector conditions were essentially infinite. The first finds the plutonium essentially fully reflected by a hydrogen-rich oil; the second is essentially unreflected. The third kind reports the critical oil reflector height above a large plutonium metal assembly of accurately known mass (no interpolation required) when that mass was too great to permit full oil reflection. Some configurations had thicknesses of mild steel just outside the plutonium metal, separating it from the oil. These experiments were performed at the Rocky Flats Critical Mass Laboratory in the late 1960s. They have not been published in a form suitable for benchmark-quality comparisons against state-of-the-art computational techniques until this paper. The age of the data and other factors lead to some difficulty in reconstructing aspects of the program and may, in turn, decrease confidence in certain details. Whenever this is true, the point is acknowledged. The plutonium metal was alpha-phase {sup 239}Pu containing 5.9 wt-% {sup 240}Pu. All assemblies were formed by nesting 1.667-mm-thick (nominal) bare plutonium metal hemispherical shells, also called hemishells, until the desired configuration was achieved. Very small tolerance gaps machined into radial dimensions reduced the effective density a small amount in all cases. Steel components were also nested hemispherical shells; but these were nominally 3.333-mm thick. Oil was used as the reflector because of its chemical compatibility with plutonium metal.

  12. An Asymptomatic Foreign Body in the Nose in an Eighteen-Year-Old Patient: Button Battery.

    PubMed

    Onal, Merih; Ovet, Gultekin; Alatas, Necat

    2015-01-01

    Foreign bodies lodged in the upper airway are a common occurrence in children. Many unusual foreign bodies in the nose have been reported as foreign bodies like nuts, plastic toy parts, beads, and so forth. Most of these produce minimal morbidity but button batteries due to their early chemical disintegration require early surgical intervention. Here, we report a case of button battery lodged in the nose for several years with a symptom of nasal obstruction and chronic sinusitis. PMID:26664757

  13. PRODUCTION OF PLUTONIUM FROM PLUTONIUM FLUORIDE

    DOEpatents

    Baker, R.D.

    1959-06-01

    Reduction of PuF/sub 4/ to metal is described. In the example given, PuF/sub 4/ is mixed with 0.3 mole I/sub 2/ per mole of Pu and Ca powder 25% in excess of that required for eduction of the Pu salt, and I/sub 2/ is added. The mixture is charged to a magnesia-lined steel bomb which is heated until reacted in a furnace. The Pu is reduced to metal and recovered as a slug after the bomb is cooled and opened. About 90% yield is obtained. (T.R.H.)

  14. A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal

    NASA Astrophysics Data System (ADS)

    Donald, I. W.; Metcalfe, B. L.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D.

    2007-03-01

    Chloride-containing radioactive wastes are generated during the pyrochemical reprocessing of Pu metal. Immobilization of these wastes in borosilicate glass or Synroc-type ceramics is not feasible due to the very low solubility of chlorides in these hosts. Alternative candidates have therefore been sought including phosphate-based glasses, crystalline ceramics and hybrid glass/ceramic systems. These studies have shown that high losses of chloride or evolution of chlorine gas from the melt make vitrification an unacceptable solution unless suitable off-gas treatment facilities capable of dealing with these corrosive by-products are available. On the other hand, both sodium aluminosilicate and calcium phosphate ceramics are capable of retaining chloride in stable mineral phases, which include sodalite, Na 8(AlSiO 4) 6Cl 2, chlorapatite, Ca 5(PO 4) 3Cl, and spodiosite, Ca 2(PO 4)Cl. The immobilization process developed in this study involves a solid state process in which waste and precursor powders are mixed and reacted in air at temperatures in the range 700-800 °C. The ceramic products are non-hygroscopic free-flowing powders that only require encapsulation in a relatively low melting temperature phosphate-based glass to produce a monolithic wasteform suitable for storage and ultimate disposal.

  15. Shear Bond Strength of Orthodontic Brackets and Disinclusion Buttons: Effect of Water and Saliva Contamination

    PubMed Central

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola

    2013-01-01

    Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons. PMID:23762825

  16. Reactions of plutonium dioxide with water and oxygen-hydrogen mixtures: Mechanisms for corrosion of uranium and plutonium

    SciTech Connect

    Haschke, John M.; Allen, Thomas H.; Morales, Luis A.

    1999-06-18

    Investigation of the interactions of plutonium dioxide with water vapor and with an oxygen-hydrogen mixture show that the oxide is both chemically reactive and catalytically active. Correspondence of the chemical behavior with that for oxidation of uranium in moist air suggests that similar catalytic processes participate in the mechanism of moisture-enhanced corrosion of uranium and plutonium. Evaluation of chemical and kinetic data for corrosion of the metals leads to a comprehensive mechanism for corrosion in dry air, water vapor, and moist air. Results are applied in confirming that the corrosion rate of Pu in water vapor decreases sharply between 100 and 200 degrees C.

  17. Preliminary safety evaluation for the plutonium stabilization and packaging system

    SciTech Connect

    Shapley, J.E., Fluor Daniel Hanford

    1997-03-14

    This Preliminary Safety Evaluation (PSE) describes and analyzes the installation and operation of the Plutonium Stabilization and Packaging System (SPS) at the Plutonium Finishing Plant (PFP). The SPS is a combination of components required to expedite the safe and timely storage of Plutonium (Pu) oxide. The SPS program will receive site Pu packages, process the Pu for storage, package the Pu into metallic containers, and safely store the containers in a specially modified storage vault. The location of the SPS will be in the 2736- ZB building and the storage vaults will be in the 2736-Z building of the PFP, as shown in Figure 1-1. The SPS will produce storage canisters that are larger than those currently used for Pu storage at the PFP. Therefore, the existing storage areas within the PFP secure vaults will require modification. Other modifications will be performed on the 2736-ZB building complex to facilitate the installation and operation of the SPS.

  18. Supercritical fluid carbon dioxide cleaning of plutonium parts

    SciTech Connect

    Hale, S.J.

    1991-12-31

    Supercritical fluid carbon dioxide is under investigation in this work for use as a cleaning solvent for the final cleaning of plutonium parts. These parts must be free of organic residue to avoid corrosion in the stockpile. Initial studies on stainless steel and full-scale mock-up parts indicate that the oils of interest are easily and adequately cleaned from the metal surfaces with supercritical fluid carbon dioxide. Results from compatibility studies show that undesirable oxidation or other surface reactions are not occurring during exposure of plutonium to the supercritical fluid. Cleaning studies indicate that the oils of interest are removed from the plutonium surface under relatively mild conditions. These studies indicate that supercritical fluid carbon dioxide is a very promising cleaning medium for this application.

  19. SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP

    SciTech Connect

    Allender, J.; Mcclard, J.; Christopher, J.

    2012-06-08

    The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

  20. A MCNP model of gloveboxes in a plutonium processing facility

    SciTech Connect

    Dooley, D.E.; Kornreich, D.E.

    1998-12-31

    A room in the Plutonium Facility at Los Alamos National Laboratory has been slated for installation of a glovebox for storing plutonium metal in various shapes during processing. This storage glovebox will be located in a room containing other gloveboxes used daily by workers processing plutonium parts. A MCNP model of the room and gloveboxes has been constructed to estimate the neutron flux at various locations in the room for two different locations of the storage glovebox and to determine the effect of placing polyethylene shielding around the storage glovebox. A neutron dose survey of the room with sources dispersed as during normal production operations was used as a benchmark to compare the neutron dose equivalent rates calculated by the MCNP model.

  1. The role of troublesome components in plutonium vitrification

    SciTech Connect

    Li, Hong; Vienna, J.D.; Peeler, D.K.; Hrma, P.; Schweiger, M.J.

    1996-05-01

    One option for immobilizing surplus plutonium is vitrification in a borosilicate glass. Two advantages of the glass form are (1) high tolerance to feed variability and, (2) high solubility of some impurity components. The types of plutonium-containing materials in the United States inventory include: pits, metals, oxides, residues, scrap, compounds, and fuel. Many of them also contain high concentrations of carbon, chloride, fluoride, phosphate, sulfate, and chromium oxide. To vitrify plutonium-containing scrap and residues, it is critical to understand the impact of each component on glass processing and chemical durability of the final product. This paper addresses glass processing issues associated with these troublesome components. It covers solubility limits of chlorine, fluorine, phosphate, sulfate, and chromium oxide in several borosilicate based glasses, and the effect of each component on vitrification (volatility, phase segregation, crystallization, and melt viscosity). Techniques (formulation, pretreatment, removal, and/or dilution) to mitigate the effect of these troublesome components are suggested.

  2. Response of the Hanford Combination Neutron Dosimeter in plutonium environments

    SciTech Connect

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.

    1996-02-01

    This report documents response characteristics and the development of dose algorithms for the Hanford Combination Neutron Dosimeter (HCNO) implemented on January 1, 1995. The HCND was accredited under the U.S. Department of Energy (DOE) Laboratory Accreditation Program (DOELAP) during 1994. The HCND employs two neutron dose components consisting of (1) an albedo thermoluminescent dosimeter (TLD), and (2) a track-etch dosimeter (TED). Response characteristics of these two dosimeter components were measured under the low-scatter conditions of the Hanford 318 Building Calibration Laboratory, and under the high-scatter conditions in the workplace at the Plutonium Finishing Plant (PFP). The majority of personnel neutron dose at Hanford (currently and historically) occurs at the PFP. National Institute of Standards and Technology (NIST) traceable sources were used to characterize dosimeter response in the laboratory. At the PFP, neutron spectra and dose-measuring instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters, were used to determine the neutron dose under several configurations from three different plutonium sources: (1) plutonium tetrafluoride, (2) plutonium metal, and (3) plutonium oxide. In addition, measurements were performed at many selected work locations. The HCNDs were included in all measurements. Comparison of dosimeter- and instrument-measured dose equivalents provided the data necessary to develop HCND dose algorithms and to assess the accuracy of estimated neutron dose under actual work conditions.

  3. PRESSURE DEVELOPMENT IN SEALED CONTAINERS WITH PLUTONIUM BEARING MATERIALS

    SciTech Connect

    Duffey, J.; Livingston, R.

    2010-02-01

    Gas generation by plutonium-bearing materials in sealed containers has been studied. The gas composition and pressure are determined over periods from months to years. The Pu-bearing materials studied represent those produced by all of the major processes used by DOE in the processing of plutonium and include the maximum amount of water (0.5% by weight) allowed by DOE's 3013 Standard. Hydrogen generation is of high interest and the Pu-bearing materials can be classed according to how much hydrogen is generated. Hydrogen generation by high-purity plutonium oxides packaged under conditions typical for actual 3013 materials is minimal, with very low generation rates and low equilibrium pressures. Materials with chloride salt impurities have much higher hydrogen gas generation rates and result in the highest observed equilibrium hydrogen pressures. Other materials such as those with high metal oxide impurities generate hydrogen at rates in between these extremes. The fraction of water that is converted to hydrogen gas as equilibrium is approached ranges from 0% to 25% under conditions typical of materials packaged to the 3013 Standard. Generation of both hydrogen and oxygen occurs when liquid water is present. The material and moisture conditions that result in hydrogen and oxygen generation for high-purity plutonium oxide and chloride salt-bearing plutonium oxide materials have been characterized. Other gases that are observed include nitrous oxide, carbon dioxide, carbon monoxide, and methane.

  4. Chloride-catalyzed corrosion of plutonium in glovebox atmospheres

    SciTech Connect

    Burgess, M.; Haschke, J.M.; Allen, T.H.; Morales, L.A.; Jarboe, D.M.; Puglisi, C.V.

    1998-04-01

    Characterization of glovebox atmospheres and the black reaction product formed on plutonium surfaces shows that the abnormally rapid corrosion of components in the fabrication line is consistent with a complex salt-catalyzed reaction involving gaseous hydrogen chloride (HCl) and water. Analytical data verify that chlorocarbon and HCl vapors are presented in stagnant glovebox atmospheres. Hydrogen chloride concentrations approach 7 ppm at some locations in the glovebox line. The black corrosion product is identified as plutonium monoxide monohydride (PuOH), a product formed by hydrolysis of plutonium in liquid water and salt solutions at room temperature. Plutonium trichloride (PuCl{sub 3}) produced by reaction of HCl at the metal surface is deliquescent and apparently forms a highly concentrated salt solution by absorbing moisture from the glovebox atmosphere. Rapid corrosion is attributed to the ensuing salt-catalyzed reaction between plutonium and water. Experimental results are discussed, possible involvement of hydrogen fluoride (HF) is examined, and methods of corrective action are presented in this report.

  5. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  6. Plutonium-Based Heavy-Fermion Systems

    NASA Astrophysics Data System (ADS)

    Bauer, E. D.; Thompson, J. D.

    2015-03-01

    An effective mass of charge carriers that is significantly larger than the mass of a free electron develops at low temperatures in certain lanthanide- and actinide-based metals, including those formed with plutonium, owing to strong electron-electron interactions. This heavy-fermion mass is reflected in a substantially enhanced electronic coefficient of specific heat γ, which for elemental Pu is much larger than that of normal metals. By our definition, there are twelve Pu-based heavy-fermion compounds, most discovered recently, whose basic properties are known and discussed. Relative to other examples, these Pu-based heavy-fermion systems are particularly complex owing in part to the possible simultaneous presence of multiple, nearly degenerate 5fn configurations. This complexity poses significant opportunities as well as challenges, including understanding the origin of unconventional superconductivity in some of these materials.

  7. EIS Data Call Report: Plutonium immobilization plant using ceramic in new facilities at the Savannah River Site

    SciTech Connect

    DiSabatino, A.

    1998-06-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans.

  8. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  9. The structure of plutonium(IV) oxide as hydrolysed clusters in aqueous suspensions.

    PubMed

    Ekberg, Christian; Larsson, Kristian; Skarnemark, Gunnar; Ödegaard-Jensen, Arvid; Persson, Ingmar

    2013-02-14

    The behavior of plutonium still puzzles scientists 70 years after its discovery. There are several factors making the chemistry of plutonium interesting including its ability to keep several oxidation states. Another unique property is that the oxidation states +III, +IV, +V and +VI may exist simultaneously in solution. Another property plutonium shares with some other tetravalent metal ions is the ability to form stable polynuclear complexes or colloids. The structures of freshly prepared and five-year old plutonium(IV) colloids are compared with crystalline plutonium(IV) oxide using Pu L(3)-edge EXAFS. It was shown that as the plutonium colloids age they do in fact shrink in size, contrary to previous expectations. The aged colloidal particles are indeed very small with only 3-4 plutonium atoms, and with a structure very similar to solid plutonium(IV) oxide, but with somewhat shorter mean Pu-O bond and Pu···Pu distances indicating a partial oxidation. The very small size of the colloidal particles is further supported by the fact that they do not sediment on heavy ultra-centrifugation.

  10. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    SciTech Connect

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  11. METHOD OF PREPARING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Beede, R.L.; Hopkins, H.H. Jr.

    1959-11-17

    C rystalline plutonium tetrafluoride is precipitated from aqueous up to 1.6 N mineral acid solutions of a plutorium (IV) salt with fluosilicic acid anions, preferably at room temperature. Hydrogen fluoride naay be added after precipitation to convert any plutonium fluosilicate to the tetrafluoride and any silica to fluosilicic acid. This process results in a purer product, especially as to iron and aluminum, than does the precipitation by the addition of hydrogen fluoride.

  12. Plutonium measurements near background levels

    SciTech Connect

    Not Available

    1992-01-01

    The Rocky Flats Plant (RFP) is part of a nationwide nuclear weapons research, development, and production complex administered by the United States Department of Energy (DOE). Low-levels of environmental Plutonium occurs in and about RFP as a result of plant operations. Plutonium is a key element in remediation investigations and surface water discharge limits. Most of the plutonium analyses at RFP measure concentrations at or near background levels. Measurements often show little, if any, plutonium in the media being sampled, except at known contamination sites. Many plutonium results are less than the calculated minimum detectable-level (MDL). (MDL is an a priori estimate of the activity concentration that can be practically achieved under a specified set of typical measurement conditions.) This paper investigates the relationship between plutonium concentrations and the counting uncertainty when measurements are near background, and suggests why the MDL should not be used as a criteria for limiting data. Issues with defining site background and determining attainment of standards are presented.

  13. Plutonium measurements near background levels

    SciTech Connect

    Not Available

    1992-08-01

    The Rocky Flats Plant (RFP) is part of a nationwide nuclear weapons research, development, and production complex administered by the United States Department of Energy (DOE). Low-levels of environmental Plutonium occurs in and about RFP as a result of plant operations. Plutonium is a key element in remediation investigations and surface water discharge limits. Most of the plutonium analyses at RFP measure concentrations at or near background levels. Measurements often show little, if any, plutonium in the media being sampled, except at known contamination sites. Many plutonium results are less than the calculated minimum detectable-level (MDL). (MDL is an a priori estimate of the activity concentration that can be practically achieved under a specified set of typical measurement conditions.) This paper investigates the relationship between plutonium concentrations and the counting uncertainty when measurements are near background, and suggests why the MDL should not be used as a criteria for limiting data. Issues with defining site background and determining attainment of standards are presented.

  14. Effects on the long term storage container by thermal cycling alpha plutonium

    SciTech Connect

    Flamm, B.F.; Prenger, F.C.; Veirs, D.K.; Hill, D.D.; Isom, G.M.

    1998-03-01

    Experiments were conducted to determine the validity of the steady state temperature limit of 100 C established by the DOE-STD-3013-96 for storing alpha plutonium metal. Studies with an alpha plutonium ingot combined with strain gauge measurements indicate that the stainless steel storage container, yields very little (0.005 in.) to the expanding plutonium metal as it undergoes alpha beta phase transformation at temperatures above 112 C. Another experiment using an alpha plutonium rod for point loading of the container wall showed no measured deformation of the container. The results of strain measurements for alpha beta and beta alpha transformations for twenty five thermal cycles are reported. Finite element modeling using the measured data predicts that the compressive yield strength is 3,500 psi versus the literature value of 13,000 psi.

  15. Evaluation of Cognitive Function of Children with Developmental Disabilities by means of Button-Press Task

    NASA Astrophysics Data System (ADS)

    Nakazono, Shogo; Kobori, Satoshi

    The button-press task means that the subject observes a moving target and presses a button to stop it when the target enters a specified area on a computer display. Subjects perform normal task, suppressed task and delayed task. In the suppressed task, the moving target disappears at some point during the trial. In the delayed task, there is some lag time between the time of pressing button and of stopping target. In these tasks, subjects estimate the movement of the target, and press the button considering his/her own reaction time. In our previous study, we showed that cognitive and motor function was able to be evaluated by these tasks. In this study, we examined error data of children with developmental disabilities to evaluate the cognitive function, and investigated the learning processes. Moreover, we discussed the developmental stages by comparing the children with disabilities to normal control children, and we clarified the behavior characteristics of children with developmental disabilities. Asa result, it was shown that our evaluation method and system for the button-press task were effective to evaluate cognitive ability of children with developmental disabilities.

  16. Clinical and Sonographic Evaluation of Bicortical Button for Proximal Biceps Tenodesis.

    PubMed

    Meadows, James R; Diesselhorst, Matthew M; Finnoff, Jonathan T; Swanson, Britta L; Swanson, Kyle E

    2016-01-01

    Use of a cortical button for proximal biceps tenodesis has demonstrated strength comparable to that of other types of fixation in biomechanical models, but few studies have evaluated the clinical outcome of such fixation. In the study reported here, 18 patients who underwent open subpectoral biceps tenodesis with a bicortical button were assessed, at minimum 12-month follow-up, with the Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire, a pain scale, physical examination, biceps supination strength testing, and ultrasonographic evaluation (to determine tenodesis integrity and proximity of the button to the axillary nerve). No patient had symptoms of axillary nerve damage, clinical deformity, or tenodesis failure. Mean DASH score was 15.15 (scale range: 0, none to 100, extreme difficulty), and mean pain score was 12.6 (scale range: 0, none to 100, worst pain). Seventy-eight percent of patients had no bicipital groove tenderness, 89% had full elbow range of motion, and 94% had full shoulder range of motion. Mean forearm supination strength of the operated arm (125.04 lb) was significantly (P = .01) less than that of the nonoperated arm (134.39 lb). Mean (SD) distance from button to posterior circumflex humeral artery was 18.17 (9.0) mm. The study results suggest that subpectoral biceps tenodesis with a bicortical button is a safe, stable procedure that results in excellent functional outcomes. PMID:27552466

  17. Improvement of quality attributes of sponge cake using infrared dried button mushroom.

    PubMed

    Salehi, Fakhreddin; Kashaninejad, Mahdi; Asadi, Fereshteh; Najafi, Amin

    2016-03-01

    Infrared-hot air method, when properly applied, can be used for achieving a high-quality product. The objective of this study was to determine the rheological properties of cake batters and physico-chemical, textural and sensory properties of sponge cake supplemented with four different levels (control, 5 %, 10 %, and 15 %) of button mushroom powder. The button mushroom slices were dried in an infrared-hot air dryer (250 W and 60 °C). The physical (volume, density, color) and chemical (moisture, protein, fat and ash) attributes were determined in the cakes. Increasing the level of substitution from 5 % to 15 % button mushroom powder significantly (p < 0.05) increased the protein and ash. The apparent viscosity in cake batter, and volume, springiness, and cohesiveness values of baked cakes increased with increasing button mushroom powder levels whereas the density, consistency, hardness, gumminess, chewiness and crumb L, b values of samples showed a reverse trend. Sensory evaluation results indicated that cake with 10 % button mushroom powder was rated the most acceptable. PMID:27570266

  18. Improvement of quality attributes of sponge cake using infrared dried button mushroom.

    PubMed

    Salehi, Fakhreddin; Kashaninejad, Mahdi; Asadi, Fereshteh; Najafi, Amin

    2016-03-01

    Infrared-hot air method, when properly applied, can be used for achieving a high-quality product. The objective of this study was to determine the rheological properties of cake batters and physico-chemical, textural and sensory properties of sponge cake supplemented with four different levels (control, 5 %, 10 %, and 15 %) of button mushroom powder. The button mushroom slices were dried in an infrared-hot air dryer (250 W and 60 °C). The physical (volume, density, color) and chemical (moisture, protein, fat and ash) attributes were determined in the cakes. Increasing the level of substitution from 5 % to 15 % button mushroom powder significantly (p < 0.05) increased the protein and ash. The apparent viscosity in cake batter, and volume, springiness, and cohesiveness values of baked cakes increased with increasing button mushroom powder levels whereas the density, consistency, hardness, gumminess, chewiness and crumb L, b values of samples showed a reverse trend. Sensory evaluation results indicated that cake with 10 % button mushroom powder was rated the most acceptable.

  19. METHOD OF RECOVERING PLUTONIUM VALUES FROM AQUEOUS SOLUTIONS BY CARRIER PRECIPITATION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1959-11-01

    A process is presented for pretreating aqueous nitric acid- plutonium solutions containing a small quantity of hydrazine that has formed as a decomposition product during the dissolution of neutron-bombarded uranium in nitric acid and that impairs the precipitation of plutonium on bismuth phosphate. The solution is digested with alkali metal dichromate or potassium permanganate at between 75 and 100 deg C; sulfuric acid at approximately 75 deg C and sodium nitrate, oxaiic acid plus manganous nitrate, or hydroxylamine are added to the solution to secure the plutonium in the tetravalent state and make it suitable for precipitation on BiPO/sub 4/.

