Developing a physiologically based approach for modeling plutonium decorporation therapy with DTPA.
Kastl, Manuel; Giussani, Augusto; Blanchardon, Eric; Breustedt, Bastian; Fritsch, Paul; Hoeschen, Christoph; Lopez, Maria Antonia
2014-11-01
To develop a physiologically based compartmental approach for modeling plutonium decorporation therapy with the chelating agent Diethylenetriaminepentaacetic acid (Ca-DTPA/Zn-DTPA). Model calculations were performed using the software package SAAM II (©The Epsilon Group, Charlottesville, Virginia, USA). The Luciani/Polig compartmental model with age-dependent description of the bone recycling processes was used for the biokinetics of plutonium. The Luciani/Polig model was slightly modified in order to account for the speciation of plutonium in blood and for the different affinities for DTPA of the present chemical species. The introduction of two separate blood compartments, describing low-molecular-weight complexes of plutonium (Pu-LW) and transferrin-bound plutonium (Pu-Tf), respectively, and one additional compartment describing plutonium in the interstitial fluids was performed successfully. The next step of the work is the modeling of the chelation process, coupling the physiologically modified structure with the biokinetic model for DTPA. RESULTS of animal studies performed under controlled conditions will enable to better understand the principles of the involved mechanisms.
Microprobe Analysis of Pu-Ga Standards
Wall, Angélique D.; Romero, Joseph P.; Schwartz, Daniel
2017-08-04
In order to obtain quantitative analysis using an Electron Scanning Microprobe it is essential to have a standard of known composition. Most elemental and multi-elemental standards can be easily obtained from places like Elemental Scientific or other standards organizations that are NIST (National Institute of Standards and Technology) traceable. It is, however, more challenging to find standards for plutonium. Past work performed in our group has typically involved using the plutonium sample to be analysed as its own standard as long as all other known components of the sample have standards to be compared to [1,2,3]. Finally, this method worksmore » well enough, but this experiment was performed in order to develop a more reliable standard for plutonium using five samples of known chemistry of a plutonium gallium mix that could then be used as the main plutonium and gallium standards for future experiments.« less
Microprobe Analysis of Pu-Ga Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Angélique D.; Romero, Joseph P.; Schwartz, Daniel
In order to obtain quantitative analysis using an Electron Scanning Microprobe it is essential to have a standard of known composition. Most elemental and multi-elemental standards can be easily obtained from places like Elemental Scientific or other standards organizations that are NIST (National Institute of Standards and Technology) traceable. It is, however, more challenging to find standards for plutonium. Past work performed in our group has typically involved using the plutonium sample to be analysed as its own standard as long as all other known components of the sample have standards to be compared to [1,2,3]. Finally, this method worksmore » well enough, but this experiment was performed in order to develop a more reliable standard for plutonium using five samples of known chemistry of a plutonium gallium mix that could then be used as the main plutonium and gallium standards for future experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, T.W.; Selvage, R.D.; Courtney, K.H.
This manual is the guide for initiating change at the Plutonium Facility, which handles the processing of plutonium as well as research on plutonium metallurgy. It describes the change and work control processes employed at TA-55 to ensure that all proposed changes are properly identified, reviewed, approved, implemented, tested, and documented so that operations are maintained within the approved safety envelope. All Laboratory groups, their contractors, and subcontractors doing work at TA-55 follow requirements set forth herein. This manual applies to all new and modified processes and experiments inside the TA-55 Plutonium Facility; general plant project (GPP) and line itemmore » funded construction projects at TA-55; temporary and permanent changes that directly or indirectly affect structures, systems, or components (SSCs) as described in the safety analysis, including Facility Control System (FCS) software; and major modifications to procedures. This manual does not apply to maintenance performed on process equipment or facility SSCs or the replacement of SSCs or equipment with documented approved equivalents.« less
Excess Weapons Plutonium Immobilization in Russia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, L.; Borisov, G.B.
2000-04-15
The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R&D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R&Dmore » on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the excellent Russian plutonium immobilization contract work. This proceedings document presents the wide extent of Russian immobilization activities, provides a reference for their work, and makes it available to others.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-09-01
This report provides the input to and results of the Department of Energy (DOE) - Oak Ridge Operations (ORO) DOE Plutonium Environment, Safety and Health (ES & H) Vulnerability Assessment (VA) self-assessment performed by the Site Assessment Team (SAT) for the Oak Ridge National Laboratory (ORNL or X-10) and the Oak Ridge Y-12 Plant (Y-12) sites that are managed by Martin Marietta Energy Systems, Inc. (MMES). As initiated (March 15, 1994) by the Secretary of Energy, the objective of the VA is to identify and rank-order DOE-ES&H vulnerabilities associated for the purpose of decision making on the interim safe managementmore » and ultimate disposition of fissile materials. This assessment is directed at plutonium and other co-located transuranics in various forms.« less
Spectrophotometers for plutonium monitoring in HB-line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lascola, R. J.; O'Rourke, P. E.; Kyser, E. A.
2016-02-12
This report describes the equipment, control software, calibrations for total plutonium and plutonium oxidation state, and qualification studies for the instrument. It also provides a detailed description of the uncertainty analysis, which includes source terms associated with plutonium calibration standards, instrument drift, and inter-instrument variability. Also included are work instructions for instrument, flow cell, and optical fiber setup, work instructions for routine maintenance, and drawings and schematic diagrams.
METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES
Duffield, R.B.; Stoughton, R.W.
1959-02-01
A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.
Tabulated Neutron Emission Rates for Plutonium Oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shores, Erik Frederick
This work tabulates neutron emission rates for 80 plutonium oxide samples as reported in the literature. Plutonium-238 and plutonium-239 oxides are included and such emission rates are useful for scaling tallies from Monte Carlo simulations and estimating dose rates for health physics applications.
Wing, Steve; Richardson, David; Wolf, Susanne; Mihlan, Gary
2004-02-01
Health effects of working with plutonium remain unclear. Plutonium workers at the United States Department of Energy (US-DOE) Hanford Site in Washington State, USA were evaluated for increased risks of cancer and non-cancer mortality. Periods of employment in jobs with routine or non-routine potential for plutonium exposure were identified for 26,389 workers hired between 1944 and 1978. Life table regression was used to examine associations of length of employment in plutonium jobs with confirmed plutonium deposition and with cause specific mortality through 1994. Incidence of confirmed internal plutonium deposition in all plutonium workers was 15.4 times greater than in other Hanford jobs. Plutonium workers had low death rates compared to other workers, particularly for cancer causes. Mortality for several causes was positively associated with length of employment in routine plutonium jobs, especially for employment at older ages. At ages 50 and above, death rates for non-external causes of death, all cancers, cancers of tissues where plutonium deposits, and lung cancer, increased 2.0 +/- 1.1%, 2.6 +/- 2.0%, 4.9 +/- 3.3%, and 7.1 +/- 3.4% (+/-SE) per year of employment in routine plutonium jobs, respectively. Workers employed in jobs with routine potential for plutonium exposure have low mortality rates compared to other Hanford workers even with adjustment for demographic, socioeconomic, and employment factors. This may be due, in part, to medical screening. Associations between duration of employment in jobs with routine potential for plutonium exposure and mortality may indicate occupational exposure effects. Copyright 2004 Wiley-Liss, Inc.
Maddock, A.G.; Smith, F.
1959-08-25
A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.
CARBONATE METHOD OF SEPARATION OF TETRAVALENT PLUTONIUM FROM FISSION PRODUCT VALUES
Duffield, R.B.; Stoughton, R.W.
1959-02-01
It has been found that plutonium forms an insoluble precipitate with carbonate ion when the carbonate ion is present in stoichiometric proportions, while an excess of the carbonate ion complexes plutonium and renders it soluble. A method for separating tetravalent plutonium from lanthanum-group rare earths has been based on this discovery, since these rare earths form insoluble carbonates in approximately neutral solutions. According to the process the pH is adjusted to between 5 and 7, and approximately stoichiometric amounts of carbonate ion are added to the solution causing the formation of a precipitate of plutonium carbonate and the lanthanum-group rare earth carbonates. The precipitate is then separated from the solution and contacted with a carbonate solution of a concentration between 1 M and 3 M to complex and redissolve the plutonium precipitate, and thus separate it from the insoluble rare earth precipitate.
Mortality among workers with chronic radiation sickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shilnikova, N.S.; Koshurnikova, N.A.; Bolotnikova, M.G.
1996-07-01
This study is based on a registry containing medical and dosimetric data of the employees who began working at different plants of the Mayak nuclear complex between 1948 and 1958 who developed chronic radiation sickness. Mayak is the first nuclear weapons plutonium production enterprise built in Russia and includes nuclear reactors, a radiochemical plant for plutonium separation, and a plutonium production enterprise built in Russia and includes nuclear reactors, a radiochemical plant for plutonium separation, and a plutonium production plant.Workers whose employment began between 1948 and 1958 exhibited a 6-28% incidence of chronic radiation sickness at the different facilities. Theremore » were no cases of chronic radiation sickness among those who began working after 1958. Data on doses of external whole-body gamma-irradiation and mortality in workers with chronic radiation sickness are presented. 6 refs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, A.S.; Stalnaker, N.D.
1997-04-01
Due to the lack of suitable high level National Institute of Standards and Technology (NIST) traceable plutonium solution standards from the NIST or commercial vendors, the CST-8 Radiochemistry team at Los Alamos National Laboratory (LANL) has prepared instrument calibration standards and working standards from a well-characterized plutonium oxide. All the aliquoting steps were performed gravimetrically. When a {sup 241}Am standardized solution obtained from a commercial vendor was compared to these calibration solutions, the results agreed to within 0.04% for the total alpha activity. The aliquots of the plutonium standard solutions and dilutions were sealed in glass ampules for long termmore » storage.« less
Effect of Americium-241 Content on Plutonium Radiation Source Terms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rainisch, R.
1998-12-28
The management of excess plutonium by the US Department of Energy includes a number of storage and disposition alternatives. Savannah River Site (SRS) is supporting DOE with plutonium disposition efforts, including the immobilization of certain plutonium materials in a borosilicate glass matrix. Surplus plutonium inventories slated for vitrification include materials with elevated levels of Americium-241. The Am-241 content of plutonium materials generally reflects in-growth of the isotope due to decay of plutonium and is age-dependent. However, select plutonium inventories have Am-241 levels considerably above the age-based levels. Elevated levels of americium significantly impact radiation source terms of plutonium materials andmore » will make handling of the materials more difficult. Plutonium materials are normally handled in shielded glove boxes, and the work entails both extremity and whole body exposures. This paper reports results of an SRS analysis of plutonium materials source terms vs. the Americium-241 content of the materials. Data with respect to dependence and magnitude of source terms on/vs. Am-241 levels are presented and discussed. The investigation encompasses both vitrified and un-vitrified plutonium oxide (PuO2) batches.« less
Integrating the stabilization of nuclear materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, H.F.
1996-05-01
In response to Recommendation 94-1 of the Defense Nuclear Facilities Safety Board, the Department of Energy committed to stabilizing specific nuclear materials within 3 and 8 years. These efforts are underway. The Department has already repackaged the plutonium at Rocky Flats and metal turnings at Savannah River that had been in contact with plastic. As this effort proceeds, we begin to look at activities beyond stabilization and prepare for the final disposition of these materials. To describe the plutonium materials being stabilize, Figure 1 illustrates the quantities of plutonium in various forms that will be stabilized. Plutonium as metal comprisesmore » 8.5 metric tons. Plutonium oxide contains 5.5 metric tons of plutonium. Plutonium residues and solutions, together, contain 7 metric tons of plutonium. Figure 2 shows the quantity of plutonium-bearing material in these four categories. In this depiction, 200 metric tons of plutonium residues and 400 metric tons of solutions containing plutonium constitute most of the material in the stabilization program. So, it is not surprising that much of the work in stabilization is directed toward the residues and solutions, even though they contain less of the plutonium.« less
NASA Astrophysics Data System (ADS)
Rance, Peter J. W.; Zilberman, B. Ya.; Akopov, G. A.
2000-07-01
The effect of the inherent radioactivity on the chemical state of plutonium ions in solution was recognized very shortly after the first macroscopic amounts of plutonium became available and early studies were conducted as part of the Manhattan Project. However, the behavior of plutonium ions, in nitric acid especially, has been found to be somewhat complex, so much so that a relatively modern summary paper included the comment that, "The vast amount of work carried out in nitric acid solutions can not be adequately summarized. Suffice it to say results in these solutions are plagued with irreproducibility and induction periods…" Needless to say, the presence of other ions in solution, as occurs when irradiated nuclear fuel is dissolved, further complicates matters. The purpose of the work described below was to add to the rather small amount of qualitative data available relating to the radiolytic behavior of plutonium in solutions of irradiated nuclear fuel.
SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE
Schubert, J.
1958-06-01
A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.
Lymph node clearance of plutonium from subcutaneous wounds in beagles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, G.E.
1973-08-01
The lymph node clearance of /sup 239/Pu O/sub 2/ administered as insoluble particles from subcutaneous implants was studied in adult beagles to simulate accidental contamination of hand wounds. External scintillation data were collected from the popliteal lymph nodes of each dog after 9.2 to 39.4 mu Ci of plutonium oxide was subcutaneously implanted into the left or right hind paws. The left hind paw was armputated 4 weeks after implantation to prevent continued deposition of plutonium oxide particles in the left popliteal lymph node. Groups of 3 dogs were sacrificed 4, 8, 16, and 32 weeks after plutonium implantation formore » histopathologic, electron microscopic, and radiochemical analysis of regional lymph nodes. An additional group of dogs received treatment with the chelating agent diethyenetriaminepentaacetic acid (DTPA). Plutonium rapidly accumulated in the popliteal lymph nodes after subcutaneous injection into the hind paw, and 1 to 10% of the implant dose was present in the popliteal lymph nodes at the time of necropsy. Histopathologic changes in the popliteal lymph nodes with plutonium particles were characterized primarily by reticular cell hyperplasia, increased numbers of macrophages, necrosis, and fibroplasia. Eventually, the plutonium particles became sequestered by scar tissue that often replaced the entire architecture of the lymph node. Light microscopic autoradiographs of the popliteal lymph nodes showed a time-related increase in number of alpha tracks per plutonium source. Electron microscopy showed that the plutonium particles were aggregated in phagolysosomes of macrophages. There was slight clearance of plutonium from the popliteal lymph nodes of dogs monitored for 32 weeks. The clearance of plutonium particles from the popliteal lymph nodes was associated with necrosis of macrophages. The external iliac lymph nodes contained fewer plutonium particles than the popliteal lymph nodes and histopathologic changes were less severe. The superficial inguinal lymph nodes of one dog contained appreciable amounts of plutonium. Treatment with diethylenetriaminepentaacetic acid (DTPA) did not have a measurable effect on the clearance of plutonium from the popliteal lymph nodes. (60 references) (auth)« less
Russell, E.R.; Adamson, A.W.; Schubert, J.; Boyd, G.E.
1957-10-29
A process for separating plutonium values from aqueous solutions which contain the plutonium in minute concentrations is described. These values can be removed from an aqueous solution by taking an aqueous solution containing a salt of zirconium, titanium, hafnium or thorium, adding an aqueous solution of silicate and phosphoric acid anions to the metal salt solution, and separating, washing and drying the precipitate which forms when the two solutions are mixed. The aqueous plutonium containing solution is then acidified and passed over the above described precipi-tate causing the plutonium values to be adsorbed by the precipitate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friesen, H.N.
This summary document presents results in a broad context; it is not limited to findings of the Nevada Applied Ecology Group. This book is organized to present the findings of the Nevada Applied Ecology Group and correlative programs in accordance with the originally stated objectives of the Nevada Applied Ecology Group. This plan, in essence, traces plutonium from its injection into the environment to movement in the ecosystem to development of cleanup techniques. Information on other radionuclides was also obtained and will be presented briefly. Chapter 1 presents a brief description of the ecological setting of the Test Range Complex.more » The results of investigations for plutonium distribution are presented in Chapter 2 for the area surrounding the Test Range Complex and in Chapter 3 for on-site locations. Chapters 4 and 5 present the results of investigations concerned with concentrations and movement, respectively, of plutonium in the ecosystem of the Test Range Complex, and Chapter 6 summarizes the potential hazard from this plutonium. Development of techniques for cleanup and treatment is presented in Chapter 7, and the inventory of radionuclides other than plutonium is presented briefly in Chapter 8.« less
241Am Ingrowth and Its Effect on Internal Dose
Konzen, Kevin
2016-07-01
Generally, plutonium has been manufactured to support commercial and military applications involving heat sources, weapons and reactor fuel. This work focuses on three typical plutonium mixtures, while observing the potential of 241Am ingrowth and its effect on internal dose. The term “ingrowth” is used to describe 241Am production due solely from the decay of 241Pu as part of a plutonium mixture, where it is initially absent or present in a smaller quantity. Dose calculation models do not account for 241Am ingrowth unless the 241Pu quantity is specified. This work suggested that 241Am ingrowth be considered in bioassay analysis when theremore » is a potential of a 10% increase to the individual’s committed effective dose. It was determined that plutonium fuel mixtures, initially absent of 241Am, would likely exceed 10% for typical reactor grade fuel aged less than 30 years; however, heat source grade and aged weapons grade fuel would normally fall below this threshold. In conclusion, although this work addresses typical plutonium mixtures following separation, it may be extended to irradiated commercial uranium fuel and is expected to be a concern in the recycling of spent fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konzen, Kevin
Generally, plutonium has been manufactured to support commercial and military applications involving heat sources, weapons and reactor fuel. This work focuses on three typical plutonium mixtures, while observing the potential of 241Am ingrowth and its effect on internal dose. The term “ingrowth” is used to describe 241Am production due solely from the decay of 241Pu as part of a plutonium mixture, where it is initially absent or present in a smaller quantity. Dose calculation models do not account for 241Am ingrowth unless the 241Pu quantity is specified. This work suggested that 241Am ingrowth be considered in bioassay analysis when theremore » is a potential of a 10% increase to the individual’s committed effective dose. It was determined that plutonium fuel mixtures, initially absent of 241Am, would likely exceed 10% for typical reactor grade fuel aged less than 30 years; however, heat source grade and aged weapons grade fuel would normally fall below this threshold. In conclusion, although this work addresses typical plutonium mixtures following separation, it may be extended to irradiated commercial uranium fuel and is expected to be a concern in the recycling of spent fuel.« less
BASIC PEROXIDE PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINANTS
Seaborg, G.T.; Perlman, I.
1959-02-10
A process is described for the separation from each other of uranyl values, tetravalent plutonium values and fission products contained in an aqueous acidic solution. First the pH of the solution is adjusted to between 2.5 and 8 and hydrogen peroxide is then added to the solution causing precipitation of uranium peroxide which carries any plutonium values present, while the fission products remain in solution. Separation of the uranium and plutonium values is then effected by dissolving the peroxide precipitate in an acidic solution and incorporating a second carrier precipitate, selective for plutonium. The plutonium values are thus carried from the solution while the uranium remains flissolved. The second carrier precipitate may be selected from among the group consisting of rare earth fluorides, and oxalates, zirconium phosphate, and bismuth lihosphate.
Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi
2010-12-15
Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. Copyright © 2010 Elsevier B.V. All rights reserved.
Photoemission Spectroscopy of Delta- Plutonium: Experimental Review
NASA Astrophysics Data System (ADS)
Tobin, J. G.
2002-03-01
The electronic structure of Plutonium, particularly delta- Plutonium, remains ill defined and without direct experimental verification. Recently, we have embarked upon a program of study of alpha- and delta- Plutonium, using synchrotron radiation from the Advanced Light Source in Berkeley, CA, USA [1]. This work is set within the context of Plutonium Aging [2] and the complexities of Plutonium Science [3]. The resonant photoemission of delta-plutonium is in partial agreement with an atomic, localized model of resonant photoemission, which would be consistent with a correlated electronic structure. The results of our synchrotron- based studies will be compared with those of recent laboratory- based works [4,5,6]. The talk will conclude with a brief discussion of our plans for the future, such as the performance of spin-resolving and dichroic photoemission measurements of Plutonium [7] and the development of single crystal ultrathin films of Plutonium. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, D.K. Shuh, G. van der Laan, D.A. Arena, and J.G. Tobin, “5f Resonant Photoemission from Plutonium”, UCRL-JC-140782, Surf. Sci. Lett., accepted October 2001. 2. B.D. Wirth, A.J. Schwartz, M.J. Fluss, M.J. Caturla, M.A. Wall, and W.G. Wolfer, MRS Bulletin 26, 679 (2001). 3. S.S. Hecker, MRS Bulletin 26, 667 (2001). 4. T. Gouder, L. Havela, F. Wastin, and J. Rebizant, Europhys. Lett. 55, 705 (2001); MRS Bulletin 26, 684 (2001); Phys. Rev. Lett. 84, 3378 (2000). 5. A.J. Arko, J.J. Joyce, L. Morales, J. Wills, J. Lashley, F. Wastin, and J. Rebizant, Phys. Rev. B 62, 1773 (2000). 6. L.E. Cox, O. Eriksson, and B.R. Cooper, Phys. Rev. B 46, 13571 (1992). 7. J. Tobin, D.A. Arena, B. Chung, P. Roussel, J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, and D.K. Shuh, “Photoelectron Spectroscopy of Plutonium at the Advanced Light Source”, UCRL-JC-145703, J. Nucl. Sci. Tech./ Proc. of Actinides 2001, submitted November 2001.
PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS
Sutton, J.B.
1958-02-18
This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Janeen Denise
In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the controlmore » groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.« less
Pesnya, Dmitry S; Romanovsky, Anton V
2013-01-20
The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9h. A positive control group was treated during 20min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields. Copyright © 2012 Elsevier B.V. All rights reserved.
Miller, Scott C; Lloyd, Ray D; Bruenger, Fred W; Krahenbuhl, Melinda P; Polig, Erich; Romanov, Sergey A
2003-11-01
Osteosarcomas occur from exposures to bone-seeking, alpha-particle-emitting isotopes, particularly plutonium. The skeletal distribution of putative 239Pu-induced osteosarcomas reported in Mayak Metallurgical and Radiochemical Plutonium Plant workers is compared with those observed in canine studies, and these are compared with distributions of naturally occurring osteosarcomas in both species. In the Mayak workers, 29% and 71% of the osteosarcomas were in the peripheral and central skeleton, respectively, with the spine having the most tumors (36%). An almost identical distribution of plutonium-induced osteosarcomas was reported for dogs injected with 239Pu as young adults. This distribution of osteosarcomas is quite different from the distributions of naturally occurring osteosarcomas for both species. In the Cooperative Osteosarcoma Study Group in humans (1,736 osteosarcomas from all ages), over 91% of the tumors occurred in the peripheral skeleton. In the Mayo Clinic group of older individuals (>40 years old), over 60% of the osteosarcomas appeared in the peripheral skeleton. The distribution of naturally occurring osteosarcomas in the canine is similar to that in the adult human. The similarities of the distributions of plutonium-associated osteosarcomas in the Mayak workers with those found in experimental studies suggest that many of the reported osteosarcomas may have been associated with plutonium exposures. These results also support the experimental paradigm that plutonium osteosarcomas have a preference for well vascularized cancellous bone sites. These sites have a greater initial deposition of plutonium, but also greater turnover due to elevated bone remodeling rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murarik, T.M.; Wenstrand, T.K.; Rogers, L.A.
An initial soil characterization study was conducted to help identify possible remediation methods to remove plutonium from the Nevada Test Site and Tonapah Test Range surface soils. Results from soil samples collected across various isopleths at five sites indicate that the size-fraction distribution patterns of plutonium remain similar to findings from the Nevada Applied Ecology Group (NAEG) (1970's). The plutonium remains in the upper 10--15 cm of soils, as indicated in previous studies. Distribution of fine particles downwind'' of ground zero at each site is suggested. Whether this pattern was established immediately after each explosion or this resulted from post-shotmore » wind movement of deposited material is unclear. Several possible soil treatment scenarios are presented. Removal of plutonium from certain size fractions of the soils would alleviate the sites of much of the plutonium burden. However, the nature of association of plutonium with soil components will determine which remediation methods will most likely succeed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murarik, T.M.; Wenstrand, T.K.; Rogers, L.A.
An initial soil characterization study was conducted to help identify possible remediation methods to remove plutonium from the Nevada Test Site and Tonapah Test Range surface soils. Results from soil samples collected across various isopleths at five sites indicate that the size-fraction distribution patterns of plutonium remain similar to findings from the Nevada Applied Ecology Group (NAEG) (1970`s). The plutonium remains in the upper 10--15 cm of soils, as indicated in previous studies. Distribution of fine particles ``downwind`` of ground zero at each site is suggested. Whether this pattern was established immediately after each explosion or this resulted from post-shotmore » wind movement of deposited material is unclear. Several possible soil treatment scenarios are presented. Removal of plutonium from certain size fractions of the soils would alleviate the sites of much of the plutonium burden. However, the nature of association of plutonium with soil components will determine which remediation methods will most likely succeed.« less
Fluorination process using catalyst
Hochel, Robert C.; Saturday, Kathy A.
1985-01-01
A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.
Fluorination process using catalysts
Hochel, R.C.; Saturday, K.A.
1983-08-25
A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.
History of MET Lab Section C-I, April 1942--April 1943
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaborg, G.T.
A day-to-day account of the work done at the University of Chicago Metallurgical Laboratory from April 1942 to April 1943 is given. The work concerned the development of chemical procedures for the extraction of plutonium, for the purification of plutonium, and, in the later phases, for research on the isotopes of other heavy elements including other transuranium elements. (LK)
Jaegler, Hugo; Pointurier, Fabien; Onda, Yuichi; Hubert, Amélie; Laceby, J Patrick; Cirella, Maëva; Evrard, Olivier
2018-05-04
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in a significant release of radionuclides that were deposited on soils in Northeastern Japan. Plutonium was detected at trace levels in soils and sediments collected around the FDNPP. However, little is known regarding the spatial-temporal variation of plutonium in sediment transiting rivers in the region. In this study, plutonium isotopic compositions were first measured in soils (n = 5) in order to investigate the initial plutonium deposition. Then, plutonium isotopic compositions were measured on flood sediment deposits (n = 12) collected after major typhoon events in 2011, 2013 and 2014. After a thorough radiochemical purification, isotopic ratios ( 240 Pu/ 239 Pu, 241 Pu/ 239 Pu and 242 Pu/ 239 Pu) were measured with a Multi-Collector Inductively Coupled Mass Spectrometer (MC ICP-MS), providing discrimination between plutonium derived from global fallout, from atmospheric nuclear weapon tests, and plutonium derived from the FDNPP accident. Results demonstrate that soils with the most Fukushima-derived plutonium were in the main radiocaesium plume and that there was a variable mixture of plutonium sources in the flood sediment samples. Plutonium concentrations and isotopic ratios generally decreased between 2011 and 2014, reflecting the progressive erosion and transport of contaminated sediment in this coastal river during flood events. Exceptions to this general trend were attributed to the occurrence of decontamination works or the remobilisation of contaminated material during typhoons. The different plutonium concentrations and isotopic ratios obtained on three aliquots of a single sample suggest that the Fukushima-derived plutonium was likely borne by discrete plutonium-containing particles. In the future, these particles should be isolated and further characterized in order to better understand the fate of this long-lived radionuclide in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
SEPARATION PROCESS USING COMPLEXING AND ADSORPTION
Spedding, J.H.; Ayers, J.A.
1958-06-01
An adsorption process is described for separating plutonium from a solution of neutron-irradiated uranium containing ions of a compound of plutonium and other cations. The method consists of forming a chelate complex compound with plutoniunn ions in the solution by adding a derivative of 8- hydroxyquinoline, which derivative contains a sulfonic acid group, and adsorbing the remaining cations from the solution on a cation exchange resin, while the complexed plutonium remains in the solution.
2015-10-30
with nuclear weapons testing or plutonium work. The results for the 100 atomic veterans were compared to those of the unexposed population, and...as a marker for significant internal intakes of other associated radionuclides in nuclear weapons debris due to its low natural background. However...isotope in weapons grade plutonium, is important from a health perspective, its presence within a given urine sample being analyzed by FTA can only
DOE R&D Accomplishments Database
Seaborg, G. T.
1981-09-01
The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.
NASA Astrophysics Data System (ADS)
Py, J.; Groetz, J.-E.; Hubinois, J.-C.; Cardona, D.
2015-04-01
This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1-20 g L-1 is given.
PLUTONIUM CARRIER METATHESIS WITH ORGANIC REAGENT
Thompson, S.G.
1958-07-01
A method is described for converting a plutonium containing bismuth phosphate carrier precipitate Into a compositton more readily soluble in acid. The method consists of dissolving the bismuth phosphate precipitate in an aqueous solution of alkali metal hydroxide, and adding one of a certaia group of organic compounds, e.g., polyhydric alcohols or a-hydrorycarboxylic acids. The mixture is then heated causiing formation of a bismuth hydroxide precipitate containing plutonium which may be readily dissolved in nitric acid for further processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogen, K; Hamilton, T F; Brown, T A
2007-05-01
We have developed refined statistical and modeling techniques to assess low-level uptake and urinary excretion of plutonium from different population group in the northern Marshall Islands. Urinary excretion rates of plutonium from the resident population on Enewetak Atoll and from resettlement workers living on Rongelap Atoll range from <1 to 8 {micro}Bq per day and are well below action levels established under the latest Department regulation 10 CFR 835 in the United States for in vitro bioassay monitoring of {sup 239}Pu. However, our statistical analyses show that urinary excretion of plutonium-239 ({sup 239}Pu) from both cohort groups is significantly positivelymore » associated with volunteer age, especially for the resident population living on Enewetak Atoll. Urinary excretion of {sup 239}Pu from the Enewetak cohort was also found to be positively associated with estimates of cumulative exposure to worldwide fallout. Consequently, the age-related trends in urinary excretion of plutonium from Marshallese populations can be described by either a long-term component from residual systemic burdens acquired from previous exposures to worldwide fallout or a prompt (and eventual long-term) component acquired from low-level systemic intakes of plutonium associated with resettlement of the northern Marshall Islands, or some combination of both.« less
NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolich, George; Mizell, Steve; McCurdy, Greg
2017-10-01
Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. The emphasis of the work is on collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans thatmore » are being developed, which will facilitate the appropriate closure design and post-closure monitoring.« less
Plutonium Isotopes in the Terrestrial Environment at the Savannah River Site, USA. A Long-Term Study
Armstrong, Christopher R.; Nuessle, Patterson R.; Brant, Heather A.; ...
2015-01-16
This work presents the findings of a long term plutonium study at Savannah River Site (SRS) conducted between 2003 and 2013. Terrestrial environmental samples were obtained at Savannah River National Laboratory (SRNL) in A-area. Plutonium content and isotopic abundances were measured over this time period by alpha spectrometry and three stage thermal ionization mass spectrometry (3STIMS). Here we detail the complete sample collection, radiochemical separation, and measurement procedure specifically targeted to trace plutonium in bulk environmental samples. Total plutonium activities were determined to be not significantly above atmospheric global fallout. However, the 238Pu/ 239+240Pu activity ratios attributed to SRS aremore » above atmospheric global fallout ranges. The 240Pu/ 239Pu atom ratios are reasonably consistent from year to year and are lower than fallout, while the 242Pu/ 239Pu atom ratios are higher than fallout values. Overall, the plutonium signatures obtained in this study reflect a mixture of weapons-grade, higher burn-up, and fallout material. This study provides a blue print for long term low level monitoring of plutonium in the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Christopher E.; Wilson, Dulaney A.; Brooks, Antone L.
The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [239Pu (NO3)4] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histological lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a non-uniform distribution of plutonium throughout the lung tissue. Fibroticmore » scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the sub-pleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential increase in cancer risk.« less
Chemical Disposition of Plutonium in Hanford Site Tank Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Jones, Susan A.
2015-05-07
This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used tomore » recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.« less
Plutonium immobilization can loading FY99 component test report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriikku, E.
2000-06-01
This report summarizes FY99 Can Loading work completed for the Plutonium Immobilization Project and it includes details about the Helium hood, cold pour cans, Can Loading robot, vision system, magnetically coupled ray cart and lifts, system integration, Can Loading glovebox layout, and an FY99 cost table.
METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION
Brown, H.S.; Seaborg, G.T.
1959-02-24
The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.
NASA Astrophysics Data System (ADS)
Neu, M. P.; Matonic, J. H.; Smith, D. M.; Scott, B. L.
2000-07-01
The compounds we have isolated and characterized include plutonium(III) and plutonium(IV) bound by ligands with a range of donor types and denticity (halide, phosphine oxide, hydroxamate, amine, sulfide) in a variety of coordination geometries. For example, we have obtained the first X-ray structure of Pu(III) complexed by a soft donor ligand. Using a "one pot" synthesis beginning with Pu metal strips and iodine in acetonitrile and adding trithiacyclononane we isolated the complex, PuI3(9S3)(MeCN)2 (Figure 1). On the other end of the coordination chemistry spectrum, we have obtained the first single crystal structure of the Pu(IV) hexachloro anion (Figure 2). Although this species has been used in plutonium purification via anion exchange chromatography for decades, the bond distances and exact structure were not known. We have also characterized the first plutonium-biomolecule complex, Pu(IV) bound by the siderophore desferrioxamine E.In this presentation we will review the preparation, structures, and importance of previously known coordination compounds and of those we have recently isolated. We will show the coordination chemistry of plutonium is rich and varied, well worth additional exploration.
Plutonium and americium in the foodchain lichen-reindeer-man
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaakkola, T.; Hakanen, M.; Keinonen, M.
1977-01-01
The atmospheric nuclear tests have produced a worldwide fallout of transuranium elements. In addition to plutonium measurable concentrations of americium are to be found in terrestrial and aquatic environments. The metabolism of plutonium in reindeer was investigated by analyzing plutonium in liver, bone, and lung collected during 1963-1976. To determine the distribution of plutonium in reindeer all tissues of four animals of different ages were analyzed. To estimate the uptake of plutonium from the gastrointestinal tract in reindeer, the tissue samples of elk were also analyzed. Elk which is of the same genus as reindeer does not feed on lichenmore » but mainly on deciduous plants, buds, young twigs, and leaves of trees and bushes. The composition of its feed corresponds fairly well to that of reindeer during the summer. Studies on behaviour of americium along the foodchain lichen-reindeer-man were started by determining the Am-241 concentrations in lichen and reindeer liver. The Am-241 results were compared with those of Pu-239,240. The plutonium contents of the southern Finns, whose diet does not contain reindeer tissues, were determined by analyzing autopsy tissue samples (liver, lung, and bone). The southern Finns form a control group to the Lapps consuming reindeer tissues. Plutonium analyses of the placenta, blood, and tooth samples of the Lapps were performed.« less
Review of Excess Weapons Plutonium Disposition LLNL Contract Work in Russia-(English)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, L; Borisov, G B
This third meeting of the recently completed and ongoing Russian plutonium immobilization contract work was held at the State Education Center (SEC) in St. Petersburg on January 14-18, 2002. The meeting agenda is reprinted here as Appendix A and the attendance list as Appendix B. The meeting had 58 Russian participants from 21 Russian organizations, including the industrial sites (Mayak, Krasonayarsk-26, Tomsk), scientific institutes (VNIINM, KRI, VNIPIPT, RIAR), design organizations (VNIPIET and GSPI), universities (Nyzhny Novgorod, Urals Technical), Russian Academy of Sciences (Institute of Physical Chemistry or IPhCh, Institute of Ore-Deposit Geology, Petrography, Mineralogy, and Geochemistry or IGEM), Radon-Moscow, S&TCmore » Podol'osk, Kharkov-Ukraine, GAN-SEC-NRS and SNIIChM, the RF Ministry of Atomic Energy (Minatom) and Gosatomnadzor (GAN). This volume, published by LLNL, documents this third annual meeting. Forty-nine technical papers were presented by the Russian participants, and nearly all of these have been collected in this Proceedings. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing this contract work into one place for four days to review and discuss their work amongst each other. (2) Publish a meeting summary and proceedings of all the excellent Russian plutonium immobilization and other plutonium disposition contract work in one document so that the wide extent of the Russian immobilization activities are documented, referencable and available for others to use, as were the Proceedings of the two previous meetings. Attendees gave talks describing their LLNL contract work and submitted written papers documenting their contract work (in English and Russian), in both hard copy and on computer disks. Simultaneous translation into Russian and English was used for presentations made at the State Region Educational Center (SEC).« less
Dehydration of plutonium or neptunium trichloride hydrate
Foropoulos, Jr., Jerry; Avens, Larry R.; Trujillo, Eddie A.
1992-01-01
A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.
Dehydration of plutonium or neptunium trichloride hydrate
Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.
1992-03-24
A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.
O-Pu-U (Oxygen-Plutonium-Uranium)
NASA Astrophysics Data System (ADS)
Materials Science International Team MSIT
This document is part of Subvolume C4 'Non-Ferrous Metal Systems. Part 4: Selected Nuclear Materials and Engineering Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Oxygen-Plutonium-Uranium.
Long-term retrievability and safeguards for immobilized weapons plutonium in geologic storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, P.F.
1996-05-01
If plutonium is not ultimately used as an energy source, the quantity of excess weapons plutonium (w-Pu) that would go into a US repository will be small compared to the quantity of plutonium contained in the commercial spent fuel in the repository, and the US repository(ies) will likely be only one (or two) locations out of many around the world where commercial spent fuel will be stored. Therefore excess weapons plutonium creates a small perturbation to the long-term (over 200,000 yr) global safeguard requirements for spent fuel. There are details in the differences between spent fuel and immobilized w-Pu wastemore » forms (i.e. chemical separation methods, utility for weapons, nuclear testing requirements), but these are sufficiently small to be unlikely to play a significant role in any US political decision to rebuild weapons inventories, or to change the long-term risks of theft by subnational groups.« less
On the multi-reference nature of plutonium oxides: PuO22+, PuO2, PuO3 and PuO2(OH)2.
Boguslawski, Katharina; Réal, Florent; Tecmer, Paweł; Duperrouzel, Corinne; Gomes, André Severo Pereira; Legeza, Örs; Ayers, Paul W; Vallet, Valérie
2017-02-08
Actinide-containing complexes present formidable challenges for electronic structure methods due to the large number of degenerate or quasi-degenerate electronic states arising from partially occupied 5f and 6d shells. Conventional multi-reference methods can treat active spaces that are often at the upper limit of what is required for a proper treatment of species with complex electronic structures, leaving no room for verifying their suitability. In this work we address the issue of properly defining the active spaces in such calculations, and introduce a protocol to determine optimal active spaces based on the use of the Density Matrix Renormalization Group algorithm and concepts of quantum information theory. We apply the protocol to elucidate the electronic structure and bonding mechanism of volatile plutonium oxides (PuO 3 and PuO 2 (OH) 2 ), species associated with nuclear safety issues for which little is known about the electronic structure and energetics. We show how, within a scalar relativistic framework, orbital-pair correlations can be used to guide the definition of optimal active spaces which provide an accurate description of static/non-dynamic electron correlation, as well as to analyse the chemical bonding beyond a simple orbital model. From this bonding analysis we are able to show that the addition of oxo- or hydroxo-groups to the plutonium dioxide species considerably changes the π-bonding mechanism with respect to the bare triatomics, resulting in bent structures with a considerable multi-reference character.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaal, H.; Bernnat, W.
