77 FR 64332 - Notice of Commission Staff Attendance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
.... to 2:00 p.m., Local Time December 18, 2012, 11:00 a.m. to 4:00 p.m., Local Time Management Committee... Planning Working Group October 24, 2012, 10:00 a.m. to 4:00 p.m., Local Time November 1, 2012, 10:00 a.m. to 4:00 p.m., Local Time December 14, 2012, 10:00 a.m. to 4:00 p.m., Local Time [[Page 64333
77 FR 50097 - Notice of Commission Staff Attendance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
....m.-4 p.m., Local Time Markets and Reliability Committee August 23, 2012, 9 a.m.-3:30 p.m., Local... Combined Markets and Reliability Committee/Members Committee September 27, 2012, 9 a.m.-5 p.m., Local Time... Riverfront, Wilmington, DE The PJM Conference & Training Center, Norristown, PA The above-referenced meetings...
76 FR 44978 - Notice of FAA Intent To Carry Over Airport Improvement Program (AIP) Entitlement Funds
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
... Administration, DOT. ACTION: Notice. SUMMARY: By 12 p.m. prevailing local time on Friday, August 12, 2011... and local laws. The FAA is hereby notifying all sponsors that by 12 p.m. prevailing local time on...
Dimitriou, Konstantinos; Kassomenos, Pavlos
2014-07-01
This paper aims to decompose the profile of particulates in Karlsruhe and Potsdam (Germany), focusing on the localization of PM potential transboundary sources. An air mass cluster analysis was implemented, followed by a study of air mass residence time on a grid of a 0.5° × 0.5° resolution. Particulate/gaseous daily air pollution and meteorological data were used to indicate PM local sources. Four Principal Component Analysis (PCA) components were produced: traffic, photochemical, industrial/domestic and particulate. PM2.5/PM10 ratio seasonal trends, indicated production of PMCOARSE (PM10-PM2.5) from secondary sources in Potsdam during warm period (WP). The residing areas of incoming slow moving air masses are potential transboundary PM sources. For Karlsruhe those areas were mainly around the city. An air mass residence time secondary peak was observed over Stuttgart. For Potsdam, areas with increased dwelling time of the arriving air parcels were detected particularly above E/SE Germany. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hahn, Intaek; Brixey, Laurie A; Wiener, Russell W; Henkle, Stacy W; Baldauf, Richard
2009-12-01
Analyses of outdoor traffic-related particulate matter (PM) concentration distribution and fluctuation patterns in urban street canyons within a microscale distance of less than 500 m from a highway source are presented as part of the results from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study. Various patterns of spatial and temporal changes in the street canyon PM concentrations were investigated using time-series data of real-time PM concentrations measured during multiple monitoring periods. Concurrent time-series data of local street canyon wind conditions and wind data from the John F. Kennedy (JFK) International Airport National Weather Service (NWS) were used to characterize the effects of various wind conditions on the behavior of street canyon PM concentrations.Our results suggest that wind direction may strongly influence time-averaged mean PM concentration distribution patterns in near-highway urban street canyons. The rooftop-level wind speeds were found to be strongly correlated with the PM concentration fluctuation intensities in the middle sections of the street blocks. The ambient turbulence generated by shifting local wind directions (angles) showed a good correlation with the PM concentration fluctuation intensities along the entire distance of the first and second street blocks only when the wind angle standard deviations were larger than 30 degrees. Within-canyon turbulent shearing, caused by fluctuating local street canyon wind speeds, showed no correlation with PM concentration fluctuation intensities. The time-averaged mean PM concentration distribution along the longitudinal distances of the street blocks when wind direction was mostly constantly parallel to the street was found to be similar to the distribution pattern for the entire monitoring period when wind direction fluctuated wildly. Finally, we showed that two different PM concentration metrics-time-averaged mean concentration and number of concentration peaks above a certain threshold level-can possibly lead to different assessments of spatial concentration distribution patterns.
77 FR 9997 - NASA Advisory Council; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-21
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-016)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council (NAC). DATES: Thursday, March 8, 2012, 8 a.m.-5 p.m., local time and Friday, March 9, 2012, 8 a.m.-12 p.m., local time. ADDRESSES: NASA...
76 FR 64111 - NASA Advisory Council; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-087)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council. DATES: Thursday, November 3, 2011, 8 a.m.-5 p.m., Local Time Friday, November 4, 2011, 8 a.m.--12 p.m., Local Time. ADDRESSES: NASA...
76 FR 4133 - NASA Advisory Council; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-24
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-007)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council. DATES: Thursday, February 10, 2011, 8 a.m.-5 p.m., Local Time. Friday, February 11, 2011, 8 a.m.-12 p.m., Local Time. ADDRESSES: NASA...
Reversal of soft-tissue local anesthesia with phentolamine mesylate in adolescents and adults.
Hersh, Elliot V; Moore, Paul A; Papas, Athena S; Goodson, J Max; Navalta, Laura A; Rogy, Siegfried; Rutherford, Bruce; Yagiela, John A
2008-08-01
The authors conducted two multicenter, randomized, double-blinded, controlled Phase III clinical trials to study the efficacy and safety of phentolamine mesylate (PM) in shortening the duration and burden of soft-tissue anesthesia. The study involved 484 subjects who received one of four commercially available local anesthetic solutions containing vasoconstrictors for restorative or scaling procedures. On completion of the dental procedure, subjects randomly received a PM or a sham injection (an injection in which a needle does not penetrate the soft tissue) in the same site as the local anesthetic injection. The investigators measured the duration of soft-tissue anesthesia by using standardized lip- and tongue-tapping procedures every five minutes for five hours. They also evaluated functional measures and subject-perceived altered function, sensation, appearance and safety. Median recovery times in the lower lip and tongue for subjects in the PM group were 70 minutes and 60 minutes, respectively. Median recovery times in the lower lip and tongue for subjects in the sham group were 155 minutes and 125 minutes, respectively. Upper lip median recovery times were 50 minutes for subjects in the PM group and 133 minutes for subjects in the sham group. These differences were significant (P < .0001). Recovery from actual functional deficits and subject-perceived altered function, sensation and appearance also showed significant differences between the PM and the sham groups. PM was efficacious and safe in reducing the duration of local anesthetic- induced soft-tissue numbness and its associated functional deficits. Clinicians can use PM to accelerate reversal of soft-tissue anesthesia and the associated functional deficits.
NASA Satellite Image of Japan Captured March 11, 2011
2017-12-08
NASA's Aqua satellite passed over Japan one hour and 41 minutes before the quake hit. At the time Aqua passed overhead, the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument captured a visible of Japan covered by clouds. The image was taken at 0405 UTC on March 11 (1:05 p.m. local time Japan /11:05 p.m. EST March 10). The quake hit at 2:46 p.m. local time/Japan. Satellite: Aqua Credit: NASA/GSFC/Aqua NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
29 CFR Appendix A to Part 102 - NLRB Official Office Hours
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 15—New Orleans 8 a.m.-4:30 p.m. 16—Fort Worth 8:15 a.m.-4:45 p.m. Houston 8 a.m.-4:30 p.m. San....m. San Francisco 8:30 a.m.-5 p.m. New York 8:30 a.m.-5 p.m. Atlanta 8 a.m.-4:30 p.m. Regional Office Business Hours (Local Time): 1—Boston 8:30 a.m.-5 p.m. 2—New York 8:45 a.m.-5:15 p.m. 3—Buffalo 8:30 a.m.-5...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
... Yacht Date: July 6, 2013. Club Fireworks. Rain date: July 7, 2013. Time: 8:30 p.m. to 10:00 p.m...). 7.35 Groton Long Point Yacht Date: July 20, 2013. Club Fireworks. Rain date: July 21, 2013. Time: 9...
Li, Junming; Wang, Nannan; Wang, Jinfeng; Li, Honglin
2018-07-01
PM 2.5 pollution is threatening human health and quality of life, especially in some densely populated regions of Asia and Africa. This paper used remotely sensed annual mean PM 2.5 concentrations to explore the spatiotemporal evolution of global continental PM 2.5 pollution from 2000 to 2014. The work employed an improved Bayesian space-time hierarchy model combined with a multiscale homogeneous subdivision method. The statistical results quantitatively demonstrated a 'high-value increasing and low-value decreasing' trend. Areas with annual PM 2.5 concentrations of more than 70μg/m 3 and less than 10μg/m 3 expanded, while areas with of an annual PM 2.5 concentrations of 10-25μg/m 3 shrank. The most heavily PM 2.5 -polluted areas were located in northwest Africa, where the PM 2.5 pollution level was 12.0 times higher than the average global continental level; parts of China represented the second most PM 2.5 -polluted areas, followed by northern India and Saudi Arabia and Iraq in the Middle East region. Nearly all (96.50%) of the highly PM 2.5 -polluted area (hot spots) had an increasing local trend, while 68.98% of the lightly PM 2.5 -polluted areas (cold spots) had a decreasing local trend. In contrast, 22.82% of the cold spot areas exhibited an increasing local trend. Moreover, the spatiotemporal variation in the health risk from exposure to PM 2.5 over the global continents was also investigated. Four areas, India, eastern and southern China, western Africa and central Europe, had high health risks from PM 2.5 exposure. Northern India, northeastern Pakistan, and mid-eastern China had not only the highest risk but also a significant increasing trend; the areas of high PM 2.5 pollution risk are thus expanding, and the number of affected people is increasing. Northern and central Africa, the Arabian Peninsula, the Middle East, western Russia and central Europe also exhibited increasing PM 2.5 pollution health risks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Weiwei; Tong, Daniel Q; Zhang, Shichun; Zhang, Xuelei; Zhao, Hongmei
2017-07-01
Mineral particles or particulate matters (PMs) emitted during agricultural activities are major recurring sources of atmospheric aerosol loading. However, precise PM inventory from agricultural tillage and harvest in agricultural regions is challenged by infrequent local emission factor (EF) measurements. To understand PM emissions from these practices in northeastern China, we measured EFs of PM 10 and PM 2.5 from three field operations (i.e., tilling, planting and harvesting) in major crop production (i.e., corn and soybean), using portable real-time PM analyzers and weather station data. County-level PM 10 and PM 2.5 emissions from agricultural tillage and harvest were estimated, based on local EFs, crop areas and crop calendars. The EFs averaged (107±27), (17±5) and 26mg/m 2 for field tilling, planting and harvesting under relatively dry conditions (i.e., soil moisture <15%), respectively. The EFs of PM from field tillage and planting operations were negatively affected by topsoil moisture. The magnitude of PM 10 and PM 2.5 emissions from these three activities were estimated to be 35.1 and 9.8 kilotons/yr in northeastern China, respectively, of which Heilongjiang Province accounted for approximately 45%. Spatiotemporal distribution showed that most PM 10 emission occurred in April, May and October and were concentrated in the central regions of the northeastern plain, which is dominated by dryland crops. Further work is needed to estimate the contribution of agricultural dust emissions to regional air quality in northeastern China. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Dimitriou, Konstantinos; Kassomenos, Pavlos
2014-10-01
The keystone of this paper was to calculate and interpret indicators reflecting sources and air quality impacts of PM2.5 and PMCOARSE (PM10-PM2.5) in Rome (Italy), focusing on potential exogenous influences. A backward atmospheric trajectory cluster analysis was implemented. The likelihood of daily PM10 exceedances was studied in conjunction with atmospheric patterns, whereas a Potential Source Contribution Function (PSCF) based on air mass residence time was deployed on a grid of a 0.5° × 0.5° resolution. Higher PM2.5 concentrations were associated with short/medium range airflows originated from Balkan Peninsula, whereas potential PMCOARSE sources were localized across the Mediterranean and coastal North Africa, due to dust and sea spray transportation. According to the outcome of a daily Pollution Index (PI), a slightly increased degradation of air quality is induced due to the additional quantity of exogenous PM but nevertheless, average levels of PI in all trajectory clusters belong in the low pollution category. Gaseous and particulate pollutants were also elaborated by a Principal Component Analysis (PCA), which produced 4 components: [Traffic], [photochemical], [residential] and [Secondary Coarse Aerosol], reflecting local sources of air pollution. PM2.5 levels were strongly associated with traffic, whereas PMCOARSE were produced autonomously by secondary sources.
Li, Yueyan; Chang, Miao; Ding, Shanshan; Wang, Shiwen; Ni, Dun; Hu, Hongtao
2017-07-01
Fine particulate matter (PM 2.5 ) samples were collected simultaneously every hour in Beijing between April 2014 and April 2015 at five sites. Thirteen trace elements (TEs) in PM 2.5 were analyzed by online X-ray fluorescence (XRF). The annual average PM 2.5 concentrations ranged from 76.8 to 102.7 μg m -3 . TEs accounted for 5.9%-8.7% of the total PM 2.5 mass with Cl, S, K, and Si as the most dominant elements. Spearman correlation coefficients of PM 2.5 or TE concentrations between the background site and other sites showed that PM 2.5 and some element loadings were affected by regional and local sources, whereas Cr, Si, and Ni were attributed to substantial local emissions. Temporal variations of TEs in PM 2.5 were significant and provided information on source profiles. The PM 2.5 concentrations were highest in autumn and lowest in summer. Mn and Cr showed similar variation. Fe, Ca, Si, and Ti tended to show higher concentrations in spring, whereas concentrations of S peaked in summer. Concentrations of Cl, K, Pb, Zn, Cu, and Ni peaked in winter. PM 2.5 and TE median concentrations were higher on Saturdays than on weekdays. The diurnal pattern of PM 2.5 and TE median concentrations yielded similar bimodal patterns. Five dominant sources of PM 2.5 mass were identified via positive matrix factorization (PMF). These sources included the regional and local secondary aerosols, traffic, coal burning, soil dust, and metal processing. Air quality management strategies, including regional environmental coordination and collaboration, reduction in secondary aerosol precursors, restrictive vehicle emission standards, promotion of public transport, and adoption of clean energy, should be strictly implemented. High time-resolution measurements of TEs provided detailed source profiles, which can greatly improve precision in interpreting source apportionment calculations; the PMF analysis of online XRF data is a powerful tool for local air quality management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wilkinson, Kai E; Lundkvist, Johanna; Netrval, Julia; Eriksson, Mats; Seisenbaeva, Gulaim A; Kessler, Vadim G
2013-11-01
Concerns over exposure to airborne particulate matter (PM) are on the rise. Currently monitoring of PM is done on the basis of interpolating a mass of PM by volume (μg/m(3)) but has the drawback of not taking the chemical nature of PM into account. Here we propose a method of collecting PM at its emission source and employing automated analysis with scanning electron microscopy associated with EDS-analysis together with light scattering to discern the chemical composition, size distribution, and time and space resolved structure of PM emissions in a heavily trafficated roundabout in Sweden. Multivariate methods (PCA, ANOVA) indicate that the technogenic marker Fe follows roadside dust in spreading from the road, and depending on time and location of collection, a statistically significant difference can be seen, adding a useful tool to the repertoiré of detailed PM monitoring and risk assessment of local emission sources. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
....5 sample collection filter is weighed (after moisture and temperature conditioning) before and after... ambient temperature and pressure and the sampling time. The mass concentrations of both PM10c and PM2.5 in... in micrograms per cubic meter (µg/m3)at local temperature and pressure conditions. The mass...
NASA Astrophysics Data System (ADS)
Elangasinghe, M. A.; Singhal, N.; Dirks, K. N.; Salmond, J. A.; Samarasinghe, S.
2014-09-01
This paper uses artificial neural networks (ANN), combined with k-means clustering, to understand the complex time series of PM10 and PM2.5 concentrations at a coastal location of New Zealand based on data from a single site. Out of available meteorological parameters from the network (wind speed, wind direction, solar radiation, temperature, relative humidity), key factors governing the pattern of the time series concentrations were identified through input sensitivity analysis performed on the trained neural network model. The transport pathways of particulate matter under these key meteorological parameters were further analysed through bivariate concentration polar plots and k-means clustering techniques. The analysis shows that the external sources such as marine aerosols and local sources such as traffic and biomass burning contribute equally to the particulate matter concentrations at the study site. These results are in agreement with the results of receptor modelling by the Auckland Council based on Positive Matrix Factorization (PMF). Our findings also show that contrasting concentration-wind speed relationships exist between marine aerosols and local traffic sources resulting in very noisy and seemingly large random PM10 concentrations. The inclusion of cluster rankings as an input parameter to the ANN model showed a statistically significant (p < 0.005) improvement in the performance of the ANN time series model and also showed better performance in picking up high concentrations. For the presented case study, the correlation coefficient between observed and predicted concentrations improved from 0.77 to 0.79 for PM2.5 and from 0.63 to 0.69 for PM10 and reduced the root mean squared error (RMSE) from 5.00 to 4.74 for PM2.5 and from 6.77 to 6.34 for PM10. The techniques presented here enable the user to obtain an understanding of potential sources and their transport characteristics prior to the implementation of costly chemical analysis techniques or advanced air dispersion models.
NASA Astrophysics Data System (ADS)
Kim, H.; Zhang, Q.
2016-12-01
Highly time-resolved chemical characterization of non-refractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter when persistent air quality problems associated with elevated PM concentrations were observed. The average NR-PM1 concentration was 27.5 µg m-3 and the average mass was dominated by organics (44%), followed by nitrate (24%) and sulfate (10%). Five distinct sources of organic aerosol (OA) were identified from positive matrix factorization (PMF) analysis of the AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA), cooking represented by a cooking OA factor (COA), wood combustion represented by a biomass burning OA factor (BBOA), and secondary aerosol formation in the atmosphere that is represented by a semi-volatile oxygenated OA factor (SVOOA) and a low volatile oxygenated OA factor (LVOOA). These factors, on average, contributed 16, 20, 23, 15 and 26% to the total OA mass, respectively, with primary organic aerosol (POA = HOA + COA + BBOA) accounting for 59% of the OA mass. On average, both primary emissions and secondary aerosol formation are important factors affecting air quality in Seoul during winter, contributing approximately equal. However, differences in the fraction of PM source and properties were observed between high and low loading PM period. For example, during stagnant period with low wind speed (WS) (0.99 ± 0.7 m/s) and high RH (71%), high PM loadings (43.6 ± 12.4 µg m-3) with enhanced fractions of nitrate (27%) and SVOOA (8%) were observed, indicating a strong influence from locally generated secondary aerosol. On the other hand, when low PM loadings (12.6 ± 7.1 µg m-3), which were commonly associated with high WS (1.8 ± 1.1 m/s) and low RH (50 %), were observed, the fraction of regional sources, such as sulfate (12%) and LVOOA (21%) become higher whereas the fraction of locally emitted primary (COA, HOA) and locally formed secondary species (nitrate, SVOOA) become lower. Our results indicate that NR-PM1 concentrations, compositions and sources in Korea are very complex and meteorological conditions and air mass origins have a strong influence on properties of PM.
75 FR 52375 - NASA Advisory Council; Exploration Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-25
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-094)] NASA Advisory Council... National Aeronautics and Space Administration announces a meeting of the Exploration Committee of the NASA Advisory Council. DATES: Tuesday, September 21, 2010, 1 p.m.-6:30 p.m., Local Time. ADDRESSES: NASA...
Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship
NASA Astrophysics Data System (ADS)
Chu, Hone-Jay; Huang, Bo; Lin, Chuan-Yao
2015-02-01
This paper explores the spatio-temporal patterns of particulate matter (PM) in Taiwan based on a series of methods. Using fuzzy c-means clustering first, the spatial heterogeneity (six clusters) in the PM data collected between 2005 and 2009 in Taiwan are identified and the industrial and urban areas of Taiwan (southwestern, west central, northwestern, and northern Taiwan) are found to have high PM concentrations. The PM10-PM2.5 relationship is then modeled with global ordinary least squares regression, geographically weighted regression (GWR), and geographically and temporally weighted regression (GTWR). The GTWR and GWR produce consistent results; however, GTWR provides more detailed information of spatio-temporal variations of the PM10-PM2.5 relationship. The results also show that GTWR provides a relatively high goodness of fit and sufficient space-time explanatory power. In particular, the PM2.5 or PM10 varies with time and space, depending on weather conditions and the spatial distribution of land use and emission patterns in local areas. Such information can be used to determine patterns of spatio-temporal heterogeneity in PM that will allow the control of pollutants and the reduction of public exposure.
Economic Impacts from PM2.5 Pollution-Related Health Effects: A Case Study in Shanghai.
Wu, Rui; Dai, Hancheng; Geng, Yong; Xie, Yang; Masui, Toshihiko; Liu, Zhiqing; Qian, Yiying
2017-05-02
PM 2.5 pollution-related diseases cause additional medical expenses and work time loss, leading to macroeconomic impact in high PM 2.5 concentration areas. Previous economic impact assessments of air pollution focused on benefits from environmental regulations while ignoring climate policies. In this study, we examine the health and economic impacts from PM 2.5 pollution under various air pollution control strategies and climate policies scenarios in the megacity of Shanghai. The estimation adopts an integrated model combining a Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model, exposure-response functions (ERFs), and a computable general equilibrium (CGE) model. The results show that without control measures, Shanghai's mortality caused by PM 2.5 pollution are estimated to be 192 400 cases in 2030 and the work time loss to be 72.1 h/cap annually. The corresponding GDP values and welfare losses would be approximately 2.26% and 3.14%, respectively. With an estimated control cost of 0.76% of local GDP, Shanghai would gain approximately 1.01% of local GDP through local air pollution control measures and climate policies. Furthermore, the application of multiregional integrated control strategies in neighboring provinces would be the most effective in reducing PM 2.5 concentration in Shanghai, leading to only 0.34% of GDP loss. At the sectoral level, labor-intensive sectors suffer more output loss from PM 2.5 pollution. Sectors with the highest control costs include power generation, iron and steel, and transport. The results indicate that the combination of multiregional integrated air pollution control strategies and climate policies would be cost-beneficial for Shanghai.
An integrated approach using high time-resolved tools to study the origin of aerosols.
Di Gilio, A; de Gennaro, G; Dambruoso, P; Ventrella, G
2015-10-15
Long-range transport of natural and/or anthropogenic particles can contribute significantly to PM10 and PM2.5 concentrations and some European cities often fail to comply with PM daily limit values due to the additional impact of particles from remote sources. For this reason, reliable methodologies to identify long-range transport (LRT) events would be useful to better understand air pollution phenomena and support proper decision-making. This study explores the potential of an integrated and high time-resolved monitoring approach for the identification and characterization of local, regional and long-range transport events of high PM. In particular, the goal of this work was also the identification of time-limited event. For this purpose, a high time-resolved monitoring campaign was carried out at an urban background site in Bari (southern Italy) for about 20 days (1st-20th October 2011). The integration of collected data as the hourly measurements of inorganic ions in PM2.5 and their gas precursors and of the natural radioactivity, in addition to the analyses of aerosol maps and hourly back trajectories (BT), provided useful information for the identification and chemical characterization of local sources and trans-boundary intrusions. Non-sea salt (nss) sulfate levels were found to increase when air masses came from northeastern Europe and higher dispersive conditions of the atmosphere were detected. Instead, higher nitrate and lower nss-sulfate concentrations were registered in correspondence with air mass stagnation and attributed to local traffic source. In some cases, combinations of local and trans-boundary sources were observed. Finally, statistical investigations such as the principal component analysis (PCA) applied on hourly ion concentrations and the cluster analyses, the Potential Source Contribution Function (PSCF) and the Concentration Weighted Trajectory (CWT) models computed on hourly back-trajectories enabled to complete a cognitive framework and confirm the influence of aerosol transported from heavily polluted areas on the receptor site. Copyright © 2015 Elsevier B.V. All rights reserved.
76 FR 18800 - NASA Advisory Council; Exploration Committee; Meeting.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-05
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-028)] NASA Advisory Council; Exploration... National Aeronautics and Space Administration announces a meeting of the Exploration Committee of the NASA Advisory Council. DATES: Tuesday, April 26, 2011, 1 p.m.-6 p.m., Local Time ADDRESSES: NASA Headquarters...
Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption.
Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu
2016-11-01
Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM 2.5 ), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM 2.5 emission inventory to track primary PM 2.5 emissions embodied in the supply chain and evaluate the extent to which local PM 2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM 2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM 2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.
Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption
NASA Astrophysics Data System (ADS)
Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu
2016-11-01
Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.
Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption
Meng, Jing; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu
2016-01-01
Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization. PMID:27956874
Spatial & temporal variations of PM10 and particle number concentrations in urban air.
Johansson, Christer; Norman, Michael; Gidhagen, Lars
2007-04-01
The size of particles in urban air varies over four orders of magnitude (from 0.001 microm to 10 microm in diameter). In many cities only particle mass concentrations (PM10, i.e. particles <10 microm diameter) is measured. In this paper we analyze how differences in emissions, background concentrations and meteorology affect the temporal and spatial distribution of PM10 and total particle number concentrations (PNC) based on measurements and dispersion modeling in Stockholm, Sweden. PNC at densely trafficked kerbside locations are dominated by ultrafine particles (<0.1 microm diameter) due to vehicle exhaust emissions as verified by high correlation with NOx. But PNC contribute only marginally to PM10, due to the small size of exhaust particles. Instead wear of the road surface is an important factor for the highest PM10 concentrations observed. In Stockholm, road wear increases drastically due to the use of studded tires and traction sand on streets during winter; up to 90% of the locally emitted PM10 may be due to road abrasion. PM10 emissions and concentrations, but not PNC, at kerbside are controlled by road moisture. Annual mean urban background PM10 levels are relatively uniformly distributed over the city, due to the importance of long range transport. For PNC local sources often dominate the concentrations resulting in large temporal and spatial gradients in the concentrations. Despite these differences in the origin of PM10 and PNC, the spatial gradients of annual mean concentrations due to local sources are of equal magnitude due to the common source, namely traffic. Thus, people in different areas experiencing a factor of 2 different annual PM10 exposure due to local sources will also experience a factor of 2 different exposure in terms of PNC. This implies that health impact studies based solely on spatial differences in annual exposure to PM10 may not separate differences in health effects due to ultrafine and coarse particles. On the other hand, health effect assessments based on time series exposure analysis of PM10 and PNC, should be able to observe differences in health effects of ultrafine particles versus coarse particles.
76 FR 3674 - NASA Advisory Council; Commercial Space Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-006)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Tuesday, February 8, 2011, 2 p.m.-3:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center, Room 1Q39, Washington, DC 20546...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
...The Small Communities Advisory Subcommittee (SCAS) will meet via teleconference on Tuesday, March 27, 2012, 2 p.m.-3 p.m. (ET), and the SCAS will meet at EPA's Region 8 office in Denver, CO, on Thursday, April 18, 2012, 3 p.m.-5 p.m. (MT). The Subcommittee will discuss decentralized wastewater treatment and other issues and recommendations to the Administrator regarding environmental issues affecting small communities. These are open meetings, and all interested persons are invited to participate. The Subcommittee will hear comments from the public during the teleconference on Tuesday, March 27, 2012 between 2:50 p.m. and 3 p.m. (ET) and during the meeting on Thursday, April 18, 2012 between 4:45 p.m. and 5 p.m. (MT). Individuals or organizations wishing to address the Subcommittee will be allowed a maximum of five minutes to present their point of view. Also, written comments should be submitted electronically to [email protected] Please contact the Designated Federal Officer (DFO) at the number listed below to schedule a time on the agenda. Time will be allotted on a first-come first-serve basis, and the total period for comments may be extended if the number of requests for appearances requires it. The Local Government Advisory Committee (LGAC) will meet at EPA's Region 8 office in Denver, CO, on Thursday, April 19, 2012, 10 a.m.- 4:15 p.m. (MT), and Friday, April 20, 2012, 9 a.m.-12 p.m. (MT). The Committee will discuss integrated water quality planning, hydraulic fracturing, air quality issues and environmental justice and Title VI. This is an open meeting and all interested persons are invited to participate. The Committee will hear comments from the public between 4 p.m.-4:15 p.m. (MT) on Thursday, April 19, 2012. Individuals or organizations wishing to address the Committee will be allowed a maximum of five minutes to present their point of view. Also, written comments should be submitted electronically to [email protected] Please contact the Designated Federal Officer (DFO) at the number listed below to schedule a time on the agenda. Time will be allotted on a first-come first-serve basis, and the total period for comments may be extended if the number of requests for appearances requires it.
NASA Astrophysics Data System (ADS)
Chen, Ziyue; Cai, Jun; Gao, Bingbo; Xu, Bing; Dai, Shuang; He, Bin; Xie, Xiaoming
2017-01-01
Due to complicated interactions in the atmospheric environment, quantifying the influence of individual meteorological factors on local PM2.5 concentration remains challenging. The Beijing-Tianjin-Hebei (short for Jing-Jin-Ji) region is infamous for its serious air pollution. To improve regional air quality, characteristics and meteorological driving forces for PM2.5 concentration should be better understood. This research examined seasonal variations of PM2.5 concentration within the Jing-Jin-Ji region and extracted meteorological factors strongly correlated with local PM2.5 concentration. Following this, a convergent cross mapping (CCM) method was employed to quantify the causality influence of individual meteorological factors on PM2.5 concentration. The results proved that the CCM method was more likely to detect mirage correlations and reveal quantitative influences of individual meteorological factors on PM2.5 concentration. For the Jing-Jin-Ji region, the higher PM2.5 concentration, the stronger influences meteorological factors exert on PM2.5 concentration. Furthermore, this research suggests that individual meteorological factors can influence local PM2.5 concentration indirectly by interacting with other meteorological factors. Due to the significant influence of local meteorology on PM2.5 concentration, more emphasis should be given on employing meteorological means for improving local air quality.
40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).
Code of Federal Regulations, 2012 CFR
2012-07-01
..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that are...
40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).
Code of Federal Regulations, 2013 CFR
2013-07-01
..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that are...
40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).
Code of Federal Regulations, 2014 CFR
2014-07-01
..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that are...
40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).
Code of Federal Regulations, 2011 CFR
2011-07-01
..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that are...
40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).
Code of Federal Regulations, 2010 CFR
2010-07-01
..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that are...
NASA Astrophysics Data System (ADS)
Weitnauer, Claudia; Beck, Christoph; Jacobeit, Jucundus
2015-04-01
It is a matter of common knowledge that local concentrations of PM10 (fine particles in the air with a medium diameter less than 10 μm) vary with the seasons in Europe. These concentrations are influenced on the one hand by the amount of natural and anthropogenic emissions and on the other hand by large-scale and local meteorological conditions. In Bavaria (part of southern Germany) as the target region of the present study, the PM10 concentrations are particularly high in winter time. One reason for this are increased particle emissions due to domestic heating and traffic load in December, January and February. As several studies in other European regions indicated, a distinct effect of the large-scale synoptic weather situation in winter on local PM10 concentrations should be considered as another reason. The main task of this study is to use seasonal synoptic weather types, which are optimized with respect to daily mean PM10 data at 16 Bavarian cities, and therefore are classified by using daily gridded NCEP/NCAR reanalysis data (2.5° x 2.5° horizontal resolution) for the recent period 1980 - 2011 over a Central European spatial domain, to describe the impact of the large-scale meteorological conditions on the local particle concentrations. The weather types are related to monthly PM10 indices by using different transfer techniques like direct synoptic downscaling, multiple regression and generalized linear models as well as random forests. The PM10 indices are determined by averaging daily to monthly data (PMmean) or by counting the daily exceedances of a particular threshold (> 50 μg/m3, PMe50). The generated transfer models are evaluated in calibration and validation periods using several forecast skills, for example the mean squared skill score (MSSS) or the Heidke Skill Score (HSS). The sufficiently performing models are then applied to weather types derived from future climate change scenarios of the global climate model ECHAM 6 for the IPCC scenarios RCP 4.5 and 8.5 in order to estimate future climate-change induced modifications of local PM10 concentrations in Bavaria.
Satellite-based PM concentrations and their application to COPD in Cleveland, OH
Kumar, Naresh; Liang, Dong; Comellas, Alejandro; Chu, Allen D.; Abrams, Thad
2014-01-01
A hybrid approach is proposed to estimate exposure to fine particulate matter (PM2.5) at a given location and time. This approach builds on satellite-based aerosol optical depth (AOD), air pollution data from sparsely distributed Environmental Protection Agency (EPA) sites and local time–space Kriging, an optimal interpolation technique. Given the daily global coverage of AOD data, we can develop daily estimate of air quality at any given location and time. This can assure unprecedented spatial coverage, needed for air quality surveillance and management and epidemiological studies. In this paper, we developed an empirical relationship between the 2 km AOD and PM2.5 data from EPA sites. Extrapolating this relationship to the study domain resulted in 2.3 million predictions of PM2.5 between 2000 and 2009 in Cleveland Metropolitan Statistical Area (MSA). We have developed local time–space Kriging to compute exposure at a given location and time using the predicted PM2.5. Daily estimates of PM2.5 were developed for Cleveland MSA between 2000 and 2009 at 2.5 km spatial resolution; 1.7 million (~79.8%) of 2.13 million predictions required for multiyear and geographic domain were robust. In the epidemiological application of the hybrid approach, admissions for an acute exacerbation of chronic obstructive pulmonary disease (AECOPD) was examined with respect to time–space lagged PM2.5 exposure. Our analysis suggests that the risk of AECOPD increases 2.3% with a unit increase in PM2.5 exposure within 9 days and 0.05° (~5 km) distance lags. In the aggregated analysis, the exposed groups (who experienced exposure to PM2.5 >15.4 μg/m3) were 54% more likely to be admitted for AECOPD than the reference group. The hybrid approach offers greater spatiotemporal coverage and reliable characterization of ambient concentration than conventional in situ monitoring-based approaches. Thus, this approach can potentially reduce exposure misclassification errors in the conventional air pollution epidemiology studies. PMID:24045428
NASA Astrophysics Data System (ADS)
Wang, Chao; An, Xingqin; Zhai, Shixian; Hou, Qing; Sun, Zhaobin
2018-02-01
In this study, the sustained pollution processes were selected during which daily PM2.5 concentration exceeded 75 μg/m3 for three days continuously based on the hourly data of Beijing observation sites from July 2012 to December 2015. Using the China Meteorological Administration (CMA) MICAPS meteorological processing system, synoptic situation during PM2.5 pollution processes was classified into five weather types: low pressure and weak high pressure alternating control, weak high pressure, low pressure control, high rear, and uniform pressure field. Then, we chose the representative pollution cases corresponding to each type, adopted the GRAPES-CUACE adjoint model tracking the sensitive source areas of the five types, and analyzed the critical discharge periods of Beijing and neighboring provinces as well as their contribution to the PM2.5 peak concentration in Beijing. The results showed that the local source plays the main theme in the 30 h before the objective time, and prior to 72 h before the objective time contribution of local sources for the five pollution types are 37.5%, 25.0%, 39.4%, 31.2%, and 42.4%, respectively; the Hebei source contributes constantly in the 57 h ahead of the objective time with the contribution proportion ranging from 37% to 64%; the contribution period and rate of Tianjin and Shanxi sources are shorter and smaller. Based on the adjoint sensitivity analysis, we further discussed the effect of emission reduction control measures in different types, finding that the effect of local source reduction in the first 20 h of the objective time is better, and if the local source is reduced 50% within 72 h before the objective time, the decline rates of PM2.5 in the five types are 11.6%, 9.4%, 13.8%, 9.9% and 15.2% respectively. And the reduction effect of the neighboring sources is better within the 3-57 h before the objective time.
Sources of personal exposure to fine particles in Toronto, Ontario, Canada.
Kim, David; Sass-Kortsak, Andrea; Purdham, James T; Dales, Robert E; Brook, Jeffrey R
2005-08-01
Individuals are exposed to particulate matter from both indoor and outdoor sources. The aim of this study was to compare the relative contributions of three sources of personal exposure to fine particles (PM2.5) by using chemical tracers. The study design incorporated repeated 24-hr personal exposure measurements of air pollution from 28 cardiac-compromised residents of Toronto, Ontario, Canada. Each study participant wore the Rupprecht & Patashnick ChemPass Personal Sampling System 1 day a week for a maximum of 10 weeks. During their individual exposure measurement days the subjects reported to have spent an average of 89% of their time indoors. Particle phase elemental carbon, sulfate, and calcium personal exposure data were used in a mixed-effects model as tracers for outdoor PM2.5 from traffic-related combustion, regional, and local crustal materials, respectively. These three sources were found to contribute 13% +/- 10%, 17% +/- 16%, and 7% +/- 6% of PM2.5 exposures. The remaining fraction of the personal PM2.5 is hypothesized to be predominantly related to indoor sources. For comparison, central site outdoor PM2.5 measurements for the same dates as personal measurements were used to construct a receptor model using the same three tracers. In this case, traffic-related combustion, regional, and local crustal materials were found to contribute 19% +/- 17%, 52% +/- 22%, and 10% +/- 7%, respectively. Our results indicate that the three outdoor PM2.5 sources considered are statistically significant contributors to personal exposure to PM2.5. Our results also suggest that among the Toronto subjects, who spent a considerable amount of time indoors, exposure to outdoor PM2.5 includes a greater relative contribution from combustion sources compared with outdoor PM2.5 measurements where regional sources are the dominant contributor.
75 FR 70951 - NASA Advisory Council; NASA Commercial Space Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-148)] NASA Advisory Council; NASA... Committee of the NASA Advisory Council. DATES: Tuesday, December 14, 2010, 1:30 p.m.-4:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center Room 1Q39, Washington, DC 20546...
75 FR 39973 - NASA Advisory Council; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-077)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council. DATES: Thursday, August 5, 2010, 8 a.m.-5 p.m. (local time) Friday, August 6, 2010, 8 a.m.-12 a.m. (local time). ADDRESSES: NASA Jet...
[Observation on atmospheric pollution in Xianghe during Beijing 2008 Olympic Games].
Pan, Yue-Peng; Wang, Yue-Si; Hu, Bo; Liu, Quan; Wang, Ying-Hong; Nan, Wei-Dong
2010-01-01
There is a concern that much of the atmospheric pollution experienced in Beijing is regional in nature and not attributable to local sources. The objective of this study is to examine the contribution of sources outside Beijing to atmospheric pollution levels during Beijing 2008 Olympic Games. The observations of SO2, NO(x), O3, PM2.5 and PM10 were conducted from June 1 to September 30, 2008 in Xianghe, a rural site about 70 km southeast of Beijing. Sources and transportation of atmospheric pollution during the experiment were discussed with surface meteorology data and backward trajectories calculated using HYSPLIT model. The results showed that the daily average maximum (mean +/- standard deviation) concentrations of SO2, NO(x), O3, PM2.5, and PM10 during observation reached 84.4(13.4 +/- 15.2), 43.3 (15.9 +/- 9.1), 230 (82 +/- 38), 184 (76 +/- 42) and 248 (113 +/- 52) microg x m(-3), respectively. In particular, during the pollution episodes from July 20 to August 12, the hourly average concentration of O3 exceeded the National Ambient Air Quality Standard II for 46 h (9%), and the daily average concentration of PM10 exceeded the Standard for 11 d (46%); PM2.5 exceeded the US EPA Standard for 18 d (75%). The daily average concentrations of SO2, NO(x), O3, PM2.5 and PM10 decreased from 27.7, 18.6, 96, 90, 127 microg x m(-3) in June-July to 5.8, 13.2, 80, 60, 106 microg x m(-3) during Olympic Games (August-September), respectively. The typical diurnal variations of NO(x), PM2.5 and PM10 were similar, peaking at 07:00 and 20:00, while the maximum of O3 occurred between 14:00 to 16:00 local time. The findings also suggested that the atmospheric pollution in Xianghe is related to local emission, regional transport as well as the meteorological conditions. Northerly wind and precipitation are favorable for diffusion and wet deposition of pollutants, while sustained south flows make the atmospheric pollution more serious. The lead-lag correlation analysis during the pollution episodes from July 20 to August 12 showed that there are about 6-10 h (0.57 < r < 0.65, p = 0.01) of hourly average PM2.5 in Beijing lagging Xianghe, reaching the maximum at 8 h, which indicates that the real-time atmospheric PM2.5 database of Xianghe might provides early warning for the Beijing PM2.5 pollution events.
Differences in time until dispersal between cryptic species of a marine nematode species complex.
De Meester, Nele; Derycke, Sofie; Moens, Tom
2012-01-01
Co-occurrence of closely related species may be achieved in environments with fluctuating dynamics, where competitively inferior species can avoid competition through dispersal. Here we present an experiment in which we compared active dispersal abilities (time until first dispersal, number and gender of dispersive adults, and nematode densities at time of dispersal) in Litoditis marina, a common bacterivorous nematode species complex comprising four often co-occurring cryptic species, Pm I, II, III, and IV, as a function of salinity and food distribution. The experiment was conducted in microcosms consisting of an inoculation plate, connection tube, and dispersal plate. Results show species-specific dispersal abilities with Pm I dispersing almost one week later than Pm III. The number of dispersive adults at time of first dispersal was species-specific, with one dispersive female in Pm I and Pm III and a higher, gender-balanced, number in Pm II and Pm IV. Food distribution affected dispersal: in absence of food in the inoculation plate, all species dispersed after ca four days. When food was available Pm I dispersed later, and at the same time and densities irrespective of food conditions in the dispersal plate (food vs no food), suggesting density-dependent dispersal. Pm III dispersed faster and at a lower population density. Salinity affected dispersal, with slower dispersal at higher salinity. These results suggest that active dispersal in Litoditis marina is common, density-dependent, and with species, gender- and environment-specific dispersal abilities. These differences can lead to differential responses under suboptimal conditions and may help to explain temporary coexistence at local scales.
Beitsch, Leslie M; Kronstadt, Jessica; Robin, Nathalie; Leep, Carolyn
The Public Health Accreditation Board (PHAB) is now in its 10th year, making it an ideal time to study the impact of PHAB accreditation on local health departments (LHDs). To examine whether applying for PHAB accreditation affects perceptions and activities regarding quality improvement (QI) and performance management (PM) within LHDs. Data from the National Association of County & City Health Officials' 2010, 2013, and 2016 National Profile of Local Health Departments and associated QI modules were linked to PHAB-applicant data collected in e-PHAB in a cross-sectional and longitudinal approach examining self-reported QI/PM activities. Local health departments responding to National Association of County & City Health Officials Profile questionnaires and QI modules in 2010, 2013, and 2016. Implementation of formal QI program within agency, numbers of formal QI projects in the past year, presence of elements indicating formal QI program implementation, and changes over time by accreditation status as of June 2017. Accredited and in-process LHDs showed greater gains over time in all of the outcome measures than LHDs not registered in e-PHAB. Results of logistic regression controlling for population served and governance type found accredited LHDs more likely to report formal QI programs agency-wide (odds ratio: [OR] = 27.0; P < .001) and have implemented 6 to 8 elements of formal QI (OR = 27.0; P < .001) in 2016, compared with nonaccreditation-seeking LHDs. Between 2013 and 2016, LHDs that responded to both survey waves that were registered in e-PHAB or accredited were significantly more likely than nonaccreditation-seeking LHDs to report any increase in overall level of QI implementation (OR = 4.89; P = .006) and increase in number of elements of formal QI (OR = 16.1; P < .001). Local health departments accredited by June 2017 and those in process reported more formal QI activities and showed greater improvements with QI/PM implementation over time than LHDs not undertaking accreditation. Public Health Accreditation Board accreditation appears to influence QI/PM uptake. As health departments are contemplating whether to apply for accreditation, the potential for developing a more robust QI/PM system should be taken into account.
NASA Astrophysics Data System (ADS)
KO, H.; Song, J. M.; Cha, J. W.; Kang, C. H.; Kim, J.; Ryoo, S. B.
2016-12-01
The PM10 and PM2.5 aerosols were collected at the Gosan site of Jeju Island, Korea in 2013 and analyzed, in order to examine the variation characteristics of chemical compositions in relation to haze, Asian dust, and mixed haze-Asian dust episodes. For the haze event, nitrate concentrations increased highly as 8.8 and 25.1 times for PM10 and PM2.5, respectively, possibly caused by the inflow of air mass stagnated in eastern parts of China into Jeju area. For the Asian dust event, the concentrations of nss-Ca2+, NO3- and nss-SO42- increased 6.0, 1.5, 1.8 times for PM10, and 2.3, 1.3, 1.6 times for PM2.5, respectively. Meanwhile, for the mixed haze-Asian dust event, the concentrations of nss-Ca2+ and NO3- increased 13.4 and 3.2 times for PM10, and 1.8 and 3.4 times for PM2.5, respectively. The NH4NO3 content was higher than that of (NH4)2SO4 during the haze event, however it was relatively low during the mixed haze-Asian dust event. NO3-/nss-SO42- concentration ratios of Asian Dust in PM10 and PM2.5 were 0.4 and 0.2, showing less significant effect from automobile and local pollution sources. The aerosols were acidified mostly by inorganic acids, especially the nitric acid contributed highly to the acidification during both haze and mixed haze-Asian dust events. Meanwhile, the neutralization by ammonia was noticeably high during haze event when the stagnated air mass moved from China.
Wang, Huixia; Shi, Hui; Wang, Yanhui
2015-01-01
This paper investigated the spatial and temporal variations in the amounts of PM accumulated on leaves of Ligustrum lucidum, a common evergreen tree species in North China. The effects of rainfall and wind on the amounts of PM deposited on foliage were also determined. The amounts of PM (g·m−2) retained by leaves of L. lucidum differed significantly among the sites (from 0.96 to 5.56) and over time (from 2.51 to 4.48). The largest amounts of PM on foliage of L. lucidum were observed on plants growing at the most polluted site. During the year, the highest and lowest accumulation of PM occurred in November and August, respectively. A considerable proportion of the accumulated PM on leaves was removed by rainfall events (28–48% of PM) and strong winds (27–36% of PM), and more precipitation or higher maximum wind speed could remove more PM from leaves. Rainfall removed mainly large and coarse particles, while fine particles adhered more strongly to the foliage. These results suggested that the effects of local weather conditions (e.g., rainfall, strong wind), different seasons, and pollution levels should be considered in evaluating total PM accumulation on leaves. PMID:25685849
Wang, Huixia; Shi, Hui; Wang, Yanhui
2015-01-01
This paper investigated the spatial and temporal variations in the amounts of PM accumulated on leaves of Ligustrum lucidum, a common evergreen tree species in North China. The effects of rainfall and wind on the amounts of PM deposited on foliage were also determined. The amounts of PM (g · m(-2)) retained by leaves of L. lucidum differed significantly among the sites (from 0.96 to 5.56) and over time (from 2.51 to 4.48). The largest amounts of PM on foliage of L. lucidum were observed on plants growing at the most polluted site. During the year, the highest and lowest accumulation of PM occurred in November and August, respectively. A considerable proportion of the accumulated PM on leaves was removed by rainfall events (28-48% of PM) and strong winds (27-36% of PM), and more precipitation or higher maximum wind speed could remove more PM from leaves. Rainfall removed mainly large and coarse particles, while fine particles adhered more strongly to the foliage. These results suggested that the effects of local weather conditions (e.g., rainfall, strong wind), different seasons, and pollution levels should be considered in evaluating total PM accumulation on leaves.
NASA Astrophysics Data System (ADS)
Yuan, Zibing; Yadav, Varun; Turner, Jay R.; Louie, Peter K. K.; Lau, Alexis Kai Hon
2013-09-01
Despite extensive emission control measures targeting motor vehicles and to a lesser extent other sources, annual-average PM10 mass concentrations in Hong Kong have remained relatively constant for the past several years and for some air quality metrics, such as the frequency of poor visibility days, conditions have degraded. The underlying drivers for these long-term trends were examined by performing source apportionment on eleven years (1998-2008) of data for seven monitoring sites in the Hong Kong PM10 chemical speciation network. Nine factors were resolved using Positive Matrix Factorization. These factors were assigned to emission source categories that were classified as local (operationally defined as within the Hong Kong Special Administrative Region) or non-local based on temporal and spatial patterns in the source contribution estimates. This data-driven analysis provides strong evidence that local controls on motor vehicle emissions have been effective in reducing motor vehicle-related ambient PM10 burdens with annual-average contributions at neighborhood- and larger-scale monitoring stations decreasing by ˜6 μg m-3 over the eleven year period. However, this improvement has been offset by an increase in annual-average contributions from non-local contributions, especially secondary sulfate and nitrate, of ˜8 μg m-3 over the same time period. As a result, non-local source contributions to urban-scale PM10 have increased from 58% in 1998 to 70% in 2008. Most of the motor vehicle-related decrease and non-local source driven increase occurred over the period 1998-2004 with more modest changes thereafter. Non-local contributions increased most dramatically for secondary sulfate and secondary nitrate factors and thus combustion-related control strategies, including but not limited to power plants, are needed for sources located in the Pearl River Delta and more distant regions to improve air quality conditions in Hong Kong. PMF-resolved source contribution estimates were also used to examine differential contributions of emission source categories during high PM episodes compared to study-average behavior. While contributions from all source categories increased to some extent on high PM days, the increases were disproportionately high for the non-local sources. Thus, controls on emission sources located outside the Hong Kong Special Administrative Region will be needed to effectively decrease the frequency and severity of high PM episodes.
Ledoux, Frédéric; Kfoury, Adib; Delmaire, Gilles; Roussel, Gilles; El Zein, Atallah; Courcot, Dominique
2017-08-01
PM 2.5 have been related to various adverse health effects, mainly due to their ability to penetrate deeply and to convey harmful chemical components, such as metals inside the body. In this work, PM 2.5 were sampled at Saint-Omer, a medium-sized city located in northern France, in March-April 2011 and analyzed for their total carbon, water-soluble ions, major and trace elements. More specifically, the origin of 15 selected elements was examined using different tools including enrichment factors, conditional bivariate probability function (CBPF) representations, diagnostic ratios and receptor modelling. The results indicated that PM 2.5 metal composition is affected by both emissions of a local glassmaking factory and an integrated steelworks located at a distance of 35 km from the sampling site. For the first time, diagnostic ratios were proposed for the glassmaking activity. Therefore, metals in PM 2.5 could be attributed to the following anthropogenic sources: (i) local glassmaking industry for Sn, As, Cu and Cr, (ii) distant integrated steelworks for Ag, Fe, Cd, Mn, Rb and Pb, (iii) heavy fuel oil combustion for Ni, V and Co and (iv) non-exhaust traffic for Zn, Pb, Mn, Sb, and Cu. The impact of such sources on metal concentrations in PM 2.5 was assessed using a constrained receptor model. Despite their low participation to PM 2.5 concentration (2.7%), the latter sources were found as the main contributors (80%) to the overall concentration levels of the 15 selected elements in PM 2.5 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Dunea, Daniel; Pohoata, Alin; Iordache, Stefania
2015-07-01
The paper presents the screening of various feedforward neural networks (FANN) and wavelet-feedforward neural networks (WFANN) applied to time series of ground-level ozone (O3), nitrogen dioxide (NO2), and particulate matter (PM10 and PM2.5 fractions) recorded at four monitoring stations located in various urban areas of Romania, to identify common configurations with optimal generalization performance. Two distinct model runs were performed as follows: data processing using hourly-recorded time series of airborne pollutants during cold months (O3, NO2, and PM10), when residential heating increases the local emissions, and data processing using 24-h daily averaged concentrations (PM2.5) recorded between 2009 and 2012. Dataset variability was assessed using statistical analysis. Time series were passed through various FANNs. Each time series was decomposed in four time-scale components using three-level wavelets, which have been passed also through FANN, and recomposed into a single time series. The agreement between observed and modelled output was evaluated based on the statistical significance (r coefficient and correlation between errors and data). Daubechies db3 wavelet-Rprop FANN (6-4-1) utilization gave positive results for O3 time series optimizing the exclusive use of the FANN for hourly-recorded time series. NO2 was difficult to model due to time series specificity, but wavelet integration improved FANN performances. Daubechies db3 wavelet did not improve the FANN outputs for PM10 time series. Both models (FANN/WFANN) overestimated PM2.5 forecasted values in the last quarter of time series. A potential improvement of the forecasted values could be the integration of a smoothing algorithm to adjust the PM2.5 model outputs.
Two-pore channels function in calcium regulation in sea star oocytes and embryos
Ramos, Isabela; Reich, Adrian; Wessel, Gary M.
2014-01-01
Egg activation at fertilization is an excellent process for studying calcium regulation. Nicotinic acid adenine dinucleotide-phosphate (NAADP), a potent calcium messenger, is able to trigger calcium release, likely through two-pore channels (TPCs). Concomitantly, a family of ectocellular enzymes, the ADP-ribosyl cyclases (ARCs), has emerged as being able to change their enzymatic mode from one of nucleotide cyclization in formation of cADPR to a base-exchange reaction in the generation of NAADP. Using sea star oocytes we gain insights into the functions of endogenously expressed TPCs and ARCs in the context of the global calcium signals at fertilization. Three TPCs and one ARC were found in the sea star (Patiria miniata) that were localized in the cortex of the oocytes and eggs. PmTPCs were localized in specialized secretory organelles called cortical granules, and PmARCs accumulated in a different, unknown, set of vesicles, closely apposed to the cortical granules in the egg cortex. Using morpholino knockdown of PmTPCs and PmARC in the oocytes, we found that both calcium regulators are essential for early embryo development, and that knockdown of PmTPCs leads to aberrant construction of the fertilization envelope at fertilization and changes in cortical granule pH. The calcium signals at fertilization are not significantly altered when individual PmTPCs are silenced, but the timing and shape of the cortical flash and calcium wave are slightly changed when the expression of all three PmTPCs is perturbed concomitantly, suggesting a cooperative activity among TPC isoforms in eliciting calcium signals that may influence localized physiological activities. PMID:25377554
Long- and short-term exposure to PM2.5 and mortality: using novel exposure models.
Kloog, Itai; Ridgway, Bill; Koutrakis, Petros; Coull, Brent A; Schwartz, Joel D
2013-07-01
Many studies have reported associations between ambient particulate matter (PM) and adverse health effects, focused on either short-term (acute) or long-term (chronic) PM exposures. For chronic effects, the studied cohorts have rarely been representative of the population. We present a novel exposure model combining satellite aerosol optical depth and land-use data to investigate both the long- and short-term effects of PM2.5 exposures on population mortality in Massachusetts, United States, for the years 2000-2008. All deaths were geocoded. We performed two separate analyses: a time-series analysis (for short-term exposure) where counts in each geographic grid cell were regressed against cell-specific short-term PM2.5 exposure, temperature, socioeconomic data, lung cancer rates (as a surrogate for smoking), and a spline of time (to control for season and trends). In addition, for long-term exposure, we performed a relative incidence analysis using two long-term exposure metrics: regional 10 × 10 km PM2.5 predictions and local deviations from the cell average based on land use within 50 m of the residence. We tested whether these predicted the proportion of deaths from PM-related causes (cardiovascular and respiratory diseases). For short-term exposure, we found that for every 10-µg/m increase in PM 2.5 exposure there was a 2.8% increase in PM-related mortality (95% confidence interval [CI] = 2.0-3.5). For the long-term exposure at the grid cell level, we found an odds ratio (OR) for every 10-µg/m increase in long-term PM2.5 exposure of 1.6 (CI = 1.5-1.8) for particle-related diseases. Local PM2.5 had an OR of 1.4 (CI = 1.3-1.5), which was independent of and additive to the grid cell effect. We have developed a novel PM2.5 exposure model based on remote sensing data to assess both short- and long-term human exposures. Our approach allows us to gain spatial resolution in acute effects and an assessment of long-term effects in the entire population rather than a selective sample from urban locations.
Understanding the Rising Phase of the PM2.5 Concentration Evolution in Large China Cities
Lv, Baolei; Cai, Jun; Xu, Bing; Bai, Yuqi
2017-01-01
Long-term air quality observations are seldom analyzed from a dynamic view. This study analyzed fine particulate matter (PM2.5) pollution processes using long-term PM2.5 observations in three Chinese cities. Pollution processes were defined as linearly growing PM2.5 concentrations following the criteria of coefficient of determination R2 > 0.8 and duration time T ≥ 18 hrs. The linear slopes quantitatively measured pollution levels by PM2.5 concentrations rising rates (PMRR, μg/(m3·hr)). The 741, 210 and 193 pollution processes were filtered out, respectively, in Beijing (BJ), Shanghai (SH), and Guangzhou (GZ). Then the relationships between PMRR and wind speed, wind direction, 24-hr backward points, gaseous pollutants (CO, NO2 and SO2) concentrations, and regional PM2.5 levels were studied. Inverse relationships existed between PMRR and wind speed. The wind directions and 24-hr backward points converged in specific directions indicating long-range transport. Gaseous pollutants concentrations increased at variable rates in the three cities with growing PMRR values. PM2.5 levels at the upwind regions of BJ and SH increased at high PMRRs. Regional transport dominated the PM2.5 pollution processes of SH. In BJ, both local contributions and regional transport increased during high-PMRR pollution processes. In GZ, PM2.5 pollution processes were mainly caused by local emissions. PMID:28440282
NASA Astrophysics Data System (ADS)
Kim, Hwajin; Zhang, Qi; Heo, Jongbae
2018-05-01
Non-refractory submicrometer particulate matter (NR-PM1) was measured in the Seoul Metropolitan Area (SMA), Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) from 14 April to 15 June 2016, as a part of the Korea-US Air Quality Study (KORUS-AQ) campaign. This was the first highly time-resolved, real-time measurement study of springtime aerosol in SMA and the results reveal valuable insights into the sources and atmospheric processes that contribute to PM pollution in this region. The average concentration of submicrometer aerosol (PM1 = NR-PM1 + black carbon (BC)) was 22.1 µg m-3, which was composed of 44 % organics, 20 % sulfate, 17 % nitrate, 12 % ammonium, and 7 % BC. Organics had an average atomic oxygen-to-carbon (O / C) ratio of 0.49 and an average organic mass-to-carbon (OM/OC) ratio of 1.82. Four distinct sources of OA were identified via positive matrix factorization (PMF) analysis of the HR-ToF-AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA; O / C = 0.15; 17 % of OA mass), food cooking activities represented by a cooking-influenced OA factor (COA; O / C = 0.19; 22 % of OA mass), and secondary organic aerosol (SOA) represented by a semi-volatile oxygenated OA factor (SV-OOA; O / C = 0.44; 27 % of OA mass) and a low-volatility oxygenated OA factor (LV-OOA; O / C = 0.91; 34 % of OA mass). Our results indicate that air quality in SMA during KORUS-AQ was influenced strongly by secondary aerosol formation, with sulfate, nitrate, ammonium, SV-OOA, and LV-OOA together accounting for 76 % of the PM1 mass. In particular, the formation of LV-OOA and sulfate was mainly promoted by elevated ozone concentrations and photochemical reactions during daytime, whereas SV-OOA and nitrate formation was contributed by both nocturnal processing of VOC and nitrogen oxides, respectively, and daytime photochemical reactions. In addition, lower nighttime temperature promoted gas-to-particle partitioning of semivolatile species and formation of SV-OOA and nitrate. During a period of 4 days (from 20 to 23 May ), LV-OOA increased dramatically and accounted for up to 41 % of the PM1 mass. This intense LV-OOA formation event was associated with large enhancements of both anthropogenic and biogenic VOCs (e.g., isoprene and toluene), high concentration of Ox ( = O3 + NO2), strong solar radiation, and stagnant conditions, suggesting that it was mainly driven by local photochemical formation. We have also investigated the formation and evolution mechanisms of severe haze episodes. Unlike the winter haze events which were mainly caused by intense local emissions coupled with stagnant meteorological conditions, the spring haze events appeared to be influenced by both regional and local factors. For example, there were episodes of long-range transport of plumes followed by calm meteorology conditions, which promoted the formation and accumulation of local secondary species, leading to high concentrations of PM. Overall, our results indicate that PM pollutants in urban Korea originate from complex emission sources and atmospheric processes and that the concentrations and composition of PM are controlled by various factors, including meteorological conditions, local anthropogenic emissions, and upwind sources.
Traffic-related particulate air pollution exposure in urban areas
NASA Astrophysics Data System (ADS)
Borrego, C.; Tchepel, O.; Costa, A. M.; Martins, H.; Ferreira, J.; Miranda, A. I.
In the last years, there has been an increase of scientific studies confirming that long- and short-term exposure to particulate matter (PM) pollution leads to adverse health effects. The development of a methodology for the determination of accumulated human exposure in urban areas is the main objective of the current work, combining information on concentrations at different microenvironments and population time-activity pattern data. A link between a mesoscale meteorological and dispersion model and a local scale air quality model was developed to define the boundary conditions for the local scale application. The time-activity pattern of the population was derived from statistical information for different sub-population groups and linked to digital city maps. Finally, the hourly PM 10 concentrations for indoor and outdoor microenvironments were estimated for the Lisbon city centre, which was chosen as the case-study, based on the local scale air quality model application for a selected period. This methodology is a first approach to estimate population exposure, calculated as the total daily values above the thresholds recommended for long- and short-term health effects. Obtained results reveal that in Lisbon city centre a large number of persons are exposed to PM levels exceeding the legislated limit value.
2014-01-01
Background The relative importance of different sources of air pollution for cardiovascular disease is unclear. The aims were to compare the associations between acute myocardial infarction (AMI) hospitalisations in Gothenburg, Sweden and 1) the long-range transported (LRT) particle fraction, 2) the remaining particle fraction, 3) geographical air mass origin, and 4) influence of local dispersion during 1985–2010. Methods A case-crossover design was applied using lag0 (the exposure the same day as hospitalisation), lag1 (exposure one day prior hospitalisation) and 2-day cumulative average exposure (CA2) (mean of lag0 and lag1). The LRT fractions included PMion (sum of sulphate, nitrate and ammonium) and soot measured at a rural site. The difference between urban PM10 (particulate matter with an aerodynamic diameter smaller than 10 μm) and rural PMion was a proxy for locally generated PM10 (PMrest). The daily geographical origin of air mass was estimated as well as days with limited or effective local dispersion. The entire year was considered, as well as warm and cold periods, and different time periods. Results In total 28 215 AMI hospitalisations occurred during 26 years. PM10, PMion, PMrest and soot did not influence AMI for the entire year. In the cold period, the association was somewhat stronger for PMrest than for urban PM10; the strongest associations were observed during 1990–2000 between AMI and CA2 of PMrest (6.6% per inter-quartile range (IQR), 95% confidence interval 2.1 to 11.4%) and PM10 (4.1%, 95% CI 0.2% − 8.2%). Regarding the geographical air mass origins there were few associations. Days with limited local dispersion showed an association with AMI in the cold period of 2001–2010 (6.7%, 95% CI 0.0% − 13.0%). Conclusions In the cold period, locally generated PM and days with limited local dispersion affected AMI hospitalisations, indicating importance of local emissions from e.g. traffic. PMID:25069830
Assessment of PM10 enhancement by yellow sand on the air quality of Taipei, Taiwan in 2001.
Chang, Shuenn-Chin; Lee, Chung-Te
2007-09-01
The impact of long-range transport of yellow sand from Asian Continent to the Taipei Metropolitan Area (Taipei) not only deteriorates air quality but also poses health risks to all, especially the children and the elderly. As such, it is important to assess the enhancement of PM(10) during yellow sand periods. In order to estimate PM(10) enhancement, we adopted factor analysis to distinguish the yellow-sand (YS) periods from non-yellow-sand (NYS) periods based on air quality monitoring records. Eight YS events were identified using factor analysis coupling with an independent validation procedure by checking background site values, examining meteorological conditions, and modeling air mass trajectory from January 2001 to May 2001. The duration of each event varied from 11 to 132 h, which was identified from the time when the PM(10) level was high, and the CO and NOx levels were low. Subsequently, we used the artificial neural network (ANN) to simulate local PM(10) levels from related parameters including local gas pollutants and meteorological factors during the NYS periods. The PM(10) enhancement during the YS periods is then calculated by subtracting the simulated PM(10) from the observed PM(10) levels. Based on our calculations, the PM(10) enhancement in the maximum hour of each event ranged from 51 to 82%. Moreover, in the eight events identified in 2001, it was estimated that a total amount of 7,210 tons of PM(10) were transported by yellow sand to Taipei. Thus, in this study, we demonstrate that an integration of factor analysis with ANN model could provide a very useful method in identifying YS periods and in determining PM(10) enhancement caused by yellow sand.
NASA Astrophysics Data System (ADS)
Vittuari, Luca; Sarti, Pierguido; Tomasi, Paolo
2001-12-01
During a 6 days campaign in June 2001, we have performed a local survey at Medicina Observatory using classical geodesy and GPS techniques in order to determine the effects of an undergone track repair. We have determined the position of the reference point P within a local and ITRF2000 (epoch 1997.0) reference frames using trilateration and triangulation: Pclas_{loc}^{2001}=(21.580pm0.001,45.536pm0.001,17.699pm0.001) Pclas_{loc}^{2001}=(21.580pm0.001,45.536pm0.001,17.699pm0.001) Pclas_{ITRF2000}^{1997.0}=(4461369.982pm0.001,919596.818pm0.001,4449559.207pm0.001) Kinematic GPS has also given interesting results:
Code of Federal Regulations, 2014 CFR
2014-07-01
... series of daily values represents the 98th percentile for that year. Creditable samples include daily... measured (or averaged from hourly measurements in AQS) from midnight to midnight (local standard time) from... design value (DV) or a 24-hour PM2.5 NAAQS DV to determine if those metrics, which are judged to be based...
Effects of Source-Apportioned Coarse Particulate Matter (PM) ...
The Cleveland Multiple Air Pollutant Study (CMAPS) is one of the first comprehensive studies conducted to evaluate particulate matter (PM) over local and regional scales. Cleveland and the nearby Ohio River Valley impart significant regional sources of air pollution including coal combustion and steel production. Size-fractionated PM (coarse, fine and ultrafine) were collected from an urban site (G.T. Craig (GTC)) and a rural site (Chippewa Lake monitor (CLM) located 53 km southwest of Cleveland) from July 2009 to June 2010. Following collection, resulting speciated PM data were apportioned to identify local industrial emission sources for each size fraction and location, indicating these samples were enriched with resident emission sources. This study was designed to determine whether exposure of the CMAPS coarse PM contributes to the exacerbation of allergic asthma. Non-sensitized and house dust mite (HDM)-sensitized female Balb/cJ mice (n= 8/group) were exposed via oropharyngeal (OP) aspiration to 100 g coarse fractions of one of five source apportioned groups representative of distinct time periods of 4-6 weeks (traffic, coal, steel 1, steel 2, or winter PM) and OP challenge with HDM conducted 2 hr following dosing with PM. Two days later, airway responsiveness to methacholine aerosol was assessed in anesthetized ventilated control and HDM mice. The HDM-allergic mice demonstrated increased airway reactivity in comparison to control mice. Bronchoalveolar l
NASA Astrophysics Data System (ADS)
Chen, L. A.; Doddridge, B. G.; Dickerson, R. R.
2001-12-01
As the primary field experiment for Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, chemically speciated PM2.5 has been sampled at Fort Meade (FME, 39.10° N 76.74° W) since July 1999. FME is suburban, located in the middle of the bustling Baltimore-Washington corridor, which is generally downwind of the highly industrialized Midwest. Due to this unique sampling location, the PM2.5 observed at FME is expected to be of both local and regional sources, with relative contributions varying temporally. This variation, believed to be largely controlled by the meteorology, influences day-to-day or seasonal profiles of PM2.5 mass concentration and chemical composition. Air parcel back trajectories, which describe the path of air parcels traveling backward in time from site (receptor), reflect changes in the synoptic meteorological conditions. In this paper, an ensemble back trajectory method is employed to study the meteorology associated with each high/low PM2.5 episode in different seasons. For every sampling day, the residence time of air parcels within the eastern US at a 1° x 1° x 500 m geographic resolution can be estimated in order to resolve areas likely dominating the production of various PM2.5 components. Local sources are found to be more dominant in winter than in summer. "Factor analysis" is based on mass balance approach, providing useful insights on air pollution data. Here, a newly developed factor analysis model (UNMIX) is used to extract source profiles and contributions from the speciated PM2.5 data. Combing the model results with ensemble back trajectory method improves the understanding of the source regions and helps partition the contributions from local or more distant areas. >http://www.meto.umd.edu/~bruce/MARCH-Atl.html
NASA Astrophysics Data System (ADS)
Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E.
2015-03-01
Aerosol mass spectrometer (AMS) measurements have been successfully used towards a better understanding of non-refractory submicron (PM1) aerosol chemical properties based on short-term campaigns. The recently developed Aerosol Chemical Speciation Monitor (ACSM) has been designed to deliver quite similar artifact-free chemical information but for low cost, and to perform robust monitoring over long-term periods. When deployed in parallel with real-time black carbon (BC) measurements, the combined data set allows for a quasi-comprehensive description of the whole PM1 fraction in near real time. Here we present 2-year long ACSM and BC data sets, between mid-2011 and mid-2013, obtained at the French atmospheric SIRTA supersite that is representative of background PM levels of the region of Paris. This large data set shows intense and time-limited (a few hours) pollution events observed during wintertime in the region of Paris, pointing to local carbonaceous emissions (mainly combustion sources). A non-parametric wind regression analysis was performed on this 2-year data set for the major PM1 constituents (organic matter, nitrate, sulfate and source apportioned BC) and ammonia in order to better refine their geographical origins and assess local/regional/advected contributions whose information is mandatory for efficient mitigation strategies. While ammonium sulfate typically shows a clear advected pattern, ammonium nitrate partially displays a similar feature, but, less expectedly, it also exhibits a significant contribution of regional and local emissions. The contribution of regional background organic aerosols (OA) is significant in spring and summer, while a more pronounced local origin is evidenced during wintertime, whose pattern is also observed for BC originating from domestic wood burning. Using time-resolved ACSM and BC information, seasonally differentiated weekly diurnal profiles of these constituents were investigated and helped to identify the main parameters controlling their temporal variations (sources, meteorological parameters). Finally, a careful investigation of all the major pollution episodes observed over the region of Paris between 2011 and 2013 was performed and classified in terms of chemical composition and the BC-to-sulfate ratio used here as a proxy of the local/regional/advected contribution of PM. In conclusion, these first 2-year quality-controlled measurements of ACSM clearly demonstrate their great potential to monitor on a long-term basis aerosol sources and their geographical origin and provide strategic information in near real time during pollution episodes. They also support the capacity of the ACSM to be proposed as a robust and credible alternative to filter-based sampling techniques for long-term monitoring strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladra, Matthew M.; Mandeville, Henry C.; Niemierko, Andrzej
2015-06-01
Background: Local control remains a challenge in pediatric parameningeal rhabdomyosarcoma (PM-RMS), and survival after local failure (LF) is poor. Identifying patients with a high risk of LF is of great interest to clinicians. In this study, we examined whether tumor response to induction chemotherapy (CT) could predict LF in embryonal PM-RMS. Methods: We identified 24 patients with embryonal PM-RMS, age 2 to 18 years, with complete magnetic resonance imaging and gross residual disease after surgical resection. All patients received proton radiation therapy (RT), median dose 50.4 Gy{sub RBE} (50.4-55.8 Gy{sub RBE}). Tumor size was measured before initial CT and before RT. Results:more » With a median follow-up time of 4.1 years for survivors, LF was seen in 9 patients (37.5%). The median time from the initiation of CT to the start of RT was 4.8 weeks. Patients with LF had a similar initial (pre-CT) tumor volume compared with patients with local controlled (LC) (54 cm{sup 3} vs 43 cm{sup 3}, P=.9) but a greater median volume before RT (pre-RT) (40 cm{sup 3} vs 7 cm{sup 3}, P=.009) and a smaller median relative percent volume reduction (RPVR) in tumor size (0.4% vs 78%, P<.001). Older age (P=.05), larger pre-RT tumor volume (P=.03), and smaller RPVR (P=.003) were significantly associated with actuarial LF on univariate Cox analysis. Conclusions: Poor response to induction CT appears to be associated with an increased risk of LF in pediatric embryonal PM-RMS.« less
Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland.
de Hoogh, Kees; Héritier, Harris; Stafoggia, Massimo; Künzli, Nino; Kloog, Itai
2018-02-01
Spatiotemporal resolved models were developed predicting daily fine particulate matter (PM 2.5 ) concentrations across Switzerland from 2003 to 2013. Relatively sparse PM 2.5 monitoring data was supplemented by imputing PM 2.5 concentrations at PM 10 sites, using PM 2.5 /PM 10 ratios at co-located sites. Daily PM 2.5 concentrations were first estimated at a 1 × 1km resolution across Switzerland, using Multiangle Implementation of Atmospheric Correction (MAIAC) spectral aerosol optical depth (AOD) data in combination with spatiotemporal predictor data in a four stage approach. Mixed effect models (1) were used to predict PM 2.5 in cells with AOD but without PM 2.5 measurements (2). A generalized additive mixed model with spatial smoothing was applied to generate grid cell predictions for those grid cells where AOD was missing (3). Finally, local PM 2.5 predictions were estimated at each monitoring site by regressing the residuals from the 1 × 1km estimate against local spatial and temporal variables using machine learning techniques (4) and adding them to the stage 3 global estimates. The global (1 km) and local (100 m) models explained on average 73% of the total,71% of the spatial and 75% of the temporal variation (all cross validated) globally and on average 89% (total) 95% (spatial) and 88% (temporal) of the variation locally in measured PM 2.5 concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
French Medico-Administrative Data to Identify the Care Pathways of Women With Breast Cancer.