  20. Purification and Characterization of β-Glucosidase from Agaricus bisporus (White Button Mushroom).

    PubMed

    Ašić, Adna; Bešić, Larisa; Muhović, Imer; Dogan, Serkan; Turan, Yusuf

    2015-12-01

    β-Glucosidase (β-D-glucoside glucohydrolase, EC 3.2.1.21) is a catalytic enzyme present in both prokaryotes and eukaryotes that selectively catalyzes either the linkage between two glycone residues or between glycone and aryl or alkyl aglycone residue. Growing edible mushrooms in the soil with increased cellulose content can lead to the production of glucose, which is a process dependent on β-glucosidase. In this study, β-glucosidase was isolated from Agaricus bisporus (white button mushroom) using ammonium sulfate precipitation and hydrophobic interaction chromatography, giving 10.12-fold purification. Biochemical properties of the enzyme were investigated and complete characterization was performed. The enzyme is a dimer with two subunits of approximately 46 and 62 kDa. Optimum pH for the enzyme is 4.0, while the optimum temperature is 55 °C. The enzyme was found to be exceptionally thermostable. The most suitable commercial substrate for this enzyme is p-NPGlu with Km and Vmax values of 1.751 mM and 833 U/mg, respectively. Enzyme was inhibited in a competitive manner by both glucose and δ-gluconolactone with IC50 values of 19.185 and 0.39 mM, respectively and Ki values of 9.402 mM and 7.2 µM, respectively. Heavy metal ions that were found to inhibit β-glucosidase activity are I(-), Zn(2+), Fe(3+), Ag(+), and Cu(2+). This is the first study giving complete biochemical characterization of A. bisporus β-glucosidase.

  1. Criticality Experiments with Mixed Plutonium and Uranium Nitrate Solution at a Plutonium Fraction of 0.4 in Slab and Cylindrical Geometry

    SciTech Connect

    Lloyd, RC

    1988-04-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.4. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in cylinqrical and slab geometries and included measurements with a water reflector, a concrete reflector, and without an added reflector. The concentration was varied from 105 to 436 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 0.4 for all experiments.

  2. Criticality experiments with mixed plutonium and uranium nitrate solution at a plutonium fraction of 0.5 in slab and cylindrical geometry

    SciTech Connect

    Lloyd, R.C.

    1986-12-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.5. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in cylindrical and slab geometries and included measurements with a water reflector, a concrete reflector, and without an added reflector. The concentration was varied from 112 to 332 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 52% for all experiments.

  3. [Septal perforation in children due to button battery lodged in the nose: case series].

    PubMed

    Zanetta, Adrián; Cuestas, Giselle; Rodríguez, Hugo; Quiroga, Víctor

    2012-10-01

    Nasal foreign bodies are common in children. Button batteries deserve particular interest due to the severity and precocity of the injuries they cause. The button battery represents a growing danger. Its small size and brilliant appearance make them attractive to children, often being introduced in the nose, ear or mouth. It is imperative that the community and physicians are aware of the risks it poses. Early diagnosis and immediate removal is essential. Their delay can lead to necrosis of the nasal mucosa and septal perforation. We report 10 cases of septal perforation due to button battery. We emphasize the dangers of nasal impaction and the need for quick removal to avoid long-term complications.

  4. [Septal perforation in children due to button battery lodged in the nose: case series].

    PubMed

    Zanetta, Adrián; Cuestas, Giselle; Rodríguez, Hugo; Quiroga, Víctor

    2012-10-01

    Nasal foreign bodies are common in children. Button batteries deserve particular interest due to the severity and precocity of the injuries they cause. The button battery represents a growing danger. Its small size and brilliant appearance make them attractive to children, often being introduced in the nose, ear or mouth. It is imperative that the community and physicians are aware of the risks it poses. Early diagnosis and immediate removal is essential. Their delay can lead to necrosis of the nasal mucosa and septal perforation. We report 10 cases of septal perforation due to button battery. We emphasize the dangers of nasal impaction and the need for quick removal to avoid long-term complications. PMID:23070186

  5. Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment.

    PubMed

    Gao, Mengsha; Feng, Lifang; Jiang, Tianjia

    2014-04-15

    The effect of essential oil fumigation treatment on browning and postharvest quality of button mushrooms (Agaricus bisporus) was evaluated upon 16 days cold storage. Button mushrooms were fumigated with essential oils, including clove, cinnamaldehyde, and thyme. Changes in the browning index (BI), weight loss, firmness, percentage of open caps, total phenolics, ascorbic acid, microbial activity and activities of polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), and peroxidase (POD) were measured. The results indicated that all essential oils could inhibit the senescence of mushrooms, and the most effective compound was cinnamaldehyde. Fumigation treatment with 5 μl l⁻¹ cinnamaldehyde decreased BI, delayed cap opening, reduced microorganism counts, promoted the accumulation of phenolics and ascorbic acid. In addition, 5 μl l⁻¹ cinnamaldehyde fumigation treatment inhibited the activities of PPO and POD, and increased PAL activity during the storage period. Thus, postharvest essential oil fumigation treatment has positive effects on improving the quality of button mushrooms.

  6. Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment.

    PubMed

    Gao, Mengsha; Feng, Lifang; Jiang, Tianjia

    2014-04-15

    The effect of essential oil fumigation treatment on browning and postharvest quality of button mushrooms (Agaricus bisporus) was evaluated upon 16 days cold storage. Button mushrooms were fumigated with essential oils, including clove, cinnamaldehyde, and thyme. Changes in the browning index (BI), weight loss, firmness, percentage of open caps, total phenolics, ascorbic acid, microbial activity and activities of polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), and peroxidase (POD) were measured. The results indicated that all essential oils could inhibit the senescence of mushrooms, and the most effective compound was cinnamaldehyde. Fumigation treatment with 5 μl l⁻¹ cinnamaldehyde decreased BI, delayed cap opening, reduced microorganism counts, promoted the accumulation of phenolics and ascorbic acid. In addition, 5 μl l⁻¹ cinnamaldehyde fumigation treatment inhibited the activities of PPO and POD, and increased PAL activity during the storage period. Thus, postharvest essential oil fumigation treatment has positive effects on improving the quality of button mushrooms. PMID:24295683

  7. A PC parallel port button box provides millisecond response time accuracy under Linux.

    PubMed

    Stewart, Neil

    2006-02-01

    For psychologists, it is sometimes necessary to measure people's reaction times to the nearest millisecond. This article describes how to use the PC parallel port to receive signals from a button box to achieve millisecond response time accuracy. The workings of the parallel port, the corresponding port addresses, and a simple Linux program for controlling the port are described. A test of the speed and reliability of button box signal detection is reported. If the reader is moderately familiar with Linux, this article should provide sufficient instruction for him or her to build and test his or her own parallel port button box. This article also describes how the parallel port could be used to control an external apparatus.

  8. Plutonium focus area

    SciTech Connect

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  9. Plutonium solution analyzer

    SciTech Connect

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  10. Thermocron iButton and iBBat temperature dataloggers emit ultrasound.

    PubMed

    Willis, Craig K R; Jameson, Joel W; Faure, Paul A; Boyles, Justin G; Brack, Virgil; Cervone, Tom H

    2009-10-01

    Thermocron iButton dataloggers are widely used to measure thermal microclimates experienced by wild animals. The iBBat is a smaller version of the datalogger, also commercially available, that is used to measure animal skin or core body temperatures when attached externally or surgically implanted. Field observations of bats roosting under a bridge suggested that bats avoided locations with iButtons. A heterodyne bat detector revealed that the dataloggers emitted ultrasound which was detectable from a distance of up to 30 cm. We therefore recorded and quantified the acoustic properties [carrier frequency (Hz) and root mean square sound pressure level (dB SPL)] of iButton and iBBat dataloggers. All units emitted a 32.9 kHz pure tone that was readily picked up with a time expansion bat detector at a distance of 1 cm, and most were detected at a distance of 15 cm. The maximum amplitude of iButton dataloggers was 46.5 dB SPL at 1.0 cm-a level within the range of auditory sensitivity for most small mammals. Wrapping iButtons in plastic insulation severely attenuated the amplitude of ultrasound. Although there was a statistically significant reduction in rates of warming and cooling with insulation, this effect was small and we suggest that insulation may be a viable solution to eliminate unwanted ultrasonic noise in instances when small delays in thermal response dynamics are not a concern. We recommend behavioural studies to assess if the electronic signals emitted by iButtons are disturbing to small mammals. PMID:19468737

  11. Co-Design: Fabrication of Unalloyed Plutonium

    SciTech Connect

    Korzekwa, Deniece R.; Knapp, Cameron M.; Korzekwa, David A.; Gibbs, John W

    2012-07-25

    The successful induction casting of plutonium is a challenge which requires technical expertise in areas including physical metallurgy, surface and corrosion chemistry, materials science, electromagnetic engineering and a host of other technologies all which must be applied in concert. Here at LANL, we are employing a combined experimental and computational approach to design molds and develop process parameters needed to produce desired temperature profiles and improved castings. Computer simulations are performed using the commercial code FLOW-3D and the LANL ASC computer code TRUCHAS to reproduce the entire casting process starting with electromagnetic or radiative heating of the mold and metal and continuing through pouring with coupled fluid flow, heat transfer and non-isothermal solidification. This approach greatly reduces the time required to develop a new casting designs and also increases our understanding of the casting process, leading to a more homogeneous, consistent product and better process control. We will discuss recent casting development results in support of unalloyed plutonium rods for mechanical testing.

  12. Avoided valence transition in a plutonium superconductor.

    PubMed

    Ramshaw, B J; Shekhter, Arkady; McDonald, Ross D; Betts, Jon B; Mitchell, J N; Tobash, P H; Mielke, C H; Bauer, E D; Migliori, Albert

    2015-03-17

    The d and f electrons in correlated metals are often neither fully localized around their host nuclei nor fully itinerant. This localized/itinerant duality underlies the correlated electronic states of the high-Tc cuprate superconductors and the heavy-fermion intermetallics and is nowhere more apparent than in the 5f valence electrons of plutonium. Here, we report the full set of symmetry-resolved elastic moduli of PuCoGa5--the highest Tc superconductor of the heavy fermions (Tc = 18.5 K)--and find that the bulk modulus softens anomalously over a wide range in temperature above Tc. The elastic symmetry channel in which this softening occurs is characteristic of a valence instability--therefore, we identify the elastic softening with fluctuations of the plutonium 5f mixed-valence state. These valence fluctuations disappear when the superconducting gap opens at Tc, suggesting that electrons near the Fermi surface play an essential role in the mixed-valence physics of this system and that PuCoGa5 avoids a valence transition by entering the superconducting state. The lack of magnetism in PuCoGa5 has made it difficult to reconcile with most other heavy-fermion superconductors, where superconductivity is generally believed to be mediated by magnetic fluctuations. Our observations suggest that valence fluctuations play a critical role in the unusually high Tc of PuCoGa5.

  13. Avoided valence transition in a plutonium superconductor

    PubMed Central

    Ramshaw, B. J.; Shekhter, Arkady; McDonald, Ross D.; Betts, Jon B.; Mitchell, J. N.; Tobash, P. H.; Mielke, C. H.; Bauer, E. D.; Migliori, Albert

    2015-01-01

    The d and f electrons in correlated metals are often neither fully localized around their host nuclei nor fully itinerant. This localized/itinerant duality underlies the correlated electronic states of the high-Tc cuprate superconductors and the heavy-fermion intermetallics and is nowhere more apparent than in the 5f valence electrons of plutonium. Here, we report the full set of symmetry-resolved elastic moduli of PuCoGa5—the highest Tc superconductor of the heavy fermions (Tc = 18.5 K)—and find that the bulk modulus softens anomalously over a wide range in temperature above Tc. The elastic symmetry channel in which this softening occurs is characteristic of a valence instability—therefore, we identify the elastic softening with fluctuations of the plutonium 5f mixed-valence state. These valence fluctuations disappear when the superconducting gap opens at Tc, suggesting that electrons near the Fermi surface play an essential role in the mixed-valence physics of this system and that PuCoGa5 avoids a valence transition by entering the superconducting state. The lack of magnetism in PuCoGa5 has made it difficult to reconcile with most other heavy-fermion superconductors, where superconductivity is generally believed to be mediated by magnetic fluctuations. Our observations suggest that valence fluctuations play a critical role in the unusually high Tc of PuCoGa5. PMID:25737548

  14. [Modified tracheostomy management: a protocol for the application of stoma buttons in difficult decannulations].

    PubMed

    Frank, U; Czepluch, C; Sticher, H; Mätzener, F; Schlaegel, W; Mäder, M

    2013-02-01

    Current approaches to decannulation management often fail to account for patients with combined swallowing and respiratory deficits. We expanded our existing weaning and decannulation protocol by adding an optional 3-day decannulation trial to evaluate readiness for decannulation. If a patient meets predefined test-decannulation criteria a tracheostomy button is inserted during a laryngoscopic examination and left in situ for up to 3 days. Before, during and after button insertion the patient's respiratory function and saliva management are closely monitored before the decision for or against permanent decannulation is made. We present evaluation criteria, protocols and flow-charts illustrating the 3-day decannulation trial as well as 2 case studies.

  15. Balloon and Button Spectroscopy: A Hands-On Approach to Light and Matter

    NASA Astrophysics Data System (ADS)

    Ribaudo, Joseph

    2016-09-01

    Without question, one of the most useful tools an astronomer or physicist can employ to study the universe is spectroscopy. However, for students in introductory physics or astronomy classes, spectroscopy is a relatively abstract concept that combines new physics topics such as thermal radiation, atomic physics, and the wave and particle nature of light and matter. In response to this conceptual hurdle, we have developed an exercise where balloons represent stars, buttons represent photons, and students produce and interpret spectra by sorting colored buttons.

  16. Balloon and Button Spectroscopy: A Hands-On Approach to Light and Matter

    NASA Astrophysics Data System (ADS)

    Ribaudo, Joseph

    2016-01-01

    Without question, one of the most useful tools an astronomer can use to study the universe is spectroscopy. However, for students in introductory physics or astronomy classes, spectroscopy is a relatively abstract concept that combines new physics topics such as thermal radiation, atomic physics, and the wave and particle nature of light and matter. In response to this conceptual hurdle, we have developed an exercise where balloons represent stars, buttons represent photons, and students produce and interperet spectra by sorting buttons of various colors.

  17. Button Battery Ingestion in Children: A Paradigm for Management of Severe Pediatric Foreign Body Ingestions.

    PubMed

    Leinwand, Kristina; Brumbaugh, David E; Kramer, Robert E

    2016-01-01

    Gastrointestinal injuries secondary to button battery ingestions in children have emerged as a dangerous and difficult management problem for pediatricians. Implementation of a multidisciplinary team approach, with rapid and coordinated care, is paramount to minimize the risk of negative outcomes. In addition to providing a comprehensive review of the topic, this article outlines the authors' referral center's experience with patients with severe battery ingestion, highlighting the complications, outcomes, and important lessons learned from their care. The authors also propose an algorithm for clinical care that may be useful for guiding best management of pediatric button battery ingestion.

  18. Double shell tanks plutonium inventory assessment

    SciTech Connect

    Tusler, L.A.

    1995-05-31

    This report provides an evaluation that establishes plutonium inventory estimates for all DSTs based on known tank history information, the DST plutonium inventory tracking system, tank characterization measurements, tank transfer records, and estimated average concentration values for the various types of waste. These estimates use data through December 31, 1994, and give plutonium estimates as of January 1, 1995. The plutonium inventory values for the DSTs are given in Section 31. The plutonium inventory estimate is 224 kg for the DSTs and 854 kg for the SSTs for a total of 1078 kg. This value compares favorably with the total plutonium inventory value of 981 kg obtained from the total plutonium production minus plutonium recovery analysis estimates.

  19. Recent plutonium science and technology at ORNL

    SciTech Connect

    Bell, J.T.

    1985-01-01

    Plutonium research and development (R and D) at ORNL has generally followed development of the nuclear fuel cycle. Basic plutonium chemistry studies have diminished since the mid-1970s; however, significant efforts have been made recently to determine fundamental characteristics of the aqueous plutonium polymer and to develop thermodynamic representations of plutonium oxides. Some studies have also been made on plutonium phosphates related to waste isolation and on definition of the oxidation states of environmental plutonium. The remaining work has been supported by the Consolidated Fuel Reprocessing Program (CFRP) and includes: (1) establishment of boundary limits for polymer formation in Purex systems; (2) preparation of mixed uranium-plutonium oxide microspheres by internal gelation sol-gel techniques; (3) direct thermal denitration of aqueous systems; and (4) plutonium/uranium extraction from spent fast reactor fuels.

  20. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    SciTech Connect

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

  1. PROCESS OF SEPARATING PLUTONIUM FROM URANIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-09-01

    A process is presented for recovering plutonium values from aqueous solutions. It comprises forming a uranous hydroxide precipitate in such a plutonium bearing solution, at a pH of at least 5. The plutonium values are precipitated with and carried by the uranium hydroxide. The carrier precipitate is then redissolved in acid solution and the pH is adjusted to about 2.5, causing precipitation of the uranous hydroxide but leaving the still soluble plutonium values in solution.

  2. System design document for the plutonium stabilization and packaging system

    SciTech Connect

    1996-05-08

    The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements for DOE standards for safe storage of these materials for 50 years. This document describes the highest level design information and user characteristics from an operational perspective. It provides guidance for developing procurement and installation specifications, interface requirements, and test plans.

  3. CHARACTERIZATION OF METAL BENZOTRIAZOLES AND RELATED POLYMERS

    EPA Science Inventory

    Benzotriazole (bta-H) is a well-known corrosion inhibitor for copper, copper-alloy, and other metal surfaces. Typical uses are to deactivate surfaces of computer hard drives and other internal metal computer parts, and for treatment of apparel hardware such as zippers and buttons...

  4. Pediatric anterior cruciate ligament femoral fixation: the trans-iliotibial band endoscopic portal for direct visualization of ideal button placement.

    PubMed

    Mistovich, R Justin; O'Toole, Patrick O J; Ganley, Theodore J

    2014-06-01

    Pediatric and adolescent anterior cruciate ligament reconstruction is a commonly performed procedure that has been increasing in incidence. Multiple techniques for graft fixation have been described. Button-based femoral cortical suspension fixation of the anterior cruciate ligament graft allows for fast, secure fixation with strong load-to-failure biomechanical properties. The biomechanical properties of button-based femoral cortical suspension fixation are especially beneficial with soft-tissue grafts such as hamstring autografts. Confirmation of a successfully flipped button can be achieved with intraoperative fluoroscopy or indirect viewing; however, these techniques do not provide direct visualization of the flipped button. Our trans-iliotibial band endoscopic portal allows the surgeon to safely and directly visualize the flipped button on the lateral femoral cortex and ensure that there is no malpositioning in the form of an incompletely flipped button or from soft-tissue interposition between the button and the lateral femoral cortex. This portal therefore allows for direct visual confirmation that the button is fully flipped and resting flush against the femoral cortex, deep to the iliotibial band and vastus lateralis.

  5. Plutonium Oxide Process Capability Work Plan

    SciTech Connect

    Meier, David E.; Tingey, Joel M.

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  6. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2011-10-01 2011-10-01 false Plutonium shipments. 175.704 Section...

  7. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2012-10-01 2012-10-01 false Plutonium shipments. 175.704 Section...

  8. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2013-10-01 2013-10-01 false Plutonium shipments. 175.704 Section...

  9. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2014-10-01 2014-10-01 false Plutonium shipments. 175.704 Section...

  10. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2010-10-01 2010-10-01 false Plutonium shipments. 175.704 Section...

  11. Plutonium Focus Area research and development plan. Revision 1

    SciTech Connect

    1996-11-01

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

  12. Effect of drivers' age and push button locations on visual time off road, steering wheel deviation and safety perception.

    PubMed

    Dukic, T; Hanson, L; Falkmer, T

    2006-01-15

    The study examined the effects of manual control locations on two groups of randomly selected young and old drivers in relation to visual time off road, steering wheel deviation and safety perception. Measures of visual time off road, steering wheel deviations and safety perception were performed with young and old drivers during real traffic. The results showed an effect of both driver's age and button location on the dependent variables. Older drivers spent longer visual time off road when pushing the buttons and had larger steering wheel deviations. Moreover, the greater the eccentricity between the normal line of sight and the button locations, the longer the visual time off road and the larger the steering wheel deviations. No interaction effect between button location and age was found with regard to visual time off road. Button location had an effect on perceived safety: the further away from the normal line of sight the lower the rating.

  13. Summary of near-term options for Russian plutonium production reactors

    SciTech Connect

    Newman, D.F.; Gesh, C.J.; Love, E.F.; Harms, S.L.

    1994-07-01

    The Russian Federation desires to phase out the production of weapons-grade plutonium. To this end, ten graphite-moderated, water-cooled reactors have been shut down during the last several years. However, complete cessation of plutonium production is impeded because the three operating Russian reactors supply district heat and electricity to the Tomsk and Krasnoyarsk regions in addition to producing weapon-grade plutonium. In August 1992 the Russian Federation Ministry of Atomic Energy (MINATOM) and the Russian Nuclear Regulatory Agency (GAN) requested U.S. assistance for achieving a cessation of weapons-grade plutonium production, placing the plutonium production reactors under safeguards, and conducting a program to evaluate and assist in the upgrade of plant safety. As a result of that and subsequent communications, Secretary O`Leary and Minister Mikhailov have signed a protocol that expressed their desire to shut down the three remaining plutonium production reactors as soon as possible by replacing them with alternate energy sources. In the meantime, both MINATOM and the Department of Energy (DOE) are concerned about the safety of the plants as well as the difficulty in ceasing the production of plutonium as long as the plants continue to operate. A military subsidy has been provided for operation of the production reactor complex. Revenues received for providing district heat and electricity are insufficient to cover costs for the current natural uranium metal fuel cycle. A more economical fuel cycle is needed for civilian operations.

  14. Plutonium dissolution process

    DOEpatents

    Vest, M.A.; Fink, S.D.; Karraker, D.G.; Moore, E.N.; Holcomb, H.P.

    1994-01-01

    A two-step process for dissolving Pu metal is disclosed in which two steps can be carried out sequentially or simultaneously. Pu metal is exposed to a first mixture of 1.0-1.67 M sulfamic acid and 0.0025-0.1 M fluoride, the mixture having been heated to 45-70 C. The mixture will dissolve a first portion of the Pu metal but leave a portion of the Pu in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alternatively, nitric acid between 0.05 and 0.067 M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution is diluted with nitrogen.

  15. Adapting the eButton to the abilities of children for diet assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary assessment is fraught with error among adults and especially among children. Innovative technology may provide more accurate assessments of dietary intake. One recently available innovative method is a camera worn on the chest (called an eButton) that takes images of whatever is in front of ...

