40 CFR 1065.590 - PM sampling media (e.g., filters) preconditioning and tare weighing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false PM sampling media (e.g., filters... Specified Duty Cycles § 1065.590 PM sampling media (e.g., filters) preconditioning and tare weighing. Before an emission test, take the following steps to prepare PM sampling media (e.g., filters) and equipment...
40 CFR 1065.590 - PM sampling media (e.g., filters) preconditioning and tare weighing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false PM sampling media (e.g., filters... Specified Duty Cycles § 1065.590 PM sampling media (e.g., filters) preconditioning and tare weighing. Before an emission test, take the following steps to prepare PM sampling media (e.g., filters) and equipment...
40 CFR 1065.590 - PM sampling media (e.g., filters) preconditioning and tare weighing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false PM sampling media (e.g., filters... Specified Duty Cycles § 1065.590 PM sampling media (e.g., filters) preconditioning and tare weighing. Before an emission test, take the following steps to prepare PM sampling media (e.g., filters) and equipment...
40 CFR 1065.590 - PM sampling media (e.g., filters) preconditioning and tare weighing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false PM sampling media (e.g., filters... Specified Duty Cycles § 1065.590 PM sampling media (e.g., filters) preconditioning and tare weighing. Before an emission test, take the following steps to prepare PM sampling media (e.g., filters) and equipment...
40 CFR 1065.590 - PM sampling media (e.g., filters) preconditioning and tare weighing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false PM sampling media (e.g., filters... Specified Duty Cycles § 1065.590 PM sampling media (e.g., filters) preconditioning and tare weighing. Before an emission test, take the following steps to prepare PM sampling media (e.g., filters) and equipment...
40 CFR 1065.690 - Buoyancy correction for PM sample media.
Code of Federal Regulations, 2014 CFR
2014-07-01
... media. 1065.690 Section 1065.690 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Buoyancy correction for PM sample media. (a) General. Correct PM sample media for their buoyancy in air if you weigh them on a balance. The buoyancy correction depends on the sample media density, the density...
40 CFR 1065.690 - Buoyancy correction for PM sample media.
Code of Federal Regulations, 2011 CFR
2011-07-01
... media. 1065.690 Section 1065.690 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Buoyancy correction for PM sample media. (a) General. Correct PM sample media for their buoyancy in air if you weigh them on a balance. The buoyancy correction depends on the sample media density, the density...
40 CFR 1065.690 - Buoyancy correction for PM sample media.
Code of Federal Regulations, 2012 CFR
2012-07-01
... media. 1065.690 Section 1065.690 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Buoyancy correction for PM sample media. (a) General. Correct PM sample media for their buoyancy in air if you weigh them on a balance. The buoyancy correction depends on the sample media density, the density...
40 CFR 1065.690 - Buoyancy correction for PM sample media.
Code of Federal Regulations, 2013 CFR
2013-07-01
... media. 1065.690 Section 1065.690 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Buoyancy correction for PM sample media. (a) General. Correct PM sample media for their buoyancy in air if you weigh them on a balance. The buoyancy correction depends on the sample media density, the density...
40 CFR 1065.690 - Buoyancy correction for PM sample media.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Buoyancy correction for PM sample media. (a) General. Correct PM sample media for their buoyancy in air if you weigh them on a balance. The buoyancy correction depends on the sample media density, the density of air, and the density of the calibration weight used to calibrate the balance. The buoyancy...
Allen, George; Rector, Lisa; Butcher, Thomas; ...