1987-10-01
For calculations of high-temperature gas-cooled reactors with low-enrichment fuel, it is important to know the plutonium cross sections accurately. Therefore, a calculational method was developed, by which the plutonium cross-section data of the ENDF/B-IV library can be examined. This method uses zero- and one-dimensional neutron transport calculations to collapse the basic data into one-group cross sections, which then can be compared with experimental values obtained from integral tests. For comparison the data from the critical experiment CESAR-II of the Centre d'Etudes Nucleaires, Cadarache, France, were utilized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Bryan Scott; Gough, Sean T.
This report documents a validation of the MCNP6 Version 1.0 computer code on the high performance computing platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature. The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.G.; Pfuderer, H.A.
This bibliography serves as a guide to the environmental studies sponsored by the Nevada Applied Ecology Group (NAEG) at the Department of Energy Nevada Test Site nuclear weapons complex. The NAEG is part of the Nevada Operations Office of the United States Department of Energy. The references included in the bibliography reflect the interests of the NAEG (e.g., hazard evaluation of the nuclear safety-shot sites). The objectives of the NAEG plutonium studies at the Nevada Test Site were defined as follows: (1) delineate locations of contamination; (2) determine concentrations in ecosystem components; (3) quantify rates of movements among ecosystem components;more » (4) evaluate radiological hazards of plutonium; (5) identify areas which need to be cleaned up or treated; and (6) develop techniques for cleanup or treatment.« less
Improved plutonium identification and characterization results with NaI(Tl) detector using ASEDRA
NASA Astrophysics Data System (ADS)
Detwiler, R.; Sjoden, G.; Baciak, J.; LaVigne, E.
2008-04-01
The ASEDRA algorithm (Advanced Synthetically Enhanced Detector Resolution Algorithm) is a tool developed at the University of Florida to synthetically enhance the resolved photopeaks derived from a characteristically poor resolution spectra collected at room temperature from scintillator crystal-photomultiplier detector, such as a NaI(Tl) system. This work reports on analysis of a side-by-side test comparing the identification capabilities of ASEDRA applied to a NaI(Tl) detector with HPGe results for a Plutonium Beryllium (PuBe) source containing approximately 47 year old weapons-grade plutonium (WGPu), a test case of real-world interest with a complex spectra including plutonium isotopes and 241Am decay products. The analysis included a comparison of photopeaks identified and photopeak energies between the ASEDRA and HPGe detector systems, and the known energies of the plutonium isotopes. ASEDRA's performance in peak area accuracy, also important in isotope identification as well as plutonium quality and age determination, was evaluated for key energy lines by comparing the observed relative ratios of peak areas, adjusted for efficiency and attenuation due to source shielding, to the predicted ratios from known energy line branching and source isotopics. The results show that ASEDRA has identified over 20 lines also found by the HPGe and directly correlated to WGPu energies.
NASA Astrophysics Data System (ADS)
Fisenko, Anatoliy I.; Lemberg, Vladimir F.
2016-09-01
The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.
NASA Astrophysics Data System (ADS)
Kazachevskii, I. V.; Lukashenko, S. N.; Chumikov, G. N.; Chakrova, E. T.; Smirin, L. N.; Solodukhin, V. P.; Khayekber, S.; Berdinova, N. M.; Ryazanova, L. A.; Bannyh, V. I.; Muratova, V. M.
1999-01-01
The results of combined radiochemical procedure for the determination of plutonium, americium and90Sr (via measurement of90Y) in the soil samples from SNTS are presented. The processes of co-precipitation of these nuclides with calcium fluoride in the strong acid solutions have been investigated. The conditions for simultaneous separation of americium and yttrium using extraction chromatography have been studied. It follows from analyses of real soil samples that the procedure developed provides the chemical recovery of plutonium and yttrium in the range of 50-95% and 60-95%, respectively. The execution of the procedure requires 3.5 working days including a sample decomposition study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHARBONEAU, S.L.
The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program. The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has nowmore » completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D&D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D&D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D&D mission with a can-do attitude. They went into D&D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox cleanout. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP's approach to overcome these challengers are described. Many of the challenges to the D&D work at PFP were met with innovative approaches based on new science and/or technology and many were also based on the creativity and motivation of the work force personnel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charboneau, S.; Klos, B.; Heineman, R.
The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has nowmore » completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D and D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D and D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D and D mission with a can-do attitude. They went into D and D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and the condition and contents of process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox clean-out. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP's approach to overcome these challengers are described. Many of the challenges to the D and D work at PFP were met with innovative approaches based on new science and/or technology and many were also based on the creativity and motivation of the work force personnel. (authors)« less
Radiological analysis of plutonium glass batches with natural/enriched boron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rainisch, R.
2000-06-22
The disposition of surplus plutonium inventories by the US Department of Energy (DOE) includes the immobilization of certain plutonium materials in a borosilicate glass matrix, also referred to as vitrification. This paper addresses source terms of plutonium masses immobilized in a borosilicate glass matrix where the glass components include both natural boron and enriched boron. The calculated source terms pertain to neutron and gamma source strength (particles per second), and source spectrum changes. The calculated source terms corresponding to natural boron and enriched boron are compared to determine the benefits (decrease in radiation source terms) for to the use ofmore » enriched boron. The analysis of plutonium glass source terms shows that a large component of the neutron source terms is due to (a, n) reactions. The Americium-241 and plutonium present in the glass emit alpha particles (a). These alpha particles interact with low-Z nuclides like B-11, B-10, and O-17 in the glass to produce neutrons. The low-Z nuclides are referred to as target particles. The reference glass contains 9.4 wt percent B{sub 2}O{sub 3}. Boron-11 was found to strongly support the (a, n) reactions in the glass matrix. B-11 has a natural abundance of over 80 percent. The (a, n) reaction rates for B-10 are lower than for B-11 and the analysis shows that the plutonium glass neutron source terms can be reduced by artificially enriching natural boron with B-10. The natural abundance of B-10 is 19.9 percent. Boron enriched to 96-wt percent B-10 or above can be obtained commercially. Since lower source terms imply lower dose rates to radiation workers handling the plutonium glass materials, it is important to know the achievable decrease in source terms as a result of boron enrichment. Plutonium materials are normally handled in glove boxes with shielded glass windows and the work entails both extremity and whole-body exposures. Lowering the source terms of the plutonium batches will make the handling of these materials less difficult and will reduce radiation exposure to operating workers.« less
Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope
Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; ...
2016-02-22
Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken atmore » SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Furthermore, significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10 –15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/ 239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.« less
Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope
Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; Hall, Gregory; Cadieux, James R.
2016-01-01
Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10−15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively. PMID:26898531
Donard, O F X; Bruneau, F; Moldovan, M; Garraud, H; Epov, V N; Boust, D
2007-03-28
Among the transuranic elements present in the environment, plutonium isotopes are mainly attached to particles, and therefore they present a great interest for the study and modelling of particle transport in the marine environment. Except in the close vicinity of industrial sources, plutonium concentration in marine sediments is very low (from 10(-4) ng kg(-1) for (241)Pu to 10 ng kg(-1) for (239)Pu), and therefore the measurement of (238)Pu, (239)Pu, (240)Pu, (241)Pu and (242)Pu in sediments at such concentration level requires the use of very sensitive techniques. Moreover, sediment matrix contains huge amounts of mineral species, uranium and organic substances that must be removed before the determination of plutonium isotopes. Hence, an efficient sample preparation step is necessary prior to analysis. Within this work, a chemical procedure for the extraction, purification and pre-concentration of plutonium from marine sediments prior to sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) analysis has been optimized. The analytical method developed yields a pre-concentrated solution of plutonium from which (238)U and (241)Am have been removed, and which is suitable for the direct and simultaneous measurement of (239)Pu, (240)Pu, (241)Pu and (242)Pu by SF-ICP-MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutt, M.; Nuclear Engineering Division
2010-05-25
The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less
Renovation of the hot press in the Plutonium Experimental Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.; Nelson, G.H.
1990-03-05
The Plutonium Experimental Facility (PEF) will be used to develop a new fuel pellet fabrication process and to evaluate equipment upgrades. The facility was used from 1978 until 1982 to optimize the parameters for fuel pellet production using a process which was developed at Los Alamos National Laboratory. The PEF was shutdown and essentially abandoned until mid-1987 when the facility renovations were initiated by the Actinide Technology Section (ATS) of SRL. A major portion of the renovation work was related to the restart of the hot press system. This report describes the renovations and modifications which were required to restartmore » the PEF hot press. The primary purpose of documenting this work is to help provide a basis for Separations to determine the best method of renovating the hot press in the Plutonium Fuel Fabrication (PuFF) facility. This report also includes several SRL recommendations concerning the renovation and modification of the PuFF hot press. 4 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, G.E.; Weller, R.E.; Watson, C.R.
The life-span biological effects of inhaled soluble, alpha-emitting radionuclides deposited in the skeleton and liver were studied in 5 groups of 20 beagles exposed to initial lung depositions ranging from 0.48 to 518 Bq/g of lung. Average plutonium amounts in the lungs decreased to approximately 1% of the final body deposition in dogs surviving 5 years or more; more than 90% of the final depositions accumulated in the liver and skeleton. The liver-to-skeletal ratio of deposited plutonium was 0.83. The incidence of bone tumors, primarily osteogenic sarcomas causing early mortality, at final group average skeletal depositions of 15.8, 2.1, andmore » 0.5 Bq/g was, respectively, 85%, 50%, and 5%; there were no bone tumors in exposure groups with mean average depositions lower than 0.5 Bq/g. Elevated serum liver enzyme levels were observed in exposure groups down to 1.3 Bq/g. The incidence of liver tumors at final group average liver depositions of 6.9, 1.3, 0.2, and 0.1 Bq/g, was, respectively, 25%, 15%, 15%, and 15%; one hepatoma occurred among 40 control dogs. The risk of the liver cancer produced by inhaled plutonium nitrate was difficult to assess due to the competing risks of life shortening from lung and bone tumors.« less
PLUTONIUM METALLIC FUELS FOR FAST REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
STAN, MARIUS; HECKER, SIEGFRIED S.
2007-02-07
Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuelsmore » suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.« less
NASA Astrophysics Data System (ADS)
Manara, D.; De Bruycker, F.; Boboridis, K.; Tougait, O.; Eloirdi, R.; Malki, M.
2012-07-01
In this work, an experimental study of the radiance of liquid and solid uranium and plutonium carbides at wavelengths 550 nm ⩽ λ ⩽ 920 nm is reported. A fast multi-channel spectro-pyrometer has been employed for the radiance measurements of samples heated up to and beyond their melting point by laser irradiation. The melting temperature of uranium monocarbide, soundly established at 2780 K, has been taken as a radiance reference. Based on it, a wavelength-dependence has been obtained for the high-temperature spectral emissivity of some uranium carbides (1 ⩽ C/U ⩽ 2). Similarly, the peritectic temperature of plutonium monocarbide (1900 K) has been used as a reference for plutonium monocarbide and sesquicarbide. The present spectral emissivities of solid uranium and plutonium carbides are close to 0.5 at 650 nm, in agreement with previous literature values. However, their high temperature behaviour, values in the liquid, and carbon-content and wavelength dependencies in the visible-near infrared range have been determined here for the first time. Liquid uranium carbide seems to interact with electromagnetic radiation in a more metallic way than does the solid, whereas a similar effect has not been observed for plutonium carbides. The current emissivity values have also been used to convert the measured radiance spectra into real temperature, and thus perform a thermal analysis of the laser heated samples. Some high-temperature phase boundaries in the systems U-C and Pu-C are shortly discussed on the basis of the current results.
TRANSURANIC ELEMENT, COMPOSITION THEREOF, AND METHODS FOR PRODUCING SEPARATING AND PURIFYING SAME
Wahl, A.C.
1961-09-19
A process of separating plutonium from fission products contained in an aqueous solution is described. Plutonium, in the tri- or tetravalent state, and the fission products are coprecipitated on lanthanum fluoride, lanthanum oxalate, cerous fluoride, cerous phosphate, ceric iodate, zirconyl phosphate, thorium iodate, or thorium fluoride. The precipitate is dissolved in acid, and the plutonium is oxidized to the hexavalent state. The fission products are selectively precipitated on a carrier of the above group but different from that used for the coprecipitation. The plutonium in the solution, after removal of the fission product precipitate, is reduced to at least the tetravalent state and precipitated on lanthanum fluoride, lanthanum phosphate, lanthanum oxalate, lanthanum hydroxide, cerous fluoride, cerous phosphate, cerous oxalate, cerous hydroxide, ceric iodate, zirconyl phosphate, zirconyl iodate, zirconium hydroxide, thorium fluoride, thorium oxalate, thorium iodate, thorium peroxide, uranium iodate, uranium oxalate, or uranium peroxide, again using a different carrier than that used for the precipitation of the fission products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.
Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken atmore » SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Furthermore, significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10 –15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/ 239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, R.O.; Eberhardt, L.L.; Fowler, E.B.
Reported here are results of the statistical design and analysis work conducted during Calendar Year 1974 for the Nevada Applied Ecology Group (NAEG) at plutonium study sites on the Nevada Test Site (NTS) and the Tonopah Test Range (TTR). Estimates of $sup 239-240$Pu inventory in surface soil (0 to 5-cm depth) are given for each of the NAEG intensive study sites, together with activity maps based on FIDLER surveys showing the field areas to which these estimates apply. There is evidence of a preliminary nature to suggest that the plutonium present in surface soil may be covered by a thinmore » (less than 2.5 cm) layer of soil whose alpha activity is considerably less than that directly below. Computer-drawn $sup 239-240$Pu concentration contours and three-dimensional surfaces in soil and vegetation are given for Area 13 and GMX as a first attempt at estimating the geographical distribution of $sup 239-240$Pu at these sites. (CH)« less
Investigation Of In-Line Monitoring Options At H Canyon/HB Line For Plutonium Oxide Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sexton, L.
2015-10-14
H Canyon and HB Line have a production goal of 1 MT per year of plutonium oxide feedstock for the MOX facility by FY17 (AFS-2 mission). In order to meet this goal, steps will need to be taken to improve processing efficiency. One concept for achieving this goal is to implement in-line process monitoring at key measurement points within the facilities. In-line monitoring during operations has the potential to increase throughput and efficiency while reducing costs associated with laboratory sample analysis. In the work reported here, we mapped the plutonium oxide process, identified key measurement points, investigated alternate technologies thatmore » could be used for in-line analysis, and initiated a throughput benefit analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandon, Lav; Colletti, Lisa M.; Drake, Lawrence R.
This report discusses the process used to prove in the SRNL-Rev.2 coulometer for isotopic data analysis used in the special plutonium material project. In May of 2012, the PAR 173 coulometer system that had been the workhorse of the Plutonium Assay team since the early 1970s became inoperable. A new coulometer system had been purchased from Savannah River National Laboratory (SRNL) and installed in August of 2011. Due to funding issues the new system was not qualified at that time. Following the failure of the PAR 173, it became necessary to qualify the new system for use in Process 3401a,more » Plutonium Assay by Controlled Coulometry. A qualification plan similar to what is described in PQR -141a was followed. Experiments were performed to establish a statistical summary of the performance of the new system by monitoring the repetitive analysis of quality control sample, PEOL, and the assay of plutonium metals obtained from the Plutonium Exchange Program. The data for the experiments was acquired using work instructions ANC125 and ANC195. Figure 1 shows approximately 2 years of data for the PEOL material obtained using the PAR 173. The required acceptance criteria for the sample are that it returns the correct value for the quality control material of 88.00% within 2 sigma (95% Confidence Interval). It also must meet daily precision standards that are set from the historical data analysis of decades of data. The 2 sigma value that is currently used is 0.146 % as evaluated by the Statistical Science Group, CCS-6. The average value of the PEOL quality control material run in 10 separate days on the SRNL-03 coulometer is 87.98% with a relative standard deviation of 0.04 at the 95% Confidence interval. The date of data acquisition is between 5/23/2012 to 8/1/2012. The control samples are run every day experiments using the coulometer are carried out. It is also used to prove an instrument is in statistical control before any experiments are undertaken. The total number of replicate controls run with the new coulometer to date, is n=18. This value is identical to that calculated by the LANL statistical group for this material from data produced by the PAR 173 system over the period of October 2007 to May 2011. The final validation/verification test was to run a blind sample over multiple days. AAC participates in a plutonium exchange program which supplies blind Pu metal samples to the group on a regular basis. The Pu material supplied for this study was ran using the PAR 173 in the past and more recently with the new system. Table 1a contains the values determined through the use of the PAR 173 and Table 1b contains the values obtained with the new system. The Pu assay value obtained on the SRNL system is for paired analysis and had a value of 98.88+/-0.07% RSD at 95% CI. The Pu assay value (decay corrected to July 2012) of the material determined in prior measurements using the PAR173 is 99.05 +/- 0.06 % RSD at 95% CI. We believe that the instrument is adequate to meet the needs of the program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlenker, R.A.
This paper presents aspects of current and recent work on the distribution of radium and plutonium near the surfaces of human bone and applications of the data. Included are sections on methods, surface deposit thickness, radium distribution near the endosteal surface, the use of alpha spectrometry in conjunction with autoradiography, radium distribution in the mastoid, and factors affecting plutonium specific activity. Emphasis is placed on the alpha spectrometry technique because of its usefulness and its recent application to problems of local dosimetry. 19 references, 14 figures, 6 tables.
13. Elevations, 233S, U.S. Atomic Energy Commission, Hanford Works, General ...
13. Elevations, 233-S, U.S. Atomic Energy Commission, Hanford Works, General Electric Company, Dwg. No. H-2-7203, 1956. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA
Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?
Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.
2015-08-01
Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less
Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.
Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less
Booth, Corwin H.; Olive, Daniel Thomas
2016-10-26
This focused review provides an overview and a framework for understanding local structure in metallic plutonium (especially the metastable fcc δ-phase alloyed with Ga) as it relates to self-irradiation damage. Of particular concern is the challenge of understanding self-irradiation damage in plutonium-bearing materials where theoretical challenges of the unique involvement of the 5f electrons in bonding limit the efficacy of molecular dynamics simulations and experimental challenges of working with radioactive material have limited the ability to confirm the results of such simulations and to further push the field forward. The main concentration is on extended X-ray absorption fine-structure measurements ofmore » -phase Pu, but the scope is broadened to include certain studies on plutonium intermetallics and oxides insofar as they inform the physics of damage and healing processes in elemental Pu. Here, the studies reviewed here provide insight into lattice distortions and their production, damage annealing and defect migration, and the importance of understanding and controlling sample morphology when interpreting such experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Chichester; S. J. Thompson
2013-09-01
This report serves as a literature review of prior work performed at Idaho National Laboratory, and its predecessor organizations Idaho National Engineering Laboratory (INEL) and Idaho National Engineering and Environmental Laboratory (INEEL), studying radionuclide partitioning within the melted fuel debris of the reactor of the Three Mile Island 2 (TMI-2) nuclear power plant. The purpose of this review is to document prior published work that provides supporting evidence of the utility of using 144Ce as a surrogate for plutonium within melted fuel debris. When the TMI-2 accident occurred no quantitative nondestructive analysis (NDA) techniques existed that could assay plutonium inmore » the unconventional wastes from the reactor. However, unpublished work performed at INL by D. W. Akers in the late 1980s through the 1990s demonstrated that passive gamma-ray spectrometry of 144Ce could potentially be used to develop a semi-quantitative correlation for estimating plutonium content in these materials. The fate and transport of radioisotopes in fuel from different regions of the core, including uranium, fission products, and actinides, appear to be well characterized based on the maximum temperature reached by fuel in different parts of the core and the melting point, boiling point, and volatility of those radioisotopes. Also, the chemical interactions between fuel, fuel cladding, control elements, and core structural components appears to have played a large role in determining when and how fuel relocation occurred in the core; perhaps the most important of these reaction appears to be related to the formation of mixed-material alloys, eutectics, in the fuel cladding. Because of its high melting point, low volatility, and similar chemical behavior to plutonium, the element cerium appears to have behaved similarly to plutonium during the evolution of the TMI-2 accident. Anecdotal evidence extrapolated from open-source literature strengthens this logical feasibility for using cerium, which is rather easy to analyze using passive nondestructive analysis gamma-ray spectrometry, as a surrogate for plutonium in the final analysis of TMI-2 melted fuel debris. The generation of this report is motivated by the need to perform nuclear material accountancy measurements on the melted fuel debris that will be excavated from the damaged nuclear reactors at the Fukushima Daiichi nuclear power plant in Japan, which were destroyed by the Tohoku earthquake and tsunami on March 11, 2011. Lessons may be taken from prior U.S. work related to the study of the TMI-2 core debris to support the development of new assay methods for use at Fukushima Daiichi. While significant differences exist between the two reactor systems (pressurized water reactor (TMI-2) versus boiling water reactor (FD), fresh water post-accident cooing (TMI-2) versus salt water (FD), maintained containment (TMI-2) versus loss of containment (FD)) there remain sufficient similarities to motivate these comparisons.« less
CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE
Fried, S.; Davidson, N.R.
1957-09-10
A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.
Certification of Plutonium Standards for KAMS Neutron Multiplicity Counter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salaymeh, S.R.
2002-05-31
As part of the implementation of the PEIS record of decision in January of 1997, DOE will pursue two technologies to disposition fifty metric tons of its stockpile of plutonium. As a result of this and in order to expedite the closure of Rocky Flats Environmental Technology Site in Colorado, DOE decided to use existing facilities at the Savannah River Site (SRS) for storing all material containing plutonium at KAMS. A neutron multiplicity counter was designed and built to carry out receipt verification measurement at the facility. Since the material covers a wide range and different levels of impurities, itmore » is essential that we obtain a set of working standards. An agreement was drafted to select the first drums to be these standards. A plan was developed for the certification of these standards using Rocky Flat's existing nondestructive assay equipment. This paper will discuss the types of materials to be shipped to SRS, number of standards to certify for each type of material, and the certification plan. It will also discuss the activities necessary to determine the nuclear content of these working standards to be used at SRS facilities in support of shipment and receipt of the Pu containing materials. Definition of instrument qualifications, measurement control processes, measurement methodologies, and calculations necessary to report the gram quantities and their uncertainties for plutonium, americium-241, uranium-235 (if present) and neptunium-237 (if present) will also be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Brian; Kaplan, Daniel I; Arai, Yuji
2016-12-29
This university lead SBR project is a collaboration lead by Dr. Brian Powell (Clemson University) with co-principal investigators Dan Kaplan (Savannah River National Laboratory), Yuji Arai (presently at the University of Illinois), Udo Becker (U of Michigan) and Rod Ewing (presently at Stanford University). Hypothesis: The underlying hypothesis of this work is that strong interactions of plutonium with mineral surfaces are due to formation of inner sphere complexes with a limited number of high-energy surface sites, which results in sorption hysteresis where Pu(IV) is the predominant sorbed oxidation state. The energetic favorability of the Pu(IV) surface complex is strongly influencedmore » by positive sorption entropies, which are mechanistically driven by displacement of solvating water molecules from the actinide and mineral surface during sorption. Objectives: The overarching objective of this work is to examine Pu(IV) and Pu(V) sorption to pure metal (oxyhydr)oxide minerals and sediments using variable temperature batch sorption, X-ray absorption spectroscopy, electron microscopy, and quantum-mechanical and empirical-potential calculations. The data will be compiled into a self-consistent surface complexation model. The novelty of this effort lies largely in the manner the information from these measurements and calculations will be combined into a model that will be used to evaluate the thermodynamics of plutonium sorption reactions as well as predict sorption of plutonium to sediments from DOE sites using a component additivity approach.« less
NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolich, George; Mizell, Steve; McCurdy, Greg
Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. The emphasis of the work is on collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans thatmore » are being developed, which will facilitate the appropriate closure design and post-closure monitoring. In 2011, DRI installed two meteorological monitoring stations south (station #1) and north (station #2) of the Plutonium Valley CA and a runoff sediment sampling station within the CA. Temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and airborne particulate concentration are collected at both meteorological stations. The maximum, minimum, and average or total (as appropriate) for each of these parameters are recorded for each 10-minute interval. The sediment sampling station includes an automatically activated ISCO sampling pump with collection bottles for suspended sediment, which is activated when sufficient flow is present in the channel, and passive traps for bedload material that is transported down the channel during runoff events. This report presents data collected from these stations during fiscal year (FY) 2015.« less
Pyrochemical process for extracting plutonium from an electrolyte salt
Mullins, L.J.; Christensen, D.C.
1982-09-20
A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.
Pyrochemical process for extracting plutonium from an electrolyte salt
Mullins, Lawrence J.; Christensen, Dana C.
1984-01-01
A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.
Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M
2016-03-07
Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process.
Further evaluations of the toxicity of irradiated advanced heavy water reactor fuels.
Edwards, Geoffrey W R; Priest, Nicholas D
2014-11-01
The neutron economy and online refueling capability of heavy water moderated reactors enable them to use many different fuel types, such as low enriched uranium, plutonium mixed with uranium, or plutonium and/or U mixed with thorium, in addition to their traditional natural uranium fuel. However, the toxicity and radiological protection methods for fuels other than natural uranium are not well established. A previous paper by the current authors compared the composition and toxicity of irradiated natural uranium to that of three potential advanced heavy water fuels not containing plutonium, and this work uses the same method to compare irradiated natural uranium to three other fuels that do contain plutonium in their initial composition. All three of the new fuels are assumed to incorporate plutonium isotopes characteristic of those that would be recovered from light water reactor fuel via reprocessing. The first fuel investigated is a homogeneous thorium-plutonium fuel designed for a once-through fuel cycle without reprocessing. The second fuel is a heterogeneous thorium-plutonium-U bundle, with graded enrichments of U in different parts of a single fuel assembly. This fuel is assumed to be part of a recycling scenario in which U from previously irradiated fuel is recovered. The third fuel is one in which plutonium and Am are mixed with natural uranium. Each of these fuels, because of the presence of plutonium in the initial composition, is determined to be considerably more radiotoxic than is standard natural uranium. Canadian nuclear safety regulations require that techniques be available for the measurement of 1 mSv of committed effective dose after exposure to irradiated fuel. For natural uranium fuel, the isotope Pu is a significant contributor to the committed effective dose after exposure, and thermal ionization mass spectrometry is sensitive enough that the amount of Pu excreted in urine is sufficient to estimate internal doses, from all isotopes, as low as 1 mSv. In addition, if this method is extended so that Pu is also measured, then the combined amount of Pu and Pu is sufficiently high in the thorium-plutonium fuel that a committed effective dose of 1 mSv would be measurable. However, the fraction of Pu and Pu in the other two fuels is sufficiently low that a 1 mSv dose would remain below the detection limit using this technique. Thus new methods, such as fecal measurements of Pu (or other alpha emitters), will be required to measure exposure to these new fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandon, Lav; Kuhn, Kevin J; Drake, Lawrence R
Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguardsmore » Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.« less
Application of Compton-suppressed self-induced XRF to spent nuclear fuel measurement
NASA Astrophysics Data System (ADS)
Park, Se-Hwan; Jo, Kwang Ho; Lee, Seung Kyu; Seo, Hee; Lee, Chaehun; Won, Byung-Hee; Ahn, Seong-Kyu; Ku, Jeong-Hoe
2017-11-01
Self-induced X-ray fluorescence (XRF) is a technique by which plutonium (Pu) content in spent nuclear fuel can be directly quantified. In the present work, this method successfully measured the plutonium/uranium (Pu/U) peak ratio of a pressurized water reactor (PWR)'s spent nuclear fuel at the Korea atomic energy research institute (KAERI)'s post irradiation examination facility (PIEF). In order to reduce the Compton background in the low-energy X-ray region, the Compton suppression system additionally was implemented. By use of this system, the spectrum's background level was reduced by a factor of approximately 2. This work shows that Compton-suppressed selfinduced XRF can be effectively applied to Pu accounting in spent nuclear fuel.
NASA Astrophysics Data System (ADS)
Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Mayer, Klaus; Prohaska, Thomas
2014-05-01
Although the age determination of plutonium is and has been a pillar of nuclear forensic investigations for many years, additional research in the field of plutonium age dating is still needed and leads to new insights as the present work shows: Plutonium is commonly dated with the help of the 241Pu/241Am chronometer using gamma spectrometry; in fewer cases the 240Pu/236U chronometer has been used. The age dating results of the 239Pu/235U chronometer and the 238Pu/234U chronometer are scarcely applied in addition to the 240Pu/236U chronometer, although their results can be obtained simultaneously from the same mass spectrometric experiments as the age dating result of latter. The reliability of the result can be tested when the results of different chronometers are compared. The 242Pu/238U chronometer is normally not evaluated at all due to its sensitivity to contamination with natural uranium. This apparent 'weakness' that renders the age dating results of the 242Pu/238U chronometer almost useless for nuclear forensic investigations, however turns out to be an advantage looked at from another perspective: the 242Pu/238U chronometer can be utilized as an indicator for uranium contamination of plutonium samples and even help to identify the nature of this contamination. To illustrate this the age dating results of all four Pu/U clocks mentioned above are discussed for one plutonium sample (NBS 946) that shows no signs of uranium contamination and for three additional plutonium samples. In case the 242Pu/238U chronometer results in an older 'age' than the other Pu/U chronometers, contamination with either a small amount of enriched or with natural or depleted uranium is for example possible. If the age dating result of the 239Pu/235U chronometer is also influenced the nature of the contamination can be identified; enriched uranium is in this latter case a likely cause for the missmatch of the age dating results of the Pu/U chronometers.
PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS
Coffinberry, A.S.
1959-08-25
>New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.
Los Alamos Plutonium Facility Waste Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, K.; Montoya, A.; Wieneke, R.
1997-02-01
This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facilitymore » on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process.« less
NASA Astrophysics Data System (ADS)
Jernström, J.; Eriksson, M.; Simon, R.; Tamborini, G.; Bildstein, O.; Marquez, R. Carlos; Kehl, S. R.; Hamilton, T. F.; Ranebo, Y.; Betti, M.
2006-08-01
Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized by non-destructive analytical and microanalytical methods. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector and with wavelength dispersive system as well as a secondary ion mass spectrometer were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups: particles with pure Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogenously distributed. All of the particles were identified as nuclear fuel fragments of exploded weapon components. As containing plutonium with low 240Pu/ 239Pu atomic ratio, less than 0.065, which corresponds to weapons-grade plutonium or a detonation with low fission yield, the particles were identified to originate from the safety test and low-yield tests conducted in the history of Runit Island. The Si/O-rich particles contained traces of 137Cs ( 239 + 240 Pu/ 137Cs activity ratio higher than 2500), which indicated that a minor fission process occurred during the explosion. The average 241Am/ 239Pu atomic ratio in the six particles was 3.7 × 10 - 3 ± 0.2 × 10 - 3 (February 2006), which indicated that plutonium in the different particles had similar age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathren, R.L.
1992-09-01
This paper describes the history, organization, activities and recent scientific accomplishments of the United States Transuranium and Uranium Registries. Through voluntary donations of tissue obtained at autopsies, the Registries carry out studies of the concentration, distribution and biokinetics of plutonium in occupationally exposed persons. Findings from tissue analyses from more than 200 autopsies include the following: a greater proportion of the americium intake, as compared with plutonium, was found in the skeleton; the half-time of americium in liver is significantly shorter than that of plutonium; the concentration of actinide in the skeleton is inversely proportional to the calcium and ashmore » content of the bone; only a small percentage of the total skeletal deposition of plutonium is found in the marrow, implying a smaller risk from irradiation of the marrow relative to the bone surfaces; estimates of plutonium body burden made from urinalysis typically exceed those made from autopsy data; pathologists were unable to discriminate between a group of uranium workers and persons without known occupational exposure on the basis of evaluation of microscopic kidney slides; the skeleton is an important long term depot for uranium, and that the fractional uptake by both skeleton and kidney may be greater than indicated by current models. These and other findings and current studies are discussed in depth.« less
In search of plutonium: A nonproliferation journey
NASA Astrophysics Data System (ADS)
Hecker, Siegfried
2010-02-01
In February 1992, I landed in the formerly secret city of Sarov, the Russian Los Alamos, followed a few days later by a visit to Snezhinsk, their Livermore. The briefings we received of the Russian nuclear weapons program and tours of their plutonium, reactor, explosives, and laser facilities were mind boggling considering the Soviet Union was dissolved only two months earlier. This visit began a 17-year, 41 journey relationship with the Russian nuclear complex dedicated to working with them in partnership to protect and safeguard their weapons and fissile materials, while addressing the plight of their scientists and engineers. In the process, we solved a forty-year disagreement about the plutonium-gallium phase diagram and began a series of fundamental plutonium science workshops that are now in their tenth year. At the Yonbyon reprocessing facility in January 2004, my North Korean hosts had hoped to convince me that they have a nuclear deterrent. When I expressed skepticism, they asked if I wanted to see their ``product.'' I asked if they meant the plutonium; they replied, ``Well, yes.'' Thus, I wound up holding 200 grams of North Korean plutonium (in a sealed glass jar) to make sure it was heavy and warm. So began the first of my six journeys to North Korea to provide technical input to the continuing North Korean nuclear puzzle. In Trombay and Kalpakkam a few years later I visited the Indian nuclear research centers to try to understand how India's ambitious plans for nuclear power expansion can be accomplished safely and securely. I will describe these and other attempts to deal with the nonproliferation legacy of the cold war and the new challenges ahead. )
Study on Utilization of Super Grade Plutonium in Molten Salt Reactor FUJI-U3 using CITATION Code
NASA Astrophysics Data System (ADS)
Wulandari, Cici; Waris, Abdul; Pramuditya, Syeilendra; Asril, Pramutadi AM; Novitrian
2017-07-01
FUJI-U3 type of Molten Salt Reactor (MSR) has a unique design since it consists of three core regions in order to avoid the replacement of graphite as moderator. MSR uses floride as a nuclear fuel salt with the most popular chemical composition is LiF-BeF2-ThF4-233UF4. ThF4 and 233UF4 are the fertile and fissile materials, respectively. On the other hand, LiF and BeF2 working as both fuel and heat transfer medium. In this study, the super grade plutonium will be utilized as substitution of 233U since plutonium is easier to be obtained compared to 233U as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2002 code with JENDL 3.2 as nuclear data library.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, Michael E; George, Gerald L; Dodge, Robert L
Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Radiation shielding is commonly used to protect the glovebox worker from unintentional direct and secondary radiation exposure, while working with plutonium-238 and plutonium-239. In these environments, low-energy photons, i.e., those less than 250 keY, are encountered.more » Shielding glove box gloves are traditionally composed of lead-based materials, but these are now considered hazardous waste. This has prompted the development of new, nonhazardous- shielding gJovebox gloves. No studies, however, have investigated the effectiveness of these new glovebox gloves. We examined both leaded and nonhazardous- shielding glovebox gloves and compared their attenuation effectiveness over the energy range of interest at TA-55. All measurements are referenced to lead sheets, allowing direct comparisons to the common industry standard of 0.1 mm lead equivalent material. The attenuation properties of both types of glovebox gloves vary with energy, making it difficult for manufacturers to claim lead equivalency across the entire energy range used at TA-55. The positions of materials' photon energy absorption edges, which are particularly important to improved attenuation performance, depending upon the choice of radiation energy range, are discussed. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations.« less
31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, ...
31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, A MAN-MADE SUBSTANCE, WAS RARE. SCRAPS RESULTING FROM PRODUCTION AND PLUTONIUM RECOVERED FROM RETIRED NUCLEAR WEAPONS WERE REPROCESSED INTO VALUABLE PURE-PLUTONIUM METAL (9/19/73). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO
Fusion of acid oxides for potentially radiation-resistant waste forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrick, C.C.; Penneman, R.A.
1983-02-01
Skull melting of groups VA and VB acid oxides with alkali metal oxides and urania leads to compounds with a good ability to retain radionuclides and establishes immunity to radiation damage. Substitution of neptunium and plutonium for uranium should not diminish these desirable properties. For hexavalent transplutonic elements, even at high oxygen fugacities and oxide activities, acid character losses and the reducing nature of radiation suggest the lower valences (III and IV) will be the stable states. Plutonium becomes the pivotal radionuclide when valence stability in a radiation field is considered.
Quarterly technical progress report, February 1, 1996--April 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report from the Amarillo National REsource Center for PLutonium provides research highlights and provides information regarding the public dissemination of information. The center is a a scientific resource for information regarding the issues of the storage, disposition, potential utilization and transport of plutonium, high explosives, and other hazardous materials generated from nuclear weapons dismantlement. The center responds to informational needs and interpretation of technical and scientific data raised by interested parties and advisory groups. Also, research efforts are carried out on remedial action programs and biological/agricultural studies.
Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per
2014-02-01
This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation. © 2013 Elsevier B.V. All rights reserved.
Spent Fuel Working Group Report. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Toole, T.
1993-11-01
The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety.more » To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary`s initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group`s Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, M.F.; Gorham, L.S.; Miller, B.M.
To measure the effect of radiation on plutonium transport, rats that were exposed to 250-kVp X rays were given /sup 238/Pu 3 days afterwards by either gavage or injection into a ligated segment of the duodenum. In a second group of experiments, rats were either injected intraduodenally with /sup 238/Pu-DTPA or administered the chelate intravenously and the /sup 238/Pu by gavage. In a third experiment, rats that had been gavaged with 200 or 400 mg/kg/day of aspirin for 2 days were injected intragastrically with /sup 238/Pu nitrate. Results of the first experiment showed a dose-dependent increase in /sup 238/Pu absorptionmore » between 800 and 1500 rad of lower-body X irradiation. Intravenous or intraduodenal injections of DTPA caused a marked increase in /sup 238/Pu absorption but resulted in decreased plutonium deposition in the skeleton and liver. Retention of /sup 238/Pu in the skeleton of rats given aspirin was double that of controls, but the effect on plutonium absorption was less marked than that of DTPA.« less
Solvent extraction system for plutonium colloids and other oxide nano-particles
Soderholm, Lynda; Wilson, Richard E; Chiarizia, Renato; Skanthakumar, Suntharalingam
2014-06-03
The invention provides a method for extracting plutonium from spent nuclear fuel, the method comprising supplying plutonium in a first aqueous phase; contacting the plutonium aqueous phase with a mixture of a dielectric and a moiety having a first acidity so as to allow the plutonium to substantially extract into the mixture; and contacting the extracted plutonium with second a aqueous phase, wherein the second aqueous phase has a second acidity higher than the first acidity, so as to allow the extracted plutonium to extract into the second aqueous phase. The invented method facilitates isolation of plutonium polymer without the formation of crud or unwanted emulsions.