Lefeuvre, Delphine; Le Bihan-Benjamin, Christine; Pauporté, Iris; Medioni, Jacques; Bousquet, Philippe-Jean
2017-07-01
Study of the care pathways is an important topic for care planning, as well as to observe guidelines application. This study aimed to describe care pathways and the period of time between treatments of women with breast cancer (BC), at a population level. Women with in situ, local and regional BC who were hospitalized and newly treated in 2012 were included and followed for 1 year. Care pathways were described, focusing on surgery (partial mastectomy [PM], total mastectomy [TM]), chemotherapy, and radiotherapy. The periods of time between treatments were measured and compared with the guidelines. The study involved 52,128 women. The most common care pathways among the 2845 women with in situ BC were PM-radiotherapy (46.7%) and TM (28.5%). Among the 41,470 women with local BC, they were: PM-radiotherapy (44.8%) or PM-chemotherapy-radiotherapy (16.0%). The 7813 women with regional BC had similar care pathways, although chemotherapy was given more frequently (73%). The periods of time between surgery and chemotherapy were in accordance with the guidelines for 98% of the women; those between surgery and radiotherapy were affected by adjuvant chemotherapy. Finally, the time between chemotherapy and radiotherapy was longer than recommended for 40% of the women. The French medicoadministrative databases allow the study, at a national population level, of the care pathways and periods of time between treatments of women with BC according to the stage of the disease. They were close to the guidelines, although an improvement is highly necessary. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Robert L., E-mail: rdixon@wfubmc.edu; Boone, John M.; Kraft, Robert A.
2014-11-01
Purpose: With the increasing clinical use of shift-variant CT protocols involving tube current modulation (TCM), variable pitch or pitch modulation (PM), and variable aperture a(t), the interpretation of the scanner-reported CTDI{sub vol} is called into question. This was addressed for TCM in their previous paper published by Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)] and is extended to PM and concurrent TCM/PM as well as variable aperture in this work. Methods: Rigorous convolution equations are derived to describe the accumulated dose distributions for TCM, PM, and concurrent TCM/PM. A comparison with scanner-reported CTDI{sub vol} formulae clearly identifies themore » source of their differences with the traditional CTDI{sub vol}. Dose distribution simulations using the convolution are provided for a variety of TCM and PM scenarios including a helical shuttle used for perfusion studies (as well as constant mA)—all having the same scanner-reported CTDI{sub vol}. These new convolution simulations for TCM are validated by comparison with their previous discrete summations. Results: These equations show that PM is equivalent to TCM if the pitch variation p(z) is proportional to 1/i(z), where i(z) is the local tube current. The simulations show that the local dose at z depends only weakly on the local tube current i(z) or local pitch p(z) due to scatter from all other locations along z, and that the “local CTDI{sub vol}(z)” or “CTDI{sub vol} per slice” do not represent a local dose but rather only a relative i(z) or p(z). The CTDI-paradigm does not apply to shift-variant techniques and the scanner-reported CTDI{sub vol} for the same lacks physical significance and relevance. Conclusions: While the traditional CTDI{sub vol} at constant tube current and pitch conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} for shift-variant techniques (TCM or PM) conveys no useful information about the associated dose distribution it purportedly represents. On the other hand, the total energy absorbed E (“integral dose”) as well as its surrogate DLP remain robust (invariant) with respect to shift-variance, depending only on the total mAs = 〈i〉t{sub 0} accumulated during the total beam-on time t{sub 0} and aperture a, where 〈i〉 is the average current.« less
Sources of atmospheric aerosols controlling PM10 levels in Heraklion, Crete during winter time
NASA Astrophysics Data System (ADS)
Kalivitis, Nikolaos; Kouvarakis, Giorgos; Stavroulas, Iasonas; Kandilogiannaki, Maria; Vavadaki, Katerina; Mihalopoulos, Nikolaos
2016-04-01
High concentrations of Particulate Matter (PM) in the atmosphere have negative impact to human health. Thresholds for ambient concentrations that are defined by the directive 2008/50/EC are frequently exceeded even at background conditions in the Mediterranean region as shown in earlier studies. The sources of atmospheric particles in the urban environment of a medium size city of eastern Mediterranean are studied in the present work in order to better understand the causes and characteristics of exceedances of the daily mean PM10limit value of 50 μg m-3. Measurements were performed at the atmospheric quality measurement station of the Region of Crete, at the Heraklion city center on Crete island, during the winter/spring period of 2014-2015 and 2015-2016. Special emphasis was given to the study of the contribution of Black Carbon (BC) to the levels of PM10. Continuous measurements were performed using a beta-attenuation PM10monitor and a 7-wavelength Aethalometer with a time resolution of 30 and 5 minutes respectively. For direct comparison to background regional conditions, concurrent routine measurements at the atmospheric research station of University of Crete at Finokalia were used as background reference. Analysis of exceedances in the daily PM10 mass concentration showed that the total of the exceedances was related to long range transport of Saharan dust rather than local sources. However, compared to the Finokalia station it was found that there were 20% more exceedances in Heraklion, the addition of transported dust on the local pollution was the reason for the additional exceedance days. Excluding dust events, it was found that the PM10variability was dependent on the BC abundance, traffic during rush hours in the morning and biomass burning for domestic heating in the evening contributed significantly to PM10levels in Heraklion.
Spatial Analysis of Ambient PM2.5 Exposure and Bladder Cancer Mortality in Taiwan
Yeh, Hsin-Ling; Hsu, Shang-Wei; Chang, Yu-Chia; Chan, Ta-Chien; Tsou, Hui-Chen; Chang, Yen-Chen; Chiang, Po-Huang
2017-01-01
Fine particulate matter (PM2.5) is an air pollutant that is receiving intense regulatory attention in Taiwan. In previous studies, the effect of air pollution on bladder cancer has been explored. This study was conducted to elucidate the effect of atmospheric PM2.5 and other local risk factors on bladder cancer mortality based on available 13-year mortality data. Geographically weighted regression (GWR) was applied to estimate and interpret the spatial variability of the relationships between bladder cancer mortality and ambient PM2.5 concentrations, and other variables were covariates used to adjust for the effect of PM2.5. After applying a GWR model, the concentration of ambient PM2.5 showed a positive correlation with bladder cancer mortality in males in northern Taiwan and females in most of the townships in Taiwan. This is the first time PM2.5 has been identified as a risk factor for bladder cancer based on the statistical evidence provided by GWR analysis. PMID:28489042
47 CFR 73.99 - Presunrise service authorization (PSRA) and postsunset service authorization (PSSA).
Code of Federal Regulations, 2014 CFR
2014-10-01
... required to provide when operating PSSA until 6 p.m. local time is as follows. (i) For the first half-hour..., Bahamian, and Canadian priority Class A clear channels to commence PSRA operation at 6 a.m. local time and... authorization. (2) Class D stations situated outside 0.5 mV/m-50% skywave contours of co-channel U.S. Class A...
47 CFR 73.99 - Presunrise service authorization (PSRA) and postsunset service authorization (PSSA).
Code of Federal Regulations, 2012 CFR
2012-10-01
... required to provide when operating PSSA until 6 p.m. local time is as follows. (i) For the first half-hour..., Bahamian, and Canadian priority Class A clear channels to commence PSRA operation at 6 a.m. local time and... authorization. (2) Class D stations situated outside 0.5 mV/m-50% skywave contours of co-channel U.S. Class A...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
...: 16 U.S.C. 1801, et seq. Dated: December 12, 2013. Sean F. Corson, Acting Deputy Director, Office of...: Effective December 12, 2013, through 2400 hrs, Alaska local time, December 31, 2013. Comments must be received at the following address no later than 4:30 p.m., Alaska local time, December 27, 2013. ADDRESSES...
Zhao, M J; Geng, X Y; Cui, L L; Zhou, J W; Zhang, J
2017-03-10
Objective: To estimate the influence of the ambient PM(l0) and PM(2.5) pollution on the hospital outpatient department visit due to respiratory diseases in local residents in Jinan quantitatively. Methods: Time serial analysis using generalized addictive model (GAM) was conducted. After controlling the confounding factors, such as long term trend, weekly pattern and meteorological factors, considering lag effect and the influence of other air pollutants, the excess relative risks of daily hospital visits associated with increased ambient PM(10) and PM(2.5) levels were estimated by fitting a Poisson regression model. Results: A 10 μg/m(3) increase of PM(10) and PM(2.5) levels was associated with an increase of 0.36%(95 %CI : 0.30%-0.43%) and 0.50%(95 %CI : 0.30%-0.70%) respectively for hospital visits due to respiratory diseases. Lag effect of 6 days was strongest, the excess relative risks were 0.65% (95 % CI : 0.58% -0.71% ) and 0.54% (95 % CI : 0.42%-0.67%) respectively. When NO(2) concentration was introduced, the daily hospital visits due to respiratory disease increased by 0.83% as a 10 μg/m(3) increase of PM(10) concentration (95 % CI : 0.76%-0.91%). Conclusion: The ambient PM(l0) and PM(2.5) pollution was positively associated with daily hospital visits due to respiratory disease in Jinan, and ambient NO(2) concentration would have the synergistic effect.
NASA Astrophysics Data System (ADS)
Wu, Di; Wang, Zongshuang; Chen, Jianhua; Kong, Shaofei; Fu, Xiao; Deng, Hongbing; Shao, Guofan; Wu, Gang
2014-11-01
Eighteen polycyclic aromatic hydrocarbons (PAHs) in PM2.5 and PM10 are identified and quantified at five sites of E'erduosi in 2005 by GC-MS. Total PAH concentrations in PM2.5 and PM10 are in the ranges of 0.58-145.01 ng m- 3 and 5.80-180.32 ng m- 3 for the five sites, decreasing as coal-chemical base site (ZGE) > heavy industrial site (QPJ) > residential site with heavy traffic (DS) > suburban site surrounded by grassland (HJQ) > background site (QGN) for both PM2.5 and PM10. PAH concentrations in the coal-chemical base site are 250 and 31.1 times of those in the background site. Flu, Pyr, Chr, BbF, BeP, IND and BghiP are abundant for the coal-chemical base site, totally accounting for 75% of the PAH concentrations. 4, 5 and 6 rings PAHs are dominant, accounting for 88.9-94.2% and 90.5-94.1% of PAHs in PM2.5 and PM10, respectively. Combustion-derived PAH concentrations cover 42%-84% and 75%-82% of PAHs in PM2.5 and PM10, indicating large amounts of combustion sources existed for them in E'erduosi. PAH compositions between PM2.5 and PM10 are quite different from each other for sites with few human activities (HJQ and QGN) by coefficient of divergence analysis. Results obtained from principal component analysis and diagnostic ratios indicate that coal combustion, vehicle emission, wood combustion and industrial processes are the main sources for PAHs in E'erduosi. According to BaP equivalent concentration, the potential health risk of PAHs in PM2.5 at the two industrial sites ZGE and QPJ are 537 and 460 times of those for the background site. And they are 4.3 and 3.7 times of those for the residential site. The potential PAH pollution in particles at other industrial agglomeration regions that occurred in China in recent years should be paid attention by the local government.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (“Localized CO, PM10, and PM2.5 violations”) must be based on quantitative analysis using the applicable air... § 93.116 may be based on either: (i) Quantitative methods that represent reasonable and common... hot-spot analyses. (1) The hot-spot demonstration required by § 93.116 must be based on quantitative...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (“Localized CO, PM10, and PM2.5 violations”) must be based on quantitative analysis using the applicable air... § 93.116 may be based on either: (i) Quantitative methods that represent reasonable and common... hot-spot analyses. (1) The hot-spot demonstration required by § 93.116 must be based on quantitative...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (“Localized CO, PM10, and PM2.5 violations”) must be based on quantitative analysis using the applicable air... § 93.116 may be based on either: (i) Quantitative methods that represent reasonable and common... hot-spot analyses. (1) The hot-spot demonstration required by § 93.116 must be based on quantitative...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (“Localized CO, PM10, and PM2.5 violations”) must be based on quantitative analysis using the applicable air... § 93.116 may be based on either: (i) Quantitative methods that represent reasonable and common... hot-spot analyses. (1) The hot-spot demonstration required by § 93.116 must be based on quantitative...
78 FR 34886 - Special Local Regulations; Recurring Marine Events in the Seventh Coast Guard District
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
... pertaining to the Beaufort Water Festival from 1 p.m. through 4 p.m. on July 27, 2013. This action is... Festival Air Show. During the enforcement period, the special local regulation establishes a regulated area... special local regulation for the Beaufort Water Festival in 33 CFR 100.701 Table 1 from 1:00 p.m. through...
Yoshinari, Akira; Fujimoto, Masaru; Ueda, Takashi; Inada, Noriko; Naito, Satoshi; Takano, Junpei
2016-09-01
Boron (B) is essential for plants but toxic in excess. The borate efflux transporter BOR1 is expressed in various root cells and localized to the inner/stele-side domain of the plasma membrane (PM) under low-B conditions. BOR1 is rapidly degraded through endocytosis upon sufficient B supply. The polar localization and degradation of BOR1 are considered important for efficient B translocation and avoidance of B toxicity, respectively. In this study, we first analyzed the subcellular localization of BOR1 in roots, cotyledons and hypocotyls, and revealed a polar localization in various cell types. We also found that the inner polarity of BOR1 is established after completion of cytokinesis in the root meristem. Moreover, variable-angle epifluorescence microscopy visualized BOR1-green fluorescent protein (GFP) as particles in the PM with significant lateral movements but in restricted areas. Importantly, a portion of BOR1-GFP particles co-localized with DYNAMIN-RELATED PROTEIN 1A (DRP1A), which is involved in scission of the clathrin-coated vesicles, and they disappeared together from the PM. To examine the contribution of DRP1A-mediated endocytosis to BOR1 localization and degradation, we developed an inducible expression system of the DRP1A K47A variant. The DRP1A variant prolonged the residence time of clathrin on the PM and inhibited endocytosis of membrane lipids. The dominant-negative DRP1A blocked endocytosis of BOR1 and disturbed its polar localization and B-induced degradation. Our results provided insight into the endocytic mechanisms that modulate the subcellular localization and abundance of a mineral transporter for nutrient homeostasis in plant cells. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Scripted drives: A robust protocol for generating exposures to traffic-related air pollution
NASA Astrophysics Data System (ADS)
Patton, Allison P.; Laumbach, Robert; Ohman-Strickland, Pamela; Black, Kathy; Alimokhtari, Shahnaz; Lioy, Paul J.; Kipen, Howard M.
2016-10-01
Commuting in automobiles can contribute substantially to total traffic-related air pollution (TRAP) exposure, yet measuring commuting exposures for studies of health outcomes remains challenging. To estimate real-world TRAP exposures, we developed and evaluated the robustness of a scripted drive protocol on the NJ Turnpike and local roads between April 2007 and October 2014. Study participants were driven in a car with closed windows and open vents during morning rush hours on 190 days. Real-time measurements of PM2.5, PNC, CO, and BC, and integrated samples of NO2, were made in the car cabin. Exposure measures included in-vehicle concentrations on the NJ Turnpike and local roads and the differences and ratios of these concentrations. Median in-cabin concentrations were 11 μg/m3 PM2.5, 40 000 particles/cm3, 0.3 ppm CO, 4 μg/m3 BC, and 20.6 ppb NO2. In-cabin concentrations on the NJ Turnpike were higher than in-cabin concentrations on local roads by a factor of 1.4 for PM2.5, 3.5 for PNC, 1.0 for CO, and 4 for BC. Median concentrations of NO2 for full rides were 2.4 times higher than ambient concentrations. Results were generally robust relative to season, traffic congestion, ventilation setting, and study year, except for PNC and PM2.5, which had secular and seasonal trends. Ratios of concentrations were more stable than differences or absolute concentrations. Scripted drives can be used to generate reasonably consistent in-cabin increments of exposure to traffic-related air pollution.
Scripted drives: A robust protocol for generating exposures to traffic-related air pollution
Patton, Allison P.; Laumbach, Robert; Ohman-Strickland, Pamela; Black, Kathy; Alimokhtari, Shahnaz; Lioy, Paul; Kipen, Howard M.
2016-01-01
Commuting in automobiles can contribute substantially to total traffic-related air pollution (TRAP) exposure, yet measuring commuting exposures for studies of health outcomes remains challenging. To estimate real-world TRAP exposures, we developed and evaluated the robustness of a scripted drive protocol on the NJ Turnpike and local roads between April 2007 and October 2014. Study participants were driven in a car with closed windows and open vents during morning rush hours on 190 days. Real-time measurements of PM2.5, PNC, CO, and BC, and integrated samples of NO2, were made in the car cabin. Exposure measures included in-vehicle concentrations on the NJ Turnpike and local roads and the differences and ratios of these concentrations. Median in-cabin concentrations were 11 μg/m3 PM2.5, 40 000 particles/cm3, 0.3 ppm CO, 4 μg/m3 BC, and 20.6 ppb NO2. In-cabin concentrations on the NJ Turnpike were higher than in-cabin concentrations on local roads by a factor of 1.4 for PM2.5, 3.5 for PNC, 1.0 for CO, and 4 for BC. Median concentrations of NO2 for full rides were 2.4 times higher than ambient concentrations. Results were generally robust relative to season, traffic congestion, ventilation setting, and study year, except for PNC and PM2.5, which had secular and seasonal trends. Ratios of concentrations were more stable than differences or absolute concentrations. Scripted drives can be used for generating reasonably consistent in-cabin increments of exposure to traffic-related air pollution. PMID:27642251
de Gennaro, Gianluigi; Trizio, Livia; Di Gilio, Alessia; Pey, Jorge; Pérez, Noemi; Cusack, Michael; Alastuey, Andrés; Querol, Xavier
2013-10-01
An artificial neural network (ANN) was developed and tested to forecast PM10 daily concentration in two contrasted environments in NE Spain, a regional background site (Montseny), and an urban background site (Barcelona-CSIC), which was highly influenced by vehicular emissions. In order to predict 24-h average PM10 concentrations, the artificial neural network previously developed by Caselli et al. (2009) was improved by using hourly PM concentrations and deterministic factors such as a Saharan dust alert. In particular, the model input data for prediction were the hourly PM10 concentrations 1-day in advance, local meteorological data and information about air masses origin. The forecasted performance indexes for both sites were calculated and they showed better results for the regional background site in Montseny (R(2)=0.86, SI=0.75) than for urban site in Barcelona (R(2)=0.73, SI=0.58), influenced by local and sometimes unexpected sources. Moreover, a sensitivity analysis conducted to understand the importance of the different variables included among the input data, showed that local meteorology and air masses origin are key factors in the model forecasts. This result explains the reason for the improvement of ANN's forecasting performance at the Montseny site with respect to the Barcelona site. Moreover, the artificial neural network developed in this work could prove useful to predict PM10 concentrations, especially, at regional background sites such as those on the Mediterranean Basin which are primarily affected by long-range transports. Hence, the artificial neural network presented here could be a powerful tool for obtaining real time information on air quality status and could aid stakeholders in their development of cost-effective control strategies. © 2013 Elsevier B.V. All rights reserved.
Orona, Nadia S; Ferraro, Sebastián A; Astort, Francisco; Morales, Celina; Brites, Fernando; Boero, Laura; Tiscornia, Gisela; Maglione, Guillermo A; Saldiva, Paulo H N; Yakisich, Sebastian; Tasat, Deborah R
2016-01-01
Exposure to air particulate matter (PM) is associated with increased cardiovascular morbimortality. However, PM doesn't affect equally to all people, being the old cohort the most susceptible and studied. We hypothesized that another specific life phase, the middle-aged subpopulation, may be negatively affected. Therefore, the aim of this study was to analyze in vivo the acute biological impact of two environmental particles, Urban Air Particles from Buenos Aires and Residual Oil Fly Ash, on the cardiorespiratory system of middle-aged mice, evaluating oxidative metabolism and inflammation. Both PM provoked a local and systemic inflammatory response, leading to a reduced alveolar area in the lung, an epicard inflammation in the heart, an increment of IL-6, and a reduction on PON 1 activity in serum of middle-aged animals. The positive correlation of local parameters with systemic markers of oxidative stress and inflammation could be responsible for associations of cardiovascular morbimortality in this subpopulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Zhiyuan; Yuan, Zibing; Li, Ying; Lau, Alexis K. H.; Louie, Peter K. K.
2015-12-01
Atmospheric particulate matter (PM) pollution is a major public health concern in Hong Kong. In this study, the spatiotemporal variations of health risks from ambient PM10 from seven air quality monitoring stations between 2000 and 2011 were analyzed. Positive matrix factorization (PMF) was adopted to identify major source categories of ambient PM10 and quantify their contributions. Afterwards, a point-estimated risk model was used to identify the inhalation cancer and non-cancer risks of PM10 sources. The long-term trends of the health risks from classified local and non-local sources were explored. Furthermore, the reason for the increase of health risks during high PM10 days was discussed. Results show that vehicle exhaust source was the dominant inhalation cancer risk (ICR) contributor (72%), whereas trace metals and vehicle exhaust sources contributed approximately 27% and 21% of PM10 inhalation non-cancer risk (INCR), respectively. The identified local sources accounted for approximately 80% of the ICR in Hong Kong, while contribution percentages of the non-local and local sources for INCR are comparable. The clear increase of ICR at high PM days was mainly attributed to the increase of contributions from coal combustion/biomass burning and secondary sulfate, while the increase of INCR at high PM days was attributed to the increase of contributions from the sources coal combustion/biomass burning, secondary nitrate, and trace metals. This study highlights the importance of health risk-based source apportionment in air quality management with protecting human health as the ultimate target.
Characterization of particulate matter sources in an urban environment.
Mazzei, F; D'Alessandro, A; Lucarelli, F; Nava, S; Prati, P; Valli, G; Vecchi, R
2008-08-15
Daily time series measurements of elements or compounds are widely used to apportion the contribution of specific sources of particulate matter concentration in the atmosphere. We present results obtained for the urban area of Genoa (Italy) based on several hundred of PM10, PM2.5 and PM1 daily samples collected in sites with different geo-morphological and urbanization characteristics. Elemental concentrations of Na to Pb were obtained through Energy Dispersive X-Ray Fluorescence (ED-XRF), and the contributions of specific sources of particulate matter (PM) concentration were apportioned through Positive Matrix Factorization (PMF). By sampling at different sites we were able to obtain, in each PM fraction, the average and stable values for the tracers of specific sources, in particular traffic (Cu, Zn, Pb) and heavy oil combustion (V, Ni). We could also identify and quote the contamination of anthropogenic PM in "natural" sources (sea, soil dust). Sampling at several sites in the same urban area allowed us to resolve local characteristics as well as to quote average values.
Bari, Md Aynul; Kindzierski, Warren B
2017-02-01
With concern about levels and exceedances of Canadian and provincial standards and objectives for fine particulate matter (PM 2.5 ) in recent years, an investigation of air quality characteristics and potential local and long-range sources influencing PM 2.5 concentrations was undertaken in the City of Red Deer, Alberta. The study covered the period May 2009 to December 2015. Comparatively higher concentrations of PM 2.5 were observed in winter (mean: 11.6 μg/m 3 , median: 10 μg/m 3 ) than in summer (mean: 9.0 μg/m 3 , median: 7.0 μg/m 3 ). Exceedances of the 1 h Alberta Ambient Air Quality objective (3-31 times per year > 80 μg/m 3 ) and the 24 h Canada-Wide Standard (2-11 times per year > 30 μg/m 3 ) were found at the Red Deer Riverside air monitoring station, particularly in 2010, 2011 and 2015. Positive matrix factorization (PMF) followed by multiple linear regression (MLR) analysis identified a mixed industry/agriculture factor as the dominant contributor to PM 2.5 (39.3%), followed by an O 3 -rich (biogenic) factor (26.4%), traffic (19.3%), biomass burning (10.5%) and a mixed urban factor (4.4%). In addition to local traffic, the mixed industry/agriculture factor - inferred as mostly upstream oil and gas emission sources surrounding Red Deer - was identified as another potentially important source contributing to wintertime high PM 2.5 pollution days. These findings offer useful preliminary information about current PM 2.5 sources and their potential contributions in Red Deer; and this information can support policy makers in the development of particulate matter control strategies if required. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, J.; Zhang, X.; Liu, Y.; Shichang, K.; Ma, Y.
2017-12-01
An intensive measurement was conducted at a remote, background, and high-altitude site (Qomolangma station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from April 12 to May 12, 2016 to chemically characterize high time-resolved submicron particulate matter (PM1) and obtain the influence of biomass burning emissions to the Himalayas, frequently transported from south Asia during pre-monsoon season. Two high aerosol loading periods were observed during the study. Overall, the average (± 1σ) PM1 mass concentration was 4.44 (± 4.54) µg m-3 for the entire study, comparable with those observed at other remote sites worldwide. Organic aerosols (OA) was the dominant PM1 species (accounting for 54.3% of total PM1 mass on average) and its contribution increased with the increase of total PM1 mass loading. The average size distributions of PM1 species all peaked at an overlapping accumulation mode ( 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transportations. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a biomass burning related OA (BBOA, 43.7%) and two oxygenated OA (Local-OOA and LRT-OOA; 13.9% and 42.4%) represented sources from local emissions and long-range transportations, respectively. Two polluted air mass origins (generally from the west and southwest of QOMS) and two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions were observed, respectively, suggesting the important sources of wildfires from south Asia. One of polluted aerosol plumes was investigated in detail to illustrate the evolution of aerosol characteristics at QOMS driving by different impacts of wildfires, air mass origins, meteorological conditions and atmospheric processes.
Transported vs. local contributions from secondary and biomass burning sources to PM2.5
NASA Astrophysics Data System (ADS)
Kim, Bong Mann; Seo, Jihoon; Kim, Jin Young; Lee, Ji Yi; Kim, Yumi
2016-11-01
The concentration of fine particulates in Seoul, Korea has been lowered over the past 10 years, as a result of the city's efforts in implementing environmental control measures. Yet, the particulate concentration level in Seoul remains high as compared to other urban areas globally. In order to further improve fine particulate air quality in the Korea region and design a more effective control strategy, enhanced understanding of the sources and contribution of fine particulates along with their chemical compositions is necessary. In turn, relative contributions from local and transported sources on Seoul need to be established, as this city is particularly influenced by sources from upwind geographic areas. In this study, PM2.5 monitoring was conducted in Seoul from October 2012 to September 2013. PM2.5 mass concentrations, ions, metals, organic carbon (OC), elemental carbon (EC), water soluble OC (WSOC), humic-like substances of carbon (HULIS-C), and 85 organic compounds were chemically analyzed. The multivariate receptor model SMP was applied to the PM2.5 data, which then identified nine sources and estimated their source compositions as well as source contributions. Prior studies have identified and quantified the transported and local sources. However, no prior studies have distinguished contributions of an individual source between transported contribution and locally produced contribution. We differentiated transported secondary and biomass burning sources from the locally produced secondary and biomass burning sources, which was supported with potential source contribution function (PSCF) analysis. Of the total secondary source contribution, 32% was attributed to transported secondary sources, and 68% was attributed to locally formed secondary sources. Meanwhile, the contribution from the transported biomass burning source was revealed as 59% of the total biomass burning contribution, which was 1.5 times higher than that of the local biomass burning source. Four-season average source contributions from the transported and the local sources were 28% and 72%, respectively.
NASA Astrophysics Data System (ADS)
Leung, D. M.; Tai, A. P. K.; Shen, L.; Moch, J. M.; van Donkelaar, A.; Mickley, L. J.
2017-12-01
Fine particulate matter (PM2.5) air quality is strongly dependent on not only on emissions but also meteorological conditions. Here we examine the dominant synoptic circulation patterns that control day-to-day PM2.5 variability over China. We perform principal component (PC) analysis on 1998-2016 NCEP/NCAR Reanalysis I daily meteorological fields to diagnose distinct synoptic meteorological modes, and perform PC regression on spatially interpolated 2014-2016 daily mean PM2.5 concentrations in China to identify modes dominantly explaining PM2.5 variability. We find that synoptic systems, e.g., cold-frontal passages, maritime inflow and frontal precipitation, can explain up to 40% of the day-to-day PM2.5 variability in major metropolitan regions in China. We further investigate how annually changing frequencies of synoptic systems, as well as changing local meteorology, drive interannual PM2.5 variability. We apply a spectral analysis on the PC time series to obtain the 1998-2016 annual median synoptic frequency, and use a forward-selection multiple linear regression (MLR) model of satellite-derived 1998-2015 annual mean PM2.5 concentrations on local meteorology and synoptic frequency, selecting predictors that explain the highest fraction of interannual PM2.5 variability while guarding against multicollinearity. To estimate the effect of climate change on future PM2.5 air quality, we project a multimodel ensemble of 15 CMIP5 models under the RCP8.5 scenario on the PM2.5-to-meteorology sensitivities derived for the present-day from the MLR model. Our results show that climate change could be responsible for increases in PM2.5 of more than 25 μg m-3 in northwestern China and 10 mg m-3 in northeastern China by the 2050s. Increases in synoptic frequency of cold-frontal passages cause only a modest 1 μg m-3 decrease in PM2.5 in North China Plain. Our analyses show that climate change imposes a significant penalty on air quality over China and poses serious threat on human health under the RCP8.5 future.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... shark research fishery to maintain time series data for stock assessments and to meet NMFS' [[Page 67150... tagging programs for identification of migration corridors and stock structure; Maintain time-series of.... DATES: Shark Research Fishery Applications must be received no later than 5 p.m., local time, on...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-13
...) established, among other things, a shark research fishery to maintain time series data for stock assessments...; Maintain time-series of abundance from previously derived indices for the shark BLL observer program.... DATES: Shark Research Fishery Applications must be received no later than 5 p.m., local time, on...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-22
...) established, among other things, a shark research fishery to maintain time series data for stock assessments... stock structure using dart and/or spaghetti tags; Maintain time-series of abundance from previously...: Shark Research Fishery Applications must be received no later than 5 p.m., local time, on December 23...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
... fishery to maintain time series data for stock assessments and to meet NMFS' research objectives. The... for identification of migration corridors and stock structure; Maintain time-series of abundance from... considered. DATES: Shark Research Fishery Applications must be received no later than 5 p.m., local time, on...
Liu, Zi-Rui; Wang, Yue-Si; Liu, Quan; Liu, Lu-Ning; Zhang, De-Qiang
2011-11-01
Real-time measurements of PM2.5, secondary inorganic compounds in PM2.5 (SO4(2-), NH4(+), and NO3(-)) and related gaseous pollutants were conducted at Mount Dinghu, a regional background station of the Pearl River Delta (PRD), in October and November 2008 by using a conventional R&P TEOM and a system of rapid collection of fine particles and ion chromatography (RCFP-IC). Sources and transportation of atmospheric particles during the experiment were discussed with principal component analysis and backward trajectories calculated using HYSPLIT model. The average daily mass concentrations of PM2.5 were 76.9 microg x m(-3) during sampling period, and average daily mass concentrations of SO4(2-), NH4(+), and NO3(-) were 20.0 microg x m(-3), 6.8 microg x m(-3) and 2.6 microg x m(-3), respectively. The sum of these three secondary inorganic compounds accounted for more than one third of the PM2.5 mass concentration, which had become the major source of atmospheric fine particles at Mount Dinghu. The diurnal variation of PM2.5, SO4(2-), and NH4(+) all showed a "bimodal" distribution with two peaks appeared at 10:00 am and at 16:00 pm, respectively, whereas NO3(-s) howed "single peak" distribution peaked at 10:00 am. The mass concentrations of SO4(2-) in PM2.5 had the similar diurnal variation with that of SO2, SO4(2-) in PM2.5 was mainly transformed from SO2, whereas NO3(-) showed difference diurnal variation with that of NO2, and the second conversion rate of NO2 was far lower than that of SO2. NH4(+) in PM2.5 existed mainly in the form of sulfate, nitrate and chloride. Both of principal component analysis and back trajectory analysis showed that the variations of PM2.5 and secondary inorganic compounds at Mount Dinghu were mainly affected by the long-range transport air mass passed over Guangzhou, Huizhou and other highly industrialized areas which carried air pollutants to the observation site, at the same time local sulfate originated from secondary formation also contributed an important part of atmospheric fine particles and the contribution from local direct emission was little.
NASA Astrophysics Data System (ADS)
Pikridas, Michael; Sciare, Jean; Vrekoussis, Mihalis; Oikonomou, Konstantina; Merabet, Hamza; Mihalopoulos, Nikos; Yassaa, Nouredine; Savvides, Chrysanthos
2016-04-01
As part of MISTRALS-ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/), and MISTRALS-ENVI-Med "CyAr" (Cyprus Aerosols and gas precursors) programs, a 1-month intensive field campaign has been performed in December 2014 at an urban background site of Nicosia (Cyprus) - a typical European city of the Eastern Mediterranean - with the objective to document the major (local versus imported) sources responsible for wintertime particulate (PM1) pollution. Several near real-time analyzers were deployed for that purpose (TEOM 1400, OPC Grimm 1.108, Q-ACSM, Aethalometer AE31) allowing to investigate in near-real time the major chemical components of submicron aerosols (Black Carbon, Organics, Sulphate, Nitrate, Ammonium). Quality control of Q-ACSM and Aethalometer datasets was performed through closure studies (using co-located TEOM / OPC Grimm). Comparisons were also performed with other on-line / off-line measurements performed by the local Air quality network (DLI) at other locations in Nicosia with the objective to check the consistency and representativeness of our observations. Very high levels of Black Carbon and OA were systematically observed every night (with maximum concentrations around 22:00 local time) pointing to local combustion sources most probably related to domestic heating. Source apportionment of organic aerosols (OA) was performed using the SourceFinder software (SoFi, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between various primary/secondary OA sources and helped us to better characterize the combustion sources being responsible for the observed elevated nighttime PM1 levels. Acknowledgements: This campaign has been funded by MISTRALS (ChArMEx et ENVI-Med CyAr programs), CNRS-INSU, CEA, CyI, DLI, CDER and ECPL.
77 FR 21765 - Notice of Commission Staff Attendance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... may attend the following meeting related to the transmission planning activities of the Southwest Power Pool, Inc. (SPP): Strategic Planning Committee April 9, 2012. 8 a.m.-3 p.m. Local Time. The above...
Respiratory disease associated with community air pollution and a steel mill, Utah Valley.
Pope, C A
1989-01-01
This study assessed the association between hospital admissions and fine particulate pollution (PM10) in Utah Valley during the period April 1985-February 1988. This time period included the closure and reopening of the local steel mill, the primary source of PM10. An association between elevated PM10 levels and hospital admissions for pneumonia, pleurisy, bronchitis, and asthma was observed. During months when 24-hour PM10 levels exceeded 150 micrograms/m3, average admissions for children nearly tripled; in adults, the increase in admissions was 44 per cent. During months with mean PM10 levels greater than or equal to 50 micrograms/m3 average admissions for children and adults increased by 89 and 47 per cent, respectively. During the winter months when the steel mill was open, PM10 levels were nearly double the levels experienced during the winter months when the mill was closed. This occurred even though relatively stagnant air was experienced during the winter the mill was closed. Children's admissions were two to three times higher during the winters when the mill was open compared to when it was closed. Regression analysis also revealed that PM10 levels were strongly correlated with hospital admissions. They were more strongly correlated with children's admissions than with adult admissions and were more strongly correlated with admissions for bronchitis and asthma than with admissions for pneumonia and pleurisy. PMID:2495741
NASA Technical Reports Server (NTRS)
Susskind, Joel; Lee, Jae N.; Iredell, Lena
2014-01-01
In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.
NASA Astrophysics Data System (ADS)
Rivellini, Laura-Hélèna; Chiapello, Isabelle; Tison, Emmanuel; Fourmentin, Marc; Féron, Anaïs; Diallo, Aboubacry; N'Diaye, Thierno; Goloub, Philippe; Canonaco, Francesco; Prévôt, André Stephan Henry; Riffault, Véronique
2017-09-01
The present study offers the first chemical characterization of the submicron (PM1) fraction in western Africa at a high time resolution, thanks to collocated measurements of nonrefractory (NR) species with an Aerosol Chemical Speciation Monitor (ACSM), black carbon and iron concentrations derived from absorption coefficient measurements with a 7-wavelength Aethalometer, and total PM1 determined by a TEOM-FDMS (tapered element oscillating microbalance-filtered dynamic measurement system) for mass closure. The field campaign was carried out over 3 months (March to June 2015) as part of the SHADOW (SaHAran Dust Over West Africa) project at a coastal site located in the outskirts of the city of Mbour, Senegal. With an averaged mass concentration of 5.4 µg m-3, levels of NR PM1 in Mbour were 3 to 10 times lower than those generally measured in urban and suburban polluted environments. Nonetheless the first half of the observation period was marked by intense but short pollution events (NR PM1 concentrations higher than 15 µg m-3), sea breeze phenomena and Saharan desert dust outbreaks (PM10 up to 900 µg m-3). During the second half of the campaign, the sampling site was mainly under the influence of marine air masses. The air masses on days under continental and sea breeze influences were dominated by organics (36-40 %), whereas sulfate particles were predominant (40 %) for days under oceanic influence. Overall, measurements showed that about three-quarters of the total PM1 were explained by NR PM1, BC (black carbon) and Fe (a proxy for dust) concentrations, leaving approximately one-quarter for other refractory species. A mean value of 4.6 % for the Fe / PM1 ratio was obtained. Source apportionment of the organic fraction, using positive matrix factorization (PMF), highlighted the impact of local combustion sources, such as traffic and residential activities, which contribute on average to 52 % of the total organic fraction. A new organic aerosol (OA) source, representing on average 3 % of the total OA fraction, showed similar variation to nonrefractory particulate chloride. Its rose plot and daily pattern pointed to local combustion processes, i.e., two open waste-burning areas located about 6 and 11 km away from the receptor site and to a lesser extent a traditional fish-smoking location. The remaining fraction was identified as oxygenated organic aerosols (OOA), a factor that prevailed regardless of the day type (45 %) and was representative of regional (approximately three-quarters) but also local (approximately one-quarter) sources due to enhanced photochemical processes.
NASA Astrophysics Data System (ADS)
Chen, Ziyue; Xie, Xiaoming; Cai, Jun; Chen, Danlu; Gao, Bingbo; He, Bin; Cheng, Nianliang; Xu, Bing
2018-04-01
With frequent air pollution episodes in China, growing research emphasis has been put on quantifying meteorological influences on PM2.5 concentrations. However, these studies mainly focus on isolated cities, whilst meteorological influences on PM2.5 concentrations at the national scale have not yet been examined comprehensively. This research employs the CCM (convergent cross-mapping) method to understand the influence of individual meteorological factors on local PM2.5 concentrations in 188 monitoring cities across China. Results indicate that meteorological influences on PM2.5 concentrations have notable seasonal and regional variations. For the heavily polluted North China region, when PM2.5 concentrations are high, meteorological influences on PM2.5 concentrations are strong. The dominant meteorological influence for PM2.5 concentrations varies across locations and demonstrates regional similarities. For the most polluted winter, the dominant meteorological driver for local PM2.5 concentrations is mainly the wind within the North China region, whilst precipitation is the dominant meteorological influence for most coastal regions. At the national scale, the influence of temperature, humidity and wind on PM2.5 concentrations is much larger than that of other meteorological factors. Amongst eight factors, temperature exerts the strongest and most stable influence on national PM2.5 concentrations in all seasons. Due to notable temporal and spatial differences in meteorological influences on local PM2.5 concentrations, this research suggests pertinent environmental projects for air quality improvement should be designed accordingly for specific regions.
van Drooge, Barend L; Lopez, Jordi F; Grimalt, Joan O
2012-11-01
The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM(10) filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6 %. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.
NASA Astrophysics Data System (ADS)
Seo, Jihoon; Kim, Jin Young; Youn, Daeok; Lee, Ji Yi; Kim, Hwajin; Lim, Yong Bin; Kim, Yumi; Cher Jin, Hyoun
2017-08-01
The air quality of the megacities in populated and industrialized regions like East Asia is affected by both local and regional emission sources. The combined effect of regional transport and local emissions on multiday haze was investigated through a synthetic analysis of PM2. 5 sampled at both an urban site in Seoul, South Korea and an upwind background site on Deokjeok Island over the Yellow Sea during a severe multiday haze episode in late February 2014. Inorganic components and carbonaceous species of daily PM2. 5 samples were measured, and gaseous pollutants, local meteorological factors, and synoptic meteorological conditions were also determined. A dominance of fine-mode particles (PM2. 5 / PM10 ˜ 0.8), a large secondary inorganic fraction (76 %), high OC / EC (> 7), and highly oxidized aerosols (oxygen-to-carbon ratio of ˜ 0.6 and organic-mass-to-carbon ratio of ˜ 1.9) under relatively warm, humid, and stagnant conditions characterize the multiday haze episode in Seoul; however, the early and late stages of the episode show different chemical compositions of PM2. 5. High concentrations of sulfate in both Seoul and the upwind background in the early stage suggest a significant regional influence on the onset of the multiday haze. At the same time, high concentrations of nitrate and organic compounds in Seoul, which are local and highly correlated with meteorological factors, suggest the contribution of local emissions and secondary formation under stagnant meteorological conditions to the haze. A slow eastward-moving high-pressure system from southern China to the East China Sea induces the regional transport of aerosols and potential gaseous precursors for secondary aerosols from the North China Plain in the early stage but provides stagnant conditions conducive to the accumulation and the local formation of aerosols in the late stage. A blocking ridge over Alaska that developed during the episode hinders the zonal propagation of synoptic-scale systems and extends the haze period to several days. This study provides chemical insights into haze development sequentially by regional transport and local sources, and shows that the synoptic condition plays an important role in the dynamical evolution of long-lasting haze in the Asian continental outflow region.
75 FR 29537 - Draft Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM2.5
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-26
... Quantitative Hot- spot Analyses in PM 2.5 and PM 10 Nonattainment and Maintenance Areas AGENCY: Environmental... finalized, this guidance would help state and local agencies complete quantitative PM 2.5 and PM 10 hot-spot...), EPA stated that quantitative PM 2.5 and PM 10 hot-spot analyses would not be required until EPA...
NASA Astrophysics Data System (ADS)
Sofowote, U. M.; Healy, R. M.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Hopke, P. K.
2018-01-01
The differences in PM2.5 concentrations between two relatively close stations, one situated near a major highway and the other much more distant were used to develop a protocol for determining the impact of highway traffic on particulate matter concentrations at the roadside. The roadside station was <15 m away from the edge of a major highway while the other was located ∼170 m away. The roadside station contains a suite of continuous instrumentation capable of near-real-time speciation of PM2.5. The particulate matter difference, formally termed the PM2.5 imbalance was arbitrarily defined as a case wherein |Near-road PM2.5 - Far from road PM2.5|/Near-road PM2.5 ≳50%. Of interest was the variation of multi-time factors based on ME2 analyses of the speciation data from the roadside station during these imbalance events. Of the 7 mass-contributing ME2 factors, a black carbon factor was determined to be the major cause of the PM2.5 imbalance and was especially dominant for the case when PM2.5 concentrations at the roadside station were greater than the farther-station PM2.5. The black carbon concentrations observed during these specific events were further regressed against other traffic-related and meteorological parameters with two nonlinear optimization algorithms (generalized reduced gradient and rules ensemble) in our attempts to model any potential relationships. It was observed that the traffic counts of heavy duty vehicles (predominantly diesel-powered) dominated the relationship with black carbon while contributions from light duty vehicles were negligible during these [PM2.5]Roadside > [PM2.5]Farther events at the roadside station. This work details the most critical ways that highway traffic can contribute to local ambient PM2.5 concentrations that commuters are exposed to and will be important in informing policies and strategies for particulate matter pollution reduction.
Lewandowska, Anita Urszula; Staniszewska, Marta; Witkowska, Agnieszka; Machuta, Magdalena; Falkowska, Lucyna
2018-05-05
Parallel measurements of PM 1 and PM 2.5 aerosols were conducted in the urbanized coastal zone of the southern Baltic Sea. The main aim of the research was to assess and determine annual, seasonal (heating and non-heating), and daily concentration variability of benzo(a)pyrene in aerosols, these being the most dangerous constituents to human health. The average annual concentration of benzo(a)pyrene (B(a)P) was equal to 2.6 ng·m -3 in PM 1 and 4.6 ng·m -3 in PM 2.5 , and both values were several times higher than the level of 1 ng·m -3 which was set out in the CAFE Directive. High mean daily concentrations of B(a)P persisted for 50 and 65% of the study period in PM1 and PM2.5, respectively. In order to determine the sources of B(a)P in both aerosol fractions, organic (OC) and elemental (EC) carbon concentrations were examined. The highest concentrations of all carbon species were reported during the heating season under local or regional land advection and at low air temperatures. The origin of pollutants was the same and was primarily related to the combustion of fossil fuels in the communal-utility sector. During the non-heating period, the role of transportation, both land and marine, increased and may have been significant in creating higher concentrations of carbon compounds in PM 1 and PM 2.5 . Regardless of the size of the aerosol fractions, B(a)P loads introduced into the Baltic coastal zone were several times higher during the heating period compared to the non-heating season. Graphical abstract ᅟ.
Eneroth, Kristina; Gidhagen, Lars; Johansson, Christer; Omstedt, Gunnar; Engström Nylén, Anders; Forsberg, Bertil
2017-01-01
The most important anthropogenic sources of primary particulate matter (PM) in ambient air in Europe are exhaust and non-exhaust emissions from road traffic and combustion of solid biomass. There is convincing evidence that PM, almost regardless of source, has detrimental health effects. An important issue in health impact assessments is what metric, indicator and exposure-response function to use for different types of PM. The aim of this study is to describe sectorial contributions to PM exposure and related premature mortality for three Swedish cities: Gothenburg, Stockholm and Umea. Exposure is calculated with high spatial resolution using atmospheric dispersion models. Attributed premature mortality is calculated separately for the main local sources and the contribution from long-range transport (LRT), applying different relative risks. In general, the main part of the exposure is due to LRT, while for black carbon, the local sources are equally or more important. The major part of the premature deaths is in our assessment related to local emissions, with road traffic and residential wood combustion having the largest impact. This emphasizes the importance to resolve within-city concentration gradients when assessing exposure. It also implies that control actions on local PM emissions have a strong potential in abatement strategies. PMID:28686215
The Mesoscale Ionospheric Simulation Testbed (MIST) Regional Data Assimilation Model (Invited)
NASA Astrophysics Data System (ADS)
Comberiate, J.; Kelly, M. A.; Miller, E.; Paxton, L.
2013-12-01
The Mesoscale Ionospheric Simulation Testbed (MIST) provides a regional nowcast and forecast of electron density values and has sufficient resolution to include equatorial plasma bubbles. The SSUSI instrument on the DMSP F18 satellite has high-resolution nightly observations of plasma bubbles at 8 PM local time throughout the current solar maximum. MIST can assimilate SSUSI UV observations, GPS TEC measurements, and SCINDA S4 readings simultaneously into a single scintillation map over a region of interest. MIST also models ionospheric physics to provide a short-term UHF scintillation forecast based on assimilated data. We will present examples of electron density and scintillation maps from MIST. We will also discuss the potential to predict scintillation occurrence up to 6 hours in advance using observations of the equatorial arcs from SSUSI observations at 5:30 PM local time on the DMSP F17 satellite.
Galic, Milos; Jeong, Sangmoo; Tsai, Feng-Chiao; Joubert, Lydia-Marie; Wu, Yi I.; Hahn, Klaus M.; Cui, Yi; Meyer, Tobias
2012-01-01
Many of the more than 20 mammalian proteins with N-BAR domains1-2 control cell architecture3 and endocytosis4-5 by associating with curved sections of the plasma membrane (PM)6. It is not well understood whether N-BAR proteins are recruited directly by processes that mechanically curve the PM or indirectly by PM-associated adaptor proteins that recruit proteins with N-BAR domains that then induce membrane curvature. Here, we show that externally-induced inward deformation of the PM by cone-shaped nanostructures (Nanocones) and internally-induced inward deformation by contracting actin cables both trigger recruitment of isolated N-BAR domains to the curved PM. Markedly, live-cell imaging in adherent cells showed selective recruitment of full length N-BAR proteins and isolated N-BAR domains to PM sub-regions above Nanocone stripes. Electron microscopy confirmed that N-BAR domains are recruited to local membrane sites curved by Nanocones. We further showed that N-BAR domains are periodically recruited to curved PM sites during local lamellipodia retraction in the front of migrating cells. Recruitment required Myosin II-generated force applied to PM connected actin cables. Together, our study shows that N-BAR domains can be directly recruited to the PM by external push or internal pull forces that locally curve the PM. PMID:22750946
77 FR 55860 - Notice of Grand Staircase-Escalante National Monument Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... welcome to address the Committee at 5 p.m., local time, on October 16, 2012. Depending on the number of persons wishing to speak, a time limit could be established. Interested persons may make oral statements to the GSENMAC during this time or written statements may be submitted for the GSENMAC's...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-23
... deadline for receipt of an application is 4 p.m. local time, December 22, 2010. The application date and time are firm. The Agency will not consider any application received after the deadline. Applicants intending to mail applications must provide sufficient time to permit delivery on or before the closing...
NASA Astrophysics Data System (ADS)
Fan, Q.; Liu, Y.; Hong, Y.; Wang, X.; Chan, P.; Chen, X.; Lai, A.; Wang, M.; Chen, X.
2017-12-01
Located in the Southern China monsoon region, pollution days in Pearl River Delta (PRD) were classified into "Western type", "Central type" or "Eastern type", with a relative percentage of 67%, 24% and 9%, respectively. Using this classification system, three typical pollution events were selected for numerical simulations using the WRF-Chem model. The source sensitivity method for anthropogenic emissions of PM2.5 and its precursors was applied to identify the source-receptor relationships for PM2.5 among 9 cities in PRD. For "Western type" case, the PRD region was under control of a high-pressure system with easterly prevailing winds. The PM2.5 concentrations in the western PRD region were higher than those in the eastern region, with emissions from cities in the eastern PRD region having higher contributions. Within the PRD's urban cluster, PM2.5 in Huizhou, Dongguan and Shenzhen was mainly derived from local emissions, whereas the PM2.5 in the other cities was primarily derived from external transport. For "Eastern type" case, the PRD was influenced by Typhoon Soulik with westerly prevailing winds. Emissions from cities in the western PRD region had the highest impacts on the overall PM2.5 concentration. PM2.5 in Jiangmen and Foshan was primarily derived from local emissions. Regarding "Central type" case, the PRD region was under control of a uniform pressure field with low wind speed. PM2.5 concentrations of each city were primarily caused by local emissions. Overall, wind flows played a significant role in the transport and spatial distribution of PM2.5 across the PRD region. Ideally, local governments would be wise to establish joint prevention and control measures to reduce regional atmospheric pollution, especially for "Western type" pollution.
NASA Astrophysics Data System (ADS)
Kam, Winnie; Cheung, Kalam; Daher, Nancy; Sioutas, Constantinos
2011-03-01
Elevated concentrations of particulate matter (PM) have been found in a number of worldwide underground transit systems, with major implications regarding exposure of commuters to PM and its associated health effects. An extensive sampling campaign was conducted in May-August 2010 to measure PM concentrations in two lines of the Los Angeles Metro system - an underground subway line (Metro red line) and a ground-level light-rail line (Metro gold line). The campaign goals were to: 1) determine personal PM exposure of commuters of both lines, and 2) measure and compare PM concentrations at station platforms and inside the train. Considering that a commuter typically spent 75% of time inside the train and 25% of time waiting at a station, subway commuters were exposed on average to PM 10 and PM 2.5 concentrations that were 1.9 and 1.8 times greater than the light-rail commuters. The average PM 10 concentrations for the subway line at station platforms and inside the train were 78.0 μg m -3 and 31.5 μg m -3, respectively; for the light-rail line, corresponding PM 10 concentrations were 38.2 μg m -3 and 16.2 μg m -3. Regression analysis demonstrated that personal exposure concentrations for the light-rail line are strongly associated with ambient PM levels ( R2 = 0.61), while PM concentrations for the subway line are less influenced by ambient conditions ( R2 = 0.38) and have a relatively stable background level of about 21 μg m -3. Our findings suggest that local emissions (i.e., vehicular traffic, road dust) are the main source of airborne PM for the light-rail line. The subway line, on the other hand, has an additional source of PM, most likely generated from the daily operation of trains. Strong inter-correlation of PM 10 between the train and station microenvironments shows that airborne PM at stations are the main source of PM inside the trains for both lines ( R2 = 0.91 and 0.81 for subway and light-rail line, respectively). In addition, PM 2.5 and coarse PM (PM 10-2.5) are also strongly correlated for the subway line ( R2 = 0.89) and the light-rail line ( R2 = 0.52-0.92), suggesting that PM 2.5 and coarse PM originate from a common source. Finally, in comparison to worldwide subway systems, the L.A. Metro system is relatively 'clean'. Since the system is comparatively new (in operation since 1993), its ventilation system and braking technology are probably more efficient and more advanced than older subway systems.
Veira, Andreas; Jackson, Peter L; Ainslie, Bruce; Fudge, Dennis
2013-07-01
This study investigates the development and application of a simple method to calculate annual and seasonal PM2.5 and PM10 background concentrations in small cities and rural areas. The Low Pollution Sectors and Conditions (LPSC) method is based on existing measured long-term data sets and is designed for locations where particulate matter (PM) monitors are only influenced by local anthropogenic emission sources from particular wind sectors. The LPSC method combines the analysis of measured hourly meteorological data, PM concentrations, and geographical emission source distributions. PM background levels emerge from measured data for specific wind conditions, where air parcel trajectories measured at a monitoring station are assumed to have passed over geographic sectors with negligible local emissions. Seasonal and annual background levels were estimated for two monitoring stations in Prince George, Canada, and the method was also applied to four other small cities (Burns Lake, Houston, Quesnel, Smithers) in northern British Columbia. The analysis showed reasonable background concentrations for both monitoring stations in Prince George, whereas annual PM10 background concentrations at two of the other locations and PM2.5 background concentrations at one other location were implausibly high. For those locations where the LPSC method was successful, annual background levels ranged between 1.8 +/- 0.1 microg/m3 and 2.5 +/- 0.1 microg/m3 for PM2.5 and between 6.3 +/- 0.3 microg/m3 and 8.5 +/- 0.3 microg/m3 for PM10. Precipitation effects and patterns of seasonal variability in the estimated background concentrations were detectable for all locations where the method was successful. Overall the method was dependent on the configuration of local geography and sources with respect to the monitoring location, and may fail at some locations and under some conditions. Where applicable, the LPSC method can provide a fast and cost-efficient way to estimate background PM concentrations for small cities in sparsely populated regions like northern British Columbia. In rural areas like northern British Columbia, particulate matter (PM) monitoring stations are usually located close to emission sources and residential areas in order to assess the PM impact on human health. Thus there is a lack of accurate PM background concentration data that represent PM ambient concentrations in the absence of local emissions. The background calculation method developed in this study uses observed meteorological data as well as local source emission locations and provides annual, seasonal and precipitation-related PM background concentrations that are comparable to literature values for four out of six monitoring stations.
Contribution of dust storms to PM10 levels in an urban arid environment.
Krasnov, Helena; Katra, Itzhak; Koutrakis, Petros; Friger, Michael D
2014-01-01
Quantitative information on the contribution of dust storms to atmospheric PM10 (particulate matter with an aerodynamic diameter < or = 10 microm) levels is still lacking, especially in urban environments with close proximity to dust sources. The main objective of this study was to quantify the contribution of dust storms to PM10 concentrations in a desert urban center, the city of Beer-Sheva, Negev, Israel, during the period of 2001-2012. Toward this end, a background value based on the "dust-free" season was used as a threshold value to identify potentially "dust days." Subsequently, the net contribution of dust storms to PM10 was assessed. During the study period, daily PM10 concentrations ranged from 6 to over 2000 microg/m3. In each year, over 10% of the daily concentrations exceeded the calculated threshold (BVt) of 71 microg/m3. An average daily net contribution of dust to PM10 of 122 microg/m3 was calculated for the entire study period based on this background value. Furthermore, a dust storm intensity parameter (Ai) was used to analyze several storms with very high PM10 contributions (hourly averages of 1000-5197 microg/m3). This analysis revealed that the strongest storms occurred mainly in the last 3 yr of the study. Finally, these findings indicate that this arid urban environment experiences high PM10 levels whose origin lies in both local and regional dust events. The findings indicate that over time, the urban arid environment experiences high PM10 levels whose origin lies in local and regional dust events. It was noticed that the strongest storms have occurred mainly in the last 3 yr. It is believed that environmental changes such as global warming and desertification may lead to an increased air pollution and risk exposure to human health.
Urban PM in Eastern Germany: Source apportionment and contributions from different spatial scales
NASA Astrophysics Data System (ADS)
van Pinxteren, D.; Fomba, K. W.; Mothes, F.; Spindler, G.; Herrmann, H.
2017-12-01
Understanding the contributions of particulate matter (PM) sources and the source areas impacting total PM levels in a city are important requirements for further developing clean air policies and efficient abatement strategies. This presentation reports on two studies in Eastern Germany providing a detailed picture of present-day urban PM sources and discriminating contributions of local, regional and long-range sources. The "Leipzig Aerosol 2013-15" study yielded contributions of 12 sources to coarse, fine, and ultrafine particles, resolved by Positive Matrix Factorization (PMF) from comprehensive chemical speciation of 5-stage Berner impactor samples at 4 different sites in the Leipzig area. Dominant winter-time sources were traffic exhaust and non-exhaust emissions, secondary aerosol formation, and combustion emissions from both biomass and coal burning with different relative importance in different particle size ranges. Local sources dominated PM levels in ultrafine and coarse particles (60% - 80%) while high mass concentrations in accumulation mode particles mainly resulted from regional import into the city (70%). The "PM-East" study compiled PM10 mass and constituents' concentrations at 10 urban and rural sites in Eastern Germany during winter 2016/17, which included a 3-week episode of frequent exceedances of the PM10 limit value. PMF source apportionment is performed for a subset of the sites, including the city of Berlin. Contributions from short-, mid-, and long-range sources, including trans-boundary pollution import from neighbouring countries, are quantitatively assessed by advanced back trajectory statistical methods. Data analysis in PM-East is ongoing and final results will be available by November. Funding is acknowledged from 4 federal states of Germany: Berlin Senate Department for Environment, Transport and Climate Protection; Saxon State Office for Environment, Agriculture and Geology; State Agency for Environment, Nature Conservation and Geology Mecklenburg-Vorpommern; and Brandenburg State Office for Environment.
NASA Astrophysics Data System (ADS)
Shen, Xiaojing; Sun, Junying; Zhang, Xiaoye; Zhang, Yangmei; Wang, Yaqiang; Tan, Kaiyan; Wang, Peng; Zhang, Lu; Qi, Xuefei; Che, Haochi; Zhang, Zhouxiang; Zhong, Junting; Zhao, Huarong; Ren, Sanxue
2018-02-01
An extensive field experiment for measurement of physical and chemical properties of aerosols was conducted at an urban site in the Chinese Academy of Meteorological Sciences (CAMS) in Beijing and at a rural site in Gucheng (GC), Hebei Province in December 2016. This paper compares the number size distribution of submicron particle matter (PM1, diameter < 1 μm) between the two sites. The results show that the mean PM1 number concentration at GC was twice that at CAMS, and the mass concentration was three times the amount at CAMS. It is found that the accumulation mode (100-850 nm) particles constituted the largest fraction of PM1 at GC, which was significantly correlated with the local coal combustion, as confirmed by a significant relationship between the accumulation mode and the absorption coefficient of soot particles. The high PM1 concentration at GC prevented the occurrence of new particle formation (NPF) events, while eight such events were observed at CAMS. During the NPF events, the mass fraction of sulfate increased significantly, indicating that sulfate played an important role in NPF. The contribution of regional transport to PM1 mass concentration was approximately 50% at both sites, same as that of the local emission. However, during the red-alert period when emission control took place, the contribution of regional transport was notably higher.
Atmospheric Science Data Center
2013-04-17
article title: Grímsvötn Volcano Injects Ash into the Stratosphere ... p.m. local time (1730 UTC) on Saturday, May 21, 2011. The volcano, located approximately 140 miles (220 kilometers) east of the capital ...
Kurth, Laura; Kolker, Allan; Engle, Mark A.; Geboy, Nicholas J.; Hendryx, Michael; Orem, William H.; McCawley, Michael; Crosby, Lynn M.; Tatu, Calin A.; Varonka, Matthew S.; DeVera, Christina A.
2015-01-01
Mountaintop removal mining (MTM) is a widely used approach to surface coal mining in the US Appalachian region whereby large volumes of coal overburden are excavated using explosives, removed, and transferred to nearby drainages below MTM operations. To investigate the air quality impact of MTM, the geochemical characteristics of atmospheric particulate matter (PM) from five surface mining sites in south central West Virginia, USA, and five in-state study control sites having only underground coal mining or no coal mining whatsoever were determined and compared. Epidemiologic studies show increased rates of cancer, respiratory disease, cardiovascular disease, and overall mortality in Appalachian surface mining areas compared to Appalachian non-mining areas. In the present study, 24-h coarse (>2.5 µm) and fine (≤2.5 µm) PM samples were collected from two surface mining sites in June 2011 showed pronounced enrichment in elements having a crustal affinity (Ga, Al, Ge, Rb, La, Ce) contributed by local sources, relative to controls. Follow-up sampling in August 2011 lacked this enrichment, suggesting that PM input from local sources is intermittent. Using passive samplers, dry deposition total PM elemental fluxes calculated for three surface mining sites over multi-day intervals between May and August 2012 were 5.8 ± 1.5 times higher for crustal elements than at controls. Scanning microscopy of 2,249 particles showed that primary aluminosilicate PM was prevalent at surface mining sites compared to secondary PM at controls. Additional testing is needed to establish any link between input of lithogenic PM and disease rates in the study area.
NASA Astrophysics Data System (ADS)
Sarnat, Jeremy A.; Moise, Tamar; Shpund, Jacob; Liu, Yang; Pachon, Jorge E.; Qasrawi, Radwan; Abdeen, Ziad; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Schauer, James J.
2010-07-01
This manuscript presents results from an extensive, multi-country comparative monitoring study of fine particulate matter (PM 2.5) and its primary chemical components in Israeli, Jordanian and Palestinian cities. This study represented the first time that researchers from these countries have worked together to examine spatial and temporal relationships for PM 2.5 and its major components among the study sites. The findings indicated that total PM 2.5 mass was relatively homogenous among many of the 11 sites as shown from strong between-site correlations. Mean annual concentrations ranged from 19.9 to 34.9 μg m -3 in Haifa and Amman, respectively, and exceeded accepted international air quality standards for annual PM 2.5 mass. Similarity of total mass was largely driven by SO 42- and crustal PM 2.5 components. Despite the close proximity of the seven, well correlated sites with respect to PM 2.5, there were pronounced differences among the cities for EC and, to a lesser degree, OC. EC, in particular, exhibited spatiotemporal trends that were indicative of strong local source contributions. Interestingly, there were moderate to strong EC correlations ( r > 0.65) among the large metropolitan cities, West Jerusalem, Tel Aviv and Amman. For these relatively large cities, (i.e., West Jerusalem, Tel Aviv and Amman), EC sources from the fleet of buses and cars typical for many urban areas predominate and likely drive spatiotemporal EC distributions. As new airshed management strategies and public health interventions are implemented throughout the Middle East, our findings support regulatory strategies that target integrated regional and local control strategies to reduce PM 2.5 mass and specific components suspected to drive adverse health effects of particulate matter exposure.
Kurth, Laura; Kolker, Allan; Engle, Mark; Geboy, Nicholas; Hendryx, Michael; Orem, William; McCawley, Michael; Crosby, Lynn; Tatu, Calin; Varonka, Matthew; DeVera, Christina
2015-06-01
Mountaintop removal mining (MTM) is a widely used approach to surface coal mining in the US Appalachian region whereby large volumes of coal overburden are excavated using explosives, removed, and transferred to nearby drainages below MTM operations. To investigate the air quality impact of MTM, the geochemical characteristics of atmospheric particulate matter (PM) from five surface mining sites in south central West Virginia, USA, and five in-state study control sites having only underground coal mining or no coal mining whatsoever were determined and compared. Epidemiologic studies show increased rates of cancer, respiratory disease, cardiovascular disease, and overall mortality in Appalachian surface mining areas compared to Appalachian non-mining areas. In the present study, 24-h coarse (>2.5 µm) and fine (≤2.5 µm) PM samples were collected from two surface mining sites in June 2011 showed pronounced enrichment in elements having a crustal affinity (Ga, Al, Ge, Rb, La, Ce) contributed by local sources, relative to controls. Follow-up sampling in August 2011 lacked this enrichment, suggesting that PM input from local sources is intermittent. Using passive samplers, dry deposition total PM elemental fluxes calculated for three surface mining sites over multi-day intervals between May and August 2012 were 5.8 ± 1.5 times higher for crustal elements than at controls. Scanning microscopy of 2,249 particles showed that primary aluminosilicate PM was prevalent at surface mining sites compared to secondary PM at controls. Additional testing is needed to establish any link between input of lithogenic PM and disease rates in the study area.
Respiratory disease associated with community air pollution and a steel mill, Utah Valley
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C.A. III
This study assessed the association between hospital admissions and fine particulate pollution (PM10) in Utah Valley during the period April 1985-February 1988. This time period included the closure and reopening of the local steel mill, the primary source of PM10. An association between elevated PM10 levels and hospital admissions for pneumonia, pleurisy, bronchitis, and asthma was observed. During months when 24-hour PM10 levels exceeded 150 micrograms/m3, average admissions for children nearly tripled; in adults, the increase in admissions was 44 per cent. During months with mean PM10 levels greater than or equal to 50 micrograms/m3 average admissions for children andmore » adults increased by 89 and 47 per cent, respectively. During the winter months when the steel mill was open, PM10 levels were nearly double the levels experienced during the winter months when the mill was closed. This occurred even though relatively stagnant air was experienced during the winter the mill was closed. Children's admissions were two to three times higher during the winters when the mill was open compared to when it was closed. Regression analysis also revealed that PM10 levels were strongly correlated with hospital admissions. They were more strongly correlated with children's admissions than with adult admissions and were more strongly correlated with admissions for bronchitis and asthma than with admissions for pneumonia and pleurisy.« less
Siao, Wei; Wang, Pengwei; Voigt, Boris; Hussey, Patrick J; Baluska, Frantisek
2016-11-01
Arabidopsis synaptotagmin 1 (SYT1) is localized on the endoplasmic reticulum-plasma membrane (ER-PM) contact sites in leaf and root cells. The ER-PM localization of Arabidopsis SYT1 resembles that of the extended synaptotagmins (E-SYTs) in animal cells. In mammals, E-SYTs have been shown to regulate calcium signaling, lipid transfer, and endocytosis. Arabidopsis SYT1 was reported to be essential for maintaining cell integrity and virus movement. This study provides detailed insight into the subcellular localization of SYT1 and VAP27-1, another ER-PM-tethering protein. SYT1 and VAP27-1 were shown to be localized on distinct ER-PM contact sites. The VAP27-1-enriched ER-PM contact sites (V-EPCSs) were always in contact with the SYT1-enriched ER-PM contact sites (S-EPCSs). The V-EPCSs still existed in the leaf epidermal cells of the SYT1 null mutant; however, they were less stable than those in the wild type. The polygonal networks of cortical ER disassembled and the mobility of VAP27-1 protein on the ER-PM contact sites increased in leaf cells of the SYT1 null mutant. These results suggest that SYT1 is responsible for stabilizing the ER network and V-EPCSs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Kukkonen, Jaakko; Kangas, Leena; Kauhaniemi, Mari; Sofiev, Mikhail; Aarnio, Mia; Jaakkola, Jouni J. K.; Kousa, Anu; Karppinen, Ari
2018-06-01
Reliable and self-consistent data on air quality are needed for an extensive period of time for conducting long-term, or even lifetime health impact assessments. We have modelled the urban-scale concentrations of fine particulate matter (PM2.5) in the Helsinki Metropolitan Area for a period of 35 years, from 1980 to 2014. The regional background concentrations were evaluated based on reanalyses of the atmospheric composition on global and European scales, using the SILAM model. The high-resolution urban computations included both the emissions originated from vehicular traffic (separately exhaust and suspension emissions) and those from small-scale combustion, and were conducted using the road network dispersion model CAR-FMI and the multiple-source Gaussian dispersion model UDM-FMI. The modelled concentrations of PM2.5 agreed fairly well with the measured data at a regional background station and at four urban measurement stations, during 1999-2014. The modelled concentration trends were also evaluated for earlier years, until 1988, using proxy analyses. There was no systematic deterioration of the agreement of predictions and data for earlier years (the 1980s and 1990s), compared with the results for more recent years (2000s and early 2010s). The local vehicular emissions were about 5 times higher in the 1980s, compared with the emissions during the latest considered years. The local small-scale combustion emissions increased slightly over time. The highest urban concentrations of PM2.5 occurred in the 1980s; these have since decreased to about to a half of the highest values. In general, regional background was the largest contribution in this area. Vehicular exhaust has been the most important local source, but the relative shares of both small-scale combustion and vehicular non-exhaust emissions have increased in time. The study has provided long-term, high-resolution concentration databases on regional and urban scales that can be used for the assessment of health effects associated with air pollution.