2017-07-31
The performance of Teflon-coated glass fiber filter media (Pallflex Emfab TX40) is evaluated for particulate matter (PM) sampling of residential wood heating devices in a dilution tunnel. Thirty samples of varying duration and PM loading and concentration were collected from an U.S. Environmental Protection Agency (EPA) Method 28 dilution tunnel using dual Method 5G sample trains with untreated glass fiber and Emfab filters. Filters were weighed soon after the end of sampling and again the next day after equilibration at 35% relative humidity (RH). PM concentrations from both types of filters agreed very well with 1-day equilibration, demonstrating that Emfabmore » filters are appropriate for use in measuring PM from residential wood burning appliances in a dilution tunnel and have performance equal to or better than the glass fiber filter media. Agreement between filter media without equilibration was erratic, with PM from glass fiber filter samples varying from slightly less than the Emfab samples to as much as 2.8 times higher. Some of the glass fiber filters lost substantial mass with equilibration, with the highest percent loss at lower filter mass loadings. Mass loss for Emfab samples was a small percentage of the mass and very consistent across the range of mass loadings. Taken together, these results may indicate water uptake on the glass fiber media that is readily removed with 1-day equilibration at moderate RH conditions. Implications: EPA regulations now allow the use of either glass fiber or Teflon filter media for wood appliance PM emission testing. Teflon filter media minimizes the potential for acid-gas PM artifacts on glass fiber filters; this is important as EPA moves toward the use of locally sourced cordwood for testing that may have higher sulfur content. This work demonstrates that the use of Teflon-coated glass fiber filters can give similar PM measurement results to glass fiber filters after 1 day of equilibration. With no equilibration, measured PM from glass fiber filters was usually higher than from Teflon-coated glass fiber filters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, George; Rector, Lisa; Butcher, Thomas
The performance of Teflon-coated glass fiber filter media (Pallflex Emfab TX40) is evaluated for particulate matter (PM) sampling of residential wood heating devices in a dilution tunnel. Thirty samples of varying duration and PM loading and concentration were collected from an U.S. Environmental Protection Agency (EPA) Method 28 dilution tunnel using dual Method 5G sample trains with untreated glass fiber and Emfab filters. Filters were weighed soon after the end of sampling and again the next day after equilibration at 35% relative humidity (RH). PM concentrations from both types of filters agreed very well with 1-day equilibration, demonstrating that Emfabmore » filters are appropriate for use in measuring PM from residential wood burning appliances in a dilution tunnel and have performance equal to or better than the glass fiber filter media. Agreement between filter media without equilibration was erratic, with PM from glass fiber filter samples varying from slightly less than the Emfab samples to as much as 2.8 times higher. Some of the glass fiber filters lost substantial mass with equilibration, with the highest percent loss at lower filter mass loadings. Mass loss for Emfab samples was a small percentage of the mass and very consistent across the range of mass loadings. Taken together, these results may indicate water uptake on the glass fiber media that is readily removed with 1-day equilibration at moderate RH conditions. Implications: EPA regulations now allow the use of either glass fiber or Teflon filter media for wood appliance PM emission testing. Teflon filter media minimizes the potential for acid-gas PM artifacts on glass fiber filters; this is important as EPA moves toward the use of locally sourced cordwood for testing that may have higher sulfur content. This work demonstrates that the use of Teflon-coated glass fiber filters can give similar PM measurement results to glass fiber filters after 1 day of equilibration. With no equilibration, measured PM from glass fiber filters was usually higher than from Teflon-coated glass fiber filters.« less
40 CFR 1065.595 - PM sample post-conditioning and total weighing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sample media (e.g., filters) to the weighing and PM-stabilization environments. (a) Make sure the...). If those specifications are not met, leave the test sample media (e.g., filters) covered until proper.... If you use filters, you may remove them from their cassettes before or after stabilization. We...
40 CFR 1065.595 - PM sample post-conditioning and total weighing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... sample media (e.g., filters) to the weighing and PM-stabilization environments. (a) Make sure the...). If those specifications are not met, leave the test sample media (e.g., filters) covered until proper.... If you use filters, you may remove them from their cassettes before or after stabilization. We...
40 CFR 1065.595 - PM sample post-conditioning and total weighing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sample media (e.g., filters) to the weighing and PM-stabilization environments. (a) Make sure the...). If those specifications are not met, leave the test sample media (e.g., filters) covered until proper.... If you use filters, you may remove them from their cassettes before or after stabilization. We...
40 CFR 1065.595 - PM sample post-conditioning and total weighing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... sample media (e.g., filters) to the weighing and PM-stabilization environments. (a) Make sure the...). If those specifications are not met, leave the test sample media (e.g., filters) covered until proper.... If you use filters, you may remove them from their cassettes before or after stabilization. We...
40 CFR 1065.595 - PM sample post-conditioning and total weighing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... sample media (e.g., filters) to the weighing and PM-stabilization environments. (a) Make sure the...). If those specifications are not met, leave the test sample media (e.g., filters) covered until proper.... If you use filters, you may remove them from their cassettes before or after stabilization. We...