NASA Astrophysics Data System (ADS)
Huda, Muhammad Nurul
Atomic and molecular adsorptions of oxygen and hydrogen on actinide surfaces have been studied within the generalized gradient approximations to density functional theory (GGA-DFT). The primary goal of this work is to understand the details of the adsorption processes, such as chemisorption sites, energies, adsorption configurations and activation energies for dissociation of molecules; and the signature role of the plutonium 5f electrons. The localization of the 5f electrons remains one of central questions in actinides and one objective here is to understand the extent to which localizations plays a role in adsorption on actinide surfaces. We also investigated the magnetism of the plutonium surfaces, given the fact that magnetism in bulk plutonium is a highly controversial issue, and the surface magnetism of it is not a well explored territory. Both the non-spin-polarized and spin-polarized calculations have been performed to arrive at our conclusions. We have studied both the atomic and molecular hydrogen and oxygen adsorptions on plutonium (100) and (111) surfaces. We have also investigated the oxygen molecule adsorptions on uranium (100) surface. Comparing the adsorption on uranium and plutonium (100) surfaces, we have seen that O2 chemisorption energy for the most favorable adsorption site on uranium surface has higher chemisorption energy, 9.492 eV, than the corresponding plutonium site, 8.787 eV. Also degree of localization of 5f electrons is less for uranium surface. In almost all of the cases, the most favorable adsorption sites are found where the coordination numbers are higher. For example, we found center sites are the most favorable sites for atomic adsorptions. In general oxygen reacts more strongly with plutonium surface than hydrogen. We found that atomic oxygen adsorption energy on (100) surface is 3.613 eV more than that of the hydrogen adsorptions, considering only the most favorable site. This is also true for molecular adsorptions, as the oxygen molecules on both (100) and (111) plutonium surfaces dissociate almost spontaneously, whereas hydrogen needs some activation energy to dissociate. From spin-polarized calculations we found both (100) and (111) surfaces have the layer by layer alternating spin-magnetic behavior. In general adsorption of H2 and O2 do not change this behavior.
Method for dissolving plutonium dioxide
Tallent, Othar K.
1978-01-01
The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.
METHOD FOR OBTAINING PLUTONIUM METAL AND ALLOYS OF PLUTONIUM FROM PLUTONIUM TRICHLORIDE
Reavis, J.G.; Leary, J.A.; Maraman, W.J.
1962-11-13
A process is given for both reducing plutonium trichloride to plutonium metal using cerium as the reductant and simultaneously alloying such plutonium metal with an excess of cerium or cerium and cobalt sufficient to yield the desired nuclear reactor fuel composition. The process is conducted at a temperature from about 550 to 775 deg C, at atmospheric pressure, without the use of booster reactants, and a substantial decontamination is effected in the product alloy of any rare earths which may be associated with the source of the plutonium. (AEC)
METHOD OF SEPARATING PLUTONIUM
Brown, H.S.; Hill, O.F.
1958-02-01
Plutonium hexafluoride is a satisfactory fluorinating agent and may be reacted with various materials capable of forming fluorides, such as copper, iron, zinc, etc., with consequent formation of the metal fluoride and reduction of the plutonium to the form of a lower fluoride. In accordance with the present invention, it has been found that the reactivity of plutonium hexafluoride with other fluoridizable materials is so great that the process may be used as a method of separating plutonium from mixures containing plutonium hexafluoride and other vaporized fluorides even though the plutonium is present in but minute quantities. This process may be carried out by treating a mixture of fluoride vapors comprising plutonium hexafluoride and fluoride of uranium to selectively reduce the plutonium hexafluoride and convert it to a less volatile fluoride, and then recovering said less volatile fluoride from the vapor by condensation.
ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM
Russell, E.R.; Adamson, A.W.; Boyd, G.E.
1960-06-28
A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.
PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM
Fried, S.; Baumbach, H.L.
1959-12-01
A process is described for forming plutonlum hydride powder by reacting hydrogen with massive plutonium metal at room temperature and the product obtained. The plutonium hydride powder can be converted to plutonium powder by heating to above 200 deg C.
Lyon, W.L.; Moore, R.H.
1961-01-17
A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.
PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES
Garner, C.S.
1959-02-24
A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.
EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms
NASA Astrophysics Data System (ADS)
Richmann, Michael K.; Reed, Donald T.; Kropf, A. Jeremy; Aase, Scott B.; Lewis, Michele A.
2001-09-01
A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-01-01
Thirty-one papers and 10 summaries of papers presented at the Third Conference on Analytical Chemistry in Nuclear Reactor Technology held at Gatlinburg, Tennessee, October 26 to 29, 1959, are given. The papers are grouped into four sections: general, analytical chemistry of fuels, analytical chemistry of plutonium and the transplutonic elements, and the analysis of fission-product mixtures. Twenty-seven of the papers are covered by separate abstracts. Four were previously abstracted for NSA. (M.C.G.)
STRIPPING PROCESS FOR PLUTONIUM
Kolodney, M.
1959-10-01
A method for removing silver, nickel, cadmium, zinc, and indium coatings from plutonium objects while simultaneously rendering the plutonium object passive is described. The coated plutonium object is immersed as the anode in an electrolyte in which the plutonium is passive and the coating metal is not passive, using as a cathode a metal which does not dissolve rapidly in the electrolyte. and passing an electrical current through the electrolyte until the coating metal is removed from the plutonium body.
PLUTONIUM-CUPFERRON COMPLEX AND METHOD OF REMOVING PLUTONIUM FROM SOLUTION
Potratz, H.A.
1959-01-13
A method is presented for separating plutonium from fission products present in solutions of neutronirradiated uranium. The process consists in treating such acidic solutions with cupferron so that the cupferron reacts with the plutonium present to form an insoluble complex. This plutonium cupferride precipitates and may then be separated from the solution.
NASA Astrophysics Data System (ADS)
Kaplan, Alexis C.; Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P.; Flaska, Marek; Pozzi, Sara A.
2014-11-01
As a part of the Next Generation Safeguards Initiative Spent Fuel project, we simulate the response of the Differential Die-away Self-Interrogation (DDSI) instrument to determine total elemental plutonium content in an assayed spent nuclear fuel assembly (SFA). We apply recently developed concepts that relate total plutonium mass with SFA multiplication and passive neutron count rate. In this work, the multiplication of the SFA is determined from the die-away time in the early time domain of the Rossi-Alpha distributions measured directly by the DDSI instrument. We utilize MCNP to test the method against 44 pressurized water reactor SFAs from a simulated spent fuel library with a wide dynamic range of characteristic parameters such as initial enrichment, burnup, and cooling time. Under ideal conditions, discounting possible errors of a real world measurement, a root mean square agreement between true and determined total Pu mass of 2.1% is achieved.
NASA Astrophysics Data System (ADS)
Chamizo, E.; García-León, M.; Synal, H.-A.; Suter, M.; Wacker, L.
2006-08-01
In 1966, the nuclear fuel of two thermonuclear bombs was released over the Spanish region of Palomares, due to a B52 bomber accident during a refuelling operation. Since then, much effort has been made to assess its impact to the different environmental compartments of this area in South-East Spain, mostly by measuring the 239+240Pu activity concentration and the 238Pu/239+240Pu activity ratio. Nevertheless, these measurements do not give enough information on the problem. In order to recognize unambiguously small traces of the weapon-grade plutonium released in the accident, the ratio of the two major isotopes of plutonium, 240Pu/239Pu, has to be determined. In this work, this ratio has been measured in low- and high-activity samples from Palomares by means of low-energy accelerator mass spectrometry (AMS). That way, we will show the potential of the new generation of compact AMS facilities in terms of plutonium characterization at ultra-trace levels.
Lithium metal reduction of plutonium oxide to produce plutonium metal
Coops, Melvin S.
1992-01-01
A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.
SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS
Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.
1958-10-01
A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.
Volatile fluoride process for separating plutonium from other materials
Spedding, F. H.; Newton, A. S.
1959-04-14
The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.
VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS
Spedding, F.H.; Newton, A.S.
1959-04-14
The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.
SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION
James, R.A.; Thompson, S.G.
1958-12-01
Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caviness, Michael L; Mann, Paul T; Yoshimura, Richard H
2010-01-01
The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.
Priest, N D; Hunt, B W
1979-05-01
Values of the annual limit of intake (ALI) for plutonium-239 in man have been calculated using committed dose equivalent limits as recommended by ICRP in Publication 26. The calculations were made using a multicompartment bone model which allows for plutonium burial and recycling in the skeleton. In one skeletal compartment, the growing surfaces of cortical bone, it is assumed that plutonium deposits are retained and are not subject to resorption or recycling. In the trabecular bone compartment plutonium is taken to be resorbed with either subsequent redeposition onto bone surfaces or retention in the bone marrow. ALIs for plutonium-239 have been calculated assuming a range of rates of bone accretion (0-32 micron yr-1), different amounts of plutonium retained in the marrow (0-60%) and a 20%, 45% or 70% deposition of plutonium in the skeleton from the blood. The calculations made using this bone model suggest that 750 Bq (20 nCi) is an appropriate ALI for the inhalation of class W and class Y plutonium compounds and that 830 kBq and 5 MBq (23 muCi and 136 muCi) are the appropriate ALIs for the ingestion of soluble and insoluble forms of plutonium respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, T; Kehl, S; Brown, T
2007-06-08
This report contains individual radiological protection surveillance data developed during 2006 for adult members of a select group of families living on Utrok Atoll. These Group I volunteers all underwent a whole-body count to determine levels of internally deposited cesium-137 ({sup 137}Cs) and supplied a bioassay sample for analysis of plutonium isotopes. Measurement data were obtained and the results compared with an equivalent set of measurement data for {sup 137}Cs and plutonium isotopes from a second group of adult volunteers (Group II) who were long-term residents of Utrok Atoll. For the purposes of this comparison, Group II volunteers were consideredmore » representative of the general population on Utrok Atoll. The general aim of the study was to determine residual systemic burdens of fallout radionuclides in each volunteer group, develop data in response to addressing some specific concerns about the preferential uptake and potential health consequences of residual fallout radionuclides in Group I volunteers, and generally provide some perspective on the significance of radiation doses delivered to volunteers (and the general Utrok Atoll resident population) in terms of radiological protection standards and health risks. Based on dose estimates from measurements of internally deposited {sup 137}Cs and plutonium isotopes, the data and information developed in this report clearly show that neither volunteer group has acquired levels of internally deposited fallout radionuclides specific to nuclear weapons testing in the Marshall Islands that are likely to have any consequence on human health. Moreover, the dose estimates are well below radiological protection standards as prescribed by U.S. regulators and international agencies, and are very small when compared to doses from natural sources of radiation in the Marshall Islands and the threshold where radiation health effects could be either medically diagnosed in an individual or epidemiologically discerned in a group of people. In general, the results from the whole-body counting measurements of 137Cs are consistent with our knowledge that a key pathway for exposure to residual fallout contamination on Utrok Atoll is low-level chronic uptake of {sup 137}Cs from the consumption of locally grown produce (Robison et al., 1999). The error-weighted, average body burden of {sup 137}Cs measured in Group I and Group II volunteers was 0.31 kBq and 0.62 kBq, respectively. The associated average, annual committed effective dose equivalent (CEDE) delivered to Group I and Group II volunteers from {sup 137}Cs during the year of measurement was 2.1 and 4.0 mrem. For comparative purposes, the annual dose limit for members of the public as recommended by the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP) is 100 mrem. Consequently, specific concerns about elevated levels of {sup 137}Cs uptake and higher risks from radiation exposure to Group I volunteers would be considered unfounded. Moreover, the urinary excretion of plutonium-239 ({sup 239}Pu) from Group I and Group II volunteers is statistically indistinguishable. In this case, the error-weighted, average urinary excretion of {sup 239}Pu from Group I volunteers of 0.10 {mu}Bq per 24-h void with a range between -0.01 and 0.23 {mu}Bq per 24-h void compares with an error-weighted average from Group II volunteers of 0.11 {mu}Bq per 24-h void with a range between -0.20 and 0.47 {mu}Bq per 24-h void. The range in urinary excretion of {sup 239}Pu from Utrok Atoll residents is very similar to that observed for other population groups in the Marshall Islands (Bogen et al., 2006; Hamilton et al., 2006a; 2006b; 2006c, 2007a; 2007b; 2007c) and is generally considered representative of worldwide background.« less
Radionuclide Basics: Plutonium
Plutonium (chemical symbol Pu) is a radioactive metal. Plutonium is considered a man-made element. Plutonium-239 is used to make nuclear weapons. Pu-239 and Pu-240 are byproducts of nuclear reactor operations and nuclear bomb explosions.
Plutonium inventories for stabilization and stabilized materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.K.
1996-05-01
The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials withinmore » 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouzigues, H.; Reneaud, J.-M.
1963-01-01
A method and a special apparatus are described which make it possible to detach the insoluble plutonium salt deposits in the extraction chain of an irradiated fuel treatment plant. The process chosen allows the detection, in the extraction batteries or in the highly active chemical engineering equipment, of plutonium quantities of a few grams. After four years operation it has been impossible to detect measurable quantities of plutonium in any part of the extraction chain. The results have been confirmed by visual examinations carried out with a specially constructed endoscope. (auth)
SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE
Watt, G.W.
1958-08-19
An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.
An MS-DOS-based program for analyzing plutonium gamma-ray spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhter, W.D.; Buckley, W.M.
1989-09-07
A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.
SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, G.E.; Adamson, A.W.; Schubert, J.
A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This processmore » provides a convenient and efficient means for isolating plutonium.« less
Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
ULLAH, M K
2001-02-26
The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stablemore » state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.« less
PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES
Wahl, A.C.
1957-11-12
A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.
PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES
Brown, H.S.; Bohlmann, E.G.
1961-05-01
A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.
PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION
Wolter, F.J.; Diehl, H.C. Jr.
1958-01-01
This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.
Method of separating thorium from plutonium
Clifton, David G.; Blum, Thomas W.
1984-01-01
A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Method of separating thorium from plutonium
Clifton, D.G.; Blum, T.W.
A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Method of separating thorium from plutonium
Clifton, D.G.; Blum, T.W.
1984-07-10
A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Locating trace plutonium in contaminated soil using micro-XRF imaging
Worley, Christopher G.; Spencer, Khalil J.; Boukhalfa, Hakim; ...
2014-06-01
Micro-X-ray fluorescence (MXRF) was used to locate minute quantities of plutonium in contaminated soil. Because the specimen had previously been prepared for analysis by scanning electron microscopy, it was coated with gold to eliminate electron beam charging. However, this significantly hindered efforts to detect plutonium by MXRF. The gold L peak series present in all spectra increased background counts. Plutonium signal attenuation by the gold coating and severe peak overlap from potassium in the soil prevented detection of trace plutonium using the Pu Mα peak. However, the 14.3 keV Pu Lα peak sensitivity was not optimal due to poor transmissionmore » efficiency through the source polycapillary optic, and the instrument silicon drift detector sensitivity quickly declines for peaks with energies above ~10 keV. Instrumental parameters were optimized (eg. using appropriate source filters) in order to detect plutonium. An X-ray beam aperture was initially used to image a majority of the specimen with low spatial resolution. A small region that appeared to contain plutonium was then imaged at high spatial resolution using a polycapillary optic. Small areas containing plutonium were observed on a soil particle, and iron was co-located with the plutonium. Zinc and titanium also appeared to be correlated with the plutonium, and these elemental correlations provided useful plutonium chemical state information that helped to better understand its environmental transport properties.« less
Environmental aspects of the transuranics. A selected, annotated bibliography. Volume 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ensminger, J.T.; Fore, C.S.; Dailey, N.S.
This ninth published bibliography of 589 references is compiled from the Nevada Applied Ecology Information Center`s Data Base on the Environmental Aspects of the Transuranics. The data base was built to provide information support to the Nevada Applied Ecology Group (NAEG) of DOE`s Nevada Operations Office. The general scope covers environmental aspects of uranium and the transuranic elements, with emphasis on plutonium. This annotated bibliography highlights literature on plutonium 238 and 239 and americium 241 in the critical organs of man and animals. Studies on the migration of plutonium and the transplutonics through the environment are also emphasized. Supporting informationmore » on ecology of the Nevada Test Site and reviews and summarizing literature on other radionuclides have been included at the request of the NAEG. The references are arranged by subject category with leading authors appearing alphabetically within each category. Indexes are provided for author(s), geographic location, keywords, taxonomic name, title, and publication description.« less
Stabilizing stored PuO2 with addition of metal impurities
NASA Astrophysics Data System (ADS)
Moten, Shafaq; Huda, Muhammad
Plutonium oxides is of widespread significance due its application in nuclear fuels, space missions, as well as the long-termed storage of plutonium from spent fuel and nuclear weapons. The processes to refine and store plutonium bring many other elements in contact with the plutonium metal and thereby affect the chemistry of the plutonium. Pure plutonium metal corrodes to an oxide in air with the most stable form of this oxide is stoichiometric plutonium dioxide, PuO2. Defects such as impurities and vacancies can form in the plutonium dioxide before, during and after the refining processes as well as during storage. An impurity defect manifests itself at the bottom of the conduction band and affects the band gap of the unit cell. Studying the interaction between transition metals and plutonium dioxide is critical for better, more efficient storage plans as well as gaining insights to provide a better response to potential threats of exposure to the environment. Our study explores the interaction of a few metals within the plutonium dioxide structure which have a likelihood of being exposed to the plutonium dioxide powder. Using Density Functional Theory, we calculated a substituted metal impurity in PuO2 supercell. We repeated the calculations with an additional oxygen vacancy. Our results reveal interesting volume contraction of PuO2 supercell when one plutonium atom is substituted with a metal atom. The authors acknowledge the Texas Computing Center (TACC) at The University of Texas at Austin and High Performance Computing (HPC) at The University of Texas at Arlington.
PROCESSES FOR SEPARATING AND RECOVERING CONSTITUENTS OF NEUTRON IRRADIATED URANIUM
Connick, R.E.; Gofman, J.W.; Pimentel, G.C.
1959-11-10
Processes are described for preparing plutonium, particularly processes of separating plutonium from uranium and fission products in neutron-irradiated uraniumcontaining matter. Specifically, plutonium solutions containing uranium, fission products and other impurities are contacted with reducing agents such as sulfur dioxide, uranous ion, hydroxyl ammonium chloride, hydrogen peroxide, and ferrous ion whereby the plutoninm is reduced to its fluoride-insoluble state. The reduced plutonium is then carried out of solution by precipitating niobic oxide therein. Uranium and certain fission products remain behind in the solution. Certain other fission products precipitate along with the plutonium. Subsequently, the plutonium and fission product precipitates are redissolved, and the solution is oxidized with oxidizing agents such as chlorine, peroxydisulfate ion in the presence of silver ion, permanganate ion, dichromate ion, ceric ion, and a bromate ion, whereby plutonium is oxidized to the fluoride-soluble state. The oxidized solution is once again treated with niobic oxide, thus precipitating the contamirant fission products along with the niobic oxide while the oxidized plutonium remains in solution. Plutonium is then recovered from the decontaminated solution.
METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE
Faris, B.F.
1961-04-25
Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.
Accountability Tanks Calibration Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelberger, James G.; Salazar, William Richard; Finstad, Casey Charles
2017-04-25
MET-1 utilizes tanks to store plutonium in solution. The Nuclear Material Control & Accountability group at LANL requires that MET-1 be able to determine the amount of SNM remaining in solution in the tanks for accountability purposes. For this reason it is desired to determine how well various operators may read the volume of liquid left in the tank with the tank measurement device (glass column or slab). The accuracy of the measurement is then compared to the current SAFE-NMCA acceptance criteria for lean and rich plutonium solutions to determine whether or not the criteria are reasonable and may bemore » met.« less
Kolodney, M.
1959-12-01
A method is described for rapidly removing iron, nickel, and zinc coatings from plutonium objects while simultaneously rendering the plutonium object passive. The method consists of immersing the coated plutonium object in an aqueous acid solution containing a substantial concentration of nitrate ions, such as fuming nitric acid.
METHOD OF MAKING PLUTONIUM DIOXIDE
Garner, C.S.
1959-01-13
A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.
METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE
Tolley, W.B.; Smith, R.C.
1959-12-15
A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.
Plutonium in the arctic marine environment--a short review.
Skipperud, Lindis
2004-06-18
Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers.
Suslova, Klara G; Sokolova, Alexandra B; Efimov, Alexander V; Miller, Scott C
2013-03-01
Americium-241 (²⁴¹Am) is the second most significant radiation hazard after ²³⁹Pu at some of the Mayak Production Association facilities. This study summarizes current data on the accumulation, distribution, and excretion of americium compared with plutonium in different organs from former Mayak PA workers. Americium and plutonium were measured in autopsy and bioassay samples and correlated with the presence or absence of chronic disease and with biological transportability of the aerosols encountered at different workplaces. The relative accumulation of ²⁴¹Am was found to be increasing in the workers over time. This is likely from ²⁴¹Pu that increases with time in reprocessed fuel and from the increased concentrations of ²⁴¹Am and ²⁴¹Pu in inhaled alpha-active aerosols. While differences were observed in lung retention with exposures to different industrial compounds with different transportabilities (i.e., dioxide and nitrates), there were no significant differences in lung retention between americium and plutonium within each transportability group. In the non-pulmonary organs, the highest ratios of ²⁴¹Am/²⁴¹Am + SPu were observed in the skeleton. The relative ratios of americium in the skeleton versus liver were significantly greater than for plutonium. The relative amounts of americium and plutonium found in the skeleton compared with the liver were even greater in workers with documented chronic liver diseases. Excretion rates of ²⁴¹Am in ‘‘healthy’’ workers were estimated using bioassay and autopsy data. The data suggest that impaired liver function leads to reduced hepatic ²⁴¹Am retention, leading to increased ²⁴¹Am excretion.
PROCESS OF SEPARATING PLUTONIUM FROM URANIUM
Brown, H.S.; Hill, O.F.
1958-09-01
A process is presented for recovering plutonium values from aqueous solutions. It comprises forming a uranous hydroxide precipitate in such a plutonium bearing solution, at a pH of at least 5. The plutonium values are precipitated with and carried by the uranium hydroxide. The carrier precipitate is then redissolved in acid solution and the pH is adjusted to about 2.5, causing precipitation of the uranous hydroxide but leaving the still soluble plutonium values in solution.
COLUMBIC OXIDE ADSORPTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM IONS
Beaton, R.H.
1959-07-14
A process is described for separating plutonium ions from a solution of neutron irradiated uranium in which columbic oxide is used as an adsorbert. According to the invention the plutonium ion is selectively adsorbed by Passing a solution containing the plutonium in a valence state not higher than 4 through a porous bed or column of granules of hydrated columbic oxide. The adsorbed plutonium is then desorbed by elution with 3 N nitric acid.
PROCESS USING BISMUTH PHOSPHATE AS A CARRIER PRECIPITATE FOR FISSION PRODUCTS AND PLUTONIUM VALUES
Finzel, T.G.
1959-03-10
A process is described for separating plutonium from fission products carried therewith when plutonium in the reduced oxidation state is removed from a nitric acid solution of irradiated uranium by means of bismuth phosphate as a carrier precipitate. The bismuth phosphate carrier precipitate is dissolved by treatment with nitric acid and the plutonium therein is oxidized to the hexavalent oxidation state by means of potassium dichromate. Separation of the plutonium from the fission products is accomplished by again precipitating bismuth phosphate and removing the precipitate which now carries the fission products and a small percentage of the plutonium present. The amount of plutonium carried in this last step may be minimized by addition of sodium fluoride, so as to make the solution 0.03N in NaF, prior to the oxidation and prccipitation step.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.
2000-09-28
This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantifymore » the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.« less
PROCESS FOR THE SEPARATION OF HEAVY METALS
Gofman, J.W.; Connick, R.E.; Wahl, A.C.
1959-01-27
A method is presented for thc separation of plutonium from uranium and the fission products with which it is associated. The method is based on the fact that hexavalent plutonium forms an insoluble complex precipitate with sodium acetate, as does the uranyl ion, while reduced plutonium is not precipitated by sodium acetate. Several embodiments are shown, e.g., a solution containing plutonium and uranium in the hexavalent state may be contacted with sodium acetate causing the formation of a sodium uranyl acetate precipitate which carries the plutonium values while the fission products remain in solution. If the original solution is treated with a reducing agent, so that the plutonium is reduced while the uranium remains in the hexavalent state, and sodium and acetate ions are added, the uranium will precipitutc while the plutonium remains in solution effecting separation of the Pu from urarium.
DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES
Fries, B.A.
1959-11-10
A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Dulaney A.; Brigantic, Andrea M.; Morgan, William F.
Studies of health effects in animals after exposure to internally deposited radionuclides were intended to supplement observational studies in humans. Both nuclear workers and Beagle dogs have exhibited plutonium associated lung fibrosis; however, the dogs smaller gene pool may limit the applicability of findings to humans. Data on Beagles that inhaled either plutonium-238 dioxide (238PuO2) or plutonium-239 dioxide (239PuO2) were analyzed. Wright's Coefficient of Inbreeding was used to measure genetic or familial susceptibility and was assessed as an explanatory variable when modeling the association between lung fibrosis incidence and plutonium exposure. Lung fibrosis was diagnosed in approximately 80% of themore » exposed dogs compared with 23.7% of the control dogs. The maximum degree of inbreeding was 9.4%. Regardless of isotope, the addition of inbreeding significantly improved the model in female dogs but not in males. In female dogs an increased inbreeding coefficient predicted decreased hazard of a lung fibrosis diagnosis. Lung fibrosis was common in these dogs with inbreeding affecting models of lung fibrosis incidence in females but not in males. The apparent protective effect in females predicted by these models of lung fibrosis incidence is likely to be minimal given the small degree of inbreeding in these groups.« less
77 FR 26149 - Access Authorization Fees
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
... Regulatory Affairs of OMB. List of Subjects 10 CFR Part 11 Hazardous materials--transportation... licensees for work performed under the Material Access Authorization Program (MAAP) and the Information... assigned duties which require access to special nuclear material (plutonium, uranium-233, and uranium...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plummer, J. R.; Immel, D. M.; Serrato, M. G.
2015-11-18
The Savannah River National Laboratory (SRNL) in partnership with CH2M Plateau Remediation Company (CHPRC) deployed the GrayQb TM SF2 radiation imaging device at the Hanford Plutonium Reclamation Facility (PRF) to assist in the radiological characterization of the canyon. The deployment goal was to locate radiological contamination hot spots in the PRF canyon, where pencil tanks were removed and decontamination/debris removal operations are on-going, to support the CHPRC facility decontamination and decommissioning (D&D) effort. The PRF canyon D&D effort supports completion of the CHPRC Plutonium Finishing Plant Decommissioning Project. The GrayQb TM SF2 (Single Faced Version 2) is a non-destructive examinationmore » device developed by SRNL to generate radiation contour maps showing source locations and relative radiological levels present in the area under examination. The Hanford PRF GrayQbTM Deployment was sponsored by CH2M Plateau Remediation Company (CHPRC) through the DOE Richland Operations Office, Inter-Entity Work Order (IEWO), DOE-RL IEWO- M0SR900210.« less
NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM
Reavis, J.G.; Leary, J.A.; Walsh, K.A.
1959-05-12
A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.
OXIDATIVE METHOD OF SEPARATING PLUTONIUM FROM NEPTUNIUM
Beaufait, L.J. Jr.
1958-06-10
A method is described of separating neptunium from plutonium in an aqueous solution containing neptunium and plutonium in valence states not greater than +4. This may be accomplished by contacting the solution with dichromate ions, thus oxidizing the neptunium to a valence state greater than +4 without oxidizing any substantial amount of plutonium, and then forming a carrier precipitate which carries the plutonium from solution, leaving the neptunium behind. A preferred embodiment of this invention covers the use of lanthanum fluoride as the carrier precipitate.
PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES
Barrick, J.G.; Fries, B.A.
1960-09-27
A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.
Continuous plutonium dissolution apparatus
Meyer, F.G.; Tesitor, C.N.
1974-02-26
This invention is concerned with continuous dissolution of metals such as plutonium. A high normality acid mixture is fed into a boiler vessel, vaporized, and subsequently condensed as a low normality acid mixture. The mixture is then conveyed to a dissolution vessel and contacted with the plutonium metal to dissolve the plutonium in the dissolution vessel, reacting therewith forming plutonium nitrate. The reaction products are then conveyed to the mixing vessel and maintained soluble by the high normality acid, with separation and removal of the desired constituent. (Official Gazette)
Decrease the Number of Glovebox Glove Breaches and Failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtle, Jackie C.
2013-12-24
Los Alamos National Laboratory (LANL) is committed to the protection of the workers, public, and environment while performing work and uses gloveboxes as engineered controls to protect workers from exposure to hazardous materials while performing plutonium operations. Glovebox gloves are a weak link in the engineered controls and are a major cause of radiation contamination events which can result in potential worker exposure and localized contamination making operational areas off-limits and putting programmatic work on hold. Each day of lost opportunity at Technical Area (TA) 55, Plutonium Facility (PF) 4 is estimated at $1.36 million. Between July 2011 and Junemore » 2013, TA-55-PF-4 had 65 glovebox glove breaches and failures with an average of 2.7 per month. The glovebox work follows the five step safety process promoted at LANL with a decision diamond interjected for whether or not a glove breach or failure event occurred in the course of performing glovebox work. In the event that no glove breach or failure is detected, there is an additional decision for whether or not contamination is detected. In the event that contamination is detected, the possibility for a glove breach or failure event is revisited.« less
23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS ...
23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS 771, 776/777, AND 707. BUILDING 771, IN THE FOREGROUND, WAS BUILT IN 1952 TO HOUSE ALL PLUTONIUM OPERATIONS. BY 1956, BUILDING 771 WAS NO LONGER ADEQUATE FOR PRODUCTION DEMANDS. BUILDING 776/777, TO THE SOUTH OF BUILDING 771, WAS CONSTRUCTED TO HOUSE PLUTONIUM FABRICATION AND FOUNDRY OPERATIONS. PLUTONIUM RECOVERY REMAINED IN BUILDING 771. BY 1967, CONSTRUCTION ON BUILDING 707, TO THE SOUTH OF BUILDING 776/777, BEGAN AS PRODUCTION LEVELS CONTINUED TO EXPAND NECESSITATING THE NEED FOR ADDITIONAL PLUTONIUM FABRICATION SPACE (7/1/69). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO
PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS
Faris, B.F.
1960-04-01
A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.
PROCESS FOR SEPARATION OF HEAVY METALS
Duffield, R.B.
1958-04-29
A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.
PROCESS FOR THE RECOVERY OF PLUTONIUM
Ritter, D.M.
1959-01-13
An improvement is presented in the process for recovery and decontamination of plutonium. The carrier precipitate containing plutonium is dissolved and treated with an oxidizing agent to place the plutonium in a hexavalent oxidation state. A lanthanum fluoride precipitate is then formed in and removed from the solution to carry undesired fission products. The fluoride ions in the reniaining solution are complexed by addition of a borate sueh as boric acid, sodium metaborate or the like. The plutonium is then reduced and carried from the solution by the formation of a bismuth phosphate precipitate. This process effects a better separation from unwanted flssion products along with conccntration of the plutonium by using a smaller amount of carrier.
Stabilization and immobilization of military plutonium: A non-proliferation perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leventhal, P.
1996-05-01
The Nuclear Control Institute welcomes this DOE-sponsored technical workshop on stabilization and immobilization of weapons plutonium (W Pu) because of the significant contribution it can make toward the ultimate non-proliferation objective of eliminating weapons-usable nuclear material, plutonium and highly enriched uranium (HEU), from world commerce. The risk of theft or diversion of these materials warrants concern, as only a few kilograms in the hands of terrorists or threshold states would give them the capability to build nuclear weapons. Military plutonium disposition questions cannot be addressed in isolation from civilian plutonium issues. The National Academy of Sciences has urged that {open_quotes}furthermore » steps should be taken to reduce the proliferation risks posed by all of the world`s plutonium stocks, military and civilian, separated and unseparated...{close_quotes}. This report discusses vitrification and a mixed oxide fuels option, and the effects of disposition choices on civilian plutonium fuel cycles.« less
Synthesis of actinide nitrides, phosphides, sulfides and oxides
Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.
1992-01-01
A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.
PRECIPITATION OF PLUTONOUS PEROXIDE
Barrick, J.G.; Manion, J.P.
1961-08-15
A precipitation process for recovering plutonium values contained in an aqueous solution is described. In the process for precipitating plutonium as plutonous peroxide, hydroxylamine or hydrazine is added to the plutoniumcontaining solution prior to the addition of peroxide to precipitate plutonium. The addition of hydroxylamine or hydrazine increases the amount of plutonium precipitated as plutonous peroxide. (AEC)
PROCESS USING POTASSIUM LANTHANUM SULFATE FOR FORMING A CARRIER PRECIPITATE FOR PLUTONIUM VALUES
Angerman, A.A.
1958-10-21
A process is presented for recovering plutonium values in an oxidation state not greater than +4 from fluoride-soluble fission products. The process consists of adding to an aqueous acidic solution of such plutonium values a crystalline potassium lanthanum sulfate precipitate which carries the plutonium values from the solution.
Schonfeld, F.W.
1959-09-15
New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.
The Fireball integrated code package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobranich, D.; Powers, D.A.; Harper, F.T.
1997-07-01
Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state ofmore » the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.« less
NASA Astrophysics Data System (ADS)
Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.
2017-12-01
Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, John P.
1992-01-01
A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
O'Donnell, R G; Mitchell, P I; Priest, N D; Strange, L; Fox, A; Henshaw, D L; Long, S C
1997-08-18
Concentrations of plutonium-239, plutonium-240, strontium-90 and total alpha-emitters have been measured in children's teeth collected throughout Great Britain and Ireland. The concentrations of plutonium and strontium-90 were measured in batched samples, each containing approximately 50 teeth, using low-background radiochemical methods. The concentrations of total alpha-emitters were determined in single teeth using alpha-sensitive plastic track detectors. The results showed that the average concentrations of total alpha-emitters and strontium-90 were approximately one to three orders of magnitude greater than the equivalent concentrations of plutonium-239,240. Regression analyses indicated that the concentrations of plutonium, but not strontium-90 or total alpha-emitters, decreased with increasing distance from the Sellafield nuclear fuel reprocessing plant-suggesting that this plant is a source of plutonium contamination in the wider population of the British Isles. Nevertheless, the measured absolute concentrations of plutonium (mean = 5 +/- 4 mBq kg-1 ash wt.) were so low that they are considered to present an insignificant radiological hazard.
Transfer of environmental plutonium and americium across the human gut.
Hunt, G J; Leonard, D R; Lovett, M B
1986-08-01
Data on gut transfer factors for environmental forms of radionuclides are essential for estimates of public radiation exposures following ingestion, and thus in decisions on controlling waste discharges. Dose estimates for transuranic nuclides are particularly sensitive to uncertainties stemming from gut transfer data being related to non-environmental forms and/or derived from animal experiments. We have measured human gut transfer factors for plutonium and americium in two experiments using marine foods obtained near Sellafield, Cumbria. Firstly, the urine of volunteer members of the critical group of shellfish consumers was analysed for transuranics and the results related to their consumption rates. Secondly, remotely-based volunteers ate single quantities of shellfish obtained near Sellafield, and their urine was analysed. An overall result for the gut transfer factor for environmental plutonium of 0.8 X 10(-4) indicates no need to increase the value of 1 X 10(-4), currently used by the International Commission on Radiological Protection (ICRP) for soluble forms. Results for americium show that the ICRP value of 5 X 10(-4) is maximising, and that a value of 1 X 10(-4) would be supportable. The results from the study of critical group members provide confidence in our habits survey techniques and reassurance that there are no significant pathways for intake of transuranics by these people that have not been recognised.
Froidevaux, Pascal; Haldimann, Max
2008-01-01
Background Occupational risks, the present nuclear threat, and the potential danger associated with nuclear power have raised concerns regarding the metabolism of plutonium in pregnant women. Objective We measured plutonium levels in the milk teeth of children born between 1951 and 1995 to assess the potential risk that plutonium incorporated by pregnant women might pose to the radiosensitive tissues of the fetus through placenta transfer. Methods We used milk teeth, whose enamel is formed during pregnancy, to investigate the transfer of plutonium from the mother’s blood plasma to the fetus. We measured plutonium using sensitive sector field inductively coupled plasma mass spectrometry techniques. We compared our results with those of a previous study on strontium-90 (90Sr) released into the atmosphere after nuclear bomb tests. Results Results show that plutonium activity peaks in the milk teeth of children born about 10 years before the highest recorded levels of plutonium fallout. By contrast, 90Sr, which is known to cross the placenta barrier, manifests differently in milk teeth, in accordance with 90Sr fallout deposition as a function of time. Conclusions These findings demonstrate that plutonium found in milk teeth is caused by fallout that was inhaled around the time the milk teeth were shed and not from any accumulation during pregnancy through placenta transfer. Thus, plutonium may not represent a radiologic risk for the radiosensitive tissues of the fetus. PMID:19079728
REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Kerry A.; Bellamy, J. Steve; Chandler, Greg T.
2013-08-18
U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States wasmore » the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, Sean Douglas; Smith, Paul Herrick; Jarvinen, Gordon D.
Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that themore » following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U 3O 8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl 3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a commercially-available phosphate buffer would significantly reduce the solubility of PuCl 3 by the precipitation of PuPO 4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaffke, Patrick John
This acts as a short note on the effects of varying the value of the endpoints of the thermal, epithermal, and fast flux groups. As expected, varying these endpoints can alter the value of the cross-section for a given nuclide. This effect is quantified in this note for an important nuclide in reactor simulations, 238U. Uranium-238 is responsible for the production of Plutonium in most reactors, making it critical to understand all of the 238U capture modes leading to Plutonium. We explicitly quantify the reaction rates for 238U that are altered when we use a given research reactor fluxmore » and vary the endpoint definitions of said flux as well as the reactor position.« less
METHOD OF SEPARATING PLUTONIUM
Heal, H.G.
1960-02-16
BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grison, E.
1961-01-01
A discussion is given on physical properties of plutonium, allotropic variations; kinetics of transformation; electrica; and magnetic properties; and electronic structure of the external layers of the atom. Plutonium can be used only as nuclear fuel; it is very expensive and toxic. (auth)
Siegfried S. Hecker, Plutonium, and Nonproliferation
controversy involving the stability of certain structures (or phases) in plutonium alloys near equilibrium Cold War is Over. What Now?, DOE Technical Report, April, 1995 6th US-Russian Pu Science Workshop * Aging of Plutonium and Its Alloys * A Tale of Two Diagrams * Plutonium and Its Alloys-From Atoms to
SEPARATION OF PLUTONIUM FROM FISSION PRODUCTS BY A COLLOID REMOVAL PROCESS
Schubert, J.
1960-05-24
A method is given for separating plutonium from uranium fission products. An acidic aqueous solution containing plutonium and uranium fission products is subjected to a process for separating ionic values from colloidal matter suspended therein while the pH of the solution is maintained between 0 and 4. Certain of the fission products, and in particular, zirconium, niobium, lanthanum, and barium are in a colloidal state within this pH range, while plutonium remains in an ionic form, Dialysis, ultracontrifugation, and ultrafiltration are suitable methods of separating plutonium ions from the colloids.
PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL
Moore, R.H.
1962-04-10
A process of recovering plutonium from neutronbombarded uranium fuel by dissolving the fuel in equimolar aluminum chloride-potassium chloride; heating the mass to above 700 deg C for decomposition of plutonium tetrachloride to the trichloride; extracting the plutonium trichloride into a molten salt containing from 40 to 60 mole % of lithium chloride, from 15 to 40 mole % of sodium chloride, and from 0 to 40 mole % of potassium chloride or calcium chloride; and separating the layer of equimolar chlorides containing the uranium from the layer formed of the plutonium-containing salt is described. (AEC)
SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS
Callis, C.F.; Moore, R.L.
1959-09-01
>The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.
Pyrochemical recovery of plutonium from calcium fluoride reduction slag
Christensen, D.C.
A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.
Past Exposure to Densely Ionizing Radiation Leaves a Unique Permanent Signature in the Genome
Hande, M. Prakash; Azizova, Tamara V.; Geard, Charles R.; Burak, Ludmilla E.; Mitchell, Catherine R.; Khokhryakov, Valentin F.; Vasilenko, Evgeny K.; Brenner, David J.
2003-01-01
Speculation has long surrounded the question of whether past exposure to ionizing radiation leaves a unique permanent signature in the genome. Intrachromosomal rearrangements or deletions are produced much more efficiently by densely ionizing radiation than by chemical mutagens, x-rays, or endogenous aging processes. Until recently, such stable intrachromosomal aberrations have been very hard to detect, but a new chromosome band painting technique has made their detection practical. We report the detection and quantification of stable intrachromosomal aberrations in lymphocytes of healthy former nuclear-weapons workers who were exposed to plutonium many years ago. Even many years after occupational exposure, more than half the blood cells of the healthy plutonium workers contain large (>6 Mb) intrachromosomal rearrangements. The yield of these aberrations was highly correlated with plutonium dose to the bone marrow. The control groups contained very few such intrachromosomal aberrations. Quantification of this large-scale chromosomal damage in human populations exposed many years earlier will lead to new insights into the mechanisms and risks of cytogenetic damage. PMID:12679897
NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2013 and FY2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Julianne J.; Nikolich, George; Mizell, Steve
The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. Emphasis is given to collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans that are beingmore » developed, which will facilitate appropriate closure design and postclosure monitoring. Desert Research Institute installed two meteorological monitoring stations south (station number 1) and north (station number 2) of the Plutonium Valley CA and a runoff sediment sampling station within the CA in 2011. Temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and airborne particulate concentration are collected at both meteorological stations. The maximum, minimum, and average or total (as appropriate) for each of these parameters is recorded for each 10-minute interval. The sediment sampling station includes an automatically activated ISCO sampling pump with collection bottles for suspended sediment, which is activated when sufficient flow is present in the channel, and passive traps for bedload material that is transported down the channel during runoff events. This report presents data collected from these stations during FY2013 and FY2014.« less
Seaborg, G.T.; Thompson, S.G.
1960-08-23
A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.
QUANTITATIVE PLUTONIUM MICRODISTRIBUTION IN BONE TISSUE OF VERTEBRA FROM A MAYAK WORKER
Lyovkina, Yekaterina V.; Miller, Scott C.; Romanov, Sergey A.; Krahenbuhl, Melinda P.; Belosokhov, Maxim V.
2010-01-01
The purpose was to obtain quantitative data on plutonium microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. A sample of the thoracic vertebra was obtained from a former Mayak worker with a rather high plutonium burden. Additional information was obtained on occupational and exposure history, medical history, and measured plutonium content in organs. Plutonium was detected in bone sections from its fission tracks in polycarbonate film using neutron-induced autoradiography. Quantitative analysis of randomly selected microscopic fields on one of the autoradiographs was performed. Data included fission fragment tracks in different bone tissue and surface areas. Quantitative information on plutonium microdistribution in human bone tissue was obtained for the first time. From these data, quantitative relationship of plutonium decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. The measured quantitative relationship of decays in bone volume to decays on bone surface does not coincide with recommended models for the cortical bone fraction by the International Commission on Radiological Protection. Biokinetic model parameters of extrapulmonary compartments might need to be adjusted after expansion of the data set on quantitative plutonium microdistribution in other bone types in human as well as other cases with different exposure patterns and types of plutonium. PMID:20838087
NASA Astrophysics Data System (ADS)
Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki
2017-01-01
Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarskaya, Z.B.; Okladnikova, N.D.; Belyaeva, Z.D.
1995-09-01
For the estimation of radiation lung cancer risk for a human being it is important to take into account different etiological factors because of the polyetiology of this disease. This work was the aim of a retrospective investigation ({open_quotes}case-control{close_quotes}) of 500 workers of a nuclear enterprise that had been gamma-irradiated in a wide dose range and had had exposure to airborne {sup 239}Pu. One hundred sixty-two persons contracted lung cancer (morbidity), and 338 persons that had not fallen ill served as pair control. Eleven potential risk factors were evaluated using a logistic regression model, five insignificant factors were excluded, andmore » the remaining factors were arranged (by odds ratio) in decreasing order: smoking > plutonium pneumosclerosis > plutonium incorporation in body > chronic obstructive pulmonary disease (COPD) > decrease of body mass > external gamma-irradiation. The percentage of histologically confirmed adenocarcinoma among the nuclear enterprise workers was 74% which is significantly higher than 33% among the population that did not work at the enterprise, particularly in the case of high (more than 11 kBq) plutonium incorporation by the nuclear workers. The localization of tumors in this cohort is more frequently in the lower and middle lung lobes at the periphery. Each of the histological types of lung cancer has manifested a different degree of correlation with particular factors. 32 refs., 1 fig., 3 tabs.« less
Schonfeld, F.W.; Waber, J.T.
1960-08-30
A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, J.P.
1992-03-17
A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
Search for plutonium-244 tracks in mountain pass bastnaesite
Fleischer, R.L.; Naeser, C.W.
1972-01-01
WE have found that bastnaesite, a rare earth fluorocarbonate, from the Precambrian Mountain Pass deposit has an apparent Cretaceous fission track age, and hence does not reveal any anomalous fission tracks due to 244Pu. ?? 1972 Nature Publishing Group.
Kolodney, M.
1959-07-01
Methods are presented for the electro-deposition of plutonium from fused mixtures of plutonium halides and halides of the alkali metals and alkaline earth metals. Th salts, preferably chlorides and with the plutonium prefer ably in the trivalent state, are placed in a refractory crucible such as tantalum or molybdenam and heated in a non-oxidizing atmosphere to 600 to 850 deg C, the higher temperatatures being used to obtain massive plutonium and the lower for the powder form. Electrodes of graphite or non reactive refractory metals are used, the crucible serving the cathode in one apparatus described in the patent.
30. VIEW OF A GLOVEBOX LINE USED IN PLUTONIUM OPERATIONS. ...
30. VIEW OF A GLOVEBOX LINE USED IN PLUTONIUM OPERATIONS. SAFETY AND HEALTH CONCERNS WERE OF MAJOR IMPORTANCE AT THE PLANT, BECAUSE OF THE RADIOACTIVE NATURE OF THE MATERIALS USED. PLUTONIUM GIVES OFF ALPHA AND BETA PARTICLES, GAMMA PROTONS, NEUTRONS, AND IS ALSO PYROPHORIC. AS A RESULT, PLUTONIUM OPERATIONS ARE PERFORMED UNDER CONTROLLED CONDITIONS THAT INCLUDE CONTAINMENT, FILTERING, SHIELDING, AND CREATING AN INERT ATMOSPHERE. PLUTONIUM WAS HANDLED WITHIN GLOVEBOXES THAT WERE INTERCONNECTED AND RAN SEVERAL HUNDRED FEET IN LENGTH (5/5/70). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO
Rapid Method for Sodium Hydroxide/Sodium Peroxide Fusion ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Plutonium-238 and plutonium-239 in water and air filters Method Selected for: SAM lists this method as a pre-treatment technique supporting analysis of refractory radioisotopic forms of plutonium in drinking water and air filters using the following qualitative techniques: • Rapid methods for acid or fusion digestion • Rapid Radiochemical Method for Plutonium-238 and Plutonium 239/240 in Building Materials for Environmental Remediation Following Radiological Incidents. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
The purpose of the workshop was to foster communication within the technical community on issues surrounding stabilization and immobilization of the Department`s surplus plutonium and plutonium- contaminated wastes. The workshop`s objectives were to: build a common understanding of the performance, economics and maturity of stabilization and immobilization technologies; provide a system perspective on stabilization and immobilization technology options; and address the technical issues associated with technologies for stabilization and immobilization of surplus plutonium and plutonium- contaminated waste. The papers presented during this workshop have been indexed separately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, C.R.
1980-01-01
The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)
PREPARATION OF PLUTONIUM TRIFLUORIDE
Burger, L.L.; Roake, W.E.
1961-07-11
A process of producing plutonium trifluoride by reacting dry plutonium(IV) oxalate with chlorofluorinated methane or ethane at 400 to 450 deg C and cooling the product in the absence of oxygen is described.
MCNP Parametric Studies of Plutonium Metal and Various Interstitial Moderating Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glazener, Natasha; Kamm, Ryan James
2017-03-31
Nuclear Criticality Safety (NCS) has performed calculations evaluating the effect of different interstitial materials on 5.0-kg of plutonium metal. As with all non-fissionable interstitials, the results here illustrate that it requires significant quantities of oil to be intimately mixed with plutonium, reflected by a thick layer of full-density water, to achieve the same reactivity as that of solid plutonium metal.
SEPARATION OF PLUTONIUM IONS FROM SOLUTION BY ADSORPTION ON ZIRCONIUM PYROPHOSPHATE
Stoughton, R.W.
1961-01-31
A method is given for separating plutonium in its reduced, phosphate- insoluble state from other substances. It involves contacting a solution containing the plutonium with granular zirconium pyrophosphate.
Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Recknagle, K.
Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause amore » criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.« less
Scientific computations section monthly report, November 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckner, M.R.
1993-12-30
This progress report from the Savannah River Technology Center contains abstracts from papers from the computational modeling, applied statistics, applied physics, experimental thermal hydraulics, and packaging and transportation groups. Specific topics covered include: engineering modeling and process simulation, criticality methods and analysis, plutonium disposition.
Aqueous Nitrate Recovery Line at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finstad, Casey Charles
2016-06-15
This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.
Plutonium and americium separation from salts
Hagan, Paul G.; Miner, Frend J.
1976-01-01
Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, D.; Ascanio, X.
1996-05-01
The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less thanmore » 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.« less
Comparison of actinide production in traveling wave and pressurized water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, A.G.; Smith, T.A.; Deinert, M.R.
The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactormore » cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)« less
PROCESS OF PRODUCING SHAPED PLUTONIUM
Anicetti, R.J.
1959-08-11
A process is presented for producing and casting high purity plutonium metal in one step from plutonium tetrafluoride. The process comprises heating a mixture of the plutonium tetrafluoride with calcium while the mixture is in contact with and defined as to shape by a material obtained by firing a mixture consisting of calcium oxide and from 2 to 10% by its weight of calcium fluoride at from 1260 to 1370 deg C.
WET METHOD OF PREPARING PLUTONIUM TRIBROMIDE
Davidson, N.R.; Hyde, E.K.
1958-11-11
S> The preparation of anhydrous plutonium tribromide from an aqueous acid solution of plutonium tetrabromide is described, consisting of adding a water-soluble volatile bromide to the tetrabromide to provide additional bromide ions sufficient to furnish an oxidation-reduction potential substantially more positive than --0.966 volt, evaporating the resultant plutonium tribromides to dryness in the presence of HBr, and dehydrating at an elevated temperature also in the presence of HBr.
Frank, Michael I [Dublin, CA
2010-02-02
A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.
Elliott, R.O.; Gschneidner, K.A. Jr.
1962-07-10
A method of making stabilized plutonium alloys which are free of voids and cracks and have a controlled amount of plutonium allotropes is described. The steps include adding at least 4.5 at.% of hafnium, indium, or erbium to the melted plutonium metal, homogenizing the resulting alloy at a temperature of 450 deg C, cooling to room temperature, and subjecting the alloy to a pressure which produces a rapid increase in density with a negligible increase in pressure. The pressure required to cause this rapid change in density or transformation ranges from about 800 to 2400 atmospheres, and is dependent on the alloying element. (AEC)
PROCESS OF SECURING PLUTONIUM IN NITRIC ACID SOLUTIONS IN ITS TRIVALENT OXIDATION STATE
Thomas, J.R.
1958-08-26
>Various processes for the recovery of plutonium require that the plutonium be obtalned and maintained in the reduced or trivalent state in solution. Ferrous ions are commonly used as the reducing agent for this purpose, but it is difficult to maintain the plutonium in a reduced state in nitric acid solutions due to the oxidizing effects of the acid. It has been found that the addition of a stabilizing or holding reductant to such solution prevents reoxidation of the plutonium. Sulfamate ions have been found to be ideally suitable as such a stabilizer even in the presence of nitric acid.
NASA Astrophysics Data System (ADS)
Blandinskiy, V. Yu.
2014-12-01
This paper presents the results of a numerical investigation into burnup and breeding of nuclides in metallic fuel consisting of a mixture of plutonium and depleted uranium in a fast reactor with sodium coolant. The feasibility of using plutonium contained in spent nuclear fuel from domestic thermal reactors and weapons-grade plutonium is discussed. It is shown that the largest production of secondary fuel and the least change in the reactivity over the reactor lifetime can be achieved when employing plutonium contained in spent nuclear fuel from a reactor of the RBMK-1000 type.
CONCENTRATION OF Pu USING AN IODATE PRECIPITATE
Fries, B.A.
1960-02-23
A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.
ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION
Boyd, G.E.; Russell, E.R.; Taylor, M.D.
1961-07-11
Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.
IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION
Faris, B.F.
1959-06-30
This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.
Separation of plutonium from lanthanum by electrolysis in LiCl KCl onto molten bismuth electrode
NASA Astrophysics Data System (ADS)
Serp, J.; Lefebvre, P.; Malmbeck, R.; Rebizant, J.; Vallet, P.; Glatz, J.-P.
2005-04-01
This work presents a study on the electroseparation of plutonium from lanthanum using molten bismuth electrodes in LiCl-KCl eutectic at 733 K. The reduction potentials of Pu3+ and La3+ ions were measured on a Bi thin film electrode using cyclic voltammetry (CV). A difference between the peak potentials for the formation of PuBi2 and LaBi2 of approximately 100 mV was found. Separation tests were then carried out using different current densities and salt phase compositions between a plutonium rod anode and an unstirred molten Bi cathode in order to evaluate the efficiency of an electrolytic separation process. At a current density of 12 mA/cm2/wt% (Pu3+), only Pu3+ ions are reduced into the molten Bi electrode, leaving La3+ ions in the salt melt. Similar results were found at two different Pu/La concentration ratios ([Pu]/[La] = 4 and 10). At a current density of 26 mA/cm2/wt% (Pu3+), co-reduction of Pu and La was observed as expected by the large negative potential of the Bi cathode during the separation test.
Development of an alternate pathway for materials destined for disposition to WIPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayers, Georgette Y; Mckerley, Bill; Veazey, Gerald W
2010-01-01
The Los Alamos National Laboratory currently has an inventory of process residues that may be viable candidates for disposition to the Waste Isolation Pilot Project (WIPP) located at Carlsbad, New Mexico. A recent 'Attractiveness Level D' exemption allows for the discard of specified intractable materials regardless of the percent plutonium. However, the limits with respect to drum loadings must be met. Cementation is a key component of the aqueous nitrate flowsheet and serves as a 'bleed-off' stream for impurities separated from the plutonium during processing operations. The main 'feed' to the cementation operations are the 'bottoms' from the evaporation process.more » In the majority of cases, the cemented bottoms contain less than the allowed amount per drum for WIPP acceptance. This project would expand the route to WIPP for items that have no defined disposition path, are difficult to process, have been through multiple passes, have no current recovery operations available to recover the plutonium and that are amenable to cementation. This initial work will provide the foundation for a full scale disposition pathway of the candidate materials. Once the pathway has been expanded and a cementation matrix developed, routine discard activities will be initiated.« less
NASA Astrophysics Data System (ADS)
Cheng, Ting; Baney, Ronald H.; Tulenko, James
2010-10-01
Silicon carbide is one of the prime candidates as a matrix material in inert matrix fuels (IMF) being designed to reduce the plutonium inventories. Since complete fission and transmutation is not practical in a single in-core run, it is necessary to separate the non-transmuted actinide materials from the silicon carbide matrix for recycling. In this work, SiC was corroded in sodium carbonate (Na 2CO 3) and potassium carbonate (K 2CO 3), to form water soluble sodium or potassium silicate. Separation of the transuranics was achieved by dissolving the SiC corrosion product in boiling water. Ceria (CeO 2), which was used as a surrogate for plutonium oxide (PuO 2), was not corroded in these molten salt environments. The molten salt depth, which is a distance between the salt/air interface to the upper surface of SiC pellets, significantly affected the rate of corrosion. The corrosion was faster in K 2CO 3 than in Na 2CO 3 molten salt at 1050 °C, when the initial molten salt depths were kept the same for both salts.
Schrell, Samantha K.; Boland, Kevin Sean; Cross, Justin Neil; ...
2017-01-18
In an attempt to further advance the understanding of plutonium coordination chemistry, we report a robust method for recycling and obtaining plutonium aqueous stock solutions that can be used as a convenient starting material in plutonium synthesis. This approach was used to prepare and characterize plutonium(IV) tetrachloride tris-diphenylsulfoxide, PuCl 4(OSPh 2) 3, by single crystal X-ray diffraction. The PuCl 4(OSPh 2) 3 compound represents a rare example of a 7-coordinate plutonium(IV) complex. Structural characterization of PuCl 4(OSPh 2) 3 by X-ray diffraction utilized a new containment method for radioactive crystals. The procedure makes use of epoxy, polyimide loops, and amore » polyester sheath to provide a robust method for safely containing and easily handling radioactive samples. Lastly, the described procedure is more user friendly than traditional containment methods that employ fragile quartz capillary tubes. Additionally, moving to polyester, instead of quartz, lowers the background scattering from the heavier silicon atoms.« less
JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Jay M.; Lopez, Jacquelyn C.; Wayne, David M.
2012-07-05
The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs. We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists. Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in amore » world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.« less
Coffinberry, A.S.
1959-01-01
An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.
Plutonium recovery from organic materials
Deaton, R.L.; Silver, G.L.
1973-12-11
A method is described for removing plutonium or the like from organic material wherein the organic material is leached with a solution containing a strong reducing agent such as titanium (III) (Ti/sup +3None)/, chromium (II) (Cr/ sup +2/), vanadium (II) (V/sup +2/) ions, or ferrous ethylenediaminetetraacetate (EDTA), the leaching yielding a plutonium-containing solution that is further processed to recover plutonium. The leach solution may also contain citrate or tartrate ion. (Official Gazette)
14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE ...
14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE REMOTE CONTROL STATION. THE STACKER-RETRIEVER, A REMOTELY-OPERATED, MECHANIZED TRANSPORT SYSTEM, RETRIEVES CONTAINERS OF PLUTONIUM FROM SAFE GEOMETRY PALLETS STORED ALONG THE LENGTH OF THE VAULT. THE STACKER-RETRIEVER RUNS ALONG THE AISLE BETWEEN THE PALLETS OF THE STORAGE CHAMBER. (3/2/86) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO
AMINE EXTRACTION OF PLUTONIUM FROM NITRIC ACID SOLUTIONS LOADING AND STRIPPING EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, A.S.
1961-01-19
Information is presented on a suitable amine processing system for plutonium nitrate. Experiments with concentrated plutonium nitrate solutions show that trilaurylamine (TLA) - xylene solvent systems did not form a second organic phase. Experiments are also reported with tri-noctylamine (TnOA)-xylene and TLA-Amsco - octyl alcohol. Two organic phases appear in both these systems at high plutonium nitrate concentrations. Data are tabulated from loading and stripping experiments. (J.R.D.)
Steindler, M.J.
1962-07-24
A process was developed for separating uranium hexafluoride from plutonium hexafluoride by the selective reduction of the plutonium hexafluoride to the tetrafluoride with sulfur tetrafluoride at 50 to 120 deg C, cooling the mixture to --60 to -100 deg C, and volatilizing nonreacted sulfur tetrafluoride and sulfur hexafluoride formed at that temperature. The uranium hexafluoride is volatilized at room temperature away from the solid plutonium tetrafluoride. (AEC)
THE CHEMICAL ANALYSIS OF TERNARY ALLOYS OF PLUTONIUM WITH MOLYBDENUM AND URANIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, G.; Woodhead, J.; Jenkins, E.N.
1958-09-01
It is shown that the absorptiometric determination of molybdenum as thiocyanate may be used in the presence of plutonium. Molybdenum interferes with previously published methods for determining uranium and plutonium but conditlons have been established for its complete removal by solvent extraction of the compound with alpha -benzoin oxime. The previous methods for uranium and plutonium are satisfactory when applied to the residual aqueous phase following this solvent extraction. (auth)
PROCESS OF SEPARATING PLUTONIUM VALUES BY ELECTRODEPOSITION
Whal, A.C.
1958-04-15
A process is described of separating plutonium values from an aqueous solution by electrodeposition. The process consists of subjecting an aqueous 0.1 to 1.0 N nitric acid solution containing plutonium ions to electrolysis between inert metallic electrodes. A current density of one milliampere io one ampere per square centimeter of cathode surface and a temperature between 10 and 60 d C are maintained. Plutonium is electrodeposited on the cathode surface and recovered.
SEPARATION OF PLUTONIUM VALUES FROM URANIUM AND FISSION PRODUCT VALUES
Maddock, A.G.; Booth, A.H.
1960-09-13
Separation of plutonium present in small amounts from neutron irradiated uranium by making use of the phenomenon of chemisorption is described. Plutonium in the tetravalent state is chemically absorbed on a fluoride in solid form. The steps for the separation comprise dissolving the irradiated uranium in nitric acid, oxidizing the plutonium in the resulting solution to the hexavalent state, adding to the solution a soluble calcium salt which by the common ion effect inhibits dissolution of the fluoride by the solution, passing the solution through a bed or column of subdivided calcium fluoride which has been sintered to about 8OO deg C to remove the chemisorbable fission products, reducing the plutonium in the solution thus obtained to the tetravalent state, and again passing the solution through a similar bed or column of calcium fluoride to selectively absorb the plutonium, which may then be recovered by treating the calcium fluoride with a solution of ammonium oxalate.
Using Biomolecules to Separate Plutonium
NASA Astrophysics Data System (ADS)
Gogolski, Jarrod
Used nuclear fuel has traditionally been treated through chemical separations of the radionuclides for recycle or disposal. This research considers a biological approach to such separations based on a series of complex and interdependent interactions that occur naturally in the human body with plutonium. These biological interactions are mediated by the proteins serum transferrin and the transferrin receptor. Transferrin to plutonium in vivo and can deposit plutonium into cells after interacting with the transferrin receptor protein at the cell surface. Using cerium as a non-radioactive surrogate for plutonium, it was found that cerium(IV) required multiple synergistic anions to bind in the N-lobe of the bilobal transferrin protein, creating a conformation of the cerium-loaded protein that would be unable to interact with the transferrin receptor protein to achieve a separation. The behavior of cerium binding to transferrin has contributed to understanding how plutonium(IV)-transferrin interacts in vivo and in biological separations.
PROCESS FOR PRODUCTION OF PLUTONIUM FROM ITS OXIDES
Weissman, S.I.; Perlman, M.L.; Lipkin, D.
1959-10-13
A method is described for obtaining a carbide of plutonium and two methods for obtaining plutonium metal from its oxides. One of the latter involves heating the oxide, in particular PuO/sub 2/, to a temperature of 1200 to 1500 deg C with the stoichiometrical amount of carbon to fornn CO in a hard vacuum (3 to 10 microns Hg), the reduced and vaporized plutonium being collected on a condensing surface above the reaction crucible. When an excess of carbon is used with the PuO/sub 2/, a carbide of plutonium is formed at a crucible temperature of 1400 to 1500 deg C. The process may be halted and the carbide removed, or the reaction temperature can be increased to 1900 to 2100 deg C at the same low pressure to dissociate the carbide, in which case the plutonium is distilled out and collected on the same condensing surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, L J; Borisov, G B
2004-07-21
A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46more » Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Progress summaries are provided from the Amarillo National Center for Plutonium. Programs include the plutonium information resource center, environment, public health, and safety, education and training, nuclear and other material studies.
SEPARATION OF PLUTONIUM FROM URANIUM
Feder, H.M.; Nuttall, R.L.
1959-12-15
A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.
1. West facade of Plutonium Concentration Facility (Building 233S), ReductionOxidation ...
1. West facade of Plutonium Concentration Facility (Building 233-S), Reduction-Oxidation Building (REDOX-202-S) to the right. Looking east. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA
69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH ...
69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH DOOR-WAY INTO PLUTONIUM STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS
Spence, R.; Lister, M.W.
1958-12-16
Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.
Volatile Impurities in the Plutonium Immobilization Ceramic Wasteform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A.D.
1999-10-15
Approximately 18 of the 50 metric tons of plutonium identified for disposition contain significant quantities of impurities. A ceramic waste form is the chosen option for immobilization of the excess plutonium. The impurities associated with the stored plutonium have been identified (CaCl2, MgF2, Pb, etc.). For this study, only volatile species are investigated. The impurities are added individually. Cerium is used as the surrogate for plutonium. Three compositions, including the baseline composition, were used to verify the ability of the ceramic wasteform to accommodate impurities. The criteria for evaluation of the effect of the impurities were the apparent porosity andmore » phase assemblage of sintered pellets.« less
Tawussi, Frank; Gupta, Dharmendra K; Mühr-Ebert, Elena L; Schneider, Stephanie; Bister, Stefan; Walther, Clemens
2017-11-01
Bioavailability and plant uptake of radionuclides depend on various factors. Transfer into different plant parts depends on chemical and physical processes, which need to be known for realistic ingestion dose modelling when these plants are used for food. Within the scope of the present work, the plutonium uptake by potato plants (Solanum tuberosum L.) was investigated in hydroponic solution of low concentration [Pu] = 10 -9 mol L -1 . Particular attention was paid to the speciation of radionuclides in the solution which was modelled by the speciation code PHREEQC. The speciation, the solubility and therefore the plant availability of radionuclides mainly depend on the pH value and the redox potential of the solution. During the contamination period, the redox potential did not change significantly. In contrast, the pH value showed characteristic changes depending on exudates excreted by the plants. Plant roots took up high amounts of plutonium (37%-50% of the added total amount). In addition to the uptake into the roots, the radionuclides can also adsorb to the exterior root surface. The solution-to-plant transfer factor showed values between 0.03 and 0.80 (Bq kg -1 / Bq L -1 ) for the potato tubers. By addition of the complexing agent EDTA (10 -4 mol L-1), the plutonium uptake from solution increased by 58% in tubers and by 155% in shoots/leaves. The results showed that excreted substances by plants affect bioavailability of radionuclides at low concentration, on the one hand. On the other hand, the uptake of plutonium by roots and the accumulation in different plant parts can lead to non-negligible ingestion doses, even at low concentration. We are aware of the limited transferability of data obtained in hydroponic solutions to plants growing in soil. However, the aim of this study is twofold: First we want to investigate the influence of Pu speciation on plant uptake in a rather well defined system which can be modelled using available thermodynamic data. Second, techniques developed here shall be applied to the investigation of plants growing in soil in the future. The present work contributes to the basic understanding how plant induced effects on nutrient solution influence bioavailability of radionuclides and fosters the need for more detailed investigations of the complex uptake and accumulation processes of radionuclides into plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Progress on plutonium stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurt, D.
1996-05-01
The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.
NON-CORROSIVE PLUTONIUM FUEL SYSTEMS
Coffinberry, A.S.; Waber, J.T.
1962-10-23
An improved plutonium reactor liquid fuel is described for utilization in a nuclear reactor having a tantalum fuel containment vessel. The fuel consists of plutonium and a diluent such as iron, cobalt, nickel, cerium, cerium-- iron, cerium--cobalt, cerium--nickel, and cerium--copper, and an additive of carbon and silicon. The carbon and silicon react with the tantalum container surface to form a coating that is self-healing and prevents the corrosive action of liquid plutonium on the said tantalum container. (AEC)
Plutonium in the atmosphere: A global perspective.
Thakur, P; Khaing, H; Salminen-Paatero, S
2017-09-01
A number of potential source terms have contributed plutonium isotopes to the atmosphere. The atmospheric nuclear weapon tests conducted between 1945 and 1980 and the re-entry of the burned SNAP-9A satellite in 1964, respectively. It is generally believed that current levels of plutonium in the stratosphere are negligible and compared with the levels generally found at surface-level air. In this study, the time trend analysis and long-term behavior of plutonium isotopes ( 239+240 Pu and 238 Pu) in the atmosphere were assessed using historical data collected by various national and international monitoring networks since 1960s. An analysis of historical data indicates that 239+240 Pu concentration post-1984 is still frequently detectable, whereas 238 Pu is detected infrequently. Furthermore, the seasonal and time-trend variation of plutonium concentration in surface air followed the stratospheric trends until the early 1980s. After the last Chinese test of 1980, the plutonium concentrations in surface air dropped to the current levels, suggesting that the observed concentrations post-1984 have not been under stratospheric control, but rather reflect the environmental processes such as resuspension. Recent plutonium atmospheric air concentrations data show that besides resuspension, other environmental processes such as global dust storms and biomass burning/wildfire also play an important role in redistributing plutonium in the atmosphere. Copyright © 2017 Elsevier Ltd. All rights reserved.
METHOD OF REDUCING PLUTONIUM COMPOUNDS
Johns, I.B.
1958-06-01
A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.
71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO ...
71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO PLUTONIUM STORAGE ROOM SHOWING CUBICLES FOR STORAGE. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
The behaviour of tributyl phosphate in an organic diluent
NASA Astrophysics Data System (ADS)
Leay, Laura; Tucker, Kate; Del Regno, Annalaura; Schroeder, Sven L. M.; Sharrad, Clint A.; Masters, Andrew J.
2014-09-01
Tributyl phosphate (TBP) is used as a complexing agent in the Plutonium Uranium Extraction (PUREX) liquid-liquid phase extraction process for recovering uranium and plutonium from spent nuclear reactor fuel. Here, we address the molecular and microstructure of the organic phases involved in the extraction process, using molecular dynamics to show that when TBP is mixed with a paraffinic diluent, the TBP self-assembles into a bi-continuous phase. The underlying self-association of TBP is driven by intermolecular interaction between its polar groups, resulting in butyl moieties radiating out into the organic solvent. Simulation predicts a TBP diffusion constant that is anomalously low compared to what might normally be expected for its size; experimental nuclear magnetic resonance (NMR) studies also indicate an extremely low diffusion constant, consistent with a molecular aggregation model. Simulation of TBP at an oil/water interface shows the formation of a bilayer system at low TBP concentrations. At higher concentrations, a bulk bi-continuous structure is observed linking to this surface bilayer. We suggest that this structure may be intimately connected with the surprisingly rapid kinetics of the interfacial mass transport of uranium and plutonium from the aqueous to the organic phase in the PUREX process.
Electronic structure, phase transitions and diffusive properties of elemental plutonium
NASA Astrophysics Data System (ADS)
Setty, Arun; Cooper, B. R.
2003-03-01
We present a SIC-LDA-LMTO based study of the electronic structure of the delta, alpha and gamma phases of plutonium, and also of the alpha and gamma phases of elemental cerium. We find excellent agreement with the experimental densities and magnetic properties [1]. Furthermore, detailed studies of the computational densities of states for delta plutonium, and comparison with the experimental photoemission spectrum [2], provide evidence for the existence of an unusual fluctuating valence state. Results regarding the vacancy formation and self-diffusion in delta plutonium will be presented. Furthermore, a study of interface diffusion between plutonium and steel (technologically relevant in the storage of spent fuel) or other technologically relevant alloys will be included. Preliminary results regarding gallium stabilization of delta plutonium, and of plutonium alloys will be presented. [1] M. Dormeval et al., private communication (2001). [2] A. J. Arko, J. J. Joyce, L. Morales, J. Wills, and J. Lashley et. al., Phys. Rev. B, 62, 1773 (2000). [3] B. R. Cooper et al, Phil. Mag. B 79, 683 (1999); B.R. Cooper, Los Alamos Science 26, 106 (2000)); B.R. Cooper, A.K. Setty and D.L.Price, to be published.
Radiation damage and annealing in plutonium tetrafluoride
NASA Astrophysics Data System (ADS)
McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey; Sweet, Lucas; McNamara, Bruce; Delegard, Calvin; Jevremovic, Tatjana
2017-12-01
A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, thermogravimetric/differential thermal analysis and X-ray diffraction evaluations were conducted to determine the plutonium's crystal structure, oxide content, and moisture content; these analyses reported that the plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. During the initial thermogravimetric/differential thermal analyses, it was discovered that an exothermic event occurred within the material near 414 °C. X-ray diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414 °C event. The following commentary describes the series of thermogravimetric/differential thermal and X-ray diffraction analyses that were conducted as part of this investigation at PNNL.
Shin, Choonshik; Choi, Hoon; Kwon, Hye-Min; Jo, Hye-Jin; Kim, Hye-Jeong; Yoon, Hae-Jung; Kim, Dong-Sul; Kang, Gil-Jin
2017-10-01
The present study was carried out to survey the levels of plutonium isotopes ( 238 , 239 , 240 Pu) and strontium ( 90 Sr) in domestic seafood in Korea. In current, regulatory authorities have analyzed radionuclides, such as 134 Cs, 137 Cs and 131 I, in domestic and imported food. However, people are concerned about contamination of other radionuclides, such as plutonium and strontium, in food. Furthermore, people who live in Korea have much concern about safety of seafood. Accordingly, in this study, we have investigated the activity concentrations of plutonium and strontium in seafood. For the analysis of plutonium isotopes and strontium, a rapid and reliable method developed from previous study was used. Applicability of the test method was verified by examining recovery, minimum detectable activity (MDA), analytical time, etc. Total 40 seafood samples were analyzed in 2014-2015. As a result, plutonium isotopes ( 238 , 239 , 240 Pu) and strontium ( 90 Sr) were not detected or below detection limits in seafood. The detection limits of plutonium isotopes and strontium-90 were 0.01 and 1 Bq/kg, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seaborg, G.T.
1961-08-01
A process is described for extracting tetravalent plutonium from an aqueous acid solution with methyl ethyl ketone, methyl isobutyl ketone, or acetophenone and with the extraction of either tetravalent or hexavalent plutonium into menthone. (AEC)
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified... reaction (e.g., uranium-233, uranium-235, plutonium-238, plutonium-239, plutonium-241, neptunium-237...
3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER ...
3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER CONSTRUCTION. THE BASEMENT HOUSES HEATING, VENTILATION, AND AIR CONDITIONING EQUIPMENT AND MECHANICAL UTILITIES, THE UPPER PART OF THE PLUTONIUM STORAGE VAULT AND MAINTENANCE BAY, AND SMALL PLUTONIUM PROCESSING AREAS. THE BASEMENT LEVEL IS DIVIDED INTO NEARLY EQUAL NORTH AND SOUTH PARTS BY THE UPPER PORTION OF THE PLUTONIUM STORAGE VAULT. (10/7/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO
PLATINUM HEXAFLUORIDE AND METHOD OF FLUORINATING PLUTONIUM CONTAINING MIXTURES THERE-WITH
Malm, J.G.; Weinstock, B.; Claassen, H.H.
1959-07-01
The preparation of platinum hexafluoride and its use as a fluorinating agent in a process for separating plutonium from fission products is presented. According to the invention, platinum is reacted with fluorine gas at from 900 to 1100 deg C to form platinum hexafluoride. The platinum hexafluoride is then contacted with the plutonium containing mixture at room temperature to form plutonium hexafluoride which is more volatile than the fission products fluorides and therefore can be isolated by distillation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, S.F.; Spall, W.D.; Abernathey, R.M.
1976-11-01
Relationships are provided to compute the decreasing plutonium content and changing isotopic distribution of plutonium materials for the radioactive decay of /sup 238/Pu, /sup 239/Pu, /sup 240/Pu and /sup 242/Pu to long-lived uranium daughters and of /sup 241/Pu to /sup 241/Am. This computation is important to the use of plutonium reference materials to calibrate destructive and nondestructive methods for assay and isotopic measurements, as well as to accountability inventory calculations.
SOLVENT EXTRACTION PROCESS FOR PLUTONIUM
Seaborg, G.T.
1959-04-14
The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essington, E.H.; Gilbert, R.O.; Wireman, D.L.
Blow-sand mounds or miniature sand dunes and mounds created by burrowing activities of animals were investigated by the Nevada Applied Ecology Group (NAEG) to determine the influence of mounds on plutonium, americium, and uranium distributions and inventories in areas of the Nevada Test Site and Tonopah Test Range. Those radioactive elements were added to the environment as a result of safety experiments of nuclear devices. Two studies were conducted. The first was to estimate the vertical distribution of americium in the blow-sand mounds and in the desert pavement surrounding the mounds. The second was to estimate the amount or concentrationmore » of the radioactive materials accumulated in the mound relative to the desert pavement. Five mound types were identified in which plutonium, americium, and uranium concentrations were measured: grass, shrub, complex, animal, and diffuse. The mount top (that portion above the surrounding land surface datum), the mound bottom (that portion below the mound to a depth of 5 cm below the surrounding land surface datum), and soil from the immediate area surrounding the mound were compared separately to determine if the radioactive elements had concentrated in the mounds. Results of the studies indicate that the mounds exhibit higher concentrations of plutonium, americium, and uranium than the immediate surrounding soil. The type of mound does not appear to have influenced the amount of the radioactive material found in the mound except for the animal mounds where the burrowing activities appear to have obliterated distribution patterns.« less
Tazrart, A; Bolzinger, M A; Lamart, S; Coudert, S; Angulo, J F; Jandard, V; Briançon, S; Griffiths, N M
2018-07-01
Skin contamination by alpha-emitting actinides is a risk to workers during nuclear fuel production and reactor decommissioning. Also, the list of items for potential use in radiological dispersal devices includes plutonium and americium. The actinide chemical form is important and solvents such as tributyl phosphate, used to extract plutonium, can influence plutonium behavior. This study investigated skin fixation and efficacy of decontamination products for these actinide forms using viable pig skin in the Franz cell diffusion system. Commonly used or recommended decontamination products such as water, cleansing gel, diethylenetriamine pentaacetic acid, or octadentate hydroxypyridinone compound 3,4,3-LI(1,2-HOPO), as well as diethylenetriamine pentaacetic acid hydrogel formulations, were tested after a 2-h contact time with the contaminant. Analysis of skin samples demonstrated that more plutonium nitrate is bound to skin as compared to plutonium-tributyl phosphate, and fixation of americium to skin was also significant. The data show that for plutonium-tributyl phosphate all the products are effective ranging from 80 to 90% removal of this contaminant. This may be associated with damage to the skin by this complex and suggests a mechanical/wash-out action rather than chelation. For removal of americium and plutonium, both Trait Rouge cleansing gel and diethylenetriamine pentaacetic acid are better than water, and diethylenetriamine pentaacetic acid hydrogel is better than Osmogel. The different treatments, however, did not significantly affect the activity in deeper skin layers, which suggests a need for further improvement of decontamination procedures. The new diethylenetriamine pentaacetic acid hydrogel preparation was effective in removing americium, plutonium, and plutonium-tributyl phosphate from skin; such a formulation offers advantages and thus merits further assessment.