  16. Armpits, Belly Buttons and Chronic Wounds: The ABCs of Our Body Bacteria

    MedlinePlus

    ... The ABCs of Our Body Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Armpits, Belly Buttons and Chronic Wounds: ... Findings About Our Resident Microbes This Inside Life Science article also appears on LiveScience . Learn about related ...

  17. Dietary supplementation with white button mushroom augments the protective immune response to Salmonella vaccine in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously showed that dietary white button mushrooms (WBM) enhanced natural killer cell activity and that in vitro WBM supplementation promotes maturation and function of dendritic cells (DC). The current study investigated whether WBM consumption would enhance pathogen-specific immune response ...

  18. Arthroscopic Treatment of Comminuted Distal Clavicle Fractures (Latarjet Fractures) Using 2 Double-Button Devices

    PubMed Central

    Pujol, Nicolas; Desmoineaux, Pierre; Boisrenoult, Philippe; Beaufils, Philippe

    2013-01-01

    Complex distal clavicle fractures associated with a rupture of the coracoclavicular ligaments (Latarjet fractures) can result in delayed union or nonunion. There is no standard treatment for a clavicle fracture. This report introduces an arthroscopic technique for treating distal clavicle fractures associated with ruptured coracoclavicular ligament using 2 double-button devices. By use of posterior and anterior standard arthroscopic portals, the base of the coracoid process is exposed through the rotator interval. A 4-mm hole is drilled through the clavicle and the coracoid process with a specific ancillary drill guide. The first button is pushed through both holes down the coracoid process. The device is tightened, and the second button is fixed on top of the clavicle, allowing reduction and fixation of the proximal part of the fracture. Then, the undersurface of the lateral clavicle is dissected through standard posterior and lateral subacromial approaches. The inferior clavicle fragment is reduced and fixed to the clavicle body by a double button fixed down and at the top of the clavicle. With this technique, the arthroscopic treatment of distal clavicle fracture has been extended to comminuted fractures. PMID:23767010

  19. Using Buttons to Better Manage Online Presence: How One Academic Institution Harnessed the Power of Flair

    ERIC Educational Resources Information Center

    Dority Baker, Marcia L.

    2013-01-01

    This article provides a case study of how the University of Nebraska College of Law and Schmid Law Library use "buttons" to manage Law College faculty members' and librarians' online presence. Since Google is the primary search engine used to find information, it is important that librarians and libraries assist Web site…

  20. BIOLOGICALLY-MEDIATED REMOVAL AND RECOVERY OF PLUTONIUM FROM CONTAMINATED SOIL

    SciTech Connect

    Jerger, Douglas E., Ph.D.,; Alperin, Edward S., QEP,; Holmes, Robert G., Ph.D.

    2003-02-27

    An innovative biological treatment technology successfully reduced plutonium concentration in soil from the Nevada Test Site (NTS) by over 80%. The final volume of plutonium-contaminated material that required disposal was reduced by over 90%. These results, achieved by an independent testing laboratory, confirm the results reported previously using NTS soil. In the previous test a 2530-gram sample of soil (350 to 400 pCi/g Pu) resulted in production of 131 grams of sludge (6,320 pCi/ g Pu) and a treated soil containing 72 pCi/g of Pu. The technology is based on the biological acidification of the soil and subsequent removal of the plutonium and other dissolved metals by a low volume, low energy water leaching process. The leachate is treated in a sulfate-reducing bioreactor to precipitate the metals as metal sulfides. Water may be recycled as process water or disposed since the treatment process removes over 99% of the dissolved metals including plutonium from the water. The plutonium is contained as a stable sludge that can be containerized for final disposal. Full-scale process costs have been developed which employ widely used treatment technologies such as aerated soil piles (biopiles) and bioreactors. The process costs were less than $10 per cubic foot, which were 40 to 50% lower than the baseline costs for the treatment of the NTS soil. The equipment and materials for water and sludge treatment and soil handling are commercially available.

  1. Plutonium Speciation, Solubilization and Migration in Soils

    SciTech Connect

    Neu, M.; Runde, W.

    1999-06-01

    This report summarizes research completed in the first half of a three-year project. As outlined in the authors' proposal they are focusing on (1) characterizing the plutonium at an actinide contaminated site, RFETS, including determining the origin, dispersion, and speciation of the plutonium, (2) studying environmentally important plutonium complexes, primarily hydroxides and carbonates, and (3) examining the interactions of plutonium species with manganese minerals. In the first year the authors focused on site based studies. This year they continue to characterize samples from the RFETS, study the formation and structural and spectroscopic features of environmentally relevant Pu species, and begin modeling the environmental behavior of plutonium.

  2. Plutonium immobilization feed batching system concept report

    SciTech Connect

    Erickson, S.

    2000-07-19

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Feed batching is one of the first process steps involved with first stage plutonium immobilization. It will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization feed batching process preliminary concept, batch splitting concepts, and includes a process block diagram, concept descriptions, a preliminary equipment list, and feed batching development areas.

  3. Plutonium inventory characterization technical evaluation report

    SciTech Connect

    Wittman, G.R., Westinghouse Hanford

    1996-07-10

    This is a technical report on the data, gathered to date, under WHC- SD-CP-TP-086, Rev. 1, on the integrity of the food pack cans currently being used to store plutonium or plutonium compounds at the Plutonium Finishing Plant. Workplan PFP-96-VO-009, `Inspection of Special Nuclear Material Using X-ray`, was used to gather data on material and containment conditions using real time radiography. Some of those images are included herein. A matrix found in the `Plutonium Inventory Characterization Implementation Plan` was used to categorize different plutonium items based upon the type of material being stored and the life expectancy of the containers.

  4. PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION

    DOEpatents

    Wolter, F.J.; Diehl, H.C. Jr.

    1958-01-01

    This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.

  5. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    1984-07-10

    A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  6. Method of separating thorium from plutonium

    DOEpatents

    Clifton, David G.; Blum, Thomas W.

    1984-01-01

    A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  7. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  8. SUPPORTING SAFE STORAGE OF PLUTONIUM-BEARING MATERIALS THROUGH SCIENCE, ENGINEERING AND SURVEILLANCE

    SciTech Connect

    Dunn, K.; Chandler, G.; Gardner, C.; Louthan, M.; Mcclard, J.

    2009-11-10

    Reductions in the size of the U. S. nuclear weapons arsenal resulted in the need to store large quantities of plutonium-bearing metals and oxides for prolonged periods of time. To assure that the excess plutonium from the U. S. Department of Energy (DOE) sites was stored in a safe and environmentally friendly manner the plutonium-bearing materials are stabilized and packaged according to well developed criteria published as a DOE Standard. The packaged materials are stored in secure facilities and regular surveillance activities are conducted to assure continuing package integrity. The stabilization, packaging, storage and surveillance requirements were developed through extensive science and engineering activities including those related to: plutonium-environment interactions and container pressurization, corrosion and stress corrosion cracking, plutonium-container material interactions, loss of sealing capability and changes in heat transfer characteristics. This paper summarizes some of those activities and outlines ongoing science and engineering programs that assure continued safe and secure storage of the plutonium-bearing metals and oxides.

  9. A Proteomic Approach to Identification of Plutonium Binding Proteins in Mammalian Cells

    PubMed Central

    Aryal, Baikuntha P.; Paunesku, Tatjana; Woloschak, Gayle E.; He, Chuan; Jensen, Mark P.

    2013-01-01

    Plutonium can enter the body through different routes and remains there for decades; however its specific biochemical interactions are poorly defined. We, for the first time, have studied plutonium-binding proteins using a metalloproteomic approach with rat PC12 cells. A combination of immobilized metal ion chromatography, 2D gel electrophoresis, and mass spectrometry were employed to analyze potential plutonium-binding proteins. Our results show that several proteins from PC12 cells show affinity towards Pu4+-NTA (plutonium bound to nitrilotriacetic acid). Proteins from seven different spots in the 2D gel were identified. In contrast to the previously known plutonium-binding proteins transferrin and ferritin, which bind ferric ions, most identified proteins in our experiment are known to bind calcium, magnesium, or divalent transition metal ions. The identified plutonium interacting proteins also have functional roles in downregulation of apoptosis and other pro-proliferative processes. MetaCore analysis based on this group of proteins produced a pathway with a statistically significant association with development of neoplastic diseases. PMID:22146473

  10. A proteomic approach to identification of plutonium-binding proteins in mammalian cells.

    PubMed

    Aryal, Baikuntha P; Paunesku, Tatjana; Woloschak, Gayle E; He, Chuan; Jensen, Mark P

    2012-02-16

    Plutonium can enter the body through different routes and remains there for decades; however its specific biochemical interactions are poorly defined. We, for the first time, have studied plutonium-binding proteins using a metalloproteomic approach with rat PC12 cells. A combination of immobilized metal ion chromatography, 2D gel electrophoresis, and mass spectrometry was employed to analyze potential plutonium-binding proteins. Our results show that several proteins from PC12 cells show affinity towards Pu(4+)-NTA (plutonium bound to nitrilotriacetic acid). Proteins from seven different spots in the 2D gel were identified. In contrast to the previously known plutonium-binding proteins transferrin and ferritin, which bind ferric ions, most identified proteins in our experiment are known to bind calcium, magnesium, or divalent transition metal ions. The identified plutonium interacting proteins also have functional roles in downregulation of apoptosis and other pro-proliferative processes. MetaCore™ analysis based on this group of proteins produced a pathway with a statistically significant association with development of neoplastic diseases.

  11. Energetic optimization of a piezo-based touch-operated button for man-machine interfaces

    NASA Astrophysics Data System (ADS)

    Sun, Hao; de Vries, Theo J. A.; de Vries, Rene; van Dalen, Harry

    2012-03-01

    This paper discusses the optimization of a touch-operated button for man-machine interfaces based on piezoelectric energy harvesting techniques. In the mechanical button, a common piezoelectric diaphragm, is assembled to harvest the ambient energy from the source, i.e. the operator’s touch. Under touch force load, the integrated diaphragm will have a bending deformation. Then, its mechanical strain is converted into the required electrical energy by means of the piezoelectric effect presented to the diaphragm. Structural design (i) makes the piezoceramic work under static compressive stress instead of static or dynamic tensile stress, (ii) achieves a satisfactory stress level and (iii) provides the diaphragm and the button with a fatigue lifetime in excess of millions of touch operations. To improve the button’s function, the effect of some key properties consisting of dimension, boundary condition and load condition on electrical behavior of the piezoelectric diaphragm are evaluated by electromechanical coupling analysis in ANSYS. The finite element analysis (FEA) results indicate that the modification of these properties could enhance the diaphragm significantly. Based on the key properties’ different contributions to the improvement of the diaphragm’s electrical energy output, they are incorporated into the piezoelectric diaphragm’s redesign or the structural design of the piezo-based button. The comparison of the original structure and the optimal result shows that electrical energy stored in the diaphragm and the voltage output are increased by 1576% and 120%, respectively, and the volume of the piezoceramic is reduced to 33.6%. These results will be adopted to update the design of the self-powered button, thus enabling a large decrease of energy consumption and lifetime cost of the MMI.

  12. Insertion of Balloon Retained Gastrostomy Buttons: A 5-Year Retrospective Review of 260 Patients

    SciTech Connect

    Power, Sarah Kavanagh, Liam N.; Shields, Mary C.; Given, Mark F.; Keeling, Aoife N.; McGrath, Frank P.; Lee, Michael J.

    2013-04-15

    Radiologically inserted gastrostomy (RIG) is an established way of maintaining enteral nutrition in patients who cannot maintain nutrition orally. The purpose of this study was to evaluate the safety and efficacy of primary placement of a wide bore button gastrostomy in a large, varied patient population through retrospective review. All patients who underwent gastrostomy placement from January 1, 2004 to January 1, 2009 were identified. 18-Fr gastrostomy buttons (MIC-Key G) were inserted in the majority. Follow-up ranged from 6 months to 4.5 years. A total of 260 patients (M:F 140:120, average age 59.2 years) underwent gastrostomy during the study period. Overall success rate for RIG placement was 99.6 %, with success rate of 95.3 % for primary button insertion. Indications included neurological disorders (70 %), esophageal/head and neck malignancy (21 %), and other indications (9 %). Major and minor complication rates were 1.2 and 12.8 %, respectively. Thirty-day mortality rate was 6.8 %. One third of patients underwent gastrostomy reinsertion during the study period, the main indication for which was inadvertent catheter removal. Patency rate was high at 99.5 %. The maximum number of procedures in any patient was 8 (n = 2), and the average tube dwell time was 125 days. Primary radiological insertion of a wide bore button gastrostomy is a safe technique, with high success rate, high patency rate, and low major complication rate. We believe that it is feasible to attempt button gastrostomy placement in all patients, once tract length is within limits of tube length. If difficulty is encountered, then a standard tube may simply be placed instead.

  13. CONCENTRATION AND DECONTAMINATION OF SOLUTIONS CONTAINING PLUTONIUM VALUES BY BISMUTH PHOSPHATE CARRIER PRECIPITATION METHODS

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.

    1960-08-23

    A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.

  14. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  15. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-12-31

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  16. Plutonium Recycle: The Fateful Step

    ERIC Educational Resources Information Center

    Speth, J. Gustave; And Others

    1974-01-01

    Calls attention to the fact that if the Atomic Energy Commission proceeds with its plans to authorize the nuclear power industry to use plutonium as a fuel in commercial nuclear reactors around the country, this will result in a dramatic escalation in the risks posed by nuclear power. (PEB)

  17. The First Weighing of Plutonium

    DOE R&D Accomplishments Database

    Seaborg, Glenn T.

    1967-09-10

    Recollections and reminiscences at the 25th Anniversary of the First Weighing of Plutonium, Chicago, IL, September 10, 1967, tell an important part of the story of this fascinating new element that is destined to play an increasingly significant role in the future of man.

  18. PROCESS FOR SEPARATION OF HEAVY METALS

    DOEpatents

    Duffield, R.B.

    1958-04-29

    A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

  19. The plutonium-hydrogen reaction: SEM characterization of product morphology

    NASA Astrophysics Data System (ADS)

    Dinh, L. N.; McCall, S. K.; Saw, C. K.; Haschke, J. M.; Allen, P. G.; McLean, W.

    2014-08-01

    The product morphology of the hydrogen reaction with plutonium near the visibly observable reaction front, which separates the hydrided zone from the unreacted metal zone, has been investigated by scanning electron microscopy (SEM). Results indicate the existence of a mixed phase of metal and metal hydride, located some 20-30 μm ahead of the visibly hydrided-zone. The mixed phase regions are often located next to a grain boundary network and exhibit rays of hydride advancing toward the unreacted metal regions. Analysis indicates that hydrogen transport and therefore the hydriding reaction are preferable along the grain boundary network and defects in the metal structure rather than through a homogeneous intragrain reaction. Product fracture and formation of small hydride particles during hydriding are likely results of such inhomogeneous growth.

  20. Historical review of plutonium storage container failures at Lawrence Livermore National Laboratory

    SciTech Connect

    Dodson, K.E.

    1994-05-01

    As part of the DOE Plutonium Vulnerability Assessment, an investigation was made to characterize the can failures at LLNL. Since the LLNL Plutonium Facility was opened for plutonium operations in 1961, there have only been three can failures that could be remembered by plutonium handlers, vault workers, chemical analysts, and material managers. Only one of these can failures was discovered during the processing of more than 606 packages containing plutonium as part of the LLNL Plutonium Inventory Reduction Program. A very low failure rate, especially since some of the 606 cans had been in storage for two to three decades. Two of the three containers that failed were made of aluminum and were packaged with 1.25 inch diameter plutonium metal spheres. The cans were split down their entire length and the plutonium metal was heavily oxidized. The secondary gallon container of the third package failure was found to be imploded in the storage vault. Upon closer examination, the plastic bags around the inner pint can were badly melted and the lid on the can was loose. Like the other two failures, the metal was heavily oxidized. In all three of the can failures, it is theorized that air entered the inner can through incomplete sealing and the oxygen in the air then reacted with the plutonium metal to produce plutonium oxide. Air was supplied to the inner can by permeation through the surrounding plastic bag. The air could have either diffused through the bag or could have been pumped through the twisted and taped ends of the inner most bag. The inner bags and cans were packaged into second bags and cans in an air atmosphere; therefore, trapping air inside the packaging configuration that could have passed through the bags. A failure of the inner can integrity would be necessary for the air to pass into it. In all three LLNL can failure cases, it is believed that the seal of the inner can was not sufficient to prevent a breach of the can environment.

  1. Properties of Liquid Plutonium

    SciTech Connect

    Freibert, Franz J.; Mitchell, Jeremy N.; Schwartz, Daniel S.; Saleh, Tarik A.; Migliori, Albert

    2012-08-02

    Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

  2. METHOD OF PREPARING METAL FLUORIDES

    DOEpatents

    Katz, J.J.; Sheft, I.

    1959-08-11

    A method is presented for preparing the halides of elements which are relatively non-reactive with halogenating agents. The method involves reacting a mixture of an oxygen containing salt of a difficulty halogenated metal with an oxygen containing salt of an easily halogenated metal with a halogenating agent. Accordingly plutonium tetrafluoride is produced by reacting a mixture of plutonium dioxide and uranium octaoxide with bromine trifluoride. The reaction proceeds smoothly at moderate temperatures and the resulting plutonium trifluoride may be readily separated from many impurities which form volatile fluorides by volatilizing these volatile fluorides from the reaction chamber.

  3. The effect of the composition of plutonium loaded on the reactivity change and the isotopic composition of fuel produced in a fast reactor

    NASA Astrophysics Data System (ADS)

    Blandinskiy, V. Yu.

    2014-12-01

    This paper presents the results of a numerical investigation into burnup and breeding of nuclides in metallic fuel consisting of a mixture of plutonium and depleted uranium in a fast reactor with sodium coolant. The feasibility of using plutonium contained in spent nuclear fuel from domestic thermal reactors and weapons-grade plutonium is discussed. It is shown that the largest production of secondary fuel and the least change in the reactivity over the reactor lifetime can be achieved when employing plutonium contained in spent nuclear fuel from a reactor of the RBMK-1000 type.

  4. The effect of the composition of plutonium loaded on the reactivity change and the isotopic composition of fuel produced in a fast reactor

    SciTech Connect

    Blandinskiy, V. Yu.

    2014-12-15

    This paper presents the results of a numerical investigation into burnup and breeding of nuclides in metallic fuel consisting of a mixture of plutonium and depleted uranium in a fast reactor with sodium coolant. The feasibility of using plutonium contained in spent nuclear fuel from domestic thermal reactors and weapons-grade plutonium is discussed. It is shown that the largest production of secondary fuel and the least change in the reactivity over the reactor lifetime can be achieved when employing plutonium contained in spent nuclear fuel from a reactor of the RBMK-1000 type.

  5. Use of the Blue Button Online Tool for Sharing Health Information: Qualitative Interviews With Patients and Providers

    PubMed Central

    Fix, Gemmae M; Hogan, Timothy P; Simon, Steven R; Nazi, Kim M; Turvey, Carolyn L

    2015-01-01

    Background Information sharing between providers is critical for care coordination, especially in health systems such as the United States Department of Veterans Affairs (VA), where many patients also receive care from other health care organizations. Patients can facilitate this sharing by using the Blue Button, an online tool that promotes patients’ ability to view, print, and download their health records. Objective The aim of this study was to characterize (1) patients’ use of Blue Button, an online information-sharing tool in VA’s patient portal, My HealtheVet, (2) information-sharing practices between VA and non-VA providers, and (3) how providers and patients use a printed Blue Button report during a clinical visit. Methods Semistructured qualitative interviews were conducted with 34 VA patients, 10 VA providers, and 9 non-VA providers. Interviews focused on patients’ use of Blue Button, information-sharing practices between VA and non-VA providers, and how patients and providers use a printed Blue Button report during a clinical visit. Qualitative themes were identified through iterative rounds of coding starting with an a priori schema based on technology adoption theory. Results Information sharing between VA and non-VA providers relied primarily on the patient. Patients most commonly used Blue Button to access and share VA laboratory results. Providers recognized the need for improved information sharing, valued the Blue Button printout, and expressed interest in a way to share information electronically across settings. Conclusions Consumer-oriented technologies such as Blue Button can facilitate patients sharing health information with providers in other health care systems; however, more education is needed to inform patients of this use to facilitate care coordination. Additional research is needed to explore how personal health record documents, such as Blue Button reports, can be easily shared and incorporated into the clinical workflow of

  6. Plutonium flowsheet development in miniature mixer-settlers

    SciTech Connect

    Hannaford, B.A.; Davis, G.D.

    1981-05-01

    Initial runs were completed in a new solvent extraction facility that has been built for testing coprocessing flowsheets with simulated LWR and FBR fuel solutions. The equipment, which is assembled in glove boxes, includes three 16-stage miniature mixer-settler banks with associated in-line monitors, pumping equipment, and sampling apparatus. Following shakedown runs with solutions containing uranium only, two flowsheet test runs were made with a simulated LWR fuel solution (U/Pu = 100). The solution was fed to an extraction-scrub bank, where 30% tributyl phosphate in normal paraffin hydrocarbon diluent was used to coextract uranium and plutonium. The extract was fed to a second mixer-settler bank, where all of the plutonium was stripped into an aqueous product stream using hydroxylamine nitrate for plutonium reduction; a controlled fraction of the uranium was simultaneously stripped to produce a U/Pu ratio of {similar_to}2. The amount of the uranium stripped with the plutonium was regulated by careful control of an organic backscrub stream. Finally, the residual uranium in the solvent was stripped in the third mixer-settler bank. The success of the experiments depended on precise control of very low liquid flow rates, and on in-line monitors which indicated the uranium or total heavy-metal concentrations. The most useful in-line device was the Mettler-Paar density meter, from which metal concentrations could be determined to within {similar_to}1 g/L. A miniature spectrophotometer also gave promising results for uranium analysis. Preliminary use of a Hewlett-Packard data acquisition system was satisfactory; recorded variables were temperature, solution density, liquid flow rates, and liquid levels.

  7. Plutonium Immobilization Can Loading Concepts

    SciTech Connect

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.; Rogers, L.; Fiscus, J.; Dyches, G.

    1998-05-01

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses five can loading conceptual designs and the lists the advantages and disadvantages for each concept. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas. The can loading welder and cutter are very similar to the existing Savannah River Site (SRS) FB-Line bagless transfer welder and cutter and thus they are a low priority development item.

  8. Plutonium Immobilization Project Baseline Formulation

    SciTech Connect

    Ebbinghaus, B.

    1999-02-01

    A key milestone for the Immobilization Project (AOP Milestone 3.2a) in Fiscal Year 1998 (FY98) is the definition of the baseline composition or formulation for the plutonium ceramic form. The baseline formulation for the plutonium ceramic product must be finalized before the repository- and plant-related process specifications can be determined. The baseline formulation that is currently specified is given in Table 1.1. In addition to the baseline formulation specification, this report provides specifications for two alternative formulations, related compositional specifications (e.g., precursor compositions and mixing recipes), and other preliminary form and process specifications that are linked to the baseline formulation. The preliminary specifications, when finalized, are not expected to vary tremendously from the preliminary values given.