COMPARISON OF SAMPLING METHODS FOR SEMI-VOLATILE ORGANIC CARBON (SVOC) ASSOCIATED WITH PM 2.5
This study evaluates the influence of denuder sampling methods and filter collection media on the measurement of semi-volatile organic carbon (SVOC) associated with PM2.5. Two types of collection media, charcoal (activated carbon) and XAD, were used both in diffusion denuders ...
COMPARISON OF SAMPLING METHODS FOR SEMI-VOLATILE ORGANIC CARBON ASSOCIATED WITH PM 2.5
This study evaluates the influence of denuder sampling methods and filter collection media on the measurement of semi-volatile organic carbon (SVOC) associated with PM2.5. Two types of collection media, charcoal (activated carbon) and XAD, were used both in diffusion denuders ...
40 CFR 1065.1107 - Sample media and sample system preparation; sample system assembly.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) For capturing PM, we recommend using pure quartz filters with no binder. Select the filter diameter to minimize filter change intervals, accounting for the expected PM emission rate, sample flow rate, and... filter without replacing the sorbent or otherwise disassembling the batch sampler. In those cases...
NASA Astrophysics Data System (ADS)
Marvanová, Soňa; Kulich, Pavel; Skoupý, Radim; Hubatka, František; Ciganek, Miroslav; Bendl, Jan; Hovorka, Jan; Machala, Miroslav
2018-04-01
Size-segregated particulate matter (PM) is frequently used in chemical and toxicological studies. Nevertheless, toxicological in vitro studies working with the whole particles often lack a proper evaluation of PM real size distribution and characterization of agglomeration under the experimental conditions. In this study, changes in particle size distributions during the PM sample manipulation and also semiquantitative elemental composition of single particles were evaluated. Coarse (1-10 μm), upper accumulation (0.5-1 μm), lower accumulation (0.17-0.5 μm), and ultrafine (<0.17 μm) PM fractions were collected by high volume cascade impactor in Prague city center. Particles were examined using electron microscopy and their elemental composition was determined by energy dispersive X-ray spectroscopy. Larger or smaller particles, not corresponding to the impaction cut points, were found in all fractions, as they occur in agglomerates and are impacted according to their aerodynamic diameter. Elemental composition of particles in size-segregated fractions varied significantly. Ns-soot occurred in all size fractions. Metallic nanospheres were found in accumulation fractions, but not in ultrafine fraction where ns-soot, carbonaceous particles, and inorganic salts were identified. Dynamic light scattering was used to measure particle size distribution in water and in cell culture media. PM suspension of lower accumulation fraction in water agglomerated after freezing/thawing the sample, and the agglomerates were disrupted by subsequent sonication. Ultrafine fraction did not agglomerate after freezing/thawing the sample. Both lower accumulation and ultrafine fractions were stable in cell culture media with fetal bovine serum, while high agglomeration occurred in media without fetal bovine serum as measured during 24 h.
TOTAL PAH EXPOSURES OF NINE PRESCHOOL CHILDREN
This study evaluates the influence of denuder sampling methods and filter collection media on the measurement of semi-volatile organic carbon (SVOC) associated with PM2.5. Two types of collection media, charcoal (activated carbon) and XAD, were used both in diffusion denuders ...
40 CFR 1065.390 - PM balance verifications and weighing process verification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... days before weighing any filter. (2) Zero and span the balance within 12 h before weighing any filter. (3) Verify that the mass determination of reference filters before and after a filter weighing... reference PM sample media (e.g., filters) before and after a weighing session. A weighing session may be as...
40 CFR 1065.390 - PM balance verifications and weighing process verification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... days before weighing any filter. (2) Zero and span the balance within 12 h before weighing any filter. (3) Verify that the mass determination of reference filters before and after a filter weighing... reference PM sample media (e.g., filters) before and after a weighing session. A weighing session may be as...
40 CFR 1065.390 - PM balance verifications and weighing process verification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... days before weighing any filter. (2) Zero and span the balance within 12 h before weighing any filter. (3) Verify that the mass determination of reference filters before and after a filter weighing... reference PM sample media (e.g., filters) before and after a weighing session. A weighing session may be as...
40 CFR 1065.390 - PM balance verifications and weighing process verification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... days before weighing any filter. (2) Zero and span the balance within 12 h before weighing any filter. (3) Verify that the mass determination of reference filters before and after a filter weighing... reference PM sample media (e.g., filters) before and after a weighing session. A weighing session may be as...