Sources of plutonium in the atmosphere and stratosphere-troposphere mixing
Hirose, Katsumi; Povinec, Pavel P.
2015-01-01
Plutonium isotopes have primarily been injected to the stratosphere by the atmospheric nuclear weapon tests and the burn-up of the SNAP-9A satellite. Here we show by using published data that the stratospheric plutonium exponentially decreased with apparent residence time of 1.5 ± 0.5 years, and that the temporal variations of plutonium in surface air followed the stratospheric trends until the early 1980s. In the 2000s, plutonium and its isotope ratios in the atmosphere varied dynamically, and sporadic high concentrations of 239,240Pu reported for the lower stratospheric and upper tropospheric aerosols may be due to environmental events such as the global dust outbreaks and biomass burning. PMID:26508010
The North Korean nuclear dilemma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hecker, Siegfried S.
2004-01-01
The current nuclear crisis, the second one in ten years, erupted when North Korea expelled international nuclear inspectors in December 2002, then withdrew from the Nuclear Nonproliferation Treaty (NPT), and claimed to be building more nuclear weapons with the plutonium extracted from the spent fuel rods heretofore stored under international inspection. These actions were triggered by a disagreement over U.S. assertions that North Korea had violated the Agreed Framework (which froze the plutonium path to nuclear weapons to end the first crisis in 1994) by clandestinely developing uranium enrichment capabilities providing an alternative path to nuclear weapons. With Stanford Universitymore » Professor John Lewis and three other Americans, I was allowed to visit the Yongbyon Nuclear Center on Jan. 8, 2004. We toured the 5 MWe reactor, the 50 MWe reactor construction site, the spent fuel pool storage building, and the radiochemical laboratory. We concluded that North Korea has restarted its 5 MWe reactor (which produces roughly 6 kg of plutonium annually), it removed the 8000 spent fuel rods that were previously stored under IAEA safeguards from the spent fuel pool, and that it most likely extracted the 25 to 30 kg of plutonium contained in these fuel rods. Although North Korean officials showed us what they claimed was their plutonium metal product from this reprocessing campaign, we were not able to conclude definitively that it was in fact plutonium metal and that it came from the most recent reprocessing campaign. Nevertheless, our North Korean hosts demonstrated that they had the capability, the facility and requisite capacity, and the technical expertise to produce plutonium metal. On the basis of our visit, we were not able to address the issue of whether or not North Korea had a 'deterrent' as claimed - that is, we were not able to conclude that North Korea can build a nuclear device and that it can integrate nuclear devices into suitable delivery systems. However, based on the capabilities we saw, we must assume that North Korea has the capability to produce a crude nuclear device. On the matter of uranium enrichment programs, our host categorically denied that North Korea has a uranium enrichment program - he said, 'we have no program, no equipment, and no technical expertise for uranium enrichment.' The denials were not convincing at the time and since then have proven to be quite hollow by the revelations of A.Q. Khan's nuclear black market activities. There is no easy solution to the nuclear crisis in North Korea. A military strike to eliminate the nuclear facilities was never very attractive and now has been overcome by events. The principal threat is posed by a stockpile of nuclear weapons and weapons-grade plutonium. We have no way of finding where either may be hidden. A diplomatic solution remains the only path forward, but it has proven elusive. All sides have proclaimed a nuclear weapons-free Korean Peninsula as the end goal. The U.S. Government has chosen to negotiate with North Korea by means of the six-party talks. It has very clearly outlined its position of insisting on complete, verifiable, irreversible dismantlement of all North Korean nuclear programs. North Korea has offered several versions of 're-freezing' its plutonium program while still denying a uranium enrichment program. It has insisted on simultaneous and reciprocal steps to a final solution. Regardless of which diplomatic path is chosen, the scientific challenges of eliminating the North Korean nuclear weapons programs (and its associated infrastructure) in a safe, secure, and verifiable manner are immense. The North Korean program is considerably more complex and developed than the fledgling Iraqi program of 1991 and Libyan program of 2004. It is more along the lines, but more complex than that of South Africa in the early 1990s. Actions taken or not taken by the North Koreans at their nuclear facilities during the course of the ongoing diplomatic discussions are key to whether or not the nuclear program can be eliminated safely and securely, and they will greatly influence the price tag for such operations. Moreover, they will determine whether or not one can verify complete elimination. Hence, cooperation of the North Koreans now and during the dismantlement and elimination stages is crucial. Technical discussions among specialists, perhaps within the framework of the working groups of the six-party talks, could be very productive in setting the stage for an effective, verifiable elimination of North Korea's nuclear weapons program.« less
25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, ...
25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23105, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA
24. Plutonium Recovery From Contaminated Materials, Architectural Details, Building 232z, ...
24. Plutonium Recovery From Contaminated Materials, Architectural Details, Building 232-z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23106, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA
26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & ...
26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & Dets., Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23106, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA
13. VIEW OF THE MOLTEN SALT EXTRACTION LINE. THE MOLTEN ...
13. VIEW OF THE MOLTEN SALT EXTRACTION LINE. THE MOLTEN SALT EXTRACTION PROCESS WAS USED TO PURIFY PLUTONIUM BY REMOVING AMERICIUM, A DECAY BY-PRODUCT OF PLUTONIUM. (1/98) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO
Seaborg, G.T.; Thompson, S.G.
1960-06-14
A process for concentrating plutonium is given in which plutonium is first precipitated with bismuth phosphate and then, after redissolution, precipitated with a different carrier such as lanthanum fluoride, uranium acetate, bismuth hydroxide, or niobic oxide.
METHOD OF SEPARATION OF PLUTONIUM FROM CARRIER PRECIPITATES
Dawson, I.R.
1959-09-22
The recovery of plutonium from fluoride carrier precipitates is described. The precipitate is dissolved in zirconyl nitrate, ferric nitrate, aluminum nitrate, or a mixture of these complexing agents, and the plutonium is then extracted from the aqueous solution formed with a water-immiscible organic solvent.
Seaborg, G.T.
1957-10-29
Methods for separating plutonium from the fission products present in masses of neutron irradiated uranium are reported. The neutron irradiated uranium is first dissolved in an aqueous solution of nitric acid. The plutonium in this solution is present as plutonous nitrate. The aqueous solution is then agitated with an organic solvent, which is not miscible with water, such as diethyl ether. The ether extracts 90% of the uraryl nitrate leaving, substantially all of the plutonium in the aqueous phase. The aqueous solution of plutonous nitrate is then oxidized to the hexavalent state, and agitated with diethyl ether again. In the ether phase there is then obtained 90% of plutonium as a solution of plutonyl nitrate. The ether solution of plutonyl nitrate is then agitated with water containing a reducing agent such as sulfur dioxide, and the plutonium dissolves in the water and is reduced to the plutonous state. The uranyl nitrate remains in the ether. The plutonous nitrate in the water may be recovered by precipitation.
Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations
NASA Astrophysics Data System (ADS)
Schneider, Stephanie; Walther, Clemens; Bister, Stefan; Schauer, Viktoria; Christl, Marcus; Synal, Hans-Arno; Shozugawa, Katsumi; Steinhauser, Georg
2013-10-01
The contamination of Japan after the Fukushima accident has been investigated mainly for volatile fission products, but only sparsely for actinides such as plutonium. Only small releases of actinides were estimated in Fukushima. Plutonium is still omnipresent in the environment from previous atmospheric nuclear weapons tests. We investigated soil and plants sampled at different hot spots in Japan, searching for reactor-borne plutonium using its isotopic ratio 240Pu/239Pu. By using accelerator mass spectrometry, we clearly demonstrated the release of Pu from the Fukushima Daiichi power plant: While most samples contained only the radionuclide signature of fallout plutonium, there is at least one vegetation sample whose isotope ratio (0.381 +/- 0.046) evidences that the Pu originates from a nuclear reactor (239+240Pu activity concentration 0.49 Bq/kg). Plutonium content and isotope ratios differ considerably even for very close sampling locations, e.g. the soil and the plants growing on it. This strong localization indicates a particulate Pu release, which is of high radiological risk if incorporated.
Plutonium release from the 903 pad at Rocky Flats.
Mongan, T R; Ripple, S R; Winges, K D
1996-10-01
The Colorado Department of Public Health and Environment (CDH) sponsored a study to reconstruct contaminant doses to the public from operations at the Rocky Flats nuclear weapons plant. This analysis of the accidental release of plutonium from the area known as the 903 Pad is part of the CDH study. In the 1950's and 1960's, 55-gallon drums of waste oil contaminated with plutonium, and uranium were stored outdoors at the 903 Pad. The drums corroded, leaking contaminated oil onto soil subsequently carried off-site by the wind. The plutonium release is estimated using environmental data from the 1960's and 1970's and an atmospheric transport model for fugitive dust. The best estimate of total plutonium release to areas beyond plant-owned property is about 0.26 TBq (7 Ci). Off-site airborne concentrations and deposition of plutonium are estimated for dose calculation purposes. The best estimate of the highest predicted off-site effective dose is approximately 72 microSv (7.2 mrem).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, T
2007-07-24
Residual fallout contamination from the nuclear test program in the Marshall Islands is a concern to Marshall Islanders because of the potential health risks associated with exposure to residual fallout contamination in the environment. Scientists from Lawrence Livermore National Laboratory (LLNL) have been monitoring the amount of fallout radiation delivered to Utrok Atoll residents over the past 4 years. This briefing document gives an outline of our findings from the whole body counting and plutonium bioassay monitoring programs. Additional information can be found on the Marshall Islands web site (http://eed.lnl.gov/mi/). Cesium-137 is an important radioactive isotope produced in nuclear detonationsmore » and can be taken up from coral soils into locally grown food crop products that form an important part of the Marshallese diet. The Marshall Islands whole body counting program has clearly demonstrated that the majority of Utrok Atoll residents acquire a very small but measurable quantity of cesium-137 in their bodies (Hamilton et al., 2006; Hamilton et. al., 2007a; 2007b;). During 2006, a typical resident of Utrok Atoll received about 3 mrem of radiation from internally deposited cesium-137 (Hamilton et al., 2007a). The population-average dose contribution from cesium-137 is around 2% of the total radiation dose that people normally experience from naturally occurring radiation sources in the Marshall Islands and is thousands of times lower than the level where radiation exposure is known to produce measurable health effects. The existing dose estimates from the whole body counting and plutonium bioassay programs are also well below radiological protection standards for protection of the public as prescribed by U.S. regulators and international agencies including the Marshall Islands Nuclear Claim Tribunal (NCT). Similarly, the level of internally deposited plutonium found in Utrok Atoll residents is well within the range normally expected for people living in the Northern Hemisphere. In addition, the preliminary results of the bioassay program on Utrok Atoll (Hamilton et al., 2007b) provide clear evidence that residents of Utrok Atoll have never acquired a significant uptake of plutonium either through an acute exposure event or from long-term chronic exposure to plutonium in the environment. This information and data should provide a level of assurance to the Utrok Atoll population group and its leadership that the dose contribution from exposure to residual radioactive fallout contamination on Utrok Atoll is very low, and is not likely to have any discernible impact on human health. We also estimate that the dose contribution based on current radiological exposure conditions will not produce any additional cancer fatalities (or any other measurable health condition) above that normally expected to arise in a population group of similar size. The potential risks from any genetic illnesses caused by exposure to residual fallout contamination in the environment will be even lower still. In conclusion, the data and information developed from the radiological protection monitoring program on Utrok appear to support a consensus that it is safe to live on Utrok Atoll. The health risks from exposure to residual fallout contamination on the atoll are minimal when compared with other lifetime risks that people normally experience, and are very small when compared to the threshold where radiation health effects could be either medically diagnosed in an individual or epidemiologically discerned in a group of people.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClure, J.D.; Luna, R.E.
1989-01-01
Several aspects of special packagings of plutonium for air transport should be recognized. The accident cases cited by Congressman Scheuer were incidents of local plutonium contamination in military aircraft accidents that had nuclear weapons on board. There is no disputing the occurrence of these military accidents but military weapon shipments were exempted from the provisions of the Scheuer amendment. There have been no recorded civilian aircraft crashes involving plutonium dispersal although there have been civilian aircraft crashes that were severe. Shortly after the introduction of the amendment by Mr. Scheuer on June 20, 1975, there was a serious aircraft crashmore » at JFK International. In his remarks to the House on July 24, 1975 Mr. Scheuer called attention to this event. The NRC originally opposed the provisions of the Scheuer amendment but with the passing of the amendment NRC compiled with its provisions. This led to the development of the plutonium air transport package PAT-1 in the US. The introduction of special rules for the air transport of plutonium into the US packaging regulations has been made them more severe than the provision of the international regulations, IAEA Safety Series 6. The IAEA is now discussing proposed regulations related to the air transport of plutonium. An additional legislative action was introduced the US in December 1987 which would require actual crash tests of packages intended for the air transport of plutonium, the Murkowski amendment. 13 refs.« less
Effects of Aging on PuO2∙xH2O Particle Size in Alkaline Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.
Between 1944 and 1989, 54.5 metric tons of the United States’ weapons-grade plutonium and an additional 12.9 metric tons of fuel-grade plutonium were produced and separated from irradiated fuel at the Hanford Site. Acidic high-activity wastes containing around 600 kg of plutonium were made alkaline and discharged to underground storage tanks from separations, isolation, and recycle processes to yield average plutonium concentration of about 0.003 grams per liter (or ~0.0002 wt%) in the ~200 million liter tank waste volume. The plutonium is largely associated with low-solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g.,more » iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO2∙xH2O, could undergo sufficient crystal growth through dissolution and reprecipitation in the alkaline tank waste to potentially become separable from neutron absorbing constituents by settling or sedimentation. Thermodynamic considerations and laboratory studies of systems chemically analogous to tank waste show that the plutonium formed in the alkaline tank waste by precipitation through neutralization from acid solution probably entered as 2–4-nm PuO2∙xH2O crystallite particles that, because of their low solubility and opposition from radiolytic processes, grow from that point at exceedingly slow rates, thus posing no risk of physical segregation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whicker, F.W.
1977-08-01
This report summarizes project activities during the period August 1, 1976 through July 31, 1977. Four major areas of effort are reported, namely plutonium behavior in a terrestrial ecosystem at Rocky Flats, mule deer and coyote studies at Rocky Flats, ecological consequences of transuranics in the terrestrial environment, and lead geochemistry of an alpine lake ecosystem. Much of the first area of effort involved the synthesis of data and preparation of manuscripts, although some new data are reported on plutonium levels in small mammals, plant uptake of plutonium from contaminated soil, and plutonium deposition rates on macroplot 1. The mulemore » deer studies generated a substantial body of new information which will permit quantitative assessment of plutonium dispersion by deer that utilize contaminated areas. These studies involve population dynamics, movement and use patterns, food habits, ingestion rates of contaminated soil and vegetation and plutonium burdens of deer tissues. A related study of coyote food habits in summer at Rocky Flats is reported. A manuscript dealing with the question of ecological effects of transuranics was prepared. This manuscript incorporates data from Rocky Flats on characteristics of natural populations which occupy ecologically similar areas having differing levels of plutonium contamination. The lead geochemistry studies continued to generate new data but the data are not yet reported.« less
COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL
Seaborg, G.T.
1960-08-01
A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.
Cramer, E.M.; Ellinger, F.H.; Land. C.C.
1960-03-22
Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.
RECOVERY OF PLUTONIUM BY CARRIER PRECIPITATION
Goeckermann, R.H.
1961-04-01
A process is given for recovering plutonium from an aqueous nitric acid zirconium-containing solution of an acidity between 0.2 and 1 N by adding fluoride anions (1.5 to 5 mg/l) and precipitating the plutonium with an excess of hydrogen peroxide at from 53 to 65 deg C.
SAM lists this method for the qualitative determination of Americium-241, Radium-226, Plutonium-238, Plutonium-239 and isotopic uranium in drinking water samples using alpha spectrometry and radiostrontium using beta counting.
METHOD FOR OBTAINING PLUTONIUM METAL FROM ITS TRICHLORIDE
Reavis, J.G.; Leary, J.A.; Maraman, W.J.
1962-08-14
A method was developed for obtaining plutonium metal by direct reduction of plutonium chloride, without the use of a booster, using calcium and lanthamum as a reductant, the said reduction being carried out at temperature in the range of 700 to 850 deg C and at about atmospheric pressure. (AEC)
MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR
Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.
1962-06-26
A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)
ELECTRODEPOSITION OF PLUTONIUM
Wolter, F.J.
1957-09-10
A process of electrolytically recovering plutonium from dilute aqueous solutions containing plutonium ions comprises electrolyzing the solution at a current density of about 0.44 ampere per square centimeter in the presence of an acetate-sulfate buffer while maintaining the pH of the solution at substantially 5 and using a stirred mercury cathode.
Removal of plutonium from hepatic tissue
Lindenbaum, Arthur; Rosenthal, Marcia W.
1979-01-01
A method is provided for removing plutonium from hepatic tissues by introducing into the body and blood stream a solution of the complexing agent DTPA and an adjunct thereto. The adjunct material induces aberrations in the hepatic tissue cells and removes intracellularly deposited plutonium which is normally unavailable for complexation with the DTPA. Once the intracellularly deposited plutonium has been removed from the cell by action of the adjunct material, it can be complexed with the DTPA present in the blood stream and subsequently removed from the body by normal excretory processes.
Rapid Method for Sodium Hydroxide Fusion of Concrete and ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
METHOD OF SEPARATING PLUTONIUM FROM LANTHANUM FLUORIDE CARRIER
Watt, G.W.; Goeckermann, R.H.
1958-06-10
An improvement in oxidation-reduction type methods of separating plutoniunn from elements associated with it in a neutron-irradiated uranium solution is described. The method relates to the separating of plutonium from lanthanum ions in an aqueous 0.5 to 2.5 N nitric acid solution by 'treating the solution, at room temperature, with ammonium sulfite in an amount sufficient to reduce the hexavalent plutonium present to a lower valence state, and then treating the solution with H/sub 2/O/sub 2/ thereby forming a tetravalent plutonium peroxide precipitate.
Balthis, J.H.
1961-07-18
Carrier precipitation processes for the separation of plutonium from fission products are described. In a process in which an insoluble precipitate is formed in a solution containing plutonium and fission products under conditions whereby plutonium is carried by the precipitate, and the precipitate is then separated from the remaining solution, an organic surface active agent is added to the mixture of precipitate and solution prior to separation of the precipitate from the supernatant solution, thereby improving the degree of separation of the precipitate from the solution.
1. VIEW OF THE CONTROL ROOM FOR THE XY RETRIEVER. ...
1. VIEW OF THE CONTROL ROOM FOR THE X-Y RETRIEVER. USING THE X-Y RETRIEVER, OPERATORS RETRIEVED PLUTONIUM METAL FROM THE PLUTONIUM STORAGE VAULTS (IN MODULE K) AND CONVEYED IT TO THE X-Y SHUTTLE AREA WHERE IT WAS CUT AND WEIGHED. FROM THE SHUTTLE AREA THE PLUTONIUM WAS CONVEYED TO MODULES A, J OR K FOR CASTING, OR MODULE B FOR ROLLING AND FORMING. (5/17/71) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO
PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION
Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.
1959-01-13
A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.
SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS
Nicholls, C.M.; Wells, I.; Spence, R.
1959-10-13
The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.
Radiation from plutonium 238 used in space applications
NASA Technical Reports Server (NTRS)
Keenan, T. K.; Vallee, R. E.; Powers, J. A.
1972-01-01
The principal mode of the nuclear decay of plutonium 238 is by alpha particle emission at a rate of 17 curies per gram. Gamma radiation also present in nuclear fuels arises primarily from the nuclear de-excitation of daughter nuclei as a result of the alpha decay of plutonium 238 and reactor-produced impurities. Plutonium 238 has a spontaneous fission half life of 4.8 x 10 to the 10th power years. Neutrons associated with this spontaneous fission are emitted at a rate of 28,000 neutrons per second per gram. Since the space fuel form of plutonium 238 is the oxide pressed into a cermet with molybdenum, a contribution to the neutron emission rate arises from (alpha, n) reactions with 0-17 and 0-18 which occur in natural oxygen.
Evaluating ligands for use in polymer ligand film (PLF) for plutonium and uranium extraction
Rim, Jung H.; Peterson, Dominic S.; Armenta, Claudine E.; ...
2015-05-08
We describe a new analyte extraction technique using Polymer Ligand Film (PLF). PLFs were synthesized to perform direct sorption of analytes onto its surface for direct counting using alpha spectroscopy. The main focus of the new technique is to shorten and simplify the procedure for chemically isolating radionuclides for determination through a radiometric technique. 4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH 18C 6) and 2-ethylhexylphosphonic acid (HEH[EHP]) were examined for plutonium extraction. Di(2-ethyl hexyl) phosphoric acid (HDEHP) were examined for plutonium and uranium extraction. DtBuCH 18C 6 and HEH[EHP] were not effective in plutonium extraction. HDEHP PLFs were effective for plutonium but not formore » uranium.« less
METHOD OF FORMING PLUTONIUM-BEARING CARRIER PRECIPITATES AND WASHING SAME
Faris, B.F.
1959-02-24
An improvement of the lanthanum fluoride carrier precipitation process for the recovery of plutonium is presented. In this process the plutonium is first segregated in the LaF/su precipitate and this precipitate is later dissolved and the plutonium reprecipitated as the peroxide. It has been found that the loss of plutonium by its remaining in the supernatant liquid associated with the peroxide precipitate is greatly reduced if, before dissolution, the LaF/ sub 3/ precipitate is subjected to a novel washing step which constitutes the improvement of this patent. The step consists in intimately contactifng the LaF/ sub 3/ precipitate with a 4 to 10 percent solution of sodium hydrogen sulfate at a temperature between 10 and 95 deg C for 1/2 to 3 hours.
Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry
1996-01-01
A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.
Radiation damage and annealing in plutonium tetrafluoride
McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey; ...
2017-08-03
A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, thermogravimetric/differential thermal analysis and X-ray diffraction evaluations were conducted to determine the plutonium's crystal structure, oxide content, and moisture content; these analysesmore » reported that the plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. And during the initial thermogravimetric/differential thermal analyses, it was discovered that an exothermic event occurred within the material near 414 °C. X-ray diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414 °C event. This commentary describes the series of thermogravimetric/differential thermal and X-ray diffraction analyses that were conducted as part of this investigation at PNNL.« less
NASA Astrophysics Data System (ADS)
Bays, Samuel Eugene
2008-10-01
In the past several years there has been a renewed interest in sodium fast reactor (SFR) technology for the purpose of destroying transuranic waste (TRU) produced by light water reactors (LWR). The utility of SFRs as waste burners is due to the fact that higher neutron energies allow all of the actinides, including the minor actinides (MA), to contribute to fission. It is well understood that many of the design issues of LWR spent nuclear fuel (SNF) disposal in a geologic repository are linked to MAs. Because the probability of fission for essentially all the "non-fissile" MAs is nearly zero at low neutron energies, these isotopes act as a neutron capture sink in most thermal reactor systems. Furthermore, because most of the isotopes produced by these capture reactions are also non-fissile, they too are neutron sinks in most thermal reactor systems. Conversely, with high neutron energies, the MAs can produce neutrons by fast fission. Additionally, capture reactions transmute the MAs into mostly plutonium isotopes, which can fission more readily at any energy. The transmutation of non-fissile into fissile atoms is the premise of the plutonium breeder reactor. In a breeder reactor, not only does the non-fissile "fertile" U-238 atom contribute fast fission neutrons, but also transmutes into fissile Pu-239. The fissile value of the plutonium produced by MA transmutation can only be realized in fast neutron spectra. This is due to the fact that the predominate isotope produced by MA transmutation, Pu-238, is itself not fissile. However, the Pu-238 fission cross section is significantly larger than the original transmutation parent, predominately: Np-237 and Am-241, in the fast energy range. Also, Pu-238's fission cross section and fission-to-capture ratio is almost as high as that of fissile Pu-239 in the fast neutron spectrum. It is also important to note that a neutron absorption in Pu-238, that does not cause fission, will instead produce fissile Pu-239. Given this fast fissile quality and also the fact that Pu-238 is transmuted from Np-237 and Am-241, these MAs are regarded as fertile material in the SFR design proposed by this dissertation. This dissertation demonstrates a SFR design which is dedicated to plutonium breeding by targeting Am-241 transmutation. This SFR design uses a moderated axial transmutation target that functions primarily as a pseudo-blanket fuel, which is reprocessed with the active driver fuel in an integrated recycling strategy. This work demonstrates the cost and feasibility advantages of plutonium breeding via MA transmutation by adopting reactor, reprocessing and fuel technologies previously demonstrated for traditional breeder reactors. The fuel cycle proposed seeks to find a harmony between the waste management advantages of transuranic burning SFRs and the resource sustainability of traditional plutonium breeder SFRs. As a result, the enhanced plutonium conversion from MAs decreases the burner SFR's fuel costs, by extracting more fissile value from the initial TRU purchased through SNF reprocessing.
NASA Astrophysics Data System (ADS)
Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.
2011-09-01
Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doane, R.W.; Grant, R.H.
1996-09-01
Thermo NUtech is the prime contractor for the Defense Nuclear Agency (DNA), responsible for the operation and maintenance of the Johnston Atoll plutonium Contaminated Soil Cleanup Project. During this production period, the Scope of Work included movement of soil to and from the plant, processing contaminated soil through the Segmented Gate System (SGS) and Soil Washing System, packaging of waste soil for shipment, identification and implementation of process improvements, data collection and validation, and compliance with all applicable regulations governing environmental safety and health. The SGS utilizes arrays of sensitive radiation detectors coupled with sophisticated computer software to segregate contaminatedmore » soil from a moving feed supply on conveyor belts. Contaminated soil is diverted to a `hot path` for plutonium particles greater than 5000 Becquerels or to a supplemental soil washing process designed to remove dispersed low leve%l contamination from a soil faction consisting of very small particles. Low to intermediate levels of contamination are removed from the soil to meet DNA`s criteria for unrestricted use of less than 500 Becquerels per kilogram of soil, with no hot particles. The low level concentrate is expected to be packaged for shipment to an approved defense waste disposal site.« less
A Clear Success for International Transport of Plutonium and MOX Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blachet, L.; Jacot, P.; Bariteau, J.P.
2006-07-01
An Agreement between the United States and Russia to eliminate 68 metric tons of surplus weapons-grade plutonium provided the basis for the United States government and its agency, the Department of Energy (DOE), to enter into contracts with industry leaders to fabricate mixed oxide (MOX) fuels (a blend of uranium oxide and plutonium oxide) for use in existing domestic commercial reactors. DOE contracted with Duke, COGEMA, Stone and Webster (DCS), a limited liability company comprised of Duke Energy, COGEMA Inc. and Stone and Webster to design a Mixed Oxide Fuel Fabrication Facility (MFFF) which would be built and operated atmore » the DOE Savannah River Site (SRS) near Aiken, South Carolina. During this same time frame, DOE commissioned fabrication and irradiation of lead test assemblies in one of the Mission Reactors to assist in obtaining NRC approval for batch implementation of MOX fuel prior to the operations phase of the MFFF facility. On February 2001, DOE directed DCS to initiate a pre-decisional investigation to determine means to obtain lead assemblies including all international options for manufacturing MOX fuels. This lead to implementation of the EUROFAB project and work was initiated in earnest on EUROFAB by DCS on November 7, 2003. (authors)« less
Bioprocessing of a stored mixed liquid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfram, J.H.; Rogers, R.D.; Finney, R.
1995-12-31
This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actualmore » mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.« less
Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.S.
1999-08-11
Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitationmore » process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec ay of plutonium-241) in the dissolved precipitate, a value consistent with the recovery of europium, the americium surrogate.In a subsequent experiment, the plutonium solubility following an oxalate precipitation to simulate the preparation of a slurry feed for a batch melter was 21 mg/mL at 35 degrees C. The increase in solubility compared to the value measured during the pretreatment experiment was attributed to the increased nitrate concentration and ensuing increase in plutonium complexation. The solubility of the plutonium following a precipitant wash with 0.1M oxalic acid was unchanged. The recovery of plutonium from the precipitate slurry was greater than 97 percent allowing an estimation that approximately 92 percent of the plutonium in Tank 17.1 will report to the glass. The behavior of the lanthanides and soluble metal impurities was consistent with the behavior seen during the pretreatment experiment. A trace level material balance showed that 99.9 percent of the americium w as recovered from the precipitate slurry. The overall recovery of americium from the pretreatment and feed preparation processes was greater than 97 percent, which was consistent with the measured recovery of the europium surrogate.« less
NASA Astrophysics Data System (ADS)
Pistner, C.; Liebert, W.; Fujara, F.
2006-06-01
Inert matrix fuels (IMF) with plutonium may play a significant role to dispose of stockpiles of separated plutonium from military or civilian origin. For reasons of reactivity control of such fuels, burnable poisons (BP) will have to be used. The impact of different possible BP candidates (B, Eu, Er and Gd) on the achievable burnup as well as on safety and non-proliferation aspects of IMF are analyzed. To this end, cell burnup calculations have been performed and burnup dependent reactivity coefficients (boron worth, fuel temperature and moderator void coefficient) were calculated. All BP candidates were analyzed for one initial BP concentration and a range of different initial plutonium-concentrations (0.4-1.0 g cm-3) for reactor-grade plutonium isotopic composition as well as for weapon-grade plutonium. For the two most promising BP candidates (Er and Gd), a range of different BP concentrations was investigated to study the impact of BP concentration on fuel burnup. A set of reference fuels was identified to compare the performance of uranium-fuels, MOX and IMF with respect to (1) the fraction of initial plutonium being burned, (2) the remaining absolute plutonium concentration in the spent fuel and (3) the shift in the isotopic composition of the remaining plutonium leading to differences in the heat and neutron rate produced. In the case of IMF, the remaining Pu in spent fuel is unattractive for a would be proliferator. This underlines the attractiveness of an IMF approach for disposal of Pu from a non-proliferation perspective.
NASA Astrophysics Data System (ADS)
Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.
PLUTONIUM-CERIUM-COPPER ALLOYS
Coffinberry, A.S.
1959-05-12
A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.
10 CFR 71.88 - Air transport of plutonium.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...
10 CFR 71.88 - Air transport of plutonium.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...
10 CFR 71.88 - Air transport of plutonium.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...
11. SIDE VIEW OF INSTALLATION OF A CONTINUOUS ROTARYTUBE HYDROFLUORINATOR ...
11. SIDE VIEW OF INSTALLATION OF A CONTINUOUS ROTARY-TUBE HYDROFLUORINATOR LOCATED IN ROOM 146. THE HYDROFLUORINATOR IS BEING INSTALLED INSIDE A GLOVE BOX. HYDROFLUORINATION CONVERTED PLUTONIUM OXIDE TO PLUTONIUM TETRAFLUORIDE. (1/11/62) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
10. VIEW OF CALCINER IN ROOM 146148. THE CALCINER HEATED ...
10. VIEW OF CALCINER IN ROOM 146-148. THE CALCINER HEATED PLUTONIUM PEROXIDE TO CONVERT IT TO PLUTONIUM OXIDE. THE PROCESS REMOVED RESIDUAL WATER AND NITRIC ACID LEAVING A DRY, POWDERED PRODUCT. (4/29/65) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
10 CFR 71.88 - Air transport of plutonium.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...
Removal of plutonium and americium from alkaline waste solutions
Schulz, Wallace W.
1979-01-01
High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.
10 CFR 71.88 - Air transport of plutonium.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...
PREPARATION OF HALIDES OF PLUTONIUM
Garner, C.S.; Johns, I.B.
1958-09-01
A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.
SEPARATION OF FISSION PRODUCT VALUES FROM THE HEXAVALENT PLUTONIUM BY CARRIER PRECIPITATION
Davies, T.H.
1959-12-15
An improved precipitation of fission products on bismuth phosphate from an aqueous mineral acid solution also containing hexavalent plutonium by incorporating, prior to bismuth phosphate precipitation, from 0.05 to 2.5 grams/ liter of zirconium phosphate, niobium oxide. and/or lanthanum fluoride is described. The plutonium remains in solution.
Enhanced ionization efficiency in TIMS analyses of plutonium and americium using porous ion emitters
Baruzzini, Matthew L.; Hall, Howard L.; Watrous, Matthew G.; ...
2016-12-05
Investigations of enhanced sample utilization in thermal ionization mass spectrometry (TIMS) using porous ion emitter (PIE) techniques for the analyses of trace quantities of americium and plutonium were performed. Repeat ionization efficiency (i.e., the ratio of ions detected to atoms loaded on the filament) measurements were conducted on sample sizes ranging from 10–100 pg for americium and 1–100 pg for plutonium using PIE and traditional (i.e., a single, zone-refined rhenium, flat filament ribbon with a carbon ionization enhancer) TIMS filament sources. When compared to traditional filaments, PIEs exhibited an average boost in ionization efficiency of ~550% for plutonium and ~1100%more » for americium. A maximum average efficiency of 1.09% was observed at a 1 pg plutonium sample loading using PIEs. Supplementary trials were conducted using newly developed platinum PIEs to analyze 10 pg mass loadings of plutonium. As a result, platinum PIEs exhibited an additional ~134% boost in ion yield over standard PIEs and ~736% over traditional filaments at the same sample loading level.« less
Development of Techniques for Spent Fuel Assay – Differential Dieaway Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swinhoe, Martyn Thomas; Goodsell, Alison; Ianakiev, Kiril Dimitrov
This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work coversmore » the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.« less
Real-time monitoring of plutonium content in uranium-plutonium alloys
Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas
2015-09-01
A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.
Plutonium segregation in glassy aerodynamic fallout from a nuclear weapon test
Holliday, K. S.; Dierken, J. M.; Monroe, M. L.; ...
2017-01-11
Our study combines electron microscopy equipped with energy dispersive spectroscopy to probe major element composition and autoradiography to map plutonium in order to examine the spatial relationships between plutonium and fallout composition in aerodynamic glassy fallout from a nuclear weapon test. We interrogated a sample set of 48 individual fallout specimens in order to reveal that the significant chemical heterogeneity of this sample set could be described compositionally with a relatively small number of compositional endmembers. Furthermore, high concentrations of plutonium were never associated with several endmember compositions and concentrated with the so-called mafic glass endmember. Our result suggests thatmore » it is the physical characteristics of the compositional endmembers and not the chemical characteristics of the individual component elements that govern the un-burnt plutonium distribution with respect to major element composition in fallout.« less
Wakeford, Richard
2009-06-01
Many individuals are, or have been, exposed to ionising radiation in the course of their work and the epidemiological study of occupationally irradiated groups offers an important opportunity to complement the estimates of risks to health resulting from exposure to radiation that are obtained from other populations, such as the Japanese survivors of the atomic bombings of Hiroshima and Nagasaki in 1945. Moreover, workplace exposure to radiation usually involves irradiation conditions that are of direct relevance to the principal concern of radiological protection: protracted exposure to low level radiation. Further, some workers have been exposed to radioactive material that has been inadvertently taken into the body, and the study of these groups leads to risk estimates derived directly from the experience of those irradiated by these 'internal emitters', intakes of alpha-particle-emitters being of particular interest. Workforces that have been the subject of epidemiological study include medical staff, aircrews, radium dial luminisers, underground hard-rock miners, Chernobyl clean-up workers, nuclear weapons test participants and nuclear industry workers. The first solid epidemiological evidence of the stochastic effects of irradiation came from a study of occupational exposure to medical x-rays that was reported in 1944, which demonstrated a large excess risk of leukaemia among US radiologists; but the general lack of dose records for early medical staff who tended to experience the highest exposures hampers the derivation of risks per unit dose received by medical workers. The instrument dial luminisers who inadvertently ingested large amounts of radium-based paint and underground hard-rock miners who inhaled large quantities of radon and its decay products suffered markedly raised excess risks of, respectively, bone and lung cancers; the miner studies have provided standard risk estimates for radon-induced lung cancer. The large numbers of nuclear industry workers around the world present a possibility of deriving risk coefficients of direct relevance to radiological protection, and the recently published study of workers from 15 countries illustrates what can be achieved by international collaboration. However, it would appear that there are some problems with this study that require attention before reliance can be placed upon the results. Early workers from the Mayak plutonium production facility in Russia were heavily exposed to external sources of penetrating radiation and to plutonium, and appreciable effort has been expended in obtaining dependable risk estimates from this scientifically valuable group of workers. Those occupationally exposed to low levels of radiation also present an opportunity of studying possible somatic health effects other than cancer, such as heart disease and eye cataracts, that are the subject of much discussion at present. Overall, studies of exposure to ionising radiation in the workplace provide a valuable support to studies of those groups exposed under other circumstances, and in some instances (such as exposure to plutonium) effectively offer the only direct source of epidemiological evidence on risks.
Assessment of plutonium in the Savannah River Site environment. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlton, W.H.; Evans, A.G.; Geary, L.A.
1992-12-31
Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclearmore » weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.« less
NASA Astrophysics Data System (ADS)
Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.
2009-12-01
The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration of plutonium in the subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowyer, Theodore W.; Gesh, Christopher J.; Haas, Daniel A.
This report details efforts to develop a technique which is able to detect and quantify the mass of 240Pu in waste storage tanks and other enclosed spaces. If the isotopic ratios of the plutonium contained in the enclosed space is also known, then this technique is capable of estimating the total mass of the plutonium without physical sample retrieval and radiochemical analysis of hazardous material. Results utilizing this technique are reported for a Hanford Site waste tank (TX-118) and a well-characterized plutonium sample in a laboratory environment.
PLUTONIUM ELECTROREFINING CELLS
Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.
1963-07-16
Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)
Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.
1958-11-18
The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.
Development of first ever scanning probe microscopy capabilities for plutonium
NASA Astrophysics Data System (ADS)
Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; Vodnik, Douglas R.; Ramos, Michael; Richmond, Scott; Moore, David P.; Venhaus, Thomas J.; Joyce, Stephen A.; Usov, Igor O.
2017-04-01
Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. These first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.
Development of first ever scanning probe microscopy capabilities for plutonium
Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; ...
2017-04-01
Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. In conclusion, these first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Determination Concerning a Petition To Add a Class of... (NIOSH), Centers for Disease Control and Prevention, Department of Health and Human Services (HHS... monitored (urine or fecal), who worked at the Plutonium Finishing Plant in the 200 Area at the Hanford site...