  9. Biokinetics of Plutonium in Nonhuman Primates.

    PubMed

    Poudel, Deepesh; Guilmette, Raymond A; Gesell, Thomas F; Harris, Jason T; Brey, Richard R

    2016-10-01

    A major source of data on metabolism, excretion and retention of plutonium comes from experimental animal studies. Although old world monkeys are one of the closest living relatives to humans, certain physiological differences do exist between these nonhuman primates and humans. The objective of this paper was to describe the metabolism of plutonium in nonhuman primates using the bioassay and retention data obtained from macaque monkeys injected with plutonium citrate. A biokinetic model for nonhuman primates was developed by adapting the basic model structure and adapting the transfer rates described for metabolism of plutonium in adult humans. Significant changes to the parameters were necessary to explain the shorter retention of plutonium in liver and skeleton of the nonhuman primates, differences in liver to bone partitioning ratio, and significantly higher excretion of plutonium in feces compared to that in humans. PMID:27575347

  10. Multi-generational stewardship of plutonium

    SciTech Connect

    Pillay, K.K.S.

    1997-10-01

    The post-cold war era has greatly enhanced the interest in the long-term stewardship of plutonium. The management of excess plutonium from proposed nuclear weapons dismantlement has been the subject of numerous intellectual discussions during the past several years. In this context, issues relevant to long-term management of all plutonium as a valuable energy resource are also being examined. While there are differing views about the future role of plutonium in the economy, there is a recognition of the environmental and health related problems and proliferation potentials of weapons-grade plutonium. The long-term management of plutonium as an energy resource will require a new strategy to maintain stewardship for many generations to come.

  11. Biokinetics of Plutonium in Nonhuman Primates.

    PubMed

    Poudel, Deepesh; Guilmette, Raymond A; Gesell, Thomas F; Harris, Jason T; Brey, Richard R

    2016-10-01

    A major source of data on metabolism, excretion and retention of plutonium comes from experimental animal studies. Although old world monkeys are one of the closest living relatives to humans, certain physiological differences do exist between these nonhuman primates and humans. The objective of this paper was to describe the metabolism of plutonium in nonhuman primates using the bioassay and retention data obtained from macaque monkeys injected with plutonium citrate. A biokinetic model for nonhuman primates was developed by adapting the basic model structure and adapting the transfer rates described for metabolism of plutonium in adult humans. Significant changes to the parameters were necessary to explain the shorter retention of plutonium in liver and skeleton of the nonhuman primates, differences in liver to bone partitioning ratio, and significantly higher excretion of plutonium in feces compared to that in humans.

  12. eButton: A Wearable Computer for Health Monitoring and Personal Assistance

    PubMed Central

    Sun, Mingui; Burke, Lora E.; Mao, Zhi-Hong; Chen, Yiran; Chen, Hsin-Chen; Bai, Yicheng; Li, Yuecheng; Li, Chengliu; Jia, Wenyan

    2014-01-01

    Recent advances in mobile devices have made profound changes in people's daily lives. In particular, the impact of easy access of information by the smartphone has been tremendous. However, the impact of mobile devices on healthcare has been limited. Diagnosis and treatment of diseases are still initiated by occurrences of symptoms, and technologies and devices that emphasize on disease prevention and early detection outside hospitals are under-developed. Besides healthcare, mobile devices have not yet been designed to fully benefit people with special needs, such as the elderly and those suffering from certain disabilities, such blindness. In this paper, an overview of our research on a new wearable computer called eButton is presented. The concepts of its design and electronic implementation are described. Several applications of the eButton are described, including evaluating diet and physical activity, studying sedentary behavior, assisting the blind and visually impaired people, and monitoring older adults suffering from dementia. PMID:25340176

  13. ESR Dosimetry for Atomic Bomb Survivors Using Shell Buttons and Tooth Enamel

    NASA Astrophysics Data System (ADS)

    Ikeya, Motoji; Miyajima, Junko; Okajima, Shunzo

    1984-09-01

    Atomic bomb radiation doses to humans at Nagasaki and Hiroshima are investigated by electron spin resonance (ESR) from shell buttons and tooth enamel voluntarily supplied by survivors. A shell button gives a dose of 2.1± 0.2 Gy with ESR signals at g=2.001 and g=1.997 while the signal at g=1.997 for the tooth enamel of the same person is 1.9± 0.5 Gy. Other teeth show doses from about 0.5 Gy to 3 Gy. An apparent shielding converted to a concrete thickness is given using the T65D calculated in 1965. Teeth extracted during dental treatment should be preserved for cumulative radiation dosimetry.

  14. Reactions of plutonium and uranium with water: Kinetics and potential hazards

    SciTech Connect

    Haschke, J.M.

    1995-12-01

    The chemistry and kinetics of reactions between water and the metals and hydrides of plutonium and uranium are described in an effort to consolidate information for assessing potential hazards associated with handling and storage. New experimental results and data from literature sources are presented. Kinetic dependencies on pH, salt concentration, temperature and other parameters are reviewed. Corrosion reactions of the metals in near-neutral solutions produce a fine hydridic powder plus hydrogen. The corrosion rate for plutonium in sea water is a thousand-fold faster than for the metal in distilled water and more than a thousand-fold faster than for uranium in sea water. Reaction rates for immersed hydrides of plutonium and uranium are comparable and slower than the corrosion rates for the respective metals. However, uranium trihydride is reported to react violently if a quantity greater than twenty-five grams is rapidly immersed in water. The possibility of a similar autothermic reaction for large quantities of plutonium hydride cannot be excluded. In addition to producing hydrogen, corrosion reactions convert the massive metals into material forms that are readily suspended in water and that are aerosolizable and potentially pyrophoric when dry. Potential hazards associated with criticality, environmental dispersal, spontaneous ignition and explosive gas mixtures are outlined.

  15. Surprising coordination for plutonium in the first plutonium(III) borate.

    PubMed

    Wang, Shuao; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-03-21

    The first plutonium(III) borate, Pu(2)[B(12)O(18)(OH)(4)Br(2)(H(2)O)(3)]·0.5H(2)O, has been prepared by reacting plutonium(III) with molten boric acid under strictly anaerobic conditions. This compound contains a three-dimensional polyborate network with triangular holes that house the plutonium(III) sites. The plutonium sites in this compound are 9- and 10-coordinate and display atypical geometries.

  16. EVALUATION OF FIRE HAZARDS WHILE REPACKAGING PLUTONIUM-CONTAMINATED SCRAP IN HB-LINE

    SciTech Connect

    Hallman, D

    2003-12-18

    The potential for a fire while repackaging plutonium-contaminated scrap was evaluated. The surface-to-mass ratio indicates the metal alone will not spontaneously ignite. Uranium hydride can form when uranium metal is exposed to water vapor or hydrogen; uranium hydride reacts rapidly and energetically with atmospheric oxygen. The plutonium-contaminated scrap has been inside containers qualified for shipping, and these containers are leak-tight. The rate of diffusion of water vapor through the seals is small, and the radiolytic hydrogen generation rate is low. Radiography of samples of the storage containers indicates no loose oxide/hydride powder has collected in the storage container to date. The frequently of a fire while repackaging the plutonium-contaminated scrap is extremely unlikely.

  17. Options for converting excess plutonium to feed for the MOX fuel fabrication facility

    SciTech Connect

    Watts, Joe A; Smith, Paul H; Psaras, John D; Jarvinen, Gordon D; Costa, David A; Joyce, Jr., Edward L

    2009-01-01

    The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

  18. SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS

    SciTech Connect

    Oji, L; Bill Wilmarth, B; David Hobbs, D

    2008-05-30

    Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

  19. Development of weld closure stations for plutonium long-term storage containers

    SciTech Connect

    Fernandez, R.; Martinez, D.A.; Martinez, H.E.; Nelson, T.O.; Ortega, R.E.; Rofer, C.K.; Romero, W.; Stewart, J.; Trujillo, V.L.

    1998-12-31

    Weld closure stations for plutonium long-term storage containers have been designed, fabricated, and tested for the Advanced Recovery and Integrated Extraction System (ARIES) at the TA-55 Plutonium Facility of the Los Alamos National Laboratory. ARIES is a processing system used for the dismantlement of the plutonium pits from nuclear weapons. ARIES prepares the extracted-plutonium in a form which is compatible with long-term storage and disposition options and meets international inspection requirements. The processed plutonium is delivered to the canning module of the ARIES line, where it is packaged in a stainless steel container. This container is then packaged in a secondary container for long-term storage. Each of the containers is hermetically sealed with a full penetration weld closure that meets the requirements of the ASME Section IX Boiler and Pressure Vessel Code. Welding is performed with a gas tungsten arc process in an inert atmosphere of helium. The encapsulated helium in the nested containers allows for leak testing the weld closure and container. The storage package was designed to meet packaging requirements of DOE Standard 3013-96 for long-term storage of plutonium metal and oxides. Development of the process parameters, weld fixture, weld qualification, and the welding chambers is discussed in this paper.

  20. Suture Button Fixation Treatment of Chronic Lisfranc Injury in Professional Dancers and High-Level Athletes.

    PubMed

    Charlton, Timothy; Boe, Chelsea; Thordarson, David B

    2015-12-01

    Chronic Lisfranc injury is a subtle and severe injury in high-level athletes, including dancers. This patient population is generally intolerant of intra-articular screw fixation and can develop significant post-traumatic arthritis with potentially career ending complications. Flexible fixation with suture-button devices provides potential restoration of physiologic motion at the joint, with appropriate support for healing that may facilitate return to en pointe activities for dancers. We hypothesized that the suture-button device would restore motion at the Lisfranc joint and allow for return to activities in this particular population without the limitations and complications of rigid fixation. We operated on seven dancers and high-level athletes with diagnosed Lisfranc injuries by installing a suture-button device. All patients had failed conservative management after late presentation. They were allowed to return to sport in 6 months, preoperative and postoperative American Orthopaedic Foot and Ankle Score (AOFAS) foot scores were obtained, and patients were followed for a minimum of 15 months. All seven returned to full activities in 6 months, with radiographic evidence of fixation and no complications to date. AOFAS foot scores improved from an average of 65 preoperatively to an average of 97 postoperatively at latest follow-up. It is concluded that flexible fixation with suture-button type device represents a viable alternative to screw fixation or fusion that may allow dancers and athletes to return to previous levels of activity after Lisfranc injury. This case series represents to our knowledge the first application of this device to a unique population that requires flexibility at the Lisfranc joint for performance.

  1. Technology-Assisted Patient Access to Clinical Information: An Evaluation Framework for Blue Button

    PubMed Central

    Nazi, Kim M; Luger, Tana M; Amante, Daniel J; Smith, Bridget M; Barker, Anna; Shimada, Stephanie L; Volkman, Julie E; Garvin, Lynn; Simon, Steven R; Houston, Thomas K

    2014-01-01

    Background Patient access to clinical information represents a means to improve the transparency and delivery of health care as well as interactions between patients and health care providers. We examine the movement toward augmenting patient access to clinical information using technology. Our analysis focuses on “Blue Button,” a tool that many health care organizations are implementing as part of their Web-based patient portals. Objective We present a framework for evaluating the effects that technology-assisted access to clinical information may have on stakeholder experiences, processes of care, and health outcomes. Methods A case study of the United States Department of Veterans Affairs' (VA) efforts to make increasing amounts of clinical information available to patients through Blue Button. Drawing on established collaborative relationships with researchers, clinicians, and operational partners who are engaged in the VA’s ongoing implementation and evaluation efforts related to Blue Button, we assessed existing evidence and organizational practices through key informant interviews, review of documents and other available materials, and an environmental scan of published literature and the websites of other health care organizations. Results Technology-assisted access to clinical information represents a significant advance for VA patients and marks a significant change for the VA as an organization. Evaluations of Blue Button should (1) consider both processes of care and outcomes, (2) clearly define constructs of focus, (3) examine influencing factors related to the patient population and clinical context, and (4) identify potential unintended consequences. Conclusions The proposed framework can serve as a roadmap to guide subsequent research and evaluation of technology-assisted patient access to clinical information. To that end, we offer a series of related recommendations. PMID:24675395

  2. Plutonium decontamination studies using Reverse Osmosis

    SciTech Connect

    Plock, C.E.; Travis, T.N.

    1980-06-17

    Water in batches of 45 gallons each, from a creek crossing the Rocky Flats Plant, was transferred to the Reverse Osmosis (RO) laboratory for experimental testing. The testing involved using RO for plutonium decontamination. For each test, the water was spiked with plutonium, had its pH adjusted, and was then processed by RO. At a water recovery level of 87%, the plutonium decontamination factors ranged from near 100 to 1200, depending on the pH of the processed water.

  3. WET METHOD OF PREPARING PLUTONIUM TRIBROMIDE

    DOEpatents

    Davidson, N.R.; Hyde, E.K.

    1958-11-11

    S> The preparation of anhydrous plutonium tribromide from an aqueous acid solution of plutonium tetrabromide is described, consisting of adding a water-soluble volatile bromide to the tetrabromide to provide additional bromide ions sufficient to furnish an oxidation-reduction potential substantially more positive than --0.966 volt, evaporating the resultant plutonium tribromides to dryness in the presence of HBr, and dehydrating at an elevated temperature also in the presence of HBr.

  4. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Potratz, H.A.

    1958-12-16

    A process for the separation of plutonium from uranlum and other associated radioactlve fission products ls descrlbed conslstlng of contacting an acid solution containing plutonium in the tetravalent state and uranium in the hexavalent state with enough ammonium carbonate to form an alkaline solution, adding cupferron to selectlvely form plutonlum cupferrlde, then recoverlng the plutonium cupferride by extraction with a water lmmiscible organic solvent such as chloroform.

  5. PRECIPITATION METHOD FOR THE SEPARATION OF PLUTONIUM AND RARE EARTHS

    DOEpatents

    Thompson, S.G.

    1960-04-26

    A method of purifying plutonium is given. Tetravalent plutonium is precipitated with thorium pyrophosphate, the plutonium is oxidized to the tetravalent state, and then impurities are precipitated with thorium pyrophosphate.

  6. 78 FR 33419 - Announcement of Requirements and Registration for “Blue Button Co-Design Challenge”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... entry. As part of the Department of Health and Human Services digital services strategy, the Office of... clinical data via Blue Button Plus. The Challenge will also uniquely engage the patient community to...

  7. FORM AND AGING OF PLUTONIUM IN SAVANNAH RIVER SITE WASTE TANK 18

    SciTech Connect

    Hobbs, D.

    2012-02-24

    This report provides a summary of the effects of aging on and the expected forms of plutonium in Tank 18 waste residues. The findings are based on available information on the operational history of Tank 18, reported analytical results for samples taken from Tank 18, and the available scientific literature for plutonium under alkaline conditions. These findings should apply in general to residues in other waste tanks. However, the operational history of other waste tanks should be evaluated for specific conditions and unique operations (e.g., acid cleaning with oxalic acid) that could alter the form of plutonium in heel residues. Based on the operational history of other tanks, characterization of samples from the heel residues in those tanks would be appropriate to confirm the form of plutonium. During the operational period and continuing with the residual heel removal periods, Pu(IV) is the dominant oxidation state of the plutonium. Small fractions of Pu(V) and Pu(VI) could be present as the result of the presence of water and the result of reactions with oxygen in air and products from the radiolysis of water. However, the presence of Pu(V) would be transitory as it is not stable at the dilute alkaline conditions that currently exists in Tank 18. Most of the plutonium that enters Savannah River Site (SRS) high-level waste (HLW) tanks is freshly precipitated as amorphous plutonium hydroxide, Pu(OH){sub 4(am)} or hydrous plutonium oxide, PuO{sub 2(am,hyd)} and coprecipitated within a mixture of hydrous metal oxide phases containing metals such as iron, aluminum, manganese and uranium. The coprecipitated plutonium would include Pu{sup 4+} that has been substituted for other metal ions in crystal lattice sites, Pu{sup 4+} occluded within hydrous metal oxide particles and Pu{sup 4+} adsorbed onto the surface of hydrous metal oxide particles. The adsorbed plutonium could include both inner sphere coordination and outer sphere coordination of the plutonium. PuO{sub 2

  8. PLUTONIUM-CUPFERRON COMPLEX AND METHOD OF REMOVING PLUTONIUM FROM SOLUTION

    DOEpatents

    Potratz, H.A.

    1959-01-13

    A method is presented for separating plutonium from fission products present in solutions of neutronirradiated uranium. The process consists in treating such acidic solutions with cupferron so that the cupferron reacts with the plutonium present to form an insoluble complex. This plutonium cupferride precipitates and may then be separated from the solution.

  9. Clinical Outcomes and Complications of Cortical Button Distal Biceps Repair: A Systematic Review of the Literature.

    PubMed

    Panagopoulos, Andreas; Tatani, Irini; Tsoumpos, Pantelis; Ntourantonis, Dimitris; Pantazis, Konstantinos; Triantafyllopoulos, Ioannis K

    2016-01-01

    Objectives. The purpose of the present study was to investigate the clinical outcomes and complications of the cortical button distal biceps fixation method. Material and Methods. All methods followed the PRISMA guidelines. Included studies had to describe clinical outcomes and complications after acute distal biceps repair with cortical button fixation. Eligibility criteria also included English language, more than 5 cases with minimum follow-up of 6 months, and preferably usage of at least one relevant clinical score (MEPS, ASES, and/or DASH) for final outcome. A loss of at least 30° in motion-flexion, extension, pronation, or supination-and a loss of at least 30% of strength were considered an unsatisfactory result. Results. The review identified 7 articles including 105 patients (mean age 43.6 years) with 106 acute distal biceps ruptures. Mean follow-up was 26.3 months. Functional outcome of ROM regarding flexion/extension and pronation/supination was satisfactory in 94 (89.5%) and 86 (82%) patients in respect. Averaged flexion and supination strength had been reported in 6/7 studies (97 patients) and were satisfactory in 82.4% of them. The most common complication was transient nerve palsy (14.2%). The overall reoperation rate was 4.8% (5/105 cases). Conclusion. Cortical button fixation for acute distal biceps repair is a reproducible operation with good clinical results. Most of the complications can be avoided with appropriate surgical technique. PMID:27525303

  10. Method Development for the Determination of Free and Esterified Sterols in Button Mushrooms (Agaricus bisporus).

    PubMed

    Hammann, Simon; Vetter, Walter

    2016-05-01

    Ergosterol is the major sterol in button mushrooms (Agaricus bisporus) and can occur as free alcohol or esterified with fatty acids (ergosteryl esters). In this study, gas chromatography with mass spectrometry in the selected ion monitoring mode (GC/MS-SIM) was used to determine ergosterol and ergosteryl esters as well as other sterols and steryl esters in button mushrooms. Different quality control measures were established and sample preparation procedures were compared to prevent the formation of artifacts and the degradation of ergosteryl esters. The final method was then used for the determination of ergosterol (443 ± 44 mg/100 g dry matter (d.m.)) and esterified ergosterol (12 ± 6 mg/100 g d.m.) in button mushroom samples (n = 4). While the free sterol fraction was vastly dominated by ergosterol (∼90% of five sterols in total), the steryl ester fraction was more diversified (nine sterols in total, ergosterol ∼55%) and consisted primarily of linoleic acid esters. PMID:27064103

  11. Multi-trait QTL analysis for agronomic and quality characters of Agaricus bisporus (button mushrooms).

    PubMed

    Gao, Wei; Baars, Johan J P; Maliepaard, Chris; Visser, Richard G F; Zhang, Jinxia; Sonnenberg, Anton S M

    2016-12-01

    The demand for button mushrooms of high quality is increasing. Superior button mushroom varieties require the combination of multiple traits to maximize productivity and quality. Very often these traits are correlated and should, therefore, be evaluated together rather than as single traits. In order to unravel the genetic architecture of multiple traits of Agaricus bisporus and the genetic correlations among traits, we have investigated a total of six agronomic and quality traits through multi-trait QTL analyses in a mixed-model. Traits were evaluated in three heterokaryon sets. Significant phenotypic correlations were observed among traits. For instance, earliness (ER) correlated to firmness (FM), cap color, and compost colonization, and FM correlated to scales (SC). QTLs of different traits located on the same chromosomes genetically explains the phenotypic correlations. QTL detected on chromosome 10 mainly affects three traits, i.e., ER, FM and SC. It explained 31.4 % phenotypic variation of SC on mushroom cap (heterokaryon Set 1), 14.9 % that of the FM (heterokaryon Set 3), and 14.2 % that of ER (heterokaryon Set 3). High value alleles from the wild parental line showed beneficial effects for several traits, suggesting that the wild germplasm is a valuable donor in terms of those traits. Due to the limitations of recombination pattern, we only made a start at understanding the genetic base for several agronomic and quality traits in button mushrooms. PMID:27620731

  12. Enhancing stability of essential oils by microencapsulation for preservation of button mushroom during postharvest.

    PubMed

    Alikhani-Koupaei, Majid; Mazlumzadeh, Meisam; Sharifani, Mohamadmehdi; Adibian, Mohamad

    2014-09-01

    Fresh button mushrooms (Agaricus bisporus L.) are sensitive to browning, water loss, and microbial attack. The short shelf-life of mushrooms is an impediment to the distribution and marketing of the fresh product. Essential oils outstand as an alternative to chemical preservatives and their use in foods meets the demands of consumers for natural products. To resolve controlled release of oil and increase in antioxidant and antimicrobial activities, the oil was incorporated into microcapsules. Effects of microcapsulated thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) on quality of fresh button mushroom were compared. Physicochemical qualities were evaluated during 15 days of storage at 4 ± 0.5°C. All treatments prevented product weight loss and decrease in polyphenoloxidase and peroxidase activities during storage. Color and firmness, microbiological analysis, and total phenolic content caused the least change. With use of microencapsulated oils, mushrooms were within acceptable limits during 10 days of storage. Microencapsulated rosemary oil produced the highest beneficial effects and has potential to improve quality of button mushrooms and extend shelf-life. PMID:25473510

  13. Clinical Outcomes and Complications of Cortical Button Distal Biceps Repair: A Systematic Review of the Literature

    PubMed Central

    Pantazis, Konstantinos

    2016-01-01

    Objectives. The purpose of the present study was to investigate the clinical outcomes and complications of the cortical button distal biceps fixation method. Material and Methods. All methods followed the PRISMA guidelines. Included studies had to describe clinical outcomes and complications after acute distal biceps repair with cortical button fixation. Eligibility criteria also included English language, more than 5 cases with minimum follow-up of 6 months, and preferably usage of at least one relevant clinical score (MEPS, ASES, and/or DASH) for final outcome. A loss of at least 30° in motion—flexion, extension, pronation, or supination—and a loss of at least 30% of strength were considered an unsatisfactory result. Results. The review identified 7 articles including 105 patients (mean age 43.6 years) with 106 acute distal biceps ruptures. Mean follow-up was 26.3 months. Functional outcome of ROM regarding flexion/extension and pronation/supination was satisfactory in 94 (89.5%) and 86 (82%) patients in respect. Averaged flexion and supination strength had been reported in 6/7 studies (97 patients) and were satisfactory in 82.4% of them. The most common complication was transient nerve palsy (14.2%). The overall reoperation rate was 4.8% (5/105 cases). Conclusion. Cortical button fixation for acute distal biceps repair is a reproducible operation with good clinical results. Most of the complications can be avoided with appropriate surgical technique. PMID:27525303

  14. Double-button Fixation System for Management of Acute Acromioclavicular Joint Dislocation

    PubMed Central

    Torkaman, Ali; Bagherifard, Abolfazl; Mokhatri, Tahmineh; Haghighi, Mohammad Hossein Shabanpour; Monshizadeh, Siamak; Taraz, Hamid; Hasanvand, Amin

    2016-01-01

    Background: Surgical treatments for acromioclavicular (AC) joint dislocation present with some complications. The present study was designed to evaluate the double-button fixation system in the management of acute acromioclavicular joint dislocation. Methods: This cross sectional study, done between February 2011 to June 2014, consisted of 28 patients who underwent surgical management by the double-button fixation system for acute AC joint dislocation. Age, sex, injury mechanism, dominant hand, side with injury, length of follow up, time before surgery, shoulder and hand (DASH), constant and visual analogue scale (VAS) scores, and all complications of the cases during the follow up were recorded. Results: The mean age of patients was 33.23±6.7 years. Twenty four patients (85.71%) were male and four (14.28%) were female. The significant differences were observed between pre-operation VAS, constant shoulder scores and post-operation measurements. There were not any significant differences between right and left coracoclavicular, but two cases of heterotrophic ossifications were recorded. The mean follow-up time was 16.17±4.38 months. Conclusion: According to the results, the double-button fixation system for management of acute acromioclavicular joint dislocation has suitable results and minimal damage to the soft tissues surrounding the coracoclavicular ligaments. PMID:26894217

  15. Enhancing stability of essential oils by microencapsulation for preservation of button mushroom during postharvest

    PubMed Central

    Alikhani-Koupaei, Majid; Mazlumzadeh, Meisam; Sharifani, Mohamadmehdi; Adibian, Mohamad

    2014-01-01

    Fresh button mushrooms (Agaricus bisporus L.) are sensitive to browning, water loss, and microbial attack. The short shelf-life of mushrooms is an impediment to the distribution and marketing of the fresh product. Essential oils outstand as an alternative to chemical preservatives and their use in foods meets the demands of consumers for natural products. To resolve controlled release of oil and increase in antioxidant and antimicrobial activities, the oil was incorporated into microcapsules. Effects of microcapsulated thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) on quality of fresh button mushroom were compared. Physicochemical qualities were evaluated during 15 days of storage at 4 ± 0.5°C. All treatments prevented product weight loss and decrease in polyphenoloxidase and peroxidase activities during storage. Color and firmness, microbiological analysis, and total phenolic content caused the least change. With use of microencapsulated oils, mushrooms were within acceptable limits during 10 days of storage. Microencapsulated rosemary oil produced the highest beneficial effects and has potential to improve quality of button mushrooms and extend shelf-life. PMID:25473510

  16. An Improved Plutonium Trifluoride Precipitation Flowsheet

    SciTech Connect

    Harmon, H.D.