Time to harmonize national ambient air quality standards.
Kutlar Joss, Meltem; Eeftens, Marloes; Gintowt, Emily; Kappeler, Ron; Künzli, Nino
2017-05-01
The World Health Organization has developed ambient air quality guidelines at levels considered to be safe or of acceptable risk for human health. These guidelines are meant to support governments in defining national standards. It is unclear how they are followed. We compiled an inventory of ambient air quality standards for 194 countries worldwide for six air pollutants: PM 2.5 , PM 10 , ozone, nitrogen dioxide, sulphur dioxide and carbon monoxide. We conducted literature and internet searches and asked country representatives about national ambient air quality standards. We found information on 170 countries including 57 countries that did not set any air quality standards. Levels varied greatly by country and by pollutant. Ambient air quality standards for PM 2.5 , PM 10 and SO 2 poorly complied with WHO guideline values. The agreement was higher for CO, SO 2 (10-min averaging time) and NO 2 . Regulatory differences mirror the differences in air quality and the related burden of disease around the globe. Governments worldwide should adopt science based air quality standards and clean air management plans to continuously improve air quality locally, nationally, and globally.
NASA Astrophysics Data System (ADS)
Kim, Hwajin; Zhang, Qi; Bae, Gwi-Nam; Kim, Jin Young; Bok Lee, Seung
2017-02-01
Highly time-resolved chemical characterization of nonrefractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital and largest metropolis of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter, when elevated particulate matter (PM) pollution events are often observed. This is the first time that detailed real-time aerosol measurement results have been reported from Seoul, Korea, and they reveal valuable insights into the sources and atmospheric processes that contribute to PM pollution in this region. The average concentration of submicron aerosol (PM1 = NR-PM1+ black carbon (BC)) was 27.5 µg m-3, and the total mass was dominated by organics (44 %), followed by nitrate (24 %) and sulfate (10 %). The average atomic ratios of oxygen to carbon (O / C), hydrogen to carbon (H / C), and nitrogen to carbon (N / C) of organic aerosols (OA) were 0.37, 1.79, and 0.018, respectively, which result in an average organic mass-to-carbon (OM / OC) ratio of 1.67. The concentrations (2.6-90.7 µg m-3) and composition of PM1 varied dynamically during the measurement period due to the influences of different meteorological conditions, emission sources, and air mass origins. Five distinct sources of OA were identified via positive matrix factorization (PMF) analysis of the HR-ToF-AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA, O / C = 0.06), cooking activities represented by a cooking OA factor (COA, O / C = 0.14), wood combustion represented by a biomass burning OA factor (BBOA, O / C = 0.34), and secondary organic aerosol (SOA) represented by a semivolatile oxygenated OA factor (SV-OOA, O / C = 0.56) and a low-volatility oxygenated OA factor (LV-OOA, O / C = 0.68). On average, primary OA (POA = HOA + COA + BBOA) accounted for 59 % the OA mass, whereas SV-OOA and LV-OOA contributed 15 and 26 %, respectively. Our results indicate that air quality in Seoul during winter is influenced strongly by secondary aerosol formation, with sulfate, nitrate, ammonium, SV-OOA, and LV-OOA together accounting for 64 % of the PM1 mass during this study. However, aerosol sources and composition were found to be significantly different between clean and polluted periods. During stagnant periods with low wind speed (WS) and high relative humidity (RH), PM concentration was generally high (average ±1σ = 43.6 ± 12.4 µg m-3) with enhanced fractions of nitrate (27 %) and SV-OOA (8 %), which suggested a strong influence from local production of secondary aerosol. Low-PM loading periods (12.6 ± 7.1 µg m-3) tended to occur under higher-WS and lower-RH conditions and appeared to be more strongly influenced by regional air masses, as indicated by higher mass fractions of sulfate (12 %) and LV-OOA (20 %) in PM1. Overall, our results indicate that PM pollutants in urban Korea originate from complex emission sources and atmospheric processes and that their concentrations and composition are controlled by various factors, including meteorological conditions, local anthropogenic emissions, and upwind sources.
NASA Astrophysics Data System (ADS)
Strak, Maciej; Steenhof, Maaike; Godri, Krystal J.; Gosens, Ilse; Mudway, Ian S.; Cassee, Flemming R.; Lebret, Erik; Brunekreef, Bert; Kelly, Frank J.; Harrison, Roy M.; Hoek, Gerard; Janssen, Nicole A. H.
2011-08-01
Numerous epidemiological studies have shown health effects related to short- and long-term exposure to elevated levels of ambient particulate matter (PM). It is not clear however which specific characteristics (e.g., size, components) or sources of PM are responsible for the observed effects. The aim of RAPTES (Risk of Airborne Particles: a Toxicological-Epidemiological hybrid Study) was to investigate which specific physical, chemical or oxidative characteristics of ambient PM are associated with adverse effects of PM on health. This was done by performing experimental exposure of human volunteers to air pollution at several real-world settings that had high contrast and low correlation between several PM characteristics. For this goal, eight sites in the Netherlands that differed in local PM emission sources were chosen for extensive air pollution characterization. Measurement sites included an underground train station, three different road traffic sites, an animal farm, a sea harbor, a site located in the vicinity of steelworks, and an urban background site. Five- to six-hours average concentration measurements at each site were made between June 2007 and October 2009. We measured PM 10, PM 2.5, particle number concentration (PNC), oxidative potential of PM, absorbance, endotoxin content, as well as elemental and chemical composition of PM, and gaseous pollutants concentrations. This paper presents a detailed characterization of particulate air pollution at the sampling sites. We found significant differences in all PM characteristics between the sites. The underground train station, compared to each outdoor location, had substantially higher concentrations of nearly all PM characteristics. The average PM 10 and PM 2.5 mass concentrations at the underground train station were 394 μg m -3 and 137 μg m -3, respectively, which was 14.1 and 7.6 times higher than the urban background. The sum of the concentrations of trace metals in fine and coarse PM was nearly 20 times above the outdoor levels. Elemental carbon (EC) was elevated at the underground site in the fine but also in the coarse mode, in contrast to the traffic sites where EC was predominantly found in fine PM. The highest concentrations and contrasts in PNC were at the traffic sites (between 45,000 and 80,000 particles cm -3), which was several times higher than measured at any other site. Correlations of PNC with metals, PM 10, PM 2.5 and absorbance were low to moderate, while correlations between PM 10, PM 2.5 and the metals Cu and Fe were high. After excluding the underground train station data, correlations between PM10, EC and metals decreased whereas the correlation between PNC and EC increased. We conclude that we were able to successfully identify and characterize real-world situations with very different particle characteristics. High contrast and low correlations between PM characteristics, as well as consistency of these differences across sampling campaigns, provide a good basis for identifying health relevant PM characteristics in the upcoming analysis.
Trends and variability of atmospheric PM2.5 and PM10-2.5 concentration in the Po Valley, Italy
NASA Astrophysics Data System (ADS)
Bigi, Alessandro; Ghermandi, Grazia
2016-12-01
The Po Valley is one of the largest European regions with a remarkably high concentration level of atmospheric pollutants, both for particulate and gaseous compounds. In the last decade stringent regulations on air quality standards and on anthropogenic emissions have been set by the European Commission, including also for PM2.5 and its main components since 2008. These regulations have led to an overall improvement in air quality across Europe, including the Po Valley and specifically PM10, as shown in a previous study by Bigi and Ghermandi (2014). In order to assess the trend and variability in PM2.5 in the Po Valley and its role in the decrease in PM10, we analysed daily gravimetric equivalent concentration of PM2.5 and of PM10-2.5 at 44 and 15 sites respectively across the Po Valley. The duration of the times series investigated in this work ranges from 7 to 10 years. For both PM sizes, the trend in deseasonalized monthly means, annual quantiles and in monthly frequency distribution was estimated: this showed a significant decreasing trend at several sites for both size fractions and mostly occurring in winter. All series were tested for a significant weekly periodicity (a proxy to estimate the impact of primary anthropogenic emissions), yielding positive results for summer PM2.5 and for summer and winter PM10-2.5. Hierarchical cluster analysis showed moderate variability in PM2.5 across the valley, with two to three main clusters, dividing the area in western, eastern and southern/Apennines foothill sectors. The trend in atmospheric concentration was compared with the time series of local emissions, vehicular fleet details and fuel sales, suggesting that the decrease in PM2.5 and in PM10 originates from a drop both in primary and in precursors of secondary inorganic aerosol emissions, largely ascribed to vehicular traffic. Potentially, the increase in biomass burning emissions in winter and the modest decrease in NH3 weaken an otherwise even larger drop in atmospheric concentrations.
Zhou, Shengzhen; Davy, Perry K; Wang, Xuemei; Cohen, Jason Blake; Liang, Jiaquan; Huang, Minjuan; Fan, Qi; Chen, Weihua; Chang, Ming; Ancelet, Travis; Trompetter, William J
2016-12-01
Hourly-resolved PM 2.5 and PM 10-2.5 samples were collected in the industrial city Foshan in the Pearl River Delta region, China. The samples were subsequently analyzed for elemental components and black carbon (BC). A key purpose of the study was to understand the composition of particulate matter (PM) at high-time resolution in a polluted urban atmosphere to identify key components contributing to extreme PM concentration events and examine the diurnal chemical concentration patterns for air quality management purposes. It was found that BC and S concentrations dominated in the fine mode, while elements with mostly crustal and oceanic origins such as Si, Ca, Al and Cl were found in the coarse size fraction. Most of the elements showed strong diurnal variations. S did not show clear diurnal variations, suggesting regional rather than local origin. Based on empirical orthogonal functions (EOF) method, 3 forcing factors were identified contributing to the extreme events of PM 2.5 and selected elements, i.e., urban direct emissions, wet deposition and a combination of coarse mode sources. Conditional probability functions (CPF) were performed using wind profiles and elemental concentrations. The CPF results showed that BC and elemental Cl, K, Fe, Cu and Zn in the fine mode were mostly from the northwest, indicating that industrial emissions and combustion were the main sources. For elements in the coarse mode, Si, Al, K, Ca, Fe and Ti showed similar patterns, suggesting same sources such as local soil dust/construction activities. Coarse elemental Cl was mostly from the south and southeast, implying the influence of marine aerosol sources. For other trace elements, we found vanadium (V) in fine PM was mainly from the sources located to the southeast of the measuring site. Combined with CPF results of S and V in fine PM, we concluded shipping emissions were likely an important elemental emission source. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Schleicher, N. J.; Schäfer, J.; Blanc, G.; Chen, Y.; Chai, F.; Cen, K.; Norra, S.
2015-05-01
Particulate mercury (HgP) concentrations in weekly aerosol samples (PM2.5 and TSP) from Beijing, China, were measured for a complete year. In addition, spatial differences were measured for a shorter time period at four different sites and potential source materials were analyzed. Average HgP concentrations in PM2.5 samples were 0.26 ng/m3 for day-time PM2.5, 0.28 ng/m3 for night-time PM2.5, and 0.57 ng/m3 for TSP samples, respectively. Coal combustion was identified as the major source of HgP in Beijing. Other sources included industrial activities as well as red color on historical buildings as a minor contribution. Spatial differences were pronounced with highest concentrations in the inner city (inside the 3rd ring road). The results further showed a strong seasonality with highest concentrations in winter and lowest in summer due to local meteorological conditions (precipitation in summer and stagnant conditions and low mixing layer height in winter) as well as seasonal sources, such as coal combustion for heating purposes. Day-night differences also showed a seasonal pattern with higher night-time concentrations during summer and higher day-time concentrations during winter. Compared to other cities worldwide, the HgP concentrations in Beijing were alarmingly high, suggesting that airborne particulate Hg should be the focus of future monitoring activities and mitigation measures.
Diurnal Variations of Dust from Mars Climate Sounder Observations: Initial Results
NASA Astrophysics Data System (ADS)
Kleinboehl, A.
2017-12-01
Over the recent years, research on the Martian atmosphere has been focusing increasingly on aerosols. One recent focus has been on detached dust layers (DDL) as they have a significant radiative impact on the atmosphere. The dust distribution in the Martian atmosphere is affected by transport processes like lifting, advection, and sedimentation. However, lifting and sedimentation processes are only poorly understood, and the formation mechanism of DDLs is unclear. Significant variations in the occurrence of DDLs have been observed in comparisons of nearly co-located daytime and nighttime dust extinction measurements by the Mars Climate Sounder (MCS). However, the detailed behavior of changes in the vertical profile of dust over the course of a day has largely been unexplored. To date, aerosol studies by MCS have been limited to observations around 3 am and 3 pm local time due to the sun-synchronous orbit of the Mars Reconnaissance Orbiter (MRO), from which MCS is operated. MCS nominally observes in the direction of the MRO orbit track. Since Sep. 2010 the MCS instrument has been performing frequent sideways scans to obtain measurements at various local times. These special measurements yield nearly global coverage while sampling local times within a few hours of the nominal local time determined by the MRO orbit track. Of particular interest is the behavior at latitudes where cross-track measurements intersect with in-track measurements such that the same airmass is sampled 3 times in intervals of 2 hours at mid-latitudes. Here I present initial analyses of dust vertical profiles retrieved from these MCS observations during the dusty season of the Martian year. Dust opacities tend to be highest within 25 km of the surface and decreasing above. Numerous sets of profiles have been identified in the southern mid-latitudes in which this dust opacity slope is lofted by several kilometers in altitude between 4 pm and 6 pm local time. The behavior is largely restricted to ice-free conditions and suggestive of convective lofting of dust to higher altitudes due to absorption of incoming sunlight by dust particles. Most of these events are located in the vicinity of the Hellas basin, suggesting that topographic features may also play a role in their formation.
Vatanavicharn, Tipachai; Prapavorarat, Adisak; Jaree, Phattarunda; Somboonwiwat, Kunlaya; Tassanakajon, Anchalee
2014-01-01
Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410-fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway.
NASA Astrophysics Data System (ADS)
Kong, Xiangzhen; He, Wei; Qin, Ning; He, Qishuang; Yang, Bin; Ouyang, Huiling; Wang, Qingmei; Xu, Fuliu
2013-03-01
Trajectory cluster analysis, including the two-stage cluster method based on Euclidean metrics and the one-stage clustering method based on Mahalanobis metrics and self-organizing maps (SOM), was applied and compared to identify the transport pathways of PM10 for the cities of Chaohu and Hefei, both located near Lake Chaohu in China. The two-stage cluster method was modified to further investigate the long trajectories in the second stage in order to eliminate the observed disaggregation among them. Twelve trajectory clusters were identified for both cities. The one-stage clustering method based on Mahalanobis metrics gives the best performance regarding the variances within clusters. The results showed that local PM10 emission was one of the most important sources in both cities and that the local emission in Hefei was higher than in Chaohu. In addition, Chaohu suffered greater effects from the eastern region (Yangtze River Delta, YRD) than Hefei. On the other hand, the long-range transportation from the northwestern pathway had a higher influence on the PM10 level in Hefei. Receptor models, including potential source contribution function (PSCF) and residence time weighted concentrations (RTWC), were utilized to identify the potential source locations of PM10 for both cities. However, the combined PSCF and RTWC results for the two cities provided PM10 source locations that were more consistent with the results of transport pathways and the total anthropogenic PM10 emission inventory. This indicates that the combined method's ability to identify the source regions is superior to that of the individual PSCF or RTWC methods. Henan and Shanxi Provinces and the YRD were important PM10 source regions for the two cities, but the Henan and Shanxi area was more important for Hefei than for Chaohu, while the YRD region was less important. In addition, the PSCF, RTWC and the combined results all had higher correlation coefficients with PM10 emission from traffic than from industry, electricity generation or residential sources, suggesting the relatively higher contribution of traffic emissions to the PM10 pollution in Lake Chaohu.
NASA Astrophysics Data System (ADS)
Zhang, Kai; Batterman, Stuart
2010-05-01
The contribution of vehicular traffic to air pollutant concentrations is often difficult to establish. This paper utilizes both time-series and simulation models to estimate vehicle contributions to pollutant levels near roadways. The time-series model used generalized additive models (GAMs) and fitted pollutant observations to traffic counts and meteorological variables. A one year period (2004) was analyzed on a seasonal basis using hourly measurements of carbon monoxide (CO) and particulate matter less than 2.5 μm in diameter (PM 2.5) monitored near a major highway in Detroit, Michigan, along with hourly traffic counts and local meteorological data. Traffic counts showed statistically significant and approximately linear relationships with CO concentrations in fall, and piecewise linear relationships in spring, summer and winter. The same period was simulated using emission and dispersion models (Motor Vehicle Emissions Factor Model/MOBILE6.2; California Line Source Dispersion Model/CALINE4). CO emissions derived from the GAM were similar, on average, to those estimated by MOBILE6.2. The same analyses for PM 2.5 showed that GAM emission estimates were much higher (by 4-5 times) than the dispersion model results, and that the traffic-PM 2.5 relationship varied seasonally. This analysis suggests that the simulation model performed reasonably well for CO, but it significantly underestimated PM 2.5 concentrations, a likely result of underestimating PM 2.5 emission factors. Comparisons between statistical and simulation models can help identify model deficiencies and improve estimates of vehicle emissions and near-road air quality.
Matthaios, Vasileios N; Triantafyllou, Athanasios G; Koutrakis, Petros
2017-01-01
Periods of abnormally high concentrations of atmospheric pollutants, defined as air pollution episodes, can cause adverse health effects. Southern European countries experience high particulate matter (PM) levels originating from local and distant sources. In this study, we investigated the occurrence and nature of extreme PM 10 (PM with an aerodynamic diameter ≤10 μm) pollution episodes in Greece. We examined PM 10 concentration data from 18 monitoring stations located at five sites across the country: (1) an industrial area in northwestern Greece (Western Macedonia Lignite Area, WMLA), which includes sources such as lignite mining operations and lignite power plants that generate a high percentage of the energy in Greece; (2) the greater Athens area, the most populated area of the country; and (3) Thessaloniki, (4) Patra, and (5) Volos, three large cities in Greece. We defined extreme PM 10 pollution episodes (EEs) as days during which PM 10 concentrations at all five sites exceeded the European Union (EU) 24-hr PM 10 standards. For each EE, we identified the corresponding prevailing synoptic and local meteorological conditions, including wind surface data, for the period from January 2009 through December 2011. We also analyzed data from remote sensing and model simulations. We recorded 14 EEs that occurred over 49 days and could be grouped into two categories: (1) Local Source Impact (LSI; 26 days, 53%) and (2) African Dust Impact (ADI; 23 days, 47%). Our analysis suggested that the contribution of local sources to ADI EEs was relatively small. LSI EEs were observed only in the cold season, whereas ADI EEs occurred throughout the year, with a higher frequency during the cold season. The EEs with the highest intensity were recorded during African dust intrusions. ADI episodes were found to contribute more than local sources in Greece, with ADI and LSI fraction contribution ranging from 1.1 to 3.10. The EE contribution during ADI fluctuated from 41 to 83 μg/m 3 , whereas during LSI it varied from 14 to 67 μg/m 3 . This paper examines the occurrence and nature of extreme PM 10 pollution episodes (EEs) in Greece during a 3-yr period (2009-2011). Fourteen EEs were found of 49 days total duration, classified into two main categories: Local Source Impact (53%) and African Dust Impact (47%). All the above extreme PM 10 air pollution episodes were the result of specific synoptic prevailing conditions. Specific information on the linkages between the synoptic weather patterns and PM 10 concentrations could be used in the development of weather/health-warning system to alert the public that a synoptic episode is imminent.
76 FR 41825 - NASA Advisory Council; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-066)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council (NAC). The agenda topics for the....-12 p.m., Local Time. ADDRESSES: NASA Ames Conference Center (Building 3), Ballroom, 500 Severyns...
77 FR 38336 - NASA Advisory Council; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-050] NASA Advisory Council; Meeting... Space Administration (NASA) announces a meeting of the NASA Advisory Council (NAC). DATES: Wednesday..., 9 a.m.-12 p.m.; Local Time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1, Rooms...
The value of using seasonality and meteorological variables to model intra-urban PM2.5 variation
NASA Astrophysics Data System (ADS)
Olvera Alvarez, Hector A.; Myers, Orrin B.; Weigel, Margaret; Armijos, Rodrigo X.
2018-06-01
A yearlong air monitoring campaign was conducted to assess the impact of local temperature, relative humidity, and wind speed on the temporal and spatial variability of PM2.5 in El Paso, Texas. Monitoring was conducted at four sites purposely selected to capture the local traffic variability. Effects of meteorological events on seasonal PM2.5 variability were identified. For instance, in winter low-wind and low-temperature conditions were associated with high PM2.5 events that contributed to elevated seasonal PM2.5 levels. Similarly, in spring, high PM2.5 events were associated with high-wind and low-relative humidity conditions. Correlation coefficients between meteorological variables and PM2.5 fluctuated drastically across seasons. Specifically, it was observed that for most sites correlations between PM2.5 and meteorological variables either changed from positive to negative or dissolved depending on the season. Overall, the results suggest that mixed effects analysis with season and site as fixed factors and meteorological variables as covariates could increase the explanatory value of LUR models for PM2.5.
Liu, Yiming; Hong, Yingying; Fan, Qi; Wang, Xuemei; Chan, Pakwai; Chen, Xiaoyang; Lai, Anqi; Wang, Mingjie; Chen, Xunlai
2017-10-15
Located in the Southern China monsoon region, pollution days in Pearl River Delta (PRD) were classified into "Western type", "Central type" or "Eastern type", with a relative percentage of 67%, 24% and 9%, respectively. Using this classification system, three typical pollution events were selected for numerical simulations using the WRF-Chem model. The source sensitivity method for anthropogenic emissions of PM 2.5 and its precursors was applied to identify the source-receptor relationships for PM 2.5 among 9 cities in PRD. For "Western type" case, the PRD region was under control of a high-pressure system with easterly prevailing winds. The PM 2.5 concentrations in the western PRD region were higher than those in the eastern region, with emissions from cities in the eastern PRD region having higher contributions. Within the PRD's urban cluster, PM 2.5 in Huizhou, Dongguan and Shenzhen was mainly derived from local emissions, whereas the PM 2.5 in the other cities was primarily derived from external transport. For "Eastern type" case, the PRD was influenced by Typhoon Soulik with westerly prevailing winds. Emissions from cities in the western PRD region had the highest impacts on the overall PM 2.5 concentration. PM 2.5 in Jiangmen and Foshan was primarily derived from local emissions. Regarding "Central type" case, the PRD region was under control of a uniform pressure field with low wind speed. PM 2.5 concentrations of each city were primarily caused by local emissions. Overall, wind flows played a significant role in the transport and spatial distribution of PM 2.5 across the PRD region. Ideally, local governments would be wise to establish joint prevention and control measures to reduce regional atmospheric pollution, especially for "Western type" pollution. Copyright © 2017 Elsevier B.V. All rights reserved.
78 FR 20354 - Notice of Grand Staircase-Escalante National Monument Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... period at 5:00 p.m., local time, on May 7, 2013. Depending on the number of persons wishing to speak, a time limit could be established. Written statements can be sent to the GSENM address listed in the FOR..., transportation, lodging, and meals are the responsibility of the participating public. Jenna Whitlock, Associate...
Biomass burning contributions to urban aerosols in a coastal Mediterranean city.
Reche, C; Viana, M; Amato, F; Alastuey, A; Moreno, T; Hillamo, R; Teinilä, K; Saarnio, K; Seco, R; Peñuelas, J; Mohr, C; Prévôt, A S H; Querol, X
2012-06-15
Mean annual biomass burning contributions to the bulk particulate matter (PM(X)) load were quantified in a southern-European urban environment (Barcelona, Spain) with special attention to typical Mediterranean winter and summer conditions. In spite of the complexity of the local air pollution cocktail and the expected low contribution of biomass burning emissions to PM levels in Southern Europe, the impact of these emissions was detected at an urban background site by means of tracers such as levoglucosan, K(+) and organic carbon (OC). The significant correlation between levoglucosan and OC (r(2)=0.77) and K(+) (r(2)=0.65), as well as a marked day/night variability of the levoglucosan levels and levoglucosan/OC ratios was indicative of the contribution from regional scale biomass burning emissions during night-time transported by land breezes. In addition, on specific days (21-22 March), the contribution from long-range transported biomass burning aerosols was detected. Quantification of the contribution of biomass burning aerosols to PM levels on an annual basis was possible by means of the Multilinear Engine (ME). Biomass burning emissions accounted for 3% of PM(10) and PM(2.5) (annual mean), while this percentage increased up to 5% of PM(1). During the winter period, regional-scale biomass burning emissions (agricultural waste burning) were estimated to contribute with 7±4% of PM(2.5) aerosols during night-time (period when emissions were clearly detected). Long-range transported biomass burning aerosols (possibly from forest fires and/or agricultural waste burning) accounted for 5±2% of PM(2.5) during specific episodes. Annually, biomass burning emissions accounted for 19%-21% of OC levels in PM(10), PM(2.5) and PM(1). The contribution of this source to K(+) ranged between 48% for PM(10) and 97% for PM(1) (annual mean). Results for K(+) from biomass burning evidenced that this tracer is mostly emitted in the fine fraction, and thus coarse K(+) could not be taken as an appropriate tracer of biomass burning. Copyright © 2012 Elsevier B.V. All rights reserved.
Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells.
Offringa, Remko; Huang, Fang
2013-09-01
In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples. © 2013 Institute of Botany, Chinese Academy of Sciences.
Quantifying PM2.5-Meteorology Sensitivities in a Global Climate Model
NASA Technical Reports Server (NTRS)
Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Tai, A. P. K.; Fiore, A. M.; Mauzerall, D. L.
2016-01-01
Climate change can influence fine particulate matter concentrations (PM2.5) through changes in air pollution meteorology. Knowledge of the extent to which climate change can exacerbate or alleviate air pollution in the future is needed for robust climate and air pollution policy decision-making. To examine the influence of climate on PM2.5, we use the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL CM3), a fully-coupled chemistry-climate model, combined with future emissions and concentrations provided by the four Representative Concentration Pathways (RCPs). For each of the RCPs, we conduct future simulations in which emissions of aerosols and their precursors are held at 2005 levels while other climate forcing agents evolve in time, such that only climate (and thus meteorology) can influence PM2.5 surface concentrations. We find a small increase in global, annual mean PM2.5 of about 0.21 micro-g/cu m3 (5%) for RCP8.5, a scenario with maximum warming. Changes in global mean PM2.5 are at a maximum in the fall and are mainly controlled by sulfate followed by organic aerosol with minimal influence of black carbon. RCP2.6 is the only scenario that projects a decrease in global PM2.5 with future climate changes, albeit only by -0.06 micro-g/cu m (1.5%) by the end of the 21st century. Regional and local changes in PM2.5 are larger, reaching upwards of 2 micro-g/cu m for polluted (eastern China) and dusty (western Africa) locations on an annually averaged basis in RCP8.5. Using multiple linear regression, we find that future PM2.5 concentrations are most sensitive to local temperature, followed by surface wind and precipitation. PM2.5 concentrations are robustly positively associated with temperature, while negatively related with precipitation and wind speed. Present-day (2006-2015) modeled sensitivities of PM2.5 to meteorological variables are evaluated against observations and found to agree reasonably well with observed sensitivities (within 10e50% over the eastern United States for several variables), although the modeled PM2.5 is less sensitive to precipitation than in the observations due to weaker convective scavenging. We conclude that the hypothesized "climate penalty" of future increases in PM2.5 is relatively minor on a global scale compared to the influence of emissions on PM2.5 concentrations.
NASA Astrophysics Data System (ADS)
Sciare, Jean; Kleanthous, Savvas; Pikridas, Michael; Vrekoussis, Mihalis; Oikonomou, Konstantina; Merabet, Hamza; Mihalopoulos, Nikos; Yassaa, Noureddine
2015-04-01
A 1-month intensive campaign was performed during December 2014 at Nicosia, Cyprus, a city of 240,000 inhabitants, representative of E. Mediterranean medium sized cities. This is the first of a series of intensive campaigns, part of the MISTRALS-ENVI-Med "CyAr" project (Cyprus Aerosols and gas precursors) and MISTRALS-ChArMEx program (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/), and , with the objective to distinguish between local and transported sources responsible for wintertime particulate pollution. The mass and composition of the major chemical constituents of submicron aerosols (PM1) was monitored at an urban background station located at the city's suburbs with a suite of real-time analyzers (TEOM 1400, OPC Grimm 1.108, Q-ACSM, Aethalometer AE31). Quality control of Q-ACSM and Aethalometer datasets was performed through closure studies (using co-located TEOM / OPC Grimm). The consistency of the dataset was further validated using the integrated (off-line) and real-time measurements performed by the local air quality network at other locations in the same city. Very high levels of Black Carbon and organics were systematically observed every night, typically maximizing at 22:00 local time, pointing to local combustion sources most probably related to domestic heating. Similar pattern has been observed in other cities in the Eastern Mediterranean (Pikridas et al., 2013) and partly has been attributed to the economic crisis (Vrekoussis et al., 2013). Source apportionment of organic aerosols (OA) was performed using the SourceFinder software (SoFi, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between various primary/secondary OA sources that allowed us to better characterize the combustion sources responsible for the observed elevated nighttime PM1 levels. Acknowledgements: This campaign has been funded by MISTRALS (ENVI-Med CyAr & ChArMEx), CNRS-INSU, CEA, CyI, DLI, CDER and ECPL.
Dynamics of road traffic noise in Bhadrak city, India.
Swain, Bijay Kumar; Panda, Santosh Kumar; Goswami, Shreerup
2012-11-01
Road traffic noise assessed in 13 different squares of major intersection points in Bhadrak city during four different specified times i.e. 7-10 a.m., 11 a.m.-2 p.m., 3-6 p.m. and 7-10 p.m.. Road traffic was found to be the most important source of community noise at the studied sites. The noise levels of all the 13 squares were found to be beyond the permissible limit [70 dB (A)] during day time. Leq (equivalent noise level) values ranged from 93.4 to 100.5; 91.5 to 100.6; 95.1 to 107.3 and 97.3 to 106.3 dB during 7-10 a.m., 11 a.m.-2 p.m., 3-6 p.m. and 7-10 p.m. respectively. LNP values range from 115.7 to 127.7; 114.2 to 129.8; 118.2 to 138.2 and 120.7 to 135 dB, while TNI values range from 134.3 to 154.7; 130.7 to 157.9; 136.7 to 168.2 and 137.2 to 165 dB during 7-10 a.m., 11 a.m.-2 p.m., 3-6 p.m. and 7-10 p.m. respectively. Reprehensibly, even minimum LNP and TNI values are more than 114 and 130 dB respectively. Analysis of variance also computed for investigated squares at the peak hour i.e. 7-10 p.m. to infer the level of significance. The observed value of F (0.47) was less than the tabulated values and was not significant at both 5 and 1% levels of significance. Thus, the noise levels of different squares did not differ significantly at their peak hours. A preliminary public health survey carried out based on questionnaire method amongst 202 local inhabitants reveal the degree of annoyance due to road traffic noise.
The density of dark matter in the Galactic bulge and implications for indirect detection
Hooper, Dan
2016-11-29
A recent study, making use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey, combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within themore » $$\\pm 2.2 \\times \\pm 1.4 \\times \\pm 1.2$$ kpc volume of the bulge-bar region to be ($$1.84 \\pm 0.07) \\times 10^{10} \\, M_{\\odot}$$, of which 9-30% is made up of dark matter. Here, we use this result to constrain the the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Furthermore uncertainties remain significant, these results favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm$^3$, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the standard NFW value. In contrast, profiles with large flat-density cores are disfavored by this information.« less
Grímsvötn Volcano Injects Ash into the Stratosphere
2011-05-24
NASA Terra spacecraft captured this image of Grímsvötn, the most active of Iceland volcanoes, which began erupting around 5:30 p.m. local time 1730 UTC on Saturday, May 21, 2011, east of the capital city of Reykjavik.
75 FR 41240 - NASA Advisory Council; Aeronautics Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-079)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory....m. to 4 p.m. (local time). ADDRESSES: NASA Glenn Research Center, Building 15, Small Dining...
Alaska Volcano's Latest Eruption
Atmospheric Science Data Center
2017-06-06
... the Alaskan Volcano Observatory to issue a red alert for air travel in the area. Volcanic ash can cause major damage to aircraft engines, ... On May 28, 2017, at approximately 2:23 p.m. local time, NASA's Terra satellite passed over Bogoslof, less than 10 minutes after ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... and lack of legal access. The BLM is proposing a modified competitive sale to allow adjacent... than 3 p.m. local time, on April 29, 2013. If the adjacent landowners fail to exercise the preference...
Influence of Asian dust storms on air quality in Taiwan.
Liu, Chung-Ming; Young, Chea-Yuan; Lee, Yen-Chih
2006-09-15
In each year, dust storms triggered by cold air masses passing through northern China and Mongolia enhance the PM10 concentration over Taiwan region during winter and spring. On average, there are four to five dust events and 6.1 dust days in a year in Taiwan. Each event lasts for 1 day or even longer. A procedure to identify a dust event is rationalized and exercised on data collected during 1994-2005. Also, a ranking method named as the dust intensity rank (DIR) is developed to distinguish the intensity of each event affecting the local air quality. About 86% of dust days belong to ranks 1 and 2. In general, poorer air quality is associated with higher ranks. Ranks 4 and 5 correspond to a PSI (Pollution Standard Index) larger than 100. Linking DIR with the popular PSI is useful for both the public and the official forecasting system. It is also useful for inter-comparison between dust influences on air quality at different downstream regions in Taiwan. Composite analyses of the temporal and spatial variation of the hourly PM10 level indicate that dust particles usually arrive 12 h before the time of the peak PM10 concentration and last for 36 h at northern Taiwan, while the time of the peak concentration at eastern or western Taiwan, due to the evolution of the synoptic weather system, is about 3-12 h later. It is noted that the increase of PM10 level at the western side of Taiwan results from a mixture of upstream Asian dust inputs and local pollutants.
NASA Astrophysics Data System (ADS)
Mahapatra, P. S.; Sinha, P. R.; Boopathy, R.; Das, T.; Mohanty, S.; Sahu, S. C.; Gurjar, B. R.
2018-01-01
Measurement of particulate matter (PM) over an urban site with relatively high concentration of aerosol particles is critically important owing to its adverse health, environmental and climate impact. Here we present a 3 years' worth of measurements (January 2012 to December 2014) of PM2.5 (aerodynamic diameter of less than 2.5 μm) and PM10 (aerodynamic diameter of less than 10 μm) along with meteorological parameters and seasonal variations at Bhubaneswar an urban-coastal site, in eastern India. The concentrations of PM were determined gravimetrically from the filter samples of PM2.5 and PM10. It revealed remarkable seasonal variations with winter values (55.0 ± 23.4 μg/m3; 147.3 ± 42.4 μg/m3 for PM2.5 and PM10, respectively) about 3.5 times higher than that in pre-monsoon (15.7 ± 6.2 μg/m3; 41.8 ± 15.3 μg/m3). PM2.5 and PM10 were well correlated while PM2.5/PM10 ratios were found to be 0.38 and 0.32 during winter and pre-monsoon, indicating the predominance of coarse particles, mainly originating from long range transport of pollutants from northern and western parts of India and parts of west Asia as well. Concentration weighted trajectory (CWT) analysis revealed the IGP and North Western Odisha as the most potential sources of PM2.5 and PM10 during winter. The PM concentrations at Bhubaneswar were comparable with those at other coastal sites of India reported in the literature, but were lower than few polluted urban sites in India and Asia. Empirical model reproduced the observed seasonal variation of PM2.5 and PM10 very well over Bhubaneswar.
NASA Astrophysics Data System (ADS)
Flores, Rosa M.; Kaya, Nefel; Eşer, Övgü; Saltan, Şehnaz
2017-11-01
Mineral dust is the most significant source of natural particulate matter. In urban regions, where > 50% of the world population is currently living, local emissions of particulate matter are further aggravated by mineral dust loadings from deserts. The megacity of Istanbul is located in an area sensitive to local pollution due to transportation (i.e., private cars, public transportation, aircrafts, ships, heavy diesel trucks, etc.), industrial emissions, residential heating, and long-range transport from Europe, Asia, and deserts. In this work, the effect of desert dust transport on PM10 concentrations and physical properties was investigated for the period of 2007-2014 in the touristic area of Aksaray, Istanbul. The Dust Regional Atmospheric Model (DREAM8b) was used to predict dust loading in Istanbul during dust transport events. Variations on surface PM10 concentrations were investigated according to seasons and during dust transport events. Cluster analysis of air mass backward trajectories was useful to understand frequency analysis and air mass trajectory dependence of PM10 concentrations on dust loadings. The effect of desert dust transport on aerosol optical depths was also investigated. It was observed that PM10 concentrations exceeded the air quality standard of 50 μg m- 3 50% of the time during the study period. The largest number of exceedances in air quality standard occurred during the spring and winter seasons. Approximately 40-60% of the dust loading occurs during the spring. Desert dust and non-desert dust sources contribute to 22-72% and 48-81% of the ground-level PM10 concentrations in Aksaray, Istanbul during the study period. Averaged AOD observed during dust transport events in spring and summer ranged 0.35-0.55. Cluster analysis resolved over 82% the variability of individual air mass backward trajectories into 5 clusters. Overall, air masses arriving to Istanbul at 500 m are equally distributed into northern (52%) and southern (48%). Frequency analysis of PM10 concentrations with mean air mass backward trajectories showed that PM10 from local anthropogenic sources may be enhanced by long-range transport from the African Desert, Asian Desert, Arabian Peninsula, Russia, and Ukraine. The work presented here provides the first integrated assessment for evaluation of occurrence and quantification of the effect of dust transport to ground-level PM10 concentrations in Istanbul, which is helpful for human health prevention and implementation of air quality control measures.
NASA Astrophysics Data System (ADS)
Zeri, Marcelo; Oliveira-Júnior, José Francisco; Lyra, Gustavo Bastos
2011-09-01
Time series of pollutants and weather variables measured at four sites in the city of Rio de Janeiro, Brazil, between 2002 and 2004, were used to characterize temporal and spatial relationships of air pollution. Concentrations of particulate matter (PM10), sulfur dioxide (SO2) and carbon monoxide (CO) were compared to national and international standards. The annual median concentration of PM10 was higher than the standard set by the World Health Organization (WHO) on all sites and the 24 h means exceeded the standards on several occasions on two sites. SO2 and CO did not exceed the limits, but the daily maximum of CO in one of the stations was 27% higher on weekends compared to weekdays, due to increased activity in a nearby Convention Center. Air temperature and vapor pressure deficit have both presented the highest correlations with pollutant's concentrations. The concentrations of SO2 and CO were not correlated between sites, suggesting that local sources are more important to those pollutants compared to PM10. The time series of pollutants and air temperature were decomposed in time and frequency by wavelet analysis. The results revealed that the common variability of air temperature and PM10 is dominated by temporal scales of 1-8 days, time scales that are associated with the passage of weather events, such as cold fronts.
NASA Astrophysics Data System (ADS)
Ermilov, Sergey A.; Brownell, William E.; Anvari, Bahman
2004-06-01
The plasma membrane (PM) of mammalian outer hair cells (OHCs) generates mechanical forces in response to changes in the transmembrane electrical potential. The resulting change in the cell length is known as electromotility. Salicylate (Sal), the anionic, amphipathic derivative of aspirin induces reversible hearing loss and decreases electromotile response of the OHCs. Sal may change the local curvature and mechanical properties of the PM, eventually resulting in reduced electromotility or it may compete with intracellular monovalent anions, particularly Cl-, which are essential for electromotility. In this work we have used optical tweezers to study the effects of Sal on viscoelastic properties of the OHC PM when separated from the underlying composite structures of the cell wall. In this procedure, an optically trapped microsphere is brought in contact with PM and subsequently pulled away to form a tether. We measured the force exerted on the tether as a function of time during the process of tether growth at different pulling rates. Effective tether viscosity, steady-state tethering force extrapolated to zero pulling rate, and the time constant for tether growth were estimated from the measurements of the instantaneous tethering force. The time constant for the tether growth measured for the OHC basal end decreased 1.65 times after addition of 10 mM Sal, which may result from an interaction between Sal and cholesterol, which is more prevalent in the PM of OHC basal end. The time constants for the tether growth calculated for the OHC lateral wall and control human embryonic kidney cells as well as the other calculated viscoelastic parameters remained the same after Sal perfusion, favoring the hypothesis of competitive inhibition of electromotility by salicylate.
NASA Astrophysics Data System (ADS)
Sullivan, R. C.; Pryor, S. C.
2014-06-01
Spatiotemporal variability of fine particle concentrations in Indianapolis, Indiana is quantified using a combination of high temporal resolution measurements at four fixed sites and mobile measurements with instruments attached to bicycles during transects of the city. Average urban PM2.5 concentrations are an average of ˜3.9-5.1 μg m-3 above the regional background. The influence of atmospheric conditions on ambient PM2.5 concentrations is evident with the greatest temporal variability occurring at periods of one day and 5-10 days corresponding to diurnal and synoptic meteorological processes, and lower mean wind speeds are associated with episodes of high PM2.5 concentrations. An anthropogenic signal is also evident. Higher PM2.5 concentrations coincide with morning rush hour, the frequencies of PM2.5 variability co-occur with those for carbon monoxide, and higher extreme concentrations were observed mid-week compared to weekends. On shorter time scales (
Holmes, Heather A; Pardyjak, Eric R
2014-07-01
This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States-Mexico border During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14-30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 microg m(-3) and biomass stoves 163 to 504 microg m(-1). Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 microg m(-3)). The former is evident in the median and range of daytime PM values (median PM3: 250 microg m(-3), maximum: 9411 microg m(-3)), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 microg m(-3), maximum: 10,846 microg m(-3)). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 microg m(-3)). Implications: Regulatory air quality standards are based on outdoor ambient air measurements. However, a large fraction of time is typically spent indoors where a variety of activities including cooking, heating, tobacco smoking, and cleaning can lead to elevated PM concentrations. This study investigates the influence of meteorology, outdoor PM, and indoor activities on indoor air pollution (IAP) levels in the United States-Mexico border region. Results indicate that cooking fuel type and meteorology greatly influence the IAP in homes, with biomass fuel use causing the largest increase in PM concentration.
Brown, Steven G; Roberts, Paul T; McCarthy, Michael C; Lurmann, Frederick W; Hyslop, Nicole P
2006-09-01
Air quality monitoring was conducted at a rural site with a tower in the middle of California's San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/ PM2.5 Air Quality Study. Measurements at the surface and n a tower at 90 m were collected in Angiola, CA, from December 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.
Prediction of hourly PM2.5 using a space-time support vector regression model
NASA Astrophysics Data System (ADS)
Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang
2018-05-01
Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.
Vatanavicharn, Tipachai; Prapavorarat, Adisak; Jaree, Phattarunda; Somboonwiwat, Kunlaya; Tassanakajon, Anchalee
2014-01-01
Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410–fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway. PMID:24637711
NASA Astrophysics Data System (ADS)
Kim, H.; Zhang, Q.
2017-12-01
Non-refractory submicrometer particulate matter (NR-PM1) was measured in the Seoul Metropolitan Area (SMA), Korea, using an HR-ToF-AMS from April 14 to June 15, 2016, as a part of the KORUS-AQ campaign. The average concentration of PM1 was 22.1 µg m-3, which was composed of 44% organics, 20% SO4, 17% NO3, and 12 % NH4. Organics had an average O/C ratio of 0.49 and an average OM/OC ratio of 1.82. Four distinct sources of OA were identified via PMF analysis of the HR-ToF-AMS data: hydrocarbon like OA (HOA), cooking OA (COA),semi-volatile oxygenated OA (SV-OOA) and a low volatility oxygenated OA (LV-OOA). Our results indicate that air quality in SMA during KORUS-AQ was influenced strongly by secondary aerosol formation with SO4, NO3, NH4, SV-OOA, and LV-OOA together accounting for 76% of the PM1 mass. Due to high temperature and elevated ozone concentrations, photochemical reactions during daytime promoted the formation of SV-OOA, LV-OOA and SO4. In addition, aqueous-phase or heterogeneous reactions likely promoted efficient formation of NO3 whereas gas-to-particle partitioning processes appeared to have enhanced nighttime SV-OOA and NO3 formation. From May 20 to May 23, LV-OOA was significantly enhanced and accounted for up to 41% of the PM1 mass. Since this intense LV-OOA formation event was associated with large enhancement of VOCs, high concentration of Ox , strong solar radiation, and stagnant conditions, it appeared to be related to local photochemical formation. We also have investigated the formation and evolution mechanisms of severe haze episodes. Unlike the cases observed in winter when haze episodes were mainly caused by intense local emissions coupled with stagnant meteorological conditions, the spring haze events observed in this study appeared to be attributed by both regional and local factors. For example, episodes of long range transport of plumes were followed by calm meteorology conditions, which promoted the formation and accumulation of local secondary species, thus led to high concentrations of PM. Overall, our results indicate that PM pollutants in urban Korea originate from complex emission sources and atmospheric processes and that their concentrations and composition are controlled by various factors including meteorological conditions, local anthropogenic emissions, and upwind sources.
Richmond-Bryant, J; Saganich, C; Bukiewicz, L; Kalin, R
2009-05-01
An air quality study was performed outside a cluster of schools in the East Harlem neighborhood of New York City. PM(2.5) and black carbon concentrations were monitored using real-time equipment with a one-minute averaging interval. Monitoring was performed at 1:45-3:30 PM during school days over the period October 31-November 17, 2006. The designated time period was chosen to capture vehicle emissions during end-of-day dismissals from the schools. During the monitoring period, minute-by-minute volume counts of idling and passing school buses, diesel trucks, and automobiles were obtained. These data were transcribed into time series of number of diesel vehicles idling, number of gasoline automobiles idling, number of diesel vehicles passing, and number of automobiles passing along the block adjacent to the school cluster. Multivariate regression models of the log-transform of PM(2.5) and black carbon (BC) concentrations in the East Harlem street canyon were developed using the observation data and data from the New York State Department of Environmental Conservation on meteorology and background PM(2.5). Analysis of variance was used to test the contribution of each covariate to variability in the log-transformed concentrations as a means to judge the relative contribution of each covariate. The models demonstrated that variability in background PM(2.5) contributes 80.9% of the variability in log[PM(2.5)] and 81.5% of the variability in log[BC]. Local traffic sources were demonstrated to contribute 5.8% of the variability in log[BC] and only 0.43% of the variability in log[PM(2.5)]. Diesel idling and passing were both significant contributors to variability in log[BC], while diesel passing was a significant contributor to log[PM(2.5)]. Automobile idling and passing did not contribute significant levels of variability to either concentration. The remainder of variability in each model was explained by temperature, along-canyon wind, and cross-canyon wind, which were all significant in the models.
77 FR 38091 - NASA Advisory Council; Aeronautics Committee; Meeting.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-26
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 12-047] NASA Advisory Council; Aeronautics... National Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA..., July 24, 2012, 8 a.m. to 3 p.m. local time. ADDRESSES: NASA Goddard Space Flight Center (GSFC...
75 FR 50782 - NASA Advisory Council; Aeronautics Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-17
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-087)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory..., 2010, 8 a.m. to 12:30 p.m.; Local Time. ADDRESSES: NASA Ames Conference Center, Building 3, 500...
Improving AirNow Air Quality Products with NASA Near-Real-Time Remote Sensing Data (Invited)
NASA Astrophysics Data System (ADS)
Dye, T.; Pasch, A. N.; DeWinter, J. L.; Haderman, M.; Szykman, J.; White, J. E.; van Donkelaar, A.; Martin, R.
2013-12-01
The U.S. Environmental Protection Agency's (EPA) AirNow program provides the public with real-time and forecasted air quality conditions. Millions of people each day use it to protect their health. The AirNow program (http://www.airnow.gov), reports ground-level ozone (O3) and fine particulate matter (PM2.5) in a standardized index called the Air Quality Index (AQI). AirNow aggregates information from over 130 state, local, and federal air quality agencies and provides tools for over 2,000 agency staff responsible for monitoring, forecasting, and communicating local air quality. Each hour, AirNow systems generate thousands of maps and products. This presentation will describe how AirNow is benefiting from NASA's remote sensing data. We will describe two applications of NASA near-real-time remote sensing data within AirNow through case studies, focusing specifically on days when large spatial gradients in AQI and wildfire smoke impacts were observed. The first case study will show how AirNow is merging satellite-estimated PM2.5 concentrations into the AQI maps via the AirNow Satellite Data Processor (ASDP). AirNow derives these satellite estimates using NASA/NOAA satellite aerosol optical depth (AOD) retrievals and GEOS-Chem modeled ratios of surface PM2.5 concentrations to AOD. The second case study will show how NASA's Global Image Browse Services (GIBS) provides a near-real-time satellite product in AirNow-Tech for agency users to quickly identify smoke plumes and access air quality conditions in data-sparse areas during wildland fires.
NASA Astrophysics Data System (ADS)
Antony Chen, L.-W.; Doddridge, Bruce G.; Dickerson, Russell R.; Chow, Judith C.; Henry, Ronald C.
Chemically speciated fine particulate matter (PM 2.5) and trace gases (including NH 3, HNO 3, CO, SO 2, NO y) have been sampled at Fort Meade (FME: 39.10°N, 76.74°W; elevation 46 m MSL), Maryland, since July 1999. FME is suburban, located in the middle of the Baltimore-Washington corridor, and generally downwind of the highly industrialized Midwest. The PM 2.5 at FME is expected to be of both local and regional sources. Measurements over a 2-year period include eight seasonally representative months. The PM 2.5 shows an annual mean of 13 μg m -3 and primarily consists of sulfate, nitrate, ammonium, and carbonaceous material. Day-to-day and seasonal variations in the PM 2.5 chemical composition reflect changes of contribution from various sources. UNMIX, an innovative receptor model, is used to retrieve potential sources of the PM 2.5. A six-factor model, including regional sulfate, local sulfate, wood smoke, copper/iron processing industry, mobile, and secondary nitrate, is constructed and compared with reported source emission profiles. The six factors are studied further using an ensemble back trajectory method to identify possible source locations. Sources of local sulfate, mobile, and secondary nitrate are more localized around the receptor than those of other factors. Regional sulfate and wood smoke are more regional and associated with westerly and southerly transport, respectively. This study suggests that the local contribution to PM 2.5 mass can vary from <30% in summer to >60% in winter.
Sandén, Caroline; Broselid, Stefan; Cornmark, Louise; Andersson, Krister; Daszkiewicz-Nilsson, Joanna; Mårtensson, Ulrika E A; Olde, Björn; Leeb-Lundberg, L M Fredrik
2011-03-01
G protein-coupled receptor 30 [G protein-coupled estrogen receptor 1 (GPER1)], has been introduced as a membrane estrogen receptor and a candidate cancer biomarker and therapeutic target. However, several questions surround the subcellular localization and signaling of this receptor. In native cells, including mouse myoblast C(2)C(12) cells, Madin-Darby canine kidney epithelial cells, and human ductal breast epithelial tumor T47-D cells, G-1, a GPER1 agonist, and 17β-estradiol stimulated GPER1-dependent cAMP production, a defined plasma membrane (PM) event, and recruitment of β-arrestin2 to the PM. Staining of fixed and live cells showed that GPER1 was localized both in the PM and on intracellular structures. One such intracellular structure was identified as cytokeratin (CK) intermediate filaments, including those composed of CK7 and CK8, but apparently not endoplasmic reticulum, Golgi, or microtubules. Reciprocal coimmunoprecipitation of GPER1 and CKs confirmed an association of these proteins. Live staining also showed that the PM receptors constitutively internalize apparently to reach CK filaments. Receptor localization was supported using FLAG- and hemagglutinin-tagged GPER1. We conclude that GPER1-mediated stimulation of cAMP production and β-arrestin2 recruitment occur in the PM. Furthermore, the PM receptors constitutively internalize and localize intracellularly on CK. This is the first observation that a G protein-coupled receptor is capable of associating with intermediate filaments, which may be important for GPER1 regulation in epithelial cells and the relationship of this receptor to cancer.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... Macy's July 4th fireworks display. This temporary special local regulation is intended to restrict..., in the vicinity of New York City, NY from 7 p.m. to 10:30 p.m. on July 4th, 2010. This temporary...
NASA Astrophysics Data System (ADS)
Bigi, Alessandro; Ghermandi, Grazia
2017-04-01
The Po Valley is one of the largest European regions with a remarkably high concentration level of atmospheric pollutants, both for particulate and gaseous compounds. In the last decade stringent regulations on air quality standards and on anthropogenic emissions have been set by the European Commission, leading to an overall improvement in air quality across Europe. In order to assess the decadal pattern and variability in PM across the Po valley we thoroughly investigated the time series of PM10, PM2.5 and PM10-2.5 from 41, 44 and 15 sites respectively (Bigi & Ghermandi 2014, 2016). PM2.5 and PM10-2.5 (PM10) series with a 7 (10) year or longer record have been analysed for long term trend in deseasonalized monthly means, annual quantiles and in monthly frequency distribution by robust statistical methods. A widespread and significant decreasing trend was observed at several sites for all size fractions, with the drop, up to a few percent per year, occurring mainly in winter for PM2.5 and throughout the year for PM10. All series were tested for a significant weekly periodicity (a proxy to estimate the impact of primary anthropogenic emissions) by 3 different statistical methods, yielding positive results for summer PM2.5 and PM10, and for both summer and winter PM10-2.5. Hierarchical cluster analysis showed larger variability for PM10 than for PM2.5. The former was split in five clusters: two encompassing the metropolitan areas of Turin and Milan and their respective nearby sites and the other three clusters gathering northeast, northwest and central Po Valley sites respectively. PM2.5 clusters divide the valley in western, eastern and southern/Apennines foothill sectors. The trend in atmospheric concentration was compared with the time series of local primary and precursor emissions, vehicular fleet details and fuel sales. A significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to primary emissions of PM10 and PM2.5, whose drop was low and spatially restricted. Overall the decrease in atmospheric PM2.5 and PM10 seems to originate from a drop in both primary emissions and in precursors of secondary inorganic aerosol emissions, largely ascribed to vehicular traffic. Potentially, the recent increase in biomass burning emissions in winter and the modest decrease in NH3 weaken an otherwise even larger drop in atmospheric concentrations. References Bigi, A. & Ghermandi, G. Long-term trend and variability of atmospheric PM10 concentration in the Po Valley Atmospheric Chemistry and Physics, 2014, 14, 4895-4907 Bigi, A. & Ghermandi, G. Trends and variability of atmospheric PM2.5 and PM10-2.5 concentration in the Po Valley, Italy Atmospheric Chemistry and Physics, 2016, 16, 15777-15788
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Robledo, Jose A.; Schott, Eric J.; Vasta, Gerardo R.
2008-10-17
Perkinsus marinus (Phylum Perkinsozoa), a protozoan parasite of oysters, is considered one of the earliest diverging groups of the lineage leading to dinoflagellates. Perkinsus trophozoites are phagocytosed by oyster hemocytes, where they are likely exposed to reactive oxygen species. As part of its reactive oxygen detoxifying pathway, P. marinus possesses two iron-cofactored SOD (PmSOD1 and PmSOD2). Immunoflourescence analysis of P. marinus trophozoites and gene complementation in yeast revealed that PmSOD1 is targeted to the mitochondria. Surprisingly, although PmSOD2 is characterized by a bipartite N-terminus extension typical of plastid targeting, in preliminary immunofluorescence studies it was visualized as punctuate regions inmore » the cytoplasm that could not be assigned to any organelle. Here, we used immunogold electron microscopy to examine the subcellular localization PmSOD2 in P. marinus trophozoites. Gold grains were mostly associated with single-membrane vesicle-like structures, and eventually, localized to electron-dense, apparently amorphous material present in the lumen of a larger, unique compartment. The images suggested that PmSOD2 is targeted to small vesicles that fuse and/or discharge their content into a larger compartment, possibly the large vacuole typical of the mature trophozoites. In light of the in silico targeting prediction, the association of PmSOD2 with single-membrane compartments raises interesting questions regarding its organellar targeting, and the nature of a putative relic plastid in Perkinsus species.« less
Temporal variation of fine and coarse particulate matter sources in Jeddah, Saudi Arabia
Lim, Chris C.; Thurston, George D.; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M.; Alkhalaf, Abdulrahman K.; Brocato, Jason; Chen, Lung Chi; Costa, Max
2017-01-01
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (PM2.5) and coarse (PM2.5–10) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over one year, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM2.5 (21.9 µg/m3) and PM10 (107.8 µg/m3) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM2.5 (10 µg/m3) and PM10 (20 µg/m3), respectively. Similar to other Middle Eastern locales, PM2.5–10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM2.5 and PM2.5–10: 1) soil/road dust; 2) incineration; and 3) traffic; and for PM2.5 only, 4) residual oil burning. Soil/road dust accounted for a major portion of both the PM2.5 (27%) and PM2.5–10 (77%) mass, and the largest source contributor for PM2.5 was from residual oil burning (63%). Temporal variations of PM2.5–10 and PM2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency), and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM2.5 and PM2.5–10 masses in this city may have implications regarding the toxicity of these particles versus those in the western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. PMID:28635552
NASA Astrophysics Data System (ADS)
Hansen, A. B.; Kendall, E.; Chew, B. N.; Chong, W. M.; Gan, C.; Hort, M. C.; Shaw, F.; Witham, C. S.
2017-12-01
Biomass burning in South East Asia causes intense haze episodes in Singapore, these are of major concern to the local government and the population exposed to the haze. Using a Lagrangian dispersion model we have studied haze in the seven most recent years (2010 - 2016) to gain a deeper understanding of intense haze in Singapore. In this study, modelled haze time-series at one eastern and one western monitoring station in Singapore are compared to local observed PM10 and PM2.5 air concentrations. The haze time-series are broken down by season or month, source region, and monitoring location.The analysis, presented as time series and pie charts, illustrates the relative contribution to haze in Singapore from different regions, variations between seasons and the correlation of impact to the combined timing of burning activity and meteorological patterns. Air history maps, showing where air arriving in Singapore originates from and/or has travelled through, are used to isolate the meteorological dependence of impacts. These show a strong monsoonal variation and help explain the inter-annual differences between sources and actual concentrations of biomass burning PM in Singapore. For example, there is a strong correlation in 2013 between burning in Riau and haze in Singapore, but a weak correlation in other years when a significant part of haze originates from, e.g., Peninsula Malaysia, but emissions are seemingly negligible. We see that, in spite of the size of Singapore, there is significant difference in concentrations and major contributing source regions between the two monitoring stations, annually and seasonally. The differences at the two monitoring stations are seen in varying degrees in the years 2011, 2012, 2014, and 2015, throughout different seasons. Although only biomass burning is considered in the simulations, our modelled results are in good agreement with local observations. We have identified the source regions with the biggest contributions to haze in Singapore as Riau and Peninsula Malaysia, with secondary contributions from South Sumatra, Jambi, Central and West Kalimantan, Riau Islands, and Bangka-Belitung. We show that both regional burning and regional weather has significant impact on local haze conditions in Singapore.
Kumar, M Kishore; Sreekanth, V; Salmon, Maëlle; Tonne, Cathryn; Marshall, Julian D
2018-08-01
This study uses spatiotemporal patterns in ambient concentrations to infer the contribution of regional versus local sources. We collected 12 months of monitoring data for outdoor fine particulate matter (PM 2.5 ) in rural southern India. Rural India includes more than one-tenth of the global population and annually accounts for around half a million air pollution deaths, yet little is known about the relative contribution of local sources to outdoor air pollution. We measured 1-min averaged outdoor PM 2.5 concentrations during June 2015-May 2016 in three villages, which varied in population size, socioeconomic status, and type and usage of domestic fuel. The daily geometric-mean PM 2.5 concentration was ∼30 μg m -3 (geometric standard deviation: ∼1.5). Concentrations exceeded the Indian National Ambient Air Quality standards (60 μg m -3 ) during 2-5% of observation days. Average concentrations were ∼25 μg m -3 higher during winter than during monsoon and ∼8 μg m -3 higher during morning hours than the diurnal average. A moving average subtraction method based on 1-min average PM 2.5 concentrations indicated that local contributions (e.g., nearby biomass combustion, brick kilns) were greater in the most populated village, and that overall the majority of ambient PM 2.5 in our study was regional, implying that local air pollution control strategies alone may have limited influence on local ambient concentrations. We compared the relatively new moving average subtraction method against a more established approach. Both methods broadly agree on the relative contribution of local sources across the three sites. The moving average subtraction method has broad applicability across locations. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Dunea, Daniel; Iordache, Stefania; Pohoata, Alin; Lungu, Emil; Ianache, Cornel; Ianache, Radu
2016-04-01
One of the major air quality stressors in the urban area is particulate matter (PM). PM includes dust, dirt, soot, smoke, and liquid droplets emitted into the air by various sources such as vehicles, factories, and construction activities. PM has been linked to asthma and other respiratory illnesses. Inner-city residents need timely access to air quality synthetic indicators for protecting their respiratory health. Access to air quality forecasts and real-time data can allow residents, especially children and elders, to reduce their exposure when PM levels in conjunction with other pollutants are of potential concern. Ploiesti city is an important industrial center, which experienced a rapid economic growth in the last decade. Its industrial activity is concentrated especially on the oil production and refining industry. Ploiesti is the only city in Europe surrounded by four oil refineries. Monitoring campaigns were carried out in 12 sampling points during the "rush" hours (7.00-12.00 a.m. and 3.00-7.00 p.m.) to assess the potential exposure to high PM levels using an optical portable monitoring system, which is measuring fine and submicrometric fractions with a laser beam (DusttrakTM DRX 8533EP with environmental enclosure). Inverse distance weighting algorithm was used to obtain potential isolines of concentrations at town's scale in GIS environment. NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), respectively the backward trajectory type, was used to overview the contribution of long range transport from the most probable source region of the significant episodes characterized by PM rising of concentrations. Extraction of radiometric indicators from historical databases with multispectral images allowed the spatiotemporal characterization of land use and cloud distribution i.e. Sentinel 2 and PROBA-V (allowing specific characterization of NDVI, which provided canopy and surface reflectance in the pilot area). Resulted data were overlapped on the GIS thematic layers of the Ploiesti city area to develop the integrated system of PM movement prediction. All thematic layers were referenced to the same coordinate system using local 1970 stereographic projection and Dealul Piscului 1970 geographic coordinate system. The meteorological inputs used in experiments included long term time series recorded at local station. We combined these multiple datasets to find potential correlations that can be used for improving the prediction of particulate matter pollution episodes in Ploiesti urban area with latest state-of-the-art satellite imagery support. This study received funding from the European Economic Area Financial Mechanism 2009 - 2014 under the project ROKIDAIR "Towards a better protection of children against air pollution threats in the urban areas of Romania" contract no. 20SEE/30.06.2014 (http://www.rokidair.ro/en).
Related Rules and Programs that Help States Attain PM Standards
EPA’s national and regional rules to reduce emissions of pollutants that form particle pollution will help state and local governments meet the PM NAAQS. A number of voluntary programs also are helping areas reduce fine PM pollution.
78 FR 38829 - Special Local Regulations; Recurring Marine Events in the Seventh Coast Guard District
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
... regulation for the St. John 4th of July Carnival Fireworks Display from 8 p.m. until 10 p.m. on July 4, 2013...: The Coast Guard will enforce the special local regulation for the annual St. John 4th of July Carnival...
76 FR 17712 - NASA Advisory Council; Commercial Space Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-30
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-027)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: April 27, 2011, 2-3:30 p.m., Local Time. ADDRESSES: NASA... Administration, Washington, DC 20546. Phone 202-358-1686, fax: 202-358-3878, [email protected]nasa.gov...
77 FR 67028 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-092] NASA Advisory Council; Information... Technology Infrastructure Committee (ITIC) of the NASA Advisory Council (NAC). DATES: Tuesday, November 27, 2012, 1:00 to 5:00 p.m., Local Time. ADDRESSES: NASA Marshall Space Flight Center, Building 4200, Room...
78 FR 20357 - NASA Advisory Council; Science Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-037] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory...:30 a.m. to 3:00 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street SW., Room 6H45...
77 FR 38093 - NASA Advisory Council; Science Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-26
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-046] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory.... to 2:30 p.m., local time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1, Room E100E...
78 FR 41114 - NASA Advisory Council; Aeronautics Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-075] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory... planning. DATES: Tuesday, July 30, 2013, 9:00 a.m. to 5:00 p.m.; Local Time. ADDRESSES: NASA Headquarters...
77 FR 52067 - NASA Advisory Council; Commercial Space Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [12-069] NASA Advisory Council; Commercial Space.... DATES: Tuesday, September 18, 2012, 11:45 a.m.-5:30 p.m.; Local Time. ADDRESSES: NASA Ames Research Center (ARC), The Showroom, Building M-3, NASA Ames Conference Center, 500 Severyns Road, NASA Research...
75 FR 80081 - NASA Advisory Council; Exploration Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-21
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-167)] NASA Advisory Council... the NASA Advisory Council. DATES: Tuesday, January 11, 2011, 10:30 a.m.-5:45 p.m., Local Time ADDRESSES: NASA Headquarters, Glennan Conference Room-1Q39; 300 E Street, SW., Washington, DC 20546 FOR...
77 FR 6824 - NASA Advisory Council; Science Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-010] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory....m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street SW., Room 3H46 and 7H45...
78 FR 67202 - NASA Advisory Council; Science Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-131] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2013, 8:30 a.m. to 3:00 p.m., Local Time. ADDRESSES: This meeting will take place at NASA Headquarters...
76 FR 17158 - NASA Advisory Council; Science Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-28
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-026)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory....m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 5H45, Washington, DC...
76 FR 59446 - NASA Advisory Council; Science Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-26
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice11-084] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2011, 8:30 a.m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 3H46...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
....m. to 4:30 p.m., Local Time. ADDRESSES: National Aeronautics and Space Administration Headquarters... and Space Administration Headquarters, Washington, DC 20546, (202) 358-1578, or [email protected], officially- issued picture identification such as driver's license to enter the NASA Headquarters building...
77 FR 59184 - Notice of Commission Staff Attendance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... activities of the Southern Company Services, Inc.: 2012 Southeastern Regional Transmission Planning Process...:00 a.m.-2:00 p.m., Local Time. The above-referenced meeting will be held at: Alabama Power Company Corporate Headquarters, Room 4G, Birmingham, Alabama. The above-referenced meeting is open to stakeholders...
77 FR 14777 - Notice of Commission Staff Attendance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-13
... Southern Company Services, Inc.: 2012 Southeastern Regional Transmission Planning Process (SERTP) 1st..., 2012, 9 a.m.-5 p.m., Local Time The above-referenced meeting will be held at: Alabama Power Company Corporate Headquarters, Room 4H, Birmingham, Alabama The above-referenced meeting is open to stakeholders...
77 FR 2975 - Notice of Commission Staff Attendance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... may attend the following meetings related to the transmission planning activities of the Southwest Power Pool, Inc. (SPP): SPP Strategic Planning Committee Task Force on Order No. 1000 Meeting, January 18, 2012, 3:30-6:30 p.m., Local Time. SPP Strategic Planning Committee Meeting, January 19, 2012, 8 a...
Mei, Dan; Wen, Meng; Xu, Xuemei; Zhu, Yuzheng; Xing, Futang
2018-04-20
In atmospheric environment, the layout difference of urban buildings has a powerful influence on accelerating or inhibiting the dispersion of particle matters (PM). In industrial cities, buildings of variable heights can obstruct the diffusion of PM from industrial stacks. In this study, PM dispersed within building groups was simulated by Reynolds-averaged Navier-Stokes equations coupled Lagrangian approach. Four typical street building arrangements were used: (a) a low-rise building block with Height/base H/b = 1 (b = 20 m); (b) step-up building layout (H/b = 1, 2, 3, 4); (c) step-down building layout (H/b = 4, 3, 2, 1); (d) high-rise building block (H/b = 5). Profiles of stream functions and turbulence intensity were used to examine the effect of various building layouts on atmospheric airflow. Here, concepts of particle suspension fraction and concentration distribution were used to evaluate the effect of wind speed on fine particle transport. These parameters showed that step-up building layouts accelerated top airflow and diffused more particles into street canyons, likely having adverse effects on resident health. In renewal old industry areas, the step-down building arrangement which can hinder PM dispersion from high-level stacks should be constructed preferentially. High turbulent intensity results in formation of a strong vortex that hinders particles into the street canyons. It is found that an increase in wind speed enhanced particle transport and reduced local particle concentrations, however, it did not affect the relative location of high particle concentration zones, which are related to building height and layout. This study has demonstrated the height variation and layout of urban architecture affect the local concentration distribution of particulate matter (PM) in the atmosphere and for the first time that wind velocity has particular effects on PM transport in various building groups. The findings may have general implications in optimization the building layout based on particle transport characteristics during the renewal of industrial cities. For city planners, the results and conclusions are useful for improving the local air quality. The study method also can be used to calculate the explosion risk of industrial dust for people who live in industrial cities.
Zhao, Chao; Qiu, Lihua
2017-01-01
Transcription factor E2F-2 is a regulator of cell cycle. Researchers identified E2F-2 genes from yeasts to humans, but few reports investigated E2F-2 gene from black tiger shrimp. In the present study, we cloned E2F-2 gene from black tiger shrimp (Penaeus monodon). Full-length PmE2F-2 complementary DNA sequence measures 3,189 bp with an open reading frame of 1,371 bp. Complete PmE2F-2 genomic sequence (17,305 bp) of P. monodon contains nine exons, which are separated by eight introns. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that PmE2F-2 is highly expressed in hepatopancreas and ovaries of P. monodon. Highest PmE2F-2 expression levels were observed in stage III ovarian development of P. monodon. PmE2F-2 expression levels were significantly augmented in ovaries of P. monodon after 5-hydroxytryptamine injection and eyestalk ablation. RNA interference experiments were conducted to examine PmE2F-2, PmCDK2, and PmCyclin E expression profiles. PmE2F-2 was successfully knocked down in ovaries and hepatopancreas via double-stranded RNA (dsRNA)–E2F-2 injection. In the same organs, PmE2F-2 expression localization and level were investigated through in situ hybridization, which revealed consistent results with those of qRT-PCR. After dsRNA—E2F-2 injection, gonadosomatic index of shrimp was significantly lower than those following dsRNA—GFP and phosphate-buffered solution injections. Therefore, PmE2F-2 may be involved in ovarian maturation in P. monodon. PMID:28558060
Analysis of airborne particulate matter (PM2.5) over Hong Kong using remote sensing and GIS.
Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling
2012-01-01
Airborne fine particulates (PM(2.5); particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM(2.5) and its correlation with meteorological parameters in Hong Kong, during 2007-2008. Significant diurnal variations of PM(2.5) concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM(2.5) concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM(2.5) were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM(2.5) emissions. To understand the spatial pattern of PM(2.5) concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM(2.5) vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM(2.5) vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM(2.5) concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies.
Analysis of Airborne Particulate Matter (PM2.5) over Hong Kong Using Remote Sensing and GIS
Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling
2012-01-01
Airborne fine particulates (PM2.5; particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM2.5 and its correlation with meteorological parameters in Hong Kong, during 2007–2008. Significant diurnal variations of PM2.5 concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM2.5 concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM2.5 were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM2.5 emissions. To understand the spatial pattern of PM2.5 concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM2.5 vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM2.5 vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM2.5 concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies. PMID:22969323
NASA Astrophysics Data System (ADS)
Li, Xiao-Bing; Wang, Dong-Sheng; Lu, Qing-Chang; Peng, Zhong-Ren; Wang, Zhan-Yong
2018-01-01
A lightweight unmanned aerial vehicle (UAV) was outfitted with miniaturized sensors to investigate the vertical distribution patterns and sources of fine aerosol particles (PM2.5) within the 1 000 m lower troposphere. A total of 16 UAV flights were conducted in the Yangtze River Delta (YRD) region, China, from the summer to winter in 2014. The associated ground-level measurements from two environmental monitoring stations were also used for background analysis. The results show that ground-level PM2.5 concentrations demonstrated a decreasing trend from Feb. to Jul. and an increasing trend from Aug. to Jan. (the following year). Higher PM2.5 concentrations during the day were mainly observed in the morning (Local Time, LT 05-09) in the spring and summer. However, higher PM2.5 concentrations occurred mainly in the late afternoon and evening (LT 16-20) in the autumn and winter, excluding severe haze pollution days when higher PM2.5 concentrations were also observed during the morning periods. Lower tropospheric PM2.5 concentrations exhibited similar diurnal vertical distribution patterns from the summer to winter. The PM2.5 concentrations decreased with height in the morning, with significantly large vertical gradients from the summer to winter. By contrast, the aerosol particles were well mixed with PM2.5 concentrations of lower than 35 μg ṡm-3 in the early afternoon (LT 12-16) due to sufficient expansions of the planetary boundary layer. The mean vertical PM2.5 concentrations within the 1 000 m lower troposphere in the morning were much larger in the winter (∼87.5 μg ṡm-3) than in the summer and autumn (∼20 μg ṡm-3). However, subtle differences of ∼11 μg ṡm-3 in the mean vertical PM2.5 concentrations were observed in the early afternoon from the summer to winter. The vertical distribution patterns of black carbon and its relationships with PM2.5 indicated that the lower tropospheric aerosol particles might be mainly derived from fossil-fuel combustion sources. In addition, a 48-h backward trajectory analysis of air parcels showed that the lower tropospheric aerosol particles were mainly from emissions of local sources in the YRD region in the summer and autumn. By sharp contrast, the aerosol particles of this region in the winter were mainly of long-range transport sources from the north and northwest China due to the impact of Asian winter monsoon.
Intervention assessments in the control of PM10 emissions from an urban waste transfer station.
Barratt, B M; Fuller, G W
2014-05-01
While vehicle emissions present the most widespread cause of breaches of EU air quality standards in urban areas of the UK, the greatest PM10 concentrations are often recorded close to small industrial sites with significant and long-term public exposure within close proximity. This is particularly the case in London, where monitoring in densely populated locations, adjacent to waste transfer stations (WTS), routinely report the highest PM10 concentrations in the city. This study aims to assess the impact of dust abatement measures taken at a WTS in west London and, in so doing, develop analysis techniques transferrable to other similar industrial situations. The study was performed in a 'blinded fashion', i.e., no details of operating times, activities or remediation measures were provided prior to the analysis. The study established that PM10 concentrations were strongly related to the industrial area's working hours and atmospheric humidity. The primary source of local particulate matter during working hours was found to be from the industrial area itself, not from the adjacent road serving the site. CUSUM analysis revealed a strong, sustained change point coinciding with a number of modifications at the WTS. Analysis suggested that introducing a vehicle washer bay, leading to a less dry and dusty yard, and ceasing stock piling and waste handling activities outside of the open shed had the greatest effect on PM10 concentrations. The techniques developed in this study should empower licensing authorities to more effectively characterise and mitigate particulate matter generated by urban industrial activities, thereby improving the health and quality of life of the local population.
Removal efficiency of particulate matters at different underlying surfaces in Beijing.
Liu, Jiakai; Mo, Lichun; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Zhang, Zhenming; Liu, Jinglan
2016-01-01
Particulate matter (PM) pollution has been increasingly becoming serious in Beijing and has drawn the attention of the local government and general public. This study was conducted during early spring of 2013 and 2014 to monitor the concentration of PM at three different land surfaces (bare land, urban forest, and lake) in the Olympic Park in Beijing and to analyze its effect on the concentration of meteorological factors and the dry deposition onto different land cover types. The results showed that diurnal variation of PM concentrations at the three different land surfaces had no significant regulations, and sharp short-term increases in PM10 (particulate matter having an aerodynamic diameter <10 μm) occurred occasionally. The concentrations also differed from one land cover type to another at the same time, but the regulation was insignificant. The most important meteorological factor influencing the PM concentration is relative humidity; it is positively correlated with the PM concentration. While in the forests, the wind speed and irradiance also influenced the PM concentration by affecting the capture capacity of trees and dry deposition velocity. Other factors were not correlated with or influenced by the PM concentration. In addition, the hourly dry deposition in unit area (μg/m(2)) onto the three types of land surfaces and the removal efficiency based on the ratio of dry deposition and PM concentration were calculated. The results showed that the forest has the best removal capacity for both PM2.5 (particulate matter having an aerodynamic diameter <2.5 μm) and PM10 because of the faster deposition velocity and relatively low resuspension rate. The lake's PM10 removal efficiency is higher than that of the bare land because of the relatively higher PM resuspension rates on the bare land. However, the PM2.5 removal efficiency is lower than that of the bare land because of the significantly lower dry deposition velocity.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
....1101 will be enforced on December 9 and December 16, 2012 from 5:30 p.m. until 8:30 p.m. each day. FOR... special local regulations in 33 CFR 100.1101 in support of the San Diego Parade of Lights (Item 5 on Table 1 of 33 CFR 100.1101). The Coast Guard will enforce the special local regulations between the...
Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen
2016-07-01
To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM2.5) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM2.5, the sampling days were classified into high PM2.5 concentration event days (PM2.5>35 μg m(-3)) and non-event days (PM2.5<35 μg m(-3)). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl(-) and NO3(-) increased when a high PM2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM2.5 concentration event days. In order to reduction of high PM2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chemical Composition and Source Apportionment of Size ...
The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM 2.5 ) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible for health effects however are not fully understood. Size-fractionated PM (coarse, fine, and ultrafine) samples were collected using a ChemVol sampler at an urban site (G.T. Craig (GTC)) and rural site (Chippewa Lake (CLM)) from July 2009 to June 2010, and then chemically analyzed. The resulting speciated PM data were apportioned by EPA positive matrix factorization to identify emission sources for each size fraction and location. For comparisons with the ChemVol results, PM samples were also collected with sequential dichotomous and passive samplers, and evaluated for source contributions to each sampling site. The ChemVol results showed that annual average concentrations of PM, elemental carbon, and inorganic elements in the coarse fraction at GTC were ~ 2, ~7, and ~3 times higher than those at CLM, respectively, while the smaller size fractions at both sites showed similar annual average concentrat ions. Seasonal variations of secondary aerosols (e.g., high N03- level in winter and high SO42- level in summer) were observed at both sites. Source apportionment results demonstrated that the PM samples at GTC and CLM were enriched with local industrial sources (e.g., steel plant and coa
Assessment and Mitigation of PM pollution in the border regions of Austria and Slovenia
NASA Astrophysics Data System (ADS)
Uhrner, Ulrich; Reifeltshammer, Rafael; Lackner, Bettina; Forkel, Renate; Sturm, Peter
2017-04-01
Many cities, towns and regions located at the southern fringe of the Alps face remarkably high PM levels particularly during the winter period. The project PMinter aimed 1) to analyse the air quality in S-Styria, S-Carinthia and N-Slovenia, 2) to evaluate local and regional measures to develop effective air quality management plans and finally 3) to support a sustainable improvement of air quality in the project region. Using wood for residential heating is very popular in Austria and in Slovenia. To assess the contribution from wood smoke to the total PM burden and the impact of regional and large scale transport as well as the impact of secondary aerosols were major goals of PMinter. Due to the complex terrain air quality and exposure assessment is challenging. To resolve sources which are located in valleys and basins, emissions were computed or processed on 1 km x 1 km resolution for the entire program area. A new combined model approach was developed and tested successfully using a state-of-the-art CTM (WRF/Chem) on the regional scale and the Lagrangian particle model GRAL on the local scale. A detailed analysis and comparisons with measurements and regional/local scale scenario simulations were carried out. Residential heating using wood was identified as the major source and PM component dominant on the "local scale" ( 10 km), secondary inorganic aerosol was the dominant PM component on the regional scale ( 10 km - 150 km) and above. Various mitigation scenarios for PM were computed. A "local" scenario where individual heating facilities using solid fuels were replaced by district heating and a regional scenario with 35% reduced ammonia emissions from agriculture proved to be most effective.
Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia.
Lim, Chris C; Thurston, George D; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M; Alkhalaf, Abdulrahman K; Brocato, Jason; Chen, Lung Chi; Costa, Max
2018-02-01
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (aerodynamic diameter <2.5 μm; PM 2.5 ) and coarse (aerodynamic diameter 2.5-10 μm; PM 2.5-10 ) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over 1 yr, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM 2.5 (21.9 μg/m 3 ) and PM 10 (107.8 μg/m 3 ) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM 2.5 (10 μg/m 3 ) and PM 10 (20 μg/m 3 ), respectively. Similar to other Middle Eastern locales, PM 2.5-10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM 10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM 2.5 and PM 2.5-10 : (1) soil/road dust, (2) incineration, and (3) traffic; and for PM 2.5 only, (4) residual oil burning. Soil/road dust accounted for a major portion of both the PM 2.5 (27%) and PM 2.5-10 (77%) mass, and the largest source contributor for PM 2.5 was from residual oil burning (63%). Temporal variations of PM 2.5-10 and PM 2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency) and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM 2.5 and PM 2.5-10 masses in this city may have implications regarding the toxicity of these particles versus those in the Western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. Temporal variations of fine and coarse PM mass, elemental constituents, and sources were examined in Jeddah, Saudi Arabia, for the first time. The main source of PM 2.5-10 is natural windblown soil and road dust, whereas the predominant source of PM 2.5 is residual oil burning, generated from the port and oil refinery located west of the air sampler, suggesting that targeted emission controls could significantly improve the air quality in the city. The compositional differences point to a need for health effect studies to be conducted in this region, so as to directly assess the applicability of the existing guidelines to the Middle East air pollution.
NASA Astrophysics Data System (ADS)
Chen, Sheng-Chieh; Hsu, Shih-Chieh; Tsai, Chuen-Jinn; Chou, Charles C.-K.; Lin, Neng-Huei; Lee, Chung-Te; Roam, Gwo-Dong; Pui, David Y. H.
2013-10-01
The characteristics of atmospheric ultrafine particles (i.e. <100 nm, nanoparticles or PM0.1), PM2.5 and PM10 were studied at the Lulin Atmospheric Background Station (LABS, 2862 m a.s.l., Taiwan) as part of the 7SEAS/Dongsha campaign. Sampling was conducted in July and August of 2009 and September to November of 2010, during which two 96-h and four 72-h PM samples were taken. Real-time particle size distributions were measured continuously from July to August of 2009 and July to November of 2010. PM0.1, PM2.5 and PM10 were collected by using two MOUDIs (micro-orifice uniform deposit impactor, MSP 110) and a Dichotomous PM10 sampler (Andersen SA-241) while real-time size distributions of particles of 5.5-350 nm in diameter were measured by an SMPS (scanning mobility particle sizer, TSI 3936). Filter samples were analyzed for gravimetric mass and chemical compositions, including organic carbon (OC), element carbon (EC), water-soluble ions and trace elements. Meteorology parameters and gaseous O3 and CO concentrations were also monitored along with the SMPS data for studying particle nucleation, condensation, SOA (secondary organic aerosol) formation and long-range air pollutant transport at the LABS. SMPS data showed that nanoparticle concentrations at the LABS remained relatively stable at low level (˜300-500 #/cm3) during the nighttime (22:00-04:00), increased during daytime, and reached a maximum (˜2000-4000 #/cm3) in the afternoon (12:00-16:00). The NMD (number median diameter) showed an opposite trend with the peak number concentrations observed in the afternoon corresponding to the smallest NMD (20-40 nm). These results indicate the dominance of local sources rather than the transport from other atmospheric air because that the lifetime of nanoparticles was only few minutes. Chemical analysis of filter samples showed that the concentrations of trace elements K and Mn, which serve as biomass burning markers, were elevated in the fine particle fractions during November 9-12th when the air mass passed through South and Southeast Asia prior to reaching the LABS. The concentrations of K and Mn would have been low if the aerosols had local origins The biomass burning derived K was found in all fine particle samples at the LABS suggesting that the free troposphere around Taiwan is frequently impacted by the long-range transport of biomass burning plumes via the westerly winds.
Masiol, Mauro; Centanni, Elena; Squizzato, Stefania; Hofer, Angelika; Pecorari, Eliana; Rampazzo, Giancarlo; Pavoni, Bruno
2012-09-01
This study presents a procedure to differentiate the local and remote sources of particulate-bound polycyclic aromatic hydrocarbons (PAHs). Data were collected during an extended PM(2.5) sampling campaign (2009-2010) carried out for 1 year in Venice-Mestre, Italy, at three stations with different emissive scenarios: urban, industrial, and semirural background. Diagnostic ratios and factor analysis were initially applied to point out the most probable sources. In a second step, the areal distribution of the identified sources was studied by applying the discriminant analysis on factor scores. Third, samples collected in days with similar atmospheric circulation patterns were grouped using a cluster analysis on wind data. Local contributions to PM(2.5) and PAHs were then assessed by interpreting cluster results with chemical data. Results evidenced that significantly lower levels of PM(2.5) and PAHs were found when faster winds changed air masses, whereas in presence of scarce ventilation, locally emitted pollutants were trapped and concentrations increased. This way, an estimation of pollutant loads due to local sources can be derived from data collected in days with similar wind patterns. Long-range contributions were detected by a cluster analysis on the air mass back-trajectories. Results revealed that PM(2.5) concentrations were relatively high when air masses had passed over the Po Valley. However, external sources do not significantly contribute to the PAHs load. The proposed procedure can be applied to other environments with minor modifications, and the obtained information can be useful to design local and national air pollution control strategies.
NASA Astrophysics Data System (ADS)
Weitnauer, C.; Beck, C.; Jacobeit, J.
2013-12-01
In the last decades the critical increase of the emission of air pollutants like nitrogen dioxide, sulfur oxides and particulate matter especially in urban areas has become a problem for the environment as well as human health. Several studies confirm a risk of high concentration episodes of particulate matter with an aerodynamic diameter < 10 μm (PM10) for the respiratory tract or cardiovascular diseases. Furthermore it is known that local meteorological and large scale atmospheric conditions are important influencing factors on local PM10 concentrations. With climate changing rapidly, these connections need to be better understood in order to provide estimates of climate change related consequences for air quality management purposes. For quantifying the link between large-scale atmospheric conditions and local PM10 concentrations circulation- and weather type classifications are used in a number of studies by using different statistical approaches. Thus far only few systematic attempts have been made to modify consisting or to develop new weather- and circulation type classifications in order to improve their ability to resolve local PM10 concentrations. In this contribution existing weather- and circulation type classifications, performed on daily 2.5 x 2.5 gridded parameters of the NCEP/NCAR reanalysis data set, are optimized with regard to their discriminative power for local PM10 concentrations at 49 Bavarian measurement sites for the period 1980 to 2011. Most of the PM10 stations are situated in urban areas covering urban background, traffic and industry related pollution regimes. The range of regimes is extended by a few rural background stations. To characterize the correspondence between the PM10 measurements of the different stations by spatial patterns, a regionalization by an s-mode principal component analysis is realized on the high-pass filtered data. The optimization of the circulation- and weather types is implemented using two representative classification approaches, a k-means cluster analysis and an objective version of the Grosswetter types. They have been run with varying spatial and temporal settings as well as modified numbers of classes. As an evaluation metric for their performance several skill scores are used. Taking into account the outcome further attempts towards the optimization of circulation type classifications are made. These are varying meteorological input parameters (e.g. geopotential height, zonal and meridional wind, specific humidity, temperature) on several pressure levels (1000, 850 and 500 hPa) and combinations of these variables. All classification variants are again evaluated. Based on these analyses it is further intended to develop robust downscaling models for estimating possible future - climate change induced - variations of local PM10 concentrations in Bavaria from scenario runs of global CMIP5 climate models.
Mainka, Anna; Zajusz-Zubek, Elwira
2015-07-08
Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children's health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total-TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children's exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children.
Mainka, Anna; Zajusz-Zubek, Elwira
2015-01-01
Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children’s health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total—TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children’s exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children. PMID:26184249
NASA Astrophysics Data System (ADS)
Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra
2017-11-01
A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.
EPA Summaries and Reports on Several State and Local PM Control Measures
A sample of existing control measures and their effectiveness, along with recommendations for improvement, can help states develop better control measures for reducing PM2.5 in order to attain 2012 PM2.5 National Ambient Air Quality Standards (NAAQS).
The influence of PM2.5 coal power plant emissions on environment PM2.5 in Jilin Province, China
NASA Astrophysics Data System (ADS)
Sun, Ye; Li, Zhi; Zhang, Dan; Zhang, He; Zhang, Huafei
2018-02-01
In recent years, in the Northeast of China, the heating period comes with large range of haze weather. All the units of coal power plants in Jilin Province have completed the cogeneration reformation; they provide local city heat energy. Many people believe that coal power plants heating caused the heavy haze. In is paper, by compared concentration of PM2.5 in environment in heating period and non heating period, meanwhile the capacity of local coal power plants, conclude that the PM2.5 emission of coal power plants not directly cause the heavy haze in Changchun and Jilin in the end of October and early November. In addition, the water-soluble iron composition of PM2.5 coal power plant emissions is compared with environment, which further proves that the heating supply in coal power plants is not the cause of high concentration of PM2.5 in Jilin province.
Cellular Localization and Trafficking of the Human ABCG1 Transporter
Neufeld, Edward B.; O’Brien, Katherine; Walts, Avram D.; Stonik, John A.; Demosky, Steven J.; Malide, Daniela; Combs, Christian A.; Remaley, Alan T.
2014-01-01
We have developed a suitable heterologous cell expression system to study the localization, trafficking, and site(s) of function of the human ABCG1 transporter. Increased plasma membrane (PM) and late endosomal (LE) cholesterol generated by ABCG1 was removed by lipoproteins and liposomes, but not apoA-I. Delivery of ABCG1 to the PM and LE was required for ABCG1-mediated cellular cholesterol efflux. ABCG1 LEs frequently contacted the PM, providing a collisional mechanism for transfer of ABCG1-mobilized cholesterol, similar to ABCG1-mediated PM cholesterol efflux to lipoproteins. ABCG1-mobilized LE cholesterol also trafficked to the PM by a non-vesicular pathway. Transfer of ABCG1-mobilized cholesterol from the cytoplasmic face of LEs to the PM and concomitant removal of cholesterol from the outer leaflet of the PM bilayer by extracellular acceptors suggests that ABCG1 mobilizes cholesterol on both sides of the lipid bilayer for removal by acceptors. ABCG1 increased uptake of HDL into LEs, consistent with a potential ABCG1-mediated cholesterol efflux pathway involving HDL resecretion. Thus, ABCG1 at the PM mobilizes PM cholesterol and ABCG1 in LE/LYS generates mobile pools of cholesterol that can traffic by both vesicular and non-vesicular pathways to the PM where it can also be transferred to extracellular acceptors with a lipid surface. PMID:25405320
NASA Astrophysics Data System (ADS)
Li, Lianfa; Wu, Anna H.; Cheng, Iona; Chen, Jiu-Chiuan; Wu, Jun
2017-10-01
Monitoring of fine particulate matter with diameter <2.5 μm (PM2.5) started from 1999 in the US and even later in many other countries. The lack of historical PM2.5 data limits epidemiological studies of long-term exposure of PM2.5 and health outcomes such as cancer. In this study, we aimed to design a flexible approach to reliably estimate historical PM2.5 concentrations by incorporating spatial effect and the measurements of existing co-pollutants such as particulate matter with diameter <10 μm (PM10) and meteorological variables. Monitoring data of PM10, PM2.5, and meteorological variables covering the entire state of California were obtained from 1999 through 2013. We developed a spatiotemporal model that quantified non-linear associations between PM2.5 concentrations and the following predictor variables: spatiotemporal factors (PM10 and meteorological variables), spatial factors (land-use patterns, traffic, elevation, distance to shorelines, and spatial autocorrelation), and season. Our model accounted for regional-(county) scale spatial autocorrelation, using spatial weight matrix, and local-scale spatiotemporal variability, using local covariates in additive non-linear model. The spatiotemporal model was evaluated, using leaving-one-site-month-out cross validation. Our final daily model had an R2 of 0.81, with PM10, meteorological variables, and spatial autocorrelation, explaining 55%, 10%, and 10% of the variance in PM2.5 concentrations, respectively. The model had a cross-validation R2 of 0.83 for monthly PM2.5 concentrations (N = 8170) and 0.79 for daily PM2.5 concentrations (N = 51,421) with few extreme values in prediction. Further, the incorporation of spatial effects reduced bias in predictions. Our approach achieved a cross validation R2 of 0.61 for the daily model when PM10 was replaced by total suspended particulate. Our model can robustly estimate historical PM2.5 concentrations in California when PM2.5 measurements were not available.
Fuks, Kateryna B; Weinmayr, Gudrun; Hennig, Frauke; Tzivian, Lilian; Moebus, Susanne; Jakobs, Hermann; Memmesheimer, Michael; Kälsch, Hagen; Andrich, Silke; Nonnemacher, Michael; Erbel, Raimund; Jöckel, Karl-Heinz; Hoffmann, Barbara
2016-08-01
Long-term exposure to fine particulate matter (PM2.5) may lead to increased blood pressure (BP). The role of industry- and traffic-specific PM2.5 remains unclear. We investigated the associations of residential long-term source-specific PM2.5 exposure with arterial BP and incident hypertension in the population-based Heinz Nixdorf Recall cohort study. We defined hypertension as systolic BP≥140mmHg, or diastolic BP≥90mmHg, or current use of BP lowering medication. Long-term concentrations of PM2.5 from all local sources (PM2.5ALL), local industry (PM2.5IND) and traffic (PM2.5TRA) were modeled with a dispersion and chemistry transport model (EURAD-CTM) with a 1km(2) resolution. We performed a cross-sectional analysis with BP and prevalent hypertension at baseline, using linear and logistic regression, respectively, and a longitudinal analysis with incident hypertension at 5-year follow-up, using Poisson regression with robust variance estimation. We adjusted for age, sex, body mass index, lifestyle, education, and major road proximity. Change in BP (mmHg), odds ratio (OR) and relative risk (RR) for hypertension were calculated per 1μg/m(3) of exposure concentration. PM2.5ALL was highly correlated with PM2.5IND (Spearman's ρ=0.92) and moderately with PM2.5TRA (ρ=0.42). In adjusted cross-sectional analysis with 4539 participants, we found positive associations of PM2.5ALL with systolic (0.42 [95%-CI: 0.03, 0.80]) and diastolic (0.25 [0.04, 0.46]) BP. Higher, but less precise estimates were found for PM2.5IND (systolic: 0.55 [-0.05, 1.14]; diastolic: 0.35 [0.03, 0.67]) and PM2.5TRA (systolic: 0.88 [-1.55, 3.31]; diastolic: 0.41 [-0.91, 1.73]). We found crude positive association of PM2.5TRA with prevalence (OR 1.41 [1.10, 1.80]) and incidence of hypertension (RR 1.38 [1.03, 1.85]), attenuating after adjustment (OR 1.19 [0.90, 1.58] and RR 1.28 [0.94, 1.72]). We found no association of PM2.5ALL and PM2.5IND with hypertension. Long-term exposures to all-source and industry-specific PM2.5 were positively related to BP. We could not separate the effects of industry-specific PM2.5 from all-source PM2.5. Estimates with traffic-specific PM2.5 were generally higher but inconclusive. Copyright © 2016. Published by Elsevier GmbH.
Molecular characterization of a peritrophic membrane protein from the silkworm, Bombyx mori.
Hu, Xiaolong; Chen, Lin; Yang, Rui; Xiang, Xingwei; Wu, Xiaofeng
2013-02-01
The peritrophic membrane lines the gut of most insects at one or more stages of their life cycles. It facilitates the digestive processes in the guts and protects from invasion by pathogens or food particles. In the current study, a novel PM protein, designated as BmMtch, was identified from the silkworm, Bombyx mori. The open reading frame of BmMtch is 888 bp in length, encoding 295 amino acid residues consisting of two domains (Mito_carr domains) and three transmembrane regions. They are localized on the 11th chromosome as single copy with one exon only. Quantitative real time PCR analysis (qRT-PCR) revealed that BmMtch was mainly expressed in larval fat bodies, Malpighian tubules, testis and ovaries, and could be detected through all stages of the life cycle of silkworm. Immuno-fluorescence analysis indicated that BmMtch was localized within the goblet cell of larval midgut. Western blotting analysis showed that BmMtch were detected in total proteins of PM and larval midgut. The characteristics of BmMtch indicated that BmMtch represents a novel member of insect PM proteins, without chitin-binding domains.
Lu, Xingcheng; Lin, Changqing; Li, Ying; Yao, Teng; Fung, Jimmy C H; Lau, Alexis K H
2017-01-01
As the major engine of economic growth in China, the Pearl River Delta (PRD) region is one of the most urbanized regions in the world. Rapid development has brought great wealth to its citizens; however, at the same time, increasing emissions of ambient pollutants from vehicles and industrial combustions have caused considerable air pollution and negative health effects for the region's residents. In this study, the concentration response function method was applied together with satellite-retrieved particulate matter (PM 10 and PM 2.5 ) concentration data to estimate the health burden caused by this pollutant from 2004 to 2013. The value of statistical life was used to calculate the economic loss due to the negative health effects of particulate matter pollution. Our results show that in the whole PRD region, the estimated number of deaths from the four diseases attributable to PM 2.5 was the highest in 2012, at 45,000 (19,000-61,000); the number of all-cause hospital admissions due to PM 10 was the highest in 2013, reaching up to 91,000 (0-270,000) (excluding Hong Kong). Among the 10 cities, the capital city Guangzhou suffered the most from ambient particulate matter pollution and had the highest mortality and morbidity over the 10years. The cost of mortality in this region was the highest in 2012, at 46,000 million USD, or around 6.1% of local total gross domestic product (GDP). The positive spatial relationship between the degree of urbanization and the particulate matter concentration proves that the urbanization process does worsen air quality and hence increases the health risks of local urban citizens. It is recommended that local governments further enhance their control policies to better guarantee the health and wealth benefits of local residents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mapping nighttime PM2.5 from VIIRS DNB using a linear mixed-effect model
NASA Astrophysics Data System (ADS)
Fu, D.; Xia, X.; Duan, M.; Zhang, X.; Li, X.; Wang, J.; Liu, J.
2018-04-01
Estimation of particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from daytime satellite aerosol products is widely reported in the literature; however, remote sensing of nighttime surface PM2.5 from space is very limited. PM2.5 shows a distinct diurnal cycle and PM2.5 concentration at 1:00 local standard time (LST) has a linear correlation coefficient (R) of 0.80 with daily-mean PM2.5. Therefore, estimation of nighttime PM2.5 is required toward an improved understanding of temporal variation of PM2.5 and its effects on air quality. Using data from the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) and hourly PM2.5 data at 35 stations in Beijing, a mixed-effect model is developed here to estimate nighttime PM2.5 from nighttime light radiance measurements based on the assumption that the DNB-PM2.5 relationship is constant spatially but varies temporally. Cross-validation showed that the model developed using all stations predict daily PM2.5 with mean determination coefficient (R2) of 0.87 ± 0.12, 0.83 ± 0.10 , 0.87 ± 0.09, 0.83 ± 0.10 in spring, summer, autumn and winter. Further analysis showed that the best model performance was achieved in urban stations with average cross-validation R2 of 0.92. In rural stations, DNB light signal is weak and was likely smeared by lunar illuminance that resulted in relatively poor estimation of PM2.5. The fixed and random parameters of the mixed-effect model in urban stations differed from those in suburban stations, which indicated that the assumption of the mixed-effect model should be carefully evaluated when used at a regional scale.
THEMIS Observations of Mars Aerosol Optical Depth from 2002-2008
NASA Technical Reports Server (NTRS)
Smith, Michael D.
2009-01-01
We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, Ls=330 ) and December 2008 (MY 29, Ls=183). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at approximately 5:00 PM local time than in the TES retrievals at approximately 2:00 PM, suggestive of possible local time variation of clouds.
Identifying the most hazardous synoptic meteorological conditions for Winter UK PM10 exceedences
NASA Astrophysics Data System (ADS)
Webber, Chris; Dacre, Helen; Collins, Bill; Masato, Giacomo
2016-04-01
Summary We investigate the relationship between synoptic scale meteorological variability and local scale pollution concentrations within the UK. Synoptic conditions representative of atmospheric blocking highlighted significant increases in UK PM10 concentration ([PM10]), with the probability of exceeding harmful [PM10] limits also increased. Once relationships had been diagnosed, The Met Office Unified Model (UM) was used to replicate these relationships, using idealised source regions of PM10. This helped to determine the PM10 source regions most influential throughout UK PM10 exceedance events and to test whether the model was capable of capturing the relationships between UK PM10 and atmospheric blocking. Finally, a time slice simulation for 2050-2060 helped to answer the question whether PM10 exceedance events are more likely to occur within a changing climate. Introduction Atmospheric blocking events are well understood to lead to conditions, conducive to pollution events within the UK. Literature shows that synoptic conditions with the ability to deflect the Northwest Atlantic storm track from the UK, often lead to the highest UK pollution concentrations. Rossby wave breaking (RWB) has been identified as a mechanism, which results in atmospheric blocking and its relationship with UK [PM10] is explored using metrics designed in Masato, et al., 2013. Climate simulations facilitated by the Met Office UM, enable these relationships between RWB and PM10 to be found within the model. Subsequently the frequency of events that lead to hazardous PM10 concentrations ([PM10]) in a future climate, can be determined, within a climate simulation. An understanding of the impact, meteorology has on UK [PM10] within a changing climate, will help inform policy makers, regarding the importance of limiting PM10 emissions, ensuring safe air quality in the future. Methodology and Results Three Blocking metrics were used to subset RWB into four categories. These RWB categories were all shown to increase UK [PM10] and to increase the probability of exceeding a UK [PM10] threshold, when they occurred within constrained regions. Further analysis highlighted that Omega Block events lead to the greatest probability of exceeding hazardous UK [PM10] limits. These events facilitated the advection of European PM10, while also providing stagnant conditions over the UK, facilitating PM10 accumulation. The Met Office UM was used and nudged to ERA-Interim Reanalysis wind and temperature fields, to replicate the relationships found using observed UK [PM10]. Inert tracers were implemented into the model to replicate UK PM10 source regions throughout Europe. The modelled tracers were seen to correlate well with observed [PM10] and Figure 1 highlights the correlations between a RWB metric and observed (a) and modelled (b) [PM10]. A further free running model simulation highlighted the deficiency of the Met Office UM in capturing RWB frequency, with a reduction over the Northwest Atlantic/ European region. A final time slice simulation was undertaken for the period 2050-2060, using Representative Concentration Pathway 8.5, which attempted to determine the change in frequency of UK PM10 exceedance events, due to changing meteorology, in a future climate. Conclusions RWB has been shown to increase UK [PM10] and to lead to greater probabilities of exceeding a harmful [PM10] threshold. Omega block events have been determined the most hazardous RWB subset and this is due to a combination of European advection and UK stagnation. Simulations within the Met Office UM were undertaken and the relationships seen between observed UK [PM10] and RWB were replicated within the model, using inert tracers. Finally, time slice simulations were undertaken, determining the change in frequency of UK [PM10] exceedance events within a changing climate. References Masato, G., Hoskins, B. J., Woolings, T., 2013; Wave-breaking Characteristics of Northern Hemisphere Winter Blocking: A Two-Dimensional Approach. J. Climate, 26, 4535-4549.
Zhang, Yun; Liu, Fang; Nie, Jinfang; Jiang, Fuyang; Zhou, Caibin; Yang, Jiani; Fan, Jinlong; Li, Jianping
2014-05-07
In this paper, we report for the first time an electrochemical biosensor for single-step, reagentless, and picomolar detection of a sequence-specific DNA-binding protein using a double-stranded, electrode-bound DNA probe terminally modified with a redox active label close to the electrode surface. This new methodology is based upon local repression of electrolyte diffusion associated with protein-DNA binding that leads to reduction of the electrochemical response of the label. In the proof-of-concept study, the resulting electrochemical biosensor was quantitatively sensitive to the concentrations of the TATA binding protein (TBP, a model analyte) ranging from 40 pM to 25.4 nM with an estimated detection limit of ∼10.6 pM (∼80 to 400-fold improvement on the detection limit over previous electrochemical analytical systems).
The Improvement of Spatial-Temporal PM2.5 Resolution in Taiwan by Using Data Assimilation Method
NASA Astrophysics Data System (ADS)
Lin, Yong-Qing; Lin, Yuan-Chien
2017-04-01
Forecasting air pollution concentration, e.g., the concentration of PM2.5, is of great significance to protect human health and the environment. Accurate prediction of PM2.5 concentrations is limited in number and the data quality of air quality monitoring stations. The spatial and temporal variations of PM2.5 concentrations are measured by 76 National Air Quality Monitoring Stations (built by the TW-EPA) in Taiwan. The National Air Quality Monitoring Stations are costly and scarce because of the highly precise instrument and their size. Therefore, many places still out of the range of National Air Quality Monitoring Stations. Recently, there are an enormous number of portable air quality sensors called "AirBox" developed jointly by the Taiwan government and a private company. By virtue of its price and portative, the AirBox can provide higher resolution of space-time PM2.5 measurement. However, the spatiotemporal distribution and data quality are different between AirBox and National Air Quality Monitoring Stations. To integrate the heterogeneous PM2.5 data, the data assimilation method should be performed before further analysis. In this study, we propose a data assimilation method based on Ensemble Kalman Filter (EnKF), which is a variant of classic Kalman Filter, can be used to combine additional heterogeneous data from different source while modeling to improve the estimation of spatial-temporal PM2.5 concentration. The assimilation procedure uses the advantages of the two kinds of heterogeneous data and merges them to produce the final estimation. The results have shown that by combining AirBox PM2.5 data as additional information in our model based EnKF can bring the better estimation of spatial-temporal PM2.5 concentration and improve the it's space-time resolution. Under the approach proposed in this study, higher spatial-temporal resoultion could provide a very useful information for a better spatial-temporal data analysis and further environmental management, such as air pollution source localization and micro-scale air pollution analysis. Keywords: PM2.5, Data Assimilation, Ensemble Kalman Filter, Air Quality
Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China.
Xu, Yong; Hu, Jianlin; Ying, Qi; Hao, Hongke; Wang, Dexiang; Zhang, Hongliang
2017-10-01
A high-resolution inventory of primary atmospheric pollutants from coal-fired power plants in Shaanxi in 2012 was built based on a detailed database compiled at unit level involving unit capacity, boiler size and type, commission time, corresponding control technologies, and average coal quality of 72 power plants. The pollutants included SO 2 , NO x , fine particulate matter (PM 2.5 ), inhalable particulate matter (PM 10 ), organic carbon (OC), elemental carbon (EC), carbon monoxide (CO) and non-methane volatile organic compounds (NMVOC). Emission factors for SO 2 , NO x , PM 2.5 and PM 10 were adopted from standardized official promulgation, supplemented by those from local studies. The estimated annual emissions of SO 2 , NO x , PM 2.5 , PM 10 , EC, OC, CO and NMVOC were 152.4, 314.8, 16.6, 26.4, 0.07, 0.27, 64.9 and 2.5kt, respectively. Small units (<100MW), which accounted for ~60% of total unit numbers, had less coal consumption but higher emission rates compared to medium (≥100MW and <300MW) and large units (≥300MW). Main factors affecting SO 2 , NO x , PM 2.5 and PM 10 emissions were decontamination efficiency, sulfur content and ash content of coal. Weinan and Xianyang were the two cities with the highest emissions, and Guanzhong Plain had the largest emission density. Despite the projected growth of coal consumption, emissions would decrease in 2030 due to improvement in emission control technologies and combustion efficiencies. SO 2 and NO x emissions would experience significant reduction by ~81% and ~84%, respectively. PM 2.5 , PM 10 , EC and OC would be decreased by ~43% and CO and NMVOC would be reduced by ~16%. Copyright © 2017 Elsevier B.V. All rights reserved.
Ambient exposure to coarse and fine particle emissions from building demolition
NASA Astrophysics Data System (ADS)
Azarmi, Farhad; Kumar, Prashant
2016-07-01
Demolition of buildings produce large quantities of particulate matter (PM) that could be inhaled by on-site workers and people living in the neighbourhood, but studies assessing ambient exposure at the real-world demolition sites are limited. We measured concentrations of PM10 (≤10 μm), PM2.5 (≤2.5 μm) and PM1 (≤1 μm) along with local meteorology for 54 working hours over the demolition period. The measurements were carried out at (i) a fixed-site in the downwind of demolished building, (ii) around the site during demolition operation through mobile monitoring, (iii) different distances away from the demolition site through sequential monitoring, and (iv) inside an excavator vehicle cabin and on-site temporary office for engineers. Position of the PM instrument was continuously recorded using a Global Positioning System on a second basis during mobile measurements. Fraction of coarse particles (PM2.5-10) contributed 89 (with mean particle mass concentration, PMC ≈ 133 ± 17 μg m-3), 83 (100 ± 29 μg m-3), and 70% (59 ± 12 μg m-3) of total PMC during the fixed-site, mobile monitoring and sequential measurements, respectively, compared with only 50% (mean 12 ± 6 μg m-3) during the background measurements. The corresponding values for fine particles (PM2.5) were 11, 17 and 30% compared with 50% during background, showing a much greater release of coarse particles during demolition. The openair package in R and map source software (ArcGIS) were used to assess spatial variation of PMCs in downwind and upwind of the demolition site. A modified box model was developed to determine the emission factors, which were 210, 73 and 24 μg m-2 s-1 for PM10, PM2.5 and PM1, respectively. The average respiratory deposited doses to coarse (and fine) particles inside the excavator cabin and on-site temporary office increased by 57- (and 5-) and 13- (and 2-) times compared with the local background level, respectively. The monitoring stations in downwind direction illustrated a logarithmic decrease of PM with distance. Energy-dispersive X-ray spectroscopy and scanning electron microscopy were used to assess physicochemical features of particles. The minerals such as silica were found as a marker of demolition dust and elements such as sulphur coming from construction machinery emissions. Findings of this study highlight a need to limit occupational exposure of individuals to coarse and fine particles by enforcing effective engineering controls.
Particulate matter in the rural settlement during winter time
NASA Astrophysics Data System (ADS)
Olszowski, Tomasz
2017-10-01
The objective of this study was to analyzed the variability of the ambient particulates mass concentration in an area occupied by rural development. The analysis applied daily and hourly PM2.5 and PM10 levels. Data were derived on the basis of measurement results with the application of stationary gravimetric samplers and optical dust meter. The obtained data were compared with the results from the urban air quality monitoring network in Opole. Principal Component Analysis was used for data analysis. Research hypotheses were checked using U Mann-Whitney. It was indicated that during the smog episodes, the ratio of the inhalable dust fraction in the rural aerosol is greater than for the case of the urban aerosol. It was established that the principal meteorological factors affecting the local air quality. Air temperature, atmospheric pressure, movement of air masses and occurrence of precipitation are the most important. It was demonstrated that the during the temperature inversion phenomenon, the values of the hourly and daily mass concentration of PM2.5 and PM10 are very improper. The decrease of the PM's concentration to a safe level is principally relative to the occurrence of wind and precipitation.
Svendsen, Erik R; Reynolds, Scott; Ogunsakin, Olalekan A; Williams, Edith M; Fraser-Rahim, Herb; Zhang, Hongmei; Wilson, Sacoby M
2014-01-01
INTRODUCTION The Port of Charleston, one of the busiest US ports, currently operates five terminals. The fifth terminal is being planned for expansion to accommodate container ships from the proposed Panama Canal expansion. Such expansion is expected to increase traffic within local vulnerable North Charleston neck communities by at least 7,000 diesel truck trips per day, more than a 70% increase from the present average rate of 10,000 trucks per day. Our objective was to measure the current particulate matter (PM) concentrations in North Charleston communities as a baseline to contrast against future air pollution after the proposed port expansion. METHODS Saturation study was performed to determine spatial variability of PM in local Charleston neck communities. In addition, the temporal trends in particulate air pollution within the region were determined across several decades. With the BGI sampler, PM samples were collected for 24 hours comparable to the federal reference method protocol. Gravimetric analysis of the PM filter samples was conducted following EPA protocol. RESULTS The range of the PM10 annual average across the region from 1982 to 2006 was 17.0–55.0 μg/m3. On only two occasions were the records of PM10 averaged above the 50.0 μg/m3 national standard. In the case of PM2.5, the annual average for 1999–2006 ranged from 11.0 to 13.5 μg/m3 and no annual average exceeded the 15.0 μg/m3 PM2.5 annual standard. CONCLUSIONS Although ambient PM levels have fallen in the Charleston region since the 1960s due to aggressive monitoring by the stakeholders against air pollution, local air pollution sources within the North Charleston neck communities have consistently contributed to the PM levels in the region for several decades. This baseline assessment of ambient PM will allow for comparisons with future assessments to ascertain the impact of the increased truck and port traffic on PM concentrations. PMID:24653648
Comparisons of evening and morning SMOS passes over the Midwest United States
USDA-ARS?s Scientific Manuscript database
This study investigates differences in the soil moisture product and brightness temperatures between 6 pm and 6 am local solar time, when the SMOS passes for a region in north-central Iowa. This region consists of 69 SMOS pixels and has uniform land-cover, consisting of maize and soybean row crops. ...
76 FR 8380 - NASA Advisory Council; Science Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-114)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory...:30 a.m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Rooms 9H40 and 3H46...
It is desirable for local air quality agencies to accurately forecast tropospheric PM2.5 concentrations to alert the sensitive population of the onset, severity and duration of unhealthy air, and to encourage the public and industry to reduce emissions-producing activi...
NASA Astrophysics Data System (ADS)
Pausata, F.; Pozzoli, L.; Van Dingenen, R.; Vignati, E.; Cavalli, F.; Dentener, F. J.
2013-12-01
Ozone pollution and particulate matter (PM) represent a serious health and environmental problem. While ozone pollution is mostly produced by photochemistry in summer, PM is of main concern during winter. Both pollutants can be influenced nt only by local scale processes but also by long range transport driven by the atmospheric circulation and stratospheric ozone intrusions. We analyze the role of large scale atmospheric circulation variability in the North Atlantic basin in determining surface ozone and PM concentrations over Europe. Here, we show, using ground station measurements and a coupled atmosphere-chemistry model simulation for the period 1980-2005, that with regard to ozone the North Atlantic Oscillation (NAO) does affect surface ozone concentrations - on a monthly timescale, over 10 ppbv in southwestern, central and northern Europe - during all seasons except fall. We find that the first Principal Component, computed from the time variation of the sea level pressure (SLP) field, detects the atmosphere circulation/ozone relationship not only in winter and spring but also during summer, when the atmospheric circulation weakens and regional photochemical processes peak. Given the NAO forecasting skill at intraseasonal time scale, the first Principal Component of the SLP field could be used as an indicator to identify areas more exposed to forthcoming ozone pollution events. Finally, our results suggest that the increasing baseline ozone in western and northern Europe during the 1990s could be related to the prevailing positive phase of the NAO in that period. With regard to PM, our study shows that in winter the NAO modulates surface PM concentrations accounting in average up to 30% of the total PM variability. During positive NAO phases, positive PM anomalies occur over southern Europe, and negative anomalies in central-northern Europe. A positve shift of the NAO mean states, hence, leads to an increase in cardiac and resipratory morbidity related to PM exposure in the Mediterranean countries with up to over 5000 more deaths per 20 million people for a 2000 emission inventory.
Talbot, Karley-Dale S; Kerns, Kimberly A
2014-11-01
The current study examined prospective memory (PM, both time-based and event-based) and time estimation (TR, a time reproduction task) in children with and without attention deficit hyperactivity disorder (ADHD). This study also investigated the influence of task performance and TR on time-based PM in children with ADHD relative to controls. A sample of 69 children, aged 8 to 13 years, completed the CyberCruiser-II time-based PM task, a TR task, and the Super Little Fisherman event-based PM task. PM performance was compared with children's TR abilities, parental reports of daily prospective memory disturbances (Prospective and Retrospective Memory Questionnaire for Children, PRMQC), and ADHD symptomatology (Conner's rating scales). Children with ADHD scored more poorly on event-based PM, time-based PM, and TR; interestingly, TR did not appear related to performance on time-based PM. In addition, it was found that PRMQC scores and ADHD symptom severity were related to performance on the time-based PM task but not to performance on the event-based PM task. These results provide some limited support for theories that propose a distinction between event-based PM and time-based PM. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Carmona, J.; Mendoza, A.; Lozano, D.; Gupta, P.; Mejia, G.; Rios, J.; Hernández, I.
2017-12-01
Estimating ground-level PM2.5 from satellite-derived Aerosol Optical Depth (AOD) through statistical models is a promising method to evaluate the spatial and temporal distribution of PM2.5 in regions where there are no or few ground-based observations, i.e. Latin America. Although PM concentrations are most accurately measured using ground-based instrumentation, the spatial coverage is too sparse to determine local and regional variations in PM. AOD satellite data offer the opportunity to overcome the spatial limitation of ground-based measurements. However, estimating PM surface concentrations from AOD satellite data is challenging, since multiple factors can affect the relationship between the total-column of AOD and the surface-concentration of PM. In this study, an Assembled Multiple Linear Regression Model (MLR) and a Neural Network Model (NN) were performed to estimate the relationship between the AOD and ground-concentrations of PM2.5 within the Monterrey Metropolitan Area (MMA). The MMA is located in northeast Mexico and is the third most populated urban area in the country. Episodes of high PM pollution levels are frequent throughout the year at the MMA. Daily averages of meteorological and air quality parameters were determined from data recorded at 5 monitoring sites of the MMA air quality monitoring network. Daily AOD data were retrieved from the MODIS sensor onboard the Aqua satellite. Overall, the best performance of the models was obtained using an AOD at 550 µm from the MYD04_3k product in combination with Temperature, Relative Humidity, Wind Speed and Wind Direction ground-based data. For the MLR performed, a correlation coefficient of R 0.6 and % bias of -6% were obtained. The NN showed a better performance than the MLR, with a correlation coefficient of R 0.75 and % bias -4%. The results obtained confirmed that satellite-derived AOD in combination with meteorological fields may allow to estimate PM2.5 local distributions.
NASA Astrophysics Data System (ADS)
Sciare, Jean; Petit, Jean-Eudes; Sarda-Esteve, Roland; Bonnaire, Nicolas; Gros, Valérie; Pernot, Pierre; Ghersi, Véronique; Ampe, Christophe; Songeur, Charlotte; Brugge, Benjamin; Debert, Christophe; Favez, Olivier; Le Priol, Tiphaine; Mocnik, Grisa
2013-04-01
Motivations. Road traffic and domestic wood burning emissions are two major contributors of particulate pollution in our cities. These two sources emit ultra-fine, soot containing, particles in the atmosphere, affecting health adversely, increasing morbidity and mortality from cardiovascular and respiratory conditions and casing lung cancer. A better characterization of soot containing aerosol sources in our major cities provides useful information for policy makers for assessment, implementation and monitoring of strategies to tackle air pollution issues affecting human health with additional benefits for climate change. Objectives. This study on local sources of primary Particulate Matter (PM) in the megacity of Paris is a follow-up of several programs (incl. EU-FP7-MEGAPOLI) that have shown that fine PM - in the Paris background atmosphere - is mostly secondary and imported. A network of 14 stations of Black Carbon has been implemented in the larger region of Paris to provide highly spatially resolved long term survey of local combustion aerosols. To our best knowledge, this is the first time that such densely BC network is operating over a large urban area, providing novel information on the spatial/temporal distribution of combustion aerosols within a post-industrialized megacity. Experimental. As part of the PRIMEQUAL "PREQUALIF" project, a dense Black Carbon network (of 14 stations) has been installed over the city of Paris beginning of 2012 in order to produce spatially resolved Equivalent Black Carbon (EBC) concentration maps with high time resolution through modeling and data assimilation. This network is composed of various real-time instruments (Multi-Angle Absorption Photometer, MAAP by THERMO; Multi-wavelength Aethalometers by MAGEE Scientific) implemented in contrasted sites (rural background, urban background, traffic) complementing the regulated measurements (PM, NOx) in the local air quality network AIRPARIF (http://www.airparif.asso.fr/). Contribution of imported versus local EBC is calculated using the "Lenschow" methodology (Lenschow et al., 2001), whereas the influence of domestic wood burning EBC (vs traffic) over the region of Paris is evaluated using the Aethalometer model developed by Sandradewi et al. (2008). Results and discussion. First results of this BC network are presented here including the temporal variations of EBC from wood burning (domestic heating) and fossil fuel (traffic) for the various sites (1-year observation for rural background and traffic sites; 4-year observations for urban background). The local versus imported contributions of EBC are also presented and discussed for these 2 sources. References. Lenschow, P., et al., Some ideas about the sources of PM10, Atmospheric Environment 35 Supplement No. 1 (2001) S23-S33 Sandradewi, J., et al., Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter, Environ. Sci. Technol., 42, 3316-3323, 2008
Galmes, Romain; Houcine, Audrey; van Vliet, Alexander R; Agostinis, Patrizia; Jackson, Catherine L; Giordano, Francesca
2016-06-01
The oxysterol-binding protein (OSBP)-related proteins ORP5 and ORP8 have been shown recently to transport phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM) at ER-PM contact sites. PS is also transferred from the ER to mitochondria where it acts as precursor for mitochondrial PE synthesis. Here, we show that, in addition to ER-PM contact sites, ORP5 and ORP8 are also localized to ER-mitochondria contacts and interact with the outer mitochondrial membrane protein PTPIP51. A functional lipid transfer (ORD) domain was required for this localization. Interestingly, ORP5 and ORP8 depletion leads to defects in mitochondria morphology and respiratory function. © 2016 The Authors.
NASA Astrophysics Data System (ADS)
Pandolfi, Marco; Alastuey, Andrés; Pérez, Noemi; Reche, Cristina; Castro, Iria; Shatalov, Victor; Querol, Xavier
2016-09-01
In this work for the first time data from two twin stations (Barcelona, urban background, and Montseny, regional background), located in the northeast (NE) of Spain, were used to study the trends of the concentrations of different chemical species in PM10 and PM2.5 along with the trends of the PM10 source contributions from the positive matrix factorization (PMF) model. Eleven years of chemical data (2004-2014) were used for this study. Trends of both species concentrations and source contributions were studied using the Mann-Kendall test for linear trends and a new approach based on multi-exponential fit of the data. Despite the fact that different PM fractions (PM2.5, PM10) showed linear decreasing trends at both stations, the contributions of specific sources of pollutants and of their chemical tracers showed exponential decreasing trends. The different types of trends observed reflected the different effectiveness and/or time of implementation of the measures taken to reduce the concentrations of atmospheric pollutants. Moreover, the trends of the contributions of specific sources such as those related with industrial activities and with primary energy consumption mirrored the effect of the financial crisis in Spain from 2008. The sources that showed statistically significant downward trends at both Barcelona (BCN) and Montseny (MSY) during 2004-2014 were secondary sulfate, secondary nitrate, and V-Ni-bearing source. The contributions from these sources decreased exponentially during the considered period, indicating that the observed reductions were not gradual and consistent over time. Conversely, the trends were less steep at the end of the period compared to the beginning, thus likely indicating the attainment of a lower limit. Moreover, statistically significant decreasing trends were observed for the contributions to PM from the industrial/traffic source at MSY (mixed metallurgy and road traffic) and from the industrial (metallurgy mainly) source at BCN. These sources were clearly linked with anthropogenic activities, and the observed decreasing trends confirmed the effectiveness of pollution control measures implemented at European or regional/local levels. Conversely, at regional level, the contributions from sources mostly linked with natural processes, such as aged marine and aged organics, did not show statistically significant trends. The trends observed for the PM10 source contributions reflected the trends observed for the chemical tracers of these pollutant sources well.
Important sources and chemical species of ambient fine particles related to adverse health effects
NASA Astrophysics Data System (ADS)
Heo, J.
2017-12-01
Although many epidemiological studies have reported that exposure to ambient fine particulate matter (PM2.5) has been linked to increases in mortality and mobidity health outcomes, the key question of which chemical species and sources of PM2.5 are most harmful to public health remains unanswered in the air pollution research area. This study was designed to address the key question with evaluating the risks of exposure to chemical species and source-specific PM2.5 mass on morbidity. Hourly measurements of PM2.5 mass and its major chemical species, including organic carbon, elemental carbon, ions, and trace elements, were observed from January 1 to December 31, 2013 at four of the PM2.5 supersites in urban environments in Korea and the reuslts were used in a positive matrix factorization to estimate source contributions to PM2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, biomass burning, roadway emission, industry, oil combustion, soil, and aged sea salt, were identified and secondary inorganic aerosol factors (i.e. secondary sulfalte, and secondary nitrate) were the dominant sources contributing to 40% of the total PM2.5 mass in the study region. In order to evaluate the risks of exposure to chemical species and sources of PM2.5 on morbidity, emergency room visits for cardivascular disease and respiratory disease were considered. Hourly health outcomes were compared with hourly measurments of the PM2.5 chemical species and sources using a poission generalized linear model incorporating natural splines, as well as time-stratified case-crossover design. The PM2.5 mass and speveral chemical components, such as organic carbon, elemetal carbon, zinc, and potassium, were strongly associated with morbidity. Source-apporitionmened PM2.5 mass derived from biomass burning, and mobile sources, was significantly associated with cardiovascular and respiratory diseases. The findings represent that local combustion may be particularly important contributor to PM2.5, leading to adverse human health effects.
Song, Weize; Jia, Haifeng; Li, Zhilin; Tang, Deliang
2018-08-01
Urban air pollutant distribution is a concern in environmental and health studies. Particularly, the spatial distribution of NO 2 and PM 2.5 , which represent photochemical smog and haze pollution in urban areas, is of concern. This paper presents a study quantifying the seasonal differences between urban NO 2 and PM 2.5 distributions in Foshan, China. A geographical semi-variogram analysis was conducted to delineate the spatial variation in daily NO 2 and PM 2.5 concentrations. The data were collected from 38 sites in the government-operated monitoring network. The results showed that the total spatial variance of NO 2 is 38.5% higher than that of PM 2.5 . The random spatial variance of NO 2 was 1.6 times than that of PM 2.5 . The nugget effect (i.e., random to total spatial variance ratio) values of NO 2 and PM 2.5 were 29.7 and 20.9%, respectively. This indicates that urban NO 2 distribution was affected by both local and regional influencing factors, while urban PM 2.5 distribution was dominated by regional influencing factors. NO 2 had a larger seasonally averaged spatial autocorrelation distance (48km) than that of PM 2.5 (33km). The spatial range of NO 2 autocorrelation was larger in winter than the other seasons, and PM 2.5 has a smaller range of spatial autocorrelation in winter than the other seasons. Overall, the geographical semi-variogram analysis is a very effective method to enrich the understanding of NO 2 and PM 2.5 distributions. It can provide scientific evidences for the buffering radius selection of spatial predictors for land use regression models. It will also be beneficial for developing the targeted policies and measures to reduce NO 2 and PM 2.5 pollution levels. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Yu-Jin; Hyde, Peter; Fernando, H. J. S.
High (episodic) particulate matter (PM) events over the sister cities of Douglas (AZ) and Agua Prieta (Sonora), located in the US-Mexico border, were simulated using the 3D Eulerian air quality model, MODELS-3/CMAQ. The best available input information was used for the simulations, with pollution inventory specified on a fine grid. In spite of inherent uncertainties associated with the emission inventory as well as the chemistry and meteorology of the air quality simulation tool, model evaluations showed acceptable PM predictions, while demonstrating the need for including the interaction between meteorology and emissions in an interactive mode in the model, a capability currently unavailable in MODELS-3/CMAQ when dealing with PM. Sensitivity studies on boundary influence indicate an insignificant regional (advection) contribution of PM to the study area. The contribution of secondary particles to the occurrence of high PM events was trivial. High PM episodes in the study area, therefore, are purely local events that largely depend on local meteorological conditions. The major PM emission sources were identified as vehicular activities on unpaved/paved roads and wind-blown dust. The results will be of immediate utility in devising PM mitigation strategies for the study area, which is one of the US EPA-designated non-attainment areas with respect to PM.
Rodriguez, Daniel A.; Huegy, Joseph; Gibson, Jacqueline MacDonald
2014-01-01
Since motor vehicles are a major air pollution source, urban designs that decrease private automobile use could improve air quality and decrease air pollution health risks. Yet, the relationships among urban form, air quality, and health are complex and not fully understood. To explore these relationships, we model the effects of three alternative development scenarios on annual average fine particulate matter (PM2.5) concentrations in ambient air and associated health risks from PM2.5 exposure in North Carolina’s Raleigh-Durham-Chapel Hill area. We integrate transportation demand, land-use regression, and health risk assessment models to predict air quality and health impacts for three development scenarios: current conditions, compact development, and sprawling development. Compact development slightly decreases (−0.2%) point estimates of regional annual average PM2.5 concentrations, while sprawling development slightly increases (+1%) concentrations. However, point estimates of health impacts are in opposite directions: compact development increases (+39%) and sprawling development decreases (−33%) PM2.5-attributable mortality. Further, compactness increases local variation in PM2.5 concentrations and increases the severity of local air pollution hotspots. Hence, this research suggests that while compact development may improve air quality from a regional perspective, it may also increase the concentration of PM2.5 in local hotspots and increase population exposure to PM2.5. Health effects may be magnified if compact neighborhoods and PM2.5 hotspots are spatially co-located. We conclude that compactness alone is an insufficient means of reducing the public health impacts of transportation emissions in automobile-dependent regions. Rather, additional measures are needed to decrease automobile dependence and the health risks of transportation emissions. PMID:25490890
NASA Astrophysics Data System (ADS)
Luo, Jieqiong; Du, Peijun; Samat, Alim; Xia, Junshi; Che, Meiqin; Xue, Zhaohui
2017-01-01
Based on annual average PM2.5 gridded dataset, this study first analyzed the spatiotemporal pattern of PM2.5 across Mainland China during 1998-2012. Then facilitated with meteorological site data, land cover data, population and Gross Domestic Product (GDP) data, etc., the contributions of latent geographic factors, including socioeconomic factors (e.g., road, agriculture, population, industry) and natural geographical factors (e.g., topography, climate, vegetation) to PM2.5 were explored through Geographically Weighted Regression (GWR) model. The results revealed that PM2.5 concentrations increased while the spatial pattern remained stable, and the proportion of areas with PM2.5 concentrations greater than 35 μg/m3 significantly increased from 23.08% to 29.89%. Moreover, road, agriculture, population and vegetation showed the most significant impacts on PM2.5. Additionally, the Moran’s I for the residuals of GWR was 0.025 (not significant at a 0.01 level), indicating that the GWR model was properly specified. The local coefficient estimates of GDP in some cities were negative, suggesting the existence of the inverted-U shaped Environmental Kuznets Curve (EKC) for PM2.5 in Mainland China. The effects of each latent factor on PM2.5 in various regions were different. Therefore, regional measures and strategies for controlling PM2.5 should be formulated in terms of the local impacts of specific factors.
Luo, Jieqiong; Du, Peijun; Samat, Alim; Xia, Junshi; Che, Meiqin; Xue, Zhaohui
2017-01-01
Based on annual average PM2.5 gridded dataset, this study first analyzed the spatiotemporal pattern of PM2.5 across Mainland China during 1998–2012. Then facilitated with meteorological site data, land cover data, population and Gross Domestic Product (GDP) data, etc., the contributions of latent geographic factors, including socioeconomic factors (e.g., road, agriculture, population, industry) and natural geographical factors (e.g., topography, climate, vegetation) to PM2.5 were explored through Geographically Weighted Regression (GWR) model. The results revealed that PM2.5 concentrations increased while the spatial pattern remained stable, and the proportion of areas with PM2.5 concentrations greater than 35 μg/m3 significantly increased from 23.08% to 29.89%. Moreover, road, agriculture, population and vegetation showed the most significant impacts on PM2.5. Additionally, the Moran’s I for the residuals of GWR was 0.025 (not significant at a 0.01 level), indicating that the GWR model was properly specified. The local coefficient estimates of GDP in some cities were negative, suggesting the existence of the inverted-U shaped Environmental Kuznets Curve (EKC) for PM2.5 in Mainland China. The effects of each latent factor on PM2.5 in various regions were different. Therefore, regional measures and strategies for controlling PM2.5 should be formulated in terms of the local impacts of specific factors. PMID:28079138
Luo, Jieqiong; Du, Peijun; Samat, Alim; Xia, Junshi; Che, Meiqin; Xue, Zhaohui
2017-01-12
Based on annual average PM 2.5 gridded dataset, this study first analyzed the spatiotemporal pattern of PM 2.5 across Mainland China during 1998-2012. Then facilitated with meteorological site data, land cover data, population and Gross Domestic Product (GDP) data, etc., the contributions of latent geographic factors, including socioeconomic factors (e.g., road, agriculture, population, industry) and natural geographical factors (e.g., topography, climate, vegetation) to PM 2.5 were explored through Geographically Weighted Regression (GWR) model. The results revealed that PM 2.5 concentrations increased while the spatial pattern remained stable, and the proportion of areas with PM 2.5 concentrations greater than 35 μg/m 3 significantly increased from 23.08% to 29.89%. Moreover, road, agriculture, population and vegetation showed the most significant impacts on PM 2.5 . Additionally, the Moran's I for the residuals of GWR was 0.025 (not significant at a 0.01 level), indicating that the GWR model was properly specified. The local coefficient estimates of GDP in some cities were negative, suggesting the existence of the inverted-U shaped Environmental Kuznets Curve (EKC) for PM 2.5 in Mainland China. The effects of each latent factor on PM 2.5 in various regions were different. Therefore, regional measures and strategies for controlling PM 2.5 should be formulated in terms of the local impacts of specific factors.
Papathakis, P. C.; Rollins, N. C.
2004-01-01
OBJECTIVE: Little is known about the nutritional adequacy and feasibility of breastmilk replacement options recommended by WHO/UNAIDS/UNICEF. The study aim was to explore suitability of the 2001 feeding recommendations for infants of HIV-infected mothers for a rural region in KwaZulu Natal, South Africa specifically with respect to adequacy of micronutrients and essential fatty acids, cost, and preparation times of replacement milks. METHODS: Nutritional adequacy, cost, and preparation time of home-prepared replacement milks containing powdered full cream milk (PM) and fresh full cream milk (FM) and different micronutrient supplements (2 g UNICEF micronutrient sachet, government supplement routinely available in district public health clinics, and best available liquid paediatric supplement found in local pharmacies) were compared. Costs of locally available ingredients for replacement milk were used to calculate monthly costs for infants aged one, three, and six months. Total monthly costs of ingredients of commercial and home-prepared replacement milks were compared with each other and the average monthly income of domestic or shop workers. Time needed to prepare one feed of replacement milk was simulated. FINDINGS: When mixed with water, sugar, and each micronutrient supplement, PM and FM provided <50% of estimated required amounts for vitamins E and C, folic acid, iodine, and selenium and <75% for zinc and pantothenic acid. PM and FM made with UNICEF micronutrient sachets provided 30% adequate intake for niacin. FM prepared with any micronutrient supplement provided no more than 32% vitamin D. All PMs provided more than adequate amounts of vitamin D. Compared with the commercial formula, PM and FM provided 8-60% of vitamins A, E, and C, folic acid, manganese, zinc, and iodine. Preparations of PM and FM provided 11% minimum recommended linoleic acid and 67% minimum recommended alpha-linolenic acid per 450 ml mixture. It took 21-25 minutes to optimally prepare 120 ml of replacement feed from PM or commercial infant formula and 30-35 minutes for the fresh milk preparation. PM or FM cost approximately 20% of monthly income averaged over the first six months of life; commercial formula cost approximately 32%. CONCLUSION: No home-prepared replacement milks in South Africa meet all estimated micronutrient and essential fatty acid requirements of infants aged <6 months. Commercial infant formula is the only replacement milk that meets all nutritional needs. Revisions of WHO/UNAIDS/UNICEF HIV and infant feeding course replacement milk options are needed. If replacement milks are to provide total nutrition, preparations should include vegetable oils, such as soybean oil, as a source of linoleic and alpha-linolenic acids, and additional vitamins and minerals. PMID:15112004
Yu, Geun-Hye; Zhang, Yan; Cho, Sung-Yong; Park, Seungshik
2017-07-01
To investigate the influence of haze on the chemical composition and formation processes of ambient aerosol particles, PM 2.5 and size-segregated aerosol particles were collected daily during fall at an urban site of Gwangju, Korea. During the study period, the total concentration of secondary ionic species (SIS) contributed an average of 43.9% to the PM 2.5 , whereas the contribution of SIS to the PM 2.5 during the haze period was 62.3%. The NO 3 - and SO 4 2- concentrations in PM 2.5 during the haze period were highly elevated, being 13.4 and 5.0 times higher than those during non-haze period, respectively. The PM, NO 3 - , SO 4 2- , oxalate, water-soluble organic carbon (WSOC), and humic-like substances (HULIS) had tri-modal size distributions peaks at 0.32, 1.0, and 5.2μm during the non-haze and haze periods. However, during the non-haze period they exhibited dominant size distributions at the condensation mode peaking at 0.32μm, while on October 21 when the heaviest haze event occurred, they had predominant droplet mode size distributions peaking at 1.00μm. Moreover, strong correlations of WSOC and HULIS with SO 4 2- , oxalate, and K + at particle sizes of <1.8μm indicate that secondary processes and emissions from biomass burning could be responsible for WSOC and HULIS formations. It was found that the factors affecting haze formation could be the local stable synoptic conditions, including the weak surface winds and high surface pressures, the long-range transportation of haze from eastern China and upwind regions of the Korean peninsula, as well as the locally emitted and produced aerosol particles. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Dimitriou, Konstantinos; Kassomenos, Pavlos
2013-11-01
Particulate air pollution is associated with adverse health effects to the population exposed. The aim of this paper is the identification of local and regional sources, affecting PM10 and PM2.5 levels in four large cities of southern Europe, namely: Lisbon, Madrid, Marseille, and Rome. Air pollution data from seven sampling sites of the European Union network were used. These stations were selected due to their ability of monitoring PM2.5 concentrations and providing reliable series of data. Each station's background was also taken into account. Pearson correlation coefficients and primal component analysis components were extracted separately for cold and warm periods in order to define the relationships among particle matters (PMs) and gaseous pollutants (CO, NO2, SO2, and O3) and evaluate the contributions of local sources. Possible seasonal variations of PM2.5/PM10 ratio daily values were also used as markers of PM sources, influencing particulate size distribution. Particle emissions were primarily attributed to traffic and secondarily to natural sources. Minimum daily values of PM2.5/PM10 ratio were observed during warm periods, particularly at suburban stations with rural background, due to dust resuspension and also due to the increase of biogenic coarse PM (pollen, dust, etc.). Hybrid Single-Particle Lagrangian Integrated Trajectory Model trajectory model was used in order to compute the 4-day backward trajectories of the air masses that affected the four cities which are under study during days with recorded PM10 exceedances, within a 5-year period (2003-2007), at 300, 750, and 1,500 m above ground level (AGL). The trajectories were then divided to clusters with a K-means analysis. In all four cities, the influence of slow-moving air masses was associated with a large fraction of PM10 exceedances and with high average and maximum daily mean PM10 concentrations, principally at the 300 m AGL analysis. As far the issue of the increased PM10 concentrations, the results were weaker in Marseille and particularly in Rome, probably due to their greater distance from Northwest Africa, in comparison to Madrid and Lisbon. Dust intrusions from the Sahara desert and transportation of Mediterranean/Atlantic sea spray, were characterized as primary regional sources of exogenous PM10 in all four cities. Continental trajectories from the industrialized northern Italy affected PM10 levels particularly in Marseille and Rome, due to their more eastern geographical position.
Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application
NASA Astrophysics Data System (ADS)
Kolesar, Katheryn R.; Mattson, Claire N.; Peterson, Peter K.; May, Nathaniel W.; Prendergast, Rashad K.; Pratt, Kerri A.
2018-03-01
The application of salts and salty brines to roads is common practice during the winter in many urban environments. Road salts can become aerosolized, thereby injecting sodium and chloride particulate matter (PM) into the atmosphere. Here, data from the United States Environmental Protection Agency Chemical Speciation Monitoring Network were used to assess temporal trends of sodium and chloride PM2.5 (PM < 2.5 μm) at 25 locations across the United States to investigate the ubiquity of road salt aerosols. Sodium and chloride PM2.5 concentrations were an average of three times higher in the winter, as compared to the summer, for locations with greater than 25 cm of average annual snowfall. Winter urban chloride PM2.5 concentrations attributed to road salt can even sometimes rival those of coastal sea spray aerosol-influenced sites. In most snow-influenced cities, chloride and sodium PM2.5 concentrations were positively correlated with snowfall; however, this relationship is complicated by differences in state and local winter maintenance practices. This study highlights the ubiquity of road salt aerosols in the United States and their potential impact on wintertime urban air quality, particularly due to the potential for multiphase reactions to liberate chlorine from the particle-phase. Since road salt application is a common practice in wintertime urban environments across the world, it is imperative that road salt application emissions, currently not included in inventories, and its impacts be investigated through measurements and modeling.