3. VIEW OF CHAINVEYOR. AN ENCLOSED CHAIN CONVEYOR CONNECTED GLOVE ...
3. VIEW OF CHAINVEYOR. AN ENCLOSED CHAIN CONVEYOR CONNECTED GLOVE BOXES WITHIN AND BETWEEN MODULAR WORK AREAS. LEADED GLOVES WERE AFFIXED TO PORTS ALONG THE CHAINVEYOR PATHWAY TO ALLOW OPERATOR ACCESS. (1/25/93) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO
Environmental aspects of the transuranics: a selected, annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fore, C.S.; Martin, F.M.; Faust, R.A.
This bibliography of 500 references is compiled from the Data Base on the Environmental Aspects of the Transuranics built to provide information support to the Nevada Applied Ecology Group (NAEG) of ERDA`s Nevada Operations Office. The general scope is environmental aspects of uranium and the transuranic elements, with emphasis on plutonium. Laboratory and field studies dealing with the effects of plutonium-239 on animals are highlighted in this bibliography. Supporting information on ecology of the Nevada Test Site and reviews on the effects of other radionuclides upon man and his environment has been included at the request of the NAEG. Themore » references are arranged by subject category with first authors appearing alphabetically in each category. Indexes are given for author, geographic location, keywords, taxons, permuted title and publication description.« less
Hande, M Prakash; Azizova, Tamara V; Burak, Ludmilla E; Khokhryakov, Valentin F; Geard, Charles R; Brenner, David J
2005-09-01
Long-lived, sensitive, and specific biomarkers of particular mutagenic agents are much sought after and potentially have broad applications in the fields of cancer biology, epidemiology, and prevention. Many clastogens induce a spectrum of chromosome aberrations, and some of them can be exploited as biomarkers of exposure. Densely ionizing radiation, for example, alpha particle radiation (from radon or plutonium) and neutron radiation, preferentially induces complex chromosome aberrations, which can be detected by the 24-color multifluor fluorescence in situ hybridization (mFISH) technique. We report the detection and quantification of stable complex chromosome aberrations in lymphocytes of healthy former nuclear-weapons workers, who were exposed many years ago to plutonium, gamma rays, or both, at the Mayak weapons complex in Russia. We analyzed peripheral-blood lymphocytes from these individuals for the presence of persistent complex chromosome aberrations. A significantly elevated frequency of complex chromosome translocations was detected in the highly exposed plutonium workers but not in the group exposed only to high doses of gamma radiation. No such differences were found for simple chromosomal aberrations. The results suggest that stable complex chromosomal translocations represent a long-lived, quantitative, low-background biomarker of densely ionizing radiation for human populations exposed many years ago. (c) 2005 Wiley-Liss, Inc.
URANOUS IODATE AS A CARRIER FOR PLUTONIUM
Miller, D.R.; Seaborg, G.T.; Thompson, S.G.
1959-12-15
A process is described for precipitating plutonium on a uranous iodate carrier from an aqueous acid solution conA plutonium solution more concentrated than the original solution can then be obtained by oxidizing the uranium to the hexavalent state and dissolving the precipitate, after separating the latter from the original solution, by means of warm nitric acid.
PLUTONIUM-URANIUM-TITANIUM ALLOYS
Coffinberry, A.S.
1959-07-28
A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.
Radioisotope contaminations from releases of the Tomsk-Seversk nuclear facility (Siberia, Russia).
Gauthier-Lafaye, F; Pourcelot, L; Eikenberg, J; Beer, H; Le Roux, G; Rhikvanov, L P; Stille, P; Renaud, Ph; Mezhibor, A
2008-04-01
Soils have been sampled in the vicinity of the Tomsk-Seversk facility (Siberia, Russia) that allows us to measure radioactive contaminations due to atmospheric and aquatic releases. Indeed soils exhibit large inventories of man-made fission products including 137Cs (ranging from 33,000 to 68,500 Bq m(-2)) and actinides such as plutonium (i.e. 239+240Pu from 420 to 5900 Bq m(-2)) or 241Am (160-1220 Bq m(-2)). Among all sampling sites, the bank of the Romashka channel exhibits the highest radioisotope concentrations. At this site, some short half-life gamma emitters were detected as well indicating recent aquatic discharge in the channel. In comparison, soils that underwent atmospheric depositions like peat and forest soils exhibit lower activities of actinides and 137Cs. Soil activities are too high to be related solely to global fallout and thus the source of plutonium must be discharges from the Siberian Chemical Combine (SCC) plant. This is confirmed by plutonium isotopic ratios measured by ICP-MS; the low 241Pu/239Pu and 240Pu/239Pu atomic ratios with respect to global fallout ratio or civil nuclear fuel are consistent with weapons grade signatures. Up to now, the influence of Tomsk-Seversk plutonium discharges was speculated in the Ob River and its estuary. Isotopic data from the present study show that plutonium measured in SCC probably constitutes a significant source of plutonium in the aquatic environment, together with plutonium from global fallout and other contaminated sites including Tomsk, Mayak (Russia) and Semipalatinsk (Republic of Kazakhstan). It is estimated that the proportion of plutonium from SCC source can reach 45% for 239Pu and 60% for 241Pu in the sediments.
High-Temperature Oxidation of Plutonium Surrogate Metals and Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, Joshua C.; Krantz, Kelsie E.; Christian, Jonathan H.
The Plutonium Management and Disposition Agreement (PMDA) is a nuclear non-proliferation agreement designed to remove 34 tons of weapons-grade plutonium from Russia and the United States. While several removal options have been proposed since the agreement was first signed in 2000, processing the weapons-grade plutonium to mixed-oxide (MOX) fuel has remained the leading candidate for achieving the goals of the PMDA. However, the MOX program has received its share of criticisms, which causes its future to be uncertain. One alternative pathway for plutonium disposition would involve oxidizing the metal followed by impurity down blending and burial in the Waste Isolationmore » Pilot Plant (WIPP) in Carlsbad, New Mexico. This pathway was investigated by use of a hybrid microwave and a muffle furnace with Fe and Al as surrogate materials. Oxidation occurred similarly in the microwave and muffle furnace; however, the microwave process time was significantly faster.« less
The underwater coincidence counter (UWCC) for plutonium measurements in mixed oxide fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eccleston, G.W.; Menlove, H.O.; Abhold, M.
1998-12-31
The use of fresh uranium-plutonium mixed oxide (MOX) fuel in light-water reactors (LWR) is increasing in Europe and Japan and it is necessary to verify the plutonium content in the fuel for international safeguards purposes. The UWCC is a new instrument that has been designed to operate underwater and nondestructively measure the plutonium in unirradiated MOX fuel assemblies. The UWCC can be quickly configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies. The plutonium loading per unit length is measured using the UWCC to precisions of less than 1% in a measurement time of 2 tomore » 3 minutes. Initial calibrations of the UWCC were completed on measurements of MOX fuel in Mol, Belgium. The MCNP-REN Monte Carlo simulation code is being benchmarked to the calibration measurements to allow accurate simulations for extended calibrations of the UWCC.« less
TERNARY ALLOY-CONTAINING PLUTONIUM
Waber, J.T.
1960-02-23
Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.
Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yifeng
2015-08-20
The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. Chapter headings are as follows: Fuel matrix degradation model and its integration with performance assessments, Investigation of thermal effects on the chemical behavior of clays, Investigation of uranium diffusion and retardation in bentonite, Long-term diffusion of U(VI) in bentonite: dependence on density, Sorption and desorption of plutonium by bentonite, Dissolution of plutonium intrinsic colloids in the presence of clay and asmore » a function of temperature, Laboratory investigation of colloid-facilitated transport of cesium by bentonite colloids in a crystalline rock system, Development and demonstration of discrete fracture network model, Fracture continuum model and its comparison with discrete fracture network model.« less
PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS
Duffield, R.B.
1959-02-24
S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.
Density of Plutonium Turnings Generated from Machining Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzales, John Robert; Vigil, Duane M.; Jachimowski, Thomas A.
The purpose of this project was to determine the density of plutonium (Pu) turnings generated from the range of machining activities, using both surrogate material and machined Pu turnings. Verify that 500 grams (g) of plutonium will fit in a one quart container using a surrogate equivalent volume and that 100 grams of Pu will fit in a one quart Savy container.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sehmel, G.A.
1978-01-01
Airborne plutonium-239 and americium-241 concentrations and fluxes were measured at six heights from 1.9 to 122 m on the Hanford meteorological tower. The data show that plutonium-239 was transported on nonrespirable and small particles at all heights. Airborne americium-241 concentrations on small particles were maximum at the 91 m height.
PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL
Moore, R.H.
1964-03-24
A process of recovering plutonium from fuel by dissolution in molten KAlCl/sub 4/ double salt is described. Molten lithium chloride plus stannous chloride is added to reduce plutonium tetrachloride to the trichloride, which is dissolved in a lithium chloride phase while the uranium, as the tetrachloride, is dissolved in a double-salt phase. Separation of the two phases is discussed. (AEC)
SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY ADSORPTION
Seaborg, G.T.; Willard, J.E.
1958-01-01
A method is presented for the separation of plutonium from solutions containing that element in a valence state not higher than 41 together with uranium ions and fission products. This separation is accomplished by contacting the solutions with diatomaceous earth which preferentially adsorbs the plutonium present. Also mentioned as effective for this adsorbtive separation are silica gel, filler's earth and alumina.
METHOD OF RECOVERING PLUTONIUM VALUES FROM AQUEOUS SOLUTIONS BY CARRIER PRECIPITATION
James, R.A.; Thompson, S.G.
1959-11-01
A process is presented for pretreating aqueous nitric acid- plutonium solutions containing a small quantity of hydrazine that has formed as a decomposition product during the dissolution of neutron-bombarded uranium in nitric acid and that impairs the precipitation of plutonium on bismuth phosphate. The solution is digested with alkali metal dichromate or potassium permanganate at between 75 and 100 deg C; sulfuric acid at approximately 75 deg C and sodium nitrate, oxaiic acid plus manganous nitrate, or hydroxylamine are added to the solution to secure the plutonium in the tetravalent state and make it suitable for precipitation on BiPO/sub 4/.
Xu, Ning; Chamberlin, Rebecca M.; Thompson, Pam; ...
2017-10-07
This study has demonstrated that bulk plutonium chemical analysis can be performed at small scales (\\50 mg material) through three case studies. Analytical methods were developed for ICP-OES and ICP-MS instruments to measure trace impurities and gallium content in plutonium metals with comparable or improved detection limits, measurement accuracy and precision. In two case studies, the sample size has been reduced by 109, and in the third case study, by as much as 50009, so that the plutonium chemical analysis can be performed in a facility rated for lower-hazard and lower-security operations.
METHOD AND MEANS FOR ELECTROLYTIC PURIFICATION OF PLUTONIUM
Bjorklund, C.W.; Benz, R.; Maraman, W.J.; Leary, J.A.; Walsh, K.A.
1960-02-01
The technique of electrodepositing pure plutonium from a fused salt electrolyte of PuCl/sub 3/ and aixati metal halides is described. When an iron cathode is used, the plutonium deposit alloys therewith in the liquid state at the 400 to 600 deg C operating temperature, such liquid being allowed to drip through holes in the cathode and collect in a massive state in a tantallum cup. The process is adaptable to continuous processing by the use of depleted plutonium fuel as the anode: good to excellent separation from fission products is obtained with a Pu--Fe "fission" anode containing representative fractions of Ce, Ru, Zr, La, Mo, and Nb.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ning; Chamberlin, Rebecca M.; Thompson, Pam
This study has demonstrated that bulk plutonium chemical analysis can be performed at small scales (\\50 mg material) through three case studies. Analytical methods were developed for ICP-OES and ICP-MS instruments to measure trace impurities and gallium content in plutonium metals with comparable or improved detection limits, measurement accuracy and precision. In two case studies, the sample size has been reduced by 109, and in the third case study, by as much as 50009, so that the plutonium chemical analysis can be performed in a facility rated for lower-hazard and lower-security operations.
PROCESSING OF NEUTRON-IRRADIATED URANIUM
Hopkins, H.H. Jr.
1960-09-01
An improved "Purex" process for separating uranium, plutonium, and fission products from nitric acid solutions of neutron-irradiated uranium is offered. Uranium is first extracted into tributyl phosphate (TBP) away from plutonium and fission products after adjustment of the acidity from 0.3 to 0.5 M and heating from 60 to 70 deg C. Coextracted plutonium, ruthenium, and fission products are fractionally removed from the TBP by three scrubbing steps with a 0.5 M nitric acid solution of ferrous sulfamate (FSA), from 3.5 to 5 M nitric acid, and water, respectively, and the purified uranium is finally recovered from the TBP by precipitation with an aqueous solution of oxalic acid. The plutonium in the 0.3 to 0.5 M acid solution is oxidized to the tetravalent state with sodium nitrite and extracted into TBP containing a small amount of dibutyl phosphate (DBP). Plutonium is then back-extracted from the TBP-DBP mixture with a nitric acid solution of FSA, reoxidized with sodium nitrite in the aqueous strip solution obtained, and once more extracted with TBP alone. Finally the plutonium is stripped from the TBP with dilute acid, and a portion of the strip solution thus obtained is recycled into the TBPDBP for further purification.
Selecting a plutonium vitrification process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jouan, A.
1996-05-01
Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing ofmore » plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.« less
Preserving Plutonium-244 as a National Asset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Bradley D; Alexander, Charles W; Benker, Dennis
Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium.more » Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is separated, it would occupy a small volume and would be inexpensive to store while an enrichment capability is developed. Very small quantities could be enriched in existing mass separators to support critical needs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaech, J.L.
The use of a pooling technique in leak testing Plutonium Recycle Test Reactor fuel elements to reduce the number of tests is discussed. Since the proportion of defectives in this case is small, application of the method would suggest that the group size be large. It was suggested that additional savings might be introduced by subgrouping the originally grouped items in the event of a positive result, rather than testing them individually. An investigation was made to determine optimum subgrouping sizes. (M.C.G.)
Interaction of aerobic soil bacteria with plutonium(VI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panak, Petra J.; Nitsche, Heino
2000-08-22
We studied the interaction of Pu(VI) with Pseudomonas stutzeri ATCC 17588 and Bacillus sphaericus ATCC 14577, representatives of the main aerobic groups of soil bacteria present in the upper soil layers. The accumulation studies have shown that these soil bacteria accumulate high amounts of Pu(VI). The sorption efficiency toward Pu(VI) decreased with increasing biomass concentration due to increased agglomeration of the bacteria resulting in a decreased total surface area and number of available complexing groups. Spores of Bacillus sphaericus showed a higher biosorption than the vegetative cells at low biomass concentration which decreased significantly with increasing biomass concentration. At highermore » biomass concentrations (> 0.7 g/L), the vegetative cells of both strains and the spores of B. sphaericus showed comparable sorption efficiencies. Investigations on the pH dependency of the biosorption and extraction studies with 0.01 M EDTA solution have shown that the biosorption of plutonium is a reversible process and the plutonium is bound by surface complexation. Optical absorption spectroscopy showed that one third of the initially present Pu(VI) was reduced to Pu(V) after 24 hours. Kinetic studies and solvent extraction to separate different oxidation states of Pu after contact with the biomass provided further information on the yield and the kinetics of the bacteria-mediated reduction. Long-term studies showed that also 16% of Pu(IV) was formed after one month. The comparison of the amount of Pu(IV) formed during that time period with literature data of the Pu(V) disproportionation, indicated that the Pu(IV) seemed to be rather the result of the disproportionation of the formed Pu(V) than of a further microbial reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.
A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so thatmore » very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.« less
Electrochemical Nucleation and Growth of Uranium and Plutonium from Molten Salts
Tylka, M. M.; Willit, J. L.; Williamson, M. A.
2017-07-18
This work examines the nucleation and growth behavior of uranium and plutonium from molten LiCl-KCl eutectic on inert electrodes using electrochemical techniques. Current-time transients obtained from chronoamperometric experiments were compared with theoretical models to characterize the type of nucleation (progressive or instantaneous) for deposition of U and Pu, and co-deposition of U-Pu, from molten LiCl-KCl at inert electrodes. It was established that the nucleation mode of actinides present as chlorides in molten chloride salts changes from progressive to instantaneous with an increasing concentration of the trivalent actinide ions in the salt. The effect of the material of the working electrodemore » was investigated, and it was found that changing the material from tungsten to silver improves resolvability of the nucleation peaks and allows more accurate analysis of the experimental measurements. Using the nucleation data, diffusion coefficients were obtained for U 3+ and Pu 3+, and were found to be in very good agreement with the values obtained from other studies. Furthermore, the density of nuclei produced during instantaneous nucleation, the rate of nucleation for progressive nucleation, and the radius of the deposited nuclei were evaluated and examined at different overpotentials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report summarizes activities of the Amarillo National Resource Center for Plutonium during the quarter. The report describes the Electronic Resource Library; DOE support activities; current and future environmental health and safety programs; pollution prevention and pollution avoidance; communication, education, training, and community involvement programs; and nuclear and other material studies, including plutonium storage and disposition studies.
Fuel bundle design for enhanced usage of plutonium fuel
Reese, Anthony P.; Stachowski, Russell E.
1995-01-01
A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.
Fuel bundle design for enhanced usage of plutonium fuel
Reese, A.P.; Stachowski, R.E.
1995-08-08
A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.
PLUTONIUM PROCESSING OPTIMIZATION IN SUPPORT OF THE MOX FUEL PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
GRAY, DEVIN W.; COSTA, DAVID A.
2007-02-02
After Los Alamos National Laboratory (LANL) personnel completed polishing 125 Kg of plutonium as highly purified PuO{sub 2} from surplus nuclear weapons, Duke, COGEMA, Stone, and Webster (DCS) required as the next process stage, the validation and optimization of all phases of the plutonium polishing flow sheet. Personnel will develop the optimized parameters for use in the upcoming 330 kg production mission.
Nuclear Matters. A Practical Guide
2008-01-01
plutonium science and engineering. Figure 4.6 depicts LANL workers in Technical Area (TA)-55, the Los Alamos plutonium facility. LANL oversees...facility at Los Alamos to produce plutonium pits in a laboratory environment, with a capacity to produce a small number of pits per year . At that...Office of Secure Transportation (OST). Technical Advisors represent the following organizations: Los Alamos National Chair ATSD(NCB) Vice-Chair
Minimizing Glovebox Glove Breaches, Part III: Deriving Service Lifetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, M.E.; Wilson, K.V.; Maestas, M.M.
At the Los Alamos Plutonium Facility, various isotopes of plutonium along with other actinides are handled in a glove box environment. Weapons-grade plutonium consists mainly in Pu-239. Pu-238 is another isotope used for heat sources. The Pu-238 is more aggressive regarding gloves due to its higher alpha-emitting characteristic ({approx}300 times more active than Pu-239), which modifies the change-out intervals for gloves. Optimization of the change-out intervals for gloves is fundamental since Nuclear Materials Technology (NMT) Division generates approximately 4 m{sup 3}/yr of TRU waste from the disposal of glovebox gloves. To reduce the number of glovebox glove failures, the NMTmore » Division pro-actively investigates processes and procedures that minimize glove failures. Aging studies have been conducted that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on mechanical data of thermally aged Hypalon{sup R}, and Butasol{sup R} glove samples. Information from this study represent an important baseline in gauging the acceptable standards for polymeric gloves used in a laboratory glovebox environment and will be used later to account for possible presence of dose-rate or synergistic effects in 'combined-environment'. In addition, excursions of contaminants into the operator's breathing zone and excess exposure to the radiological sources associated with unplanned breaches in the glovebox are reduced. (authors)« less
Environmental aspects of the transuranics: a selected, annotated bibliography. [Pu-238, Pu-239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ensminger, J.T.; Martin, F.M.; Fore, C.S.
This eighth published bibliography of 427 references is compiled from the Nevada Applied Ecology Information Center's Data Base on the Environmental Aspects of the Transuranics. The data base was built to provide information support to the Nevada Applied Ecology Group (NAEG) of ERDA's Nevada Operations Office. The general scope covers environmental aspects of uranium and the transuranic elements, with emphasis on plutonium. This bibliography highlights literature on plutonium 238 and 239 and americium in the critical organs of man and animals. Supporting information on ecology of the Nevada Test Site and reviews and summarizing literature on other radionuclides have beenmore » included at the request of the NAEG. The references are arranged by subject category with leading authors appearing alphabetically in each category. Indexes are provided for author(s), geographic location, keyword(s), taxon, title, and publication description.« less
Density functional theory study of defects in unalloyed δ-Pu
Hernandez, S. C.; Freibert, F. J.; Wills, J. M.
2017-03-19
Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less
Method for dissolving delta-phase plutonium
Karraker, David G.
1992-01-01
A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.
Density functional theory study of defects in unalloyed δ-Pu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, S. C.; Freibert, F. J.; Wills, J. M.
Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less
Johnson, B.M.
1963-08-20
A spray calcination reactor for calcining reprocessin- g waste solutions is described. Coaxial within the outer shell of the reactor is a shorter inner shell having heated walls and with open regions above and below. When the solution is sprayed into the irner shell droplets are entrained by a current of gas that moves downwardly within the inner shell and upwardly between it and the outer shell, and while thus being circulated the droplets are calcined to solids, whlch drop to the bottom without being deposited on the walls. (AEC) H03 H0233412 The average molecular weights of four diallyl phthalate polymer samples extruded from the experimental rheometer were redetermined using the vapor phase osmometer. An amine curing agent is required for obtaining suitable silver- filled epoxy-bonded conductive adhesives. When the curing agent was modified with a 47% polyurethane resin, its effectiveness was hampered. Neither silver nor nickel filler impart a high electrical conductivity to Adiprenebased adhesives. Silver filler was found to perform well in Dow-Corning A-4000 adhesive. Two cascaded hot-wire columns are being used to remove heavy gaseous impurities from methane. This purified gas is being enriched in the concentric tube unit to approximately 20% carbon-13. Studies to count low-level krypton-85 in xenon are continuing. The parameters of the counting technique are being determined. The bismuth isotopes produced in bismuth irradiated for polonium production are being determined. Preliminary data indicate the presence of bismuth207 and bismuth-210m. The light bismuth isotopes are probably produced by (n,xn) reactions bismuth-209. The separation of uranium-234 from plutonium-238 solutions was demonstrated. The bulk of the plutonium is removed by anion exchange, and the remainder is extracted from the uranium by solvent extraction techniques. About 99% of the plutonium can be removed in each thenoyltrifluoroacetone extraction. The viscosity, liquid density, and selfdiffusion coefficient for lanthanum, cerium, and praseodymium were determined. The investigation of phase relationships in the plutonium-cerium-copper ternary system was continued on samples containing a high concentration of copper. These analyses indicate that complete solid solution exists between the binary compounds CeCu/sub 2/ and PuCu/sub 2/, thus forming a quasi-binary system. The study of high temperature ceramic fuel materials has continued with the homogenization and microspheroidization of binary mixtures of plutonium dioxide and zirconium dioxide. Sintering a die-pressed pellet of the mixed powders for one hour at 1450 deg C was not sufficient to completely react the constituents. Complete homogenization was obtained when the pellet was melted in the plasma flame. In addition to the plutonium dioxide-zirconium dioxide microspheres, pure beryllium oxide microspheres were produced in the plasma torch. The electronic distribution functions for the 10% by weight PuO/sub 2/ dissolved in a silicate glass were determined. The plutonium-oxygen interaction at about 2.2A is less than the plutonium-oxygen distance for the 5% PuO/sub 2/. The decrease in the interionic distance is indicative of a stronger plutonium-oxygen association for the more concentrated composition. Potassium plutonium sulfate is being evaluated as a reagent to quantitatively separate plutonium from aqueous solutions. The compound containing two waters of hydration was prepared for thermogravimetric studies using analytically pure plutonium-239. Because of the stability of this compound, it is being evaluated as a calorimetric standard for plutonium-238. (auth)
METHOD FOR SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY SOLVENT EXTRACTION
Seaborg, G.T.; Blaedel, W.J.; Walling, M.T. Jr.
1960-08-23
A process is given for separating from each other uranium, plutonium, and fission products in an aqueous nitric acid solution by the so-called Redox process. The plutonium is first oxidized to the hexavalent state, e.g., with a water-soluble dichromate or sodium bismuthate, preferably together with a holding oxidant such as potassium bromate. potassium permanganate, or an excess of the oxidizing agent. The solution is then contacted with a water-immiscible organic solvent, preferably hexone. whereby uranium and plutonium are extracted while the fission products remain in the aqueous solution. The separated organic phase is then contacted with an aqueous solution of a reducing agent, with or without a holding reductant (e.g., with a ferrous salt plus hydrazine or with ferrous sulfamate), whereby plutonium is reduced to the trivalent state and back- extracted into the aqueous solution. The uranium may finally be back-extracted from the organic solvent (e.g., with a 0.1 N nitric acid).
Second-order Kinetics of DTPA and Plutonium in Rat Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Guthrie; Poudel, Deepesh; Klumpp, John Allan
We report that in 2008, Serandour et al. reported on their in vitro experiment involving rat plasma samples obtained after an intravenous intake of plutonium citrate. Different amounts of DTPA were added to the plasma samples and the percentage of low-molecular-weight plutonium measured. Only when the DTPA dosage was three orders of magnitude greater than the recommended 30 μmol/kg was 100% of the plutonium apparently in the form of chelate. These data were modeled assuming three competing chemical reactions with other molecules that bind with plutonium. Here, time-dependent second-order kinetics of these reactions are calculated, intended eventually to become partmore » of a complete biokinetic model of DTPA action on actinides in laboratory animals or humans. The probability distribution of the ratio of stability constants for the reactants was calculated using Markov Chain Monte Carlo. In conclusion, these calculations substantiate that the inclusion of more reactions is needed in order to be in agreement with known stability constants.« less
Second-order Kinetics of DTPA and Plutonium in Rat Plasma
Miller, Guthrie; Poudel, Deepesh; Klumpp, John Allan; ...
2017-11-15
We report that in 2008, Serandour et al. reported on their in vitro experiment involving rat plasma samples obtained after an intravenous intake of plutonium citrate. Different amounts of DTPA were added to the plasma samples and the percentage of low-molecular-weight plutonium measured. Only when the DTPA dosage was three orders of magnitude greater than the recommended 30 μmol/kg was 100% of the plutonium apparently in the form of chelate. These data were modeled assuming three competing chemical reactions with other molecules that bind with plutonium. Here, time-dependent second-order kinetics of these reactions are calculated, intended eventually to become partmore » of a complete biokinetic model of DTPA action on actinides in laboratory animals or humans. The probability distribution of the ratio of stability constants for the reactants was calculated using Markov Chain Monte Carlo. In conclusion, these calculations substantiate that the inclusion of more reactions is needed in order to be in agreement with known stability constants.« less
Plutonium Immobilization Project System Design Description for Can Loading System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriikku, E.
2001-02-15
The purpose of this System Design Description (SDD) is to specify the system and component functions and requirements for the Can Loading System and provide a complete description of the system (design features, boundaries, and interfaces), principles of operation (including upsets and recovery), and the system maintenance approach. The Plutonium Immobilization Project (PIP) will immobilize up to 13 metric tons (MT) of U.S. surplus weapons usable plutonium materials.
Duffield, R.B.
1959-07-14
A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.
METHOD OF SEPARATING URANIUM, PLUTONIUM AND FISSION PRODUCTS BY BROMINATION AND DISTILLATION
Jaffey, A.H.; Seaborg, G.T.
1958-12-23
The method for separation of plutonium from uranium and radioactive fission products obtained by neutron irradiation of uranlum consists of reacting the lrradiated material with either bromine, hydrogen bromide, alumlnum bromide, or sulfur and bromine at an elevated temperature to form the bromides of all the elements, then recovering substantlally pure plutonium bromide by dlstillatlon in combinatlon with selective condensatlon at prescribed temperature and pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HERZOG, K.R.
1999-09-01
A review of the environmental, safety, and health vulnerabilities associated with the continued storage of PFP's inventory of plutonium bearing materials and other SNM. This report re-evaluates the five vulnerabilities identified in 1994 at the PFP that are associated with SNM storage. This new evaluation took a more detailed look and applied a risk ranking process to help focus remediation efforts.
METHOD OF PREPARING METAL HALIDES
Hendrickson, A.V.
1958-11-18
The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.
REDUCTION OF PLUTONIUM TO Pu$sup +3$ BY SODIUM DITHIONITE IN POTASSIUM CARBONATE
Miller, D.R.; Hoekstra, H.R.
1958-12-16
Plutonium values are reduced in an alkaline aqueous medlum to the trlvalent state by means of sodium dlthionite. Plutonlum values are also separated from normally assoclated contaminants by metathesizing a lanthanum fluoride carrier precipitate containing plutonium with a hydroxide solution, performing the metathesis in the presence of about 0.2 M sodium dithionite at a temperature of between 40 and 90 icient laborato C.
METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM
Koshland, D.E. Jr.; Willard, J.E.
1961-08-01
A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Casella, Amanda J.
2016-09-30
This report summarizes the literature reviewed on crud formation at the liquid:liquid interface of solvent extraction processes. The review is focused both on classic PUREX extraction for industrial reprocessing, especially as practiced at the Hanford Site, and for those steps specific to plutonium purification that were used at the Plutonium Reclamation Facility (PRF) within the Plutonium Finishing Plant (PFP) at the Hanford Site.
RECOVERY OF Pu VALUES BY FLUORINATION AND FRACTIONATION
Brown, H.S.; Webster, D.S.
1959-01-20
A method is presented for the concentration and recovery of plutonium by fluorination and fractionation. A metallic mass containing uranium and plutonium is heated to 250 C and contacted with a stream of elemental fluorine. After fluorination of the metallic mass, the rcaction products are withdrawn and subjected to a distillation treatment to separate the fluorination products of uranium and to obtain a residue containing the fluorination products of plutonium.
METHOD OF PREPARING PLUTONIUM TETRAFLUORIDE
Beede, R.L.; Hopkins, H.H. Jr.
1959-11-17
C rystalline plutonium tetrafluoride is precipitated from aqueous up to 1.6 N mineral acid solutions of a plutorium (IV) salt with fluosilicic acid anions, preferably at room temperature. Hydrogen fluoride naay be added after precipitation to convert any plutonium fluosilicate to the tetrafluoride and any silica to fluosilicic acid. This process results in a purer product, especially as to iron and aluminum, than does the precipitation by the addition of hydrogen fluoride.
Method of immobilizing weapons plutonium to provide a durable, disposable waste product
Ewing, Rodney C.; Lutze, Werner; Weber, William J.
1996-01-01
A method of atomic scale fixation and immobilization of plutonium to provide a durable waste product. Plutonium is provided in the form of either PuO.sub.2 or Pu(NO.sub.3).sub.4 and is mixed with and SiO.sub.2. The resulting mixture is cold pressed and then heated under pressure to form (Zr,Pu)SiO.sub.4 as the waste product.
Radiation damage and annealing in plutonium tetrafluoride
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey
Plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an off-normal color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, Thermogravimetric/Differential Thermal Analysis and X-ray Diffraction evaluations were conducted to determine the plutonium’s crystal structure, oxide content, and moisture content; these analyses reported that themore » plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. During the initial Thermogravimetric/Differential Thermal analyses, it was discovered that an exothermic event occurred within the material near 414°C. X-ray Diffraction analyses were conducted on the annealed tetrafluoride. The X-ray Diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414°C event. The following commentary describes the series of Thermogravimetric/Differential Thermal and X-ray Diffraction analyses that were conducted as part of this investigation at PNNL, in collaboration with the University of Utah Nuclear Engineering Program.« less
Resuspension studies in the Marshall Islands.
Shinn, J H; Homan, D N; Robison, W L
1997-07-01
The contribution of inhalation exposure to the total dose for residents of the Marshall Islands was monitored at occasions of opportunity on several islands in the Bikini and Enewetak Atolls. To determine the long-term potential for inhalation exposure, and to understand the mechanisms of redistribution and personal exposure, additional investigations were undertaken on Bikini Island under modified and controlled conditions. Experiments were conducted to provide key parameters for the assessment of inhalation exposure from plutonium-contaminated dust aerosols: characterization of the contribution of plutonium in soil-borne aerosols as compared to sea spray and organic aerosols, determination of plutonium resuspension rates as measured by the meteorological flux-gradient method during extreme conditions of a bare-soil vs. a stabilized surface, determination of the approximate individual exposures to resuspended plutonium by traffic, and studies of exposures to individuals in different occupational environments simulated by personal air sampling of workers assigned to a variety of tasks. Enhancement factors (defined as ratios of the plutonium-activity of suspended aerosols relative to the plutonium-activity of the soil) were determined to be less than 1 (typically 0.4 to 0.7) in the undisturbed, vegetated areas, but greater than 1 (as high as 3) for the case studies of disturbed bare soil, roadside travel, and for occupational duties in fields and in and around houses.
Ultra-small plutonium oxide nanocrystals: an innovative material in plutonium science.
Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Janssen, Arne; Manara, Dario; Griveau, Jean-Christophe; Colineau, Eric; Vitova, Tonya; Prüssmann, Tim; Wang, Di; Kübel, Christian; Meyer, Daniel
2014-08-11
Apart from its technological importance, plutonium (Pu) is also one of the most intriguing elements because of its non-conventional physical properties and fascinating chemistry. Those fundamental aspects are particularly interesting when dealing with the challenging study of plutonium-based nanomaterials. Here we show that ultra-small (3.2±0.9 nm) and highly crystalline plutonium oxide (PuO2 ) nanocrystals (NCs) can be synthesized by the thermal decomposition of plutonyl nitrate ([PuO2 (NO3 )2 ]⋅3 H2 O) in a highly coordinating organic medium. This is the first example reporting on the preparation of significant quantities (several tens of milligrams) of PuO2 NCs, in a controllable and reproducible manner. The structure and magnetic properties of PuO2 NCs have been characterized by a wide variety of techniques (powder X-ray diffraction (PXRD), X-ray absorption fine structure (XAFS), X-ray absorption near edge structure (XANES), TEM, IR, Raman, UV/Vis spectroscopies, and superconducting quantum interference device (SQUID) magnetometry). The current PuO2 NCs constitute an innovative material for the study of challenging problems as diverse as the transport behavior of plutonium in the environment or size and shape effects on the physics of transuranium elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamison, J.D.; Watson, E.C.
1982-02-01
Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the Atomics International's Nuclear Materials Development Facility (NMDF), in the Santa Susana site, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are alsomore » given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquake, and the 150-mph and 170-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 110-mph and the 130-mph tornadoes are below the EPA proposed guideline.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamison, J.D.; Watson, E.C.
1980-11-01
Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the General Electric Company Vallecitos Nuclear Center, Vallecitos, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are also given. The most likelymore » calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquakes, and the 180-mph and 230-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 135-mph tornado are below the EPA proposed guidelines.« less
Moll, Henry; Cherkouk, Andrea; Bok, Frank; Bernhard, Gert
2017-05-01
Since plutonium could be released from nuclear waste disposal sites, the exploration of the complex interaction processes between plutonium and bacteria is necessary for an improved understanding of the fate of plutonium in the vicinity of such a nuclear waste disposal site. In this basic study, the interaction of plutonium with cells of the bacterium, Sporomusa sp. MT-2.99, isolated from Mont Terri Opalinus Clay, was investigated anaerobically (in 0.1 M NaClO 4 ) with or without adding Na-pyruvate as an electron donor. The cells displayed a strong pH-dependent affinity for Pu. In the absence of Na-pyruvate, a strong enrichment of stable Pu(V) in the supernatants was discovered, whereas Pu(IV) polymers dominated the Pu oxidation state distribution on the biomass at pH 6.1. A pH-dependent enrichment of the lower Pu oxidation states (e.g., Pu(III) at pH 6.1 which is considered to be more mobile than Pu(IV) formed at pH 4) was observed in the presence of up to 10 mM Na-pyruvate. In all cases, the presence of bacterial cells enhanced removal of Pu from solution and accelerated Pu interaction reactions, e.g., biosorption and bioreduction.
The plutonium isotopic composition of marine biota on Enewetak Atoll: a preliminary assessment.
Hamilton, Terry F; Martinelli, Roger E; Kehl, Steven R; McAninch, Jeffrey E
2008-10-01
We have determined the level and distribution of gamma-emitting radionuclides, plutonium activity concentrations, and 240Pu/239Pu atom ratios in tissue samples of giant clam (Tridacna gigas and Hippopus hippopus), a top snail (Trochus nilaticas) and sea cucumber (Holothuria atra) collected from different locations around Enewetak Atoll. The plutonium isotopic measurements were performed using ultra-high sensitivity accelerator mass spectrometry (AMS). Elevated levels of plutonium were observed in the stomachs (includes the stomach lining) of Tridacna clam (0.62 to 2.98 Bq kg(-1), wet wt.), in the soft parts (edible portion) of top snails (0.25 to 1.7 Bq kg(-1)), wet wt.) and, to a lesser extent, in sea cucumber (0.015 to 0.22 Bq kg(-1), wet wt.) relative to muscle tissue concentrations in clam (0.006 to 0.021 Bq kg(-1), wet wt.) and in comparison with previous measurements of plutonium in fish. These data and information provide a basis for re-evaluating the relative significance of dietary intakes of plutonium from marine foods on Enewetak Atoll and, perhaps most importantly, demonstrate that discrete 240Pu239Pu isotope signatures might well provide a useful investigative tool to monitor source-term attribution and consequences on Enewetak Atoll. One potential application of immediate interest is to monitor and assess the health and ecological impacts of leakage of plutonium (as well as other radionuclides) from a low-level radioactive waste repository on Runit Island relative to background levels of fallout contamination in Enewetak Atoll lagoon.
Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockhart, Madeline Louise; McMath, Garrett Earl
Although the production of PuBe neutron sources has discontinued, hundreds of sources with unknown or inaccurately declared plutonium content are in existence around the world. Institutions have undertaken the task of assaying these sources, measuring, and calculating the isotopic composition, plutonium content, and neutron yield. The nominal plutonium content, based off the neutron yield per gram of pure 239Pu, has shown to be highly inaccurate. New methods of measuring the plutonium content allow a more accurate estimate of the true Pu content, but these measurements need verification. Using the TENDL 2012 nuclear data libraries, MCNP6 has the capability to simulatemore » the (α, n) interactions in a PuBe source. Theoretically, if the source is modeled according to the plutonium content, isotopic composition, and other source characteristics, the calculated neutron yield in MCNP can be compared to the experimental yield, offering an indication of the accuracy of the declared plutonium content. In this study, three sets of PuBe sources from various backgrounds were modeled in MCNP6 1.2 Beta, according to the source specifications dictated by the individuals who assayed the source. Verification of the source parameters with MCNP6 also serves as a means to test the alpha transport capabilities of MCNP6 1.2 Beta with TENDL 2012 alpha transport libraries. Finally, good agreement in the comparison would indicate the accuracy of the source parameters in addition to demonstrating MCNP's capabilities in simulating (α, n) interactions.« less
Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries
Lockhart, Madeline Louise; McMath, Garrett Earl
2017-10-26
Although the production of PuBe neutron sources has discontinued, hundreds of sources with unknown or inaccurately declared plutonium content are in existence around the world. Institutions have undertaken the task of assaying these sources, measuring, and calculating the isotopic composition, plutonium content, and neutron yield. The nominal plutonium content, based off the neutron yield per gram of pure 239Pu, has shown to be highly inaccurate. New methods of measuring the plutonium content allow a more accurate estimate of the true Pu content, but these measurements need verification. Using the TENDL 2012 nuclear data libraries, MCNP6 has the capability to simulatemore » the (α, n) interactions in a PuBe source. Theoretically, if the source is modeled according to the plutonium content, isotopic composition, and other source characteristics, the calculated neutron yield in MCNP can be compared to the experimental yield, offering an indication of the accuracy of the declared plutonium content. In this study, three sets of PuBe sources from various backgrounds were modeled in MCNP6 1.2 Beta, according to the source specifications dictated by the individuals who assayed the source. Verification of the source parameters with MCNP6 also serves as a means to test the alpha transport capabilities of MCNP6 1.2 Beta with TENDL 2012 alpha transport libraries. Finally, good agreement in the comparison would indicate the accuracy of the source parameters in addition to demonstrating MCNP's capabilities in simulating (α, n) interactions.« less
Survey of glass plutonium contents and poison selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plodinec, M.J.; Ramsey, W.G.; Ellison, A.J.G.
1996-05-01
If plutonium and other actinides are to be immobilized in glass, then achieving high concentrations in the glass is desirable. This will lead to reduced costs and more rapid immobilization. However, glasses with high actinide concentrations also bring with them undersirable characteristics, especially a greater concern about nuclear criticality, particularly in a geologic repository. The key to achieving a high concentration of actinide elements in a glass is to formulate the glass so that the solubility of actinides is high. At the same time, the glass must be formulated so that the glass also contains neutron poisons, which will preventmore » criticality during processing and in a geologic repository. In this paper, the solubility of actinides, particularly plutonium, in three types of glasses are discussed. Plutonium solubilities are in the 2-4 wt% range for borosilicate high-level waste (HLW) glasses of the type which will be produced in the US. This type of glass is generally melted at relatively low temperatures, ca. 1150{degrees}C. For this melting temperature, the glass can be reformulated to achieve plutonium solubilities of at least 7 wt%. This low melting temperature is desirable if one must retain volatile cesium-137 in the glass. If one is not concerned about cesium volatility, then glasses can be formulated which can contain much larger amounts of plutonium and other actinides. Plutonium concentrations of at least 15 wt% have been achieved. Thus, there is confidence that high ({ge}5 wt%) concentrations of actinides can be achieved under a variety of conditions.« less
NASA Astrophysics Data System (ADS)
Singh, Narayani P.; Zimmerman, Carol J.; Lewis, Laura L.; Wrenn, McDonald E.
1984-06-01
Solvent extraction and alpha-spectrometry have been emplyed in the quantitative simultaneous determination of uranium. thorium and plutonium. The bone specimens, spiked with 232U, 229Th and 242Pu tracers, are wet ashed with HNO 3 followed by alternate additions of a new drops of HNO 3 and H 2O 2. Uranium is reduced to the tetravalent state with 200 mg SnCl 2 and 25 ml HI. Uranium, thorium and plutonium are then coprecipitated with calcium as oxalate, heated to 550°C, dissolved in 50 ml HCl, and the acidity adjusted to 10 M. Uranium and plutonium are extracted into a 20% tri-lauryl amine (TLA) solution in xylene, leaving thorium in the aqueous phase. Plutonium is first back-extracted from the TLA phase by shaking with a 1:1.5 volume of 0.05 M NH 4I in 8 M HCl, which reduces Pu(IV) to Pu(III). Uranium is then back-extracted with an equal volume of 0.1 M HCl. Thorium, which was left in the aqueous phase, is evaporated to dryness, dissolved in 4 M HNO 3, and the acidity adjusted to 4 M. Thorium is then extracted into 20% TLA solution in xylene pre-equilibrated with 4 M HNO 3, and back-extracted with 10 M HCl. Uranium, thorium, and plutonium are then electrodeposited separately onto platinum discs and counted by an alpha-spectrometer with a multi-channel analyzer and surface barrier silicon diodes. The mean recoveries of uranium, thorium, and plutonium in bovine, dog, and human bones were over 70%.
Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E
2013-06-01
In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos. Copyright © 2012 Elsevier GmbH. All rights reserved.
Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-04-30
The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readilymore » achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.« less
METHOD OF MAINTAINING PLUTONIUM IN A HIGHER STATE OF OXIDATION DURING PROCESSING
Thompson, S.G.; Miller, D.R.
1959-06-30
This patent deals with the oxidation of tetravalent plutonium contained in an aqueous acid solution together with fission products to the hexavalent state, prior to selective fission product precipitation, by adding to the solution bismuthate or ceric ions as the oxidant and a water-soluble dichromate as a holding oxidant. Both oxidant and holding oxidant are preferably added in greater than stoichiometric quantities with regard to the plutonium present.
Exploding the myths about the fast breeder reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, S.
1979-01-01
This paper discusses the facts and figures about the effects of conservation policies, the benefits of the Clinch River Breeder Reactor demonstration plant, the feasibility of nuclear weapons manufacture from reactor-grade plutonium, diversion of plutonium from nuclear plants, radioactive waste disposal, and the toxicity of plutonium. The paper concludes that the U.S. is not proceeding with a high confidence strategy for breeder development because of a variety of false assumptions.
2001-02-01
liquids or residues from process pipes and tanks. The contractor also dismantled plutonium - processing furnaces, stripped out contaminated process...Soil Cleanup Levels on the Scope and Cost of the 903 Pad Cleanup 30 Figures Figure 1: Workers in Protective Clothing Handling Plutonium - Contaminated ...activities—shipping nuclear materials such as plutonium - contaminated metals and powders—is expected to be completed in 2002. Another activity
Beaton, R.H.
1960-06-28
A process is given for separating tri- or tetravalent plutonium from fission products in an aqueous solution by complexing the fission products with oxalate, tannate, citrate, or tartrate anions at a pH value of at least 2.4 (preferably between 2.4 and 4), and contacting a cation exchange resin with the solution whereby the plutonium is adsorbed while the complexed fission products remain in solution.
Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Kyle Shelton; Kimball, David Bryan; Skidmore, Bradley Evan
These are a set of slides intended for an information session as part of recruiting activities at Brigham Young University. It gives an overview of aqueous chloride operations, specifically on plutonium and americium purification/recovery. This presentation details the steps taken perform these processes, from plutonium size reduction, dissolution, solvent extraction, oxalate precipitation, to calcination. For americium recovery, it details the CLEAR (chloride extraction and actinide recovery) Line, oxalate precipitation and calcination.
Heterogeneity Effects in Plutonium Contaminated Soil
2009-03-01
masses up to one kilogram once the ratio of Americium - 241 (Am- 241 ) and plutonium concentrations was established (Rademacher, 2001). Alpha...with a sample number and tared weight with a non-smearing marker. A standard control was then set using a point source of Americium - 241 on an aluminum...During the fire the weapons grade plutonium (Pu- 239, Pu-240, and Pu- 241 ) ignited and was released into the surrounding area, due to both
PURIFICATION OF PLUTONIUM USING A CERIUM PRECIPITATE AS A CARRIER FOR FISSION PRODUCTS
Faris, B.F.; Olson, C.M.
1961-07-01
Bismuth phosphate carrier precipitation processes are described for the separation of plutonium from fission products wherein in at least one step bismuth phosphate is precipitated in the presence of hexavalent plutonium thereby carrying a portion of the fission products from soluble plu tonium values. In this step, a cerium phosphate precipitate is formed in conjunction with the bismuth phosphate precipitate, thereby increasing the amount of fission products removed from solution.
Electrolysis of plutonium nitride in LiCl-KCl eutectic melts
NASA Astrophysics Data System (ADS)
Shirai, O.; Iwai, T.; Shiozawa, K.; Suzuki, Y.; Sakamura, Y.; Inoue, T.
2000-01-01
The electrolysis of plutonium nitride, PuN, was investigated in the LiCl-KCl eutectic salt with 0.54 wt% PuCl 3 at 773 K in order to understand the dissolution of PuN at the anode and the deposition of metal at the cathode from the viewpoint of the application of a pyrochemical process to nitride fuel cycle. It was found from cyclic voltammetry that the electrochemical dissolution of PuN began nearly at the theoretically evaluated potential and this reaction was irreversible. Several grams of plutonium metal were successfully recovered at the molybdenum electrode as a deposit with a current efficiency of about 90%, although some fractions of the deposited plutonium often fell from the molybdenum electrode.
Removal of dissolved actinides from alkaline solutions by the method of appearing reagents
Krot, Nikolai N.; Charushnikova, Iraida A.
1997-01-01
A method of reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH.sup.- concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO.sub.2 (O.sub.2).sub.3 ].sup.4- ion is added to the radwastes in the presence of catalytic amounts of Cu.sup.+2, Co.sup.+2 or Fe.sup.+2 with heating to a temperature in excess of about 60.degree. C. or 85.degree. C., depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste.
Results from field tests of the one-dimensional Time-Encoded Imaging System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marleau, Peter; Brennan, James S.; Brubaker, Erik
2014-09-01
A series of field experiments were undertaken to evaluate the performance of the one dimensional time encoded imaging system. The significant detection of a Cf252 fission radiation source was demonstrated at a stand-off of 100 meters. Extrapolations to different quantities of plutonium equivalent at different distances are made. Hardware modifications to the system for follow on work are suggested.
Sorption/Desorption Interactions of Plutonium with Montmorillonite
NASA Astrophysics Data System (ADS)
Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.
2012-12-01
Plutonium (Pu) release to the environment through nuclear weapon development and the nuclear fuel cycle is an unfortunate legacy of the nuclear age. In part due to public health concerns over the risk of Pu contamination of drinking water, predicting the behavior of Pu in both surface and sub-surface water is a topic of continued interest. Typically it was assumed that Pu mobility in groundwater would be severely restricted, as laboratory adsorption studies commonly show that naturally occurring minerals can effectively remove plutonium from solution. However, evidence for the transport of Pu over significant distances at field sites highlights a relative lack of understanding of the fundamental processes controlling plutonium behavior in natural systems. At several field locations, enhanced mobility is due to Pu association with colloidal particles that serve to increase the transport of sorbed contaminants (Kersting et al., 1999; Santschi et al., 2002, Novikov et al., 2006). The ability for mineral colloids to transport Pu is in part controlled by its oxidation state and the rate of plutonium adsorption to, and desorption from, the mineral surface. Previously we have investigated the adsorption affinity of Pu for montmorillonite colloids, finding affinities to be similar over a wide range of Pu concentrations. In the present study we examine the stability of adsorbed Pu on the mineral surface. Pu(IV) at an initial concentration of 10-10 M was pre-equilibrated with montmorillonite in a background electrolyte at pH values of 4, 6 and 8. Following equilibration, aliquots of the suspensions were placed in a flow cell and Pu-free background electrolyte at the relevant pH was passed through the system. Flow rates were varied in order to investigate the kinetics of desorption and hence gain a mechanistic understanding of the desorption process. The flow cell experiments demonstrate that desorption of Pu from the montmorillonite surface cannot be modeled as a simple first order process. Furthermore, a pH dependence was observed, with less desorbed at pH 4 compared to pH 8. We suggest the pH dependence is likely controlled by reoxidation of Pu(IV) to Pu(V) and aqueous speciation. We will present models used to describe desorption behavior and discuss the implications for Pu transport. References: Kersting, A.B.; Efurd, D.W.; Finnegan, D.L.; Rokop, D.J.; Smith, D.K.; Thompson J.L. (1999) Migration of plutonium in groundwater at the Nevada Test Site, Nature, 397, 56-59. Novikov A.P.; Kalmykov, S.N.; Utsunomiya, S.; Ewing, R.C.; Horreard, F.; Merkulov, A.; Clark, S.B.; Tkachev, V.V.; Myasoedov, B.F. (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia, Science, 314, 638-641. Santschi, P.H.; Roberts, K.; Guo, L. (2002) The organic nature of colloidal actinides transported in surface water environments. Environ. Sci. Technol., 36, 3711-3719. This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. LLNL-ABS-570161
2. VIEW OF THE EXPERIMENT CONTROL PANEL IN 1970. THE ...
2. VIEW OF THE EXPERIMENT CONTROL PANEL IN 1970. THE NUCLEAR SAFETY GROUP CONDUCTED ABOUT 1,700 CRITICAL MASS EXPERIMENTS USING URANIUM AND PLUTONIUM IN SOLUTIONS (900 TESTS), COMPACTED POWDER (300), AND METALLIC FORMS (500). ALL 1,700 CRITICALITY ASSEMBLIES WERE CONTROLLED FROM THIS PANEL. - Rocky Flats Plant, Critical Mass Laboratory, Intersection of Central Avenue & 86 Drive, Golden, Jefferson County, CO
Soils element history, sampling, analyses, and recommendations. [Plutonium isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, E.B.; Essington, E.H.
A five year history of the Soils Element of the Nevada Applied Ecology Group (NAEG) is presented. Major projects are reviewed. Emphasis is placed on mound studies and profile studies for the period March 1, 1975, through February 1, 1976. A series of recommendations is made relative to extensions of past efforts of the Soils Element of the NAEG.
Nelson, P.A.
1961-07-18
The liquid--liquid extraction of plutonium by magnesium from uranium or uranium--chromium alloy is described. Calcium is added to magnesium in about eutectic proportions, which results in a purer plutonium.
Lung Cancer Risk from Plutonium: A Pooled Analysis of the Mayak and Sellafield Worker Cohorts.
Gillies, Michael; Kuznetsova, Irina; Sokolnikov, Mikhail; Haylock, Richard; O'Hagan, Jackie; Tsareva, Yulia; Labutina, Elena
2017-12-01
In this study, lung cancer risk from occupational plutonium exposure was analyzed in a pooled cohort of Mayak and Sellafield workers, two of the most informative cohorts in the world with detailed plutonium urine monitoring programs. The pooled cohort comprised 45,817 workers: 23,443 Sellafield workers first employed during 1947-2002 with follow-up until the end of 2005 and 22,374 Mayak workers first employed during 1948-1982 with follow-up until the end of 2008. In the pooled cohort 1,195 lung cancer deaths were observed (789 Mayak, 406 Sellafield) but only 893 lung cancer incidences (509 Mayak, 384 Sellafield, due to truncated follow-up in the incidence analysis). Analyses were performed using Poisson regression models, and were based on doses derived from individual radiation monitoring data using an updated dose assessment methodology developed in the study. There was clear evidence of a linear association between cumulative internal plutonium lung dose and risk of both lung cancer mortality and incidence in the pooled cohort. The pooled point estimates of the excess relative risk (ERR) from plutonium exposure for both lung cancer mortality and incidence were within the range of 5-8 per Gy for males at age 60. The ERR estimates in relationship to external gamma radiation were also significantly raised and in the range 0.2-0.4 per Gy of cumulative gamma dose to the lung. The point estimates of risk, for both external and plutonium exposure, were comparable between the cohorts, which suggests that the pooling of these data was valid. The results support point estimates of relative biological effectiveness (RBE) in the range of 10-25, which is in broad agreement with the value of 20 currently adopted in radiological protection as the radiation weighting factor for alpha particles, however, the uncertainty on this value (RBE = 21; 95% CI: 9-178) is large. The results provide direct evidence that the plutonium risks in each cohort are of the same order of magnitude but the uncertainty on the Sellafield cohort plutonium risk estimates is large, with observed risks consistent with no plutonium risk, and risks five times larger than those observed in the Mayak cohort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, Jon; Hayes, Steven; Walters, L. C.
This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO 2 and UO 2-PuO 2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availabilitymore » are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.« less
NASA Astrophysics Data System (ADS)
Orr, R. M.; Sims, H. E.; Taylor, R. J.
2015-10-01
Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or 'finishing' processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquis Childs; Ron Conrad
1998-10-01
Area Gin Technical Area 54, has been the principal facility at Los Alamos National Laboratory for the storage and disposal of low-level, solid mixed, and transuranic radioactive waste since 1957. Soil samples were analyzed for tritium, isotopic plutonium, americium-241, and cesium-137. Thirteen metals-silver, arsenic, barium, beryllium, cadmium, chromium, mercury, nickel, lead, antimony, selenium, thallium and zinc-were analyzed on filtered-sediment fractions of the single-stage samples using standard analytical chemistry techniques. During the two years of sampling discussed in this report elevated levels of tritium (as high as 716,000 pCi/L) in soil were found for sampling sites adjacent to the tritium burialmore » shafts located on the south- central perimeter of Area G. Additionally, tritium concentrations in soil as high as 38,300 pCi/L were detected adjacent to the TRU pads in the northeast comer of Area G. Plutonium-238 activities in FY96 soils ranged from 0.001-2.866 pCi/g, with an average concentration of 0.336& 0.734 pCdg. Pu-238 activities in FY97 soils ranged from 0.002-4.890 pCi/g, with an average concentration of 0.437 & 0.928 pCdg. Pu-239 activities in FY96 soils ranged from 0.009 to 1.62 pCdg, with an average of 0.177- 0.297 pCdg. Pu-239 activities in FY97 soils ranged from 0.005 to 1.71 pCi/g, with an average of 0.290- 0.415 pCi/g. The locations of elevated plutonium readings were consistent with the history of plutonium disposal at Area G. The two areas of elevated Am-241 activity reflected the elevated activities found for plutonium, the average values for Am-241 on soils were 0.6-2.07 pCi/g, and 0.10-0.14 pCi/g respectively for samples collected in FY96 and FY97. CS-137 activities in soils had average values of 0.33 pCi/g, and 0.28 pCi/g respectively for samples collected in FY96 and 97. There was no perimeter area where soil concentrations of CS-137 were significantly elevated.« less
Nonproliferation and Threat Reduction Assistance: U.S, Programs in the Former Soviet Union
2008-03-26
reconfigure its large - scale former BW-related facilities so that they can perform peaceful research issues such as infectious diseases. For FY2004, the Bush...program to eliminate its plutonium, opting instead for the construction of fast breeder reactors that could burn plutonium directly for energy production...The United States might not fund this effort, as many in the United States argue that breeder reactors , which produce more plutonium than they
NASA Astrophysics Data System (ADS)
Marshalkin, V. E.; Povyshev, V. M.
2015-12-01
A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium-uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D2O, H2O) is proposed. The method is characterized by efficient breeding of the 233U isotope and safe reactor operation and is comparatively simple to implement.
The benefits of an advanced fast reactor fuel cycle for plutonium management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannum, W.H.; McFarlane, H.F.; Wade, D.C.
1996-12-31
The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less
Introduction to Pits and Weapons Systems (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kautz, D.
2012-07-02
A Nuclear Explosive Package includes the Primary, Secondary, Radiation Case and related components. This is the part of the weapon that produces nuclear yield and it converts mechanical energy into nuclear energy. The pit is composed of materials that allow mechanical energy to be converted to electromagnetic energy. Fabrication processes used are typical of any metal fabrication facility: casting, forming, machining and welding. Some of the materials used in pits include: Plutonium, Uranium, Stainless Steel, Beryllium, Titanium, and Aluminum. Gloveboxes are used for three reasons: (1) Protect workers and public from easily transported, finely divided plutonium oxides - (a) Plutoniummore » is very reactive and produces very fine particulate oxides, (b) While not the 'Most dangerous material in the world' of Manhattan Project lore, plutonium is hazardous to health of workers if not properly controlled; (2) Protect plutonium from reactive materials - (a) Plutonium is extremely reactive at ambient conditions with several components found in air: oxygen, water, hydrogen, (b) As with most reactive metals, reactions with these materials may be violent and difficult to control, (c) As with most fabricated metal products, corrosion may significantly affect the mechanical, chemical, and physical properties of the product; and (3) Provide shielding from radioactive decay products: {alpha}, {gamma}, and {eta} are commonly associated with plutonium decay, as well as highly radioactive materials such as {sup 241}Am and {sup 238}Pu.« less
LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrea Alfonsi; Gilles Youinou; Sonat Sen
2013-02-01
Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can bemore » used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.« less
LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrea Alfonsi; Gilles Youinou
2012-07-01
Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can bemore » used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.« less
Device for providing high-intensity ion or electron beam
McClanahan, Edwin D.; Moss, Ronald W.
1977-01-01
A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.
Evaluation of continuous air monitor placement in a plutonium facility.
Whicker, J J; Rodgers, J C; Fairchild, C I; Scripsick, R C; Lopez, R C
1997-05-01
Department of Energy appraisers found continuous air monitors at Department of Energy plutonium facilities alarmed less than 30% of the time when integrated room plutonium air concentrations exceeded 500 DAC-hours. Without other interventions, this alarm percentage suggests the possibility that workers could be exposed to high airborne concentrations without continuous air monitor alarms. Past research has shown that placement of continuous air monitors is a critical component in rapid and reliable detection of airborne releases. At Los Alamos National Laboratory and many other Department of Energy plutonium facilities, continuous air monitors have been primarily placed at ventilation exhaust points. The purpose of this study was to evaluate and compare the effectiveness of exhaust register placement of workplace continuous air monitors with other sampling locations. Polydisperse oil aerosols were released from multiple locations in two plutonium laboratories at Los Alamos National Laboratory. An array of laser particle counters positioned in the rooms measured time-resolved aerosol dispersion. Results showed alternative placement of air samplers generally resulted in aerosol detection that was faster, often more sensitive, and equally reliable compared with samplers at exhaust registers.
Safe disposal of surplus plutonium
NASA Astrophysics Data System (ADS)
Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.
2001-06-01
About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.
Khokhryakov, V F; Suslova, K G; Vostrotin, V V; Romanov, S A; Eckerman, K F; Krahenbuhl, M P; Miller, S C
2005-02-01
The biokinetics of inhaled plutonium were analyzed using compartment models representing their behavior within the respiratory tract, the gastrointestinal tract, and in systemic tissues. The processes of aerosol deposition, particle transport, absorption, and formation of a fixed deposit in the respiratory tract were formulated in the framework of the Human Respiratory Tract Model described in ICRP Publication 66. The values of parameters governing absorption and formation of the fixed deposit were established by fitting the model to the observations in 530 autopsy cases. The influence of smoking on mechanical clearance of deposited plutonium activity was considered. The dependence of absorption on the aerosol transportability, as estimated by in vitro methods (dialysis), was demonstrated. The results of this study were compared to those obtained from an earlier model of plutonium behavior in the respiratory tract, which was based on the same set of autopsy data. That model did not address the early phases of respiratory clearance and hence underestimated the committed lung dose by about 25% for plutonium oxides. Little difference in lung dose was found for nitrate forms.
Methods to improve routine bioassay monitoring for freshly separated, poorly transported plutonium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bihl, D.E.; Lynch, T.P.; Carbaugh, E.H.
1988-09-01
Several human cases involving inhalation of plutonium oxide at Hanford have shown clearance half-times from the lung that are much longer than the 500-day half-time recommended for class Y plutonium in Publication 30 of the International Commission on Radiological Protection(ICRP). The more tenaciously retained material is referred to as super class Y plutonium. The ability to detect super class Y plutonium by current routine bioassay measurements is shown to be poor. Pacific Northwest Laboratory staff involved in the Hanford Internal Dosimetry Program investigated four methods to se if improvements in routine monitoring of workers for fresh super class Y plutoniummore » are feasible. The methods were lung counting, urine sampling, fecal sampling, and use of diethylenetriaminepentaacetate (DTPA) to enhance urinary excretion. Use of DTPA was determined to be not feasible. Routine fecal sampling was found to be feasible but not recommended. Recommendations were made to improve the detection level for routine annual urinalysis and routine annual lung counting. 12 refs., 9 figs., 7 tabs.« less
Crystalline matrices for the immobilization of plutonium and actinides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.
1996-05-01
The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressingmore » method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.« less
Digital pile-up rejection for plutonium experiments with solution-grown stilbene
NASA Astrophysics Data System (ADS)
Bourne, M. M.; Clarke, S. D.; Paff, M.; DiFulvio, A.; Norsworthy, M.; Pozzi, S. A.
2017-01-01
A solution-grown stilbene detector was used in several experiments with plutonium samples including plutonium oxide, mixed oxide, and plutonium metal samples. Neutrons from different reactions and plutonium isotopes are accompanied by numerous gamma rays especially by the 59-keV gamma ray of 241Am. Identifying neutrons correctly is important for nuclear nonproliferation applications and makes neutron/gamma discrimination and pile-up rejection necessary. Each experimental dataset is presented with and without pile-up filtering using a previously developed algorithm. The experiments were simulated using MCNPX-PoliMi, a Monte Carlo code designed to accurately model scintillation detector response. Collision output from MCNPX-PoliMi was processed using the specialized MPPost post-processing code to convert neutron energy depositions event-by-event into light pulses. The model was compared to experimental data after pulse-shape discrimination identified waveforms as gamma ray or neutron interactions. We show that the use of the digital pile-up rejection algorithm allows for accurate neutron counting with stilbene to within 2% even when not using lead shielding.
Some Thermodynamic Features of Uranium-Plutonium Nitride Fuel in the Course of Burnup
NASA Astrophysics Data System (ADS)
Rusinkevich, A. A.; Ivanov, A. S.; Belov, G. V.; Skupov, M. V.
2017-12-01
Calculation studies on the effect of carbon and oxygen impurities on the chemical and phase compositions of nitride uranium-plutonium fuel in the course of burnup are performed using the IVTANTHERMO code. It is shown that the number of moles of UN decreases with increasing burnup level, whereas UN1.466, UN1.54, and UN1.73 exhibit a considerable increase. The presence of oxygen and carbon impurities causes an increase in the content of the UN1.466, UN1.54 and UN1.73 phases in the initial fuel by several orders of magnitude, in particular, at a relatively low temperature. At the same time, the presence of impurities abruptly reduces the content of free uranium in unburned fuel. Plutonium in the considered system is contained in form of Pu, PuC, PuC2, Pu2C3, and PuN. Plutonium carbides, as well as uranium carbides, are formed in small amounts. Most of the plutonium remains in the form of nitride PuN, whereas unbound Pu is present only in the areas with a low burnup level and high temperatures.
NASA Astrophysics Data System (ADS)
Clark, David L.; Hecker, Siegfried S.; Jarvinen, Gordon D.; Neu, Mary P.
The element plutonium occupies a unique place in the history of chemistry, physics, technology, and international relations. After the initial discovery based on submicrogram amounts, it is now generated by transmutation of uranium in nuclear reactors on a large scale, and has been separated in ton quantities in large industrial facilities. The intense interest in plutonium resulted fromthe dual-use scenario of domestic power production and nuclear weapons - drawing energy from an atomic nucleus that can produce a factor of millions in energy output relative to chemical energy sources. Indeed, within 5 years of its original synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of unprecedented power, and it seemed that the new element might lead the human race to the brink of self-annihilation. Instead, it has forced the human race to govern itself without resorting to nuclear war over the past 60 years. Plutonium evokes the entire gamut of human emotions, from good to evil, from hope to despair, from the salvation of humanity to its utter destruction. There is no other element in the periodic table that has had such a profound impact on the consciousness of mankind.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., spillage, or other accident. INF cargo means packaged irradiated nuclear fuel, plutonium or high-level... Irradiated Nuclear Fuel, Plutonium and High-Level Radioactive Wastes on Board Ships” (INF Code) contained in...
Ackerman, John P.; Miller, William E.
1989-01-01
An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.
Ackerman, J.P.; Miller, W.E.
1987-11-05
An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.
Ceramics: Durability and radiation effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, R.C.; Lutze, W.; Weber, W.J.
1996-05-01
At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramicsmore » apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document, Volume 1, presents a technical description of the various elements of the System 80 + Standard Plant Design upon which the Plutonium Disposition Study wasmore » based. The System 80 + Standard Design is fully developed and directly suited to meeting the mission objectives for plutonium disposal. The bass U0{sub 2} plant design is discussed here.« less
Grogan, H A; Sinclair, W K; Voillequé, P G
2001-05-01
The risk per unit dose to the four primary cancer sites for plutonium inhalation exposure (lung, liver, bone, bone marrow) is estimated by combining the risk estimates that are derived from four independent approaches. Each approach represents a fundamentally different source of data from which plutonium risk estimates can be derived. These are: (1) epidemiologic studies of workers exposed to plutonium; (2) epidemiologic studies of persons exposed to low-LET radiation combined with a factor for the relative biological effectiveness (RBE) of plutonium alpha particles appropriate for each cancer site of concern; (3) epidemiologic studies of persons exposed to alpha-emitting radionuclides other than plutonium; and (4) controlled studies of animals exposed to plutonium and other alpha-emitting radionuclides extrapolated to humans. This procedure yielded the following organ-specific estimates of the distribution of mortality risk per unit dose from exposure to plutonium expressed as the median estimate with the 5th to 95th percentiles of the distribution in parentheses: lung 0.13 Gy(-1) (0.022-0.53 Gy(-1)); liver 0.057 Gy(-1) (0.011-0.47 Gy(-1)); bone 0.0013 Gy(-1) (0.000060-0.025 Gy(-1)); bone marrow (leukemia), 0.013 Gy(-1) (0.00061-0.05 Gy(-1)). Because the different tissues do not receive the same dose following an inhalation exposure, the mortality risk per unit intake of activity via inhalation of a 1-microm AMAD plutonium aerosol also was determined. To do this, inhalation dose coefficients based on the most recent ICRP models and accounting for input parameter uncertainties were combined with the risk coefficients described above. The following estimates of the distribution of mortality risk per unit intake were determined for a 1-microm AMAD plutonium aerosol with a geometric standard deviation of 2.5: lung 5.3 x 10(-7) Bq(-1) (0.65-35 x 10(-7) Bq(-1)), liver 1.2 x 10(-7) Bq(-1) (0.091-20 x 10(-7) Bq(-1)), bone 0.11 x 10(-7) Bq(-1) (0.0030-4.3 x 10(-7) Bq(-1)), bone marrow (leukemia) 0.049 x 10(-7) Bq(-1) (0.0017-0.59 x 10(-7) Bq(-1)). The cancer mortality risk for all sites was estimated to be 10 x 10(-7) Bq(-1) (2.1-55 x 10(-7) Bq(-1))--a result that agrees very well with other recent estimates. The large uncertainties in the risks per unit intake of activity reflect the combined uncertainty in the dose and risk coefficients.
Reconstructed plutonium fallout in the GV7 firn core from Northern Victoria Land, East Antarctica
NASA Astrophysics Data System (ADS)
Hwang, H.; Han, Y.; Kang, J.; Lee, K.; Hong, S.; Hur, S. D.; Narcisi, B.; Frezzotti, M.
2017-12-01
Atmospheric nuclear explosions during the period from the 1940s to the 1980s are the major anthropogenic source of plutonium (Pu) in the environment. In this work, we analyzed fg g-1 levels of artificial Pu, released predominantly by atmospheric nuclear weapons tests. We measured 351 samples which collected a 78 m-depth fire core at the site of GV7 (S 70°41'17.1", E 158°51'48.9", 1950 m a.s.l.), Northern Victoria Land, East Antarctica. To determine the Pu concentration in the samples, we used an inductively coupled plasma sector field mass spectrometry coupled with an Apex high-efficiency sample introduction system, which has the advantages of small sample consumption and simple sample preparation. We reconstructed the firn core Pu fallout record for the period after 1954 CE shows a significant fluctuation in agreement with past atmospheric nuclear testing. These data will contribute to ice core research by providing depth-age information.
Room airflow studies using sonic anemometry.
Wasiolek, P T; Whicker, J J; Gong, H; Rodgers, J C
1999-06-01
To ensure prompt response by real-time air monitors to an accidental release of toxic aerosols in a workplace, safety professionals should understand airflow patterns. This understanding can be achieved with validated computational fluid dynamics (CFD) computer simulations, or with experimental techniques, such as measurements with smoke, neutrally buoyant markers, trace gases, or trace aerosol particles. As a supplementary technique to quantify airflows, the use of a state-of-the art, three-dimensional sonic anemometer was explored. This instrument allows for the precise measurements of the air-velocity vector components in the range of a few centimeters per second, which is common in many indoor work environments. Measurements of air velocities and directions at selected locations were made for the purpose of providing data for characterizing fundamental aspects of indoor air movement in two ventilated rooms and for comparison to CFD model predictions. One room was a mockup of a plutonium workroom, and the other was an actual functioning plutonium workroom. In the mockup room, air-velocity vector components were measured at 19 locations at three heights (60, 120 and 180 cm) with average velocities varying from 1.4 cm s-1 to 9.7 cm s-1. There were complex flow patterns observed with turbulence intensities from 39% up to 108%. In the plutonium workroom, measurements were made at the breathing-zone height, recording average velocities ranging from 9.9 cm s-1 to 35.5 cm s-1 with turbulence intensities from 33% to 108%.
Low Dose Radiation Cancer Risks: Epidemiological and Toxicological Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
David G. Hoel, PhD
2012-04-19
The basic purpose of this one year research grant was to extend the two stage clonal expansion model (TSCE) of carcinogenesis to exposures other than the usual single acute exposure. The two-stage clonal expansion model of carcinogenesis incorporates the biological process of carcinogenesis, which involves two mutations and the clonal proliferation of the intermediate cells, in a stochastic, mathematical way. The current TSCE model serves a general purpose of acute exposure models but requires numerical computation of both the survival and hazard functions. The primary objective of this research project was to develop the analytical expressions for the survival functionmore » and the hazard function of the occurrence of the first cancer cell for acute, continuous and multiple exposure cases within the framework of the piece-wise constant parameter two-stage clonal expansion model of carcinogenesis. For acute exposure and multiple exposures of acute series, it is either only allowed to have the first mutation rate vary with the dose, or to have all the parameters be dose dependent; for multiple exposures of continuous exposures, all the parameters are allowed to vary with the dose. With these analytical functions, it becomes easy to evaluate the risks of cancer and allows one to deal with the various exposure patterns in cancer risk assessment. A second objective was to apply the TSCE model with varing continuous exposures from the cancer studies of inhaled plutonium in beagle dogs. Using step functions to estimate the retention functions of the pulmonary exposure of plutonium the multiple exposure versions of the TSCE model was to be used to estimate the beagle dog lung cancer risks. The mathematical equations of the multiple exposure versions of the TSCE model were developed. A draft manuscript which is attached provides the results of this mathematical work. The application work using the beagle dog data from plutonium exposure has not been completed due to the fact that the research project did not continue beyond its first year.« less
PRECIPITATION METHOD OF SEPARATION OF NEPTUNIUM
Magnusson, L.B.
1958-07-01
A process is described for the separation of neptunium from plutonium in an aqueous solution containing neptunium ions in a valence state not greater than +4, plutonium ioms in a valence state not greater than +4, and sulfate ions. The Process consists of adding hypochlorite ions to said solution in order to preferentially oxidize the neptunium and then adding lanthanum ions and fluoride ions to form a precipitate of LaF/sub 3/ carrying the plutonium, and thereafter separating the supernatant solution from the precipitate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallett, Michael Wesley
An analysis of LANL occupational dose measurements was made with respect to lens of eye dose (LOE), in particular, for plutonium workers. Table 1 shows the reported LOE as a ratio of the “deep” (photon only) and “deep+neutron” dose for routine monitored workers at LANL for the past ten years. The data compares the mean and range of these values for plutonium workers* and non-routine plutonium workers. All doses were reported based on measurements with the LANL Model 8823 TLD.
Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources
NASA Technical Reports Server (NTRS)
Neff, R. A.; Anderson, M. E.; Campbell, A. R.; Haas, F. X.
1972-01-01
Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshalkin, V. E., E-mail: marshalkin@vniief.ru; Povyshev, V. M.
A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium–uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D{sub 2}O, H{sub 2}O) is proposed. The method is characterized by efficient breeding of the {sup 233}U isotope and safe reactor operation and is comparatively simple to implement.
NASA Astrophysics Data System (ADS)
Marshalkin, V. Ye.; Povyshev, V. M.
2017-12-01
It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.
SCAVENGER AND PROCESS OF SCAVENGING
Olson, C.M.
1960-04-26
Carrier precipitation processes are given for the separation and recovery of plutonium from aqueous acidic solutions containing plutonium and fission products. Bismuth phosphate is precipitated in the acidic solution while plutonlum is maintained in the hexavalent oxidation state. Preformed, uncalcined, granular titanium dioxide is then added to the solution and the fission product-carrying bismuth phosphate and titanium dioxide are separated from the resulting mixture. Fluosilicic acid, which dissolves any remaining titanium dioxide particles, is then added to the purified plutonium-containing solution.
METHOD FOR REMOVING CONTAMINATION FROM PRECIPITATES
Stahl, G.W.
1959-01-01
An improvement in the bismuth phosphate carrier precipitation process is presented for the recovery and purification of plutonium. When plutonium, in the tetravalent state, is carried on a bismuth phosphate precipitate, amounts of centain of the fission products are carried along with the plutonium. The improvement consists in washing such fission product contaminated preeipitates with an aqueous solution of ammonium hydrogen fluoride. since this solution has been found to be uniquely effective in washing fission production contamination from the bismuth phosphate precipitate.
METHOD OF PREPARING URANIUM, THORIUM, OR PLUTONIUM OXIDES IN LIQUID BISMUTH
Davidson, J.K.; Robb, W.L.; Salmon, O.N.
1960-11-22
A method is given for forming compositions, as well as the compositions themselves, employing uranium hydride in a liquid bismuth composition to increase the solubility of uranium, plutonium and thorium oxides in the liquid bismuth. The finely divided oxide of uranium, plutonium. or thorium is mixed with the liquid bismuth and uranium hydride, the hydride being present in an amount equal to about 3 at. %, heated to about 5OO deg C, agitated and thereafter cooled and excess resultant hydrogen removed therefrom.
Americium-Curium Stabilization - 5'' Cylindrical Induction Melter System Design Basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witt, D.C.
1999-11-08
Approximately 11,000 liters (3,600) gallons of solution containing isotopes of Am and Cm are currently stored in F-Canyon Tank 17.1. These isotopes were recovered during plutonium-242 production campaigns in the mid- and late-1970s. Experimental work for the project began in 1995 by the Savannah River Technology Center (SRTC). Details of the process are given in the various sections of this document.
Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.