    2001-06-26

    This report discusses results of the plutonium trifluoride two-stage precipitation study. A series of precipitation experiments was used to identify the significant process variables affecting precipitation performance. A mathematical model of the precipitation process was developed which is based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter which can be used to control the performance of the plutonium trifluoride precipitation process. Recommendations have been made which will optimize the FB-Line plutonium trifluoride precipitation process.

  17. METHOD OF REDUCING PLUTONIUM WITH FERROUS IONS

    DOEpatents

    Dreher, J.L.; Koshland, D.E.; Thompson, S.G.; Willard, J.E.

    1959-10-01

    A process is presented for separating hexavalent plutonium from fission product values. To a nitric acid solution containing the values, ferrous ions are added and the solution is heated and held at elevated temperature to convert the plutonium to the tetravalent state via the trivalent state and the plutonium is then selectively precipitated on a BiPO/sub 4/ or LaF/sub 3/ carrier. The tetravalent plutonium formed is optionally complexed with fluoride, oxalate, or phosphate anion prior to carrier precipitation.

  18. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  19. OXIDATIVE METHOD OF SEPARATING PLUTONIUM FROM NEPTUNIUM

    DOEpatents

    Beaufait, L.J. Jr.

    1958-06-10

    A method is described of separating neptunium from plutonium in an aqueous solution containing neptunium and plutonium in valence states not greater than +4. This may be accomplished by contacting the solution with dichromate ions, thus oxidizing the neptunium to a valence state greater than +4 without oxidizing any substantial amount of plutonium, and then forming a carrier precipitate which carries the plutonium from solution, leaving the neptunium behind. A preferred embodiment of this invention covers the use of lanthanum fluoride as the carrier precipitate.

  20. Failed distal biceps tendon repair using a single-incision EndoButton technique and its successful treatment: case report.

    PubMed

    Desai, Shaunak S; Larkin, Brian J; Najibi, Soheil

    2010-12-01

    Surgical repair has become a mainstay in the treatment of ruptures of the distal biceps tendon and multiple surgical techniques have been described advocating anatomic or near-anatomic repair. Fixation with an EndoButton technique has been shown to have superior fixation strength and durable clinical outcomes. Here, we describe a case of failed EndoButton fixation of the distal biceps tendon, and its successful treatment. PMID:21115300

  1. Proceedings of the Plutonium Futures ? The Science 2006 Conference

    SciTech Connect

    Fluss, M; Hobart, D; Allan, P; Jarvinen, G

    2007-07-12

    prospectus of Drs. Sarrao and Schwartz. 'Plutonium has long been recognized as a complex and scientifically rich metal. The challenge of Pu derives from the fact that its 5f electrons are neither fully localized nor fully itinerant. The resulting low energy scales lead to competing interactions and important entropic and lattice considerations as well. As a consequence, plutonium is on the verge of magnetic order and can be stabilized in a variety of crystal structures. The past several years have seen a renaissance in plutonium materials research. Despite significant progress and important breakthroughs, metallic plutonium remains a mystery at the frontier of materials research'. As we hope you will discover, much progress is being made that is reflected in these proceedings. More importantly however, is that the papers herein also inspire new experiments and theoretical approaches that we trust will not go unnoticed by the reader.

  2. Seating of TightRope RT Button Under Direct Arthroscopic Visualization in Anterior Cruciate Ligament Reconstruction to Prevent Potential Complications.

    PubMed

    Nag, Hira L; Gupta, Himanshu

    2012-09-01

    The ACL TightRope RT (Arthrex, Naples, FL) is a recently introduced fixation device. The adjustable graft loop allows the surgeon some freedom in terms of the length of the femoral socket, eliminates the need for bothersome intraoperative calculations for selecting loop length, ensures that the socket is completely filled with graft, and provides the possibility of tensioning the graft even after graft fixation. However, the device can be associated with the same complications that have been described with EndoButton (Smith & Nephew Endoscopy, Andover, MA) fixation. For example, in our experience, sometimes the button of the TightRope RT may not flip, may become jammed inside the femoral canal, or may flip in the substance of the vastus lateralis. To prevent this, we have introduced 2 additional steps in our procedure: (1) direct visualization of the TightRope RT button in the femoral socket with the arthroscope during its passage and (2) a controlled push directly on the button with the help of a guide pin. Thus proper seating of the button is ensured by direct visualization and the crucial push helps in flipping and seating of the button.

  3. The effect of patellar button placement and femoral component design on patellar tracking in total knee arthroplasty.

    PubMed

    Yoshii, I; Whiteside, L A; Anouchi, Y S

    1992-02-01

    The effects of patellar button position and femoral component design on patellar tracking were investigated roentgenographically and arthroscopically using fresh-frozen adult anatomic specimen knees. Patellar tracking was evaluated for medial/lateral position and tilting angle deviation by comparing preoperative normal values to total knee replacement performance with the following variables: (1) femoral component design; symmetrical total condylar type with a 3-mm central patellar groove and a component with a 3-mm raised lateral patellar flange and 1-mm deepened patellar groove; and (2) patellar button placement; central insertion; and 10-mm medialized insertion. In the roentgenographic study, medialized position of the patellar button allowed the bony portion of the patella to assume its normal lateral position and tilt throughout the knee range of motion. A combination of medialized position of the patellar button and deepening of the patellar groove provided the most anatomically correct position and the most normal tilting of the bony structure of the patella. In the arthroscopic study, the centralized patellar position caused significant lateral tracking and subluxation relative to the femoral component, whereas the medialized position eliminated this tracking disorder. Deepening the patellar groove minimized the intraarticular tracking abnormality and constrained the patellar button in the patellar groove. These results show that the position of the patellar button and femoral component design exert a major influence on patellar tracking. PMID:1735216

  4. Plutonium (III) and uranium (III) nitrile complexes

    SciTech Connect

    Enriquez, A. E.; Matonic, J. H.; Scott, B. L.; Neu, M. P.

    2002-01-01

    Iodine oxidation of uranium and plutonium metals in tetrahydrofuran and pyridine form AnI{sub 3}(THF){sub 4} and AnI{sub 3}(py){sub 4} (An = Pu, U). These compounds represent convenient entries Into solution An(III) chemistry in organic solvents. Extensions of the actinide metal oxidation methodology in nitrile solvents by I{sub 2}, AgPF{sub 6}, and TIPF{sub 6} are presented here. Treatment of Pu{sup 0} in acetonitrile with iodine yields a putative PuI{sub 3}(NCMe){sub x} intermediate which can be trapped with the tripodal nitrogen donor ligand tpza (tpza = (tris[(2-pyrazinyl)methyl]amine)) and forms the eight-coordinate complex (tpza)PuI{sub 3}(NCMe). Treatment of excess U{sup 0} metal by iodine in acetonitrile afforded a brown crystalline mixed valence complex, [U(NCMe){sub 9}][UI{sub 6}][I], instead of UI{sub 3}(NCMe){sub 4}. The analogous reaction in bezonitrile forms red crystalline UI{sub 4}(NCPh){sub 4}. In contrast, treatment of UI{sub 3}(THF){sub 4} with excess acetonitrile cleanly generates [U(NCMe){sub 9}][I]{sub 3}. Oxidation of Pu{sup 0} by either TI(I) or Ag(I) hexafluorophosphate salts generates a nine-coordinate homoleptic acetonitrile adduct [Pu(NCMe){sub 9}][PF{sub 6}]{sub 3}. Attempts to oxidize U{sub 0} with these salts were unsuccessful.

  5. Alpha radiation effects on weapons-grade plutonium encapsulating materials

    NASA Astrophysics Data System (ADS)

    Saglam, Mehmet

    The scientific understanding of material problems in the long-term storage of plutonium pits is investigated using experimental and theoretical models. The durability of the plutonium pit depends on the integrity of the metal cladding that encapsulates the plutonium. Given sufficient time, the energetic alpha particles (helium nuclei) produced by nuclear decay of the plutonium would degrade the mechanical strength of the metal cladding which could lead to cladding failure and dispersion of plutonium. It is shown that the long-term behavior of the encapsulating materials can be simulated by beam implantation and subsequent analysis using experimental techniques of Electron Microscopy and Neutron Depth Profiling (NDP). In addition computer simulations using the TRIM code were made in order to correlate the measurements to cladding damage. The Neutron Depth Profiling measurements done with samples that had 10 16 cm-2 3He beam implant dose showed no helium redistribution, indicating no microcracking between bubbles, for both beryllium and stainless steel, the pit cladding materials of interest. However, helium redistribution and significant helium loss were observed for samples with a beam implant dose of 1018 cm-2 , indicating microstructural damage. The SEM observations were consistent with the NDP measurements. The proper interpretation of the results rests on the realization that (i)the deleterious effects are related to helium concentration, not implant dose, and (ii)a specified maximum concentration of helium is achieved with a much smaller dose when monoenergetic ions are implanted using beam geometry than for the situation where Pu alphas stop in the pit cladding. Helium is distributed over a much smaller depth interval for beam implantation of monoenergetic ions as compared to the pit cladding implanted ions. Taking this effect into account and using the calculated pit implant dose gives a pit storage time for the 1016 cm-2 beam implant dose results equal to

  6. Plutonium Immobilization Program: Can-in-Canister

    SciTech Connect

    Rankin, D.T.

    1999-07-14

    'The end of the cold war brought about a potential new danger, the existence of surplus weapons grade plutonium in the U.S. and Russia. Bilateral disposition programs provide the preferred long-term solution. This paper presents an overview of the U.S. approach to plutonium immobilization using the Can-in-Canister technology.'

  7. Uses for plutonium: Weapons, reactors, and other

    SciTech Connect

    Condit, R.H.

    1994-05-01

    This document begins with a introduction on criticality and supercriticality. Then, types and components, design and engineering, yields, and disassembly of nuclear weapons are discussed. Plutonium is evaluated as a reactor fuel, including neutronics and chemistry considerations. Finally, other uses of plutonium are analyzed.

  8. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOEpatents

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  9. Plutonium Immobilization Project -- Robotic canister loading

    SciTech Connect

    Hamilton, L.

    2000-04-28

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory. When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form.

  10. RECOVERY OF PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Goeckermann, R.H.

    1961-04-01

    A process is given for recovering plutonium from an aqueous nitric acid zirconium-containing solution of an acidity between 0.2 and 1 N by adding fluoride anions (1.5 to 5 mg/l) and precipitating the plutonium with an excess of hydrogen peroxide at from 53 to 65 deg C.

  11. Expected behavior of plutonium in the IFR fuel cycle

    NASA Astrophysics Data System (ADS)

    Steunenberg, R. K.; Johnson, I.

    The Integral Fast Reactor (IFR) is a metal-fueled, sodium-cooled reactor that will consist initially of a U-Zr alloy core in which the enriched uranium will be replaced gradually by plutonium bred in a uranium blanket. The plutonium is concentrated to the required level by extraction from the molten blanket material with a CaCl2-BaCl2 salt containing MgCl2 as an oxidant (halide slagging). The CaCl2-BaCl2 salt containing dissolved PuCl3 and UCl3 is added to the core process where fission products are removed by electrorefining, using a liquid cadmium anode, a metal cathode, and a LiCl-NaCl-CaCl2-BaCl2 molten salt electrolyte. The product is recovered as a metallic deposit on the cathode. The Halide slagging step is operated at about 1250 deg and the electrorefining step at about 450 C. These processes are expected to give low fission-product decontamination factors of the order of 100.

  12. Plutonium microstructures. Part 2. Binary and ternary alloys

    SciTech Connect

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described.

  13. Plutonium: The density-functional-theory point of view

    SciTech Connect

    Soderlind, P; Landa, A

    2008-10-30

    Density-functional theory (DFT) is a remarkably successful tool for describing many metals throughout the Periodic Table. Here we present the results of this theory when applied to plutonium metal, the perhaps most complex and difficult-to-model metal of all. The fundamental product of DFT is the ground-state total energy. In the case of Pu, we show that DFT produces total energies that can predict the complex phase diagram accurately. Focusing on the {delta} phase, we show that DFT electronic structure is consistent with measured photoemission spectra. The observed non-magnetic state of {delta}-Pu could possibly be explained in DFT by spin moments, likely disordered, that are magnetically neutralized by anti-parallel aligned orbital moments. As an alternative to this non-magnetic model an extension of DFT with enhanced orbital polarization is presented in which magnetism can be suppressed.

  14. Electron backscatter diffraction of a plutonium-gallium alloy

    NASA Astrophysics Data System (ADS)

    Boehlert, C. J.; Zocco, T. G.; Schulze, R. K.; Mitchell, J. N.; Pereyra, R. A.

    2003-01-01

    An experimental technique has recently been developed to characterize reactive metals, including plutonium (Pu) and cerium, using electron backscatter diffraction (EBSD). Microstructural characterization of Pu and its alloys by EBSD had been previously elusive primarily because of the extreme toxicity and rapid surface oxidation rate associated with Pu metal. The experimental technique, which included ion-sputtering the metal surface using a scanning Auger microprobe (SAM) followed by vacuum transfer of the sample from the SAM to the scanning electron microscope (SEM), used to obtain electron backscatter diffraction Kikuchi patterns and orientation maps for a Pu-gallium alloy is described and the initial microstructural observations based on the analysis are discussed. The phase transformation behavior between the δ (face-centered cubic) and ɛ (body-centered-cubic) structures is explained by combining the SEM and EBSD observations.

  15. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Ritter, D.M.

    1959-01-13

    An improvement is presented in the process for recovery and decontamination of plutonium. The carrier precipitate containing plutonium is dissolved and treated with an oxidizing agent to place the plutonium in a hexavalent oxidation state. A lanthanum fluoride precipitate is then formed in and removed from the solution to carry undesired fission products. The fluoride ions in the reniaining solution are complexed by addition of a borate sueh as boric acid, sodium metaborate or the like. The plutonium is then reduced and carried from the solution by the formation of a bismuth phosphate precipitate. This process effects a better separation from unwanted flssion products along with conccntration of the plutonium by using a smaller amount of carrier.

  16. Criticality experiments with mixed plutonium and uranium nitrate solution at a plutonium fraction of 0.4 in slab geometry

    SciTech Connect

    Pohl, B.A.; Keeton, S.C.

    1997-09-01

    R. C. Lloyd of PNL has completed and published a series of critical experiments with mixed plutonium- uranium nitrate solutions (Reference 1). This series of critical experiments was part of an extensive program jointly sponsored by the U. S. Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan and was carried out in the mid-1980`s. The experiments evaluated here (published as Report PNL-6327) were performed with mixed plutonium- uranium nitrate solution in a variable thickness slab tank with two 106.7 cm square sides and a width that could be varied from 7.6 to 22.8 cm. The objective of these experiments was to obtain experimental data to permit the validation of computer codes for criticality calculations and of cross-section data to minimize the uncertainties inherent therein, so that facility safety, efficiency, and reliability could be enhanced. The concentrations of the solution were about 105, 293, and 435 g(Pu+U)/liter with a ratio of plutonium to total heavy metal (plutonium plus uranium) of about 0. 40 for all eight experiments. Four measurements were made with a water reflector, and four with no reflector. Following the publication of the initial PNL reports, considerable effort was devoted to an extensive reevaluation of this series of experiments by a collaboration of researchers from ORNL, PNL, and PNC (Reference 2). Their work resulted in a more accurate description of the ``as built`` hardware configuration and the materials specifications. For the evaluations in this report, the data published in Reference 2 by Smolen et al. is selected to supersede the original PNL report. Eight experiments have been evaluated and seven (063, 064, 071, 072, 074, 075, and 076) provide benchmark criticality data. Experiment 073 could not achieve criticality within vessel height limitations.

  17. Improving Efficiency with 3-D Imaging: Technology Essential in Removing Plutonium Processing Equipment from Plutonium Finishing Plant Gloveboxes

    SciTech Connect

    Crow, Stephen H.; Kyle, Richard N.; Minette, Michael J.

    2008-09-01

    The Plutonium Finishing Plant at Hanford, Washington began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in remote production lines, consisting primarily of hundreds of gloveboxes. Over the years these gloveboxes and processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked to clean out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D&D workers is the use of 3-D models to improve the efficiency of cleaning out radioactive gloveboxes at the plant. The use of 3-D models has significantly improved the work planning process by providing workers with a clear image of glovebox construction and composition, which is then used to determine cleanout methods and work sequences. The 3-D visual products enhance safety by enabling workers to more easily identify hazards and implement controls. In addition, the ability to identify and target the removal of radiological materials early in the D&D process provides substantial dose reduction for the workers.

  18. USING 3-D MODELING TO IMPROVE THE EFFICIENCY FOR REMOVING PLUTONIUM PROCESSING EQUIMENT FROM GLOVEBOXES AT THE PLUTONIUM FINISHANG PLANT

    SciTech Connect

    CROW SH; KYLE RN; MINETTE MJ

    2008-07-15

    The Plutonium Finishing Plant at the Department of Energy's Hanford Site in southeastern Washington State began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in production lines, consisting primarily of hundreds of gloveboxes. Over the years, these gloveboxes and attendant processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked with cleaning out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D and D workers is the use of 3-D models to make the process of cleaning out the radioactive gloveboxes more efficient. The use of 3-D models has significantly improved the work-planning process by giving workers a clear image of glovebox construction and composition, which in turn is used to determine cleanout methods and work sequences. The 3-D visual products also enhance safety by enabling workers to more easily identify hazards and implement controls. Further, the ability to identify and target the removal of radiological material early in the D and D process provides substantial dose reduction for the workers.

  19. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    SciTech Connect

    Dunn, Kerry A.; Bellamy, J. Steve; Chandler, Greg T.; Iyer, Natraj C.; Koenig, Rich E.; Leduc, D.; Hackney, B.; Leduc, Dan R.; McClard, J. W.

    2013-08-18

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

  20. Thermal response of a can handling unit (CHU) to a postulated plutonium hydride burn

    SciTech Connect

    Crea, B.A.

    1998-05-21

    A series of analyses were performed to support the design of the Can Handling Unit (CHU). The subject analyses focused on determining the time to repressurize a subatmospheric storage can containing plutonium metal versus the initial hole size and the transient thermal response to a postulated chemical reaction of 150 grams of plutonium hydride. Limiting the amount of gaseous reactants either by inerting the CHU or using a very small hole size for the initial opening appears to be a viable method of controlling the rate of the exothermic chemical reactions and system temperatures.

  1. Fast burner reactor benchmark results from the NEA working party on physics of plutonium recycle

    SciTech Connect

    Hill, R.N.; Wade, D.C.; Palmiotti, G.

    1995-12-01

    As part of a program proposed by the OECD/NEA Working Party on Physics of Plutonium Recycling (WPPR) to evaluate different scenarios for the use of plutonium, fast reactor physics benchmarks were developed; fuel cycle scenarios using either PUREX/TRUEX (oxide fuel) or pyrometallurgical (metal fuel) separation technologies were specified. These benchmarks were designed to evaluate the nuclear performance and radiotoxicity impact of a transuranic-burning fast reactor system. International benchmark results are summarized in this paper; and key conclusions are highlighted.

  2. Assessment of plutonium storage safety issues at Department of Energy facilities

    SciTech Connect

    Not Available

    1994-01-01

    The Department of Energy (DOE) mission for utilization and storage of nuclear materials has recently changed as a result of the end of the ``Cold War`` era. Past and current plutonium storage practices largely reflect a temporary, in-process, or in-use storage condition which must now be changed to accommodate longer-term storage. This report summarizes information concerning current plutonium metal and oxide storage practices which was presented at the Office of Defense programs (DP) workshop in Albuquerque, New Mexico on May 26-27, 1993 and contained in responses to questions by DP-62 from the field organizations.

  3. Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project

    SciTech Connect

    Duncan, A.