Martínez-Cinco, Marco; Santos-Guzmán, Jesús; Mejía-Velázquez, Gerardo
2016-06-01
The Monterrey Metropolitan Area (MMA) in Northeast Mexico has shown high PM2.5 concentrations since 2003. The data shows that the annual average concentration exceeds from 2 to 3 times the Mexican PM2.5 annual air quality standard of 12 µg/m(3). In a previous work we studied the chemical characterization of PM2.5 in two sites of the MMA during the winter season. Among the most important components we found ammonium sulfate and nitrate, elemental and organic carbon, and crustal matter. In this work we present the results of a second chemical characterization study performed during the summer time and the application of the chemical mass balance (CMB) model to determine the source apportionment of air pollutants in the region. The chemical analysis results show that the chemical composition of PM2.5 is similar in both sites and periods of the year. The results of the chemical analysis and the CMB model show that industrial, traffic, and combustion activities in the area are the major sources of primary PM2.5 and precursor gases of secondary inorganic and organic aerosol (SO2, NOx, NH3, and volatile organic compounds [VOCs]). We also found that black carbon and organic carbon are important components of PM2.5 in the MMA. These results are consistent with the MMA emission inventory that reports as major sources of particles and SO2 a refinery and fuel combustion, as well as nitrogen oxides and ammonium from transportation and industrial activities in the MMA and ammonium form agricultural activities in the state. The results of this work are important to identify and support effective actions to reduce direct emissions of PM2.5 and its precursor gases to improve air quality in the MMA. The Monterrey Metropolitan Area (MMA) has been classified as the most air-polluted area in Mexico by the World Health Organization (WHO). Effective actions need to be taken to control primary sources of PM2.5 and its precursors, reducing health risks on the population exposed and their associated costs. The results of this study identify the main sources and their estimated contribution to PM2.5 mass concentration, providing valuable information to the local environmental authorities to take decisions on PM2.5 control strategies in the MMA.
[Surgical treatment of pediatric pulmonary metastases].
Costa Borrás, E; Ferrís i Tortajada, J; Jovaní Casano, C; Segarra Llido, V; Bermúdez Cortés, M; Cañete Nieto, A; Velázquez Terrón, J
1998-07-01
We comment and update the surgical treatment for pulmonary metastases (PM) within a multidisciplinary approach for paediatric cancer. We analyse patients with PM who have been operated between 1976-1996. Scientific literature published in the last 25 years (Cancerlit and Medline) was reviewed. PM from 13 patients were removed. Seven were males and 6 females with a mean age 5 4/12 years (range: 11 months- 12 3/12 years). Diagnoses were Wilms' tumour (7), osteosarcoma (3), Ewing sarcoma (1), rabdomiosarcoma (1), Yolk sac tumour (1). PM were unilateral in 7 cases and bilateral in six cases. PM appeared synchronically in four patients and metacronically in nine cases (3 of these after chemotherapy). All patients received chemotherapy and four of them local radiotherapy. Surgery consisted on radical segmentectomy and only one patient needed lobectomy due to a local relapse. Nowadays five patients (38%) are in complete remission with a mean follow-up from surgery of 11 11/12 years (range: 6 3/12-20 years). Metastasectomy is an important surgical technique in global treatment of children with PM and for a selected group of patients it can offer the only opportunity for curation.
NASA Astrophysics Data System (ADS)
Li, Chaoliu; Kang, Shichang; Chen, Pengfei; Zhang, Qianggong; Guo, Junming; Mi, Jue; Basang, Puchi; Luosang, Quzhen; Smith, Kirk R.
2012-11-01
Yak dung is the primary source of energy for cooking and heating of nomadic Tibetan herders. Personal PM2.5 and indoor CO concentrations and time-activity patterns were investigated in nomadic tents with open stoves and locally available chimney stoves. Personal PM2.5 monitoring using a light-scattering datalogger was performed with women in five tents with open fires and four with chimney stoves over 3 days. Meanwhile, indoor CO variation was also measured. Results showed that 24 h average concentrations of PM2.5 and CO in the tents with open stoves were 1.42 mg m-3 (n = 5, SD = 3.26) and 6.69 mg m-3 (n = 4; SD = 9.11), respectively, which were significantly higher than the tents with chimney stoves having 0.14 mg m-3 (n = 4; SD = 0.65) and 0.12 mg m-3 (n = 4; SD = 1.01) of PM2.5 and CO, respectively. Although chimney stoves significantly reduced indoor air pollution, the concentration of PM2.5 was still higher than annual WHO Air Quality Guideline (0.035 mg m-3). Diurnal variability of PM2.5 and CO was similar and had multiple peaks. This phenomenon was closely connected with behaviors of the participants within the tents. Average 1-h peak concentrations of PM2.5 and CO exceed 24-h mean values by a factor of 5.0 and 4.3, respectively. Significant correlation between hourly PM2.5 and CO concentrations was revealed. Generally, women and children spent 7 h longer than other family members within the tent each day and were thus exposed to higher levels of pollutants. Secondhand tobacco smoke and burning of yak oil lamps are also present in many households, but are much smaller contributors to the exposures. Therefore, yak dung combustion contributes substantially to the personal exposure of householders in this setting even during the warmest time of year in this setting and that although exposures are greatly reduced with chimney stoves; they are still high by comparison to national standards or WHO guidelines.
NASA Astrophysics Data System (ADS)
Zhou, S.; Day, P. K.; Wang, X.
2017-12-01
Hazardous air pollutants, such as trace elements in particulate matters (PM), are known or highly suspected to cause detrimental effects on human health. To understand the sources and associated risks of PM to human health, hourly time-integrated major trace elements in size-segregated coarse (PM10-2.5) and fine (PM2.5) particulate matter were collected and examined in an industrial city of Foshan in the Pearl River Delta region, China. Receptor modeling of the dataset by positive matrix factorization (PMF) was used to identify six sources contributing to PM2.5 and PM10 concentrations at the site. Dominant sources included industrial coal combustion, secondary inorganic aerosol, motor vehicles and construction dust along with two intermittent sources, biomass combustion and marine aerosol. The biomass combustion source was found to be a significant contributor to peak PM2.5 episodes along with motor vehicles and industrial coal combustion. Conditional probability function (CPF) was applied to estimate the local source effects from wind direction using the PMF-resolved source contribution coupled with the surface wind direction data. Health exposure risk for hazardous trace elements (Pb, As, Cr, Ni, Zn, V, Cu, Mn, Fe) and source-specific values were estimated. The total hazard quotient (total HQ =HI) of PM2.5 was 2.09, which is two times higher than the acceptable limit (HQ = 1). The total carcinogenic risk was 3.37*10-3 for PM2.5, which was three orders higher than the acceptable limit (i.e. 1.0*10-6). Among the selected trace elements, As and Pb posed the highest non-carcinogenic and carcinogenic risks for human health, respectively. In additional, our results showed that industrial coal combustion source was the dominant non-carcinogenic and carcinogenic risks contributor, highlighting the need for stringent control of this source. This study can provide new insight for policy makers to prioritize sources in air quality management and health risk reduction.
Gulliver, John; Elliott, Paul; Henderson, John; Hansell, Anna L; Vienneau, Danielle; Cai, Yutong; McCrea, Adrienne; Garwood, Kevin; Boyd, Andy; Neal, Lucy; Agnew, Paul; Fecht, Daniela; Briggs, David; de Hoogh, Kees
2018-04-01
We established air pollution modelling to study particle (PM 10 ) exposures during pregnancy and infancy (1990-1993) through childhood and adolescence up to age ~15 years (1991-2008) for the Avon Longitudinal Study of Parents And Children (ALSPAC) birth cohort. For pregnancy trimesters and infancy (birth to 6 months; 7 to 12 months) we used local (ADMS-Urban) and regional/long-range (NAME-III) air pollution models, with a model constant for local, non-anthropogenic sources. For longer exposure periods (annually and the average of birth to age ~8 and to age ~15 years to coincide with relevant follow-up clinics) we assessed spatial contrasts in local sources of PM 10 with a yearly-varying concentration for all background sources. We modelled PM 10 (μg/m 3 ) for 36,986 address locations over 19 years and then accounted for changes in address in calculating exposures for different periods: trimesters/infancy (n = 11,929); each year of life to age ~15 (n = 10,383). Intra-subject exposure contrasts were largest between pregnancy trimesters (5 th to 95 th centile: 24.4-37.3 μg/m 3 ) and mostly related to temporal variability in regional/long-range PM 10 . PM 10 exposures fell on average by 11.6 μg/m 3 from first year of life (mean concentration = 31.2 μg/m 3 ) to age ~15 (mean = 19.6 μg/m 3 ), and 5.4 μg/m 3 between follow-up clinics (age ~8 to age ~15). Spatial contrasts in 8-year average PM 10 exposures (5 th to 95 th centile) were relatively low: 25.4-30.0 μg/m 3 to age ~8 years and 20.7-23.9 μg/m 3 from age ~8 to age ~15 years. The contribution of local sources to total PM 10 was 18.5%-19.5% during pregnancy and infancy, and 14.4%-17.0% for periods leading up to follow-up clinics. Main roads within the study area contributed on average ~3.0% to total PM 10 exposures in all periods; 9.5% of address locations were within 50 m of a main road. Exposure estimates will be used in a number of planned epidemiological studies. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Elmaadawi, Ahmed Z; Jensen, Peter S; Arnold, L Eugene; Molina, Brooke SG; Hechtman, Lily; Abikoff, Howard B; Hinshaw, Stephen P; Newcorn, Jeffrey H; Greenhill, Laurence Lee; Swanson, James M; Galanter, Cathryn A
2015-01-01
AIM: To determine the prevalence of bipolar disorder (BD) and sub-threshold symptoms in children with attention deficit hyperactivity disorder (ADHD) through 14 years’ follow-up, when participants were between 21-24 years old. METHODS: First, we examined rates of BD type I and II diagnoses in youth participating in the NIMH-funded Multimodal Treatment Study of ADHD (MTA). We used the diagnostic interview schedule for children (DISC), administered to both parents (DISC-P) and youth (DISCY). We compared the MTA study subjects with ADHD (n = 579) to a local normative comparison group (LNCG, n = 289) at 4 different assessment points: 6, 8, 12, and 14 years of follow-ups. To evaluate the bipolar variants, we compared total symptom counts (TSC) of DSM manic and hypomanic symptoms that were generated by DISC in ADHD and LNCG subjects. Then we sub-divided the TSC into pathognomonic manic (PM) and non-specific manic (NSM) symptoms. We compared the PM and NSM in ADHD and LNCG at each assessment point and over time. We also evaluated the irritability as category A2 manic symptom in both groups and over time. Finally, we studied the irritability symptom in correlation with PM and NSM in ADHD and LNCG subjects. RESULTS: DISC-generated BD diagnosis did not differ significantly in rates between ADHD (1.89%) and LNCG 1.38%). Interestingly, no participant met BD diagnosis more than once in the 4 assessment points in 14 years. However, on the symptom level, ADHD subjects reported significantly higher mean TSC scores: ADHD 3.0; LNCG 1.7; P < 0.001. ADHD status was associated with higher mean NSM: ADHD 2.0 vs LNCG 1.1; P < 0.0001. Also, ADHD subjects had higher PM symptoms than LNCG, with PM means over all time points of 1.3 ADHD; 0.9 LNCG; P = 0.0001. Examining both NSM and PM, ADHD status associated with greater NSM than PM. However, Over 14 years, the NSM symptoms declined and changed to PM over time (df 3, 2523; F = 20.1; P < 0.0001). Finally, Irritability (BD DSM criterion-A2) rates were significantly higher in ADHD than LNCG (χ2 = 122.2, P < 0.0001), but irritability was associated more strongly with NSM than PM (df 3, 2538; F = 43.2; P < 0.0001). CONCLUSION: Individuals with ADHD do not appear to be at significantly greater risk for developing BD, but do show higher rates of BD symptoms, especially NSM. The greater linkage of irritability to NSM than to PM suggests caution when making BD diagnoses based on irritability alone as one of 2 (A-level) symptoms for BD diagnosis, particularly in view of its frequent presentation with other psychopathologies. PMID:26740933
Time to Make Your List for the NCI at Frederick Holiday Market | Poster
The final Holiday Market of 2017 will take place on Tuesday, December 19, in Building 549. The event, which runs from 11:00 am–1:30 pm, will feature nearly two dozen local vendors and artisans. From bags and boards to meats and sweets, the market promises to have something for everyone.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
...), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Proposed rule; request for... unchanged, modify the provision, or remove the provision entirely. This action is part of a Court-approved joint motion to stay. DATES: Written comments must be received no later than 5 p.m. local time on...
76 FR 41825 - NASA Advisory Council; Education and Public Outreach Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... Administration, Washington, DC, at [email protected]nasa.gov , no later than 4 p.m., local time, July 29, 2011, to...; and Social Security number to Erika Vick via e-mail at [email protected]nasa.gov or by fax at (202) 358... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-067)] NASA Advisory Council; Education...
77 FR 38092 - NASA Advisory Council; Education and Public Outreach Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-26
..., at [email protected]nasa.gov , no later than 4 p.m., local time, July 20, 2012, to get further... [email protected]nasa.gov , no later than close of business July 11, 2012. If the above information is not... email [email protected]nasa.gov . Patricia D. Rausch, Advisory Committee Management Officer, National...
Azarmi, Farhad; Kumar, Prashant; Marsh, Daniel; Fuller, Gary
2016-02-01
Construction activities are common across cities; however, the studies assessing their contribution to airborne PM10 (≤10 μm) and PM2.5 (≤2.5 μm) particles on the surrounding air quality are limited. Herein, we assessed the impact of PM10 and PM2.5 arising from construction works in and around London. Measurements were carried out at 17 different monitoring stations around three construction sites between January 2002 and December 2013. Tapered element oscillating microbalance (TEOM 1400) and OSIRIS (2315) particle monitors were used to measure the PM10 and PM2.5 fractions in the 0.1-10 μm size range along with the ambient meteorological data. The data was analysed using bivariate concentration polar plots and k-means clustering techniques. Daily mean concentrations of PM10 were found to exceed the European Union target limit value of 50 μg m(-3) at 11 monitoring stations but remained within the allowable 35 exceedences per year, except at two monitoring stations. In general, construction works were found to influence the downwind concentrations of PM10 relatively more than PM2.5. Splitting of the data between working (0800-1800 h; local time) and non-working (1800-0800 h) periods showed about 2.2-fold higher concentrations of PM10 during working hours when compared with non-working hours. However, these observations did not allow to conclude that this increase was from the construction site emissions. Together, the polar concentration plots and the k-means cluster analysis applied to a pair of monitoring stations across the construction sites (i.e. one in upwind and the other in downwind) confirmed the contribution of construction sources on the measured concentrations. Furthermore, pairing the monitoring stations downwind of the construction sites showed a logarithmic decrease (with R(2) about 0.9) in the PM10 and PM2.5 concentration with distance. Our findings clearly indicate an impact of construction activities on the nearby downwind areas and a need for developing mitigation measures to limit their escape from the construction sites.
Scheepers, Paul T J; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B M
2017-05-08
For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC), acrolein, formaldehyde, nitrogen dioxide (NO₂), respirable particulate matter (PM-4.0 and PM-2.5) and their respective benz(a)pyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO₂ (4.9-17.4 μg/m³) and formaldehyde (2.5-6.4 μg/m³) were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m³ (range: 33.1-2450 μg/m³) and was fivefold higher in laboratories (316 μg/m³) compared to offices (57.0 μg/m³). PM-4.0 and benzo(a)pyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80-90% efficiency filter ( p < 0.01). No indications were found that support a significant contribution of known local sources such as fuels or combustion engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities.
Geochemistry of regional background aerosols in the Western Mediterranean
NASA Astrophysics Data System (ADS)
Pey, J.; Pérez, N.; Castillo, S.; Viana, M.; Moreno, T.; Pandolfi, M.; López-Sebastián, J. M.; Alastuey, A.; Querol, X.
2009-11-01
The chemical composition of regional background aerosols, and the time variability and sources in the Western Mediterranean are interpreted in this study. To this end 2002-2007 PM speciation data from an European Supersite for Atmospheric Aerosol Research (Montseny, MSY, located 40 km NNE of Barcelona in NE Spain) were evaluated, with these data being considered representative of regional background aerosols in the Western Mediterranean Basin. The mean PM 10, PM 2.5 and PM 1 levels at MSY during 2002-2007 were 16, 14 and 11 µg/m 3, respectively. After compiling data on regional background PM speciation from Europe to compare our data, it is evidenced that the Western Mediterranean aerosol is characterised by higher concentrations of crustal material but lower levels of OM + EC and ammonium nitrate than at central European sites. Relatively high PM 2.5 concentrations due to the transport of anthropogenic aerosols (mostly carbonaceous and sulphate) from populated coastal areas were recorded, especially during winter anticyclonic episodes and summer midday PM highs (the latter associated with the transport of the breeze and the expansion of the mixing layer). Source apportionment analyses indicated that the major contributors to PM 2.5 and PM 10 were secondary sulphate, secondary nitrate and crustal material, whereas the higher load of the anthropogenic component in PM 2.5 reflects the influence of regional (traffic and industrial) emissions. Levels of mineral, sulphate, sea spray and carbonaceous aerosols were higher in summer, whereas nitrate levels and Cl/Na were higher in winter. A considerably high OC/EC ratio (14 in summer, 10 in winter) was detected, which could be due to a combination of high biogenic emissions of secondary organic aerosol, SOA precursors, ozone levels and insolation, and intensive recirculation of aged air masses. Compared with more locally derived crustal geological dusts, African dust intrusions introduce relatively quartz-poor but clay mineral-rich silicate PM, with more kaolinitic clays from central North Africa in summer, and more smectitic clays from NW Africa in spring.
Kim, Yong Ho; Krantz, Q Todd; McGee, John; Kovalcik, Kasey D; Duvall, Rachelle M; Willis, Robert D; Kamal, Ali S; Landis, Matthew S; Norris, Gary A; Gilmour, M Ian
2016-11-01
The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM 2.5 ) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible for health effects however are not fully understood. Size-fractionated PM (coarse, fine, and ultrafine) samples were collected using a ChemVol sampler at an urban site (G.T. Craig (GTC)) and rural site (Chippewa Lake (CLM)) from July 2009 to June 2010, and then chemically analyzed. The resulting speciated PM data were apportioned by EPA positive matrix factorization to identify emission sources for each size fraction and location. For comparisons with the ChemVol results, PM samples were also collected with sequential dichotomous and passive samplers, and evaluated for source contributions to each sampling site. The ChemVol results showed that annual average concentrations of PM, elemental carbon, and inorganic elements in the coarse fraction at GTC were ∼2, ∼7, and ∼3 times higher than those at CLM, respectively, while the smaller size fractions at both sites showed similar annual average concentrations. Seasonal variations of secondary aerosols (e.g., high NO 3 - level in winter and high SO 4 2- level in summer) were observed at both sites. Source apportionment results demonstrated that the PM samples at GTC and CLM were enriched with local industrial sources (e.g., steel plant and coal-fired power plant) but their contributions were influenced by meteorological conditions and the emission source's operation conditions. Taken together the year-long PM collection and data analysis provides valuable insights into the characteristics and sources of PM impacting the Cleveland airshed in both the urban center and the rural upwind background locations. These data will be used to classify the PM samples for toxicology studies to determine which PM sources, species, and size fractions are of greatest health concern. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuznetsov, Ilya; Zakharov, Alexander; Afonin, Valeri; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Lyash, Andrey; Dolnikov, Gennady; Popel, Sergey; Lisin, Evgeny
2016-07-01
One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On the day side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution of dust particles by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar emission. Dust analyzer instrument PmL for future Russian lander missions intends for investigation the dynamics of dusty plasma near lunar surface. PmL consists of three parts in the case of Luna-Glob: Impact Sensor and two Electric Field Sensors (EFC). There are 9 parts of PmL instrument for Luna-Resource mission: two Impact Sensors, 5 EFC (three on the Boom and two on the lander) and 2 Solar Wind and Dust Analyzers. These days the engineering model of PmL for LG-mission is finished. We obtained first practical results from the simulating chambers with dust particles injectors and plasma inside. All the important achievements are presented in this report as well as the roadmap for further development of PmL instruments in both of Russian lunar missions.
NASA Astrophysics Data System (ADS)
Liao, Z.; Fan, S.
2016-12-01
This study investigated the particulate matter characteristics within different circulation types (CTs) in the megacity of Shanghai during the period 2001-2015, and provided a quantitative evaluation of atmospheric circulation influences on PM10 pollution across a wide range of spatial and temporal scales, from local to region and daily to interannual. Ten CTs were identified over the Asian-Pacific region by objective Lamb Weather Type approach and each resulting CT was characterized with distinct local meteorology and air mass source. The PM10 loadings in the CTs associated with continental westerly flow were significant higher than that in the CTs linked to marine easterly air masses. Regional backgrounds that transported by the synoptic flows were more responsible for the distinct PM10 levels in different CTs. The locally-produced PM10 generally stabilized in range of 20-25 μg m-3, but enhanced to 41.2 μg m-3 in case of anticyclone type. There were distinct PM10 trends in different CTs (ranged from -3.74 to -0.28 μg m-3 yr-1), indicating the different background trends. Overall, the PM10 concentrations have decreased (-2.33 μg m-3 yr-1) in the studied period and the estimated locally-produced trend (-0.79 μg m-3 yr-1) accounted for 33.9% of overall downward trend. The occurrence frequency presented an increase (0.15 % yr-1) for anticyclone type, but a decrease (-0.10 % yr-1) for the type N associated with invasion of cold air. The 15-yr frequency change of atmospheric circulation induced an increase in PM10 level (0.17 μg m-3) in Shanghai. On the contrary, controls on the pollutant emission had always positive effects and hence should be always encouraged.
Spatio-temporal variability of particulate matter in the key part of Gansu Province, Western China.
Guan, Qingyu; Cai, Ao; Wang, Feifei; Yang, Liqin; Xu, Chuanqi; Liu, Zeyu
2017-11-01
To investigate the spatial and temporal behaviors of particulate matter in Lanzhou, Jinchang and Jiayuguan during 2014, the hourly concentrations of PM2.5 and PM10 were collected from the Ministry of Environmental Protection (MEP) in this study. The analysis indicated that the mean annual PM10 (PM2.5) concentrations during 2014 were 115 ± 52 μg/m 3 (57 ± 28 μg/m 3 ), 104 ± 75 μg/m 3 (38 ± 22 μg/m 3 ) and 114 ± 72 μg/m 3 (32 ± 17 μg/m 3 ) in Lanzhou, Jinchang and Jiayuguan, respectively, all of which exceeded the Chinese national ambient air quality II standards for PM. Higher values for both PM fractions were generally observed in spring and winter, and lower concentrations were found in summer and autumn. Besides, the trend of seasonal variation of particulate matter (PM) in each city monitoring site is consistent with the average of the corresponding cities. Anthropogenic activities along with the boundary layer height and wind scale contributed to diurnal variations in PM that varied bimodally (Lanzhou and Jinchang) or unimodally (Jiayuguan). With the arrival of dust events, the PM10 concentrations changed dramatically, and the PM10 concentrations during dust storm events were, respectively, 19, 43 and 17 times higher than the levels before dust events in Lanzhou, Jinchang and Jiayuguan. The ratios (PM2.5/PM10) were lowest, while the correlations were highest, indicating that dust events contributed more coarse than fine particles, and the sources of PM are similar during dust storms. The relationships between local meteorological parameters and PM concentrations suggest a clear association between the highest PM concentrations, with T ≤ 7 °C, and strong winds (3-4 scale). However, the effect of relative humidity is complicated, with more PM10 and PM2.5 exceedances being registered with a relative humidity of less than 40% and 40-60% in Lanzhou, while higher exceedances in Jinchang appeared at a relative humidity of 80-100%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gonneaud, Julie; Kalpouzos, Grégoria; Bon, Laetitia; Viader, Fausto; Eustache, Francis; Desgranges, Béatrice
2011-01-01
Prospective memory (PM) is the ability to remember to perform an action at a specific point in the future. Regarded as multidimensional, PM involves several cognitive functions that are known to be impaired in normal aging. In the present study, we set out to investigate the cognitive correlates of PM impairment in normal aging. Manipulating cognitive load, we assessed event- and time-based PM, as well as several cognitive functions, including executive functions, working memory and retrospective episodic memory, in healthy subjects covering the entire adulthood. We found that normal aging was characterized by PM decline in all conditions and that event-based PM was more sensitive to the effects of aging than time-based PM. Whatever the conditions, PM was linked to inhibition and processing speed. However, while event-based PM was mainly mediated by binding and retrospective memory processes, time-based PM was mainly related to inhibition. The only distinction between high- and low-load PM cognitive correlates lays in an additional, but marginal, correlation between updating and the high-load PM condition. The association of distinct cognitive functions, as well as shared mechanisms with event- and time-based PM confirms that each type of PM relies on a different set of processes. PMID:21678154
Source apportionment of ambient PM10 and PM2.5 in Haikou, China
NASA Astrophysics Data System (ADS)
Fang, Xiaozhen; Bi, Xiaohui; Xu, Hong; Wu, Jianhui; Zhang, Yufen; Feng, Yinchang
2017-07-01
In order to identify the sources of PM10 and PM2.5 in Haikou, 60 ambient air samples were collected in winter and spring, respectively. Fifteen elements (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb), water-soluble ions (SO42 - and NO3-), and organic carbon (OC) and elemental carbon (EC) were analyzed. It was clear that the concentration of particulate matter was higher in winter than in spring. The value of PM2.5/PM10 was > 0.6. Moreover, the proportions of TC, ions, Na, Al, Si and Ca were more high in PM10 and PM2.5. The SOC concentration was estimated by the minimum OC/EC ratio method, and deducted from particulate matter compositions when running CMB model. According to the results of CMB model, the resuspended dust (17.5-35.0%), vehicle exhaust (14.9-23.6%) and secondary particulates (20.4-28.8%) were the major source categories of ambient particulate matter. Additionally, sea salt also had partial contribution (3-8%). And back trajectory analysis results showed that particulate matter was greatly affected by regional sources in winter, while less affected in spring. So particulate matter was not only affected by local sources, but also affected by sea salt and regional sources in coastal cities. Further research could focuses on establishing the actual secondary particles profiles and identifying the local and regional sources of PM at once by one model or analysis method.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PM2.5 violations”) must be based on quantitative analysis using the applicable air quality models... either: (i) Quantitative methods that represent reasonable and common professional practice; or (ii) A...) The hot-spot demonstration required by § 93.116 must be based on quantitative analysis methods for the...
NASA Astrophysics Data System (ADS)
Moon, N.; Kim, S.; Seo, J.; Lee, Y. J.
2017-12-01
Recently, the Korean government is focusing on solving air pollution problem such as fine particulate matter and ozone. Korea has high population density and concentrated industrial complex in its limited land space. For better air quality management, it is important to understand source and contribution relation to target pollutant. The air quality analysis representing the mutual contribution among the local regions enables to understand the substantive state of the air quality of a region in association with neighboring regions. Under this background, the source apportionment of PM10, PM2.5, O3, NO2, SO2 using WRF and CMAQ/BFM was analyzed over Korea and BFM was applied to mobile, area and point sources in each local government. The contribution rate from neighboring region showed different pattern for each pollutant. In case of primary pollutants such as NO2, SO2, local source contribution is dominant, on the other hand secondary pollutants case especially O3, contribution from neighboring region is higher than that from source region itself. Local source contribution to PM10 showed 20-25% and the contribution rate to O3 has big difference with different meteorological condition year after year. From this study, we tried to estimate the conversion rate between source (NOx, VOC, SO2, NH3, PMC, PM2.5, CO) and concentration (PM10, PM2.5, O3, NO2, SO2,) by regional group over Korea. The result can contribute to the decision-making process of important national planning related to large-scale industrial developments and energy supply policies (eg., operations of coal-fired power plants and diesel cars) and emission control plan, where many controversies and concerns are currently concentrated among local governments in Korea. With this kind of approach, various environmental and social problems related to air quality can also be identified early so that a sustainable and environmentally sound plan can be established by providing data infrastructures to be utilized by central government agencies, local governments, and even private sectors.
In vitro and in vivo toxicity of urban and rural particulate matter from California
NASA Astrophysics Data System (ADS)
Mirowsky, Jaime E.; Jin, Lan; Thurston, George; Lighthall, David; Tyner, Tim; Horton, Lori; Galdanes, Karen; Chillrud, Steven; Ross, James; Pinkerton, Kent E.; Chen, Lung Chi; Lippmann, Morton; Gordon, Terry
2015-02-01
Particulate matter (PM) varies in chemical composition and mass concentration based on location, source, and particle size. This study sought to evaluate the in vitro and in vivo toxicity of coarse (PM10-2.5) and fine (PM2.5) PM samples collected at 5 diverse sites within California. Coarse and fine PM samples were collected simultaneously at 2 rural and 3 urban sites within California during the summer. A human pulmonary microvascular endothelial cell line (HPMEC-ST1.6R) was exposed to PM suspensions (50 μg/mL) and analyzed for reactive oxygen species (ROS) after 5 h of treatment. In addition, FVB/N mice were exposed by oropharyngeal aspiration to 50 μg PM, and lavage fluid was collected 24 h post-exposure and analyzed for total protein and %PMNs. Correlations between trace metal concentrations, endotoxin, and biological endpoints were calculated, and the effect of particle size range, locale (urban vs. rural), and location was determined. Absolute principal factor analysis was used to identify pollution sources of PM from elemental tracers of those sources. Ambient PM elicited an ROS and pro-inflammatory-related response in the cell and mouse models, respectively. These responses were dependent on particle size, locale, and location. Trace elements associated with soil and traffic markers were most strongly linked to the adverse effects in vitro and in vivo. Particle size, location, source, and composition of PM collected at 5 locations in California affected the ROS response in human pulmonary endothelial cells and the inflammatory response in mice.
Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore city.
Sapkota, Amir; Symons, J Morel; Kleissl, Jan; Wang, Lu; Parlange, Marc B; Ondov, John; Breysse, Patrick N; Diette, Gregory B; Eggleston, Peyton A; Buckley, Timothy J
2005-01-01
With increasing evidence of adverse health effects associated with particulate matter (PM), the exposure impact of natural sources, such as forest fires, has substantial public health relevance. In addition to the threat to nearby communities, pollutants released from forest fires can travel thousands of kilometers to heavily populated urban areas. There was a dramatic increase in forest fire activity in the province of Quebec, Canada, during July 2002. The transport of PM released from these forest fires was examined using a combination of a moderate-resolution imaging spectroradiometer satellite image, back-trajectories using a hybrid single-particle Lagrangian integrated trajectory, and local light detection and ranging measurements. Time- and size-resolved PM was evaluated at three ambient and four indoor measurement sites using a combination of direct reading instruments (laser, time-of-flight aerosol spectrometer, nephelometer, and an oscillating microbalance). The transport and monitoring results consistently identified a forest fire related PM episode in Baltimore that occurred the first weekend of July 2002 and resulted in as much as a 30-fold increase in ambientfine PM. On the basis of tapered element oscillating microbalance measurements, the 24 h PM25 concentration reached 86 microg/m3 on July 7, 2002, exceeding the 24 h national ambient air quality standard. The episode was primarily comprised of particles less than 2.5 microm in aerodynamic diameter, highlighting the preferential transport of the fraction of PM that is of greatest health concern. Penetration of the ambient episode indoors was efficient (median indoor-to-outdoor ratio 0.91) such that the high ambient levels were similarly experienced indoors. These results are significant in demonstrating the impact of a natural source thousands of kilometers away on ambient levels of and potential exposures to air pollution within an urban center. This research highlights the significance of transboundary air pollution and the need for studies that assess the public health impacts associated with such sources and transport processes.
You, Mingqing
2014-01-01
PM2.5 has gradually become a major environmental problem of China with its rapid economic development, urbanization, and increasing of motor vehicles. Findings and awareness of serious PM2.5 pollution make the PM2.5 a new criterion pollutant of the Chinese National Ambient Air Quality Standard (NAAQS) revised in 2012. The 2012 NAAQS sets the PM2.5 concentrate limitation with the 24-hour average value and the annual mean value. Wuhan is quite typical among central and southern China in climate, economy, development level, and energy consumption. The data are cited from the official website of Wuhan Environmental Protection Bureau and cover the period from 1 January to 30 June 2013. The data definitely confirm the existence of serious PM2.5 pollution in Wuhan and indicate that the addition of PM2.5 as a criterion pollutant significantly brings down the attainment rate of air quality. The example of Wuhan reveals that local governments should take measures to reduce the emission of PM2.5 if it affects the attainment rate and the performance evaluation value of air quality. The main contribution of 2012 NAAQS is that it brings down the attainment rate of the air quality and forces local governmental officials to take the measures accordingly. PMID:24982994
Particulate matter air pollution and liver cancer survival.
Deng, Huiyu; Eckel, Sandrah P; Liu, Lihua; Lurmann, Frederick W; Cockburn, Myles G; Gilliland, Frank D
2017-08-15
Particulate matter (PM) air pollution exposure has been associated with cancer incidence and mortality especially with lung cancer. The liver is another organ possibly affected by PM due to its role in detoxifying xenobiotics absorbed from PM. Various studies have investigated the mechanistic pathways between inhaled pollutants and liver damage, cancer incidence, and tumor progression. However, little is known about the effects of PM on liver cancer survival. Twenty thousand, two hundred and twenty-one California Cancer Registry patients with hepatocellular carcinoma (HCC) diagnosed between 2000 and 2009 were used to examine the effect of exposure to ambient PM with diameter <2.5 μm (PM 2.5 ) on HCC survival. Cox proportional hazards models were used to estimate hazard ratios (HRs) relating PM 2.5 to all-cause and liver cancer-specific mortality linearly and nonlinearly-overall and stratified by stage at diagnosis (local, regional and distant)-adjusting for potential individual and geospatial confounders.PM 2.5 exposure after diagnosis was statistically significantly associated with HCC survival. After adjustment for potential confounders, the all-cause mortality HR associated with a 1 standard deviation (5.0 µg/m 3 ) increase in PM 2.5 was 1.18 (95% CI: 1.16-1.20); 1.31 (95% CI:1.26-1.35) for local stage, 1.19 (95% CI:1.14-1.23) for regional stage, and 1.05 (95% CI:1.01-1.10) for distant stage. These associations were nonlinear, with substantially larger HRs at higher exposures. The associations between liver cancer-specific mortality and PM 2.5 were slightly attenuated compared to all-cause mortality, but with the same patterns.Exposure to elevated PM 2.5 after the diagnosis of HCC may shorten survival, with larger effects at higher concentrations. © 2017 UICC.
Investigating of spatial variations of PM2.5 concentration in Suzhou using remote sensing imagery
NASA Astrophysics Data System (ADS)
Zhang, Shanzheng; Li, Bailiang
2017-04-01
Suzhou is located at the center of Yangtze Delta, suffering the air pollution from construction of mega city, industrial emission and traffic development. Particulate matter not greater than 2.5 micrometers (PM2.5) is now considered as the most important pollutants in the air in East China. For Suzhou city, some studies on PM2.5 temporal variations based on ground measurements have been conducted. However, until now, there is limited remote sensing based research to investigate the spatial pattern of PM2.5 in Suzhou. MODIS is often used to evaluate the spatial variabiilty of air quality, however, due to its low spatial resolution (250m), we have adopted China launched HJ-1 satellite with 30 m resolution of CCD sensor. Following the solar radiation S6 model and dark object atmospheric correction method (Kaufman,et al., 2000), atmospheric optical depth (AOD) was estimated. A statistical relationship has been built up between AOD and PM2.5. We have retrieved the spatial distribution of PM2.5 across Suzhou city in the winter of 2014. Results indicate that PM2.5 has the highest value in Kunshan (East of Suzhou) and Changshu and Taicang (NE of Suzhou) due to the heavy-polluted industry, while in the island of the Taihu Lake, the PM2.5 is significantly lower than other places maybe because of high deposition rate of PM2.5 over water and forest surfaces. The spatial variation also shows that traffic has less contribution to the PM2.5 generation than the industry. We believe this study will be very useful to identify the causes of local PM2.5 pollution. The findings could also benefit local management and policy making.
Estimating Causal Effects of Local Air Pollution on Daily Deaths: Effect of Low Levels.
Schwartz, Joel; Bind, Marie-Abele; Koutrakis, Petros
2017-01-01
Although many time-series studies have established associations of daily pollution variations with daily deaths, there are fewer at low concentrations, or focused on locally generated pollution, which is becoming more important as regulations reduce regional transport. Causal modeling approaches are also lacking. We used causal modeling to estimate the impact of local air pollution on mortality at low concentrations. Using an instrumental variable approach, we developed an instrument for variations in local pollution concentrations that is unlikely to be correlated with other causes of death, and examined its association with daily deaths in the Boston, Massachusetts, area. We combined height of the planetary boundary layer and wind speed, which affect concentrations of local emissions, to develop the instrument for particulate matter ≤ 2.5 μm (PM2.5), black carbon (BC), or nitrogen dioxide (NO2) variations that were independent of year, month, and temperature. We also used Granger causality to assess whether omitted variable confounding existed. We estimated that an interquartile range increase in the instrument for local PM2.5 was associated with a 0.90% increase in daily deaths (95% CI: 0.25, 1.56). A similar result was found for BC, and a weaker association with NO2. The Granger test found no evidence of omitted variable confounding for the instrument. A separate test confirmed the instrument was not associated with mortality independent of pollution. Furthermore, the association remained when all days with PM2.5 concentrations > 30 μg/m3 were excluded from the analysis (0.84% increase in daily deaths; 95% CI: 0.19, 1.50). We conclude that there is a causal association of local air pollution with daily deaths at concentrations below U.S. EPA standards. The estimated attributable risk in Boston exceeded 1,800 deaths during the study period, indicating that important public health benefits can follow from further control efforts. Citation: Schwartz J, Bind MA, Koutrakis P. 2017. Estimating causal effects of local air pollution on daily deaths: effect of low levels. Environ Health Perspect 125:23-29; http://dx.doi.org/10.1289/EHP232.
NASA Astrophysics Data System (ADS)
Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; DiMego, G.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2016-12-01
Wildfires contribute to air quality problems not only towards primary emissions of particular matters (PM) but also emitted ozone precursor gases that can lead to elevated ozone concentration. Wildfires are unpredictable and can be ignited by natural causes such as lightning or accidently by human negligent behavior such as live cigarette. Although wildfire impacts on the air quality can be studied by collecting fire information after events, it is extremely difficult to predict future occurrence and behavior of wildfires for real-time air quality forecasts. Because of the time constraints of operational air quality forecasting, assumption of future day's fire behavior often have to be made based on observed fire information in the past. The United States (U.S.) NOAA/NWS built the National Air Quality Forecast Capability (NAQFC) based on the U.S. EPA CMAQ to provide air quality forecast guidance (prediction) publicly. State and local forecasters use the forecast guidance to issue air quality alerts in their area. The NAQFC fine particulates (PM2.5) prediction includes emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and fires. The fire emission input to the NAQFC is derived from the NOAA NESDIS HMS fire and smoke detection product and the emission module of the US Forest Service BlueSky Smoke Modeling Framework. This study focuses on the error estimation of NAQFC PM2.5 predictions resulting from fire emissions. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that present operational NAQFC fire emissions assumption can lead to a huge error in PM2.5 prediction as fire emissions are sometimes placed at wrong location and time. This PM2.5 prediction error can be propagated from the fire source in the Northwest U.S. to downstream areas as far as the Southeast U.S. From this study, a new procedure has been identified to minimize the aforementioned error. An additional 24 hours reanalysis-run of NAQFC using same-day observed fire emission are being tested. Preliminary results have shown that this procedure greatly improves the PM2.5 predictions at both nearby and downstream areas from fire sources. The 24 hours reanalysis-run is critical and necessary especially during extreme fire events to provide better PM2.5 predictions.
NASA Astrophysics Data System (ADS)
Zhu, W.; Cheng, Z.; Lou, S.
2017-12-01
Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local emissions, region transports and meteorological changes in the pollution period.
Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.
Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V
2016-06-01
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Code of Federal Regulations, 2012 CFR
2012-07-01
... midnight to midnight (local standard time) that are used in NAAQS computations. Designated monitors are... accordance with part 58 of this chapter. Design values are the metrics (i.e., statistics) that are compared... (referred to as the “annual standard design value”). If spatial averaging has been approved by EPA for a...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... Regional Office building in New Orleans and other effects of the recent hurricane impacting the region... Regional Office building in New Orleans was closed at 3:00 p.m. local time. Many BOEM employees and their... northern Gulf Coast, just south of the New Orleans metropolitan area. Heavy rainfall and high winds caused...
78 FR 42110 - NASA Advisory Council; Education and Public Outreach Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... [email protected]nasa.gov , no later than 12:00 p.m. Local Time, July 26, 2013, to get further information... be found at http://www.nasa.gov/offices/nac/EPO_Meetings.html . SUPPLEMENTARY INFORMATION: The agenda...-4332 or by email at [email protected]nasa.gov . U.S. citizens and Permanent Residents (green card holders...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... should be controlled. DATES: May 16, 2013, shall be known as the ``control date'' for the longfin squid... laws. Written comments must be received on or before 5 p.m., local time June 17, 2013. ADDRESSES: You may submit comments on this document, identified by NOAA-NMFS-2013-0076 by any of the following...
14 CFR 91.819 - Civil supersonic airplanes that do not comply with part 36.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in the United States: (1) Regardless of whether a type design change approval is applied for under... the type design is changed, after July 31, 1978, in a manner constituting an “acoustical change” under... scheduled, or otherwise planned, for takeoff or landing after 10 p.m. and before 7 a.m. local time. ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
....1101 will be enforced on December 8, 2012 from 6 p.m. until 8 p.m. FOR FURTHER INFORMATION CONTACT: If... CFR 100.1101 in support of the annual Mission Bay Parade of Lights (Item 6 on Table 1 of 33 CFR 100.1101). The Coast Guard will enforce the special local regulations in the main entrance of the channel...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-23
... Local Regulation; Annual Marine Events on the Colorado River Between Davis Dam (Bullhead City, AZ) and... during the Lake Havasu City Boat Parade of Lights on December 01, 2012 from 5 p.m. to 9 p.m. This event... Lake Havasu City Boat Parade of Lights (Item 10 on Table 1 of 33 CFR 100.1102). The Coast Guard will...
The United States EPA conducted a six week air quality survey of the city of Conakry, Guinea, West Africa in 2004. The study was conducted to assess the background levels of anthropogenic and natural particulate matter (PM) and to investigate the local and regional sources of tho...
Diurnal alterations of brain electrical activity in healthy adults: a LORETA study.
Toth, Marton; Kiss, Attila; Kosztolanyi, Peter; Kondakor, Istvan
2007-01-01
EEG background activity was investigated by low resolution brain electromagnetic tomography (LORETA) to test the diurnal alterations of brain electrical activity in healthy adults. Fourteen right-handed healthy male postgraduate medical students were examined four times (8 a.m., 2 p.m., 8 p.m. and next day 2 p.m.). LORETA was computed to localize generators of EEG frequency components. Comparing the EEG activity between 2 p.m. and 8 a.m., increased activity was seen (1) in theta band (6.5-8 Hz) in the left prefrontal, bilateral mesial frontal and anterior cingulate cortex; (2) in alpha2 band (10.5-12 Hz) in the bilateral precuneus and posterior parietal cortex as well as in the right temporo-occipital cortex; (3) in beta1-2-3 band (12.5-30 Hz) in the right hippocampus and parieto-occipital cortex, left frontal and bilateral cingulate cortex. Comparing the brain activity between 8 p.m. and 8 a.m., (1) midline theta activity disappeared; (2) increased alpha2 band activity was seen in the left hemisphere (including the left hippocampus); and (3) increased beta bands activity was found over almost the whole cortex (including both of hippocampi) with the exception of left temporo-occipital region. There were no significant changes between the background activities of 2 p.m. and next day 2 p.m. Characteristic distribution of increased activity of cortex (no change in delta band, and massive changes in the upper frequency bands) may mirror increasing activation of reticular formation and thus evoked thalamocortical feedback mechanisms as a sign of maintenance of arousal.
Meteorological Contribution to Variability in Particulate Matter Concentrations
NASA Astrophysics Data System (ADS)
Woods, H. L.; Spak, S. N.; Holloway, T.
2006-12-01
Local concentrations of fine particulate matter (PM) are driven by a number of processes, including emissions of aerosols and gaseous precursors, atmospheric chemistry, and meteorology at local, regional, and global scales. We apply statistical downscaling methods, typically used for regional climate analysis, to estimate the contribution of regional scale meteorology to PM mass concentration variability at a range of sites in the Upper Midwestern U.S. Multiple years of daily PM10 and PM2.5 data, reported by the U.S. Environmental Protection Agency (EPA), are correlated with large-scale meteorology over the region from the National Centers for Environmental Prediction (NCEP) reanalysis data. We use two statistical downscaling methods (multiple linear regression, MLR, and analog) to identify which processes have the greatest impact on aerosol concentration variability. Empirical Orthogonal Functions of the NCEP meteorological data are correlated with PM timeseries at measurement sites. We examine which meteorological variables exert the greatest influence on PM variability, and which sites exhibit the greatest response to regional meteorology. To evaluate model performance, measurement data are withheld for limited periods, and compared with model results. Preliminary results suggest that regional meteorological processes account over 50% of aerosol concentration variability at study sites.
ERIC Educational Resources Information Center
Huang, Tracy; Loft, Shayne; Humphreys, Michael S.
2014-01-01
"Time-based prospective memory" (PM) refers to performing intended actions at a future time. Participants with time-based PM tasks can be slower to perform ongoing tasks (costs) than participants without PM tasks because internal control is required to maintain the PM intention or to make prospective-timing estimates. However, external…
Ji, Chen; Fan, Fan; Lou, Xuelin
2017-08-08
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ) signaling is transient and spatially confined in live cells. How this pattern of signaling regulates transmitter release and hormone secretion has not been addressed. We devised an optogenetic approach to control PI(4,5)P 2 levels in time and space in insulin-secreting cells. Combining this approach with total internal reflection fluorescence microscopy, we examined individual vesicle-trafficking steps. Unlike long-term PI(4,5)P 2 perturbations, rapid and cell-wide PI(4,5)P 2 reduction in the plasma membrane (PM) strongly inhibits secretion and intracellular Ca 2+ concentration ([Ca 2+ ] i ) responses, but not sytaxin1a clustering. Interestingly, local PI(4,5)P 2 reduction selectively at vesicle docking sites causes remarkable vesicle undocking from the PM without affecting [Ca 2+ ] i . These results highlight a key role of local PI(4,5)P 2 in vesicle tethering and docking, coordinated with its role in priming and fusion. Thus, different spatiotemporal PI(4,5)P 2 signaling regulates distinct steps of vesicle trafficking, and vesicle docking may be a key target of local PI(4,5)P 2 signaling in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Characteristics of long-lasting haze episodes observed in Seoul, South Korea, for 2009-2014
NASA Astrophysics Data System (ADS)
Lee, Hae-Jung; Kim, Jeong Eun; Cha, Joo Wan; Song, Seungjoo; Ryoo, Sang-Boom; Kim, Yong Pyo
2018-03-01
The meteorological, physical, chemical, and optical characteristics of long-lasting haze in Seoul were studied. Four episodes were observed between 2009 and 2014, all in winter. PM10 mass concentration (PM10), chemical species, and aerosol optical depth (AOD) were analyzed along with the synoptic meteorological conditions. During the episodes, the temporal variations of the PM10 generally proceeded from the west along the Yellow Sea. The ground-based AOD was also high in Seoul and other sites. High AOD (MODIS) distributions were observed to move from China to Korea. The high sulfate concentration, along with the high sulfur oxidation ratio value of the third and fourth episodes (Eps. 3 and 4), respectively, corroborated the possible long-range transport of air pollutants. Stagnant meteorological conditions were a reason for the occurrence of long-lasting hazes. An anticyclone system had a dominant influence on the Korean peninsula during all episodes. The air mass over China was able to rise, and that over Korea was more stagnant in terms of climatology except Ep. 2. In addition to transport from outside, locally emitted air pollutants contributed to the PM10 partly due to the stagnant conditions, during which diurnal variations in NO2 and nitrates showed similar peak times during Eps. 3 and 4. Analysis of the episodes consistently showed that the long-lasting haze episodes were influenced by both the long-range transport of air pollutants from outside Seoul, mostly from China, and the accumulation of air pollutants that were locally emitted and transformed.
NASA Astrophysics Data System (ADS)
Beloconi, Anton; Benas, Nikolaos; Chrysoulakis, Nektarios; Kamarianakis, Yiannis
2015-11-01
Linear mixed effects models were developed for the estimation of the average daily Particulate Matter (PM) concentration spatial distribution over the area of Greater London (UK). Both fine (PM2.5) and coarse (PM10) concentrations were predicted for the 2002- 2012 time period, based on satellite data. The latter included Aerosol Optical Thickness (AOT) at 3×3 km spatial resolution, as well as the Surface Relative Humidity, Surface Temperature and K-Index derived from MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. For a meaningful interpretation of the association among these variables, all data were homogenized with regard to spatial support and geographic projection, thus addressing the change of support problem and leading to a valid statistical inference. To this end, spatial (2D) and spatio- temporal (3D) kriging techniques were applied to in-situ particulate matter concentrations and the leave-one- station-out cross-validation was performed on a daily level to gauge the quality of the predictions. Satellite- derived covariates displayed clear seasonal patterns; in order to work with data which is stationary in mean, for each covariate, deviations from its estimated annual profiles were computed using nonlinear least squares and nonlinear absolute deviations. High-resolution land- cover and morphology static datasets were additionally incorporated in the analysis in order to catch the effects of nearby emission sources and sequestration sites. For pairwise comparisons of the particulate matter concentration means at distinct land-cover classes, the pairwise comparisons method for unequal sample sizes, known as Tukey's method, was performed. The use of satellite-derived products allowed better assessment of space-time interactions of PM, since these daily spatial measurements were able to capture differences in PM concentrations between grid cells, while the use of high- resolution land-cover and morphology static datasets allowed accounting for local industrial, domestic and traffic related air pollution. The developed methods are expected to fully exploit ESA's new Sentinel-3 observations to estimate spatial distributions of both PM10 and PM2.5 concentrations in arbitrary cities.
Achilleos, Souzana; Evans, John S.; Yiallouros, Panayiotis K.; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros
2016-01-01
Air quality in Cyprus is influenced by both local and transported pollution including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993 through December 11, 2008, and Ayia Marina (rural background representative) from January 1, 1999 through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records and satellite data were used to identify dust storm days. We investigated long term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000–2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. PMID:25562931
NASA Astrophysics Data System (ADS)
Bhandari, S.; Wang, D. S.; Gani, S.; Seraj, S.; Arub, Z.; Habib, G.; Apte, J.; Hildebrandt Ruiz, L.
2017-12-01
Exposure to fine particulate matter (PM) poses significant health risks, especially to residents in heavily populated areas. The current understanding of the sources and dynamics of PM pollution in developing countries like India is limited. Delhi, India is the second most populated city in the world that has extremely high winter PM concentrations and frequent severe pollution episodes. This study reports on composition measurements of submicron aerosol at 1 minute time resolution from January to August of 2017, collected at the Indian Institute of Technology Delhi using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) and black carbon (BC) measurements using an Aethalometer. Source apportionment was conducted on organic and inorganic mass spectra measured by the ACSM and black carbon data measured using Positive Matrix Factorization (PMF). High concentrations of particulate matter were observed with total PM1 at times exceeding 200 µg m-3 in winter. A significant drop in PM1 concentrations was observed in the winter-spring transition. As observed elsewhere, organic species dominated the submicron mass, contributing 60% of the total mass over the duration of the campaign. However, this fractional contribution varied substantially over the day: from 48% early in the morning to 73% late at night. Along with diurnal variation in total PM1 mass loadings, particulate chloride levels also exhibited a strong diurnal cycle, with concentrations as high as 50 µg m-3 observed in the early mornings of January 2017. Literature review on identification of winter chloride sources in Delhi points to local and regional sources such as biomass/open-waste burning and coal combustion. PMF receptor modeling identified several factors with distinct diurnal patterns. While hydrocarbon-like organic aerosol (HOA) factor has the largest mass fraction contribution, PMF results consistently suggest chloride presence as attributable to ammonium chloride. Interestingly, aerosol neutralization characterization shows an apparent acidity of aerosols. These results point to substantial differences in aerosol composition in Indian cities in comparison to cities around the world, especially with regards to the abundance of particulate chloride, and provide insights into the sources of PM1 measured in Delhi.
75 FR 80508 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-22
..., Member Conflict: Diabetes, Obesity and Nutrition. Date: January 10, 2011. Time: 1p.m. to 5 p.m. Agenda...: Enabling Bioanalytical and Imaging Technologies. Date: December 29, 2010. Time: 2 p.m. to 4 p.m. Agenda: To... Hematology SEP. Date: January 10-11, 2011. Time: 8 a.m. to 5 p.m. Agenda: To review and evaluate grant...
Membrane association and localization dynamics of the Ebola virus matrix protein VP40.
Gc, Jeevan B; Gerstman, Bernard S; Chapagain, Prem P
2017-10-01
The Ebola virus matrix protein VP40 is a major structural protein that provides the scaffolding for new Ebola virus particles. For this, VP40 is first trafficked to the lower leaflet of the plasma membrane (PM) in its dimeric form. Once associated with the PM, the VP40 dimers undergo structural rearrangements and oligomerize into hexamers and filaments that make up the virus matrix. Therefore, association of the VP40 dimers and their stabilization at the PM is a crucial step in the Ebola life-cycle. To understand the molecular details of the VP40 dimer-PM interactions, we investigated the dimer association with the inner leaflet of the PM using detailed all-atom molecular dynamics (MD) simulations. The formation of the dimer-PM complex is facilitated by the interactions of the VP40 lysine residues and the anionic lipids POPS, POPI, and PIP 2 in the PM. In contrast, the dimer fails to associate with a membrane without POPS, POPI, or PIP 2 lipids. We explored the mechanisms of the association and identified important residues and lipids involved in localization and stabilization of VP40 dimers at the PM. MD simulations elucidate the role of a C-terminal α-helix alignment parallel to the lipid bilayer surface as well as the creation of membrane defects that allow partial insertion of the hydrophobic residue V276 into the membrane to further stabilize the VP40 dimer-PM complex. Understanding the mechanisms of the VP40 dimer-PM association that facilitate oligomerization can be important for potentially targeting the VP40 for small molecules that can interfere with the virus life-cycle. Copyright © 2017 Elsevier B.V. All rights reserved.
Source identification of ambient PM 2.5 during summer inhalation exposure studies in Detroit, MI
NASA Astrophysics Data System (ADS)
Morishita, Masako; Keeler, Gerald J.; Wagner, James G.; Harkema, Jack R.
Particulate air pollution is associated with cardiopulmonary morbidity and mortality in heavily populated urban centers of the United States. Because ambient fine particulate matter (aerodynamic diameter ⩽2.5 μm; PM 2.5) is a complex mixture resulting from multiple sources and variable atmospheric conditions, it is difficult to identify specific components of PM 2.5 that are responsible for adverse health effects. During four consecutive summers from 2000 to 2003 we characterized the ambient gaseous and PM 2.5 air quality in an urban southwest Detroit community where childhood asthma hospitalization rates are more than twice the statewide average. Both integrated and continuous PM measurements together with gaseous air pollution measurements were performed using a mobile air research facility, AirCARE1, in which concurrent toxicological studies were being conducted. Chemical and physical characterizations of PM 2.5 as well as receptor modeling using positive matrix factorization (PMF) were completed. Results from PMF indicated that six major sources contributed to the observed ambient PM 2.5 mass during the summer months. Primary sources included (1) coal combustion/secondary sulfate aerosol, (2) motor vehicle/urban road dust, (3) municipal waste incinerators, (4) oil combustion/refineries, (5) sewage sludge incinerators, and (6) iron/steel manufacturing. Although the contribution of the coal/secondary sulfate aerosol source was greater than other factors, increased levels of urban PM 2.5 from local combustion sources were also observed. In addition to characterization of ambient PM 2.5 and their sources in southwest Detroit, this paper discusses possible associations of ambient PM 2.5 from local combustion sources, specifically incinerator and refinery emissions and the observed adverse health effects during the inhalation exposure campaigns.
External contribution to urban air pollution.
Grima, Ramon; Micallef, Alfred; Colls, Jeremy J
2002-02-01
Elevated particulate matter concentrations in urban locations have normally been associated with local traffic emissions. Recently it has been suggested that such episodes are influenced to a high degree by PM10 sources external to urban areas. To further corroborate this hypothesis, linear regression was sought between PM10 concentrations measured at eight urban sites in the U.K., with particulate sulphate concentration measured at two rural sites, for the years 1993-1997. Analysis of the slopes, intercepts and correlation coefficients indicate a possible relationship between urban PM10 and rural sulphate concentrations. The influences of wind direction and of the distance of the urban from the rural sites on the values of the three statistical parameters are also explored. The value of linear regression as an analysis tool in such cases is discussed and it is shown that an analysis of the sign of the rate of change of the urban PM10 and rural sulphate concentrations provides a more realistic method of correlation. The results indicate a major influence on urban PM10 concentrations from the eastern side of the United Kingdom. Linear correlation was also sought using PM10 data from nine urban sites in London and nearby rural Rochester. Analysis of the magnitude of the gradients and intercepts together with episode correlation analysis between the two sites showed the effect of transported PM10 on the local London concentrations. This article also presents methods to estimate the influence of rural and urban PM10 sources on urban PM10 concentrations and to obtain a rough estimate of the transboundary contribution to urban air pollution from the PM10 concentration data of the urban site.
Influence of background particulate matter (PM) on urban air quality in the Pacific Northwest.
Timonen, H; Wigder, N; Jaffe, D
2013-11-15
Elevated particulate matter concentrations due to Asian long-range transport (LRT) are frequently observed in the free troposphere (FT) above the Pacific Northwest, U.S. Transport of this aerosol from the FT to the boundary layer (BL) and its effect to local air quality remain poorly constrained. We used data collected at the Mount Bachelor observatory (MBO, 2.8 km a.s.l) and from ground stations in the Pacific Northwest to study transport of fine particulate matter (PM) from the FT to the BL. During Asian LRT episodes PM concentrations were clearly elevated above the corresponding monthly averages at MBO as well as at low elevation sites across Washington and Oregon. Also, a clear correlation between MBO and low elevation sites was observed, indicating that LRT episodes are seen in both the FT and BL. In addition, drum impactor measurements show that the chemical composition of PM at MBO was similar to that measured at the BL sites. Using a simple regression model, we estimate that during springtime, when the transport from Asia is most effective, the contribution of Asian sources to PM2.5 in clean background areas of the Pacific Northwest was on average 1.7 μg m(-3) (representing approximately 50-80% of PM). The influence of LRT PM was also seen in measurement stations situated in the urban and urban background areas. However, the fraction of LRT PM was less pronounced (36-50% of PM) due to larger local emissions in the urban areas. Copyright © 2013 Elsevier Ltd. All rights reserved.
Different relationships between personal exposure and ambient concentration by particle size.
Guak, Sooyoung; Lee, Kiyoung
2018-04-06
Ambient particulate matter (PM) concentrations at monitoring stations were often used as an indicator of population exposure to PM in epidemiological studies. The correlation between personal exposure and ambient concentrations of PM varied because of diverse time-activity patterns. The aim of this study was to determine the relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 with minimal impact of time-activity pattern on personal exposure. Performance of the MicroPEM, v3.2 was evaluated by collocation with central ambient air monitors for PM 10 and PM 2.5 . A field technician repeatedly conducted measurement of 24 h personal exposures to PM 10 and PM 2.5 with a fixed time-activity pattern of office worker over 26 days in Seoul, Korea. The relationship between the MicroPEM and the ambient air monitor showed good linearity. Personal exposure and ambient concentrations of PM 2.5 were highly correlated with a fixed time-activity pattern compared with PM 10 . The finding implied a high infiltration rate of PM 2.5 and low infiltration rate of PM 10 . The relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 was different for high level episodes. In the Asian dust episode, staying indoors could reduce personal exposure to PM 10 . However, personal exposure to PM 2.5 could not be reduced by staying indoors during the fine dust advisory episode.
Wang, Ya; Liu, Lu-lu; Gan, Ming-yuan; Tan, Shu-ping; Shum, David; Chan, Raymond
2017-01-01
Abstract Background: Prospective memory (PM) refers to remembering to execute a planned intention in the future, which can been divided as event-based PM (focal, nonfocal) and time-based PM according to the nature of the cue. Focal event-based PM, where the ongoing task requires processing of the characteristics of PM cues, has been found to be benefited from implementation intention (II, ie, an encoding strategy in the format of “if I see X, then I will do Y”). However, to date, it is unclear whether implementation intention can produce a positive effect on nonfocal event-based PM (where the ongoing task is irrelevant with the PM cues) and time-based PM. Moreover, patients with schizophrenia (SCZ) were found to have impairments in these types of PM, and few studies have been conducted to examine the effect of II on these types of PM. This study investigated whether (and how) implementation intention can improve nonfocal event-based PM and time-based PM performance in patients with SCZ. Methods: Forty-two patients with SCZ and 42 healthy control participants were administered both computerized nonfocal event-based PM task and time-based PM task. Patients and healthy controls were further randomly allocated to implementation intention condition (N = 21) and typical instruction condition (N = 21). Results: Patients with SCZ in the implementation intention group showed higher PM accuracy than the typical instruction group in both nonfocal event-based PM task (0.51 ± 0.32 vs 0.19 ± 0.29, t(40) = 3.39, P = .002) and time-based PM task (0.72 ± 0.31 vs 0.39 ± 0.40, t(40) = 2.98, P = .005). Similarly, healthy controls in the II group also showed better PM performance than the typical instruction group in both tasks (all P’s < 0.05). Time check frequency of time-based PM task in the II group of all the participants was significantly higher than the typical instruction group. Conclusion: Implementation intention is an effective strategy for improving different types of PM performance in patients with schizophrenia and can be applied for clinical settings.
Temperature Map, "Bonneville Crater" (1:35 p.m.)
2004-05-17
Rates of change in surface temperatures during a martian day indicate differences in particle size in and near "Bonneville Crater." This image is the third in a series of five with color-coded temperature information from different times of day. This one is from 1:35 p.m. local solar time at the site where NASA's Mars Exploration Rover Spirit is exploring Mars. Temperature information from Spirit's miniature thermal emission spectrometer is overlaid onto a view of the site from Spirit's panoramic camera. In this color-coded map, quicker reddening during the day suggests sand or dust. (Red is about 270 Kelvin or 27 degrees Fahrenheit.) An example of this is in the shallow depression in the right foreground. Areas that stay blue longer into the day have larger rocks. (Blue indicates about 230 Kelvin or minus 45 Degrees F.) An example is the rock in the left foreground. http://photojournal.jpl.nasa.gov/catalog/PIA05930
Wang, Yuhui; VandenLangenberg, Kyle; Wen, Changlong; Wehner, Todd C; Weng, Yiqun
2018-03-01
Host resistances in PI 197088 cucumber to downy and powdery mildew pathogens are conferred by 11 (3 with major effect) and 4 (1 major effect) QTL, respectively, and three of which are co-localized. The downy mildew (DM) and powdery mildew (PM) are the two most important foliar diseases of cucurbit crops worldwide. The cucumber accession PI 197088 exhibits high-level resistances to both pathogens. Here, we reported QTL mapping results for DM and PM resistances with 148 recombinant inbred lines from a cross between PI 197088 and the susceptible line 'Coolgreen'. Phenotypic data on responses to natural DM and PM infection were collected in multi-year and multi-location replicated field trials. A high-density genetic map with 2780 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing and 55 microsatellite markers was developed, which revealed genomic regions with segregation distortion and mis-assemblies in the '9930' cucumber draft genome. QTL analysis identified 11 and 4 QTL for DM and PM resistances accounting for more than 73.5 and 63.0% total phenotypic variance, respectively. Among the 11 DM resistance QTL, dm5.1, dm5.2, and dm5.3 were major-effect contributing QTL, whereas dm1.1, dm2.1, and dm6.2 conferred susceptibility. Of the 4 QTL for PM resistance, pm5.1 was the major-effect QTL explaining 32.4% phenotypic variance and the minor-effect QTL pm6.1 contributed to disease susceptibility. Three PM QTL, pm2.1, pm5.1, and pm6.1, were co-localized with DM QTL dm2.1, dm5.2, and dm6.1, respectively, which was consistent with the observed linkage of PM and DM resistances in PI 197088. The genetic architecture of DM resistance in PI 197088 and another resistant line WI7120 (PI 330628) was compared, and the potential of using PI 197088 in cucumber breeding for downy and powdery mildew resistances is discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-14
... of the Port. DATES: The regulations in 33 CFR 100.1101 will be enforced from 7 a.m. to 5:30 p.m. on... Guard will enforce the special local regulation for the Thunderboat Regatta in 33 CFR 100.1101 on... September 19, 2010, from 7 a.m. PST to 5:30 p.m. Under the provisions of 33 CFR 100.1101, a vessel may not...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-02
... INFORMATION: The Coast Guard will enforce the special local regulations in 33 CFR 100.1101 in support of the Mission Bay Parade of Lights (Item 6 on Table 1 of 33 CFR 100.1101). The Coast Guard will enforce the... December 14, 2013 from 6 p.m. to 9 p.m. Under the provisions of 33 CFR 100.1101, persons and vessels are...
Che, W W; Frey, H Christopher; Lau, Alexis K H
2016-08-16
A sequential measurement method is demonstrated for quantifying the variability in exposure concentration during public transportation. This method was applied in Hong Kong by measuring PM2.5 and CO concentrations along a route connecting 13 transportation-related microenvironments within 3-4 h. The study design takes into account ventilation, proximity to local sources, area-wide air quality, and meteorological conditions. Portable instruments were compacted into a backpack to facilitate measurement under crowded transportation conditions and to quantify personal exposure by sampling at nose level. The route included stops next to three roadside monitors to enable comparison of fixed site and exposure concentrations. PM2.5 exposure concentrations were correlated with the roadside monitors, despite differences in averaging time, detection method, and sampling location. Although highly correlated in temporal trend, PM2.5 concentrations varied significantly among microenvironments, with mean concentration ratios versus roadside monitor ranging from 0.5 for MTR train to 1.3 for bus terminal. Measured inter-run variability provides insight regarding the sample size needed to discriminate between microenvironments with increased statistical significance. The study results illustrate the utility of sequential measurement of microenvironments and policy-relevant insights for exposure mitigation and management.
Crustal tomography of the 2016 Kumamoto earthquake area in West Japan using P and PmP data
NASA Astrophysics Data System (ADS)
Wang, Haibo; Zhao, Dapeng; Huang, Zhouchuan; Xu, Mingjie; Wang, Liangshu; Nishizono, Yukihisa; Inakura, Hirohito
2018-05-01
A high-resolution model of three-dimensional (3-D) P-wave velocity (Vp) tomography of the crust in the source area of the 2016 Kumamoto earthquake (M 7.3) in West Japan is determined using a large number of arrival times of first P-waves and reflected P-waves from the Moho discontinuity (PmP). The PmP data are collected from original seismograms of the Kumamoto aftershocks and other local crustal events in Kyushu. Detailed resolution tests show that the addition of the PmP data can significantly improve the resolution of the crustal tomography, especially that of the lower crust. Our results show that significant low-velocity (low-V) anomalies exist in the entire crust beneath the active arc volcanoes, which may reflect the pathway of arc magmas. The 2016 Kumamoto earthquake occurred at the edge of a small low-V zone in the upper crust. A significant low-V anomaly is revealed in the lower crust beneath the source zone, which may reflect the arc magma and fluids ascending from the mantle wedge. These results suggest that the rupture nucleation of the 2016 Kumamoto earthquake was affected by fluids and arc magma.
NASA Astrophysics Data System (ADS)
Arruti, A.; Fernández-Olmo, I.; Irabien, A.
2011-07-01
The aim of this study was to determine the major components (Na, Ca, K, Mg, Fe, Al, NH 4+, SO 42-, NO 3-, Cl - and TC) and trace-metal levels (As, Ni, Cd, Pb, Ti, V, Cr, Mn, Cu, Mo, Rh and Hg) in PM 10 and PM 2.5 at an Atlantic coastal city (Santander, Cantabria region, Northern Spain). Additional samples were collected in other urban sites of the Cantabria region to assess the metal content found in different urban environments within the region. To control for the mass attributed to inland regional background particulate matter, samples were also collected in Los Tojos village. The spatial variability of the major PM components shows that PM origins are different at inland and coastal sites. In the coastal city of Santander, the most important contributors are (i) the marine aerosol and (ii) the secondary inorganic aerosol (SIA) and the total carbon (TC) in PM 10 and PM 2.5, respectively. Additionally, the influence of the coastal location on the ionic balance of PM is also studied. The trace metal spatial variability is studied using the coefficient of divergence (COD), which shows that the levels of trace metals at the three studied urban sites are mainly influenced by local emission sources. The main local tracers are identified as follows: Mn in the Santander area; Mo, Cr and Pb at Reinosa; and Ni and V at Castro Urdiales. A more detailed source apportionment study of the local trace metals at Santander is conducted by Principal Component Analysis (PCA) and Positive Matrix Factorisation (PMF); these two receptor models report complementary information. From these statistical analyses, the identified sources of trace metals in PM 10 are urban background sources, industrial sources and traffic. The industrial factor was dominated by Mn, Cu and Pb, which are trace metals used in steel production and manganese-ferroalloy production plant. With respect to PM 2.5, the identified emission sources of trace metals are combustion processes as well as traffic and industrial sources.
Scheepers, Paul T. J.; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B. M.
2017-01-01
For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC), acrolein, formaldehyde, nitrogen dioxide (NO2), respirable particulate matter (PM-4.0 and PM-2.5) and their respective benz(a)pyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO2 (4.9–17.4 μg/m3) and formaldehyde (2.5–6.4 μg/m3) were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m3 (range: 33.1–2450 μg/m3) and was fivefold higher in laboratories (316 μg/m3) compared to offices (57.0 μg/m3). PM-4.0 and benzo(a)pyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80–90% efficiency filter (p < 0.01). No indications were found that support a significant contribution of known local sources such as fuels or combustion engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities. PMID:28481324
Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.
Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki
2016-09-01
To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component.
Intercontinental Transport of Aerosols: Implication for Regional Air Quality
NASA Technical Reports Server (NTRS)
Chin, Mian; Diehl, Thomas; Ginoux, Paul
2006-01-01
Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.