40 CFR 1065.390 - PM balance verifications and weighing process verification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... days before weighing any filter. (2) Zero and span the balance within 12 h before weighing any filter. (3) Verify that the mass determination of reference filters before and after a filter weighing... weighing session by weighing reference PM sample media (e.g., filters) before and after a weighing session...
Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples
NASA Astrophysics Data System (ADS)
Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.
2014-12-01
Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.
Baysal, Asli; Saygin, Hasan; Ustabasi, Gul Sirin
2017-12-21
A significant knowledge gap in nanotechnology is the absence of standardized protocols for examining and comparison the effect of metal oxide nanoparticles on different environment media. Despite the large number of studies on ecotoxicity of nanoparticles, most of them disregard the particles physicochemical transformation under real exposure conditions and interaction with different environmental components like air, soil, water, etc. While one of the main exposure ways is inhalation and/or atmosphere for human and environment, there is no investigation between airborne particulates and nanoparticles. In this study, some metal oxide nanoparticle (ZnO and TiO 2 ) transformation and behavior in PM2.5 air particulate media were examined and evaluated by the influence on nanoparticle physicochemical properties (size, surface charge, surface functionalization) and on bacterium (Gram-positive Bacillus subtilis, Staphylococcus aureus/Gram-negative Escherichia coli, Pseudomonas aeruginosa bacteria) by testing in various concentrations of PM2.5 airborne particulate media to contribute to their environmental hazard and risk assessment in atmosphere. PM2.5 airborne particulate media affected their toxicity and physicochemical properties when compared the results obtained in controlled conditions. ZnO and TiO 2 surfaces were functionalized mainly with sulfoxide groups in PM2.5 air particulates. In addition, tested particles were not observed to be toxic in controlled conditions. However, these were observed inhibition in PM2.5 airborne particulates media by the exposure concentration. These observations and dependence of the bacteria viability ratio explain the importance of particulate matter-nanoparticle interaction.
Mineralogical, chemical, and optical interrelationships of mineral dusts from desert source regions
NASA Astrophysics Data System (ADS)
Engelbrecht, J. P.; Moosmüller, H.; Pincock, S.; Jayanty, J.; Casuccio, G.
2013-12-01
The goal of the project was to provide information on the mineralogical, chemical and physical interrelationships of re-suspended mineral dust samples collected from global dust sources. Surface soil samples were previously collected from more than 64 desert sites, including the southwestern USA (12), Mali (3), Chad (3), Morocco (1), Canary Islands (8), Cape Verde (1), Djibouti (1), Afghanistan (3), Iraq (6), Kuwait (5), Qatar (1), UAE (1), Serbia (3), China (5), Namibia (3), Botswana (4), Australia (3), and Chile (1). The < 38 μm sieved fraction of each sample was re-suspended in an entrainment facility, from which the airborne mineral dust could be sampled and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5 particulate mass fractions, an aerodynamic particle size (APS) analyzer, and a three wavelength (405, 532, 781nm) photoacoustic instrument with integrating reciprocal nephelometer for monitoring aerosol absorption and scattering coefficients during the re-suspension process. Filter sample media included Teflon membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore filters for individual particle analysis by Scanning Electron Microscopy (SEM). The < 38 μm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 38 μm, < 125 μm fractions were further mineralogically characterized by optical microscopy. We will be presenting results on the optical measurements, showing the relationship between single scattering albedo (SSA) at three different wavelengths, and chemical as well as mineralogical content and interrelationships, of the entrained dust samples. Information from this data base will be available for research in global climate, remote sensing, visibility, and health (medical geology).