2009-08-20
A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55more » Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where transuranic radionuclides have been co-disposed with acidic liquid waste, transport through the vadose zone for considerable distances has occurred. For example, at the 216-Z-9 Crib, plutonium-239 and americium-241 have moved to depths in excess of 36 m (118 ft) bgs. Acidic conditions increase the solubility of these contaminants and reduce adsorption to mineral surfaces. Subsequent neutralization of the acidity by naturally occurring calcite in the vadose zone (particularly in the Cold Creek unit) appears to have effectively stopped further migration. The vast majority of transuranic contaminants disposed to the vadose zone on the Hanford Site (10,200 Ci [86%] of plutonium-239; 27,900 Ci [97%] of americium-241; and 41.8 Ci [78%] of neptunium-237) were disposed in sites within the PFP Closure Zone. This closure zone is located within the 200 West Area (see Figures 1.1 and 3.1). Other closure zones with notably high quantities of transuranic contaminant disposal include the T Farm Zone with 408 Ci (3.5%) plutonium-239, the PUREX Zone with 330 Ci (2.8%) plutonium-239, 200-W Ponds Zone with 324 Ci (2.8%) plutonium-239, B Farm Zone with 183 Ci (1.6%) plutonium-239, and the REDOX Zone with 164 Ci (1.4%) plutonium 239. Characterization studies for most of the sites reviewed in the document are generally limited. The most prevalent characterization methods used were geophysical logging methods. Characterization of a number of sites included laboratory analysis of borehole sediment samples specifically for radionuclides and other contaminants, and geologic and hydrologic properties. In some instances, more detailed research level studies were conducted. Results of these studies were summarized in the document.« less
What Lies Beneath Can Be Imaged
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Tim
The Hanford Site was quickly established to help end World War II, making history for producing the plutonium used in the world’s first nuclear weapons. Throughout the Cold War years, Hanford employees produced plutonium for most of the more than 60,000 weapons in the U.S. nuclear arsenal stockpile. Today, the once highly active nuclear reactors are shut down. And the mission at Hanford turned full-circle as scientists, engineers and specialists work to clean up our nation’s most contaminated nuclear site. PNNL Computational Geophysicist Tim Johnson is helping decision-makers understand the complexity and breadth of the contamination in soils at Hanford.more » Tim and others are applying remote, high-resolution geophysical imaging to determine the extent of contamination in the soil below the surface and understand the processes controlling its movement. They also provide real-time imaging of remediation processes that are working to limit the movement of contaminants below the surface and toward water resources. Geophysical imaging simply means that PNNL scientists are combining the techniques of geology, physics, mathematics and chemistry with supercomputer modeling to create three-dimensional images of the waste and its movement. These real-time, remote images are essential in reducing the uncertainty associated with cleanup costs and remediation technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathren, R.L.; Harwick, L.A.; Toohey, R.E.
The Registries originated in 1968 as the National Plutonium Registry with the name changed to the United States Transuranium Registry the following year to reflect a broader concern with the heavier actinides as well. Initially, the scientific effort of the USTR was directed towards study of the distribution and dose of plutonium and americium in occupationally exposed persons, and to assessment of the effects of exposure to the transuranium elements on health. This latter role was reassessed during the 1970`s when it was recognized that the biased cohort of the USTR was inappropriate for epidemiologic analysis. In 1978, the administrativelymore » separate but parallel United States Uranium Registry was created to carry out similar work among persons exposed to uranium and its decay products. A seven member scientific advisory committee provided guidance and scientific oversight. In 1992, the two Registries were administratively combined and transferred from the purview of a Department of Energy contractor to Washington State University under the provisions of a grant. Scientific results for the first twenty-five years of the Registries are summarized, including the 1985 publication of the analysis of the first whole body donor. Current scientific work in progress is summarized along with administrative activities for the period.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.
2006-08-01
This report establishes the technical bases for using a ''slow uptake'' instead of a ''moderate uptake'' transportability class for americium-241 (241Am) for the K Basin Sludge Treatment Project (STP) dose consequence analysis. Slow uptake classes are used for most uranium and plutonium oxides. A moderate uptake class has been used in prior STP analyses for 241Am based on the properties of separated 241Am and its associated oxide. However, when 241Am exists as an ingrown progeny (and as a small mass fraction) within plutonium mixtures, it is appropriate to assign transportability factors of the predominant plutonium mixtures (typically slow) to themore » Am241. It is argued that the transportability factor for 241Am in sludge likewise should be slow because it exists as a small mass fraction as the ingrown progeny within the uranium oxide in sludge. In this report, the transportability class assignment for 241Am is underpinned with radiochemical characterization data on K Basin sludge and with studies conducted with other irradiated fuel exposed to elevated temperatures and conditions similar to the STP. Key findings and conclusions from evaluation of the characterization data and published literature are summarized here. Plutonium and 241Am make up very small fractions of the uranium within the K Basin sludge matrix. Plutonium is present at about 1 atom per 500 atoms of uranium and 241Am at about 1 atom per 19000 of uranium. Plutonium and americium are found to remain with uranium in the solid phase in all of the {approx}60 samples taken and analyzed from various sources of K Basin sludge. The uranium-specific concentrations of plutonium and americium also remain approximately constant over a uranium concentration range (in the dry sludge solids) from 0.2 to 94 wt%, a factor of {approx}460. This invariability demonstrates that 241Am does not partition from the uranium or plutonium fraction for any characterized sludge matrix. Most of the K Basin sludge characterization data is derived spent nuclear fuel corroded within the K Basins at 10-15?C. The STP process will place water-laden sludges from the K Basin in process vessels at {approx}150-180 C. Therefore, published studies with other irradiated (uranium oxide) fuel were examined. From these studies, the affinity of plutonium and americium for uranium in irradiated UO2 also was demonstrated at hydrothermal conditions (150 C anoxic liquid water) approaching those proposed for the STP process and even for hydrothermal conditions outside of the STP operating envelope (e.g., 150 C oxic and 100 C oxic and anoxic liquid water). In summary, by demonstrating that the chemical and physical behavior of 241Am in the sludge matrix is similar to that of the predominant species (uranium and for the plutonium from which it originates), a technical basis is provided for using the slow uptake transportability factor for 241Am that is currently used for plutonium and uranium oxides. The change from moderate to slow uptake for 241Am could reduce the overall analyzed dose consequences for the STP by more than 30%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, W.
This report presents historical summaries of the research programs at the Nevada Applied Ecology Group (NAEG). NAEG was formed in 1970 as an outgrowth of the formation of the Office of Effects Evaluation and an anticipation by NV management of what was to become the National Environmental Policy Act. The objectives of the NAEG programs were: (1) delineate locations of contamination; (2) determine concentrations in ecosystem components; (3) quantify rates of movement among ecosystem components; and (4) evaluate potential dose from plutonium and other radionuclides.
METHOD OF DISSOLVING MASSIVE PLUTONIUM
Facer, J.F.; Lyon, W.L.
1960-06-28
Massive plutonium can be dissolved in a hot mixture of concentrated nitric acid and a small quantity of hydrofluoric acid. A preliminary oxidation with water under superatmospheric pressure at 140 to 150 deg C is advantageous
Pu-Zr alloy for high-temperature foil-type fuel
McCuaig, Franklin D.
1977-01-01
A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.
Pu-ZR Alloy high-temperature activation-measurement foil
McCuaig, Franklin D.
1977-08-02
A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.
Separation by solvent extraction
Holt, Jr., Charles H.
1976-04-06
17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.
McDowell, W J; Farrar, D T; Billings, M R
1974-12-01
A method for the determination of uranium and plutonium by a combined high-resolution liquid scintillation-solvent extraction method is presented. Assuming a sample count equal to background count to be the detection limit, the lower detection limit for these and other alpha-emitting nuclides is 1.0 dpm with a Pyrex sample tube, 0.3 dpm with a quartz sample tube using present detector shielding or 0.02 d.p.m. with pulse-shape discrimination. Alpha-counting efficiency is 100%. With the counting data presented as an alpha-energy spectrum, an energy resolution of 0.2-0.3 MeV peak half-width and an energy identification to +/-0.1 MeV are possible. Thus, within these limits, identification and quantitative determination of a specific alpha-emitter, independent of chemical separation, are possible. The separation procedure allows greater than 98% recovery of uranium and plutonium from solution containing large amounts of iron and other interfering substances. In most cases uranium, even when present in 10(8)-fold molar ratio, may be quantitatively separated from plutonium without loss of the plutonium. Potential applications of this general analytical concept to other alpha-counting problems are noted. Special problems associated with the determination of plutonium in soil and water samples are discussed. Results of tests to determine the pulse-height and energy-resolution characteristics of several scintillators are presented. Construction of the high-resolution liquid scintillation detector is described.
HB-Line Plutonium Oxide Data Collection Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, R.; Varble, J.; Jordan, J.
2015-05-26
HB-Line and H-Canyon will handle and process plutonium material to produce plutonium oxide for feed to the Mixed Oxide Fuel Fabrication Facility (MFFF). However, the plutonium oxide product will not be transferred to the MFFF directly from HB-Line until it is packaged into a qualified DOE-STD-3013-2012 container. In the interim, HB-Line will load plutonium oxide into an inner, filtered can. The inner can will be placed in a filtered bag, which will be loaded into a filtered outer can. The outer can will be loaded into a certified 9975 with getter assembly in compliance with onsite transportation requirement, for subsequentmore » storage and transfer to the K-Area Complex (KAC). After DOE-STD-3013-2012 container packaging capabilities are established, the product will be returned to HB-Line to be packaged into a qualified DOE-STD-3013-2012 container. To support the transfer of plutonium oxide to KAC and then eventually to MFFF, various material and packaging data will have to be collected and retained. In addition, data from initial HB-Line processing operations will be needed to support future DOE-STD-3013-2012 qualification as amended by the HB-Line DOE Standard equivalency. As production increases, the volume of data to collect will increase. The HB-Line data collected will be in the form of paper copies and electronic media. Paper copy data will, at a minimum, consist of facility procedures, nonconformance reports (NCRs), and DCS print outs. Electronic data will be in the form of Adobe portable document formats (PDFs). Collecting all the required data for each plutonium oxide can will be no small effort for HB-Line, and will become more challenging once the maximum annual oxide production throughput is achieved due to the sheer volume of data to be collected. The majority of the data collected will be in the form of facility procedures, DCS print outs, and laboratory results. To facilitate complete collection of this data, a traveler form will be developed which identifies the required facility procedures, DCS print outs, and laboratory results needed to assemble a final data package for each HB-Line plutonium oxide interim oxide can. The data traveler may identify the specific values (data) required to be extracted from the collected facility procedures and DCS print outs. The data traveler may also identify associated criteria to be checked. Inevitably there will be procedure anomalies during the course of the HB-Line plutonium oxide campaign that will have to be addressed in a timely manner.« less
McLean, Thomas D; Moore, Murray E; Justus, Alan L; Hudston, Jonathan A; Barbé, Benoît
2016-11-01
Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. The Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached to the watch's minute hand, and as it rotates, more of the underlying source is revealed. The measured alpha activity increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. Data obtained using the Dynamic Radioactive Source has been used to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.
McLean, Thomas D.; Moore, Murray E.; Justus, Alan L.; ...
2016-01-01
Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. Furthermore, the Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached tomore » the watch’s minute hand, and as it rotates, more of the underlying source is revealed. The alpha activity we measured increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. We also used data obtained using the Dynamic Radioactive Source to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.« less
MIS High-Purity Plutonium Oxide Metal Oxidation Product TS707001 (SSR123): Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veirs, Douglas Kirk; Stroud, Mary Ann; Berg, John M.
A high-purity plutonium dioxide material from the Material Identification and Surveillance (MIS) Program inventory has been studied with regard to gas generation and corrosion in a storage environment. Sample TS707001 represents process plutonium oxides from several metal oxidation operations as well as impure and scrap plutonium from Hanford that are currently stored in 3013 containers. After calcination to 950°C, the material contained 86.98% plutonium with no major impurities. This study followed over time, the gas pressure of a sample with nominally 0.5 wt% water in a sealed container with an internal volume scaled to 1/500th of the volume of amore » 3013 container. Gas compositions were measured periodically over a six year period. The maximum observed gas pressure was 138 kPa. The increase over the initial pressure of 80 kPa was primarily due to generation of nitrogen and carbon dioxide gas in the first six months. Hydrogen and oxygen were minor components of the headspace gas. At the completion of the study, the internal components of the sealed container showed signs of corrosion, including pitting.« less
PLUTONIUM PURIFICATION PROCESS EMPLOYING THORIUM PYROPHOSPHATE CARRIER
King, E.L.
1959-04-28
The separation and purification of plutonium from the radioactive elements of lower atomic weight is described. The process of this invention comprises forming a 0.5 to 2 M aqueous acidffc solution containing plutonium fons in the tetravalent state and elements with which it is normally contaminated in neutron irradiated uranium, treating the solution with a double thorium compound and a soluble pyrophosphate compound (Na/sub 4/P/sub 2/O/sub 7/) whereby a carrier precipitate of thorium A method is presented of reducing neptunium and - trite is advantageous since it destroys any hydrazine f so that they can be removed from solutions in which they are contained is described. In the carrier precipitation process for the separation of plutonium from uranium and fission products including zirconium and columbium, the precipitated blsmuth phosphate carries some zirconium, columbium, and uranium impurities. According to the invention such impurities can be complexed and removed by dissolving the contaminated carrier precipitate in 10M nitric acid, followed by addition of fluosilicic acid to about 1M, diluting the solution to about 1M in nitric acid, and then adding phosphoric acid to re-precipitate bismuth phosphate carrying plutonium.
Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor
NASA Astrophysics Data System (ADS)
Permana, Sidik
2017-07-01
Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.
CONTINUOUS CHELATION-EXTRACTION PROCESS FOR THE SEPARATION AND PURIFICATION OF METALS
Thomas, J.R.; Hicks, T.E.; Rubin, B.; Crandall, H.W.
1959-12-01
A continuous process is presented for separating metal values and groups of metal values from each other. A complex mixture. e.g., neutron-irradiated uranium, can be resolved into component parts. In the present process the values are dissolved in an acidic solution and adjusted to the proper oxidation state. Thenceforth the solution is contacted with an extractant phase comprising a fluorinated beta -diketone in an organic solvent under centain pH conditions whereupon plutonium and zirconium are extracted. Plutonium is extracted from the foregoing extract with reducing aqueous solutions or under specified acidic conditions and can be recovered from the aqueous solution. Zirconium is then removed with an oxalic acid aqueous phase. The uranium is recovered from the residual original solution using hexone and hexone-diketone extractants leaving residual fission products in the original solution. The uranium is extracted from the hexone solution with dilute nitric acid. Improved separations and purifications are achieved using recycled scrub solutions and the "self-salting" effect of uranyl ions.
Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.
2009-09-30
The Hanford Internal Dosimetry Program (HIDP) provides internal dosimetry support services for operations at the Hanford Site. The HIDP is staffed and managed by the Radiation and Health Technology group, within the Pacific Northwest National Laboratory (PNNL). Operations supported by the HIDP include research and development, the decontamination and decommissioning of facilities formerly used to produce and purify plutonium, and waste management activities. Radioelements of particular interest are plutonium, uranium, americium, tritium, and the fission and activation product radionuclides 137Cs, 90Sr, and 60Co. This manual describes the technical basis for the design of the routine bioassay monitoring program and formore » assessment of internal dose. The purposes of the manual are as follows: • Provide assurance that the HIDP derives from a sound technical base. • Promote the consistency and continuity of routine program activities. • Provide a historical record. • Serve as a technical reference for radiation protection personnel. • Aid in identifying and planning for future needs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
..., fission products, some plutonium-contaminated waste, and toxicological waste. The DOE intends to remediate... through 1967 and contains low- to high-activity waste, fission products, some plutonium-contaminated waste...
Development of the Direct Fabrication Process for Plutonium Immobilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.
2001-07-10
The current baseline process for fabricating pucks for the Plutonium Immobilization Program includes granulation of the milled feed prior to compaction. A direct fabrication process was demonstrated that eliminates the need for granulation.
NASA Astrophysics Data System (ADS)
Chadwick, M. B.; Capote, R.; Trkov, A.; Herman, M. W.; Brown, D. A.; Hale, G. M.; Kahler, A. C.; Talou, P.; Plompen, A. J.; Schillebeeckx, P.; Pigni, M. T.; Leal, L.; Danon, Y.; Carlson, A. D.; Romain, P.; Morillon, B.; Bauge, E.; Hambsch, F.-J.; Kopecky, S.; Giorginis, G.; Kawano, T.; Lestone, J.; Neudecker, D.; Rising, M.; Paris, M.; Nobre, G. P. A.; Arcilla, R.; Cabellos, O.; Hill, I.; Dupont, E.; Koning, A. J.; Cano-Ott, D.; Mendoza, E.; Balibrea, J.; Paradela, C.; Durán, I.; Qian, J.; Ge, Z.; Liu, T.; Hanlin, L.; Ruan, X.; Haicheng, W.; Sin, M.; Noguere, G.; Bernard, D.; Jacqmin, R.; Bouland, O.; De Saint Jean, C.; Pronyaev, V. G.; Ignatyuk, A. V.; Yokoyama, K.; Ishikawa, M.; Fukahori, T.; Iwamoto, N.; Iwamoto, O.; Kunieda, S.; Lubitz, C. R.; Salvatores, M.; Palmiotti, G.; Kodeli, I.; Kiedrowski, B.; Roubtsov, D.; Thompson, I.; Quaglioni, S.; Kim, H. I.; Lee, Y. O.; Fischer, U.; Simakov, S.; Dunn, M.; Guber, K.; Márquez Damián, J. I.; Cantargi, F.; Sirakov, I.; Otuka, N.; Daskalakis, A.; McDermott, B. J.; van der Marck, S. C.
2018-02-01
The CIELO collaboration has studied neutron cross sections on nuclides that significantly impact criticality in nuclear technologies - 235,238U, 239Pu, 56Fe, 16O and 1H - with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform
Final Project Report for ER15351 “A Study of New Actinide Zintl Ion Materials”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter K. Dorhout
2007-11-12
The structural chemistry of actinide main-group metal materials provides the fundamental basis for the understanding of structural coordination chemistry and the formation of materials with desired or predicted structural features. The main-group metal building blocks, comprising sulfur-group, phosphorous-group, or silicon-group elements, have shown versatility in oxidation state, coordination, and bonding preferences. These building blocks have allowed us to elucidate a series of structures that are unique to the actinide elements, although we can find structural relationships to transition metal and 4f-element materials. In the past year, we investigated controlled metathesis and self-propagating reactions between actinide metal halides and alkali metalmore » salts of main-group metal chalcogenides such as K-P-S salts. Ternary plutonium thiophosphates have resulted from these reactions at low temperature in sealed ampules. we have also focused efforts to examine reactions of Th, U, and Pu halide salts with other alkali metal salts such as Na-Ge-S and Na-Si-Se and copper chloride to identify if self-propagating reactions may be used as a viable reaction to prepare new actinide materials and we prepared a series of U and Th copper chalcogenide materials. Magnetic measurements continued to be a focus of actinide materials prepared in our laboratory. We also contributed to the XANES work at Los Alamos by preparing materials for study and for comparison with environmental samples.« less
Plutonium oxalate precipitation for trace elemental determination in plutonium materials
Xu, Ning; Gallimore, David; Lujan, Elmer; ...
2015-05-26
In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.
Ferric ion as a scavenging agent in a solvent extraction process
Bruns, Lester E.; Martin, Earl C.
1976-01-01
Ferric ions are added into the aqueous feed of a plutonium scrap recovery process that employs a tributyl phosphate extractant. Radiolytic degradation products of tributyl phosphate such as dibutyl phosphate form a solid precipitate with iron and are removed from the extraction stages via the waste stream. Consequently, the solvent extraction characteristics are improved, particularly in respect to minimizing the formation of nonstrippable plutonium complexes in the stripping stages. The method is expected to be also applicable to the partitioning of plutonium and uranium in a scrap recovery process.
A continuous plutonium aerosol monitor for use in high radon environments.
Li, HuiBin; Jia, MingYan; Li, GuoShen; Wang, YinDong
2012-01-01
Radon concentration is very high in underground basements and other facilities. Radon concentration in a nuclear facility locates in the granite tunnel can be as high as 10(4) Bq m(-3) in summer. Monitoring plutonium aerosol in this circumstance is seriously interfered by radon daughters. In order to solve this problem, a new continuous aerosol monitor that can monitor very low plutonium aerosol concentration in high radon background was developed. Several techniques were used to reduce interference of radon daughters, and the minimum detectable concentrations in various radon concentrations were measured.
Forensic investigation of plutonium metal: a case study of CRM 126
Byerly, Benjamin L.; Stanley, Floyd; Spencer, Khal; ...
2016-11-01
In our study, a certified plutonium metal reference material (CRM 126) with a known production history is examined using analytical methods that are commonly employed in nuclear forensics for provenancing and attribution. Moreover, the measured plutonium isotopic composition and actinide assay are consistent with values reported on the reference material certificate. Model ages from U/Pu and Am/Pu chronometers agree with the documented production timeline. Finally, these results confirm the utility of these analytical methods and highlight the importance of a holistic approach for forensic study of unknown materials.
SULFIDE METHOD PLUTONIUM SEPARATION
Duffield, R.B.
1958-08-12
A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.
Malenchenko, A F; Bazhanova, N N; Kanash, N V; Zhuk, I V; Lomonosova, E M; Bulyga, S F
1997-01-01
The levels of plutonium were studied in the body of inhabitants of the Minsk and Gomel Regions. Their hair was used as the indicator of its levels. The hair concentrations of plutonium correlated with its content in the ribs. The hair levels of lead in the inhabitants of some populated localities of the Gomel Region were found to be higher than those in the residents of unpolluted areas and industrial centers of the Republic of Belarus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artaud, J.; Chaput, M.; Gerstenkorn, S.
1961-01-01
Isotopic analyses of mixtures of plutonium-239 and -240 were carried out by means of the photoelectric spectrometer, the source being a hollow cathode cooled by liquid nitrogen. The relative precision is of the order of 2%, for samples containieg 3% of Pu/sup 240/. The study of the reproductibility of the measurements should make it possible to increase the precision; the relative precision which can be expected from the method should be 1% for mixtures containing 1% of Pu/sup 240/. (auth)
Neptunium and plutonium complexes with a sterically encumbered triamidoamine (TREN) scaffold
Brown, Jessie L.; Gaunt, Andrew J.; King, David M.; ...
2016-03-11
Here, the syntheses and characterization of isostructural neptunium(IV) and plutonium(IV) complexes [M IV(TREN TIPS)(Cl)] [An = Np, Pu; TREN TIPS = {N(CH 2CH 2NSiPr i 3) 3} 3] are reported, along with the demonstration that they are likely reduced to the corresponding neptunium(III) and plutonium(III) products [M III(TREN TIPS)]; this chemistry provides new platforms from which to target a plethora of unprecedented molecular functionalities in transuranic chemistry and the neptunium(IV) molecule is the first structurally characterized neptunium(IV)–amide complex.
The instrumental method of plutonium determination
NASA Astrophysics Data System (ADS)
Knyazev, B. B.; Kazachevskiy, I. V.; Solodukhin, V. P.; Lukashenko, S. N.; Knatova, M. K.; Kashirskiy, V. V.
2003-01-01
A method of direct instrumental determination of plutonium isotopes in soil samples is described. For the method a special program of spectra processing and activity calculation had to be prepared. The detection limit of 239+240Pu in absence of interfering radiation is about 200 Bq/kg (by 3.3σ criteria). Examples are given of the method application for the study of radionuclide soil composition in separate objects of Semipalatinsk Nuclear Test Site (SNTS). It is shown that for different objects under study the correlation degree between plutonium and americium activities may change rather substantially.
URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM
Vogler, S.; Beederman, M.
1961-05-01
A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.
Volatile molecule PuO 3 observed from subliming plutonium dioxide
NASA Astrophysics Data System (ADS)
Ronchi, C.; Capone, F.; Colle, J. Y.; Hiernaut, J. P.
2000-06-01
Mass spectrometric measurements of effusing vapours over PuO 2 and (U, Pu)O 2 indicate the presence of volatile PuO 3 (g) molecules. The formation of plutonium trioxide vapour is due to a chemical process involving oxygen adsorbed during oxidation of the sample. Although in the examined samples, the fraction of trioxide effusing in vacuo was of the order of 0.02 ppm of the plutonium content, under steady-state oxidation conditions it has been shown that the process can have a relevant effect on the sublimation rate of the dioxide.
METHOD FOR PREPARING URANIUM MONOCARBIDE-PLUTONIUM MONOCARBIDE SOLID SOLUTION
Ogard, A.E.; Leary, J.A.; Maraman, W.J.
1963-03-19
A method is given for preparing solid solutions of uranium monocarbide- plutonium monocarbide. In this method, the powder form of uranium dioxide, plutonium dioxide, and graphite are mixed in a ratio determined by the equation: xUO/sub 2/ + yPuO/sub 2/ + (2+z)C yields UxPu/sub y/C/sub z/ +2CO, where x + y equ al 1.0 and z is greater than 0.9 but less than 1.0. The resulting mixture is compacted and heated in a vacuum at a temperature of 1850 deg C. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy.
Measurements of actinides in soil, sediments, water and vegetation in Northern New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallaher, B. M.; Efurd, D. W.
2002-01-01
This study was undertaken during 1991 - 1998 to identify the origin of plutonium uranium in northern New Mexico Rio Grande and tributary stream sediments. Isotopic fingerprinting techniques help distinguish radioactivity from Los Alamos National Laboratory (LANL) and from global fallout or natural sources. The geographic area covered by the study extended from the headwaters of the Rio Grande in southern Colorado to Elephant Butte Reservoir in southern New Mexico. Over 100 samples of stream channel and reservoir bottom sediments were analyzed for the atom ratios of plutonium and uranium isotopes using thermal ionization mass spectrometry (TIMS). Comparison of thesemore » ratios against those for fallout or natural sources allowed for quantification of the Laboratory impact. Of the seven major drainages crossing LANL, movement of LANL plutonium into the Rio Grande can only be traced via Los Alamos Canyon. The majority of sampled locations within and adjacent to LANL have little or no input of plutonium from the Laboratory. Samples collected upstream and distant to L A N show an average (+ s.d.) fallout 240Pu/239Pauto m ratio of 0.169 + 0.012, consistent with published worldwide global fallout values. These regional background ratios differ significantly from the 240Pu/239Pu atom ratio of 0.015 that is representative of LANL-derived plutonium entering the Rio Grande at Los Alamos Canyon. Mixing calculations of these sources indicate that the largest proportion (60% to 90%) of the plutonium in the Rio Grande sediments is from global atmospheric fallout, with an average of about 25% from the Laboratory. The LANL plutonium is identifiable intermittently along the 35-km reach of the Rio Grande to Cochiti Reservoir. The source of the LANL-derived plutonium in the Rio Grande was traced primarily to pre-1960 discharges of liquid effluents into a canyon bottom at a distance approximately 20 km upstream of the river. Plutonium levels decline exponentially with distance downstream after mixing with cleaner sediments, yet the LANL isotopic fingerprint remains distinct for at least 55 km from the effluent source. Plutonium isotopes in Rio Grande and Pajarito Plateau sediments are not at levels known to adversely affect public health. Activities of 239+240pwui thin this sample set ranged from 0.001- 0.046 pCUg in the Rio Grande to 3.7 pCi/g near the effluent discharge point. Levels in the Rio Grande are usually more than 1000 times. lower than prescribed cleanup standards. Uranium in stream and reservoir sediments is predominantly within natural concentration ranges and is of natural uranium isotopic composition. None of the sediments from the Rio Grande show identifiable Laboratory uranium, using the isotopic ratios. These results suggest that the mass of Laboratory-derived uranium entering the Rio Grande is small relative to the natural load carried with river sediments.« less
Grémy, Olivier; Coudert, Sylvie; Renault, Daniel; Miccoli, Laurent
2017-11-01
While the efficacy of a protracted zinc (Zn)- or calcium (Ca)-diethylenetriaminepentaacetic acid (DTPA) treatment in reducing transuranic body burden has already been demonstrated, questions about therapeutic variables remain. In response to this, we designed animal experiments primarily to assess both the effect of fractionation of a given dose and the effect of the frequency of dose fraction, with the same total dose. In our study, rats were contaminated intravenously with plutonium (Pu) then treated several days later with Ca-DTPA given at once or in various split-dose regimens cumulating to the same total dose and spread over several days. Similar efficacies were induced by the injection of the total dose or by splitting the dose in several smaller doses, independent of the number of doses and the dose level per injection. In a second study, rats were pulmonary contaminated, and three weeks later they received a Ca-DTPA dose 11-fold higher than the maximal daily recommended dose, administered either as a single bolus or as numerous multiple injections cumulating to the same dose, based on different injection frequency schedules. Independent of frequency schedule, the various split-dose regimens spread over weeks/months were as efficient as single delivery of the total dose in mobilizing lung plutonium, and had a therapeutic advantage for removal of retained hepatic and bone plutonium burdens. We concluded that cumulative dose level was a therapeutic variable of greater importance than the distribution of split doses for the success of a repeated treatment regimen on retained tissue plutonium. In addition, pulmonary administration of clodronate, which aims at killing alveolar macrophages and subsequently releasing their plutonium content, and which is associated with a continuous Ca-DTPA infusion regimen, suggested that the efficacy of injected Ca-DTPA in decorporating lung deposit is limited, due to its restricted penetration into alveolar macrophages and not because plutonium, as a physicochemical form, is unavailable for chelation.
Xing, Shan; Zhang, Weichao; Qiao, Jixin; Hou, Xiaolin
2018-09-01
In order to measure trace plutonium and its isotopes ratio ( 240 Pu/ 239 Pu) in environmental samples with a high uranium, an analytical method was developed using radiochemical separation for separation of plutonium from matrix and interfering elements including most of uranium and ICP-MS for measurement of plutonium isotopes. A novel measurement method was established for extensively removing the isobaric interference from uranium ( 238 U 1 H and 238 UH 2 + ) and tailing of 238 U, but significantly improving the measurement sensitivity of plutonium isotopes by employing NH 3 /He as collision/reaction cell gases and MS/MS system in the triple quadrupole ICP-MS instrument. The results show that removal efficiency of uranium interference was improved by more than 15 times, and the sensitivity of plutonium isotopes was increased by a factor of more than 3 compared to the conventional ICP-MS. The mechanism on the effective suppress of 238 U interference for 239 Pu measurement using NH 3 -He reaction gases was explored to be the formation of UNH + and UNH 2 + in the reactions of UH + and U + with NH 3 , while no reaction between NH 3 and Pu + . The detection limits of this method were estimated to be 0.55 fg mL -1 for 239 Pu, 0.09 fg mL -1 for 240 Pu. The analytical precision and accuracy of the method for Pu isotopes concentration and 240 Pu/ 239 Pu atomic ratio were evaluated by analysis of sediment reference materials (IAEA-385 and IAEA-412) with different levels of plutonium and uranium. The developed method were successfully applied to determine 239 Pu and 240 Pu concentrations and 240 Pu/ 239 Pu atomic ratios in soil samples collected in coastal areas of eastern China. Copyright © 2018 Elsevier B.V. All rights reserved.
Process for immobilizing plutonium into vitreous ceramic waste forms
Feng, Xiangdong; Einziger, Robert E.
1997-01-01
Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.
Process for immobilizing plutonium into vitreous ceramic waste forms
Feng, X.; Einziger, R.E.
1997-08-12
Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.
Process for immobilizing plutonium into vitreous ceramic waste forms
Feng, X.; Einziger, R.E.
1997-01-28
Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.
68. INTERIOR SHOT OF ENTRANCE TO BUILDING 272 (PLUTONIUM STORAGE ...
68. INTERIOR SHOT OF ENTRANCE TO BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING WEST. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME
Selected environmental plutonium research reports of the NAEG
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.G.; Dunaway, P.B.
Twenty-one papers were presented on various aspects of plutonium and radioisotope ecology at the Nevada Test Site. This includes studies of wildlife, microorganisms, and the plant-soil system. Analysis and sampling techniques are also included.
Lattice dynamics and elasticity for ε-plutonium [First-principles lattice dynamics for ε-plutonium
Söderlind, Per
2017-04-25
Here, lattice dynamics and elasticity for the high-temperature ε phase (body-centered cubic; bcc) of plutonium is predicted utilizing first-principles electronic structure coupled with a self-consistent phonon method that takes phonon-phonon interaction and strong anharmonicity into account. These predictions establish the first sensible lattice-dynamics and elasticity data on ε-Pu. The atomic forces required for the phonon scheme are highly accurate and derived from the total energies obtained from relativistic and parameter-free density-functional theory. The results appear reasonable but no data exist to compare with except those from dynamical mean-field theory that suggest ε-plutonium is mechanically unstable. Fundamental knowledge and understanding ofmore » the high-temperature bcc phase, that is generally present in all actinide metals before melting, is critically important for a proper interpretation of the phase diagram as well as practical modeling of high-temperature properties.« less
Guide of good practices for occupational radiological protection in plutonium facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-06-01
This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TSmore » replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.« less
Simulation of uranium and plutonium oxides compounds obtained in plasma
NASA Astrophysics Data System (ADS)
Novoselov, Ivan Yu.; Karengin, Alexander G.; Babaev, Renat G.
2018-03-01
The aim of this paper is to carry out thermodynamic simulation of mixed plutonium and uranium oxides compounds obtained after plasma treatment of plutonium and uranium nitrates and to determine optimal water-salt-organic mixture composition as well as conditions for their plasma treatment (temperature, air mass fraction). Authors conclude that it needs to complete the treatment of nitric solutions in form of water-salt-organic mixtures to guarantee energy saving obtainment of oxide compounds for mixed-oxide fuel and explain the choice of chemical composition of water-salt-organic mixture. It has been confirmed that temperature of 1200 °C is optimal to practice the process. Authors have demonstrated that condensed products after plasma treatment of water-salt-organic mixture contains targeted products (uranium and plutonium oxides) and gaseous products are environmental friendly. In conclusion basic operational modes for practicing the process are showed.
Verification study of an emerging fire suppression system
Cournoyer, Michael E.; Waked, R. Ryan; Granzow, Howard N.; ...
2016-01-01
Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Moreover, plutonium gloveboxes present harsh environmental conditions for polymer materials; these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. Several studies have been conducted to determine the robustness of selfcontained fire extinguishers in plutonium gloveboxes in a nuclear facility, verification tests must be performed. These tests include activation and mass loss calorimeter tests. In addition, compatibility issues with chemical components of the self-contained fire extinguishers need to be addressed. Our study presents activation andmore » mass loss calorimeter test results. After extensive studies, no critical areas of concern have been identified for the plutonium glovebox application of Fire Foe™, except for glovebox operations that use large quantities of bulk plutonium or uranium metal such as metal casting and pyro-chemistry operations.« less
PROCESS OF REDUCING PLUTONIUM TO TETRAVALENT TRIVALENT STATE
Mastick, D.F.
1960-05-10
The reduction of hexavalent and tetravalert plutonium ions to the trivalent state in strong nitric acid can be accomplished with hydrogen peroxide. The trivalent state may be stabilized as a precipitate by including oxalate or fluoride ions in the solution. The acid should be strong to encourage the reduction from the plutonyl to the trivalent state (and discourage the opposed oxidation reaction) and prevent the precipitation of plutonium peroxide, although the latter may be digested by increasing the acid concentration. Although excess hydrogen peroxide will oxidize plutonlum to the plutonyl state, complete reduction is insured by gently warming the solution to break down such excess H/ sub 2/O/sub 2/. The particular advantage of hydrogen peroxide as a reductant lies in the precipitation technique, where it introduces no contaminating ions. The process is adaptable to separate plutonium from uranium and impurities by proper adjustment of the sequence of insoluble anion additions and the hydrogen peroxide addition.
Uncertainty propagation for the coulometric measurement of the plutonium concentration in MOX-PU4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This GUM WorkbenchTM propagation of uncertainty is for the coulometric measurement of the plutonium concentration in a Pu standard material (C126) supplied as individual aliquots that were prepared by mass. The C126 solution had been prepared and as aliquoted as standard material. Samples are aliquoted into glass vials and heated to dryness for distribution as dried nitrate. The individual plutonium aliquots were not separated chemically or otherwise purified prior to measurement by coulometry in the F/H Laboratory. Hydrogen peroxide was used for valence adjustment. The Pu assay measurement results were corrected for the interference from trace iron in the solutionmore » measured for assay. Aliquot mass measurements were corrected for air buoyancy. The relative atomic mass (atomic weight) of the plutonium from X126 certoficate was used. The isotopic composition was determined by thermal ionization mass spectrometry (TIMS) for comparison but not used in calculations.« less
Fuzzy-probabilistic model for risk assessment of radioactive material railway transportation.
Avramenko, M; Bolyatko, V; Kosterev, V
2005-01-01
Transportation of radioactive materials is obviously accompanied by a certain risk. A model for risk assessment of emergency situations and terrorist attacks may be useful for choosing possible routes and for comparing the various defence strategies. In particular, risk assessment is crucial for safe transportation of excess weapons-grade plutonium arising from the removal of plutonium from military employment. A fuzzy-probabilistic model for risk assessment of railway transportation has been developed taking into account the different natures of risk-affecting parameters (probabilistic and not probabilistic but fuzzy). Fuzzy set theory methods as well as standard methods of probability theory have been used for quantitative risk assessment. Information-preserving transformations are applied to realise the correct aggregation of probabilistic and fuzzy parameters. Estimations have also been made of the inhalation doses resulting from possible accidents during plutonium transportation. The obtained data show the scale of possible consequences that may arise from plutonium transportation accidents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, J.R.
The active-passive shuffler installed and certified a few years ago in Los Alamos National Laboratory`s plutonium facility has now been calibrated for different matrices to measure Waste Isolation Pilot Plant (WIPP)-destined transuranic (TRU)-waste. Little or no data presently exist for these types of measurements in plant environments where there may be sudden large changes in the neutron background radiation which causes distortions in the results. Measurements and analyses of twenty-two 55-gallon drums, consisting of mixtures of varying quantities of uranium and plutonium, have been recently completed at the plutonium facility. The calibration and measurement techniques, including the method used tomore » separate out the plutonium component, will be presented and discussed. Particular attention will be directed to those problems identified as arising from the plant environment. The results of studies to quantify the distortion effects in the data will be presented. Various solution scenarios will be indicated, along with those adopted here.« less
Verification study of an emerging fire suppression system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, Michael E.; Waked, R. Ryan; Granzow, Howard N.
Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Moreover, plutonium gloveboxes present harsh environmental conditions for polymer materials; these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. Several studies have been conducted to determine the robustness of selfcontained fire extinguishers in plutonium gloveboxes in a nuclear facility, verification tests must be performed. These tests include activation and mass loss calorimeter tests. In addition, compatibility issues with chemical components of the self-contained fire extinguishers need to be addressed. Our study presents activation andmore » mass loss calorimeter test results. After extensive studies, no critical areas of concern have been identified for the plutonium glovebox application of Fire Foe™, except for glovebox operations that use large quantities of bulk plutonium or uranium metal such as metal casting and pyro-chemistry operations.« less
JPRS Report, Soviet Union, International Affairs
1990-05-17
was built to produce enriched uranium , and work has been completed on a plant to refine plutonium received from the nuclear electric power plant in... oil . "Have a look," Mikhail Aleksandrovich couldn’t resist saying, summoning his visitor to the window. The latter approached the window slowly...would like to exchange 1,200 metric tons of processed sunflower-seed oil for imports of common consumer goods. But without the permission of the