Russell, Brook T; Wang, Dewei; McMahan, Christopher S
2017-08-01
Fine particulate matter (PM 2.5 ) poses a significant risk to human health, with long-term exposure being linked to conditions such as asthma, chronic bronchitis, lung cancer, atherosclerosis, etc. In order to improve current pollution control strategies and to better shape public policy, the development of a more comprehensive understanding of this air pollutant is necessary. To this end, this work attempts to quantify the relationship between certain meteorological drivers and the levels of PM 2.5 . It is expected that the set of important meteorological drivers will vary both spatially and within the conditional distribution of PM 2.5 levels. To account for these characteristics, a new local linear penalized quantile regression methodology is developed. The proposed estimator uniquely selects the set of important drivers at every spatial location and for each quantile of the conditional distribution of PM 2.5 levels. The performance of the proposed methodology is illustrated through simulation, and it is then used to determine the association between several meteorological drivers and PM 2.5 over the Eastern United States (US). This analysis suggests that the primary drivers throughout much of the Eastern US tend to differ based on season and geographic location, with similarities existing between "typical" and "high" PM 2.5 levels.
Joint measurements of black carbon and particle mass for ...
The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate total BC emissions from historical PM data; however, theseratios have not been measured using portable emission measurement systems(PEMS) in order to obtain real-world measurements over a wide range ofdriving conditions. In this study, we developed a PEMS platform byintegrating two Aethalometers and an electric low pressure impactor torealize the joint measurement of real-world BC and PM emissions for tenHDDVs in China. Test results showed that the average BC/PM ratio for fiveHDDVs equipped with mechanical fuel injection (MI) engines was 0.43±0.06,significantly lower (P<0.05) than another five HDDVs equipped withelectronically-controlled fuel injection (EI) engines (0.56±0.12).Traffic conditions also affected the BC/PM ratios with higher BC/PMratios on freeway routes than on local roads. Further, higher ratios wereobserved for HDDVs equipped with EI engines than for the MI engines forthe highway and local road routes. With an operating mode binningapproach, we observed that the instantaneous BC/PM ratios of EI enginevehicles were above those of the MI engine vehicles in all operatingmodes except for the braking mode (i.e., Bin 0). Therefore, the compleximpacts from engine technology and
Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium.
Kamdar, O; Le, Wei; Zhang, J; Ghio, A J; Rosen, G D; Upadhyay, D
2008-10-29
We studied the effects of airborne particulate matters (PM) on cystic fibrosis (CF) epithelium. We noted that PM enhanced human CF bronchial epithelial apoptosis, activated caspase-9 and PARP-1; and reduced mitochondrial membrane potential. Mitochondrial inhibitors (4,4-diisothiocyanatostilbene-2,2'disulfonic acid, rotenone and thenoyltrifluoroacetone) blocked PM-induced generation of reactive oxygen species and apoptosis. PM upregulated pro-apoptotic Bad, Bax, p53 and p21; and enhanced mitochondrial localization of Bax. The anti-apoptotic Bcl-2, Bcl-xl, Mcl-1 and Xiap remained unchanged; however, overexpression of Bcl-xl blocked PM-induced apoptosis. Accordingly, we provide the evidence that PM enhances oxidative stress and mitochondrial signaling mediated apoptosis via the modulation of Bcl family proteins in CF.
Liu, Jianzheng; Li, Weifeng; Wu, Jiansheng; Liu, Yonghong
2018-01-01
The Beijing-Tianjin-Hebei area faces a severe fine particulate matter (PM2.5) problem. To date, considerable progress has been made toward understanding the PM2.5 problem, including spatial-temporal characterization, driving factors, and health effects. However, little research has been done on the dynamic interactions and relationships between PM2.5 concentrations in different cities in this area. To address the research gap, this study discovered a phenomenon of time-lagged intercity correlations of PM2.5 time series and proposed a visualization framework based on this phenomenon to visualize the interaction in PM2.5 concentrations between cities. The visualizations produced using the framework show that there are significant time-lagged correlations between the PM2.5 time series in different cities in this area. The visualizations also show that the correlations are more significant in colder months and between cities that are closer, and that there are seasonal changes in the temporal order of the correlated PM2.5 time series. Further analysis suggests that the time-lagged intercity correlations of PM2.5 time series are most likely due to synoptic meteorological variations. We argue that the visualizations demonstrate the interactions of air pollution between cities in the Beijing-Tianjin-Hebei area and the significant effect of synoptic meteorological conditions on PM2.5 pollution. The visualization framework could help determine the pathway of regional transportation of air pollution and may also be useful in delineating the area of interaction of PM2.5 pollution for impact analysis.
Li, Weifeng; Wu, Jiansheng; Liu, Yonghong
2018-01-01
The Beijing-Tianjin-Hebei area faces a severe fine particulate matter (PM2.5) problem. To date, considerable progress has been made toward understanding the PM2.5 problem, including spatial-temporal characterization, driving factors, and health effects. However, little research has been done on the dynamic interactions and relationships between PM2.5 concentrations in different cities in this area. To address the research gap, this study discovered a phenomenon of time-lagged intercity correlations of PM2.5 time series and proposed a visualization framework based on this phenomenon to visualize the interaction in PM2.5 concentrations between cities. The visualizations produced using the framework show that there are significant time-lagged correlations between the PM2.5 time series in different cities in this area. The visualizations also show that the correlations are more significant in colder months and between cities that are closer, and that there are seasonal changes in the temporal order of the correlated PM2.5 time series. Further analysis suggests that the time-lagged intercity correlations of PM2.5 time series are most likely due to synoptic meteorological variations. We argue that the visualizations demonstrate the interactions of air pollution between cities in the Beijing-Tianjin-Hebei area and the significant effect of synoptic meteorological conditions on PM2.5 pollution. The visualization framework could help determine the pathway of regional transportation of air pollution and may also be useful in delineating the area of interaction of PM2.5 pollution for impact analysis. PMID:29438417
Murari, Vishnu; Kumar, Manish; Mhawish, Alaa; Barman, S C; Banerjee, Tirthankar
2017-04-01
The variation in particulate mass and particulate types (PM 2.5 and PM 10 ) with respect to local/regional meteorology was analyzed from January to December 2014 (n = 104) for an urban location over the middle Indo-Gangetic Plain (IGP). Both coarser (mean ± SD; PM 10 161.3 ± 110.4 μg m -3 , n = 104) and finer particulates (PM 2.5 81.78 ± 66.4 μg m -3 ) revealed enormous mass loading with distinct seasonal effects (range: PM 10 12-535 μg m -3 ; PM 2.5 8-362 μg m -3 ). Further, 56% (for PM 2.5 ) to 81% (for PM 10 ) of monitoring events revealed non-attainment national air quality standard especially during winter months. Particulate types (in terms of PM 2.5 /PM 10 0.49 ± 0.19) also exhibited temporal variations with high PM 2.5 loading particularly during winter (0.62) compared to summer months (0.38). Local meteorology has clear distinguishing trends in terms of dry summer (March to June), wet winter (December to February), and monsoon (July to September). Among all the meteorological variables (average temperature, rainfall, relative humidity (RH), wind speed (WS)), temperature was found to be inversely related with particulate loading (r PM10 -0.79; r PM2.5 -0.87) while RH only resulted a significant association with PM 2.5 during summer (r PM10 0.07; r PM2.5 0.55) and with PM 10 during winter (r PM10 0.53; r PM2.5 0.24). Temperature, atmospheric boundary layer (ABL), and RH were cumulatively recognized as the dominant factors regulating particulate concentration as days with high particulate loading (PM 2.5 >150 μg m -3 ; PM 10 >260 μg m -3 ) appeared to have lower ABL (mean 660 m), minimum temperature (<22.6 °C), and high RH (∼79%). The diurnal variations of particulate ratio were mostly insignificant except minor increases during night having a high wintertime ratio (0.58 ± 0.07) over monsoon (0.34 ± 0.05) and summer (0.30 ± 0.07). Across the region, atmospheric visibility appeared to be inversely associated with particulate (r PM2.5 -0.84; r PM10 -0.79) for all humid conditions, while at RH ≥80%, RH appeared as the most dominant factor in regulating visibility compared to particulate loading. The Lagrangian particle dispersion model was further used to identify possible regions contributing particulate loading through regional/transboundary movement.
2001 Mars Odyssey THEMIS: Thermophysics at a New Local Time
NASA Astrophysics Data System (ADS)
Hamilton, V. E.; Christensen, P. R.
2017-12-01
During its sixth extended mission, the 2001 Mars Odyssey transitioned to a new, rarely-seen, post-sunset (morning daylight) local time designed to reduce stress on the spacecraft. Since then, Thermal Emission Imaging System (THEMIS) observations have provided an unprecedented opportunity to investigate dynamic phenomena in the atmosphere and on the surface. In this new local time ( 6:45 am/pm) orbit, Odyssey's camera is acquiring expanded diurnal thermal imaging coverage, providing insight into surface texture, layering, and ice content, as well as dynamic, temperature-dependent surface, atmospheric, and polar processes. New THEMIS observations at dawn and dusk local times are filling major gaps in current knowledge about the diurnal variation of clouds, hazes and surface frost. In this presentation, we will highlight some of these data and discuss the unique scientific results that can be obtained from Mars Odyssey THEMIS observations, including: insights into potential past and present habitability of Mars, the processes and history of climate, the nature and evolution of geologic processes, and aspects of the environment relevant to future human exploration.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Freedom of Information Public... Commerce and Foreign Trade Office of the Secretary of Commerce DISCLOSURE OF GOVERNMENT INFORMATION Pt. 4... Saturdays, Sundays, and legal public holidays) between 9 a.m. and 4 p.m. local time of the facility at issue...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
....1101 will be enforced from 7 a.m. to 7 p.m. on April 6, 2013 and 7 a.m. to 7 p.m. on April 7, 2013. FOR... Regulation for the 2013 San Diego Crew Classic in 33 CFR 100.1101 from 7 a.m. to 7 p.m. on April 6, 2013 and from 7 a.m. to 7 p.m. on April 7, 2013. Under provisions of 33 CFR 100.1101, a vessel may not enter the...
Schweizer, Don; Cisneros, Ricardo; Traina, Samuel; Ghezzehei, Teamrat A; Shaw, Glenn
2017-10-01
Wildland fire is an important ecological process in the California Sierra Nevada. Personal accounts from pre-20th century describe a much smokier environment than present day. The policy of suppression beginning in the early 20th century and climate change are contributing to increased megafires. We use a single particulate monitoring site at the wildland urban interface to explore impacts from prescribed, managed, and full suppression wildland fires from 2006 to 2015 producing a contextual assessment of smoke impacts over time at the landscape level. Prescribed fire had little effect on local fine particulate matter (PM 2.5 ) air quality with readings typical of similar non-fire times; hourly and daily good to moderate Air Quality Index (AQI) for PM 2.5 , maximum hourly concentrations 21-103 μg m -3 , and mean concentrations between 7.7 and 13.2 μg m -3 . Hourly and daily AQI was typically good or moderate during managed fires with 3 h and one day reaching unhealthy while the site remained below National Ambient Air Quality Standards (NAAQS), with maximum hourly concentrations 27-244 μg m -3 , and mean concentrations 6.7-11.7 μg m -3 . The large high intensity fire in this area created the highest short term impacts (AQI unhealthy for 4 h and very unhealthy for 1 h), 11 unhealthy for sensitive days, and produced the only annual value (43.9 μg m -3 ) over the NAAQS 98th percentile for PM 2.5 (35 μg m -3 ). Pinehurst remained below the federal standards for PM 2.5 when wildland fire in the local area was managed to 7800 ha (8-22% of the historic burn area). Considering air quality impacts from smoke using the NAAQS at a landscape level over time can give land and air managers a metric for broader evaluation of smoke impacts particularly when assessing ecologically beneficial fire. Allowing managers to control the amount and timing of individual wildland fire emissions can help lessen large smoke impacts to public health from a megafire. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Trang, N. Ha; Tripathi, N. K.
2014-11-01
Every year, during dry season, Chiang Mai and other northern provinces of Thailand face the problem of haze which is mainly generated by the burning of agricultural waste and forest fire, contained high percentage of particulate matter. Particulate matter 10 (PM10), being very small in size, can be inhaled easily to the deepest parts of the human lung and throat respiratory functions. Due to this, it increases the risk of respiratory diseases mainly in the case of continuous exposure to this seasonal smog. MODIS aerosol images (MOD04) have been used for four weeks in March 2007 for generating the hazard map by linking to in-situ values of PM10. Simple linear regression model between PM10 and AOD got fair correlation with R2 = 0.7 and was applied to transform PM10 pattern. The hazard maps showed the dominance of PM10 in northern part of Chiang Mai, especially in second week of March when PM10 level was three to four times higher than standard. The respiratory disease records and public health station of each village were collected from Provincial Public Health Department in Chiang Mai province. There are about 300 public health stations out of 2070 villages; hence thiessen polygon was created to determine the representative area of each public health station. Within each thiessen polygon, respiratory disease incident rate (RDIR) was calculated based on the number of patients and population. Global Moran's I was computed for RDIR to explore spatial pattern of diseases through four weeks of March. Moran's I index depicted a cluster pattern of respiratory diseases in 2nd week than other weeks. That made sense for a relationship between PM10 and respiratory diseases infections. In order to examine how PM10 affect the human respiratory system, geographically weighted regression model was used to observe local correlation coefficient between RDIR and PM10 across study area. The result captured a high correlation between respiratory diseases and high level of PM10 in northeast districts of Chiang Mai in second week of March.
de Rooij, Myrna M T; Heederik, Dick J J; Borlée, Floor; Hoek, Gerard; Wouters, Inge M
2017-02-01
Several studies have reported associations between farming and respiratory health in neighboring residents. Health effects are possibly linked to fine dust and endotoxin emissions from livestock farms. Little is known about levels of these air pollutants in ambient air in livestock dense areas. We aimed to explore temporal and spatial variation of PM10 and endotoxin concentrations, and the association with livestock-related spatial and meteorological temporal determinants. From March till September 2011, one week average PM10 samples were collected using Harvard Impactors at eight sites (residential gardens) representing a variety of nearby livestock-related characteristics. A background site was included in the study area, situated at least 500m away from the nearest farm. PM10 mass was determined by gravimetric analysis and endotoxin level by means of Limulus-Amebocyte-Lysate assay. Data were analyzed using mixed models. The range between sites of geometric mean concentrations was for PM10 19.8-22.3µg/m 3 and for endotoxin 0.46-0.66EU/m 3 . PM10 concentrations and spatial variation were very similar for all sites, while endotoxin concentrations displayed a more variable pattern over time with larger differences between sites. Nonetheless, the temporal pattern at the background location was highly comparable to the sites mean temporal pattern both for PM10 and endotoxin (Pearson correlation: 0.92, 0.62). Spatial variation was larger for endotoxin than for PM10 (within/between site variance ratio: 0.63, 2.03). Spatial livestock-related characteristics of the surroundings were more strongly related to endotoxin concentrations, while temporal determinants were more strongly related to PM10 concentrations. The effect of local livestock-related sources on PM10 concentration was limited in this study carried out in a livestock dense area. The effect on endotoxin concentrations was more profound. To gain more insight in the effect of livestock-related sources on ambient levels of PM10 and endotoxin, measurements should be based on a broader set of locations. Copyright © 2016. Published by Elsevier Inc.
Elemental carbon and PM(2.5 )levels in an urban community heavily impacted by truck traffic.
Lena, T Suvendrini; Ochieng, Victor; Carter, Majora; Holguín-Veras, José; Kinney, Patrick L
2002-01-01
Hunts Point, a 690-acre peninsula in the South Bronx, New York City, is a hub in the tristate (New York, New Jersey, and Connecticut) freight transportation system. This study was carried out in response to community concerns about potential health effects of exposure to diesel exhaust particulate (DEP). We measured particulate matter < 2.5 microm in aerodynamic diameter (PM(2.5)) and elemental carbon (EC) on sidewalks and tested whether spatial variations in concentrations were related to local truck traffic density. Ten-hour integrated air samples for EC and PM(2.5) were collected for 9 days over a 3-week period in the summer of 1999 at seven geographically distinct intersections. Simultaneous traffic counts were carried out for each sampling event. Traffic was classified into three classes: passenger cars, small trucks, and large trucks (diesel vehicles). Mean diesel vehicle volumes ranged from 9.3 to 276.5 vehicles/hr across sites. Mean EC concentrations by site ranged from 2.6 microg/m(3) at the control site to 7.3 microg/m(3) along a designated truck route. Linear regression of site-specific mean EC concentration on mean large truck counts predicted an increase of 1.69 microg/m(3) EC per 100 large trucks/hr (SE = 0.37; p = 0.01; R(2) = 0.84). Average PM(2.5) concentrations by site ranged 1.6-fold (19.0-29.9 microg/m(3)) and were more weakly associated with local traffic. Variations over time for PM(2.5 )were more pronounced, ranging almost 4-fold (8.9-34.4 microg/m(3)). These results show that airborne EC concentrations, an important component of DEP, are elevated in Hunts Point and that the impact varies across the community as a function of large truck traffic. PMID:12361926
NASA Astrophysics Data System (ADS)
Jia, J.; Cheng, S.; Lei, L.; Lang, J.
2017-12-01
In December 2015, the Beijing-Tianjin-Hebei (BTH) region experienced several episodes of heavy air pollution. Beijing municipal government therefore issued 2 red alerts on December 7 and 19, respectively, and also implemented emergency control measures to alleviate the negative effects of pollution. It is estimated that the heavy pollutions in 2 red alert periods in Beijing were due mainly to the accumulation of air pollutants from local emission sources and the transboundary transport of pollutants from surrounding areas. The collected meteorological and PM2.5 data indicate that the severity of air pollutions were enlarged by the poor meteorological conditions along with lower mixing layer height. In this study, the WRF-CAMx modeling system was utilized not only for analyzing the contributions of PM2.5 from different sources, but also for quantitatively assessing the effects of implementing various emergency control measures on PM2.5 pollution control during the red alert periods. The modeling results show that local emissions were the most dominant contributors (64.8%-83.5%) among all emission sources, while the main external contributions came from the city of Baoding (3.4%-9.3%). In addition, among 5 different emission source categories, coal and traffic were the two dominant contributors to PM2.5 concentration in urban area of Beijing. Then four pollution control scenarios were designed particularly to investigate the effectiveness of the emergency control measures, and the results show that, generally these emergency control measures have positive effects on air pollution reduction. In particular, restrictive measures of traffic volume control and industrial activity shutdown/suspension have been found as the most effective measures in comparison to other emergency control measures. It is recommended that such effective measures should be considered to implement when next time similar heavy air pollutions occur in the city of Beijing.
NASA Astrophysics Data System (ADS)
Xiao, Lu; Lang, Yichao; Christakos, George
2018-01-01
With rapid economic development, industrialization and urbanization, the ambient air PM2.5 has become a major pollutant linked to respiratory, heart and lung diseases. In China, PM2.5 pollution constitutes an extreme environmental and social problem of widespread public concern. In this work we estimate ground-level PM2.5 from satellite-derived aerosol optical depth (AOD), topography data, meteorological data, and pollutant emission using an integrative technique. In particular, Geographically Weighted Regression (GWR) analysis was combined with Bayesian Maximum Entropy (BME) theory to assess the spatiotemporal characteristics of PM2.5 exposure in a large region of China and generate informative PM2.5 space-time predictions (estimates). It was found that, due to its integrative character, the combined BME-GWR method offers certain improvements in the space-time prediction of PM2.5 concentrations over China compared to previous techniques. The combined BME-GWR technique generated realistic maps of space-time PM2.5 distribution, and its performance was superior to that of seven previous studies of satellite-derived PM2.5 concentrations in China in terms of prediction accuracy. The purely spatial GWR model can only be used at a fixed time, whereas the integrative BME-GWR approach accounts for cross space-time dependencies and can predict PM2.5 concentrations in the composite space-time domain. The 10-fold results of BME-GWR modeling (R2 = 0.883, RMSE = 11.39 μg /m3) demonstrated a high level of space-time PM2.5 prediction (estimation) accuracy over China, revealing a definite trend of severe PM2.5 levels from the northern coast toward inland China (Nov 2015-Feb 2016). Future work should focus on the addition of higher resolution AOD data, developing better satellite-based prediction models, and related air pollutants for space-time PM2.5 prediction purposes.
Severe haze episodes and seriously polluted fog water in Ji'nan, China.
Wang, Xinfeng; Chen, Jianmin; Sun, Jianfeng; Li, Weijun; Yang, Lingxiao; Wen, Liang; Wang, Wenxing; Wang, Xinming; Collett, Jeffrey L; Shi, Yang; Zhang, Qingzhu; Hu, Jingtian; Yao, Lan; Zhu, Yanhong; Sui, Xiao; Sun, Xiaomin; Mellouki, Abdelwahid
2014-09-15
Haze episodes often hit urban cities in China recently. Here, we present several continuous haze episodes with extremely high PM2.5 levels that occurred over several weeks in early 2013 and extended across most parts of the northern and eastern China-far exceeding the Beijing-Tianjin-Hebei region. Particularly, the haze episode covered ~1 million km(2) on January 14, 2013 and the daily averaged PM2.5 concentration exceeded 360 μg m(-3) in Ji'nan. The observed maximum hourly PM2.5 concentration in urban Ji'nan reached 701 μg m(-3) at 7:00 am (local time) in January 30. During these haze episodes, several fog events happened and the concurrent fog water was found to be seriously polluted. For the fog water collected in Ji'nan from 10:00 pm in January 14 to 11:00 am in January 15, sulfate, nitrate, and ammonium were the major ions with concentrations of 1.54 × 10(6), 8.98 × 10(5), and 1.75 × 10(6) μeq L(-1), respectively, leading to a low in-situ pH of 3.30. The sulfate content in the fog sample was more than 544 times as high as those observed in other areas. With examination of the simultaneously observed data on PM2.5 and its chemical composition, the fog played a role in scavenging and removing fine particles from the atmosphere during haze episodes and thus was seriously contaminated. However, the effect was not sufficient to obviously cleanse air pollution and block haze episodes. Copyright © 2014 Elsevier B.V. All rights reserved.
Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining
NASA Astrophysics Data System (ADS)
Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A.
2018-04-01
Biomedical implant can be divided into permanent and temporary employment. The duration of a temporary implant applied to children and adult is different due to different bone healing rate among the children and adult. Magnesium and its alloys are compatible for the biodegradable implanting application. Nevertheless, it is difficult to control the degradation rate of magnesium alloy to suit the application on both the children and adult. Powder mixed electrical discharge machining (PM-EDM) method, a modified EDM process, has high capability to improve the EDM process efficiency and machined surface quality. The objective of this paper is to establish a formula to control the degradation rate of magnesium alloy using the PM-EDM method. The different corrosion rate of machined surface is hypothesized to be obtained by having different combinations of PM-EDM operation inputs. PM-EDM experiments are conducted using an opened-loop PM-EDM system and the in-vitro corrosion tests are carried out on the machined surface of each specimen. There are four operation inputs investigated in this study which are zinc powder concentration, peak current, pulse on-time and pulse off-time. The results indicate that zinc powder concentration is significantly affecting the response with 2 g/l of zinc powder concentration obtaining the lowest corrosion rate. The high localized temperature at the cutting zone in spark erosion process causes some of the zinc particles get deposited on the machined surface, hence improving the surface characteristics. The suspended zinc particles in the dielectric fluid have also improve the sparking efficiency and the uniformity of sparks distribution. From the statistical analysis, a formula was developed to control the corrosion rate of magnesium alloy within the range from 0.000183 mm/year to 0.001528 mm/year.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... Tuesday, July 31, 2012, 1 p.m.-2 p.m. (EDT). The Committee will discuss air quality issues, water quality.... (EDT). The Committee will discuss air quality issues, water quality issues, environmental justice and...
PM NAAQS Implementation Training and Assistance for State and Local Air Agencies
EPA offers training and assistance resources for air agencies in developing their state implementation plans (SIPs), as well as in reaching or maintaining attainment of the National Ambient Air Quality Standards (NAAQS) for particulate matter (PM).
Liu, Chao; Henderson, Barron H; Wang, Dongfang; Yang, Xinyuan; Peng, Zhong-Ren
2016-09-15
Intra-urban assessment of air pollution exposure has become a priority study while international attention was attracted to PM2.5 pollution in China in recent years. Land Use Regression (LUR), which has previously been proved to be a feasible way to describe the relationship between land use and air pollution level in European and American cities, was employed in this paper to explain the correlations and spatial variations in Shanghai, China. PM2.5 and NO2 concentrations at 35-45 monitoring locations were selected as dependent variables, and a total of 44 built environmental factors were extracted as independent variables. Only five factors showed significant explanatory value for both PM2.5 and NO2 models: longitude, distance from monitors to the ocean, highway intensity, waterbody area, and industrial land area for PM2.5 model; residential area, distance to the coast, industrial area, urban district, and highway intensity for NO2 model. Respectively, both PM2.5 and NO2 showed anti-correlation with coastal proximity (an indicator of clean air dilution) and correlation with highway and industrial intensity (source indicators). NO2 also showed significant correlation with local indicators of population density (residential intensity and urban classification), while PM2.5 showed significant correlation with regional dilution (longitude as a indicator of distance from polluted neighbors and local water features). Both adjusted R squared values were strong with PM2.5 (0.88) being higher than NO2 (0.62). The LUR was then used to produce continuous concentration fields for NO2 and PM2.5 to illustrate the features and, potentially, for use by future studies. Comparison to PM2.5 studies in New York and Beijing show that Shanghai PM2.5 pollutant distribution was more sensitive to geographic location and proximity to neighboring regions. Copyright © 2015. Published by Elsevier B.V.
Lee, Yen-Yi; Lin, Sheng-Lun; Yuan, Chung-Shin; Lin, Ming-Yeng; Chen, Kang-Shin
2018-07-01
Atmospheric particles are a major problem that could lead to harmful effects on human health, especially in densely populated urban areas. Chiayi is a typical city with very high population and traffic density, as well as being located at the downwind side of several pollution sources. Multiple contributors for PM 2.5 (particulate matter with an aerodynamic diameter ≥2.5 μm) and ultrafine particles cause complicated air quality problems. This study focused on the inhibition of local emission sources by restricting the idling vehicles around a school area and evaluating the changes in surrounding atmospheric PM conditions. Two stationary sites were monitored, including a background site on the upwind side of the school and a campus site inside the school, to monitor the exposure level, before and after the idling prohibition. In the base condition, the PM 2.5 mass concentrations were found to increase 15% from the background, whereas the nitrate (NO 3 - ) content had a significant increase at the campus site. The anthropogenic metal contents in PM 2.5 were higher at the campus site than the background site. Mobile emissions were found to be the most likely contributor to the school hot spot area by chemical mass balance modeling (CMB8.2). On the other hand, the PM 2.5 in the school campus fell to only 2% after idling vehicle control, when the mobile source contribution reduced from 42.8% to 36.7%. The mobile monitoring also showed significant reductions in atmospheric PM 2.5 , PM 0.1 , polycyclic aromatic hydrocarbons (PAHs), and black carbon (BC) levels by 16.5%, 33.3%, 48.0%, and 11.5%, respectively. Consequently, the restriction of local idling emission was proven to significantly reduce PM and harmful pollutants in the hot spots around the school environment. The emission of idling vehicles strongly affects the levels of particles and relative pollutants in near-ground air around a school area. The PM 2.5 mass concentration at a campus site increased from the background site by 15%, whereas NO 3 - and anthropogenic metals also significantly increased. Meanwhile, the PM 2.5 contribution from mobile source in the campus increased 6.6% from the upwind site. An idling prohibition took place and showed impressive results. Reductions of PM 2.5 , ionic component, and non-natural metal contents were found after the idling prohibition. The mobile monitoring also pointed out a significant improvement with the spatial analysis of PM 2.5 , PM 0.1 , PAH, and black carbon concentrations. These findings are very useful to effectively improve the local air quality of a densely city during the rush hour.
Effects of air pollution on respiratory hospital admissions in İstanbul, Turkey, 2013 to 2015.
Çapraz, Özkan; Deniz, Ali; Doğan, Nida
2017-08-01
We examined the associations between the daily variations of air pollutants and hospital admissions for respiratory diseases in İstanbul, the largest city of Turkey. A time series analysis of counts of daily hospital admissions and outdoor air pollutants was performed using single-pollutant Poisson generalized linear model (GLM) while controlling for time trends and meteorological factors over a 3-year period (2013-2015) at different time lags (0-9 days). Effects of the pollutants (Excess Risk, ER) on current-day (lag 0) hospital admissions to the first ten days (lag 9) were determined. Data on hospital admissions, daily mean concentrations of air pollutants of PM 10 , PM 2.5 and NO 2 and daily mean concentrations of temperature and humidity of İstanbul were used in the study. The analysis was conducted among people of all ages, but also focused on different sexes and different age groups including children (0-14 years), adults (35-44 years) and elderly (≥65 years). We found significant associations between air pollution and respiratory related hospital admissions in the city. Our findings showed that the relative magnitude of risks for an association of the pollutants with the total respiratory hospital admissions was in the order of: PM 2.5 , NO 2 , and PM 10 . The highest association of each pollutant with total hospital admission was observed with PM 2.5 at lag 4 (ER = 1.50; 95% CI = 1.09-1.99), NO 2 at lag 4 (ER = 1.27; 95% CI = 1.02-1.53) and PM 10 at lag 0 (ER = 0.61; 95% CI = 0.33-0.89) for an increase of 10 μg/m3 in concentrations of the pollutants. In conclusion, our study showed that short-term exposure to air pollution was positively associated with increased respiratory hospital admissions in İstanbul during 2013-2015. As the first air pollution hospital admission study using GLM in İstanbul, these findings may have implications for local environmental and social policies. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Xuan; Wu, Ye; Zhang, Shaojun; Baldauf, Richard W.; Zhang, K. Max; Hu, Jingnan; Li, Zhenhua; Fu, Lixin; Hao, Jiming
2016-09-01
The black carbon (BC) emitted from heavy-duty diesel vehicles (HDDVs) is an important source of urban atmospheric pollution and creates strong climate-forcing impacts. The emission ratio of BC to total particle mass (PM) (i.e., BC/PM ratio) is an essential variable used to estimate total BC emissions from historical PM data; however, these ratios have not been measured using portable emission measurement systems (PEMS) in order to obtain real-world measurements over a wide range of driving conditions. In this study, we developed a PEMS platform by integrating two Aethalometers and an electric low pressure impactor to realize the joint measurement of real-world BC and PM emissions for ten HDDVs in China. Test results showed that the average BC/PM ratio for five HDDVs equipped with mechanical fuel injection (MI) engines was 0.43 ± 0.06, significantly lower (P < 0.05) than another five HDDVs equipped with electronically-controlled fuel injection (EI) engines (0.56 ± 0.12). Traffic conditions also affected the BC/PM ratios with higher ratios on freeway routes than on local roads. Furthermore, higher ratios were observed for HDDVs equipped with EI engines than for the MI engines for the highway and local road routes. With an operating mode binning approach, we observed that the instantaneous BC/PM ratios of EI engine vehicles were above those of the MI engine vehicles in all operating modes except for the braking mode (i.e., Bin 0). Therefore, the complex impacts from engine technology and traffic conditions on BC/PM ratios should be carefully considered when estimating real-world BC emissions from HDDVs based on overall PM emissions data.
NASA Astrophysics Data System (ADS)
Bozlaker, Ayşe; Buzcu-Güven, Birnur; Fraser, Matthew P.; Chellam, Shankararaman
2013-04-01
Petroleum refineries may emit large quantities of pollutants during non-routine operations that include start-ups and shutdowns, planned maintenance, and unplanned equipment failures. The Texas Commission on Environmental Quality (TCEQ) tracks such events by requiring industries to self-report estimates of these emissions because they often have a detrimental impact on local air quality and potentially, public health. An inventory of non-routine episodic emission events is available via TCEQ's website. However, there is on-going concern that such episodic emissions are sometimes under-reported or even not cataloged. Herein, we present concentrations of 42 main group, transition, and lanthanoid elements in 114 time-resolved (3 or 6 h) samples collected over a 1-month period. We also develop strategies to identify aerosol sources using elemental tracers and compare source apportionment (performed by positive matrix factorization) based on ambient measurements to inventoried non-routine emission events. Through interpretation of key marker elements, five sources impacting concentrations of metals in PM10 were identified and calculated to contribute 73% of the measured PM10 mass. On average, primary emissions from fluidized-bed catalytic cracking (FCC) units negligibly contributed to apportioned PM10 mass. However, 35 samples were identified as impacted by transient PM10 emissions from FCC units because of elevated levels of lanthanoid metals and their ratios. Only 31 of these 35 samples coincided with self-reported non-routine emission events. Further, roughly half of the emission event self-reports detailed only emissions of gaseous pollutants. Based on this, we posit that not all PM10 emission events are reported and even self-reported emission events are incomplete - those that only catalog gaseous pollutants may also include unreported PM emissions.
Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang
2015-08-10
Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development. Copyright © 2015 Elsevier B.V. All rights reserved.
Kaur, S; Nieuwenhuijsen, M J
2009-07-01
Short-term human exposure concentrations to PM2.5, ultrafine particle counts (particle range: 0.02-1 microm), and carbon monoxide (CO) were investigated at and around a street canyon intersection in Central London, UK. During a four week field campaign, groups of four volunteers collected samples at three timings (morning, lunch, and afternoon), along two different routes (a heavily trafficked route and a backstreet route) via five modes of transport (walking, cycling, bus, car, and taxi). This was followed by an investigation into the determinants of exposure using a regression technique which incorporated the site-specific traffic counts, meteorological variables (wind speed and temperature) and the mode of transport used. The analyses explained 9, 62, and 43% of the variability observed in the exposure concentrations to PM2.5, ultrafine particle counts, and CO in this study, respectively. The mode of transport was a statistically significant determinant of personal exposure to PM2.5, ultrafine particle counts, and CO, and for PM2.5 and ultrafine particle counts it was the most important determinant. Traffic count explained little of the variability in the PM2.5 concentrations, but it had a greater influence on ultrafine particle count and CO concentrations. The analyses showed that temperature had a statistically significant impact on ultrafine particle count and CO concentrations. Wind speed also had a statistically significant effect but smaller. The small proportion in variability explained in PM2.5 by the model compared to the largest proportion in ultrafine particle counts and CO may be due to the effect of long-range transboundary sources, whereas for ultrafine particle counts and CO, local traffic is the main source.
NASA Astrophysics Data System (ADS)
Rodes, Charles E.; Lawless, Phil A.; Thornburg, Jonathan W.; Williams, Ronald W.; Croghan, Carry W.
2010-04-01
This analysis provides the initial summary of PM 2.5 mass concentrations relationships for all seasons and participants for a general population in the Detroit Exposure and Aerosol Research Study (DEARS). The summary presented highlights the utility of the new methodologies applied, in addition to summarizing the particulate matter (PM) data. Results include the requirement to adjust the exposure data for monitor wearing compliance and measured environmental tobacco smoke (ETS) levels, even though the study design specified a non-smoking household. A 40% wearing compliance acceptance level was suggested as necessary to balance minimizing exposure misclassification (from poor compliance) and having sufficient data to conduct robust statistical analyses. An ETS threshold level equivalent to adding more than 1.5 μg m -3 to the collected sample was found to be necessary to detect changes in the personal exposure factor ( Fpex). It is not completely clear why such a large threshold level was necessary. Statistically significant spatial PM 2.5 gradients were identified in three of the six DEARS neighborhoods in Wayne County. These were expected, given the number of strong, localized PM sources in the Detroit (Michigan) metro area. Some residential outdoor bias levels compared with the central site at Allen Park exceeded 15%. After adjusting for ETS biases, the outdoor contributions to the personal exposure were typically larger by factors from 1.75 to 2.2 compared with those of the non-outdoor sources. The outdoor contribution was larger in the summer than in the winter, which is consistent with the fractions of time spent outdoors in the summer vs. the winter (6.7% vs. 1.1% of the time). Mean personal PM 2.5 cloud levels for the general population DEARS cohort ranged from 1.5 to 3.8 (after ETS adjustment) and were comparable to those reported previously. The personal exposure collections indoors were typically at least 13 times greater than those contributed outdoors.
NASA Astrophysics Data System (ADS)
Hassanvand, Mohammad Sadegh; Naddafi, Kazem; Faridi, Sasan; Arhami, Mohammad; Nabizadeh, Ramin; Sowlat, Mohammad Hossein; Pourpak, Zahra; Rastkari, Noushin; Momeniha, Fatemeh; Kashani, Homa; Gholampour, Akbar; Nazmara, Shahrokh; Alimohammadi, Mahmood; Goudarzi, Gholamreza; Yunesian, Masud
2014-01-01
Indoor/outdoor particulate matter (PM10, PM2.5, and PM1) and their water-soluble ions were measured in a retirement home and a school dormitory in Tehran, from May 2012 to January 2013. Hourly indoor/outdoor PM concentrations were measured using GRIMM dust monitors and 24-h aerosol samples were collected by low-volume air samplers. Water-soluble ions were determined using an ion chromatography (IC) instrument. Although the mean outdoor PM concentrations in both sampling sites were almost equal, the mean indoor PM10 in the school dormitory was approximately 1.35 times higher than that in the retirement home. During a Middle Eastern dust storm, the 24-h average PM10, PM2.5, and PM1 concentrations were respectively 3.4, 2.9, and 1.9 times as high as those in normal days outdoors and 3.4, 2.8, and 1.6 times indoors. The results indicated that secondary inorganic aerosols were the dominant water-soluble ions of indoor and outdoor PM. We found that the smaller the particle, the higher the percentage of secondary inorganic aerosols. Except for PM10 in the school dormitory, strong correlations were found between indoor and outdoor PM. We estimated that nearly 45% of PM10, 67% of PM2.5, and 79% of PM1 in the retirement home, and 32% of PM10, 76% of PM2.5, and 83% of PM1 in the school dormitory originated from outdoor environment.
Contribution of microenvironments to personal exposures to PM10 and PM2.5 in summer and winter
NASA Astrophysics Data System (ADS)
Hwang, Yunhyung; Lee, Kiyoung
2018-02-01
Personal exposure to particulate matter (PM) can be affected by time-activity patterns and microenvironmental concentrations. Particle size is closely associated with potential health problems, where smaller particles have greater effects on health. We investigated the effects of time-activity patterns on personal exposure and the contribution of the microenvironment to personal exposure to PM with maximal diameters of 10 μm and 2.5 μm (PM10 and PM2.5, respectively) in summer and winter. Technicians carried a nephelometer to detect various sizes of PM while engaging in one of nine scripted time-location-activity patterns. The scripted activities were based on the time-activity patterns of nine groups of inhabitants of Seoul, Korea. The monitoring was repeated in summer and winter to assess seasonal variation. The differences of personal exposures to PM10 and PM2.5 in summer and winter were not significant. The greatest PM concentrations occurred in restaurants. The PM2.5/PM10 ratios were varied from 0.35 at schools to 0.92 at stores. In both seasons, the residential indoor microenvironment was the largest contributor to personal PM exposure. The other major contributors were restaurants, offices, schools, buses, and walking, although their contributions differed by season and particle size. The different microenvironmental contributions among the activity pattern groups suggest that personal exposure significantly differs according to activity pattern.
NASA Astrophysics Data System (ADS)
Squizzato, Stefania; Cazzaro, Marta; Innocente, Elena; Visin, Flavia; Hopke, Philip K.; Rampazzo, Giancarlo
2017-04-01
Urban air quality represents a major public health burden and is a long-standing concern to European citizens. Combustion processes and traffic-related emissions represent the main primary particulate matter (PM) sources in urban areas. Other sources can also affect air quality (e.g., secondary aerosol, industrial) depending on the characteristics of the study area. Thus, the identification and the apportionment of all sources is of crucial importance to make effective corrective decisions within environmental policies. The aim of this study is to evaluate the impacts of different emissions sources on PM2.5 concentrations and compositions in a mid-size city in the Po Valley (Treviso, Italy). Data have been analyzed to highlight compositional differences (elements and major inorganic ions), to determine PM2.5 sources and their contributions, and to evaluate the influence of air mass movements. Non-parametric tests, positive matrix factorization (PMF), conditional bivariate probability function (CBPF), and concentration weighted trajectory (CWT) have been used in a multi-chemometrics approach to understand the areal-scale (proximate, local, long-range) where different sources act on PM2.5 levels and composition. Results identified three levels of scale from which the pollution arose: (i) a proximate local scale (close to the sampling site) for traffic non-exhaust and resuspended dust sources; (ii) a local urban scale (including both sampling site and areas close to them) for combustion and industrial; and (iii) a regional scale characterized by ammonium nitrate and ammonium sulfate. This approach and results can help to develop and adopt better air quality policy action.
46 CFR 9.6 - Rate for night service.
Code of Federal Regulations, 2014 CFR
2014-10-01
...., 9 p.m., or later: Provided, That the officer rendering the service remained on duty from 5 p.m., in which case the time between 5 p.m., and the time of beginning the actual service shall be computed as... period. When the overtime extends beyond 5 p.m., payment of extra compensation from 5 p.m. for services...
46 CFR 9.6 - Rate for night service.
Code of Federal Regulations, 2013 CFR
2013-10-01
...., 9 p.m., or later: Provided, That the officer rendering the service remained on duty from 5 p.m., in which case the time between 5 p.m., and the time of beginning the actual service shall be computed as... period. When the overtime extends beyond 5 p.m., payment of extra compensation from 5 p.m. for services...
46 CFR 9.6 - Rate for night service.
Code of Federal Regulations, 2011 CFR
2011-10-01
...., 9 p.m., or later: Provided, That the officer rendering the service remained on duty from 5 p.m., in which case the time between 5 p.m., and the time of beginning the actual service shall be computed as... period. When the overtime extends beyond 5 p.m., payment of extra compensation from 5 p.m. for services...
46 CFR 9.6 - Rate for night service.
Code of Federal Regulations, 2012 CFR
2012-10-01
...., 9 p.m., or later: Provided, That the officer rendering the service remained on duty from 5 p.m., in which case the time between 5 p.m., and the time of beginning the actual service shall be computed as... period. When the overtime extends beyond 5 p.m., payment of extra compensation from 5 p.m. for services...
Impacts of South East Biomass Burning on local air quality in South China Sea
NASA Astrophysics Data System (ADS)
Wai-man Yeung, Irene; Fat Lam, Yun; Eniolu Morakinyo, Tobi
2016-04-01
Biomass burning is a significant source of carbon monoxide and particulate matter, which is not only contribute to the local air pollution, but also regional air pollution. This study investigated the impacts of biomass burning emissions from Southeast Asia (SEA) as well as its contribution to the local air pollution in East and South China Sea, including Hong Kong and Taiwan. Three years (2012 - 2014) of the Hybrid Single Particle Lagrangian-Integrated Trajectory (HYSPLIT) with particles dispersion analyses using NCEP (Final) Operational Global Analysis data (FNL) data (2012 - 2014) were analyzed to track down all possible long-range transport from SEA with a sinking motion that worsened the surface air quality (tropospheric downwash from the free troposphere). The major sources of SEA biomass burning emissions were first identified using high fire emissions from the Global Fire Emission Database (GFED), followed by the HYSPLIT backward trajectory dispersion modeling analysis. The analyses were compared with the local observation data from Tai Mo Shan (1,000 msl) and Tap Mun (60 msl) in Hong Kong, as well as the data from Lulin mountain (2,600 msl) in Taiwan, to assess the possible impacts of SEA biomass burning on local air quality. The correlation between long-range transport events from the particles dispersion results and locally observed air quality data indicated that the background concentrations of ozone, PM2.5 and PM10 at the surface stations were enhanced by 12 μg/m3, 4 μg/m3 and 7 μg/m3, respectively, while the long-range transport contributed to enhancements of 4 μg/m3, 4 μg/m3 and 8 μg/m3 for O3, PM2.5 and PM10, respectively at the lower free atmosphere.
Traffic Data for Integrated Project-Level PM2.5 Conformity Analysis.
DOT National Transportation Integrated Search
2014-08-01
As required by the U.S. Environmental Protection Agency (EPA), the MOVES model is the mandatory emission : tool for new PM hot-spot analyses for project-level conformity determinations that began after December 20, 2012. : Localized traffic data inpu...
Visser, S.; Slowik, Jay G.; Furger, M.; ...
2015-10-12
Here, trace element measurements in PM 10–2.5, PM 2.5–1.0 and PM 1.0–0.3 aerosol were performed with 2 h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model, conducted on data sets comprising all three sites but segregated by size. Combining the sites enabled separation of sources with high temporal covariance but significant spatial variability. Separation of sizes improved source resolution by preventing sources occurring in only a single size fraction from having too smallmore » a contribution for the model to resolve. Anchor profiles were retrieved internally by analysing data subsets, and these profiles were used in the analyses of the complete data sets of all sites for enhanced source apportionment. A total of nine different factors were resolved (notable elements in brackets): in PM 10–2.5, brake wear (Cu, Zr, Sb, Ba), other traffic-related (Fe), resuspended dust (Si, Ca), sea/road salt (Cl), aged sea salt (Na, Mg) and industrial (Cr, Ni); in PM 2.5–1.0, brake wear, other traffic-related, resuspended dust, sea/road salt, aged sea salt and S-rich (S); and in PM 1.0–0.3, traffic-related (Fe, Cu, Zr, Sb, Ba), resuspended dust, sea/road salt, aged sea salt, reacted Cl (Cl), S-rich and solid fuel (K, Pb). Human activities enhance the kerb-to-rural concentration gradients of coarse aged sea salt, typically considered to have a natural source, by 1.7–2.2. These site-dependent concentration differences reflect the effect of local resuspension processes in London. The anthropogenically influenced factors traffic (brake wear and other traffic-related processes), dust and sea/road salt provide further kerb-to-rural concentration enhancements by direct source emissions by a factor of 3.5–12.7. The traffic and dust factors are mainly emitted in PM 10–2.5 and show strong diurnal variations with concentrations up to 4 times higher during rush hour than during night-time. Regionally influenced S-rich and solid fuel factors, occurring primarily in PM 1.0–0.3, have negligible resuspension influences, and concentrations are similar throughout the day and across the regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visser, S.; Slowik, Jay G.; Furger, M.
Here, trace element measurements in PM 10–2.5, PM 2.5–1.0 and PM 1.0–0.3 aerosol were performed with 2 h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model, conducted on data sets comprising all three sites but segregated by size. Combining the sites enabled separation of sources with high temporal covariance but significant spatial variability. Separation of sizes improved source resolution by preventing sources occurring in only a single size fraction from having too smallmore » a contribution for the model to resolve. Anchor profiles were retrieved internally by analysing data subsets, and these profiles were used in the analyses of the complete data sets of all sites for enhanced source apportionment. A total of nine different factors were resolved (notable elements in brackets): in PM 10–2.5, brake wear (Cu, Zr, Sb, Ba), other traffic-related (Fe), resuspended dust (Si, Ca), sea/road salt (Cl), aged sea salt (Na, Mg) and industrial (Cr, Ni); in PM 2.5–1.0, brake wear, other traffic-related, resuspended dust, sea/road salt, aged sea salt and S-rich (S); and in PM 1.0–0.3, traffic-related (Fe, Cu, Zr, Sb, Ba), resuspended dust, sea/road salt, aged sea salt, reacted Cl (Cl), S-rich and solid fuel (K, Pb). Human activities enhance the kerb-to-rural concentration gradients of coarse aged sea salt, typically considered to have a natural source, by 1.7–2.2. These site-dependent concentration differences reflect the effect of local resuspension processes in London. The anthropogenically influenced factors traffic (brake wear and other traffic-related processes), dust and sea/road salt provide further kerb-to-rural concentration enhancements by direct source emissions by a factor of 3.5–12.7. The traffic and dust factors are mainly emitted in PM 10–2.5 and show strong diurnal variations with concentrations up to 4 times higher during rush hour than during night-time. Regionally influenced S-rich and solid fuel factors, occurring primarily in PM 1.0–0.3, have negligible resuspension influences, and concentrations are similar throughout the day and across the regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parworth, Caroline; Tilp, Alison; Fast, Jerome
In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parworth, Caroline; Fast, Jerome D.; Mei, Fan
In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associatedmore » with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less
Underwood, William; Ryan, Andrew; Somerville, Shauna C
2017-06-05
Deposition of cell wall-reinforcing papillae is an integral component of the plant immune response. The Arabidopsis PENETRATION 3 (PEN3) ATP binding cassette (ABC) transporter plays a role in defense against numerous pathogens and is recruited to sites of pathogen detection where it accumulates within papillae. However, the trafficking pathways and regulatory mechanisms contributing to recruitment of PEN3 and other defenses to the host-pathogen interface are poorly understood. Here, we report a confocal microscopy-based screen to identify mutants with altered localization of PEN3-GFP after inoculation with powdery mildew fungi. We identified a mutant, aberrant localization of PEN3 3 (alp3), displaying accumulation of the normally plasma membrane (PM)-localized PEN3-GFP in endomembrane compartments. The mutant was found to be disrupted in the P 4 -ATPase AMINOPHOSPHOLIPID ATPASE 3 (ALA3), a lipid flippase that plays a critical role in vesicle formation. We provide evidence that PEN3 undergoes continuous endocytic cycling from the PM to the trans-Golgi network (TGN). In alp3, PEN3 accumulates in the TGN, causing delays in recruitment to the host-pathogen interface. Our results indicate that PEN3 and other defense proteins continuously cycle through the TGN and that timely exit of these proteins from the TGN is critical for effective pre-invasive immune responses against powdery mildews. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
76 FR 55076 - Center for Scientific Review Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... Special Emphasis Panel; Neurotechnology 2. Date: October 6, 2011. Time: 3 p.m. to 4 p.m. Agenda: To review... Instrumentation: Neurotechnology. Date: October 6, 2011. Time: 4 p.m. to 5 p.m. Agenda: To review and evaluate...
76 FR 36932 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-23
...: Bone Biology. Date: July 11, 2011. Time: 2 p.m. to 5 p.m. Agenda: To review and evaluate grant..., Member Conflict: Bone-Orthopedics. Date: July 20, 2011. Time: 2 p.m. to 3 p.m. Agenda: To review and...
Indoor air quality at nine shopping malls in Hong Kong.
Li, W M; Lee, S C; Chan, L Y
2001-06-12
Hong Kong is one of the most attractive shopping paradises in the world. Many local people and international tourists favor to spend their time in shopping malls in Hong Kong. Good indoor air quality is, therefore, very essential to shoppers. In order to characterize the indoor air quality in shopping malls, nine shopping malls in Hong Kong were selected for this study. The indoor air pollutants included carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC), formaldehyde (HCHO), respirable particulate matter (PM10) and total bacteria count (TBC). More than 40% of the shopping malls had 1-h average CO2 levels above the 1000 ppm of the ASHRAE standard on both weekdays and weekends. Also, they had average weekday PM10 concentrations that exceeded the Hong Kong Indoor Air Quality Objective (HKIAQO). The highest indoor PM10 level at a mall was 380 microg/m3. Of the malls surveyed, 30% had indoor airborne bacteria levels above 1000 cfu/m3 set by the HKIAQO. The elevated indoor CO2 and bacteria levels could result from high occupancy combined with insufficient ventilation. The increased PM10 levels could be probably attributed to illegal smoking inside these establishments. In comparison, the shopping malls that contained internal public transport drop-off areas, where vehicles were parked with idling engines and had major entry doors close to heavy traffic roads had higher CO and PM10 indoor levels. In addition, the extensive use of cooking stoves without adequate ventilation inside food courts could increase indoor CO2, CO and PM10 levels.
Occupational exposure to fungi and particles in animal feed industry.
Viegas, Carla; Faria, Tiago; Carolino, Elisabete; Sabino, Raquel; Gomes, Anita Quintal; Viegas, Susana
Very few studies regarding fungal and particulate matter (PM) exposure in feed industry have been reported, although such contaminants are likely to be a significant contributing factor to several symptoms reported among workers. The purpose of this study has been to characterize fungal and dust exposure in one Portuguese feed industry. Air and surface samples were collected and subject to further macro- and microscopic observations. In addition we collected other air samples in order to perform real-time quantitative polymerase chain reaction (PCR) amplification of genes from Aspergillus fumigatus and Aspergillus flavus complexes as well as Stachybotrys chartarum. Additionally, two exposure metrics were considered - particle mass concentration (PMC), measured in 5 different sizes (PM0.5, PM1, PM2.5, PM5, PM10), and particle number concentration (PNC) based on results given in 6 different sizes in terms of diameter (0.3 μm, 0.5 μm, 1 μm, 2.5 μm, 5 μm and 10 μm). Species from the Aspergillus fumigatus complex were the most abundant in air (46.6%) and in surfaces, Penicillium genus was the most frequently found (32%). The only DNA was detected from A. fumigatus complex. The most prevalent in dust samples were smaller particles which may reach deep into the respiratory system and trigger not only local effects but also the systemic ones. Future research work must be developed aiming at assessing the real health effects of these co-exposures. Med Pr 2016;67(2):143-154. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ambient temperature and pressure and the sampling time. The mass concentrations of both PM10c and PM2.5 in... 25 hours), and the start times of the PM2.5 and PM10c samples are within 10 minutes and the stop times of the samples are also within 10 minutes (see section 10.4 of this appendix). 4.0Accuracy (bias...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ambient temperature and pressure and the sampling time. The mass concentrations of both PM10c and PM2.5 in... 25 hours), and the start times of the PM2.5 and PM10c samples are within 10 minutes and the stop times of the samples are also within 10 minutes (see section 10.4 of this appendix). 4.0Accuracy (bias...
Code of Federal Regulations, 2013 CFR
2013-07-01
... ambient temperature and pressure and the sampling time. The mass concentrations of both PM10c and PM2.5 in... 25 hours), and the start times of the PM2.5 and PM10c samples are within 10 minutes and the stop times of the samples are also within 10 minutes (see section 10.4 of this appendix). 4.0Accuracy (bias...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ambient temperature and pressure and the sampling time. The mass concentrations of both PM10c and PM2.5 in... 25 hours), and the start times of the PM2.5 and PM10c samples are within 10 minutes and the stop times of the samples are also within 10 minutes (see section 10.4 of this appendix). 4.0Accuracy (bias...
US EPA 2012 Air Quality Fused Surface for the Conterminous U.S. Map Service
This web service contains a polygon layer that depicts fused air quality predictions for 2012 for census tracts in the conterminous United States. Fused air quality predictions (for ozone and PM2.5) are modeled using a Bayesian space-time downscaling fusion model approach described in a series of three published journal papers: 1) (Berrocal, V., Gelfand, A. E. and Holland, D. M. (2012). Space-time fusion under error in computer model output: an application to modeling air quality. Biometrics 68, 837-848; 2) Berrocal, V., Gelfand, A. E. and Holland, D. M. (2010). A bivariate space-time downscaler under space and time misalignment. The Annals of Applied Statistics 4, 1942-1975; and 3) Berrocal, V., Gelfand, A. E., and Holland, D. M. (2010). A spatio-temporal downscaler for output from numerical models. J. of Agricultural, Biological,and Environmental Statistics 15, 176-197) is used to provide daily, predictive PM2.5 (daily average) and O3 (daily 8-hr maximum) surfaces for 2012. Summer (O3) and annual (PM2.5) means calculated and published. The downscaling fusion model uses both air quality monitoring data from the National Air Monitoring Stations/State and Local Air Monitoring Stations (NAMS/SLAMS) and numerical output from the Models-3/Community Multiscale Air Quality (CMAQ). Currently, predictions at the US census tract centroid locations within the 12 km CMAQ domain are archived. Predictions at the CMAQ grid cell centroids, or any desired set of locations co
Characterization of atmospheric trace gases and particulate matter in Hangzhou, China
NASA Astrophysics Data System (ADS)
Zhang, Gen; Xu, Honghui; Qi, Bing; Du, Rongguang; Gui, Ke; Wang, Hongli; Jiang, Wanting; Liang, Linlin; Xu, Wanyun
2018-02-01
The Yangtze River Delta (YRD) is one of the most densely populated regions in China with severe air quality issues that have not been fully understood. Thus, in this study, based on 1-year (2013) continuous measurement at a National Reference Climatological Station (NRCS, 30.22° N, 120.17° E; 41.7 m a.s.l.) in the center of Hangzhou in the YRD, we investigated the seasonal characteristics, interspecies relationships, and the local emissions and the regional potential source contributions of trace gases (including O3, NOx, NOy, SO2, and CO) and particulate matter (PM2.5 and PM10). Results revealed that severe two-tier air pollution (photochemical and haze pollution) occurred in this region, with frequent exceedances in O3 (38 days) and PM2.5 (62 days). O3 and PM2.5 both exhibited distinct seasonal variations with reversed patterns: O3 reaching a maximum in warm seasons (May and July) but PM2.5 reaching a maximum in cold seasons (November to January). The overall results from interspecies correlation indicated a strong local photochemistry favoring the O3 production under a volatile organic compound (VOC)-limited regime, whereas it moved towards an optimum O3 production zone during warm seasons, accompanied by the formation of secondary fine particulates under high O3. The emission maps of PM2.5, CO, NOx, and SO2 demonstrated that local emissions were significant for these species on a seasonal scale. The contributions from the regional transport among inland cities (Zhejiang, Jiangsu, Anhui, and Jiangxi Province) on a seasonal scale were further confirmed to be crucial to air pollution at the NRCS site by using backward trajectory simulations. Air masses transported from the offshore areas of the Yellow Sea, East Sea, and South Sea were also found to be highly relevant to the elevated O3 at the NRCS site through the analysis of potential source contribution function (PSCF). Case studies of photochemical pollution (O3) and haze (PM2.5) episodes both suggested the combined importance of local atmospheric photochemistry and synoptic conditions during the accumulation (related with anticyclones) and dilution process (related with cyclones). Apart from supplementing a general picture of the air pollution state in the city of Hangzhou in the YRD region, this study specifically elucidates the role of local emission and regional transport, and it interprets the physical and photochemical processes during haze and photochemical pollution episodes. Moreover, this work suggests that cross-regional control measures are crucial to improve air quality in the YRD region, and it further emphasizes the importance of local thermally induced circulation for air quality.
Statistical analysis of PM₁₀ concentrations at different locations in Malaysia.
Sansuddin, Nurulilyana; Ramli, Nor Azam; Yahaya, Ahmad Shukri; Yusof, Noor Faizah Fitri Md; Ghazali, Nurul Adyani; Madhoun, Wesam Ahmed Al
2011-09-01
Malaysia has experienced several haze events since the 1980s as a consequence of the transboundary movement of air pollutants emitted from forest fires and open burning activities. Hazy episodes can result from local activities and be categorized as "localized haze". General probability distributions (i.e., gamma and log-normal) were chosen to analyze the PM(10) concentrations data at two different types of locations in Malaysia: industrial (Johor Bahru and Nilai) and residential (Kota Kinabalu and Kuantan). These areas were chosen based on their frequently high PM(10) concentration readings. The best models representing the areas were chosen based on their performance indicator values. The best distributions provided the probability of exceedances and the return period between the actual and predicted concentrations based on the threshold limit given by the Malaysian Ambient Air Quality Guidelines (24-h average of 150 μg/m(3)) for PM(10) concentrations. The short-term prediction for PM(10) exceedances in 14 days was obtained using the autoregressive model.
2007-04-20
American spaceflight participant Charles Simonyi is taken in his chair to the medical tent near the Soyuz TMA-9 spacecraft where the recovery officials conduct post-landing medical checks, Friday, April 21, 2007 in Kazakhstan. Expedition 14 Commander Michael Lopez-Alegria, Flight Engineer Mikhail Tyurin and American spaceflight participant Charles Simonyi landed in their Soyuz TMA-9 spacecraft southwest of Karaganda, Kazakhstan at approximately 6:30 p.m. local time. Photo Credit: (NASA/Bill Ingalls)
2007-04-20
Expedition 14 Flight Engineer Mikhail Tyurin is taken in his chair to the medical tent near the Soyuz TMA-9 spacecraft where the recovery officials conduct post-landing medical checks, Friday, April 21, 2007 in Kazakhstan. Expedition 14 Commander Michael Lopez-Alegria, Flight Engineer Mikhail Tyurin and American spaceflight participant Charles Simonyi landed in their Soyuz TMA-9 spacecraft southwest of Karaganda, Kazakhstan at approximately 6:30 p.m. local time. Photo Credit: (NASA/Bill Ingalls)
Processing NASA Earth Science Data on Nebula Cloud
NASA Technical Reports Server (NTRS)
Chen, Aijun; Pham, Long; Kempler, Steven
2012-01-01
Three applications were successfully migrated to Nebula, including S4PM, AIRS L1/L2 algorithms, and Giovanni MAPSS. Nebula has some advantages compared with local machines (e.g. performance, cost, scalability, bundling, etc.). Nebula still faces some challenges (e.g. stability, object storage, networking, etc.). Migrating applications to Nebula is feasible but time consuming. Lessons learned from our Nebula experience will benefit future Cloud Computing efforts at GES DISC.
Covarrubias-Pinto, A; Acuña, A I; Boncompain, G; Papic, E; Burgos, P V; Perez, F; Castro, M A
2018-05-20
Ascorbic acid (Asc) is an antioxidant molecule essential for physiological functions. The concentration of extracellular Asc increases during synaptic transmission and renal reabsorption. These phenomena induce an increase of the Sodium-dependent-Vitamin-C-transporter 2 (SVCT2) at plasma membrane (PM) localization, as we previously demonstrated in neuronal and non-neuronal cells. Hence, the aim of this study was to evaluate intracellular SVCT2 trafficking kinetics in response to Asc. We observed two peaks of SVCT2 localization and function at the PM (at 5-10 min, "acute response", and 30-60 min, "post-acute response") when cells were incubated with Asc. We defined that the post-acute response was dependent on SVCT2 located in early secretory compartments, and its trafficking was abolished with Tunicamycin and Brefeldin A treatment. Moreover, using the RUSH system to retain and synchronize cargo secretion through the secretory pathway we demonstrated that the post-acute response increases SVCT2 trafficking kinetics from the ER to the PM suggesting the retention of SVCT2 at the early secretory pathway when Asc is absent. However, these observations do not explain the increased SVCT2 levels at the PM during the "acute" response, suggesting the involvement of a faster mechanism in close proximity with the PM. To investigate the possible role of endosomal compartments, we tested the effect of endocytosis inhibition. Expression of dominant-negative (DN) versions of the GTPase-dynamin II and clathrin-accessory protein AP180 showed a significant increase in SVCT2 levels at the PM. Moreover, expression of Rab11-DN, a GTPase implicated in cargo protein recycling from endosomes to the PM showed a similar outcome, strongly indicating that Asc impacts SVCT2 trafficking during the acute response. Therefore, our results revealed two mechanisms by which Asc modulates SVCT2 levels at the PM, one at the early secretory pathway and another at the endocytic compartments. We propose that these two mechanisms have key protective implications in the homeostasis of metabolically active and specialized tissues. Copyright © 2018 Elsevier Inc. All rights reserved.
78 FR 38354 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
...; Member Conflict: Psychological Health, Development and Aging. Date: July 22, 2013. Time: 2:30 p.m. to 4... Obesity. Date: July 24, 2013. Time: 10:00 a.m. to 12:00 p.m. Agenda: To review and evaluate grant... Emphasis Panel; PAR Panel: Biodemography of Aging. Date: July 24, 2013. Time: 12:30 p.m. to 4:30 p.m...
76 FR 63625 - Center for Scientific Review Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
...: Diabetes and Nutrition. Date: November 8, 2011. Time: 12 p.m. to 6 p.m. Agenda: To review and evaluate... Disorders and Neuropathies Special Emphasis Panel. Date: October 26, 2011. Time: 2 p.m. to 4 p.m. Agenda: To... Special Emphasis Panel; Small Business: Radiation Therapy and Biology. Date: November 1-2, 2011. Time: 9 a...
75 FR 10491 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
...: Computational Biology, Image Processing, and Data Mining. Date: March 18, 2010. Time: 8 a.m. to 6 p.m. Agenda... Science. Date: March 24, 2010. Time: 12 p.m. to 3:30 p.m. Agenda: To review and evaluate grant...; Fellowship: Biophysical and Biochemical Sciences. Date: March 25-26, 2010. Time: 8 a.m. to 5 p.m. Agenda: To...
NASA Astrophysics Data System (ADS)
Petit, J.-E.; Amodeo, T.; Meleux, F.; Bessagnet, B.; Menut, L.; Grenier, D.; Pellan, Y.; Ockler, A.; Rocq, B.; Gros, V.; Sciare, J.; Favez, O.
2017-04-01
During March 2015, a severe and large-scale particulate matter (PM) pollution episode occurred in France. Measurements in near real-time of the major chemical composition at four different urban background sites across the country (Paris, Creil, Metz and Lyon) allowed the investigation of spatiotemporal variabilities during this episode. A climatology approach showed that all sites experienced clear unusual rain shortage, a pattern that is also found on a longer timescale, highlighting the role of synoptic conditions over Wester-Europe. This episode is characterized by a strong predominance of secondary pollution, and more particularly of ammonium nitrate, which accounted for more than 50% of submicron aerosols at all sites during the most intense period of the episode. Pollution advection is illustrated by similar variabilities in Paris and Creil (distant of around 100 km), as well as trajectory analyses applied on nitrate and sulphate. Local sources, especially wood burning, are however found to contribute to local/regional sub-episodes, notably in Metz. Finally, simulated concentrations from Chemistry-Transport model CHIMERE were compared to observed ones. Results highlighted different patterns depending on the chemical components and the measuring site, reinforcing the need of such exercises over other pollution episodes and sites.
Snider, Graydon; Carter, Ellison; Clark, Sierra; Tseng, Joy Tzu Wei; Yang, Xudong; Ezzati, Majid; Schauer, James J; Wiedinmyer, Christine; Baumgartner, Jill
2018-05-04
Decades of intervention programs that replaced traditional biomass stoves with cleaner-burning technologies have failed to meet the World Health Organization (WHO) interim indoor air quality target of 35-μg m -3 for PM 2.5 . Many attribute these results to continued use of biomass stoves and poor outdoor air quality, though the relative impacts of these factors have not been empirically quantified. We measured 496 days of real-time stove use concurrently with outdoor and indoor air pollution (PM 2.5 ) in 150 rural households in Sichuan, China. The impacts of stove use patterns and outdoor air quality on indoor PM 2.5 were quantified. We also estimated the potential avoided cardiovascular mortality in southwestern China associated with transition from traditional to clean fuel stoves using established exposure-response relationships. Mean daily indoor PM 2.5 was highest in homes using both wood and clean fuel stoves (122 μg m -3 ), followed by exclusive use of wood stoves (106 μg m -3 ) and clean fuel stoves (semi-gasifiers: 65 μg m -3 ; gas or electric: 55 μg m -3 ). Wood stoves emitted proportionally higher indoor PM 2.5 during ignition, and longer stove use was not associated with higher indoor PM 2.5 . Only 24% of days with exclusive use of clean fuel stoves met the WHO indoor air quality target, though this fraction rose to 73% after subtracting the outdoor PM 2.5 contribution. Reduced PM 2.5 exposure through exclusive use of gas or electric stoves was estimated to prevent 48,000 yearly premature deaths in southwestern China, with greater reductions if local outdoor PM 2.5 is also reduced. Clean stove and fuel interventions are not likely to reduce indoor PM 2.5 to the WHO target unless their use is exclusive and outdoor air pollution is sufficiently low, but may still offer some cardiovascular benefits. Copyright © 2018. Published by Elsevier Ltd.
Temporal trends of PM10 and its impact on mortality in Lombardy, Italy.
Carugno, Michele; Consonni, Dario; Bertazzi, Pier Alberto; Biggeri, Annibale; Baccini, Michela
2017-08-01
Exposure to particulate matter with diameter ≤10 μm (PM 10 ) entails well documented adverse effects on human health. In the last decade, concentration of PM 10 in Lombardy (10 million inhabitants), Italy, has been gradually decreasing. We evaluated how the mortality burden due to PM 10 varied in that same period. We focused on 13 areas of the Region in 2003-2014: 11 cities with more than 50,000 inhabitants, 1 smaller alpine town and 1 agricultural province. For each area, we collected PM 10 annual average concentrations and natural mortality data, and we used the posterior area-specific effects from a previous Bayesian meta-analysis to estimate the short-term impact of PM 10 on mortality, in terms of deaths attributable (AD) to annual average exposures exceeding the WHO threshold of 20 μg/m 3 . PM 10 annual average values showed a non-homogenous decreasing trend in the investigated time period in most of the areas. Overall, the population-weighted exposure levels decreased, except for a peak in 2011, but never met the WHO threshold. In 2003-2006, PM 10 levels were responsible, on average, for 343.0 annual AD from natural causes that decreased to 253.5 in 2007-2010 and to 208.3 in 2011-2014. Overall we estimated that PM 10 was responsible for about 1% of all natural deaths (min-max range: 0.86%-1.42%); the impact was heterogeneous among areas. By collecting routinely available data for the most populated areas in Lombardy, we returned a picture of air pollution and health trends in the last decade. Notwithstanding the observed reduction in PM 10 between 2003 and 2014 and the resulting decline in the number of AD, the impact is still relevant. Hence, appropriate policies for emission reduction could have a further beneficial effect on population health. Studies based on routine data and local effect estimates are recommended to properly inform the policy-making process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mao, Mao; Zhang, Xiaolin; Yin, Yan
2018-05-28
The situation of criteria atmospheric pollutants, including particulate matter and trace gases (SO₂, NO₂, CO and O₃), over three metropolises (Chongqing, Wuhan, and Nanjing), representing the upstream, midstream and downstream portions of the Yangtze River Basin from September 2015 to August 2016 were analyzed. The maximum annual mean PM 2.5 and PM 10 concentrations were 61.3 and 102.7 μg/m³ in Wuhan, while highest annual average gaseous pollutions occurred in Nanjing, with 49.6 and 22.9 ppb for 8 h O₃ and NO₂, respectively. Compared to a few years ago, SO₂ and CO mass concentrations have dropped to well below the qualification standards, and the O₃ and NO₂ concentrations basically meet the requirements though occasionally is still high. In contrary, about 13%, 25%, 22% for PM 2.5 , and 4%, 17%, 15% for PM 10 exceed the Chinese Ambient Air Quality Standard (CAAQS) Grade II. Particulate matter, especially PM 2.5 , is the most frequent major pollutant to poor air quality with 73%, 64% and 88% accounting for substandard days. Mean PM 2.5 concentrations on PM 2.5 episode days are 2⁻3 times greater than non-episode days. On the basis of calculation of PM 2.5 /PM 10 and PM 2.5 /CO ratios, the enhanced particulate matter pollution on episode days is closely related to secondary aerosol production. Except for O₃, the remaining five pollutants exhibit analogous seasonal patterns, with the highest magnitude in winter and lowest in summer. The results of back trajectories show that air pollution displays synergistic effects on local emissions and long range transport. O₃ commonly demonstrated negative correlations with other pollutants, especially during winter, while moderate to strong positive correlation between particulate matter and NO₂, SO₂, CO were seen. Compared to pollutant substandard ratios over three megacities in eastern China (Beijing, Shanghai, and Guangzhou), the situation in our studied second-tier cities are also severe. The results in this paper provide basic knowledge for pollution status of three cities along Chinese Yangtze River and are conductive to mitigating future negative air quality levels.