    2007-12-31

    The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale

  4. Utilization of principal component analysis on plutonium EXAFS data from the advanced photon source

    NASA Astrophysics Data System (ADS)

    Terry, Jeff; Schulze, Roland K.; Zocco, Thomas G.; Farr, J. Doug; Archuleta, Jeff; Ramos, Mike; Martinez, Ray; Pereyra, Ramiro; Lashley, Jason; Wasserman, Steve; Antonio, Mark; Skanthakumar, Suntharalingam; Soderholm, Lynne

    2000-07-01

    Since the 1941 discovery of plutonium (Pu) by Glenn Seaborg, this enigmatic metal has been the subject of intense scientific investigation. Despite these efforts, there is still much to be learned about the unusual physical and mechanical properties of plutonium and its alloys. In particular, unalloyed Pu undergoes six allotropic phase transformations upon cooling from the melt to room temperature. Many of these phase transformations result in large volume changes and produce low-symmetry crystal structures. These unusual characteristics have made the metallurgy of Pu and Pu alloys particularly challenging.

  5. Plutonium Uptake and Distribution in Mammalian Cells: Molecular vs Polymeric Plutonium

    PubMed Central

    ARYAL, BAIKUNTHA P.; GORMAN-LEWIS, DREW; PAUNESKU, TATJANA; WILSON, RICHARD E.; LAI, BARRY; VOGT, STEFAN; WOLOSCHAK, GAYLE E.; JENSEN, MARK P.

    2013-01-01

    Purpose To study the cellular responses to molecular and polymeric forms of plutonium using PC12 cells derived from rat adrenal glands. Materials and methods Serum starved PC12 cells were exposed to polymeric and molecular forms of plutonium for three hours. Cells were washed with 10 mM EGTA, 100 mM NaCl at pH 7.4 to remove surface sorbed plutonium. Localization of plutonium in individual cell was quantitatively analyzed by synchrotron X-ray fluorescence (XRF) microscopy. Results Molecular plutonium complexes introduced to cell growth media in the form of NTA, citrate, or transferrin complexes were taken up by PC12 cells, and mostly co-localized with iron within the cells. Polymeric plutonium prepared separately was not internalized by PC12 cells but it was always found on the cell surface as big agglomerates; however polymeric plutonium formed in situ was mostly found within the cells as agglomerates. Conclusions PC12 cells can differentiate molecular and polymeric forms of plutonium. Molecular plutonium is taken up by PC12 cells and mostly co-localized with iron but aged polymeric plutonium is not internalized by the cells. PMID:21770702

  6. Automated amperometric plutonium assay system

    SciTech Connect

    Burt, M.C.

    1985-01-01

    The amperometric titration for plutonium assay has been used in the nuclear industry for over twenty years and has been in routine use at the Hanford Engineering Development Laboratory since 1976 for the analysis of plutonium oxide and mixed oxide fuel material for the Fast Flux Test Facility. It has proven itself to be an accurate and reliable method. The method may be used as a direct end point titration or an excess of titrant may be added and a back titration performed to aid in determination of the end point. Due to the slowness of the PuVI-FeII reaction it is difficult to recognize when the end point is being approached and is very time consuming if the current is allowed to decay to the residual value after each titrant addition. For this reason the back titration in which the rapid FeII-CrVI reaction occurs is used by most laboratories. The back titration is performed by the addition of excess ferrous solution followed by two measured aliquots of standard dichromate with measurement of cell current after each addition.

  7. Plutonium focus area. Technology summary

    SciTech Connect

    1997-09-01

    The Assistant Secretary for the Office of Environmental Management (EM) at the U.S. Department of Energy (DOE) chartered the Plutonium Focus Area (PFA) in October 1995. The PFA {open_quotes}...provides for peer and technical reviews of research and development in plutonium stabilization activities...{close_quotes} In addition, the PFA identifies and develops relevant research and technology. The purpose of this document is to focus attention on the requirements used to develop research and technology for stabilization, storage, and preparation for disposition of nuclear materials. The PFA Technology Summary presents the approach the PFA uses to identify, recommend, and review research. It lists research requirements, research being conducted, and gaps where research is needed. It also summarizes research performed by the PFA in the traditional research summary format. This document encourages researchers and commercial enterprises to do business with PFA by submitting research proposals or {open_quotes}white papers.{close_quotes} In addition, it suggests ways to increase the likelihood that PFA will recommend proposed research to the Nuclear Materials Stabilization Task Group (NMSTG) of DOE.

  8. Ceramification: A plutonium immobilization process

    SciTech Connect

    Rask, W.C.; Phillips, A.G.

    1996-05-01

    This paper describes a low temperature technique for stabilizing and immobilizing actinide compounds using a combination process/storage vessel of stainless steel, in which measured amounts of actinide nitrate solutions and actinide oxides (and/or residues) are systematically treated to yield a solid article. The chemical ceramic process is based on a coating technology that produces rare earth oxide coatings for defense applications involving plutonium. The final product of this application is a solid, coherent actinide oxide with process-generated encapsulation that has long-term environmental stability. Actinide compounds can be stabilized as pure materials for ease of re-use or as intimate mixtures with additives such as rare earth oxides to increase their degree of proliferation resistance. Starting materials for the process can include nitrate solutions, powders, aggregates, sludges, incinerator ashes, and others. Agents such as cerium oxide or zirconium oxide may be added as powders or precursors to enhance the properties of the resulting solid product. Additives may be included to produce a final product suitable for use in nuclear fuel pellet production. The process is simple and reduces the time and expense for stabilizing plutonium compounds. It requires a very low equipment expenditure and can be readily implemented into existing gloveboxes. The process is easily conducted with less associated risk than proposed alternative technologies.

  9. Button Basics

    ERIC Educational Resources Information Center

    Carrier, Sarah J.; Thomas, Annie B.

    2008-01-01

    Elementary teachers of science are at a great advantage because observation--collecting information about the world using the five senses--and classification--sorting things by properties--come so naturally to children. Many examples of classification occur in science: Scientists, for example, group things starting with large categories, such as…

  10. ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Boyd, G.E.

    1960-06-28

    A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

  11. Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)

    SciTech Connect

    Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

    1995-10-30

    The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

  12. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible–near-infrared range

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir F.

    2016-09-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.

  13. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near-infrared range

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir F.

    2016-09-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.

  14. Medial Patellofemoral Ligament Reconstruction Using a Femoral Loop Button Fixation Technique

    PubMed Central

    Godin, Jonathan A.; Karas, Vasili; Visgauss, Julia D.; Garrett, William E.

    2015-01-01

    Medial patellofemoral ligament (MPFL) reconstruction is a common procedure used to treat both acute and chronic patellar instability. Although many variations of MPFL reconstruction have been described, there is no consensus regarding the optimal surgical technique. We describe a technique for MPFL reconstruction with a looped gracilis tendon autograft using suture anchors to secure the graft to the patella and a suspensory loop button system for fixation to the femur. This technique replicates the native shape of the MPFL while minimizing the risk of patellar fracture and allowing for gradual tensioning of the graft. PMID:26900561

  15. Polarizabilities of an annular cut and coupling impedances of button type beam position monitors

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergei S.

    The longitudinal and transverse coupling impedances of a small discontinuity on the accelerator chamber wall can be expressed in terms of the electric and magnetic polarizabilities of the discontinuity. The polarizabilities are geometrical factors and can be found by solving a static (electric or magnetic) problem. However, they are known in the explicit analytical form only for a few simple-shaped discontinuities, for example, for an elliptic hole in a thin wall. In the present paper the polarizabilities of a ring-shaped cut in the wall are obtained. The results are applied to calculate the coupling impedances of button-type beam position monitors.

  16. Preparation of Small Well Characterized Plutonium Oxide Reference Materials and Demonstration of the Usefulness of Such Materials for Nondestructive Analysis

    SciTech Connect

    B.A. Guillen; S.T. Hsue; J.Y Huang; P.A. Hypes; S.M. Long; C.R. Rudy; P.A. Russo; J.E. Stewart; D.J. Temer

    2003-01-01

    Calibration of neutron coincidence and multiplicity counters for passive nondestructive analysis (NDA) of plutonium requires knowledge of the detector efficiency parameters. These are most often determined empirically. Bias from multiplication and unknown impurities may be incurred even with small plutonium metal samples. Five sets of small, pure plutonium metal standards prepared with well-known geometry and very low levels of impurities now contribute to determining accurate multiplication corrections. Recent measurements of these metal standards, with small but well-defined multiplication and negligible yield of other than fission neutrons, demonstrate an improved characterization and calibration of neutron coincidence/multiplicity counters. The precise knowledge of the mass and isotopic composition of each standard also contributes significantly to verifying the accuracy of the most precise calorimetry and gamma-ray spectroscopy measurements.

  17. The growth and evolution of thin oxide films on delta-plutonium surfaces

    SciTech Connect

    Garcia Flores, Harry G; Pugmire, David L

    2009-01-01

    The common oxides of plutonium are the dioxide (PuO{sub 2}) and the sesquioxide (Pu{sub 2}O{sub 3}). The structure of an oxide on plutonium metal under air at room temperature is typically described as a thick PuO{sub 2} film at the gas-oxide interface with a thinner PuO{sub 2} film near the oxide-metal substrate interface. In a reducing environment, such as ultra high vacuum, the dioxide (Pu{sup 4+}; O/Pu = 2.0) readily converts to the sesquioxide (Pu{sup 3+}; O/Pu = 1.5) with time. In this work, the growth and evolution of thin plutonium oxide films is studied with x-ray photoelectron spectroscopy (XPS) under varying conditions. The results indicate that, like the dioxide, the sesquioxide is not stable on a very clean metal substrate under reducing conditions, resulting in substoichiometric films (Pu{sub 2}O{sub 3-y}). The Pu{sub 2}O{sub 3-y} films prepared exhibit a variety of stoichiometries (y = 0.2-1) as a function of preparation conditions, highlighting the fact that caution must be exercised when studying plutonium oxide surfaces under these conditions and interpreting resulting data.

  18. Phonon and magnetic structure in δ-plutonium from density-functional theory

    NASA Astrophysics Data System (ADS)

    Söderlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.

    2015-10-01

    We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, but the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.

  19. Phonon and magnetic structure in δ-plutonium from density-functional theory

    SciTech Connect

    Söderlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.

    2015-10-30

    We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment (DLM) method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, However, the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.

  20. Evaluation of filter media for clarification of partially dissolved residues containing plutonium

    SciTech Connect

    Foley, E.S.

    1989-10-09

    A common process in the chemical industry employs the leaching of a desirable component from an insoluble substrate, followed by filtration to produce a clarified solution of the desirable component and a discardable residue. The work described here involved evaluating sintered metal filter media for separating dissolved plutonium from undissolved residues generated at various locations owned by the Department of Energy throughout the United States. The work was performed during a six-week assignment at the Savannah River Laboratory as part of a high school science enrichment program conducted in the summer of 1989. The leach step used included dissolving the plutonium-containing solids in a solution of nitric-hydrofluoric acid. To simulate the partial solubility of the actual plutonium-containing residues, a non-radioactive power plant flyash was used. 6 refs., 14 figs., 1 tab.

  1. Evolving Density and Static Mechanical Properties in Plutonium from Self-Irradiation

    SciTech Connect

    Chung, B W; Thompson, S R; Lema, K E; Hiromoto, D S; Ebbinghaus, B B

    2008-07-31

    Plutonium, because of its self-irradiation by alpha decay, ages by means of lattice damage and helium in-growth. These integrated aging effects result in microstructural and physical property changes. Because these effects would normally require decades to measure, studies are underway to assess the effects of extended aging on the physical properties of plutonium alloys by incorporating roughly 7.5 weight % of highly specific activity isotope {sup 238}Pu into the {sup 239}Pu metal to accelerate the aging process. This paper presents updated results of self-irradiation effects on {sup 238}Pu-enriched alloys measured by immersion density, dilatometry, and tensile tests. After nearly 90 equivalent years of aging, both the immersion density and dilatometry show that the enriched alloys continue to decreased in density by {approx}0.002% per year, without void swelling. Quasi-static tensile measurements show that the aging process increases the strength of plutonium alloys.

  2. Phonon and magnetic structure in δ-plutonium from density-functional theory

    PubMed Central

    Söderlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.

    2015-01-01

    We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, but the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments. PMID:26514238

  3. Laboratory-scale evaluations of alternative plutonium precipitation methods

    SciTech Connect

    Martella, L.L.; Saba, M.T.; Campbell, G.K.

    1984-02-08

    Plutonium(III), (IV), and (VI) carbonate; plutonium(III) fluoride; plutonium(III) and (IV) oxalate; and plutonium(IV) and (VI) hydroxide precipitation methods were evaluated for conversion of plutonium nitrate anion-exchange eluate to a solid, and compared with the current plutonium peroxide precipitation method used at Rocky Flats. Plutonium(III) and (IV) oxalate, plutonium(III) fluoride, and plutonium(IV) hydroxide precipitations were the most effective of the alternative conversion methods tested because of the larger particle-size formation, faster filtration rates, and the low plutonium loss to the filtrate. These were found to be as efficient as, and in some cases more efficient than, the peroxide method. 18 references, 14 figures, 3 tables.

  4. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  5. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  6. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  7. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  8. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  9. Plutonium Decontamination of Uranium using CO2 Cleaning

    SciTech Connect

    Blau, M

    2002-12-01

    A concern of the Department of Energy (DOE) Environmental Management (EM) and Defense Programs (DP), and of the Los Alamos National Laboratory (LANL) and the Lawrence Livermore National Laboratory (LLNL), is the disposition of thousands of legacy and recently generated plutonium (Pu)-contaminated, highly enriched uranium (HEU) parts. These parts take up needed vault space. This presents a serious problem for LLNL, as site limit could result in the stoppage of future weapons work. The Office of Fissile Materials Disposition (NN-60) will also face a similar problem as thousands of HEU parts will be created with the disassembly of site-return pits for plutonium recovery when the Pit Disassembly and Conversion Facility (PDCF) at the Savannah River Site (SRS) becomes operational. To send HEU to the Oak Ridge National Laboratory and the Y-12 Plant for disposition, the contamination for metal must be less than 20 disintegrations per minute (dpm) of swipable transuranic per 100 cm{sup 2} of surface area or the Pu bulk contamination for oxide must be less than 210 parts per billion (ppb). LANL has used the electrolytic process on Pu-contaminated HEU weapon parts with some success. However, this process requires that a different fixture be used for every configuration; each fixture cost approximately $10K. Moreover, electrolytic decontamination leaches the uranium metal substrate (no uranium or plutonium oxide) from the HEU part. The leaching rate at the uranium metal grain boundaries is higher than that of the grains and depends on the thickness of the uranium oxide layer. As the leaching liquid flows past the HEU part, it carries away plutonium oxide contamination and uranium oxide. The uneven uranium metal surface created by the leaching becomes a trap for plutonium oxide contamination. In addition, other DOE sites have used CO{sub 2} cleaning for Pu decontamination successfully. In the 1990's, the Idaho National Engineering Laboratory investigated this technology and

  10. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  11. Extracting metals directly from metal oxides

    DOEpatents

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  12. METHOD OF MAKING ALLOYS OF BERYLLIUM WITH PLUTONIUM AND THE LIKE

    DOEpatents

    Runnals, O.J.C.

    1959-02-24

    The production of alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium are described. A halide salt of the metal to be alloyed with the beryllium is heated at 1300 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  13. Method of making alloys of beryllium with plutonium and the like

    DOEpatents

    Runnals, O J.C.

    1959-02-24

    The production or alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium is described. A halide salt or the metal to be alloyed with the beryllium is heated at l3O0 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  14. An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium.

    SciTech Connect

    Jensen, M. P.; Gorman-Lewis, D.; Aryal, B. P.; Paunesku, T.; Vogt, S.; Rickert, P. G.; Seifert, S.; Lai, B.; Woloschak, G. E.; Soderholm, L.

    2011-08-01

    Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small-angle X-ray scattering, receptor binding assays and synchrotron X-ray fluorescence microscopy, we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway -- receptor-mediated endocytosis of the iron transport protein serum transferrin; however, only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small-angle scattering show that only transferrin with plutonium bound in the protein's C-terminal lobe (C-lobe) and iron bound in the N-terminal lobe (N-lobe) (Pu{sub c}Fe{sub N}Tf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal-binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin's two lobes act to restrict, but not eliminate, cellular Pu uptake.

  15. An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium

    PubMed Central

    Jensen, Mark P.; Gorman-Lewis, Drew; Aryal, Baikuntha; Paunesku, Tatjana; Vogt, Stefan; Rickert, Paul G.; Seifert, Soenke; Lai, Barry; Woloschak, Gayle E.; Soderholm, L.

    2012-01-01

    Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small angle X-ray scattering, receptor binding assays, and synchrotron X-ray fluorescence microscopy we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway, receptor-mediated endocytosis of the iron transport protein serum transferrin; however only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small angle scattering demonstrate that only transferrin with plutonium bound in the protein’s C-terminal lobe and iron bound in the N-lobe (PuCFeNTf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin’s two lobes act to restrict, but not eliminate, cellular Pu uptake. PMID:21706034

  16. Calculation of Doses Due to Accidentally Released Plutonium From An LMFBR

    SciTech Connect

    Fish, B.R.

    2001-08-07

    Experimental data and analytical models that should be considered in assessing the transport properties of plutonium aerosols following a hypothetical reactor accident have been examined. Behaviors of released airborne materials within the reactor containment systems, as well as in the atmosphere near the reactor site boundaries, have been semiquantitatively predicted from experimental data and analytical models. The fundamental chemistry of plutonium as it may be applied in biological systems has been used to prepare models related to the intake and metabolism of plutonium dioxide, the fuel material of interest. Attempts have been made to calculate the possible doses from plutonium aerosols for a typical analyzed release in order to evaluate the magnitude of the internal exposure hazards that might exist in the vicinity of the reactor after a hypothetical LMFBR (Liquid-Metal Fast Breeder Reactor) accident. Intake of plutonium (using data for {sup 239}Pu as an example) and its distribution in the body were treated parametrically without regard to the details of transport pathways in the environment. To the extent possible, dose-response data and models have been reviewed, and an assessment of their adequacy has been made so that recommended or preferred practices could be developed.

  17. The benefits of an advanced fast reactor fuel cycle for plutonium management

    SciTech Connect

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.; Hill, R.N.

    1996-12-31

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium and long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.

  18. An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium.

    PubMed

    Jensen, Mark P; Gorman-Lewis, Drew; Aryal, Baikuntha; Paunesku, Tatjana; Vogt, Stefan; Rickert, Paul G; Seifert, Soenke; Lai, Barry; Woloschak, Gayle E; Soderholm, L

    2011-06-26

    Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small-angle X-ray scattering, receptor binding assays and synchrotron X-ray fluorescence microscopy, we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway--receptor-mediated endocytosis of the iron transport protein serum transferrin; however, only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small-angle scattering show that only transferrin with plutonium bound in the protein's C-terminal lobe (C-lobe) and iron bound in the N-terminal lobe (N-lobe) (Pu(C)Fe(N)Tf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal-binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin's two lobes act to restrict, but not eliminate, cellular Pu uptake.

  19. HENC performance evaluation and plutonium calibration

    SciTech Connect

    Menlove, H.O.; Baca, J.; Pecos, J.M.; Davidson, D.R.; McElroy, R.D.; Brochu, D.B.

    1997-10-01

    The authors have designed a high-efficiency neutron counter (HENC) to increase the plutonium content in 200-L waste drums. The counter uses totals neutron counting, coincidence counting, and multiplicity counting to determine the plutonium mass. The HENC was developed as part of a Cooperative Research and Development Agreement between the Department of Energy and Canberra Industries. This report presents the results of the detector modifications, the performance tests, the add-a-source calibration, and the plutonium calibration at Los Alamos National Laboratory (TA-35) in 1996.

  20. Excess Weapons Plutonium Immobilization in Russia

    SciTech Connect

    Jardine, L.; Borisov, G.B.

    2000-04-15

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R&D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R&D on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the excellent

  1. Plutonium Immobilization Can Loading Conceptual Design

    SciTech Connect

    Kriikku, E.

    1999-05-13

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  2. RECOVERY OF PLUTONIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Reber, E.J.

    1959-09-01

    A process is described for recovering plutonium values from aqueous solutions by precipitation on bismuth phosphate. The plutonium is secured in its tetravalent state. bismuth salt is added to the solution, and ant excess of phosphoric acid anions is added to the solution in two approximately equal installments. The rate of addition of the first installment is about two to three times as high as the rate of addition of the second installment, whereby a precipitate of bismuth phosphate forms, the precipitate carrying the plutonium values. The precipitate is separated from the solution.

  3. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS

    DOEpatents

    Nicholls, C.M.; Wells, I.; Spence, R.

    1959-10-13

    The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

  4. NON-CORROSIVE PLUTONIUM FUEL SYSTEMS

    DOEpatents

    Coffinberry, A.S.; Waber, J.T.

    1962-10-23

    An improved plutonium reactor liquid fuel is described for utilization in a nuclear reactor having a tantalum fuel containment vessel. The fuel consists of plutonium and a diluent such as iron, cobalt, nickel, cerium, cerium-- iron, cerium--cobalt, cerium--nickel, and cerium--copper, and an additive of carbon and silicon. The carbon and silicon react with the tantalum container surface to form a coating that is self-healing and prevents the corrosive action of liquid plutonium on the said tantalum container. (AEC)

  5. Removal of plutonium from hepatic tissue

    DOEpatents

    Lindenbaum, Arthur; Rosenthal, Marcia W.

    1979-01-01

    A method is provided for removing plutonium from hepatic tissues by introducing into the body and blood stream a solution of the complexing agent DTPA and an adjunct thereto. The adjunct material induces aberrations in the hepatic tissue cells and removes intracellularly deposited plutonium which is normally unavailable for complexation with the DTPA. Once the intracellularly deposited plutonium has been removed from the cell by action of the adjunct material, it can be complexed with the DTPA present in the blood stream and subsequently removed from the body by normal excretory processes.

  6. Treatment of plutonium process residues by molten salt oxidation

    SciTech Connect

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.; Wernly, K.

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  7. Hiroshima neutron fluence on a glass button from near ground zero.

    PubMed

    Fleischer, R L; Fujita, S; Hoshi, M

    2001-12-01

    A decorative glass button that was uncovered at a location that is 190 +/- 15 m from directly beneath the atomic explosion at Hiroshima on 6 August 1945 has been scanned for induced fission tracks produced mostly by the thermal neutrons from the bomb due to interactions with the trace uranium that is normally present in silicate glasses. In surveying 4.14 cm2 at 500x magnification, 28 tracks were seen. From a calibration irradiation in a nuclear reactor we infer that the neutron fluence in 1945 was 5.7(+/-1.1) x 10(11) cm(-2); and, allowing for shielding by the structure in which the button was probably located, the free-air (i.e., outside) value is estimated as 1.5(+/-0.5) x 10(12) cm(-2). A limit has been placed on possible fading of the radiation-damage tracks that could increase the fluence by at most a factor of 1.27. The values bracket the calculated value of 9 x 10(11) given in DS86 but are higher than the 3.6 x 10(11) inferred from induced radionuclides for the distance given. The difference is, however, within the observed variability of the two types of results.

  8. Inheritance of Strain Instability (Sectoring) in the Commercial Button Mushroom, Agaricus bisporus

    PubMed Central

    Li, Aimin; Begin, Marc; Kokurewicz, Karl; Bowden, Christine; Horgen, Paul A.