Social Media Guide (PDF) USAF Social Media Sites 42nd Medical Group 42nd Medical Group Voting Assistance : Open 24 hours a day, seven days a week. - Kelly St. Gate: Open Mon-Fri, 6:00 a.m. - 6 p.m., closed weekends, holidays and AETC down days. - Day St. Gate: Open Mon-Fri, 6:00 a.m. - 2:00 p.m. inbound traffic
Gorr, Matthew W; Youtz, Dane J; Eichenseer, Clayton M; Smith, Korbin E; Nelin, Timothy D; Cormet-Boyaka, Estelle; Wold, Loren E
2015-07-01
Particulate matter (PM) exposure induces a pathological response from both the lungs and the cardiovascular system. PM is capable of both manifestation into the lung epithelium and entrance into the bloodstream. Therefore, PM has the capacity for both direct and lung-mediated indirect effects on the heart. In the present studies, we exposed isolated rat cardiomyocytes to ultrafine particulate matter (diesel exhaust particles, DEP) and examined their contractile function and calcium handling ability. In another set of experiments, lung epithelial cells (16HBE14o- or Calu-3) were cultured on permeable supports that allowed access to both the basal (serosal) and apical (mucosal) media; the basal media was used to culture cardiomyocytes to model the indirect, lung-mediated effects of PM on the heart. Both the direct and indirect treatments caused a reduction in contractility as evidenced by reduced percent sarcomere shortening and reduced calcium handling ability measured in field-stimulated cardiomyocytes. Treatment of cardiomyocytes with various anti-oxidants before culture with DEP was able to partially prevent the contractile dysfunction. The basal media from lung epithelial cells treated with PM contained several inflammatory cytokines, and we found that monocyte chemotactic protein-1 was a key trigger for cardiomyocyte dysfunction. These results indicate the presence of both direct and indirect effects of PM on cardiomyocyte function in vitro. Future work will focus on elucidating the mechanisms involved in these separate pathways using in vivo models of air pollution exposure. Copyright © 2015 the American Physiological Society.
Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C
2011-03-01
A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.
Phase III Early Restoration Meeting - Galveston, TX | NOAA Gulf Spill
Areas Alabama Florida Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News planning for Phase III and future early restoration plans. Open House: 6:00pm Public Meeting: 6:30pm
Phase III Early Restoration Public Meeting | NOAA Gulf Spill Restoration
Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News Publications Press Releases Story restoration plans. Open House: 6:00pm Public Meeting: 6:30pm Location: University of Southern Mississippi, FEC
Phase III Early Restoration Meeting - Port Arthur, TX | NOAA Gulf Spill
Areas Alabama Florida Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News planning for Phase III and future early restoration plans. Open House: 6:00pm Public Meeting: 6:30pm
Phase III Early Restoration Meeting - Panama City, FL | NOAA Gulf Spill
Areas Alabama Florida Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News planning for Phase III and future early restoration plans. Open House: 6:00pm Public Meeting: 6:30pm
Relating Optical Properties of Dusts to their Mineralogical and Physical Interrelationships
NASA Astrophysics Data System (ADS)
Engelbrecht, J. P.; Moosmuller, H.; Jayanty, R. K. M.; Casuccio, G.; Pincock, S. L.
2015-12-01
The purpose of the project was to provide information on the mineralogical, chemical and physical interrelationships of re-suspended mineral dust samples collected as grab samples from global dust sources. Surface soil samples were collected from about 65 desert sites, including the southwestern USA (12), Mali (3), Chad (3), Morocco (1), Canary Islands (8), Cape Verde (1), Djibouti (1), Afghanistan (3), Iraq (6), Kuwait (5), Qatar (1), UAE (1), Serbia (3), China (5), Namibia (3), Botswana (4), Australia (3), and Chile (1). The < 38 μm sieved fraction of each sample was re-suspended in an entrainment chamber, from which the airborne mineral dust could be monitored, sampled and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5particulate mass fractions, an aerodynamic particle size (APS) analyzer, and a three wavelength (405, 532, 781nm) photoacoustic resonator with integrating reciprocal nephelometer for monitoring absorption and scattering coefficients during the dust re-suspension process. Filter sample media included Teflon® membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore® filters for individual particle analysis by Scanning Electron Microscopy (SEM). The < 38 μm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 38 μm, < 125 μm soil fractions were mineralogically characterized by optical microscopy. We will be presenting results on the optical measurements, also showing the relationship between single scattering albedo (SSA) at three different wavelengths, and chemical as well as mineralogical content and interdependencies of the entrained dust samples. Examples showing the relationships between the single scattering albedos of airborne dusts, and iron (Fe) in hematite, goethite, and clay minerals (montmorillonite, illite, palygorskite), will be discussed. Our goal is to establish a database of the optical, mineralogical, and chemical properties of dust samples collected at multiple global dust sources. These data can be for applications in climate modeling, remote sensing, visibility, health (medical geology), ocean fertilization, and damage to equipment.