Simulating Silicon Photomultiplier Response to Scintillation Light
Jha, Abhinav K.; van Dam, Herman T.; Kupinski, Matthew A.; Clarkson, Eric
2015-01-01
The response of a Silicon Photomultiplier (SiPM) to optical signals is affected by many factors including photon-detection efficiency, recovery time, gain, optical crosstalk, afterpulsing, dark count, and detector dead time. Many of these parameters vary with overvoltage and temperature. When used to detect scintillation light, there is a complicated non-linear relationship between the incident light and the response of the SiPM. In this paper, we propose a combined discrete-time discrete-event Monte Carlo (MC) model to simulate SiPM response to scintillation light pulses. Our MC model accounts for all relevant aspects of the SiPM response, some of which were not accounted for in the previous models. We also derive and validate analytic expressions for the single-photoelectron response of the SiPM and the voltage drop across the quenching resistance in the SiPM microcell. These analytic expressions consider the effect of all the circuit elements in the SiPM and accurately simulate the time-variation in overvoltage across the microcells of the SiPM. Consequently, our MC model is able to incorporate the variation of the different SiPM parameters with varying overvoltage. The MC model is compared with measurements on SiPM-based scintillation detectors and with some cases for which the response is known a priori. The model is also used to study the variation in SiPM behavior with SiPM-circuit parameter variations and to predict the response of a SiPM-based detector to various scintillators. PMID:26236040
Prados-Frutos, Juan Carlos; Rojo, Rosa; González-Serrano, José; González-Serrano, Carlos; Sammartino, Gilberto; Martínez-González, José María; Sánchez-Monescillo, Andrés
2015-10-01
Knowing that patients desire reduced duration of local anesthesia, the authors performed a meta-analysis to evaluate the efficacy of phentolamine mesylate (PM) in reducing anesthesia duration and the occurrence of adverse effects. The authors searched studies in 4 electronic databases up to December 18, 2014. For each study, the methodological quality was assessed according to the Cochrane Collaboration's tool for assessing risk of bias. Randomized controlled trials (RCTs) that used PM met the inclusion criteria. Six RCTs met the inclusion criteria and were used to carry out a meta-analysis of the effectiveness of PM and a qualitative analysis of its adverse effects. The use of PM was more effective in reversing the anesthetic effect on the lower lip and tongue than was applying a placebo. Adverse effects reported in the studies were not statistically significant, the most frequent being headache, pain during injection, and postprocedure pain. Based on limited evidence, PM is effective in reducing the persistence of anesthesia duration on the lower lip and tongue, with infrequent adverse effects of little clinical significance. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All rights reserved.
Kim, Yong Ho; Wyrzykowska-Ceradini, Barbara; Touati, Abderrahmane; Krantz, Q Todd; Dye, Janice A; Linak, William P; Gullett, Brian; Gilmour, M Ian
2015-10-06
Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 μg/m(3). In general, the coarse PM (2.5-10 μm) was 3-4 times more abundant than fine/ultrafine PM (<2.5 μm). The coarse PM contained higher levels of Ni, Pb, and Zn (up to 6.8 times) compared to the fine (0.1-2.5 μm) and ultrafine (<0.1 μm) PM. Compared to coarse PM measurements from a regional near-roadway study, Pb and Ni were enriched 170 and 20 times, respectively, in the indoor PM, with other significant enrichments (>10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the mouse lung and enrichment of these metals compared to levels normally present in the ambient PM could be of potential health concern.
Dermody, Nadene; Hornberger, Michael; Piguet, Olivier; Hodges, John R; Irish, Muireann
2016-01-01
Prospective memory (PM) refers to a future-oriented form of memory in which the individual must remember to execute an intended action either at a future point in time (Time-based) or in response to a specific event (Event-based). Lapses in PM are commonly exhibited in neurodegenerative disorders including Alzheimer's disease (AD) and frontotemporal dementia (FTD), however, the neurocognitive mechanisms driving these deficits remain unknown. To investigate the clinical and neural correlates of Time- and Event-based PM disruption in AD and the behavioral-variant FTD (bvFTD). Twelve AD, 12 bvFTD, and 12 healthy older Control participants completed a modified version of the Cambridge Prospective Memory test, which examines Time- and Event-based aspects of PM. All participants completed a standard neuropsychological assessment and underwent whole-brain structural MRI. AD and bvFTD patients displayed striking impairments across Time- and Event-based PM relative to Controls, however, Time-based PM was disproportionately affected in the AD group. Episodic memory dysfunction and hippocampal atrophy were found to correlate strongly with PM integrity in both patient groups, however, dissociable neural substrates were also evident for PM performance across dementia syndromes. Our study reveals the multifaceted nature of PM dysfunction in neurodegenerative disorders, and suggests common and dissociable neurocognitive mechanisms, which subtend these deficits in each patient group. Future studies of PM disturbance in dementia syndromes will be crucial for the development of successful interventions to improve functional independence in the patient's daily life.
Achilleos, Souzana; Evans, John S; Yiallouros, Panayiotis K; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros
2014-12-01
Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000-2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact ofdust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. Implications: This paper examines PM10 concentrations in Nicosia, Cyprus, from 1993 to 2008. The decrease in PM10 levels in Nicosia suggests that the implementation of traffic emission control policies in Cyprus has been effective. However, particle levels still exceeded the European Uion annual standard, and dust storms were responsible for a small fraction of the daily PM10 limit exceedances. Other natural particles that are not assessed in this study, such as resuspended soil and sea salt, may be responsible in part for the hig particle levels.
Watts, Brook; Lawrence, Renée H; Drawz, Paul; Carter, Cameron; Shumaker, Amy Hirsch; Kern, Elizabeth F
2016-08-01
Effective team-based models of care, such as the Patient-Centered Medical Home, require electronic tools to support proactive population management strategies that emphasize care coordination and quality improvement. Despite the spread of electronic health records (EHRs) and vendors marketing population health tools, clinical practices still may lack the ability to have: (1) local control over types of data collected/reports generated, (2) timely data (eg, up-to-date data, not several months old), and accordingly (3) the ability to efficiently monitor and improve patient outcomes. This article describes a quality improvement project at the hospital system level to develop and implement a flexible panel management (PM) tool to improve care of subpopulations of patients (eg, panels of patients with diabetes) by clinical teams. An in-depth case analysis approach is used to explore barriers and facilitators in building a PM registry tool for team-based management needs using standard data elements (eg, laboratory values, pharmacy records) found in EHRs. Also described are factors that may contribute to sustainability; to date the tool has been adapted to 6 disease-focused subpopulations encompassing more than 200,000 patients. Two key lessons emerged from this initiative: (1) though challenging, team-based clinical end users and information technology needed to work together consistently to refine the product, and (2) locally developed population management tools can provide efficient data tracking for frontline clinical teams and leadership. The preliminary work identified critical gaps that were successfully addressed by building local PM registry tools from EHR-derived data and offers lessons learned for others engaged in similar work. (Population Health Management 2016;19:232-239).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Noriho; Hayashi, Shizu; Gosselink, John
2007-12-01
Exposure to ambient air pollution particles with a diameter of < 10 {mu}m (PM{sub 10}) has been associated with increased cardiopulmonary morbidity and mortality. We have shown that human bronchial epithelial cells (HBECs) exposed to PM{sub 10} produce pro-inflammatory mediators that contribute to a local and systemic inflammatory response. Changes in intracellular calcium concentrations ([Ca{sup 2+}]{sub i}) have been demonstrated to regulate several functions of the airway epithelium including the production of pro-inflammatory mediators. The aim of the present study was to determine the nature and mechanism of calcium responses induced by PM{sub 10} in HBECs and its relationship tomore » cytokine synthesis. Methods: Primary HBECs were exposed to urban air pollution particles (EHC-93) and [Ca{sup 2+}]{sub i} responses were measured using the fluoroprobe (Fura-2). Cytokine levels were measured at mRNA and protein levels using real-time PCR and ELISA. Results: PM{sub 10} increased [Ca{sup 2+}]{sub i} in a dose-dependent manner. This calcium response was reduced by blocking the influx of calcium into cells (i.e. calcium-free medium, NiCl{sub 2}, LaCl{sub 3}). PM{sub 10} also decreased the activity of calcium pumps. PM{sub 10} increased the production of IL-1{beta}, IL-8, GM-CSF and LIF. Preincubation with intracellular calcium chelator (BAPTA-AM) attenuated IL-1{beta} and IL-8 production, but not GM-CSF and LIF production. Conclusion: We conclude that exposure to PM{sub 10} induces an increase in cytosolic calcium and cytokine production in bronchial epithelial cells. Our results also suggest that PM{sub 10} induces the production of pro-inflammatory mediators via either intracellular calcium-dependent (IL-1{beta}, IL-8) or -independent (GM-CSF, LIF) pathways.« less
Characteristics of cabin air quality in school buses in Central Texas
NASA Astrophysics Data System (ADS)
Rim, Donghyun; Siegel, Jeffrey; Spinhirne, Jarett; Webb, Alba; McDonald-Buller, Elena
This study assessed in-cabin concentrations of diesel-associated air pollutants in six school buses with diesel engines during a typical route in suburban Austin, Texas. Air exchange rates measured by SF 6 decay were 2.60-4.55 h -1. In-cabin concentrations of all pollutants measured exhibited substantial variability across the range of tests even between buses of similar age, mileage, and engine type. In-cabin NO x concentrations ranged from 44.7 to 148 ppb and were 1.3-10 times higher than roadway NO x concentrations. Mean in-cabin PM 2.5 concentrations were 7-20 μg m -3 and were generally lower than roadway levels. In-cabin concentrations exhibited higher variability during cruising mode than frequent stops. Mean in-cabin ultrafine PM number concentrations were 6100-32,000 particles cm -3 and were generally lower than roadway levels. Comparison of median concentrations indicated that in-cabin ultrafine PM number concentrations were higher than or approximately the same as the roadway concentrations, which implied that, by excluding the bias caused by local traffic, ultrafine PM levels were higher in the bus cabin than outside of the bus. Cabin pollutant concentrations on three buses were measured prior to and following the phased installation of a Donaldson Spiracle Crankcase Filtration System and a Diesel Oxidation Catalyst. Following installation of the Spiracle, the Diesel Oxidation Catalyst provided negligible or small additional reductions of in-cabin pollutant levels. In-cabin concentration decreases with the Spiracle alone ranged from 24 to 37% for NO x and 26 to 62% and 6.6 to 43% for PM 2.5 and ultrafine PM, respectively. Comparison of the ranges of PM 2.5 and ultrafine PM variations between repetitive tests suggested that retrofit installation could not always be conclusively linked to the decrease of pollutant levels in the bus cabin.
Local source impacts on primary and secondary aerosols in the Midwestern United States
NASA Astrophysics Data System (ADS)
Jayarathne, Thilina; Rathnayake, Chathurika M.; Stone, Elizabeth A.
2016-04-01
Atmospheric particulate matter (PM) exhibits heterogeneity in composition across urban areas, leading to poor representation of outdoor air pollutants in human exposure assessments. To examine heterogeneity in PM composition and sources across an urban area, fine particulate matter samples (PM2.5) were chemically profiled in Iowa City, IA from 25 August to 10 November 2011 at two monitoring stations. The urban site is the federal reference monitoring (FRM) station in the city center and the peri-urban site is located 8.0 km to the west on the city edge. Measurements of PM2.5 carbonaceous aerosol, inorganic ions, molecular markers for primary sources, and secondary organic aerosol (SOA) tracers were used to assess statistical differences in composition and sources across the two sites. PM2.5 mass ranged from 3 to 26 μg m-3 during this period, averaging 11.2 ± 4.9 μg m-3 (n = 71). Major components of PM2.5 at the urban site included organic carbon (OC; 22%), ammonium (14%), sulfate (13%), nitrate (7%), calcium (2.9%), and elemental carbon (EC; 2.2%). Periods of elevated PM were driven by increases in ammonium, sulfate, and SOA tracers that coincided with hot and dry conditions and southerly winds. Chemical mass balance (CMB) modeling was used to apportion OC to primary sources; biomass burning, vegetative detritus, diesel engines, and gasoline engines accounted for 28% of OC at the urban site and 24% of OC at the peri-urban site. Secondary organic carbon from isoprene and monoterpene SOA accounted for an additional 13% and 6% of OC at the urban and peri-urban sites, respectively. Differences in biogenic SOA across the two sites were associated with enhanced combustion activities in the urban area and higher aerosol acidity at the urban site. Major PM constituents (e.g., OC, ammonium, sulfate) were generally well-represented by a single monitoring station, indicating a regional source influence. Meanwhile, nitrate, biomass burning, food cooking, suspended dust, and biogenic SOA were not well-represented by a single site and demonstrated local influences. For isoprene SOA, product distributions indicated a larger role for the high-NOx pathway at the urban site. These local sources are largely responsible for differences in population exposures to outdoor PM in the study domain located within the Midwestern US.
Water vapour in the middle atmosphere of Venus:. An improved treatment of the Venera 15 ir spectra
NASA Astrophysics Data System (ADS)
Ignatiev, N. i.; Moroz, V. i.; Zasova, L. V.; Khatuntsev, I. v.
1999-08-01
In 1983, spectra of Venus in the region of 6-40 μm were measured by means of the Fourier Spectrometer aboard the Venera 15 orbiter. It covered local solar times from 4 am to 10 am and from 4 pm to 10 pm in the latitude range from 65°S up to 87°N. The results of an extended processing and analysis of these data are presented. Time and spatial variations of the water vapour were found. Most of the measurements fall in the range of 5-15 ppm, which is close to earlier results. The effective altitude of sounding is approximately equal to the altitude where the optical depth τ = 1. In the northern hemisphere, which was mainly covered by the measurements, two latitude regions can be distinguished; (A) 20° < φ < 50° and (B) φ > 60°, which are characterised by different altitudes of the level of τ = 1, 62 and 55 km respectively. Mean mixing ratios near this level in the two regions are almost the same, but the partial pressures and mass densities in the region (B) are 2-4 times greater than those in region (A). In region (A) a weak maximum was detected near 10 am local solar time (17 ppm at φ = 35°) and a minimum-near 10 pm (2ppm at φ = 30°). Region (B) is of inhomogeneous structure, and the retrieved mixing ratio has greater uncertainty and may probably change from the low values up to 30 ppm. In region (A) the water vapour mass density at the level of τ = 1 is 2-4 times greater than the mean density of the water contained in aerosol particles, while in region (B) this ratio may vary in the limits 0.5-5. Although the retrieval of H2O mixing ratio altitude profile from the Venera 15 data appeared to be impossible, indirect indications were found that at least in region (A) the mixing ratio decreases with altitude.
NASA Technical Reports Server (NTRS)
2004-01-01
This image of the martian sundial onboard the Mars Exploration Rover Spirit was processed by students in the Red Rover Goes to Mars program to impose hour markings on the face of the dial. The position of the shadow of the sundial's post within the markings indicates the time of day and the season, which in this image is 12:17 p.m. local solar time, late summer. A team of 16 students from 12 countries were selected by the Planetary Society to participate in this program. This image was taken on Mars by the rover's panoramic camera.Dario, Claudio; Delise, Pietro; Gubian, Lorenzo; Saccavini, Claudio; Brandolino, Glauco; Mancin, Silvia
2016-01-13
Patients with implantable devices such as pacemakers (PMs) and implantable cardiac defibrillators (ICDs) should be followed up every 3-12 months, which traditionally required in-clinic visits. Innovative devices allow data transmission and technical or medical alerts to be sent from the patient's home to the physician (remote monitoring). A number of studies have shown its effectiveness in timely detection and management of both clinical and technical events, and endorsed its adoption. Unfortunately, in daily practice, remote monitoring has been implemented in uncoordinated and rather fragmented ways, calling for a more strategic approach. The objective of the study was to analyze the impact of remote monitoring for PM and ICD in a "real world" context compared with in-clinic follow-up. The evaluation focuses on how this service is carried out by Local Health Authorities, the impact on the cardiology unit and the health system, and organizational features promoting or hindering its effectiveness and efficiency. A multi-center, multi-vendor, controlled, observational, prospective study was conducted to analyze the impact of remote monitoring implementation. A total of 2101 patients were enrolled in the study: 1871 patients were followed through remote monitoring of PM/ICD (I-group) and 230 through in-clinic visits (U-group). The follow-up period was 12 months. In-clinic device follow-ups and cardiac visits were significantly lower in the I-group compared with the U-group, respectively: PM, I-group = 0.43, U-group = 1.07, P<.001; ICD, I-group = 0.98, U-group = 2.14, P<.001. PM, I-group = 0.37, U-group = 0.85, P<.001; ICD, I-group = 1.58, U-group = 1.69, P=.01. Hospitalizations for any cause were significantly lower in the I-group for PM patients only (I-group = 0.37, U-group = 0.50, P=.005). There were no significant differences regarding use of the emergency department for both PM and ICD patients. In the I-group, 0.30 (PM) and 0.37 (ICD) real clinical events per patient per year were detected within a mean (SD) time of 1.18 (2.08) days. Mean time spent by physicians to treat a patient was lower in the I-group compared to the U-group (-4.1 minutes PM; -13.7 minutes ICD). Organizational analysis showed that remote monitoring implementation was rather haphazard and fragmented. From a health care system perspective, the economic analysis showed statistically significant gains (P<.001) for the I-group using PM. This study contributes to build solid evidence regarding the usefulness of RM in detecting and managing clinical and technical events with limited use of manpower and other health care resources. To fully gain the benefits of RM of PM/ICD, it is vital that organizational processes be streamlined and standardized within an overarching strategy.
2016-01-01
Background Patients with implantable devices such as pacemakers (PMs) and implantable cardiac defibrillators (ICDs) should be followed up every 3–12 months, which traditionally required in-clinic visits. Innovative devices allow data transmission and technical or medical alerts to be sent from the patient's home to the physician (remote monitoring). A number of studies have shown its effectiveness in timely detection and management of both clinical and technical events, and endorsed its adoption. Unfortunately, in daily practice, remote monitoring has been implemented in uncoordinated and rather fragmented ways, calling for a more strategic approach. Objective The objective of the study was to analyze the impact of remote monitoring for PM and ICD in a “real world” context compared with in-clinic follow-up. The evaluation focuses on how this service is carried out by Local Health Authorities, the impact on the cardiology unit and the health system, and organizational features promoting or hindering its effectiveness and efficiency. Methods A multi-center, multi-vendor, controlled, observational, prospective study was conducted to analyze the impact of remote monitoring implementation. A total of 2101 patients were enrolled in the study: 1871 patients were followed through remote monitoring of PM/ICD (I-group) and 230 through in-clinic visits (U-group). The follow-up period was 12 months. Results In-clinic device follow-ups and cardiac visits were significantly lower in the I-group compared with the U-group, respectively: PM, I-group = 0.43, U-group = 1.07, P<.001; ICD, I-group = 0.98, U-group = 2.14, P<.001. PM, I-group = 0.37, U-group = 0.85, P<.001; ICD, I-group = 1.58, U-group = 1.69, P=.01. Hospitalizations for any cause were significantly lower in the I-group for PM patients only (I-group = 0.37, U-group = 0.50, P=.005). There were no significant differences regarding use of the emergency department for both PM and ICD patients. In the I-group, 0.30 (PM) and 0.37 (ICD) real clinical events per patient per year were detected within a mean (SD) time of 1.18 (2.08) days. Mean time spent by physicians to treat a patient was lower in the I-group compared to the U-group (-4.1 minutes PM; -13.7 minutes ICD). Organizational analysis showed that remote monitoring implementation was rather haphazard and fragmented. From a health care system perspective, the economic analysis showed statistically significant gains (P<.001) for the I-group using PM. Conclusions This study contributes to build solid evidence regarding the usefulness of RM in detecting and managing clinical and technical events with limited use of manpower and other health care resources. To fully gain the benefits of RM of PM/ICD, it is vital that organizational processes be streamlined and standardized within an overarching strategy. PMID:26764170
Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy.
Sgrigna, G; Sæbø, A; Gawronski, S; Popek, R; Calfapietra, C
2015-02-01
A number of studies have focused on urban trees to understand their mitigation capacity of air pollution. In this study particulate matter (PM) deposition on Quercus ilex leaves was quantitatively analyzed in four districts of the City of Terni (Italy) for three periods of the year. Fine (between 0.2 and 2.5 μm) and Large (between 2.5 and 10 μm) PM fractions were analyzed. Mean PM deposition value on Quercus ilex leaves was 20.6 μg cm(-2). Variations in PM deposition correlated with distance to main roads and downwind position relatively to industrial area. Epicuticular waxes were measured and related to accumulated PM. For Fine PM deposited in waxes we observed a higher value (40% of total Fine PM) than Large PM (4% of total Large PM). Results from this study allow to increase our understanding about air pollution interactions with urban vegetation and could be hopefully taken into account when guidelines for local urban green management are realized. Copyright © 2014 Elsevier Ltd. All rights reserved.
EPA has identified respirable particulate matter (PM) as a significant threat to human health, particularly in the elderly, in children, and in persons with respiratory disease. However, deposition of PM in the respiratory system is highly variable, depending upon particle chara...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-27
... begin at 3 p.m. and will normally adjourn at 6 p.m. Any adjustments to the meetings will be advertised..., and will be published in the Federal Register, announced through local media and on the BLM's Web site...
Effects of Source-Apportioned Coarse Particulate Matter (PM) on Allergic Responses in Mice
The Cleveland Multiple Air Pollutant Study (CMAPS) is one of the first comprehensive studies conducted to evaluate particulate matter (PM) over local and regional scales. Cleveland and the nearby Ohio River Valley impart significant regional sources of air pollution including coa...
Aerosol Pollution from Small Combustors in a Village
Zwozdziak, A.; Samek, L.; Sowka, I.; Furman, L.; Skrętowicz, M.
2012-01-01
Urban air pollution is widely recognized. Recently, there have been a few projects that examined air quality in rural areas (e.g., AUPHEP project in Austria, WOODUSE project in Denmark). Here we present the results within the International Cooperation Project RER/2/005 targeted at studying the effect of local combustion processes to air quality in the village of Brzezina in the countryside north-west of Wroclaw (south western Poland). We identified the potential emission sources and quantified their contributions. The ambient aerosol monitoring (PM10 and elemental concentrations) was performed during 4 measurement cycles, in summer 2009, 2010 and in winter 2010, 2011. Some receptor modeling techniques, factor analysis-multiple linear regression analysis (FA-MLRA) and potential source localization function (PSLF), have been used. Different types of fuel burning along with domestic refuse resulted in an increased concentration of PM10 particle mass, but also by an increased in various other compounds (As, Pb, Zn). Local combustion sources contributed up to 80% to PM10 mass in winter. The effect of other sources was small, from 6 to 20%, dependently on the season. Both PM10 and elemental concentrations in the rural settlement were comparable to concentrations at urban sites in summer and were much higher in winter, which can pose asignificant health risk to its inhabitants. PMID:22629226
Accuracy metrics for judging time scale algorithms
NASA Technical Reports Server (NTRS)
Douglas, R. J.; Boulanger, J.-S.; Jacques, C.
1994-01-01
Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.
Does consideration of GHG reductions change local decision making? A Case Study in Chile
NASA Astrophysics Data System (ADS)
Cifuentes, L. A.; Blumel, G.
2003-12-01
While local air pollution has been a public concern in developing countries for some time, climate change is looked upon as a non-urgent, developed world problem. In this work we present a case study of the interaction of measures to abate air pollution and measures to mitigate GHG emissions in Santiago, Chile, with the purpose of determining if the consideration of reductions in GHG affects the decisions taken to mitigate local air pollution. The emissions reductions of both GHG and local air pollutants were estimated from emission factors (some derived locally) and changes in activity levels. Health benefits due to air pollution abatement were computed using figures derived previously for the cost benefit analysis of Santiago's Decontamination Plan, transferred to the different cities taking into consideration local demographic and income data. The Santiago estimates were obtained using the damage function approach, based on some local epidemiological studies, and on local health and demographic data. Unit social values for the effects were estimated locally (for cost of treatment and lost productivity values) or extrapolated from US values (mainly for WTP values) using the ratio of per-capita income and an income elasticity of 1. The average benefits of emission abatement (in 1997 US\\ per ton) are 1,800 (1,200-2300) for NOx, 3,000 (2,100-3900) for SO2, 31,900 (21,900 - 41,900) for PM, and 630 (430 - 830) for resuspended dust. Economic benefits due to carbon reduction were considered at 3.5, 10 and 20 UStCO2. Marginal abatement cost curves were constructed considering private and net costs (private less the potential sales of carbon credits) Due to the bottom-up approach to constructing the marginal cost curve, many abatement measures (like congestion tolls and CNG instead of diesel buses) amounting to 8% reduction of PM2.5 concentration, exhibit a negative private cost. If the health benefits are considered for the decision, a maximum reduction of 22% in PM2.5 levels is obtained. Although many measures have associated reductions in GHG, due to the relatively low price considered for carbon reductions, when the potential benefits of CO2 sales are considered, this number does not increases. Therefore, consideration of the CO2 benefits did not change the decision for any of the 36 measures analyzed. This confirms that the main driver for air pollution policy is likely to continue to be local concerns, like public health issues.
Tracking a Severe Pollution Event in Beijing in December 2016 with the GRAPES-CUACE Adjoint Model
NASA Astrophysics Data System (ADS)
Wang, Chao; An, Xingqin; Zhai, Shixian; Sun, Zhaobin
2018-02-01
We traced the adjoint sensitivity of a severe pollution event in December 2016 in Beijing using the adjoint model of the GRAPES-CUACE (Global/Regional Assimilation and Prediction System coupled with the China Meteorological Administration Unified Atmospheric Chemistry Environmental Forecasting System). The key emission sources and periods affecting this severe pollution event are analyzed. For comaprison, we define 2000 Beijing Time 3 December 2016 as the objective time when PM2.5 reached the maximum concentration in Beijing. It is found that the local hourly sensitivity coefficient amounts to a peak of 9.31 μg m-3 just 1 h before the objective time, suggesting that PM2.5 concentration responds rapidly to local emissions. The accumulated sensitivity coefficient in Beijing is large during the 20-h period prior to the objective time, showing that local emissions are the most important in this period. The accumulated contribution rates of emissions from Beijing, Tianjin, Hebei, and Shanxi are 34.2%, 3.0%, 49.4%, and 13.4%, respectively, in the 72-h period before the objective time. The evolution of hourly sensitivity coefficient shows that the main contribution from the Tianjin source occurs 1-26 h before the objective time and its peak hourly contribution is 0.59 μg m-3 at 4 h before the objective time. The main contributions of the Hebei and Shanxi emission sources occur 1-54 and 14-53 h, respectively, before the objective time and their hourly sensitivity coefficients both show periodic fluctuations. The Hebei source shows three sensitivity coefficient peaks of 3.45, 4.27, and 0.71 μg m-3 at 4, 16, and 38 h before the objective time, respectively. The sensitivity coefficient of the Shanxi source peaks twice, with values of 1.41 and 0.64 μg m-3 at 24 and 45 h before the objective time, respectively. Overall, the adjoint model is effective in tracking the crucial sources and key periods of emissions for the severe pollution event.
Real-Time and Seamless Monitoring of Ground-Level PM2.5 Using Satellite Remote Sensing
NASA Astrophysics Data System (ADS)
Li, Tongwen; Zhang, Chengyue; Shen, Huanfeng; Yuan, Qiangqiang; Zhang, Liangpei
2018-04-01
Satellite remote sensing has been reported to be a promising approach for the monitoring of atmospheric PM2.5. However, the satellite-based monitoring of ground-level PM2.5 is still challenging. First, the previously used polar-orbiting satellite observations, which can be usually acquired only once per day, are hard to monitor PM2.5 in real time. Second, many data gaps exist in satellitederived PM2.5 due to the cloud contamination. In this paper, the hourly geostationary satellite (i.e., Harawari-8) observations were adopted for the real-time monitoring of PM2.5 in a deep learning architecture. On this basis, the satellite-derived PM2.5 in conjunction with ground PM2.5 measurements are incorporated into a spatio-temporal fusion model to fill the data gaps. Using Wuhan Urban Agglomeration as an example, we have successfully derived the real-time and seamless PM2.5 distributions. The results demonstrate that Harawari-8 satellite-based deep learning model achieves a satisfactory performance (out-of-sample cross-validation R2 = 0.80, RMSE = 17.49 μg/m3) for the estimation of PM2.5. The missing data in satellite-derive PM2.5 are accurately recovered, with R2 between recoveries and ground measurements of 0.75. Overall, this study has inherently provided an effective strategy for the realtime and seamless monitoring of ground-level PM2.5.
Tecer, Lokman Hakan; Süren, Pinar; Alagha, Omar; Karaca, Ferhat; Tuncel, Gürdal
2008-04-01
In this work, the effect of meteorological parameters and local topography on mass concentrations of fine (PM2.5) and coarse (PM2.5-10) particles and their seasonal behavior was investigated. A total of 236 pairs of samplers were collected using an Anderson Dichotomous sampler between December 2004 and October 2005. The average mass concentrations of PM2.5, PM2.5-10, and particulate matter less than 10 microm in aerodynamic diameter (PM10) were found to be 29.38, 23.85, and 53.23 microg/m3, respectively. The concentrations of PM2.5 and PM10 were found to be higher in heating seasons (December to May) than in summer. The increase of relative humidity, cloudiness, and lower temperature was found to be highly related to the increase of particulate matter (PM) episodic events. During non-rainy days, the episodic events for PM2.5 and PM10 were increased by 30 and 10.7%, respectively. This is a result of the extensive use of fuel during winter for heating purposes and also because of stagnant air masses formed because of low temperature and low wind speed over the study area.
Abstract
Epidemiologic studies have shown positive associationsbetween changes in ambient particulate matter (PM) levels in Utah Valley during 1986-1988, and the respiratory health of the local population. Ambient PM reductions coincided withclosure of an open-hearth steel...
78 FR 38998 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
... and AIDS Related Applications. Date: July 23, 2013. Time: 10:00 a.m. to 8:00 p.m. Agenda: To review..., 2013. Time: 2:00 p.m. to 4:30 p.m. Agenda: To review and evaluate grant applications. Place: National...: Asthma and Lung Host Defense. Date: July 25-26, 2013. Time: 8:00 a.m. to 5:00 p.m. Agenda: To review and...
77 FR 52023 - Meeting of the National Drinking Water Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
... from 8:30 a.m. to 5:00 p.m., Central Time, and on October 5, 2012, from 8:30 a.m. to 3:00 p.m., Central Time. ADDRESSES: The meeting will be held at EPA's Chicago Regional Office (EPA Region 5) at the Ralph... the public's input (1:00 p.m.-2:00 p.m., Central Time) at the meeting on October 5, 2012. Oral...
Xu, Chunyu; Li, Na; Yang, Yibing; Li, Yunpu; Liu, Zhe; Wang, Qin; Zheng, Tongzhang; Civitarese, Anna; Xu, Dongqun
2017-06-01
The objective of this study was to estimate the residential infiltration factor (Finf) of fine particulate matter (PM 2.5 ) and to develop models to predict PM 2.5 Finf in Beijing. Eighty-eight paired indoor-outdoor PM 2.5 samples were collected by Teflon filters for seven consecutive days during both non-heating and heating seasons (from a total of 55 families between August, 2013 and February, 2014). The mass concentrations of PM 2.5 were measured by gravimetric method, and elemental concentrations of sulfur in filter deposits were determined by energy-dispersive x-ray fluorescence (ED-XRF) spectrometry. PM 2.5 Finf was estimated as the indoor/outdoor sulfur ratio. Multiple linear regression was used to construct Finf predicting models. The residential PM 2.5 Finf in non-heating season (0.70 ± 0.21, median = 0.78, n = 43) was significantly greater than in heating season (0.54 ± 0.18, median = 0.52, n = 45, p < 0.001). Outdoor temperature, window width, frequency of window opening, and air conditioner use were the most important predictors during non-heating season, which could explain 57% variations across residences, while the outdoor temperature was the only predictor identified in heating season, which could explain 18% variations across residences. The substantial variations of PM 2.5 Finf between seasons and among residences found in this study highlight the importance of incorporating Finf into exposure assessment in epidemiological studies of air pollution and human health in Beijing. The Finf predicting models developed in this study hold promise for incorporating PM 2.5 Finf into large epidemiology studies, thereby reducing exposure misclassification. Failure to consider the differences between indoor and outdoor PM 2.5 may contribute to exposure misclassification in epidemiological studies estimating exposure from a central site measurement. This study was conducted in Beijing to investigate residential PM 2.5 infiltration factor and to develop a localized predictive model in both nonheating and heating seasons. High variations of PM 2.5 infiltration factor between the two seasons and across homes within each season were found, highlighting the importance of including infiltration factor in the assessment of exposure to PM 2.5 of outdoor origin in epidemiological studies. Localized predictive models for PM 2.5 infiltration factor were also developed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-20
..., Obesity, and Weight Change in Pregnancy. Date: July 18, 2013. Time: 1:00 p.m. to 4:00 p.m. Agenda: To..., Obesity, and Weight Change in Pregnancy. Date: July 31, 2013. Time: 1:00 p.m. to 4:00 p.m. Agenda: To...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Raman Deep, E-mail: Takhter.Ramandeep@mayo.edu; Schroeder, Andreas S.; Scheffer, Luana
Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins thatmore » bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily localize to lipid rafts and recruit cholesterol into protrusions and away from caveolae, leading to increased phosphorylation of caveolin-1, which inhibits Cdc42-dependent endocytosis. This study provides a new insight for the role for prominins in the regulation of PM lipid organization.« less
A Singular Perturbation Approach for Time-Domain Assessment of Phase Margin
NASA Technical Reports Server (NTRS)
Zhu, J. Jim; Yang, Xiaojing; Hodel, A Scottedward
2010-01-01
This paper considers the problem of time-domain assessment of the Phase Margin (PM) of a Single Input Single Output (SISO) Linear Time-Invariant (LTI) system using a singular perturbation approach, where a SISO LTI fast loop system, whose phase lag increases monotonically with frequency, is introduced into the loop as a singular perturbation with a singular perturbation (time-scale separation) parameter Epsilon. First, a bijective relationship between the Singular Perturbation Margin (SPM) max and the PM of the nominal (slow) system is established with an approximation error on the order of Epsilon(exp 2). In proving this result, relationships between the singular perturbation parameter Epsilon, PM of the perturbed system, PM and SPM of the nominal system, and the (monotonically increasing) phase of the fast system are also revealed. These results make it possible to assess the PM of the nominal system in the time-domain for SISO LTI systems using the SPM with a standardized testing system called "PM-gauge," as demonstrated by examples. PM is a widely used stability margin for LTI control system design and certification. Unfortunately, it is not applicable to Linear Time-Varying (LTV) and Nonlinear Time-Varying (NLTV) systems. The approach developed here can be used to establish a theoretical as well as practical metric of stability margin for LTV and NLTV systems using a standardized SPM that is backward compatible with PM.
NASA Astrophysics Data System (ADS)
Zhao, Bin; Wu, Wenjing; Wang, Shuxiao; Xing, Jia; Chang, Xing; Liou, Kuo-Nan; Jiang, Jonathan H.; Gu, Yu; Jang, Carey; Fu, Joshua S.; Zhu, Yun; Wang, Jiandong; Lin, Yan; Hao, Jiming
2017-10-01
The Beijing-Tianjin-Hebei (BTH) region has been suffering from the most severe fine-particle (PM2. 5) pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM) technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM). The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24-36 %) to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA) to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM2. 5 concentrations. The contributions of primary inorganic PM2. 5 emissions to PM2. 5 concentrations are dominated by local emission sources, which account for over 75 % of the total primary inorganic PM2. 5 contributions. For precursors, however, emissions from other regions could play similar roles to local emission sources in the summer and over the northern part of BTH. The source contribution features for various types of heavy-pollution episodes are distinctly different from each other and from the monthly mean results, illustrating that control strategies should be differentiated based on the major contributing sources during different types of episodes.
; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Ingredients Low-Risk Pesticides Organic Pesticide Ingredients Pesticide Incidents Human Exposure Pet Exposure :00PM Pacific Time, Mon-Fri A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A-Z Index Health &
Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng
2017-07-01
Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.
HAMAMOTO, YASUO
2015-01-01
Peritoneal metastasis (PM) in gastric cancer (GC) is often the cause of several complications, including ascites and bowel obstruction. The prognosis of patients with extensive PM is poor. There are only limited data available on clinical characteristics regarding the period between the initiation of chemotherapy until the death of the patient. We conducted a retrospective study to determine the frequency of major events during and after palliative chemotherapy in advanced GC patients with PM. The records of patients who received first-line palliative chemotherapy at the Tochigi Cancer Center for locally advanced or metastatic disease were reviewed. The extracted information included treatments received and emerging complications. Overall survival was compared between patients with and those without PM. A total of 97 patients were reviewed and the prevalence of complications with or without concurrent PM were as follows: bowel obstruction: PM, 37% (16/43) and non-PM, 20% (11/54) (P=0.0664); ascites: PM, 49% (21/43) and non-PM, 7% (4/54) (P<0.0001). The clinical characteristics of patients with PM from GC are unique. Therefore, it is crucial to consider PM as a predictive sign and an important factor when making clinical decisions and developing treatment strategies. PMID:26137263
An integrated approach to identify the origin of PM10 exceedances.
Amodio, M; Andriani, E; de Gennaro, G; Demarinis Loiotile, A; Di Gilio, A; Placentino, M C
2012-09-01
This study was aimed to the development of an integrated approach for the characterization of particulate matter (PM) pollution events in the South of Italy. PM(10) and PM(2.5) daily samples were collected from June to November 2008 at an urban background site located in Bari (Puglia Region, South of Italy). Meteorological data, particle size distributions and atmospheric dispersion conditions were also monitored in order to provide information concerning the different features of PM sources. The collected data allowed suggesting four indicators to characterize different PM(10) exceedances. PM(2.5)/PM(10) ratio, natural radioactivity, aerosol maps and back-trajectory analysis and particle distributions were considered in order to evaluate the contribution of local anthropogenic sources and to determine the different origins of intrusive air mass coming from long-range transport, such as African dust outbreaks and aerosol particles from Central and Eastern Europe. The obtained results were confirmed by applying principal component analysis to the number particle concentration dataset and by the chemical characterization of the samples (PM(10) and PM(2.5)). The integrated approach for PM study suggested in this paper can be useful to support the air quality managers for the development of cost-effective control strategies and the application of more suitable risk management approaches.
The Effect of a Receding Saline Lake (The Salton Sea) on Airborne Particulate Matter Composition.
Frie, Alexander L; Dingle, Justin H; Ying, Samantha C; Bahreini, Roya
2017-08-01
The composition of ambient particulate matter (PM) and its sources were investigated at the Salton Sea, a shrinking saline lake in California. To investigate the influence of playa exposure on PM composition, PM samples were collected during two seasons and at two sites around the Salton Sea. To characterize source composition, soil samples were collected from local playa and desert surfaces. PM and soil samples were analyzed for 15 elements using mass spectrometry and X-ray diffraction. The contribution of sources to PM mass and composition was investigated using Al-referenced enrichment factors (EFs) and source factors resolved from positive matrix factorization (PMF). Playa soils were found to be significantly enriched in Ca, Na, and Se relative to desert soils. PMF analysis resolved the PM 10 data with four source factors, identified as Playa-like, Desert-like, Ca-rich, and Se. Playa-like and desert-like sources were estimated to contribute to a daily average of 8.9% and 45% of PM 10 mass, respectively. Additionally, playa sources were estimated to contribute to 38-68% of PM 10 Na. PM 10 Se concentrations showed strong seasonal variations, suggesting a seasonal cycle of Se volatilization and recondensation. These results support the importance of playas as a source of PM mass and a controlling factor of PM composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali
The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34 years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt{sup ser473} and p-Akt{sup thr308}) proteins in AEC of biomass users, especially in metaplasticmore » and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2–5 times more particulate pollutants (PM{sub 10} and PM{sub 2.5}), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway. -- Highlights: ► Carcinogenesis in airway cells was examined in biomass and LPG using women. ► Metaplasia and dysplasia of epithelial cells were more prevalent in biomass users. ► Change in airway cytology was associated with oxidative stress and Akt activation. ► Biomass users had greater exposure to respirable PM, B(a)P and benzene. ► Cooking with biomass increases cancer risk in the airways via Akt activation.« less
Allen, George; Rector, Lisa; Butcher, Thomas; ...
2017-07-31
The performance of Teflon-coated glass fiber filter media (Pallflex Emfab TX40) is evaluated for particulate matter (PM) sampling of residential wood heating devices in a dilution tunnel. Thirty samples of varying duration and PM loading and concentration were collected from an U.S. Environmental Protection Agency (EPA) Method 28 dilution tunnel using dual Method 5G sample trains with untreated glass fiber and Emfab filters. Filters were weighed soon after the end of sampling and again the next day after equilibration at 35% relative humidity (RH). PM concentrations from both types of filters agreed very well with 1-day equilibration, demonstrating that Emfabmore » filters are appropriate for use in measuring PM from residential wood burning appliances in a dilution tunnel and have performance equal to or better than the glass fiber filter media. Agreement between filter media without equilibration was erratic, with PM from glass fiber filter samples varying from slightly less than the Emfab samples to as much as 2.8 times higher. Some of the glass fiber filters lost substantial mass with equilibration, with the highest percent loss at lower filter mass loadings. Mass loss for Emfab samples was a small percentage of the mass and very consistent across the range of mass loadings. Taken together, these results may indicate water uptake on the glass fiber media that is readily removed with 1-day equilibration at moderate RH conditions. Implications: EPA regulations now allow the use of either glass fiber or Teflon filter media for wood appliance PM emission testing. Teflon filter media minimizes the potential for acid-gas PM artifacts on glass fiber filters; this is important as EPA moves toward the use of locally sourced cordwood for testing that may have higher sulfur content. This work demonstrates that the use of Teflon-coated glass fiber filters can give similar PM measurement results to glass fiber filters after 1 day of equilibration. With no equilibration, measured PM from glass fiber filters was usually higher than from Teflon-coated glass fiber filters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, George; Rector, Lisa; Butcher, Thomas
The performance of Teflon-coated glass fiber filter media (Pallflex Emfab TX40) is evaluated for particulate matter (PM) sampling of residential wood heating devices in a dilution tunnel. Thirty samples of varying duration and PM loading and concentration were collected from an U.S. Environmental Protection Agency (EPA) Method 28 dilution tunnel using dual Method 5G sample trains with untreated glass fiber and Emfab filters. Filters were weighed soon after the end of sampling and again the next day after equilibration at 35% relative humidity (RH). PM concentrations from both types of filters agreed very well with 1-day equilibration, demonstrating that Emfabmore » filters are appropriate for use in measuring PM from residential wood burning appliances in a dilution tunnel and have performance equal to or better than the glass fiber filter media. Agreement between filter media without equilibration was erratic, with PM from glass fiber filter samples varying from slightly less than the Emfab samples to as much as 2.8 times higher. Some of the glass fiber filters lost substantial mass with equilibration, with the highest percent loss at lower filter mass loadings. Mass loss for Emfab samples was a small percentage of the mass and very consistent across the range of mass loadings. Taken together, these results may indicate water uptake on the glass fiber media that is readily removed with 1-day equilibration at moderate RH conditions. Implications: EPA regulations now allow the use of either glass fiber or Teflon filter media for wood appliance PM emission testing. Teflon filter media minimizes the potential for acid-gas PM artifacts on glass fiber filters; this is important as EPA moves toward the use of locally sourced cordwood for testing that may have higher sulfur content. This work demonstrates that the use of Teflon-coated glass fiber filters can give similar PM measurement results to glass fiber filters after 1 day of equilibration. With no equilibration, measured PM from glass fiber filters was usually higher than from Teflon-coated glass fiber filters.« less
High Resolution Aerosol Data from MODIS Satellite for Urban Air Quality Studies
NASA Technical Reports Server (NTRS)
Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Tang, C.; Schwartz, J.; Koutrakis, P.
2013-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(sub 2.5) as measured by the 27 EPA ground monitoring stations was investigated. These results were also compared to conventional MODIS 10 km AOD retrievals (MOD04) for the same days and locations. The coefficients of determination for MOD04 and for MAIAC are R(exp 2) =0.45 and 0.50 respectively, suggested that AOD is a reasonably good proxy for PM(sub 2.5) ground concentrations. Finally, we studied the relationship between PM(sub 2.5) and AOD at the intra-urban scale (10 km) in Boston. The fine resolution results indicated spatial variability in particle concentration at a sub-10 kilometer scale. A local analysis for the Boston area showed that the AOD-PM(sub 2.5) relationship does not depend on relative humidity and air temperatures below approximately 7 C. The correlation improves for temperatures above 7 - 16 C. We found no dependence on the boundary layer height except when the former was in the range 250-500 m. Finally, we apply a mixed effects model approach to MAIAC aerosol optical depth (AOD) retrievals from MODIS to predict PM(sub 2.5) concentrations within the greater Boston area. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations (out-of-sample R(exp 2) of 0.86). Therefore, adjustment for the daily variability in the AOD-PM(sub 2.5) relationship provides a means for obtaining spatially-resolved PM(sub 2.5) concentrations.
Characteristics and source distribution of air pollution in winter in Qingdao, eastern China.
Li, Lingyu; Yan, Dongyun; Xu, Shaohui; Huang, Mingli; Wang, Xiaoxia; Xie, Shaodong
2017-05-01
To characterize air pollution and determine its source distribution in Qingdao, Shandong Province, we analyzed hourly national air quality monitoring network data of normal pollutants at nine sites from 1 November 2015 to 31 January 2016. The average hourly concentrations of particulate matter <2.5 μm (PM 2.5 ) and <10 μm (PM 10 ), SO 2 , NO 2 , 8-h O 3 , and CO in Qingdao were 83, 129, 39, 41, and 41 μg m -3 , and 1.243 mg m -3 , respectively. During the polluted period, 19-26 December 2015, 29 December 2015 to 4 January 2016, and 14-17 January 2016, the mean 24-h PM 2.5 concentration was 168 μg m -3 with maximum of 311 μg m -3 . PM 2.5 was the main pollutant to contribute to the pollution during the above time. Heavier pollution and higher contributions of secondary formation to PM 2.5 concentration were observed in December and January. Pollution pathways and source distribution were investigated using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and potential source contribution function (PSCF) and concentration weighted trajectory (CWT) analyses. A cluster from the west, originating in Shanxi, southern Hebei, and west Shandong Provinces, accounted for 44.1% of the total air masses, had a mean PM 2.5 concentration of 134.9 μg m -3 and 73.9% trajectories polluted. This area contributed the most to PM 2.5 and PM 10 levels, >160 and 300 μg m -3 , respectively. In addition, primary crustal aerosols from desert of Inner Mongolia, and coarse and fine marine aerosols from the Yellow Sea contributed to ambient PM. The ambient pollutant concentrations in Qingdao in winter could be attributed to local primary emissions (e.g., coal combustion, vehicular, domestic and industrial emissions), secondary formation, and long distance transmission of emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Yeqi; Deng, Tao; Li, Zhenning; Wang, Nan; Yin, Chanqin; Wang, Shiqiang; Fan, Shaojia
2018-09-01
This article uses the WRF-CMAQ model to systematically study the source apportionment of PM 2.5 under typical meteorological conditions in the dry season (November 2010) in the Pearl River Delta (PRD). According to the geographical location and the relative magnitude of pollutant emission, Guangdong Province is divided into eight subdomains for source apportionment study. The Brute-Force Method (BFM) method was implemented to simulate the contribution from different regions to the PM 2.5 pollution in the PRD. Results show that the industrial sources accounted for the largest proportion. For emission species, the total amount of NO x and VOC in Guangdong Province, and NH 3 and VOC in Hunan Province are relatively larger. In Guangdong Province, the emission of SO 2 , NO x and VOC in the PRD are relatively larger, and the NH 3 emissions are higher outside the PRD. In northerly-controlled episodes, model simulations demonstrate that local emissions are important for PM 2.5 pollution in Guangzhou and Foshan. Meanwhile, emissions from Dongguan and Huizhou (DH), and out of Guangdong Province (SW) are important contributors for PM 2.5 pollution in Guangzhou. For PM 2.5 pollution in Foshan, emissions in Guangzhou and DH are the major contributors. In addition, high contribution ratio from DH only occurs in severe pollution periods. In southerly-controlled episode, contribution from the southern PRD increases. Local emissions and emissions from Shenzhen, DH, Zhuhai-Jiangmen-Zhongshan (ZJZ) are the major contributors. Regional contribution to the chemical compositions of PM 2.5 indicates that the sources of chemical components are similar to those of PM 2.5 . In particular, SO 4 2- is mainly sourced from emissions out of Guangdong Province, while the NO 3- and NH 4+ are more linked to agricultural emissions. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Hai-Jun; Li, Qin; Guo, Yuming; Song, Jie-Yun; Wang, Zhiqiang; Ma, Jun
2017-10-01
The purpose of this study was to estimate the association between Chinese children's forced vital capacity (FVC) and particulate matter with aerodynamic diameter ≤10 μm (PM 10 ). The FVC data of 71,763 children aged 7 to 18 was collected from 2010 Chinese National Survey on Students' Construction and Health (CNSSCH). The local annual average concentration of PM 10 , relative humidity, ambient temperature, and other air pollutant data of 30 cities was collected from China Meteorological Administration and Ministry of Environment Protection of China. Then, we used generalized additive model (GAM) to estimate the association between children's FVC and PM 10 . The obvious geographic variation in FVC was found in children of 30 Chinese cities ranging from 1647 ml in Xining to 2571 ml in Beijing. The annual average concentration of PM 10 was also different, ranging from 40 μg/m 3 in Haikou to 155 μg/m 3 in Lanzhou. After adjusted individual characteristics, socioeconomic conditions, ambient temperature, relative humidity, and other air pollutants (e.g., NO 2 and SO 2 ) in the generalized additive model, we found that the increase of PM 10 was associated with decrease of FVC in Chinese children. A 10-μg/m 3 increase of PM 10 was associated with 1.33-ml decrease in FVC (95% confidence interval: -2.18 to -0.47). We also found a larger effect estimate of PM 10 on FVC in boys than that in girls. Consistent associations were found in both physically inactive and active children. The increase of PM 10 was associated with decrease of children's FVC. We should develop proper public health policy to protect children's respiratory health during growth and development in polluted areas.
NASA Astrophysics Data System (ADS)
Viana, M.; Querol, X.; Alastuey, A.; Gangoiti, G.; Menéndez, M.
Levels of PM observed at the air quality network from the Basque Country in 1996-2000 ranged from 16 μg PM 10/m 3 at regional background sites, to 35-40 μg TSP/m 3 (equivalent to 25-30 μg PM 10/m 3) at urban background sites, to 40-48 μg TSP/m 3 (30-40 μg PM 10/m 3) at roadside sites; to 50-64 μg TSP/m 3 (35-50 μg PM 10/m 3) at industrial and heavy traffic sites. The EU daily and annual PM 10 limit values for 2005 are not equivalent for the Basque Country, and consequently only the mean 1996-2000 PM levels from one station would exceed the 2005 annual limit value but most of them surpass n=35 exceedances of the daily limit value. The equivalent n to the 2005 annual limit value is around 80. Four major processes exert an influence on PM levels throughout the Basque territory: local and regional anthropogenic contributions, precipitation, African dust and European transport. PM at Llodio (an urban background site under industrial influence and mean PM 10, PM 2.5 and PM 1 levels for 2001 of 34, 25 and 21 μg/m 3) is mainly distributed in the fine mode: 74% of PM 10 is constituted by PM 2.5, and 64% of PM 2.5 presents a diameter <1 μm. The particle size distribution of PM varies seasonally with the fine fractions prevailing in summer (PM 2.5/PM 10=80-90%) and the coarser increasing in winter (PM 2.5/PM 10=60-70%). Meso- and synoptic scale processes affecting global PM levels in the Basque Country have been identified (mainly pollution episodes, African, Atlantic and EU transport). The results obtained allowed us to evaluate the impact of the different types of PM episodes on ambient PM levels and particle size fractions.
Whitlow, Thomas H; Hall, Andrew; Zhang, K Max; Anguita, Juan
2011-01-01
We monitored curbside airborne particulate matter (PM) concentrations and its proinflammatory capacity during 3 weekends when vehicle traffic was excluded from Park. Ave., New York City. Fine PM concentration peaked in the morning regardless of traffic while ultrafine PM was 58% lower during mornings without traffic. Ultrafine PM concentration varied linearly with traffic flow, while fine PM spiked sharply in response to random traffic events that were weakly correlated with the traffic signal cycle. Ultrafine PM concentrations decayed exponentially with distance from a cross street with unrestricted traffic flow, reaching background levels within 100 m of the source. IL-6 induction was typically highest on Friday afternoons but showed no clear relationship to the presence of traffic. The coarse fraction (>2.5 μm) had the greatest intrinsic inflammatory capacity, suggesting that coarse PM still warrants attention even as the research focus is shifting to nano-particles. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hirota, Jeremy A; Marchant, David J; Singhera, Gurpreet K; Moheimani, Fatemeh; Dorscheid, Delbert R; Carlsten, Christopher; Sin, Don; Knight, Darryl
2015-01-01
The airway epithelium represents the first line of defense against inhaled environmental insults including air pollution, allergens, and viruses. Epidemiological and experimental evidence has suggested a link between air pollution exposure and the symptoms associated with respiratory viral infections. We hypothesized that multiple insults integrated by the airway epithelium NLRP3 inflammasome would result in augmented IL-1β release and downstream cytokine production following respiratory virus exposure. We performed in vitro experiments with a human airway epithelial cell line (HBEC-6KT) that involved isolated or combination exposure to mechanical wounding, PM10, house dust mite, influenza A virus, and respiratory syncytial virus. We performed confocal microscopy to image the localization of PM10 within HBEC-6KT and ELISAs to measure soluble mediator production. Airway epithelial cells secrete IL-1β in a time-dependent fashion that is associated with internalization of PM10 particles. PM10 exposure primes human airway epithelial cells to subsequent models of cell damage and influenza A virus exposure. Prior PM10 exposure had no effect on IL-1β responses to RSV exposure. Finally we demonstrate that PM10-priming of human airway epithelial cell IL-1β and GM-CSF responses to influenza A exposure are sensitive to NLRP3 inflammasome inhibition. Our results suggest the NLRP3 inflammasome may contribute to exaggerated immune responses to influenza A virus following periods of poor air quality. Intervention strategies targeting the NLRP3 inflammasome in at risk individuals may restrict poor air quality priming of mucosal immune responses that result from subsequent viral exposures.
Long, Shicheng; Zhu, Yun; Jang, Carey; Lin, Che-Jen; Wang, Shuxiao; Zhao, Bin; Gao, Jian; Deng, Shuang; Xie, Junping; Qiu, Xuezhen
2016-03-01
This article describes the development and application of a streamlined air control and response modeling system with a novel response surface modeling-linear coupled fitting method and a new module to provide streamlined model data for PM2.5 attainment assessment in China. This method is capable of significantly reducing the dimensions required to establish a response surface model, as well as capturing more realistic response of PM2.5 to emission changes with a limited number of model simulations. The newly developed module establishes a data link between the system and the Software for Model Attainment Test-Community Edition (SMAT-CE), and has the ability to rapidly provide model responses to emission control scenarios for SMAT-CE using a simple interface. The performance of this streamlined system is demonstrated through a case study of the Yangtze River Delta (YRD) in China. Our results show that this system is capable of reproducing the Community Multi-Scale Air Quality (CMAQ) model simulation results with maximum mean normalized error<3.5%. It is also demonstrated that primary emissions make a major contribution to ambient levels of PM2.5 in January and August (e.g., more than 50% contributed by primary emissions in Shanghai), and Shanghai needs to have regional emission control both locally and in its neighboring provinces to meet China's annual PM2.5 National Ambient Air Quality Standard. The streamlined system provides a real-time control/response assessment to identify the contributions of major emission sources to ambient PM2.5 (and potentially O3 as well) and streamline air quality data for SMAT-CE to perform attainment assessments. Copyright © 2015. Published by Elsevier B.V.
Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly
Becker, Jordan T.
2017-01-01
ABSTRACT Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans. In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis-acting RNA regulatory elements: the 5′ packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM. IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency virus type 1 (HIV-1) virus particles at the plasma membrane (PM). Artificially tethering viral mRNAs encoding Gag capsid proteins (gag-pol mRNAs) to distinct non-PM subcellular locales, such as cytoplasmic vesicles or the actin cytoskeleton, markedly alters Gag subcellular distribution, relocates sites of assembly, and reduces net virus particle production. These observations support a model for native HIV-1 assembly wherein HIV-1 gag-pol mRNA localization helps to confine interactions between Gag, viral RNAs, and host determinants in order to ensure virion production at the right place and right time. Direct perturbation of HIV-1 mRNA subcellular localization may represent a novel antiviral strategy. PMID:28053097
Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly.
Becker, Jordan T; Sherer, Nathan M
2017-03-15
Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis -acting RNA regulatory elements: the 5' packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM. IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency virus type 1 (HIV-1) virus particles at the plasma membrane (PM). Artificially tethering viral mRNAs encoding Gag capsid proteins ( gag-pol mRNAs) to distinct non-PM subcellular locales, such as cytoplasmic vesicles or the actin cytoskeleton, markedly alters Gag subcellular distribution, relocates sites of assembly, and reduces net virus particle production. These observations support a model for native HIV-1 assembly wherein HIV-1 gag-pol mRNA localization helps to confine interactions between Gag, viral RNAs, and host determinants in order to ensure virion production at the right place and right time. Direct perturbation of HIV-1 mRNA subcellular localization may represent a novel antiviral strategy. Copyright © 2017 American Society for Microbiology.
Particulate matter oxidative potential from waste transfer station activity.
Godri, Krystal J; Duggan, Sean T; Fuller, Gary W; Baker, Tim; Green, David; Kelly, Frank J; Mudway, Ian S
2010-04-01
Adverse cardiorespiratory health is associated with exposure to ambient particulate matter (PM). The highest PM concentrations in London occur in proximity to waste transfer stations (WTS), sites that experience high numbers of dust-laden, heavy-duty diesel vehicles transporting industrial and household waste. Our goal was to quantify the contribution of WTS emissions to ambient PM mass concentrations and oxidative potential. PM with a diameter < 10 microm (PM10) samples were collected daily close to a WTS. PM10 mass concentrations measurements were source apportioned to estimate local versus background sources. PM oxidative potential was assessed using the extent of antioxidant depletion from a respiratory tract lining fluid model. Total trace metal and bioavailable iron concentrations were measured to determine their contribution to PM oxidative potential. Elevated diurnal PM10 mass concentrations were observed on all days with WTS activity (Monday-Saturday). Variable PM oxidative potential, bioavailable iron, and total metal concentrations were observed on these days. The contribution of WTS emissions to PM at the sampling site, as predicted by microscale wind direction measurements, was correlated with ascorbate (r = 0.80; p = 0.030) and glutathione depletion (r = 0.76; p = 0.046). Increased PM oxidative potential was associated with aluminum, lead, and iron content. PM arising from WTS activity has elevated trace metal concentrations and, as a consequence, increased oxidative potential. PM released by WTS activity should be considered a potential health risk to the nearby residential community.
Short-Term Exposure to Fine Particulate Matter and Risk of Ischemic Stroke.
Matsuo, Ryu; Michikawa, Takehiro; Ueda, Kayo; Ago, Tetsuro; Nitta, Hiroshi; Kitazono, Takanari; Kamouchi, Masahiro
2016-12-01
There is a strong association between ambient concentrations of particulate matter (PM) and cardiovascular disease. However, it remains unclear whether acute exposure to fine PM (PM 2.5 ) triggers ischemic stroke events and whether the timing of exposure is associated with stroke risk. We, therefore, examined the association between ambient PM 2.5 and occurrence of ischemic stroke. We analyzed data for 6885 ischemic stroke patients from a multicenter hospital-based stroke registry in Japan who were previously independent and hospitalized within 24 hours of stroke onset. Time of symptom onset was confirmed, and the association between PM (suspended PM and PM 2.5 ) and occurrence of ischemic stroke was analyzed by time-stratified case-crossover analysis. Ambient PM 2.5 and suspended PM at lag days 0 to 1 were associated with subsequent occurrence of ischemic stroke (ambient temperature-adjusted odds ratio [95% confidence interval] per 10 μg/m 3 : suspended PM, 1.02 [1.00-1.05]; PM 2.5 , 1.03 [1.00-1.06]). In contrast, ambient suspended PM and PM 2.5 at lag days 2 to 3 or 4 to 6 showed no significant association with stroke occurrence. The association between PM 2.5 at lag days 0 to 1 and ischemic stroke was maintained after adjusting for other air pollutants (nitrogen dioxide, photochemical oxidants, or sulfur dioxide) or influenza epidemics and was evident in the cold season. These findings suggest that short-term exposure to PM 2.5 within 1 day before onset is associated with the subsequent occurrence of ischemic stroke. © 2016 American Heart Association, Inc.
17 CFR 230.110 - Business hours of the Commission.
Code of Federal Regulations, 2013 CFR
2013-04-01
... open each day, except Saturdays, Sundays, and Federal holidays, from 9 a.m. to 5:30 p.m., Eastern... federal holidays, from 8 a.m. to 5:30 p.m., Eastern Standard Time or Eastern Daylight Saving Time... Commission each day, except Saturdays, Sundays and federal holidays, from 5:30 p.m. to 10 p.m., Eastern...
17 CFR 230.110 - Business hours of the Commission.
Code of Federal Regulations, 2014 CFR
2014-04-01
... open each day, except Saturdays, Sundays, and Federal holidays, from 9 a.m. to 5:30 p.m., Eastern... federal holidays, from 8 a.m. to 5:30 p.m., Eastern Standard Time or Eastern Daylight Saving Time... Commission each day, except Saturdays, Sundays and federal holidays, from 5:30 p.m. to 10 p.m., Eastern...
17 CFR 230.110 - Business hours of the Commission.
Code of Federal Regulations, 2012 CFR
2012-04-01
... open each day, except Saturdays, Sundays, and Federal holidays, from 9 a.m. to 5:30 p.m., Eastern... federal holidays, from 8 a.m. to 5:30 p.m., Eastern Standard Time or Eastern Daylight Saving Time... Commission each day, except Saturdays, Sundays and federal holidays, from 5:30 p.m. to 10 p.m., Eastern...
17 CFR 230.110 - Business hours of the Commission.
Code of Federal Regulations, 2011 CFR
2011-04-01
... open each day, except Saturdays, Sundays, and Federal holidays, from 9 a.m. to 5:30 p.m., Eastern... federal holidays, from 8 a.m. to 5:30 p.m., Eastern Standard Time or Eastern Daylight Saving Time... Commission each day, except Saturdays, Sundays and federal holidays, from 5:30 p.m. to 10 p.m., Eastern...
Concentrations, sources and geochemistry of airborne particulate matter at a major European airport.
Amato, Fulvio; Moreno, Teresa; Pandolfi, Marco; Querol, Xavier; Alastuey, Andrés; Delgado, Ana; Pedrero, Manuel; Cots, Nuria
2010-04-01
Monitoring of aerosol particle concentrations (PM(10), PM(2.5), PM(1)) and chemical analysis (PM(10)) was undertaken at a major European airport (El Prat, Barcelona) for a whole month during autumn 2007. Concentrations of airborne PM at the airport were close to those at road traffic hotspots in the nearby Barcelona city, with means measuring 48 microg PM(10)/m(3), 21 microg PM(2.5)/m(3) and 17 microg PM(1)/m(3). Meteorological controls on PM at El Prat are identified as cleansing daytime sea breezes with abundant coarse salt particles, alternating with nocturnal land-sourced winds which channel air polluted by industry and traffic (PM(1)/PM(10) ratios > 0.5) SE down the Llobregat Valley. Chemical analyses of the PM(10) samples show that crustal PM is dominant (38% of PM(10)), followed by total carbon (OC + EC, 25%), secondary inorganic aerosols (SIA, 20%), and sea salt (6%). Local construction work for a new airport terminal was an important contributor to PM(10) crustal levels. Source apportionment modelling PCA-MLRA identifies five factors: industrial/traffic, crustal, sea salt, SIA, and K(+) likely derived from agricultural biomass burning. Whereas most of the atmospheric contamination concerning ambient air PM(10) levels at El Prat is not attributable directly to aircraft movement, levels of carbon are unusually high (especially organic carbon), as are metals possibly sourced from tyre detritus/smoke in runway dust (Ba, Zn, Mo) and from brake dust in ambient PM(10) (Cu, Sb), especially when the airport is at its most busy. We identify microflakes of aluminous alloys in ambient PM(10) filters derived from corroded fuselage and wings as an unequivocal and highly distinctive tracer for aircraft movement.
Wang, Fang; Wang, Lin; Chen, Yuming
2017-08-31
In order to investigate the time-dependent cross-correlations of fine particulate (PM2.5) series among neighboring cities in Northern China, in this paper, we propose a new cross-correlation coefficient, the time-lagged q-L dependent height crosscorrelation coefficient (denoted by p q (τ, L)), which incorporates the time-lag factor and the fluctuation amplitude information into the analogous height cross-correlation analysis coefficient. Numerical tests are performed to illustrate that the newly proposed coefficient ρ q (τ, L) can be used to detect cross-correlations between two series with time lags and to identify different range of fluctuations at which two series possess cross-correlations. Applying the new coefficient to analyze the time-dependent cross-correlations of PM2.5 series between Beijing and the three neighboring cities of Tianjin, Zhangjiakou, and Baoding, we find that time lags between the PM2.5 series with larger fluctuations are longer than those between PM2.5 series withsmaller fluctuations. Our analysis also shows that cross-correlations between the PM2.5 series of two neighboring cities are significant and the time lags between two PM2.5 series of neighboring cities are significantly non-zero. These findings providenew scientific support on the view that air pollution in neighboring cities can affect one another not simultaneously but with a time lag.
Chen, Dan; Deng, Yingtian; Zhao, Jie
2012-01-15
Auxin plays key roles in flower induction, embryogenesis, seed formation and seedling development, but little is known about whether auxin regulates the development of ovaries and ovules before pollination. In the present report, we measured the content of free indole-3-acetic (IAA) in ovaries of Nicotiana tabacum L., and localized free IAA, auxin binding protein 1 (ABP1) and plasma membrane (PM) H⁺-ATPase in the ovaries and ovules. The level of free IAA in the developmental ovaries increased gradually from the stages of ovular primordium to the functional megaspore, but slightly decreased when the embryo sacs formed. Immunoenzyme labeling clearly showed that both IAA and ABP1 were distributed in the ovules, the edge of the placenta, vascular tissues and the ovary wall, while PM H⁺-ATPase was mainly localized in the ovules. By using immunogold labeling, the subcellular distributions of IAA, ABP1 and PM H⁺-ATPase in the ovules were also shown. The results suggest that IAA, ABP1 and PM H⁺-ATPase may play roles in the ovary and ovule initiation, formation and differentiation. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.
Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS
NASA Astrophysics Data System (ADS)
Brines, Mariola; Dall'Osto, Manuel; Amato, Fulvio; Cruz Minguillón, María; Karanasiou, Angeliki; Alastuey, Andrés; Querol, Xavier
2016-06-01
During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies) PM10 samples at 12-hour resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain). A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS) site and the Urban Background (UB) site were located at street level, whereas the Torre Mapfre (TM) and the Torre Collserola (TC) sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements, allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (positive matrix factorisation, PMF) was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1) vehicle exhaust and wear (2-9 µg m-3, 10-27 % of PM10 mass on average), (2) road dust (2-4 µg m-3, 8-12 %), (3) mineral dust (5 µg m-3, 13-26 %), (4) aged marine (3-5 µg m-3, 13-20 %), (5) heavy oil (0.4-0.6 µg m-3, 2 %), (6) industrial (1 µg m-3, 3-5 %), (7) sulfate (3-4 µg m-3, 11-17 %) and (8) nitrate (4-6 µg m-3, 17-21 %). Three aerosol sources were found to be enhanced at the ground levels (confined within the urban ground levels of the city) relative to the upper levels: (1) vehicle exhaust and wear (2.8 higher), (2) road dust (1.8 higher) and (3) local urban industries/crafts workshops (1.6 higher). Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factor concentrations. The mineral dust and aged marine factors were found to be a mixture of natural and anthropogenic components and were thus further investigated. Overall, three types of dust were identified to affect the urban study area: road dust (35 % of the mineral dust load, 2-4 µg m-3 on average), Saharan dust (28 %, 2.1 µg m-3) and background mineral dust (37 %, 2.8 µg m-3). Our results evidence that although the city of Barcelona broadly shows a homogeneous distribution of PM10 pollution sources, non-exhaust traffic, exhaust traffic and local urban industrial activities are major coarse PM10 aerosol sources.
Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS
NASA Astrophysics Data System (ADS)
Brines, M.; Dall'Osto, M.; Amato, F.; Minguillón, M. C.; Karanasiou, A.; Alastuey, A.; Querol, X.
2015-11-01
During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies) PM10 samples at twelve hours resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain). A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS) site and the Urban Background (UB) site were located at street level, whereas the Torre Mapfre (TM) and the Torre Collserola (TC) sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (Positive Matrix Factorisation, PMF) was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1) vehicle exhaust and wear (2-9 μg m-3, 10-27 % of PM10 mass on average), (2) road dust (2-4 μg m-3, 8-12 %), (3) mineral dust (5 μg m-3, 13-26 %), (4) aged marine (3-5 μg m-3, 13-20 %), (5) heavy oil (0.4-0.6 μg m-3, 2 %), (6) industrial (1 μg m-3, 3-5 %), (7) sulphate (3-4 μg m-3, 11-17 %) and (8) nitrate (4-6 μg m-3, 17-21 %). Three aerosol sources were found enhanced at the ground levels (confined within the urban ground levels of the city) relative to the upper levels: (1) vehicle exhaust and wear (2.8 higher), (2) road dust (1.8 higher) and (3) local urban industries/crafts workshops (1.6 higher). Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factors concentrations. The mineral dust and aged marine factors were found to be a mixture of natural and anthropogenic components and were thus further investigated. Overall, three types of dust were identified to affect the urban study area: road dust (35 % of the mineral dust load, 2-4 μg m-3 on average), Saharan dust (28 %, 2.1 μg m-3) and background mineral dust (37 %, 2.8 μg m-3). Our results evidence that although the city of Barcelona broadly shows a homogeneous distribution of PM10 pollution sources, non-exhaust traffic, exhaust traffic and local urban industrial activities are major coarse PM10 aerosol sources.