    1994-01-01

    The button mushroom, Agaricus bisporus, is a commercially important cultivated filamentous fungus. During the last decade, the button mushroom industry has depended mainly on two strains (or derivatives of these two strains). Using one of these highly successful strains (strain U1) we examined the phenomenon of strain instability, specifically, the production of irreversible sectors. Three “stromatal” and three “fluffy” sectors were compared with a healthy type U1 strain and with a wild-collected isolate. Compost colonization and fruit body morphology were examined. The main objective of this study, however, was to examine the meiotic stability of the sectored phenotype. Single basidiospores were isolated and subjected to a grain bioassay in which the ability to produce sectors was measured. Our results were as follows: (i) basidiospore cultures obtained from a wild-collected isolate showed no tendency to produce sectors; (ii) approximately 5% of the basidiospore cultures obtained from healthy type U1 strains produced irreversible sectors in the grain bioassay; (iii) the five primary sectors examined produced basidiospore cultures, half of which produced normal-looking growth in the grain bioassay and half of which produced some degree of sectoring; and (iv) the one sectored isolate that represented the F2 generation gave ratios similar to the 1:1 ratio observed for the F1 cultures. Images PMID:16349322

  9. Haptic stylus and empirical studies on braille, button, and texture display.

    PubMed

    Kyung, Ki-Uk; Lee, Jun-Young; Park, Junseok

    2008-01-01

    This paper presents a haptic stylus interface with a built-in compact tactile display module and an impact module as well as empirical studies on Braille, button, and texture display. We describe preliminary evaluations verifying the tactile display's performance indicating that it can satisfactorily represent Braille numbers for both the normal and the blind. In order to prove haptic feedback capability of the stylus, an experiment providing impact feedback mimicking the click of a button has been conducted. Since the developed device is small enough to be attached to a force feedback device, its applicability to combined force and tactile feedback display in a pen-held haptic device is also investigated. The handle of pen-held haptic interface was replaced by the pen-like interface to add tactile feedback capability to the device. Since the system provides combination of force, tactile and impact feedback, three haptic representation methods for texture display have been compared on surface with 3 texture groups which differ in direction, groove width, and shape. In addition, we evaluate its capacity to support touch screen operations by providing tactile sensations when a user rubs against an image displayed on a monitor.

  10. Effect of spent mushroom compost tea on mycelial growth and yield of button mushroom (Agaricus bisporus).

    PubMed

    Gea, Francisco J; Santos, Mila; Diánez, Fernando; Tello, Julio C; Navarro, María J

    2012-08-01

    Preliminary studies suggested that the use of compost tea made from spent mushroom substrate (SMS) may be regarded as a potential method for biologically controlling dry bubble disease in button mushroom. The aim of this study was to assess the effect of SMS compost tea on the host, the button mushroom, to ascertain whether the addition of these water extracts has a toxic effect on Agaricus bisporus mycelium growth and on mushroom yield. In vitro experiments showed that the addition of SMS compost tea to the culture medium inoculated with a mushroom spawn grain did not have an inhibitory effect on A. bisporus mycelial growth. The effect of compost teas on the quantitative production parameters of A. bisporus (yield, unitary weight, biological efficiency and earliness) was tested in a cropping trial, applying the compost teas to the casing in three different drench applications. Quantitative production parameters were not significantly affected by the compost tea treatments although there was a slight delay of 0.8-1.4 days in the harvest time of the first flush. These results suggest that compost teas have no fungitoxic effect on A. bisporus so that they can be considered a suitable biocontrol substance for the control of dry bubble disease.

  11. GPU-Accelerated Framework for Intracoronary Optical Coherence Tomography Imaging at the Push of a Button

    PubMed Central

    Han, Myounghee; Kim, Kyunghun; Jang, Sun-Joo; Cho, Han Saem; Bouma, Brett E.; Oh, Wang-Yuhl; Ryu, Sukyoung

    2015-01-01

    Frequency domain optical coherence tomography (FD-OCT) has become one of the important clinical tools for intracoronary imaging to diagnose and monitor coronary artery disease, which has been one of the leading causes of death. To help more accurate diagnosis and monitoring of the disease, many researchers have recently worked on visualization of various coronary microscopic features including stent struts by constructing three-dimensional (3D) volumetric rendering from series of cross-sectional intracoronary FD-OCT images. In this paper, we present the first, to our knowledge, "push-of-a-button" graphics processing unit (GPU)-accelerated framework for intracoronary OCT imaging. Our framework visualizes 3D microstructures of the vessel wall with stent struts from raw binary OCT data acquired by the system digitizer as one seamless process. The framework reports the state-of-the-art performance; from raw OCT data, it takes 4.7 seconds to provide 3D visualization of a 5-cm-long coronary artery (of size 1600 samples x 1024 A-lines x 260 frames) with stent struts and detection of malapposition automatically at the single push of a button. PMID:25880375

  12. Proximity of Axillary Nerve During Cortical Button Repair of Pectoralis Major Tendon Rupture

    PubMed Central

    Lancaster, Sarah T.; Smith, Geoff C.; Ogunleye, Oluwafunto E.; Clark, Damian A.; Packham, Iain N.

    2013-01-01

    Background Rupture of the pectoralis major (PM) tendon is a rare but severe injury. Several techniques have been described for PM fixation, including a transosseus technique, placing cortical buttons at the superior, middle and inferior PM tendon insertion points. The present cadaveric study investigates the proximity of the posterior branch of the axillary nerve to the drill positions for transosseus PM tendon repair. Methods Twelve cadaveric shoulders were used. The axillary nerve was marked during a preparatory dissection. Drills were passed through the humerus at the superior, middle and inferior insertions of the PM tendon and the drill bits were left in situ. The distance between these and each axillary nerve was measured using computed tomography. Results The superior drill position was in closest proximity to the axillary nerve (three-dimensional distance range 0–18.01 mm, mean 10.74 mm, 95% confidence interval 7.24 mm to 14.24 mm). The middle PM insertion point was also very close to the nerve. Conclusions Caution should be used when performing bicortical drilling of the humerus, especially when drilling at the superior border of the PM insertion. We describe ‘safe’ and ‘danger’ zones for the positioning of cortical buttons through the humerus reflecting the risk posed to the axillary nerve. PMID:27582906

  13. Comparison of Drilling Performance of Chisel and Button Bits on the Electro Hydraulic Driller

    NASA Astrophysics Data System (ADS)

    Su, Okan; Yarali, Olgay; Akcin, Nuri Ali

    2013-11-01

    Electro hydraulic drillers have been widely used in mining for drilling and roof-bolting. In the drilling process, the performance of the machine is predicted by selecting an appropriate bit type prior to drilling operations. In this paper, a series of field drilling studies were conducted in order to examine and compare the performance of chisel and button bits including wear on the bits. The effects of taper angle on chisel bits, which are at angles of 105°, 110° and 120°, were investigated in terms of rate of penetration, instantaneous drilling rate and specific energy. The results of drilling and abrasivity tests performed in the laboratory supported the outcome of the field studies. Based on laboratory studies and field observations, it was proven that the conglomerate encountered, though it is very abrasive, is easy to drill. The cutter life in the encountered series is also longer in sandstone formation compared to the conglomerate. Additionally, button bits resulted in lower specific energy and higher penetration rates relative to chisel bits, regardless of their taper angles. The results were also supported with statistical analyses.

  14. GPU-accelerated framework for intracoronary optical coherence tomography imaging at the push of a button.

    PubMed

    Han, Myounghee; Kim, Kyunghun; Jang, Sun-Joo; Cho, Han Saem; Bouma, Brett E; Oh, Wang-Yuhl; Ryu, Sukyoung

    2015-01-01

    Frequency domain optical coherence tomography (FD-OCT) has become one of the important clinical tools for intracoronary imaging to diagnose and monitor coronary artery disease, which has been one of the leading causes of death. To help more accurate diagnosis and monitoring of the disease, many researchers have recently worked on visualization of various coronary microscopic features including stent struts by constructing three-dimensional (3D) volumetric rendering from series of cross-sectional intracoronary FD-OCT images. In this paper, we present the first, to our knowledge, "push-of-a-button" graphics processing unit (GPU)-accelerated framework for intracoronary OCT imaging. Our framework visualizes 3D microstructures of the vessel wall with stent struts from raw binary OCT data acquired by the system digitizer as one seamless process. The framework reports the state-of-the-art performance; from raw OCT data, it takes 4.7 seconds to provide 3D visualization of a 5-cm-long coronary artery (of size 1600 samples x 1024 A-lines x 260 frames) with stent struts and detection of malapposition automatically at the single push of a button. PMID:25880375

  15. GPU-accelerated framework for intracoronary optical coherence tomography imaging at the push of a button.

    PubMed

    Han, Myounghee; Kim, Kyunghun; Jang, Sun-Joo; Cho, Han Saem; Bouma, Brett E; Oh, Wang-Yuhl; Ryu, Sukyoung

    2015-01-01

    Frequency domain optical coherence tomography (FD-OCT) has become one of the important clinical tools for intracoronary imaging to diagnose and monitor coronary artery disease, which has been one of the leading causes of death. To help more accurate diagnosis and monitoring of the disease, many researchers have recently worked on visualization of various coronary microscopic features including stent struts by constructing three-dimensional (3D) volumetric rendering from series of cross-sectional intracoronary FD-OCT images. In this paper, we present the first, to our knowledge, "push-of-a-button" graphics processing unit (GPU)-accelerated framework for intracoronary OCT imaging. Our framework visualizes 3D microstructures of the vessel wall with stent struts from raw binary OCT data acquired by the system digitizer as one seamless process. The framework reports the state-of-the-art performance; from raw OCT data, it takes 4.7 seconds to provide 3D visualization of a 5-cm-long coronary artery (of size 1600 samples x 1024 A-lines x 260 frames) with stent struts and detection of malapposition automatically at the single push of a button.

  16. TRACHEOSTOMAPLASTY: A SURGICAL METHOD FOR IMPROVING RETENTION OF AN INTRALUMINAL STOMA BUTTON FOR HANDS-FREE TRACHEOESOPHAGEAL SPEECH

    PubMed Central

    Moreno, Mauricio A.; Lewin, Jan S.; Hutcheson, Katherine A.; Bishop Leone, Julie K.; Barringer, Denise A.

    2014-01-01

    Background We describe a minimally invasive surgical technique, tracheostomaplasty, to overcome anatomical deformities of the stoma that preclude successful retention of a stoma button for hands free tracheoesophageal (TE) speech. Methods We conducted a retrospective analysis of 21 patients who underwent tracheostomaplasty after laryngectomy to accommodate an intraluminal valve attachment for hands-free TE speech. Results Sixteen men and 5 women (median age, 65 years; median follow-up, 27.7 months) underwent tracheostomaplasty; 6 patients developed a mild cellulitis that required therapy and 5 patients required a minor revision surgery. At last follow-up, 15 (71%) patients successfully achieved hands-free TE speech using an intraluminal stoma button. Three patients only retained the intraluminal device to facilitate digital occlusion. Tracheostomaplasty failed in 3 patients because of granulation tissue formation or stomal stenosis. Conclusions Tracheostomaplasty is a successful technique to improve intraluminal retention of a stoma button for hands-free TE speech in laryngectomy patients. PMID:20848405

  17. What is plutonium stabilization, and what is safe storage of plutonium?

    SciTech Connect

    Forsberg, C.W.

    1995-06-29

    The end of the cold war has resulted in the shutdown of nuclear weapons production and the start of dismantlement of significant numbers of nuclear weapons. This, in turn, is creating an inventory of plutonium requiring interim and long-term storage. A key question is, ``What is required for safe, multidecade, plutonium storage?`` The requirements for storage, in turn, define what is needed to stabilize the plutonium from its current condition into a form acceptable for interim and long-term storage. Storage requirements determine if research is required to (1) define required technical conditions for interim and long-term storage and (2) develop or improve current stabilization technologies. Storage requirements depend upon technical, policy, and economic factors. The technical issues are complicated by several factors. Plutonium in aerosol form is highly hazardous. Plutonium in water is hazardous. The plutonium inventory is in multiple chemical forms--some of which are chemically reactive. Also, some of the existing storage forms are clearly unsuitable for storage periods over a few years. Gas generation by plutonium compounds complicates storage: (1) all plutonium slowly decays creating gaseous helium and (2) the radiation from plutonium decay can initiate many chemical reactions-some of which generate significant quantities of gases. Gas generation can pressurize sealed storage packages. Last nuclear criticality must be avoided.

  18. PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1961-05-01

    A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.

  19. PLUTONIUM METALLOGRAPHY AT LOS ALAMOS

    SciTech Connect

    PEREYRA, RAMIRO A.; LOVATO, DARRYL

    2007-01-08

    From early days of the Manhattan program to today, scientists and engineers have continued to investigate the metallurgical properties of plutonium (Pu). Although issues like aging was not a concern to the early pioneers, today the reliability of our aging stockpile is of major focus. And as the country moves toward a new generation of weapons similar problems that the early pioneers faced such as compatibility, homogeneity and malleability have come to the forefront. And metallography will continue to be a principle tool for the resolution of old and new issues. Standard metallographic techniques are used for the preparation of plutonium samples. The samples are first cut with a slow speed idamond saw. After mounting in Epon 815 epoxy resin, the samples are ground through 600 grit silicon carbide paper. PF 5070 (a Freon substitute) is used as a coolant, lubricant, and solvent for most operations. Rough mechanical polished is done with 9-{mu} diamond using a nap less cloth, for example nylon or cotton. Final polish is done with 1-{mu} diamond on a nappy cloth such as sylvet. Ethyl alcohol is then used ultrasonically to clean the samples before electro polishing. The sample is then electro-polished and etched in an electrolyte containing 10% nitric acid, and 90% dimethyleneformalmide. Ethyl alcohol is used as a final cleaning agent. Although standard metallographic preparation techniques are used, there are several reasons why metallography of Pu is difficult and challenging. Firstly, because of the health hazards associated with its radioactive properties, sample preparation is conducted in glove boxes. Figure 1 shows the metallography line, in an R and D facility. Since they are designed to be negative in pressure to the laboratory, cross-contamination of abrasives is a major problem. In addition, because of safety concerns and waste issues, there is a limit to the amount of solvent that can be used. Secondly, Pu will readily hydride or oxidize when in contact

  20. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  1. Plutonium focus area: Technology summary

    SciTech Connect

    1996-03-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  2. Blue Button use by patients to access and share health record information using the Department of Veterans Affairs’ online patient portal

    PubMed Central

    Turvey, Carolyn; Klein, Dawn; Fix, Gemmae; Hogan, Timothy P; Woods, Susan; Simon, Steven R; Charlton, Mary; Vaughan-Sarrazin, Mary; Zulman, Donna M; Dindo, Lilian; Wakefield, Bonnie; Graham, Gail; Nazi, Kim

    2014-01-01

    Objective The Blue Button feature of online patient portals promotes patient engagement by allowing patients to easily download their personal health information. This study examines the adoption and use of the Blue Button feature in the Department of Veterans Affairs’ (VA) personal health record portal, My HealtheVet. Materials and methods An online survey presented to a 4% random sample of My HealtheVet users between March and May 2012. Questions were designed to determine characteristics associated with Blue Button use, perceived value of use, and how Veterans with non-VA providers use the Blue Button to share information with their non-VA providers. Results Of the survey participants (N=18 398), 33% were current Blue Button users. The most highly endorsed benefit was that it helped patients understand their health history better because all the information was in one place (73%). Twenty-one percent of Blue Button users with a non-VA provider shared their VA health information, and 87% reported that the non-VA provider found the information somewhat or very helpful. Veterans’ self-rated computer ability was the strongest factor contributing to both Blue Button use and to sharing information with non-VA providers. When comparing Blue Button users and non-users, barriers to adoption were low awareness of the feature and difficulty using the Blue Button. Conclusions This study contributes to the understanding of early Blue Button adoption and use of this feature for patient-initiated sharing of health information. Educational efforts are needed to raise awareness of the Blue Button and to address usability issues that hinder adoption. PMID:24740865

  3. Properties of plutonium and its alloys for use as fast reactor fuels

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried S.; Stan, Marius

    2008-12-01

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher melting U-Pu-Zr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  4. The solubility of hydrogen in plutonium in the temperature range 475 to 825 degrees centigrade

    SciTech Connect

    Allen, T.H.

    1991-01-01

    The solubility of hydrogen (H) in plutonium metal (Pu) was measured in the temperature range of 475 to 825{degree}C for unalloyed Pu (UA) and in the temperature range of 475 to 625{degree}C for Pu containing two-weight-percent gallium (TWP). For TWP metal, in the temperature range 475 to 600{degree}C, the saturated solution has a maximum hydrogen to plutonium ration (H/Pu) of 0.00998 and the standard enthalpy of formation ({Delta}H{degree}{sub f(s)}) is (-0.128 {plus minus} 0.0123) kcal/mol. The phase boundary of the solid solution in equilibrium with plutonium dihydride (PuH{sub 2}) is temperature independent. In the temperature range 475 to 625{degree}C, UA metal has a maximum solubility at H/Pu = 0.011. The phase boundary between the solid solution region and the metal+PuH{sub 2} two-phase region is temperature dependent. The solubility of hydrogen in UA metal was also measured in the temperature range 650 to 825{degree}C with {Delta}H{degree}{sub f(s)} = (-0.104 {plus minus} 0.0143) kcal/mol and {Delta}S{degree}{sub f(s)} = 0. The phase boundary is temperature dependent and the maximum hydrogen solubility has H/Pu = 0.0674 at 825{degree}C. 52 refs., 28 figs., 9 tabs.

  5. APPARATUS FOR HIGH PURITY METAL RECOVERY

    DOEpatents

    Magel, T.T.

    1959-02-10

    An apparatus is described for preparing high purity metal such as uranium, plutonium and the like from an impure mass of the same metal. The apparatus is arranged so that the impure metal is heated and swept by a stream of hydrogen gas bearing a halogen such as iodine. The volatiie metal halide formed is carried on to a hot filament where the metal halide is decomposed and the molten high purity metal is collected in a rceeiver below

  6. Design-only conceptual design report: Plutonium Immobilization Plant

    SciTech Connect

    DiSabatino, A A

    2000-05-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The Plutonium Immobilization Plant will be located at the Savannah River Site pursuant to the Surplus Plutonium Disposition Final Environmental Impact Statement Record of Decision, January 4, 2000. This document reflects a new facility using the ceramic immobilization technology and the can-in-canister approach. The Plutonium Immobilization Plant accepts plutonium oxide from pit conversion and plutonium and plutonium oxide from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors; it must also be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses a new building, the Plutonium Immobilization Plant, which will receive and store feed materials, convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize the plutonium oxide in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister. The existing Defense Waste Processing Facility is used for the pouring of high-level waste glass into the canisters. The Plutonium Immobilization Plant uses existing Savannah River Site infrastructure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. This design-only conceptual design report also provides the cost for a Plutonium Immobilization Plant which would process

  7. Plutonium finishing plant dangerous waste training plan

    SciTech Connect

    ENTROP, G.E.

    1999-05-24

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas.

  8. Pulmonary carcinogenesis from plutonium-containing particles

    SciTech Connect

    Thomas, R.G.; Smith, D.M.; Anderson, E.C.

    1980-01-01

    Plutonium administered as an alpha radiation source to the respiratory tracts of Syrian hamsters has resulted in various incidences of neoplasia. Adenomas are the primary lung tumor observed, but adenocarcinomas are also prevalent.

  9. International shipment of plutonium by air

    SciTech Connect

    Mercado, J.E.; McGrogan, J.P.

    1995-05-01

    In support of the United States (US) Government`s decision to place excess plutonium oxide at the US Department of Energy`s (DOE) Hanford Site under International Atomic Energy Agency (IAEA) safeguards, the Department of State notified the Congress that a plutonium storage vault at the Plutonium Finishing Plant at the Hanford Site would be added to the eligible facilities list. As part of the preparations to transfer the plutonium oxide under IAEA safeguards, samples of the powder were taken from the inventory to be shipped to the IAEA headquarters in Vienna, Austria, for laboratory analysis. The analysis of these samples was of high priority, and the IAEA requested that the material be shipped by aircraft, the most expeditious method.

  10. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    DOEpatents

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  11. Plutonium Immobilization Bagless Transfer Can Size Evaluation

    SciTech Connect

    Kriikku, E.; Stokes, M.; Rogers, L.; Ward, C.

    1998-02-01

    This report identifies and documents the most appropriate bagless transfer can size to support Plutonium Immobilization Can Loading operations. Also, this report considers can diameter, can wall thickness, and can length.

  12. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOEpatents

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  13. Plutonium-238 processing at Savannah River Plant

    SciTech Connect

    Burney, G.A.

    1983-01-01

    Plutonium-238 is produced by irradiating NpO/sub 2/-Al cermet slugs or tubes with neutrons. The neptunium-237 is produced as a by-product when natural or enriched uranium is irradiated with neutrons. The neptunium is separated by solvent extraction and ion exchange and precipitated as neptunium oxalate. Neptunium oxalate is calcined to neptunium oxide and fabricated into targets for irradiation. The irradiation conditions are controlled to produce plutonium with 80 to 90 wt % /sup 238/Pu.

  14. Criticality Experiments with Mixed Plutonium and Uranium Nitrate Solution at a Plutonium Fraction of 0.2 and 1.0 in Annular Cylindrical Geometry

    SciTech Connect

    Lloyd, RC

    1988-04-01

    A series of critical experiments was completed with mixed plutoniumuranium solutions having Pu/(Pu + U) ratios of approximately 0.2 and 1.0. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in annular cylindrical geometry. The measurements were made with a water reflector. The central region included a concrete, polyethylene or void annular cylindrical insert. Interior to the insert was a stainless steel bottle containing plutonium-uranium solution or a void region. In one experiment the central region was filled with a solid cadmium-covered polyethylene insert. The concentration of the solution in the annular region was varied from 61 to 489 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 0.22 or 0.97 for all experiments.

  15. Plutonium: The first 50 years. United States plutonium production, acquisition, and utilization from 1944 through 1994

    SciTech Connect

    1996-02-01

    The report contains important newly declassified information regarding the US production, acquisition, and removals of plutonium. This new information, when combined with previously declassified data, has allowed the DOE to issue, for the first time, a truly comprehensive report on the total DOE plutonium inventory. At the December 7, 1993, Openness Press Conference, the DOE declassified the plutonium inventories at eight locations totaling 33.5 metric tons (MT). This report declassifies the remainder of the DOE plutonium inventory. Newly declassified in this report is the quantity of plutonium at the Pantex Site, near Amarillo, Texas, and in the US nuclear weapons stockpile of 66.1 MT, which, when added to the previously released inventory of 33.5 MT, yields a total plutonium inventory of 99.5 MT. This report will document the sources which built up the plutonium inventory as well as the transactions which have removed plutonium from that inventory. This report identifies four sources that add plutonium to the DOE/DoD inventory, and seven types of transactions which remove plutonium from the DOE/DoD inventory. This report also discusses the nuclear material control and accountability system which records all nuclear material transactions, compares records with inventory and calculates material balances, and analyzes differences to verify that nuclear materials are in quantities as reported. The DOE believes that this report will aid in discussions in plutonium storage, safety, and security with stakeholders as well as encourage other nations to declassify and release similar data. These data will also be available for formulating policies with respect to disposition of excess nuclear materials. The information in this report is based on the evaluation of available records. The information contained in this report may be updated or revised in the future should additional or more detailed data become available.