The Polyp Manager: a new tool for optimal polyp documentation during colonoscopy. A pilot study.
van de Meeberg, Maartje M.; Ouwendijk, Rob J. Th.; ter Borg, Pieter C. J.; van den Hazel, Sven J.; van de Meeberg, Paul C.
2016-01-01
Background and study aims: Conventional reporting of polyps is often incomplete. We tested the Polyp Manager (PM), a new software application permitting the endoscopist to document polyps in real time during colonoscopy. We studied completeness of polyp descriptions, user-friendliness and the potential time benefit. Patients and methods: In two Dutch hospitals colonoscopies were performed with PM (as a touchscreen endoscopist-operated device or nurse-operated desktop application). Completeness of polyp descriptions was compared to a historical group with conventional reporting (CRH). Prospectively, we compared user-friendliness (VAS-scores) and time benefit of the endoscopist-operated PM to conventional reporting (CR) in one hospital. Duration of colonoscopy and time needed to report polyps and provide a pathology request were measured. Provided that using PM does not prolong colonoscopy, the sum of the latter two was considered as a potential time-benefit if the PM were fully integrated into a digital reporting system. Results: A total of 144 regular colonoscopies were included in the study. Both groups were comparable with regard to patient characteristics, duration of colonoscopy and number of polyps. Using the PM did reduce incomplete documentation of the following items in CRH-reports: location (96 % vs 82 %, P = 0.01), size (95 % vs 89 %, P = 0.03), aspect (71 % vs 36 %, P < 0.001) and completeness of removal (61 % vs 37 %, P < 0.001). In the prospective study 23 PM-colonoscopies where compared to 28 CR-colonoscopies. VAS-scores were significantly higher in the endoscopist-operated PM group. Time to report was 01:27 ± 01:43 minutes (median + interquartile range) in the entire group (PM as CR), reflecting potential time benefit per colonoscopy. Conclusions: The PM is a user-friendly tool that seems to improve completeness of polyp reporting. Once integrated with digital reporting systems, it is probably time saving as well. PMID:27227117
75 FR 9888 - Combined Notice of Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
.../2010. Accession Number: 20100205-0205. Comment Date: 5 p.m. Eastern Time on Tuesday, February 16, 2010...: 5 p.m. Eastern Time on Tuesday, February 16, 2010. Docket Numbers: RP10-364-000. Applicants... Number: 20100205-0207. Comment Date: 5 p.m. Eastern Time on Wednesday, February 17, 2010. Docket Numbers...
Assessment and analysis of noise levels in and around Ib river coalfield, Orissa, India.
Mohapatra, Haraprasad; Goswami, Shreerup
2012-05-01
Heavy earth moving machineries, different capacities of dumpers and loaders, blasting and drilling make the mining environment noisy. A study was carried out to assess the noise level in different opencast projects in and around Belpahar and Brajarajnagar areas of Ib river coalfield. Noise assessment was carried out in various residential, commercial and industrial places. The noise levels, especially L(eq) values of different wheel loaders, dumpers, shovel and crusher units were also assessed and were more than permissible limit (90dB) in some of their operating conditions. Sound ressure level measurements while drilling into coal and overburden at Lakhanpur opencast project yielded noise levels (L(eq)) of 81.33 to 96.2 dB. Thus, these L(eq) values of drilling machines in most of the operating conditions were above permissible limit. The average noise intensities (6 a.m.-10 p.m.: 51.6-60.875dB and 10 p.m.-6 a.m.: 42.6-49.8dB) and L(eq) values (6 a.m.-10 p.m.: 50.9-67.0dB and 10 p.m.-6 a.m.: 40.8-53.3dB) during both day and night time of the residential areas around the Ib river coalfield were in close proximity or beyond the permissible limit. The L(eq) values at some of the commercial and industrial places were beyond (6 a.m.-10 p.m.: 61.6-88.3 dB and 10 p.m.-6 a.m.: 55.4-64.8dB) permissible limit. However, in most of the cases, the L(max) noise values were more (6 a.m.-10 p.m.: 68.5-91.4 dB and 10 p.m.-6 a.m.: 69.3-76.4dB) than the permissible limit. Analysis of variance was also computed for heavy earth moving machineries in different operating conditions and also for different residential, commercial and industrial places to infer the level of significance. The difference of noise intensity produced by different wheel loaders at Lakhanpur and Lilari opencast projects, drilling machines at Lakhanpur opencast project, 50 tons capacity dumpers at various conditions of Ib river coalfield within the same operating condition was significant at both 5% and 1% levels of significance. Similarly, the variance of estimated noise level in residential places during day time and commercial and industrial places during day and night time was significant at both 5% and 1% levels of significance. Moreover, a preliminary survey adopting questionnaire method amongst the mine workers and local inhabitants was also carried out to evaluate their perception about the mining related noise.
Particulate matter in Southwestern Africa cities of Cotonou (Benin) and Abidjan (Côte d'Ivoire).
NASA Astrophysics Data System (ADS)
Leon, J. F.; Djossou, J.; Liousse, C.; Akpo, A.; Veronique, Y.; Gardrat, E.; Bedou, M.; Bodjrenou, M.
2017-12-01
Air quality observations in the major cities of South-Western Africa still remains few with regards to economic growth and the large increase in the urban population. The main cities lying on the Gulf of Guinea experiences low air quality because of the contribution of local emissions and advection of pollutants from the African continent. We present in this paper new observations acquired from February 2015 to March 2017 in the major cities of Cotonou (Bénin) and Abidjan (Côte d'Ivoire). The PM2.5 mass concentration and carbon composition (elemental and organic carbon) were recorded on a weekly basis at 4 different locations representative of major emission sources, i.e. traffic emission, domestic fire and waste burning. Additionally, the aerosol optical depth (AOD) was also recorded daily inside and outside the cities. We observe large similarly between both cities. The mean PM2.5 concentration of around 30 µg.m-3 is coherent with previous studies for sub-Saharan western Africa and is 3 times higher than the concentrations recommended by the World Health Organization. The sampled collected at the domestic fire site shows a large pollution by smoking activity with an average concentration of 145 µg.m-3, nearly 5 times the traffic background. The seasonality of PM2.5 is affected by the contribution of desert dust and biomass burning emissions that is clearly observed from the AOD time series. We observe that dust events contribute sporadically to large amount of PM2.5, above 100 µg.m-3, during the dry seasons. Moreover, the biomass burning activity is also maximum before and during the dry season and contributes to increase the PM2.5 concentration. Low PM2.5 observed during the minor dry season can be explain by an enhancement of the atmospheric dispersion due to the increase in the wind intensity and the absence of biomass burning activity. We observe a significant difference in the carbonaceous aerosols between the traffic site in Abidjan and Cotonou. The mean OC/EC ratio is on average 4.0 for Cotonou and 2.0 for Abidjan, clearly indicating the larger contribution emission by the 2-wheel motorcycles in Cotonou compared to Abidjan
76 FR 22033 - National Maritime Week Tugboat Races, Seattle, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... Maritime Week Tugboat Races, Seattle, WA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of... Maritime Week Tugboat Races in Elliott Bay, WA from 12 p.m. through 4:30 p.m. on May 14, 2011. This action... will enforce the Special Local Regulation for the annual National Maritime Week Tugboat Races, Seattle...
Radiation Therapy for Control of Soft-Tissue Sarcomas Resected With Positive Margins
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLaney, Thomas F.; Kepka, Lucyna; Goldberg, Saveli I.
Purpose: Positive margins (PM) remain after surgery in some soft-tissue sarcoma (STS) patients. We investigated the efficacy of radiation therapy (RT) in STS patients with PM. Methods and Materials: A retrospective chart review was performed on 154 patients with STS at various anatomic sites with PM, defined as tumor on ink, who underwent RT with curative intent between 1970 and 2001. Local control (LC), disease-free survival (DFS), and overall survival (OS) rates were evaluated by univariate (log-rank) and multivariate analysis of prognostic and treatment factors. Results: At 5 years, actuarial LC, DFS, and OS rates were: 76%, 46.7%, and 65.2%,more » respectively. LC was highest with extremity lesions (p < 0.01), radiation dose >64 Gy (p < 0.05), microscopically (vs. grossly visible) positive margin (p = 0.03), and superficial lesions (p = 0.05). Patients receiving >64 Gy had higher 5-year LC, DFS, and OS rates of 85%, 52.1%, and 67.8% vs. 66.1%, 41.8%, and 62.9% if {<=}64 Gy, p < 0.04. OS was worse in patients with G2/G3 tumors with local failure (LF), p < 0.001. Other known prognostic factors, including grade, stage, size, and age (>50), also significantly influenced OS. By multivariate analysis, the best predictors of LC were site (extremity vs. other), p < 0.01 and dose (>64 vs. {<=}64 Gy), p < 0.05; the best predictors for OS were size, p < 0.001, gross vs. microscopic PM, p < 0.05, and LF, p < 0.01. Conclusion: Local control is achieved in most PM STS patients undergoing RT. Doses >64 Gy, superficial location, and extremity site are associated with improved LC. OS is worse in patients with tumors with lesions >5 cm, grossly positive margins, and after local failure.« less
Mars Polar Cap During Transition Phase Instrument Checkout
NASA Technical Reports Server (NTRS)
2006-01-01
During the last week of September and the first week or so of October 2006, scientific instruments on NASA's Mars Reconnaissance Orbiter were turned on to acquire test information during the transition phase leading up to full science operations. The mission's primary science phase will begin the first week of November 2006, following superior conjunction. (Superior conjunction is where a planet goes behind the sun as viewed from Earth.) Since it is very difficult to communicate with a spacecraft when it is close to the sun as seen from Earth, this checkout of the instruments was crucial to being ready for the primary science phase of the mission. Throughout the transition-phase testing, the Mars Color Imager (MARCI) acquired terminator (transition between nighttime and daytime) to terminator swaths of color images on every dayside orbit, as the spacecraft moved northward in its orbit. The south polar region was deep in winter shadow, but the north polar region was illuminated the entire Martian day. During the primary mission, such swaths will be assembled into global maps that portray the state of the Martian atmosphere -- its weather -- as seen every day and at every place at about 3 p.m. local solar time. After the transition phase completed, most of the instruments were turned off, but the Mars Climate Sounder and MARCI have been left on. Their data will be recorded and played back to Earth following the communications blackout associated with conjunction. Combined with wide-angle image mosaics taken by the Mars Orbiter Camera on NASA's Mars Global Surveyor at 2 p.m. local solar time, the MARCI maps will be used to track motions of clouds. This image is a composite mosaic of four polar views of Mars, taken at midnight, 6 a.m., noon, and 6 p.m. local Martian time. This is possible because during summer the sun is always shining in the polar region. It shows the mostly water-ice perennial cap (white area), sitting atop the north polar layered materials (light tan immediately adjacent to the ice), and the dark circumpolar dunes. This view shows the region poleward of about 72 degrees north latitude. The data were acquired at about 900 meters (about 3,000 feet) per pixel. Three channels are shown here, centered on wavelengths of 425 nanometers, 550 nanometers and 600 nanometers.Wu, Jun; Ren, Cizao; Delfino, Ralph J; Chung, Judith; Wilhelm, Michelle; Ritz, Beate
2009-11-01
Preeclampsia is a major complication of pregnancy that can lead to substantial maternal and perinatal morbidity, mortality, and preterm birth. Increasing evidence suggests that air pollution adversely affects pregnancy outcomes. Yet few studies have examined how local traffic-generated emissions affect preeclampsia in addition to preterm birth. We examined effects of residential exposure to local traffic-generated air pollution on preeclampsia and preterm delivery (PTD). We identified 81,186 singleton birth records from four hospitals (1997-2006) in Los Angeles and Orange Counties, California (USA). We used a line-source dispersion model (CALINE4) to estimate individual exposure to local traffic-generated nitrogen oxides (NO(x)) and particulate matter < 2.5 mum in aerodynamic diameter (PM(2.5)) across the entire pregnancy. We used logistic regression to estimate effects of air pollution exposures on preeclampsia, PTD (gestational age < 37 weeks), moderate PTD (MPTD; gestational age < 35 weeks), and very PTD (VPTD; gestational age < 30 weeks). We observed elevated risks for preeclampsia and preterm birth from maternal exposure to local traffic-generated NO(x) and PM(2.5). The risk of preeclampsia increased 33% [odds ratio (OR) = 1.33; 95% confidence interval (CI), 1.18-1.49] and 42% (OR = 1.42; 95% CI, 1.26-1.59) for the highest NO(x) and PM(2.5) exposure quartiles, respectively. The risk of VPTD increased 128% (OR = 2.28; 95% CI, 2.15-2.42) and 81% (OR = 1.81; 95% CI, 1.71-1.92) for women in the highest NO(x) and PM(2.5) exposure quartiles, respectively. Exposure to local traffic-generated air pollution during pregnancy increases the risk of preeclampsia and preterm birth in Southern California women. These results provide further evidence that air pollution is associated with adverse reproductive outcomes.
NASA Astrophysics Data System (ADS)
Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.
2013-02-01
PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.
de Kok, Theo M C M; Driece, Hermen A L; Hogervorst, Janneke G F; Briedé, Jacob J
2006-01-01
Particulate air pollution (PM) is an important environmental health risk factor for many different diseases. This is indicated by numerous epidemiological studies on associations between PM exposure and occurrence of acute respiratory infections, lung cancer and chronic respiratory and cardiovascular diseases. The biological mechanisms behind these associations are not fully understood, but the results of in vitro toxicological research have shown that PM induces several types of adverse cellular effects, including cytotoxicity, mutagenicity, DNA damage and stimulation of proinflammatory cytokine production. Because traffic is an important source of PM emission, it seems obvious that traffic intensity has an important impact on both quantitative and qualitative aspects of ambient PM, including its chemical, physical and toxicological characteristics. In this review, the results are summarized of the most recent studies investigating physical and chemical characteristics of ambient and traffic-related PM in relation to its toxicological activity. This evaluation shows that, in general, the smaller PM size fractions (
Zhang, Hao; Yuan, Haiou; Liu, Xiaohui; Yu, Junyi; Jiao, Yongli
2018-06-15
North China Plain area (NCP) is one of the most densely populated and heavily polluted regions in the world. In the last five years, frequently happened fine particulate matter (PM 2.5 ) serious pollution events were one of the top environmental concerns in China. As PM 2.5 concentrations are highly influenced by synoptic flow patterns and local meteorological conditions, a two-stage hierarchical clustering method based on dynamic principal component analysis (DPCA) and standard k-means clustering algorithm was employed to classify synoptic wind fields into 6 patterns over the NCP area using the data of 5 PM 2.5 seasons (Sept. 15th-Apr. 15th) from 2013 to 2017. Among the six identified synoptic patterns, pattern of uniform pressure field (U) and that of zonal high pressure (Z H ) accounted for 78.21%, 65.55%, 63.56%, 57.11%, 59.13% and 58.27% studied heavy smog pollution events in Beijing, Tianjin, Tangshan, Baoding, Shijiazhuang and Xingtai city. The two particular patterns were associated with uniform pressure field and sparsely latitudinal isobar in 850 hPa level, respectively. They were also characterized by high relative humidity, low temperature, low-speed northerly wind in Tianjin and Tangshan, and southerly wind in the other cities. Under the continuous control of pattern Z H , the values of 24 h-average PM 2.5 were found to increase at a rate of 31.78 μg/m 3 per day. To evaluate the contribution of meteorological factors and precursors to PM 2.5 levels, linear mixed-effects models (LMMs) were applied to establish relations among 24 h-average PM 2.5 concentrations, concentrations of main precursors, local meteorological factors and synoptic patterns. Results show that the variations of precursors, local meteorological factors and synoptic flow patterns can explain 51.67%, 19.15% and 14.01% changes of the 24 h-average PM 2.5 concentrations, respectively. This study illustrates that dense precursor emissions are still the main cause for heavy haze pollution events, although meteorological conditions play almost equal roles sometimes. Copyright © 2018 Elsevier B.V. All rights reserved.
33 CFR 100.114 - Fireworks displays within the First Coast Guard District.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Harbor Fireworks Extravaganza.Sponsor: Boys Harbor Inc. Time: 9 p.m. to 10 p.m. Location: Three Mile... Island, Babylon, NY. Massachusetts: 7.6 Friday or Saturday prior to July 4th Name: Hingham 4th of July...: Summer Music, Inc. Time: 8 p.m. to 10 p.m. Location: Off of Harkness Park, Long Island Sound, Waterford...
Spatial and temporal variations in traffic-related particulate matter at New York City high schools
NASA Astrophysics Data System (ADS)
Patel, Molini M.; Chillrud, Steven N.; Correa, Juan C.; Feinberg, Marian; Hazi, Yair; Deepti, K. C.; Prakash, Swati; Ross, James M.; Levy, Diane; Kinney, Patrick L.
Relatively little is known about exposures to traffic-related particulate matter at schools located in dense urban areas. The purpose of this study was to examine the influences of diesel traffic proximity and intensity on ambient concentrations of fine particulate matter (PM 2.5) and black carbon (BC), an indicator of diesel exhaust particles, at New York City (NYC) high schools. Outdoor PM 2.5 and BC were monitored continuously for 4-6 weeks at each of 3 NYC schools and 1 suburban school located 40 km upwind of the city. Traffic count data were obtained using an automated traffic counter or video camera. BC concentrations were 2-3 fold higher at urban schools compared with the suburban school, and among the 3 urban schools, BC concentrations were higher at schools located adjacent to highways. PM 2.5 concentrations were significantly higher at urban schools than at the suburban school, but concentrations did not vary significantly among urban schools. Both hourly average counts of trucks and buses and meteorological factors such as wind direction, wind speed, and humidity were significantly associated with hourly average ambient BC and PM 2.5 concentrations in multivariate regression models. An increase of 443 trucks/buses per hour was associated with a 0.62 μg/m 3 increase in hourly average BC at an NYC school located adjacent to a major interstate highway. Car traffic counts were not associated with BC. The results suggest that local diesel vehicle traffic may be important sources of airborne fine particles in dense urban areas and consequently may contribute to local variations in PM 2.5 concentrations. In urban areas with higher levels of diesel traffic, local, neighborhood-scale monitoring of pollutants such as BC, which compared to PM 2.5, is a more specific indicator of diesel exhaust particles, may more accurately represent population exposures.
Open air mineral treatment operations and ambient air quality: assessment and source apportionment.
Escudero, M; Alastuey, A; Moreno, T; Querol, X; Pérez, P
2012-11-01
We present a methodology for evaluating and quantifying the impact of inhalable mineral dust resuspension close to a potentially important industrial point source, in this case an open air plant producing sand, flux and kaolin in the Capuchinos district of Alcañiz (Teruel, NE Spain). PM(10) levels at Capuchinos were initially high (42 μg m(-3) as the annual average with 91 exceedances of the EU daily limit value during 2007) but subsequently decreased (26 μg m(-3) with 16 exceedances in 2010) due to a reduced demand for minerals from the ceramic industry and construction sector during the first stages of the economic crisis. Back trajectory and local wind pattern analyses revealed only limited contribution from exotic PM sources such as African dust intrusions whereas there was clearly a strong link with the mineral stockpiles of the local industry. This link was reinforced by chemical and mineral speciation and source apportionment analysis which showed a dominance of mineral matter (sum of CO(3)(2-), SiO(2), Al(2)O(3), Ca, Fe, K, Mg, P, and Ti: mostly aluminosilicates) which in 2007 contributed 76% of the PM(10) mass (44 μg m(-3) on average). The contribution from Secondary Inorganic Aerosols (SIA, sum of SO(4)(2-), NO(3)(-) and NH(4)(+)) reached 8.4 μg m(-3), accounting for 14% of the PM(10) mass, similar to the amount of calcareous road dust estimated to be present (8 μg m(-3); 13%). Organic matter and elemental carbon contributed 5.3 μg m(-3) (9%) whereas marine aerosol (Na + Cl) levels were minor with an average concentration of 0.4 μg m(-3) (1% of the PM(10) mass). Finally, chemical and mineralogical analysis of stockpile samples and comparison with filter samples confirmed the local industry to be the major source of ambient PM(10) in the area.
Wang, Qing; Liu, Min; Yu, Yingpeng; Li, Ye
2016-11-01
Polycyclic aromatic hydrocarbons (PAHs) were studied in 230 daily fine particulate matter (PM2.5) samples collected in four seasons at urban and suburban sites of Shanghai, China. This study focused on the emission sources of PAHs and its dynamic results under different weather conditions and pollution levels and also emphasized on the spatial sources of PM2.5 and PAHs at a regional level. Annual concentrations of PM2.5 and 16 EPA priority PAHs were 53 μg/m 3 and 6.9 ng/m 3 , respectively, with highest levels in winter. Positive matrix factorization (PMF) modeling identified four sources of PAHs: coal combustion, traffic, volatilization and biomass combustion, and coking, with contributions of 34.9%, 27.5%, 21.1% and 16.5%, respectively. The contribution of traffic, a local-indicative source, increased from 17.4% to 28.7% when wind speed changed from >2m/s to <2m/s, and increased from 18.3% to 31.3% when daily PAH concentrations changed from below to above the annual mean values. This indicated that local sources may have larger contributions under stagnant weather when poorer dispersion conditions and lower wind speed led to the accumulation of local-emitted pollutants. The trajectory clustering and potential source contribution function (PSCF) and concentration weighted trajectory (CWT) models showed clearly that air parcels moved from west had highest concentrations of PM2.5, total PAHs and high molecular weight (HMW) PAHs. While small differences were found among all five clusters in low molecular weight (LMW) PAHs. Sector analyses determined that regional transport source contributed 39.8% to annual PM2.5 and 52.5% to PAHs, mainly from western regions and varying with seasons. This work may make contribution to a better understanding and control of the increasingly severe air pollution in China as well as other developing Asian countries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming
2011-01-01
Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005–2007. PMID:21776223
Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming
2011-06-01
Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.
Shen, Guo F; Yuan, Si Y; Xie, Yu N; Xia, Si J; Li, Li; Yao, Yu K; Qiao, Yue Z; Zhang, Jie; Zhao, Qiu Y; Ding, Ai J; Li, Bin; Wu, Hai S
2014-01-01
The deteriorating air quality in eastern China including the Yangtze River Delta is attracting growing public concern. In this study, we measured the ambient PM10 and fine PM2.5 in the mega-city, Nanjing at four different times. The 24-h average PM2.5 and PM10 mass concentrations were 0.033-0.234 and 0.042-0.328 mg/m(3), respectively. The daily PM10 and PM2.5 concentrations were 2.9 (2.7-3.2, at 95% confidence interval) and 4.2 (3.8-4.6) times the WHO air quality guidelines of 0.025 mg/m(3) for PM2.5 and 0.050 mg/m(3) for PM10, respectively, which indicated serious air pollution in the city. There was no obvious weekend effect. The highest PM10 pollution occurred in the wintertime, with higher PM2.5 loadings in the winter and summer. PM2.5 was correlated significantly with PM10 and the average mass fraction of PM2.5 in PM10 was about 72.5%. This fraction varied during different sampling periods, with the lowest PM2.5 fraction in the spring but minor differences among the other three seasons.
Organic Components and Elemental Carbon in Soils and Ambient Particles near Phoenix, AZ
NASA Astrophysics Data System (ADS)
Fraser, M. P.; Jia, Y.; Clements, A.
2008-12-01
In the desert southwest, fugitive dust emissions contribute significantly to ambient aerosol concentrations. Wind erosion from the arid land is a primary contributor to ambient particulate matter (PM) concentrations but, in regions including Central Arizona, desert lands have been converted for agriculture use and thus agriculture processes constitute another contributor. As the metropolitan Phoenix region expands into these agricultural lands, urban sources and construction also contributes to the ambient PM load. In an effort to identify and access relative contribution of these and other major PM sources in the region, a series of ambient PM samples and soil samples were collected near Higley, AZ, a suburb of Phoenix which has seen rapid urbanization onto agricultural lands between January and May 2008. The soil samples collected were resuspended and samples of resuspended dust were collected to represent particles smaller than 2.5 microns and 10 microns in aerodynamic diameter (PM2.5 and PM10 respectively). The size segregated soil and ambient PM samples were analyzed for bulk mass, elemental and organic carbon content, and a number of specific compounds including ions, metals, alkanes, organic acids, polycyclic aromatic hydrocarbons, and saccharides. The saccharide contribution to soil organic carbon has been studied to elucidate key factors in the soil carbon balance and markers have been developed for tracing fungal metabolites, plant growth and budding and organic matter decay. Using organic markers, the contribution of various sources to PM10 and PM2.5 levels have been determined by positive matrix factorization (PMF) of the ambient aerosol marker concentrations quantified from PM samples. Subsequently, samples of local soil from native and agricultural fields and local roadways wers size- segregated and analyzed in an effort to create a source profile for the dust in the area. A chemical mass balance model has been used to compare with the PMF results where sampled and resuspended agricultural soil, native soil and road dusts are used to characterize direct emissions of these sources to ambient fine and coarse particulate matter.
Liu, WeiJian; Xu, YunSong; Liu, WenXin; Liu, QingYang; Yu, ShuangYu; Liu, Yang; Wang, Xin; Tao, Shu
2018-05-01
Emissions of air pollutants from primary and secondary sources in China are considerably higher than those in developed countries, and exposure to air pollution is main risk of public health. Identifying specific particulate matter (PM) compositions and sources are essential for policy makers to propose effective control measures for pollutant emissions. Ambient PM 2.5 samples covered a whole year were collected from three coastal cities of the Bohai Sea. Oxidative potential (OP) was selected as the indicator to characterize associated PM compositions and sources most responsible for adverse impacts on human health. Positive matrix factorization (PMF) and multiple linear regression (MLR) were employed to estimate correlations of PM 2.5 sources with OP. The volume- and mass-based dithiothreitol (DTT v and DTT m ) activities of PM 2.5 were significantly higher in local winter or autumn (p < 0.01). Spatial and seasonal variations in DTT v and DTT m were much larger than mass concentrations of PM 2.5 , indicated specific chemical components are responsible for PM 2.5 derived OP. Strong correlations (r > 0.700, p < 0.01) were found between DTT activity and water-soluble organic carbon (WSOC) and some transition metals. Using PMF, source fractions of PM 2.5 were resolved as secondary source, traffic source, biomass burning, sea spray and urban dust, industry, coal combustion, and mineral dust. Further quantified by MLR, coal combustion, biomass burning, secondary sources, industry, and traffic source were dominant contributors to the water-soluble DTT v activity. Our results also suggested large differences in seasonal contributions of different sources to DTT v variability. A higher contribution of DTT v was derived from coal combustion during the local heating period. Secondary sources exhibited a greater fraction of DTT v in summer, when there was stronger solar radiation. Traffic sources exhibited a prevailing contribution in summer, and industry contributed larger proportions in spring and winter. Future abatement priority of air pollution should reduce the sources contributing to OP of PM 2.5 . Copyright © 2018 Elsevier Ltd. All rights reserved.
Meteorological controls on atmospheric particulate pollution during hazard reduction burns
NASA Astrophysics Data System (ADS)
Di Virgilio, Giovanni; Hart, Melissa Anne; Jiang, Ningbo
2018-05-01
Internationally, severe wildfires are an escalating problem likely to worsen given projected changes to climate. Hazard reduction burns (HRBs) are used to suppress wildfire occurrences, but they generate considerable emissions of atmospheric fine particulate matter, which depend upon prevailing atmospheric conditions, and can degrade air quality. Our objectives are to improve understanding of the relationships between meteorological conditions and air quality during HRBs in Sydney, Australia. We identify the primary meteorological covariates linked to high PM2.5 pollution (particulates < 2.5 µm in diameter) and quantify differences in their behaviours between HRB days when PM2.5 remained low versus HRB days when PM2.5 was high. Generalised additive mixed models were applied to continuous meteorological and PM2.5 observations for 2011-2016 at four sites across Sydney. The results show that planetary boundary layer height (PBLH) and total cloud cover were the most consistent predictors of elevated PM2.5 during HRBs. During HRB days with low pollution, the PBLH between 00:00 and 07:00 LT (local time) was 100-200 m higher than days with high pollution. The PBLH was similar during 10:00-17:00 LT for both low and high pollution days, but higher after 18:00 LT for HRB days with low pollution. Cloud cover, temperature and wind speed reflected the above pattern, e.g. mean temperatures and wind speeds were 2 °C cooler and 0.5 m s-1 lower during mornings and evenings of HRB days when air quality was poor. These cooler, more stable morning and evening conditions coincide with nocturnal westerly cold air drainage flows in Sydney, which are associated with reduced mixing height and vertical dispersion, leading to the build-up of PM2.5. These findings indicate that air pollution impacts may be reduced by altering the timing of HRBs by conducting them later in the morning (by a matter of hours). Our findings support location-specific forecasts of the air quality impacts of HRBs in Sydney and similar regions elsewhere.
Wang, Yiqun; Van Oort, Masja M; Yao, Minghui; Van der Horst, Dick J; Rodenburg, Kees W
2011-09-01
Chromium picolinate (CrPic) has been indicated to activate glucose transporter 4 (GLUT4) trafficking to the plasma membrane (PM) to enhance glucose uptake in 3T3-L1 adipocytes. In skeletal and heart muscle cells, insulin directs the intracellular trafficking of the fatty acid translocase/CD36 to induce the uptake of cellular long-chain fatty acid (LCFA). The current study describes the effects of CrPic and insulin on the translocation of CD36 from intracellular storage pools to the PM in 3T3-L1 adipocytes in comparison with that of GLUT4. Immunofluorescence microscopy and immunoblotting revealed that both CD36 and GLUT4 were expressed and primarily located intracellularly in 3T3-L1 adipocytes. Upon insulin or CrPic stimulation, PM expression of CD36 increased in a similar manner as that for GLUT4; the CrPic-stimulated PM expression was less strong than that of insulin. The increase in PM localization for these two proteins by insulin paralleled LCFA ([1-(14)C]palmitate) or [(3)H]deoxyglucose uptake in 3T3-L1 adipocytes. The induction of the PM expression of GLUT4, but not CD36, or substrate uptake by insulin and CrPic appears to be additive in adipocytes. Furthermore, wortmannin completely inhibited the insulin-stimulated translocation of GLUT4 or CD36 and prevented the increased uptake of glucose or LCFA in these cells. Taken together, for the first time, these findings suggest that both insulin and CrPic induce CD36 translocation to the PM in 3T3-L1 adipocytes and that their translocation-inducing effects are not additive. The signaling pathway inducing the translocations is different, apparently resulting in a differential activity of CD36.
The Development of Time-Based Prospective Memory in Childhood: The Role of Working Memory Updating
ERIC Educational Resources Information Center
Voigt, Babett; Mahy, Caitlin E. V.; Ellis, Judi; Schnitzspahn, Katharina; Krause, Ivonne; Altgassen, Mareike; Kliegel, Matthias
2014-01-01
This large-scale study examined the development of time-based prospective memory (PM) across childhood and the roles that working memory updating and time monitoring play in driving age effects in PM performance. One hundred and ninety-seven children aged 5 to 14 years completed a time-based PM task where working memory updating load was…
Atmospheric Particulate Matter Pollution during the 2008 Beijing Olympics
WANG, WENTAO; PRIMBS, TOBY; TAO, SHU; ZHU, TONG; SIMONICH, STACI L. MASSEY
2009-01-01
Size fractionated particulate matter (PM) samples (including PM2.5 and PM10) were collected at Peking University in Northwestern Beijing, China for a 2 week period prior to the Olympics, during the 2 week period of the Olympics, and for a 4 week period following the 2008 Olympics, during both source control and non-source control period. PM10 concentrations in this study were high correlated with, but a factor of 1.3 times higher than, the Beijing Environmental Protection Bureau's PM10 concentrations at near-by sites because of differences in the measurement methods used. The mean PM2.5 and PM10 concentrations were statistically different, and lower by 31 and 35%, during the Olympic period compared to the non-Olympic period. However, the PM concentrations were not statistically different between the source control and non-source control periods. While meteorological parameters (air masses from the south and precipitation) accounted for 40% of the total variation in PM10 concentration, source control accounted for 16%, suggesting that meteorology accounted for more of the variation in PM concentration than source control measures. The PM10 concentrations in Beijing during the Olympic period were 2.9, 3.5, and 1.9 times higher than those in Atlanta, Sydney and Athens. In addition, the PM2.5 and PM10 concentrations during the Olympic period exceeded the WHO 24-hour guideline 100% and 81% of the time, respectively. Finally, the PM10 concentrations in October, November, and December 2008 were reduced by 9% to 27% compared to the same months in 2007, suggesting that the Olympic source control efforts (and possibly a down turn in the economy) have resulted in lower PM10 concentrations in Beijing. PMID:19708359
Gallagher, Denis T; Hadjiefthyvoulou, Florentia; Fisk, John E; Montgomery, Catharine; Robinson, Sarita J; Judge, Jeannie
2014-01-01
Neuroimaging evidence suggests that ecstasy-related reductions in SERT densities relate more closely to the number of tablets typically consumed per session rather than estimated total lifetime use. To better understand the basis of drug related deficits in prospective memory (p.m.) we explored the association between p.m. and average long-term typical dose and long-term frequency of use. Study 1: Sixty-five ecstasy/polydrug users and 85 nonecstasy users completed an event-based, a short-term and a long-term time-based p.m. task. Study 2: Study 1 data were merged with outcomes on the same p.m. measures from a previous study creating a combined sample of 103 ecstasy/polydrug users, 38 cannabis-only users, and 65 nonusers of illicit drugs. Study 1: Ecstasy/polydrug users had significant impairments on all p.m. outcomes compared with nonecstasy users. Study 2: Ecstasy/polydrug users were impaired in event-based p.m. compared with both other groups and in long-term time-based p.m. compared with nonillicit drug users. Both drug using groups did worse on the short-term time-based p.m. task compared with nonusers. Higher long-term average typical dose of ecstasy was associated with poorer performance on the event and short-term time-based p.m. tasks and accounted for unique variance in the two p.m. measures over and above the variance associated with cannabis and cocaine use. The typical ecstasy dose consumed in a single session is an important predictor of p.m. impairments with higher doses reflecting increasing tolerance giving rise to greater p.m. impairment.
75 FR 44783 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
... Date: 5 p.m. Eastern Time on Tuesday, August 10, 2010. Take notice that the Commission received the... Number: 20100721-5125. Comment Date: 5 p.m. Eastern Time on Wednesday, August 11, 2010. Docket Numbers.... Accession Number: 20100721-5093. Comment Date: 5 p.m. Eastern Time on Wednesday, August 11, 2010. Docket...
75 FR 47296 - Combined Notice of Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
...-5058. Comment Date: 5 p.m. Eastern Time on Tuesday, August 10, 2010. Docket Numbers: RP10-1013-000.... Accession Number: 20100729-5084. Comment Date: 5 p.m. Eastern Time on Tuesday, August 10, 2010. Docket...: 5 p.m. Eastern Time on Wednesday, August 11, 2010. Docket Numbers: RP10-1016-000. Applicants...
75 FR 47588 - Combined Notice of Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
...-5058. Comment Date: 5 p.m. Eastern Time on Tuesday, August 10, 2010. Docket Numbers: RP10-1013-000.... Accession Number: 20100729-5084. Comment Date: 5 p.m. Eastern Time on Tuesday, August 10, 2010. Docket...: 5 p.m. Eastern Time on Wednesday, August 11, 2010. Docket Numbers: RP10-1016-000. Applicants...
76 FR 11773 - Combined Notice of Filings # 1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
.... Accession Number: 20110223-5140. Comment Date: 5 p.m. Eastern Time on Wednesday, March 16, 2011. Docket... Date: 02/23/2011. Accession Number: 20110223-5148. Comment Date: 5 p.m. Eastern Time on Wednesday.../11/2011. Filed Date: 02/23/2011. Accession Number: 20110223-5126. Comment Date: 5 p.m. Eastern Time...
76 FR 45245 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-28
.../2011. Accession Number: 20110715-5141. Comment Date: 5 p.m. Eastern Time on Monday, August 01, 2011.... Comment Date: 5 p.m. Eastern Time on Thursday, August 11, 2011. Docket Numbers: ER11-4093-000. Applicants... Date: 5 p.m. Eastern Time on Friday, August 12, 2011. Docket Numbers: ER11-4094-000. Applicants...
76 FR 17854 - Combined Notice of Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-31
.... Filed Date: 03/24/2011. Accession Number: 20110324-5047. Comment Date: 5 p.m. Eastern Time on Tuesday.... Filed Date: 03/24/2011. Accession Number: 20110324-5080. Comment Date: 5 p.m. Eastern Time on Tuesday...: 5 p.m. Eastern Time on Tuesday, April 05, 2011. Docket Numbers: RP11-1894-000. Applicants: Gulf...
75 FR 28801 - Combined Notice of Filings No. 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-24
.... Accession Number: 20100430-0257. Comment Date: 5 p.m. Eastern Time on Wednesday, May 12, 2010. Docket...: 05/05/2010. Accession Number: 20100505-5042. Comment Date: 5 p.m. Eastern Time on Monday, May 17... Date: 05/05/2010. Accession Number: 20100505-0212. Comment Date: 5 p.m. Eastern Time on Monday, May 17...
Smith-Spark, James H; Zięcik, Adam P; Sterling, Christopher
2017-03-01
Prospective memory (PM; memory for delayed intentions) would seem to be impaired in dyslexia but evidence is currently limited in scope. There is a need, therefore, firstly, to explore PM under controlled conditions using a broader range of PM tasks than used previously and, secondly, to determine whether objectively measured and self-reported PM problems can be found in the same individuals with dyslexia. The responses of 30 adults with dyslexia were compared with those of 30 IQ-matched adults without dyslexia on a self-report and a clinical measure of PM. Dyslexia-related deficits were shown on the clinical measure overall and, more particularly, when PM responses had to be made to cues based on time rather than environmental events. Adults with dyslexia were also more likely to forget to carry out an intention under naturalistic conditions 24h later. On the self-report questionnaire, the group with dyslexia reported significantly more frequent problems with PM overall, despite using more techniques to aid their memory. In particular, problems were identified with longer-term PM tasks and PM which had to be self-initiated. Dyslexia-related PM deficits were found under both laboratory and everyday conditions in the same participants; the first time that this has been demonstrated. These findings support previous experimental research which has highlighted dyslexia-related deficits in PM when the enacting of intentions is based on time cues and/or has to be self-initiated rather than being in prompted by environmental events. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gleason, Jessie A; Fagliano, Jerald A
2015-10-01
Asthma is one of the most common chronic diseases affecting children. This study assesses the associations of ozone and fine particulate matter (PM2.5) with pediatric emergency department visits in the urban environment of Newark, NJ. Two study designs were utilized and evaluated for usability. We obtained daily emergency department visits among children aged 3-17 years with a primary diagnosis of asthma during April to September for 2004-2007. Both a time-stratified case-crossover study design with bi-directional control sampling and a time-series study design were utilized. Lagged effects (1-d through 5-d lag, 3-d average, and 5-d average) of ozone and PM2.5 were explored and a dose-response analysis comparing the bottom 5th percentile of 3-d average lag ozone with each 5 percentile increase was performed. Associations of interquartile range increase in same-day ozone were similar between the time-series and case-crossover study designs (RR = 1.08, 95% CI 1.04-1.12) and (OR = 1.10, 95% CI 1.06-1.14), respectively. Similar associations were seen for 1-day lag and 3-day average lag ozone levels. PM2.5 was not associated with the outcome in either study design. Dose-response assessment indicated a statistically significant and increasing association around 50-55 ppb consistent for both study designs. Ozone was statistically positively associated with pediatric asthma ED visits in Newark, NJ. Our results were generally comparable across the time-series and case-crossover study designs, indicating both are useful to assess local air pollution impacts.
The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems
NASA Astrophysics Data System (ADS)
Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2017-12-01
The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions resulting from incorporating fire smoke emissions into the NAQFC from a recently updated newer version of USFS BlueSky system. This study will show how new approaches has improved the PM2.5 predictions at both nearby and downstream areas from fire sources. Furthermore, Environment and Climate Change Canada (ECCC) fire emissions data are being tested.
The modifying effect of the building envelope on population exposure to PM2.5 from outdoor sources.
Taylor, J; Shrubsole, C; Davies, M; Biddulph, P; Das, P; Hamilton, I; Vardoulakis, S; Mavrogianni, A; Jones, B; Oikonomou, E
2014-12-01
A number of studies have estimated population exposure to PM2.5 by examining modeled or measured outdoor PM2.5 levels. However, few have taken into account the mediating effects of building characteristics on the ingress of PM2.5 from outdoor sources and its impact on population exposure in the indoor domestic environment. This study describes how building simulation can be used to determine the indoor concentration of outdoor-sourced pollution for different housing typologies and how the results can be mapped using building stock models and Geographical Information Systems software to demonstrate the modifying effect of dwellings on occupant exposure to PM2.5 across London. Building archetypes broadly representative of those in the Greater London Authority were simulated for pollution infiltration using EnergyPlus. In addition, the influence of occupant behavior on indoor levels of PM2.5 from outdoor sources was examined using a temperature-dependent window-opening scenario. Results demonstrate a range of I/O ratios of PM2.5 , with detached and semi-detached dwellings most vulnerable to high levels of infiltration. When the results are mapped, central London shows lower I/O ratios of PM2.5 compared with outer London, an apparent inversion of exposure most likely caused by the prevalence of flats rather than detached or semi-detached properties. Population exposure to air pollution is typically evaluated using the outdoor concentration of pollutants and does not account for the fact that people in London spend over 80% of their time indoors. In this article, building simulation is used to model the infiltration of outdoor PM2.5 into the domestic indoor environment for dwellings in a London building stock model, and the results mapped. The results show the variation in relative vulnerability of dwellings to pollution infiltration, as well as an estimated absolute indoor concentration across the Greater London Authority (GLA) scaled by local outdoor levels. The practical application of this work is a better understanding of the modifying effect of the building geometry and envelope design on pollution exposure, and how the London building stock may alter exposure. The results will be used to inform population exposure to PM2.5 in future environmental epidemiological studies. © 2014 The Authors. Indoor Air Published by John Wiley & Sons Ltd.
Jiang, Ruoting; Bell, Michelle L
2008-07-01
Biomass fuel is the primary source of domestic fuel in much of rural China. Previous studies have not characterized particle exposure through time-activity diaries or personal monitoring in mainland China. In this study we characterized indoor and personal particle exposure in six households in northeastern China (three urban, three rural) and explored differences by location, cooking status, activity, and fuel type. Rural homes used biomass. Urban homes used a combination of electricity and natural gas. Stationary monitors measured hourly indoor particulate matter (PM) with an aerodynamic diameter < or = 10 microm (PM10) for rural and urban kitchens, urban sitting rooms, and outdoors. Personal monitors for PM with an aerodynamic diameter < or = 2.5 microm (PM2.5) were employed for 10 participants. Time-activity patterns in 30-min intervals were recorded by researchers for each participant. Stationary monitoring results indicate that rural kitchen PM10 levels are three times higher than those in urban kitchens during cooking. PM10 was 6.1 times higher during cooking periods than during noncooking periods for rural kitchens. Personal PM2.5 levels for rural cooks were 2.8-3.6 times higher than for all other participant categories. The highest PM2.5 exposures occurred during cooking periods for urban and rural cooks. However, rural cooks had 5.4 times higher PM2.5 levels during cooking than did urban cooks. Rural cooks spent 2.5 times more hours per day cooking than did their urban counterparts. These findings indicate that biomass burning for cooking contributes substantially to indoor particulate levels and that this exposure is particularly elevated for cooks. Second-by-second personal PM2.5 exposures revealed differences in exposures by population group and strong temporal heterogeneity that would be obscured by aggregate metrics.
Li, Ting-Yuan; Deng, Xue-Jiao; Fan, Shao-Jia; Wu, Dui; Li, Fei; Deng, Tao; Tan, Hao-Bo; Jiang, De-Hai
2012-09-01
Based on the monitoring data of NO2, O3, SO2, PM, visibility, regional air quality index (RAQI) and the atmospheric transport and diffusion data from Nov. 4, 2010 to Dec. 10, 2010 in Guangzhou area, the variations of air quality and meteorological conditions during the Guangzhou Asian Games were analyzed. It was found that, during the Asian Games, the air quality was better than the air quality before or after the Asian Games. The visibility was greater than the visibility before or after the Asian Games, while the concentrations of PM1 and PM2.5 were lower. The correlation coefficient between visibility and the concentrations of PM1, PM2.5 indicated anti-correlation relationships. Daily and hourly concentrations of NO2 and SO2 met the primary ambient air quality standards, whereas the daily concentration of PM10 and hourly concentration of O3 met the secondary ambient air quality standards. Pollutants had been well controlled during the Asian Games. The concentration of SO2 in Guangzhou was influenced by local sources and long distance transmission, while the concentration of NO2 was significantly influenced by local sources. The emissions of NO2, SO2 and PM10 surrounding Guangzhou had a trend to affect the concentrations in Guangzhou, but the situation of O3 was opposite, the relatively high concentration of O3 in Guangzhou had tendency to be transported to the surrounding areas. The pollution meteorology conditions in the period of Asian Games were better than the conditions before or after the Asian Games. The decrease in the concentrations during the Asian Games did not only benefit from the emission control by the government, but also from the good meteorological conditions.
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhao, Chuanfeng
2016-04-01
Clouds play essential roles in the Earth's energy and water cycle, and Cloud Fraction (CF) is one of the most important cloud parameters. The CF from Moderate Resolution Imaging Spectroradiometer (MODIS) has been widely used, whereas the time representation of these instantaneous CF values is not clear. In this study, we evaluate MODIS-derived CF by using continuous, day-and-night radar/lidar CF from the Atmospheric Radiation Measurement (ARM) program Active Remote Sensing of CLouds (ARSCL) product and the total sky cover (TSC) day-time CF datasets. Inter-comparisons between MODIS and surface CFs for time period from 2000 to 2011 are performed for three climate regimes as represented by the ARM sites of Southern Great Plains (SGP), Manus, Papua New Guinea (PNG) and North Slope of Alaska (NSA). We first choose both the TSC and ARSCL CFs averaged over 1 hour around the two passing time of satellite, which are around 10:30 AM and 1:30 PM local time. Then two kind of analyses have been done. One is the spatial variation analysis and the other is temporal variation analysis. For the spatial variation analysis, we compare the 1-hour averaged cloud fractions from TSC and ARSCL around 10:30 AM and 1:30 PM with the instantaneous cloud fractions from MODIS but with different spatial resolution. By obtaining the RMS errors and ratio of average values of CFs for these inter-comparisons, the optimal CF-matching spatial resolutions for MODIS regarding to TSC and ARSCL are obtained which are both 30 km radius of circle. We also find that the optimal matching spatial resolution increases when the ground observation average time increases. For the temporal analysis, we first analyze the diurnal variation of the cloud fraction based on the surface CFs from TSC and ARSCL from which we can see the daily representation of cloud fraction observed at 10:30 AM and 1:30 PM. Then we make a statistical comparison of daily and monthly cloud fraction between using all time observation and using the 1-hour averaged observations at both 10:30 AM and 1:30 PM. Comparison results will be shown in our paper. It shows a high correlation coefficient of 0.95 (0.93) for observations from TSC (ARSCL). The ratios of daily (monthly) averaged cloud fraction between using all time and using the time satellite passes are 0.87(0.92) and 0.86(0.97) for TSC and ARSCL, respectively. This suggests that considerable errors could be introduced while using the cloud fraction at two fixed time points (10:30 AM and 1:30 PM) to represent the daily cloud fraction.
Near-road enhancement and solubility of fine and coarse ...
Communities near major roadways are disproportionately affected by traffic-related air pollution which can contribute to adverse health outcomes. The specific role of particulate matter (PM) from traffic sources is not fully understood due to complex emissions processes and physical/chemical properties of PM in the near-road environment. To investigate the spatial profile and water solubility of elemental PM species near a major roadway, filter-based measurements of fine (PM2.5) and coarse (PM10-2.5) PM were simultaneously collected at multiple distances (10 m, 100 m, and 300 m) from Interstate I-96 in Detroit, Michigan during September–November 2010. Filters were extracted in water, followed by a hot acid extraction, and analyzed by magnetic sector field high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) to quantify water-soluble and acid-soluble trace elements for each PM size fraction. PM2.5 and PM10-2.5 species measured in the near-road samples included elements associated with traffic activity, local industrial sources, and regional pollution. Metals indicative of brake wear (Ba, Cu) were dramatically enriched near the roadway during downwind conditions (factor of 5 concentration increase), with the largest increase within 100 m of the roadway. Moderate near-roadway increases were observed for crustal elements and other traffic-related PM (Fe, Ca), and the lowest increases observed for regional PM species (S). Water solubility varied
CARDIOVASCULAR MORTALITY IN PHOENIX: PM1 IS A BETTER INDICATOR THAN PM2.5.
EPA has obtained a 3-year database of particulate matter (PM) in Phoenix, AZ from 1995 - 1997 that includes elemental analysis by XRF of daily PM2.5. During this time period PM1 and PM2.5 TEOMs were run simultaneously for about 7 months during two periods of the year. Regressio...
Real-time chemical characterization of atmospheric particulate matter in China: A review
NASA Astrophysics Data System (ADS)
Li, Yong Jie; Sun, Yele; Zhang, Qi; Li, Xue; Li, Mei; Zhou, Zhen; Chan, Chak K.
2017-06-01
Atmospheric particulate matter (PM) pollution has become a major health threat accompanying the rapid economic development in China. For decades, filter-based offline chemical analyses have been the most widely adopted means to investigate PM and have provided much information for understanding this type of pollution in China. However, offline analyses have low time resolutions and the chemical information thus obtained fail to reflect the dynamic nature of the sources and the rapid processes leading to the severe PM pollution in China. In recent years, advances in real-time PM chemical characterization have created a new paradigm for PM studies in China. In this review, we summarize those advances, focusing on the most widely used mass spectrometric and ion chromatographic techniques. We describe the findings from those studies in terms of spatiotemporal variabilities, degree of neutralization and oxygenation, source apportionment, secondary formation, as well as collocated measurements of the chemical and physical (hygroscopic and optical) properties of PM. We also highlight the new insights gained from those findings and suggest future directions for further advancing our understanding of PM pollution in China via real-time chemical characterization.
NASA Astrophysics Data System (ADS)
Amil, Norhaniza; Talib Latif, Mohd; Firoz Khan, Md; Mohamad, Maznorizan
2016-04-01
This study investigates the fine particulate matter (PM2.5) variability in the Klang Valley urban-industrial environment. In total, 94 daily PM2.5 samples were collected during a 1-year campaign from August 2011 to July 2012. This is the first paper on PM2.5 mass, chemical composition and sources in the tropical environment of Southeast Asia, covering all four seasons (distinguished by the wind flow patterns) including haze events. The samples were analysed for various inorganic components and black carbon (BC). The chemical compositions were statistically analysed and the temporal aerosol pattern (seasonal) was characterised using descriptive analysis, correlation matrices, enrichment factor (EF), stoichiometric analysis and chemical mass closure (CMC). For source apportionment purposes, a combination of positive matrix factorisation (PMF) and multi-linear regression (MLR) was employed. Further, meteorological-gaseous parameters were incorporated into each analysis for improved assessment. In addition, secondary data of total suspended particulate (TSP) and coarse particulate matter (PM10) sampled at the same location and time with this study (collected by Malaysian Meteorological Department) were used for PM ratio assessment. The results showed that PM2.5 mass averaged at 28 ± 18 µg m-3, 2.8-fold higher than the World Health Organisation (WHO) annual guideline. On a daily basis, the PM2.5 mass ranged between 6 and 118 µg m-3 with the daily WHO guideline exceeded 43 % of the time. The north-east (NE) monsoon was the only season with less than 50 % sample exceedance of the daily WHO guideline. On an annual scale, PM2.5 mass correlated positively with temperature (T) and wind speed (WS) but negatively with relative humidity (RH). With the exception of NOx, the gases analysed (CO, NO2, NO and SO2) were found to significantly influence the PM2.5 mass. Seasonal variability unexpectedly showed that rainfall, WS and wind direction (WD) did not significantly correlate with PM2.5 mass. Further analysis on the PM2.5 / PM10, PM2.5 / TSP and PM10 / TSP ratios reveal that meteorological parameters only greatly influenced the coarse particles (particles with an aerodynamic diameter of greater than 2.5 µm) and less so the fine particles at the site. Chemical composition showed that both primary and secondary pollutants of PM2.5 are equally important, albeit with seasonal variability. The CMC components identified were in the decreasing order of (mass contribution) BC > secondary inorganic aerosols (SIA) > dust > trace elements > sea salt > K+. The EF analysis distinguished two groups of trace elements: those with anthropogenic sources (Pb, Se, Zn, Cd, As, Bi, Ba, Cu, Rb, V and Ni) and those with a crustal source (Sr, Mn, Co and Li). The five identified factors resulting from PMF 5.0 were (1) combustion of engine oil, (2) mineral dust, (3) mixed SIA and biomass burning, (4) mixed traffic and industrial and (5) sea salt. Each of these sources had an annual mean contribution of 17, 14, 42, 10 and 17 % respectively. The dominance of each identified source largely varied with changing season and a few factors were in agreement with the CMC, EF and stoichiometric analysis, accordingly. In relation to meteorological-gaseous parameters, PM2.5 sources were influenced by different parameters during different seasons. In addition, two air pollution episodes (HAZE) revealed the influence of local and/or regional sources. Overall, our study clearly suggests that the chemical constituents and sources of PM2.5 were greatly influenced and characterised by meteorological and gaseous parameters which vary greatly with season.
76 FR 47218 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
... Panel, Member Conflicts: Liver Pathobiology and Pharmacology. Date: August 30, 2011. Time: 1 p.m. to 4 p... Emphasis Panel, Member Conflict: Cancer Prevention. Date: September 8, 2011. Time: 1 p.m. to 4 p.m. Agenda...
76 FR 38404 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-30
...; Shared Instrumentation: Grant Program Ultrasound Imaging S10. Date: July 19, 2011. Time: 1 p.m. to 5 p.m... Trials for Imaging and Image-Guided Interventions; Exploratory Grants. Date: July 14, 2011. Time: 1 p.m...
He, Junyu; Christakos, George
2018-05-07
Long- and short-term exposure to PM 2.5 is of great concern in China due to its adverse population health effects. Characteristic of the severity of the situation in China is that in the Jing-Jin-Ji region considered in this work a total of 2725 excess deaths have been attributed to short-term PM 2.5 exposure during the period January 10-31, 2013. Technically, the processing of large space-time PM 2.5 datasets and the mapping of the space-time distribution of PM 2.5 concentrations often constitute high-cost projects. To address this situation, we propose a synthetic modeling framework based on the integration of (a) the Bayesian maximum entropy method that assimilates auxiliary information from land-use regression and artificial neural network (ANN) model outputs based on PM 2.5 monitoring, satellite remote sensing data, land use and geographical records, with (b) a space-time projection technique that transforms the PM 2.5 concentration values from the original spatiotemporal domain onto a spatial domain that moves along the direction of the PM 2.5 velocity spread. An interesting methodological feature of the synthetic approach is that its components (methods or models) are complementary, i.e., one component can compensate for the occasional limitations of another component. Insight is gained in terms of a PM 2.5 case study covering the severe haze Jing-Jin-Ji region during October 1-31, 2015. The proposed synthetic approach explicitly accounted for physical space-time dependencies of the PM 2.5 distribution. Moreover, the assimilation of auxiliary information and the dimensionality reduction achieved by the synthetic approach produced rather impressive results: It generated PM 2.5 concentration maps with low estimation uncertainty (even at counties and villages far away from the monitoring stations, whereas during the haze periods the uncertainty reduction was over 50% compared to standard PM 2.5 mapping techniques); and it also proved to be computationally very efficient (the reduction in computational time was over 20% compared to standard mapping techniques). Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litao Wang; Jiming Hao; Kebin He
In the last 10 yr, Beijing has made a great effort to improve its air quality. However, it is still suffering from regional coarse particulate matter (PM10) pollution that could be a challenge to the promise of clean air during the 2008 Olympics. To provide scientific guidance on regional air pollution control, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) air quality modeling system was used to investigate the contributions of emission sources outside the Beijing area to pollution levels in Beijing. The contributions to the PM10 concentrations in Beijing were assessed formore » the following sources: power plants, industry, domestic sources, transportation, agriculture, and biomass open burning. In January, it is estimated that on average 22% of the PM10 concentrations can be attributed to outside sources, of which domestic and industrial sources contributed 37 and 31%, respectively. In August, as much as 40% of the PM10 concentrations came from regional sources, of which approximately 41% came from industry and 31% from power plants. However, the synchronous analysis of the hourly concentrations, regional contributions, and wind vectors indicates that in the heaviest pollution periods the local emission sources play a more important role. The implications are that long-term control strategies should be based on regional-scale collaborations, and that emission abatement of local sources may be more effective in lowering the PM10 concentration levels on the heavy pollution days. Better air quality can be attained during the Olympics by placing effective emission controls on the local sources in Beijing and by controlling emissions from industry and power plants in the surrounding regions. 44 refs., 6 figs., 3 tabs.« less
Assessment of indoor PM2.5 in different residential environments
NASA Astrophysics Data System (ADS)
Yassin, Mohamed F.; AlThaqeb, Bothaina E. Y.; Al-Mutiri, Eman A. E.
2012-09-01
The indoor air quality (IAQ) as assessed by PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 μm) was measured at indoor settings in various residential houses which were located in different local environments across Kuwait. The indoor house settings included kitchen, living room, and bedrooms. Samples were collected from houses over 24 h. PM2.5 was estimated using a Dust-Trak personal sampler. Results were analyzed and compared with the US Environmental Protection Agencies (EPA) and World Health Organization (WHO) standards and guidelines. The results demonstrated that kitchens have the highest PM2.5 concentration probably due to cooking activities; the bedroom has the lowest PM2.5 concentration. The study shows that Kuwait indoor residential pollution is among the worst in comparison with other countries.
NASA Astrophysics Data System (ADS)
Sagnotti, Leonardo; Winkler, Aldo
2012-11-01
The magnetic properties of traffic-related airborne particulate matter (PM) in the city of Rome, Italy, have been previously analyzed and interpreted as suitable proxies to discriminate between different vehicular sources. In this study, we carried out a new set of measurements and analyses specifically devoted to the identification and evaluation of the contribution of ultrafine superparamagnetic (SP) particles to the overall magnetic assemblage of traffic-related PM in Rome. In particular, the presence and the concentration of SP particles have been estimated on powders collected from disk brakes and gasoline exhaust pipes of circulating vehicles and from Quercus ilex leaves grown along high-traffic roads, measuring their hysteresis parameters in a range of temperatures from 293 K to 10 K and measuring the time decay of their saturation remanent magnetization (MRS) at room temperature. The SP fraction contributes for the 10-15% to the overall room temperature MRS and causes the observed changes in the hysteresis properties measured upon cooling down to 10 K. In all the analyzed samples the SP fraction is associated to a generally prevailing population of larger ferrimagnetic multidomain (MD) particles and we suppose that in traffic-related PM the SP fraction mainly occurs as coating of MD particles and originated by localized stress in the oxidized outer shell surrounding the unoxidized core of magnetite-like grains. Under this hypothesis, the estimate of SP content in traffic-related PM cannot be considered a robust proxy to estimate the overall concentration of nanometric particles.
NASA Astrophysics Data System (ADS)
Huang, Shuyuan; Sun, Lumin; Zhou, Tingjin; Yuan, Dongxing; Du, Bing; Sun, Xiuwu
2018-01-01
In this study, samples of 18 wet precipitations (WPs) and 38 aerosols were collected around a coal-fired power plant (CFPP) located in Xiamen, southeast China, which was equipped with a seawater flue gas desulfurization system. Total particulate mercury (TPM) in aerosol samples, and total mercury (WP-TM), dissolved mercury (WP-DM) and particulate mercury (WP-PM) in WP samples were analyzed for the natural isotopic compositions of mercury. For the first time, both mass dependent fractionation (MDF) and mass independent fractionation of odd (odd-MIF) and even (even-MIF) isotopes of WP-DM and WP-PM were reported and discussed. Both WP-TM and TPM displayed negative MDF and slightly positive even-MIF. Negative odd-MIF was observed in TPM and WP-PM, whereas positive odd-MIF was observed in WP-TM and WP-DM. It was found that the mercury budget in WP-PM samples was mainly controlled by atmospheric particles. Potential sources of mercury in samples were identified via analysis of mercury isotopic signatures and meteorological data with the NOAA HYSPLIT model. The results showed that TPM and WP-PM in solid samples were homologous and the isotopic compositions of WP-TM depended on those of WP-DM. The ratios of Δ199Hg/Δ201Hg resulting from photochemical reactions and positive Δ200Hg values (from -0.06‰ to 0.27‰) in all samples indicated that the mercury coming from local emission of the CFPP together with long-distance transportation were the two main contributing sources.
Walser, Moritz; Plessow, Franziska; Goschke, Thomas; Fischer, Rico
2014-07-01
Previous studies have shown that completed prospective memory (PM) intentions entail aftereffects in terms of ongoing-task-performance decrements in trials containing repeated PM cues which previously served as PM cues triggering the intended action. Previous research reported that PM aftereffects decrease over time, thus revealing a specific time course of PM aftereffects. In the present study, we tested two accounts for this pattern, assuming either that the decline of aftereffects is related to the temporal distance to PM task completion or may be a result of the repeated exposure of repeated PM cues in the ongoing task. In three experiments, we manipulated both the temporal distance to PM task completion and the frequency of repeated PM cues and demonstrated that aftereffects of completed intentions declined with repeated exposure of formerly relevant PM cues. In addition, effects of repeated exposure were not only limited to the repetition of specific PM-cue exemplars but also generalized to other semantically related PM cues within the PM-cue category. Together, findings show that decreased aftereffects of completed intentions are not related to the temporal duration of the subsequent test block, but crucially depend on the repeated exposure of the previously relevant PM cues.
Guo, Erbao; Shen, Henggen; He, Lei; Zhang, Jiawen
2017-07-01
In November 2015, the PM 2.5 and PM 10 particulate matter (PM) levels in platforms, station halls, and rail areas of the Shangcheng and Jiashan Road Station were monitored to investigate air pollution in the Shanghai subway system. The results revealed that in subway stations, PM 2.5 and PM 10 concentrations were significantly higher than those in outdoor environments. In addition, particle concentrations in the platforms exceeded maximum levels that domestic safety standards allowed. Particularly on clear days, PM 2.5 and PM 10 concentrations in platforms were significantly higher than maximum standards levels. Owing to the piston effect, consistent time-varying trends were exhibited by PM 2.5 concentrations in platforms, station halls, and rail areas. Platform particle concentrations were higher than the amount in station halls, and they were higher on clear days than on rainy days. The time-varying trends of PM 10 and PM 2.5 concentrations in platforms and station halls were similar to each other. Activities within the station led to most of the inhalable particles within the station area. The mass concentration ratios of PM 2.5 and PM 10 in platforms were within 0.65-0.93, and fine particles were the dominant components.
NASA Astrophysics Data System (ADS)
Commodore, Adwoa A.; Hartinger, Stella M.; Lanata, Claudio F.; Mäusezahl, Daniel; Gil, Ana I.; Hall, Daniel B.; Aguilar-Villalobos, Manuel; Naeher, Luke P.
2013-11-01
Nearly half of the world's population is exposed to household air pollution (HAP) due to long hours spent in close proximity to unvented cooking fires. We aimed to use PM2.5 and CO measurements to characterize exposure to cookstove generated woodsmoke in real time among control (n = 10) and intervention (n = 9) households in San Marcos, Cajamarca Region, Peru. Real time personal particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5), and personal and kitchen carbon monoxide (CO) samples were taken. Control households used a number of stoves including open fire and chimney stoves while intervention households used study-promoted chimney stoves. Measurements were categorized into lunch (9 am-1 pm) and dinner (3 pm-7 pm) periods, where applicable, to adjust for a wide range of sampling periods (2.8-13.1 h). During the 4-h time periods, mean personal PM2.5 exposures were correlated with personal CO exposures during lunch (r = 0.67 p = 0.024 n = 11) and dinner (r = 0.72 p = 0.0011 n = 17) in all study households. Personal PM2.5 exposures and kitchen CO concentrations were also correlated during lunch (r = 0.76 p = 0.018 n = 9) and dinner (r = 0.60 p = 0.018 n = 15). CO may be a useful indicator of PM during 4-h time scales measured in real time, particularly during high woodsmoke exposures, particularly during residential biomass cooking.
Ferrielectric Twin Walls in CaTiO3
NASA Astrophysics Data System (ADS)
Goncalves-Ferreira, Liliana; Redfern, Simon A. T.; Artacho, Emilio; Salje, Ekhard K. H.
2008-08-01
Sizeable spontaneous polarization has been found in the (100) twin walls of CaTiO3, a definitely nonpolar material. Theoretical simulations of these walls show an extremely rich texture of the local polarization at and close to the walls, including a strong antiferroelectric component, and local nonzero contributions perpendicular to the wall plane, which do not contribute to the net dipole. Individual Ti displacements of 2 pm off the octahedron center give rise to a net polarization corresponding to a displacement of 0.6 pm in the direction of the bisector of the twin angle.
Two specific fires from 2011 are tracked for local to regional scale contribution to ozone (O3) and fine particulate matter (PM2.5) using a freely available regulatory modeling system that includes the BlueSky wildland fire emissions tool, Spare Matrix Operator Kernel Emissions (...
75 FR 49501 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
...: Cell Biology. Date: September 1-2, 2010. Time: 8 a.m. to 5 p.m. Agenda: To review and evaluate grant...: Musculoskeletal Regeneration. Date: September 14, 2010. Time: 2 p.m. to 5 p.m. Agenda: To review and evaluate...
77 FR 6811 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
...: Anti-pathogen drug development and resistance. Date: February 28, 2012. Time: 3 p.m. to 5 p.m. Agenda... Vaccine Development. Date: March 8-9, 2012. Time: 8 a.m. to 6 p.m. Agenda: To review and evaluate grant...
75 FR 4831 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... Emphasis Panel Molecular Biology. Date: March 2, 2010. Time: 12 p.m. to 2 p.m. Agenda: To review and...; Special Topic: Diet and Physical Activity Methodologies. Date: March 3-4, 2010. Time: 8 a.m. to 5 p.m...
76 FR 59672 - Combined Notice of Filings (September 19, 2011)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
...: 20110914-5118. Comment Date: 5 p.m. Eastern Time on Monday, September 26, 2011. Docket Numbers: RP11-2565... Policies. Filed Date: 09/14/2011. Accession Number: 20110914-5143. Comment Date: 5 p.m. Eastern Time on...: 5 p.m. Eastern Time on Tuesday, September 27, 2011. Docket Numbers: RP11-2567-000. Applicants...
78 FR 64026 - Arts Advisory Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... closed. Dates: November 14, 2013 in Room 714. 9:00 a.m. to 5:00 p.m. Eastern time. Music (application...:00 p.m. Eastern time. Music (application review): This meeting will be closed. Dates: November 19, 2013. 9:00 a.m. to 3:00 p.m. Eastern time in room 714. Music (application review): This meeting will be...
76 FR 34221 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
...: 20110531-5000. Comment Date: 5 p.m. Eastern Time on Tuesday, June 21, 2011. Docket Numbers: ER10-2721-002... in Status. Filed Date: 05/31/2011. Accession Number: 20110531-5071. Comment Date: 5 p.m. Eastern Time.... Comment Date: 5 p.m. Eastern Time on Tuesday, June 21, 2011. Docket Numbers: ER11-2187-001. Applicants...
76 FR 14005 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... Number: 20110307-5076. Comment Date: 5 p.m. Eastern Time on Monday, March 28, 2011. Docket Numbers: ER10...: 20110307-5175. Comment Date: 5 p.m. Eastern Time on Monday, March 28, 2011. Docket Numbers: ER11-3024-000... Comment Date: 5 p.m. Eastern Time on Monday, March 28, 2011. Docket Numbers: ER11-3025-000. Applicants...
75 FR 19637 - Combined Notice of Filings No. 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-15
...: 20100330-0241. Comment Date: 5 p.m. Eastern Time on Monday, April 12, 2010. Docket Numbers: RP10-521-000... Date: 03/30/2010. Accession Number: 20100330-0243. Comment Date: 5 p.m. Eastern Time on Monday, April.... Accession Number: 20100331-0204. Comment Date: 5 p.m. Eastern Time on Monday, April 12, 2010. Docket Numbers...
75 FR 17137 - Combined Notice of Filings No. 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
...-0132. Comment Date: 5 p.m. Eastern Time on Monday, March 29, 2010. Docket Numbers: RP10-490-000... effective 3/9/10. Filed Date: 03/12/2010. Accession Number: 20100315-0133. Comment Date: 5 p.m. Eastern Time.... Comment Date: 5 p.m. Eastern Time on Wednesday, March 24, 2010. Docket Numbers: RP10-493-000. Applicants...
75 FR 4366 - Combined Notice of Filings No. 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
...: 20091231-0239. Comment Date: 5 p.m. Eastern Time on Tuesday, January 12, 2010. Docket Numbers: RP10-287-000.... Accession Number: 20100104-0146. Comment Date: 5 p.m. Eastern Time on Tuesday, January 12, 2010. Docket... Agreement. Filed Date: 12/31/2009. Accession Number: 20100104-0144. Comment Date: 5 p.m. Eastern Time on...
76 FR 23578 - Combined Notice of Filings No. 1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
...: 20110414-5072. Comment Date: 5 p.m. Eastern Time on Tuesday, April 26, 2011. Docket Numbers: RP11-2005-000.../2011. Accession Number: 20110414-5105. Comment Date: 5 p.m. Eastern Time on Tuesday, April 26, 2011.../15/2011. Filed Date: 04/15/2011. Accession Number: 20110415-5211. Comment Date: 5 p.m. Eastern Time...
75 FR 11159 - Combined Notice of Filings No. 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
... Volume No. 1. Filed Date: 02/26/2010. Accession Number: 20100226-0038. Comment Date: 5 p.m. Eastern Time... Number: 20100301-5225. Comment Date: 5 p.m. Eastern Time on Monday, March 15, 2010. Docket Numbers: RP10.... Accession Number: 20100301-5226. Comment Date: 5 p.m. Eastern Time on Monday, March 15, 2010. Docket Numbers...
75 FR 33294 - Combined Notice of Filings No. 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
.../2010. Filed Date: 06/03/2010. Accession Number: 20100603-5096. Comment Date: 5 p.m. Eastern Time on... effective 7/5/10. Filed Date: 06/04/2010. Accession Number: 20100604-0206. Comment Date: 5 p.m. Eastern Time.... Accession Number: 20100604-0204. Comment Date: 5 p.m. Eastern Time on Wednesday, June 16, 2010. Docket...