  16. A vision for environmentally conscious plutonium processing

    SciTech Connect

    Avens, L.R.; Eller, P.G.; Christensen, D.C.; Miller, W.L.

    1998-12-31

    Regardless of individual technical and political opinions about the uses of plutonium, it is virtually certain that plutonium processing will continue on a significant global scale for many decades for the purposes of national defense, nuclear power and remediation. An unavoidable aspect of plutonium processing is that radioactive contaminated gas, liquid, and solid streams are generated. These streams need to be handled in a manner that is not only in full compliance with today`s laws,but also will be considered environmentally and economically responsible now and in the future. In this regard, it is indeed ironic that the multibillion dollar and multidecade radioactive cleanup mortgage that the US Department of Energy (and its Russian counterpart) now owns resulted from waste management practices that were at the time in full legal compliance. The theme of this paper is that recent dramatic advances in actinide science and technology now make it possible to drastically minimize or even eliminate the problematic waste streams of traditional plutonium processing operations. Advanced technology thereby provides the means to avoid passing on to our children and grandchildren significant environmental and economic legacies that traditional processing inevitably produces. This paper will describe such a vision for plutonium processing that could be implemented fully within five years at a facility such as the Los Alamos Plutonium Facility (TA55). As a significant bonus, even on this short time scale, the initial technology investment is handsomely returned in avoided waste management costs.

  17. PLUTONIUM FINISHING PLANT (PFP) STABILIZATION & PACKAGING PROJECT

    SciTech Connect

    GERBER, M.S.

    2004-01-14

    Fluor Hanford is pleased to submit the Plutonium Finishing Plant (PFP) Stabilization and Packaging Project (SPP) for consideration by the Project Management Institute as Project of the Year for 2004. The SPP thermally stabilized and/or packaged nearly 18 metric tons (MT) of plutonium and plutonium-bearing materials left in PFP facilities from 40 years of nuclear weapons production and experimentation. The stabilization of the plutonium-bearing materials substantially reduced the radiological risk to the environment and security concerns regarding the potential for terrorists to acquire the non-stabilized plutonium products for nefarious purposes. The work was done In older facilities which were never designed for the long-term storage of plutonium, and required working with materials that were extremely radioactive, hazardous, pyrophoric, and In some cases completely unique. I n some Instances, one-of-a-kind processes and equipment were designed, installed, and started up. The SPP was completed ahead of schedule, substantially beating all Interim progress milestone dates set by the Defense Nuclear Facilities Safety Board (DNFSB) and in the Hanford Site's Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA), and finished $1-million under budget.

  18. Complementary technologies for verification of excess plutonium

    SciTech Connect

    Langner, , D.G.; Nicholas, N.J.; Ensslin, N.; Fearey, B.L.; Mitchell, D.J.; Marlow, K.W.; Luke, S.J.; Gosnell, T.B.

    1998-12-31

    Three complementary measurement technologies have been identified as candidates for use in the verification of excess plutonium of weapons origin. These technologies: high-resolution gamma-ray spectroscopy, neutron multiplicity counting, and low-resolution gamma-ray spectroscopy, are mature, robust technologies. The high-resolution gamma-ray system, Pu-600, uses the 630--670 keV region of the emitted gamma-ray spectrum to determine the ratio of {sup 240}Pu to {sup 239}Pu. It is useful in verifying the presence of plutonium and the presence of weapons-grade plutonium. Neutron multiplicity counting is well suited for verifying that the plutonium is of a safeguardable quantity and is weapons-quality material, as opposed to residue or waste. In addition, multiplicity counting can independently verify the presence of plutonium by virtue of a measured neutron self-multiplication and can detect the presence of non-plutonium neutron sources. The low-resolution gamma-ray spectroscopic technique is a template method that can provide continuity of knowledge that an item that enters the a verification regime remains under the regime. In the initial verification of an item, multiple regions of the measured low-resolution spectrum form a unique, gamma-radiation-based template for the item that can be used for comparison in subsequent verifications. In this paper the authors discuss these technologies as they relate to the different attributes that could be used in a verification regime.

  19. Iliotibial band irritation caused by the EndoButton after anatomic double-bundle anterior cruciate ligament reconstruction: report of two cases.

    PubMed

    Taketomi, Shuji; Inui, Hiroshi; Hirota, Jinso; Nakamura, Kensuke; Sanada, Takaki; Masuda, Hironari; Tanaka, Sakae; Nakagawa, Takumi

    2013-08-01

    Two patients underwent arthroscopic anatomic double-bundle anterior cruciate ligament (ACL) reconstruction using the EndoButton for femoral fixation. The femoral tunnels were created by the inside-out technique through a far anteromedial portal. The patients postoperatively developed moderate lateral knee pain without instability. At the second-look arthroscopic evaluation, the two EndoButtons were removed. Both patients were completely asymptomatic several months after implant removal, implying that the EndoButtons caused the mechanical irritation in the iliotibial band. This is the first report describing removal of EndoButtons because of pain caused by friction with the iliotibial band. In anatomic ACL reconstruction, if the femoral tunnel exit is positioned near the lateral femoral epicondyle, care should be taken to prevent iliotibial band friction syndrome that could result because of the EndoButton.

  20. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOEpatents

    Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

    1958-10-01

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

  1. PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES

    DOEpatents

    Garner, C.S.

    1959-02-24

    A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.

  2. Thorium plutonium (TREX) fuel for weapons-grade plutonium disposition in pressurized water reactors

    SciTech Connect

    Comfort, C.; Ferguson, C.; Klima, S.; Lilly, D.E.; Rahnema, F.

    1996-12-31

    The goal of this study was to create a pressurized water reactor (PWR) reactor assembly (17 x 17) that would burn weapons-grade plutonium (WGP). Current designs of mixed-oxide (MOX) fuels combine WGP with uranium as the fuel. MOX fuel assemblies will destroy plutonium, but only 40 to 50% of the plutonium present in the fuel. This percentage is limited by the presence of {sup 238}U in the core, which becomes {sup 239}Pu by absorption and decay. The production of plutonium counteracts the disposition of WGP in current MOX fuel designs. This problem can be overcome by replacing the uranium in a MOX design with thorium. This loss of uranium (primarily {sup 238}U) halts the production of {sup 239}Pu in the thorium plutonium (TREX) fuel. The absence of {sup 239}Pu production allows the TREX design to burn up to 85 wt% of the {sup 239}Pu, originally loaded in the fuel.

  3. Vitamin B12 is the active corrinoid produced in cultivated white button mushrooms (Agaricus bisporus).

    PubMed

    Koyyalamudi, Sundar Rao; Jeong, Sang-Chul; Cho, Kai Yip; Pang, Gerald

    2009-07-22

    Analysis of vitamin B(12) in freshly harvested white button mushrooms ( Agaricus bisporus ) from five farms was performed by affinity chromatography and HPLC-ESI-MS techniques. The vitamin B(12) concentrations obtained varied from farm to farm, with higher concentrations of vitamin B(12) detected in outer peel than in cap, stalk, or flesh, suggesting that the vitamin B(12) is probably bacteria-derived. High concentrations of vitamin B(12) were also detected in the flush mushrooms including cups and flats. HPLC and mass spectrometry showed vitamin B(12) retention time and mass spectra identical to those of the standard vitamin B(12) and those of food products including beef, beef liver, salmon, egg, and milk but not of the pseudovitamin B(12), an inactive corrinoid in humans. The results suggest that the consumer may benefit from the consumption of mushroom to increase intake of this vitamin in the diet.

  4. Mitochondrial recombination in natural populations of the button mushroom Agaricus bisporus.

    PubMed

    Xu, Jianping; Zhang, Ying; Pun, Nicholas

    2013-06-01

    In the majority of sexual eukaryotes, the mitochondrial genomes are inherited uniparentally and have predominantly clonal population structures. In clonally evolving genomes, alleles at different loci will be in significant linkage disequilibrium. In this study, the associations among alleles at nine mitochondrial loci were analyzed for 379 isolates in four natural populations of the button mushroom Agaricus bisporus. The results indicated that the mitochondrial genome in the Desert California population was not significantly different from random recombination. In contrast, the three other populations all showed predominantly clonal mitochondrial population structure. While no evidence of recombination was found in the Alberta, Canada A. bisporus population, signatures of recombination were evident in the Coastal Californian and the French populations. We discuss the potential mechanisms that could have contributed to the observed mitochondrial recombination and to the differences in allelic associations among the geographic populations in this economically important mushroom. PMID:23000308

  5. Vitamin B12 is the active corrinoid produced in cultivated white button mushrooms (Agaricus bisporus).

    PubMed

    Koyyalamudi, Sundar Rao; Jeong, Sang-Chul; Cho, Kai Yip; Pang, Gerald

    2009-07-22

    Analysis of vitamin B(12) in freshly harvested white button mushrooms ( Agaricus bisporus ) from five farms was performed by affinity chromatography and HPLC-ESI-MS techniques. The vitamin B(12) concentrations obtained varied from farm to farm, with higher concentrations of vitamin B(12) detected in outer peel than in cap, stalk, or flesh, suggesting that the vitamin B(12) is probably bacteria-derived. High concentrations of vitamin B(12) were also detected in the flush mushrooms including cups and flats. HPLC and mass spectrometry showed vitamin B(12) retention time and mass spectra identical to those of the standard vitamin B(12) and those of food products including beef, beef liver, salmon, egg, and milk but not of the pseudovitamin B(12), an inactive corrinoid in humans. The results suggest that the consumer may benefit from the consumption of mushroom to increase intake of this vitamin in the diet. PMID:19552428

  6. Mitochondrial recombination in natural populations of the button mushroom Agaricus bisporus.

    PubMed

    Xu, Jianping; Zhang, Ying; Pun, Nicholas

    2013-06-01

    In the majority of sexual eukaryotes, the mitochondrial genomes are inherited uniparentally and have predominantly clonal population structures. In clonally evolving genomes, alleles at different loci will be in significant linkage disequilibrium. In this study, the associations among alleles at nine mitochondrial loci were analyzed for 379 isolates in four natural populations of the button mushroom Agaricus bisporus. The results indicated that the mitochondrial genome in the Desert California population was not significantly different from random recombination. In contrast, the three other populations all showed predominantly clonal mitochondrial population structure. While no evidence of recombination was found in the Alberta, Canada A. bisporus population, signatures of recombination were evident in the Coastal Californian and the French populations. We discuss the potential mechanisms that could have contributed to the observed mitochondrial recombination and to the differences in allelic associations among the geographic populations in this economically important mushroom.

  7. Free Bone Plug Quadriceps Tendon Harvest and Suspensory Button Attachment for Anterior Cruciate Ligament Reconstruction.

    PubMed

    Todor, Adrian; Caterev, Sergiu; Nistor, Dan Viorel; Khallouki, Youssef

    2016-06-01

    The most commonly used autografts for anterior cruciate ligament reconstruction are the bone-patellar tendon-bone and hamstring tendons. Each has its advantages and limitations. The bone-patellar tendon-bone autograft can lead to more donor-site morbidity, and the hamstring autograft can be unpredictable in size. The quadriceps tendon, with or without a bone block, has been described as an alternative graft source and has been used especially in revision cases, but in recent years, it has attracted attention even for primary cases. We report a technique for harvesting a free bone quadriceps tendon graft and attaching an extracortical button for femoral fixation for anterior cruciate ligament reconstruction. PMID:27656375

  8. Spicing Things up by Adding Color and Relieving Pain: The Use of "Napoleon's Buttons" in Organic Chemistry

    ERIC Educational Resources Information Center

    Bucholtz, Kevin M.

    2011-01-01

    For some students, organic chemistry can be a distant subject and unrelated to any courses they have seen in their college careers. To develop a more contextual learning experience in organic chemistry, an additional text, "Napoleon's Buttons: 17 Molecules That Changed History," by Penny Le Couteur and Jay Burreson, was incorporated as a…

  9. Effect of dietary supplementation with white button mushrooms on host resistance to influenza infection and immune function in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we showed that mice fed white button mushrooms (WBM) had enhanced immune functions known to help the body’s antiviral defense. In this study, we tested if WBM could afford protection against viral infection. Young (4-mo) and old (22-mo) C57BL/6 mice were fed a diet containing 0, 2 per cen...

  10. White button mushroom enhances maturation of bone marrow derived dendritic cells and their antigen presenting function in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mushrooms have been shown to enhance immune response, which contributes to their anti-tumor property. White button mushrooms (Agaricus bisporus) (WBM) constitute 90 percent of the total mushrooms consumed in the United States; however, the health benefit of this strain in general is not well studied...

  11. In vitro supplementation with white button mushroom promotes maturation of bone marrow-derived dendritic cells in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mushrooms have been shown to enhance immune response, which contributes to their anti-tumor property. White button mushrooms (Agaricus bisporus) constitute 90 percent of the total mushroom market in the US; however, the health benefit of this strain in general is not well-studied. Furthermore, littl...

  12. Hot-Button Issues for Teachers: What Every Educator Needs to Know About Leadership, Testing, Textbooks, Vouchers, and More

    ERIC Educational Resources Information Center

    Vairo, Philip D.; Marcus, Sheldon; Weiner, Max

    2007-01-01

    One of the tragedies of American education is that so many teachers do not understand or are unaware of educational issues and how they impact on their profession. There is a gap between teacher perceptions and reality and this book is a first step in closing that gap. Hot-Button Issues for Teachers is a timely, comprehensive book that addresses…

  13. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    SciTech Connect

    Tingey, Joel M.; Jones, Susan A.

    2005-07-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at

  14. Study and Analysis of the Stress State in a Ceramic, Button-Head, Tensile Specimen

    SciTech Connect

    Jenkins, M.G.

    1991-01-01

    The final results are reported for a study to identify and correct the causes of nongage-section failures (notably button-head failures) in ceramic tensile specimens observed in several laboratories. Numerical modeling of several candidate specimen gripping systems has shown inherent stress concentrations near the specimen button head at which the maximum stress may approach 75 to 100% of the gage-section stress for certain grip conditions. Empirical comparisons of both tapered- and straight-collet gripping systems revealed compromises in both systems. The straight-collet system, with deformable collets, is simpler to use but produces statistically significant greater average percent bending for all tests than those produced for the tapered-collet system, which is slightly more difficult to use. Empirical tensile tests of {approx}50 aluminium oxide and {approx}50 silicon nitride specimens were conducted to evaluate the loading capability of both gripping systems, the percent bending in each system, and the potential of consistently producing successful test results. These tests revealed that, due to variations in individual specimens or the individual specimen/grip interfaces, neither of the gripping systems can consistently produce bending of less than 3 to 4% at failure although occasional values of {approx}0.5% bending were attained. Refinements of grinding procedures and dimensional measurement techniques have shown critical details in both the practices and consistency of machining necessary for achieving the dimensional tolerances while minimizing subsurface damage. Numerical integration techniques indicate that up to a consistent 5.0% bending during fast-fracture tests can be tolerated before large influences are detected in the determination of the Weibull modulus and the Weibull characteristic strength.

  15. Study and analysis of the stress state in a ceramic, button-head, tensile specimen

    SciTech Connect

    Jenkins, M.G.; Ferber, M.K.; Martin, R.L.; Jenkins, V.T.; Tennery, V.J.

    1991-09-01

    The final results are reported for a study to identify and correct the causes of nongage-section failures (notably button-head failures) in ceramic tensile specimens observed in several laboratories. Numerical modeling of several candidate specimen gripping systems has shown inherent stress concentrations near the specimen button head at which the maximum stress may approach 75 to 100% of the gage-section stress for certain grip conditions. Empirical comparisons of both tapered- and straight-collet gripping systems revealed compromises in both systems. The straight-collet system, with deformable collets, is simpler to use but produces statistically significant greater average percent bending for all tests than those produced for the tapered-collet system, which is slightly more difficult to use. Empirical tensile tests of {approximately}50 aluminium oxide and {approximately}50 silicon nitride specimens were conducted to evaluate the loading capability of both gripping systems, the percent bending in each system, and the potential of consistently producing successful test results. These tests revealed that, due to variations in individuals specimens or the individual specimen/grip interfaces, neither of the gripping systems can consistently produce bending of less than 3 to 4% at failure although occasional values of {approximately}0.5% bending were attained. Refinements of grinding procedures and dimensional measurement techniques have shown critical details in both the practices and consistency of machining necessary for achieving the dimensional tolerances while minimizing subsurface damage. Numerical integration techniques indicate that up to a consistent 5.0% bending during fast- fracture tests can be tolerated before large influences are detected in the determination of the Weibull modulus and the Weibull characteristic strength.

  16. Introducing equipment and plutonium glove box modifications for monitoring gas generation over plutonium oxide materials.

    SciTech Connect

    Padilla, D. D.; Berg, J. M.; Carrillo, A. G.; Montoya, A. R.; Morris, J. S.; Veirs, D. K.; Martinez, M. A.; Worl, L. A.; Harradine, D. M.; Hill, D. D.

    2002-01-01

    DOE is embarking on a program to store large quantities of Pu-bearing materials for up to fifty years. Materials for long-term storage are metals and oxides that are stabilized and packaged according to the DOE storage standard. Experience with PuO, materials has shown that gases generated by catalytic and/or radiolytic processes may accumulate. Of concern are the generation of H, gas from adsorbed water and the generation of HCI or CI, gases from the radiolysis of chloride-containing salts. We have designed instrumented storage containers that mimic the inner storage can specified in the standard. The containers and surveillance equipment are interfaced with a plutonium glovebox and are designed to allow the gas composition and pressure to be monitored over time. The surveillance activities and glovebox interfaces include Raman fiber optic probes, a gas analysis sampling port, corrosion monitors, and pressure and temperature feedthrus. Data collection for these containers is automated in order to reduce worker exposure. The equipment design and glovebox modifications are presented.

  17. Modified Labial Button Technique for Maintaining Occlusion After Caudal Mandibular Fracture/Temporomandibular Joint Luxation in the Cat.

    PubMed

    Goodman, Alice E; Carmichael, Daniel T

    2016-03-01

    Maxillofacial trauma in cats often results in mandibular symphyseal separation in addition to injuries of the caudal mandible and/or temporomandibular joint (TMJ). Caudal mandibular and TMJ injuries are difficult to access and stabilize using direct fixation techniques, thus indirect fixation is commonly employed. The immediate goals of fixation include stabilization for return to normal occlusion and function with the long-term objective of bony union. Indirect fixation techniques commonly used for stabilization of caudal mandibular and temporomandibular joint fracture/luxation include maxillomandibular fixation (MMF) with acrylic composite, interarcade wiring, tape muzzles, and the bignathic encircling and retaining device (BEARD) technique. This article introduces a modification of the previously described "labial reverse suture through buttons" technique used by Koestlin et al and the "labial locking with buttons" technique by Rocha et al. In cases with minimally displaced subcondylar and pericondylar fractures without joint involvement, the labial button technique can provide sufficient stabilization for healing. Advantages of the modified labial button technique include ease of application, noninvasive nature, and use of readily available materials. The construct can remain in place for a variable of amount of time, depending on its intended purpose. It serves as an alternative to the tape muzzle, which is rarely tolerated by cats. This technique can be easily used in conjunction with other maxillomandibular repairs, such as cerclage wire fixation of mandibular symphyseal separation. The purpose of this article is to demonstrate a modified labial button technique for maintaining occlusion of feline caudal mandibular fractures/TMJ luxations in a step-by-step fashion. PMID:27487655

  18. Alpha-plutonium's Grüneisen parameter

    NASA Astrophysics Data System (ADS)

    Ledbetter, Hassel; Lawson, Andrew; Migliori, Albert

    2010-04-01

    Reported Grüneisen parameters γ of alpha-plutonium range from 3.0 to 9.6, which is remarkable because typical Grüneisen parameter uncertainty seldom exceeds ± 0.5. Our six new estimates obtained by different methods range from 3.2 to 9.6. The new estimates arise from Grüneisen's rule, from Einstein model and Debye model fits to low-temperature ΔV/V, from the bulk modulus temperature dependence, from the zero-point-energy contribution to the bulk modulus, and from another Grüneisen relationship whereby γ is estimated from only the bulk modulus and volume changes with temperature (or pressure). We disregard several high estimates because of the itinerant-localized 5f-electron changes during temperature changes and pressure changes. Considering all these estimates, for alpha-plutonium, we recommend γ = 3.7 ± 0.4, slightly high compared with values for all elemental metals.

  19. Alpha-plutonium's low-temperature elastic constants

    NASA Astrophysics Data System (ADS)

    Betts, J. B.; Migliori, A.; Ledbetter, H.; Dooley, D.; Miller, D. A.

    2006-03-01

    Using resonant-ultrasound spectroscopy, we measured alpha-plutonium's polycrystal elastic constants between 18 and 344 K. All elastic constants -- bulk, shear, extension, longitudinal moduli and Poisson ratio -- behave smoothly during cooling, indicating no significant phase transition: electronic, magnetic, or structural. Both principal elastic constants (bulk and shear) increase about 30% upon cooling from 300 to 0 K, a large change among metals, which we attribute to 5f-electron delocalization. From the low-temperature elastic constants, we computed that the Debye temperature equals 205 K, exceeding significantly most previous estimates. From the bulk-modulus/temperature slope dB/dT, we computed that the Gruneisen parameter equals 5.1, intermediate among previous estimates using other approaches. Alpha-plutonium shows an unusually high shear-modulus/bulk-modulus ratio G/B, thus a low Poisson ratio: 0.18. Within 0.5%, the Poisson ratio shows temperature invariance; its small negative slope being opposite expectation. Again, we attribute this exceptional behavior to 5f-electron localization.

  20. MOISTURE AND SURFACE AREA MEASUREMENTS OF PLUTONIUM-BEARING OXIDES

    SciTech Connect

    Crowder, M.; Duffey, J.; Livingston, R.; Scogin, J.; Kessinger, G.; Almond, P.

    2009-09-28

    To ensure safe storage, plutonium-bearing oxides are stabilized at 950 C for at least two hours in an oxidizing atmosphere. Stabilization conditions are expected to decompose organic impurities, convert metals to oxides, and result in moisture content below 0.5 wt%. During stabilization, the specific surface area is reduced, which minimizes readsorption of water onto the oxide surface. Plutonium oxides stabilized according to these criteria were sampled and analyzed to determine moisture content and surface area. In addition, samples were leached in water to identify water-soluble chloride impurity content. Results of these analyses for seven samples showed that the stabilization process produced low moisture materials (< 0.2 wt %) with low surface area ({le} 1 m{sup 2}/g). For relatively pure materials, the amount of water per unit surface area corresponded to 1.5 to 3.5 molecular layers of water. For materials with chloride content > 360 ppm, the calculated amount of water per unit surface area increased with chloride content, indicating hydration of hygroscopic salts present in the impure PuO{sub 2}-containing materials. The low moisture, low surface area materials in this study did not generate detectable hydrogen during storage of four or more years.