Mineralogical, Chemical, and Optical Interrelationships of Airborne Mineral Dusts
NASA Astrophysics Data System (ADS)
Engelbrecht, J. P.; Moosmuller, H.; Pincock, S. L.; Jayanty, R. K. M.; Casuccio, G.
2014-12-01
The purpose of the project was to provide information on the mineralogical, chemical and physical interrelationships of re-suspended mineral dust samples collected as grab samples from global dust sources. Surface soil samples were collected from about 65 desert sites, including the southwestern USA (12), Mali (3), Chad (3), Morocco (1), Canary Islands (8), Cape Verde (1), Djibouti (1), Afghanistan (3), Iraq (6), Kuwait (5), Qatar (1), UAE (1), Serbia (3), China (5), Namibia (3), Botswana (4), Australia (3), and Chile (1). The < 38 μm sieved fraction of each sample was re-suspended in an entrainment chamber, from which the airborne mineral dust could be monitored, sampled and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5 particulate mass fractions, an aerodynamic particle size (APS) analyzer, and a three wavelength (405, 532, 781nm) photoacoustic resonator with integrating reciprocal nephelometer for monitoring absorption and scattering coefficients during the dust re-suspension process. Filter sample media included Teflon® membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore® filters for individual particle analysis by Scanning Electron Microscopy (SEM). The < 38 μm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 38 μm, < 125 μm soil fractions were mineralogically characterized by optical microscopy. We will be presenting results on the optical measurements, also showing the relationship between single scattering albedo (SSA) at three different wavelengths, and chemical as well as mineralogical content and interdependencies of the entrained dust samples. Examples showing the relationships between the single scattering albedos of airborne dusts, and iron (Fe) in hematite, goethite, and clay minerals (montmorillonite, illite, palygorskite), will be discussed. Differences between the clay minerals in samples from Mali and those from other localities are demonstrated. We intend establishing a data base for applications in climate modeling, remote sensing, visibility, health (medical geology), ocean fertilization, and damage to equipment.
Florida Public Scoping Meeting | NOAA Gulf Spill Restoration
Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News Publications Press Releases Story open at 6:30 p.m., and the meeting will begin at 7:30 p.m. Bayview Community Center 2001 Lloyd Street
Leclercq, Bérénice; Alleman, Laurent Yves; Perdrix, Esperanza; Riffault, Véronique; Happillon, Mélanie; Strecker, Alain; Lo-Guidice, Jean-Marc; Garçon, Guillaume; Coddeville, Patrice
2017-07-01
According to the literature, tiny amounts of transition metals in airborne fine particles (PM 2.5 ) may induce proinflammatory cell response through reactive oxygen species production. The solubility of particle-bound metals in physiological fluids, i.e. the metal bioaccessibility is driven by factors such as the solution chemical composition, the contact time with the particles, and the solid-to-liquid phase ratio (S/L). In this work, PM 2.5 -bound metal bioaccessibility was assessed in various physiological-like solutions including cell culture media in order to evidence the potential impact on normal human bronchial epithelial cells (NHBE) when studying the cytotoxicity and inflammatory responses of PM 2.5 towards the target bronchial compartment. Different fluids (H 2 O, PBS, LHC-9 culture medium, Gamble and human respiratory mucus collected from COPD patients), various S/L conditions (from 1/6000 to 1/100,000) and exposure times (6, 24 and 72h) were tested on urban PM 2.5 samples. In addition, metals' total, soluble and insoluble fractions from PM 2.5 in LHC-9 were deposited on NHBE cells (BEAS-2B) to measure their cytotoxicity and inflammatory potential (i.e., G6PDH activity, secretion of IL-6 and IL-8). The bioaccessibility is solution-dependent. A higher salinity or organic content may increase or inhibit the bioaccessibiliy according to the element, as observed in the complex mucus matrix. Decreasing the S/L ratio also affect the bioaccessibility depending on the solution tested while the exposure time appears less critical. The LHC-9 culture medium appears to be a good physiological proxy as it induces metal bioaccessibilities close to the mucus values and is little affected by S/L ratios or exposure time. Only the insoluble fraction can be linked to the PM 2.5 -induced cytotoxicity. By contrast, both soluble and insoluble fractions can be related to the secretion of cytokines. The metal bioaccessibility in LHC-9 of the total, soluble, and insoluble fractions of the PM 2.5 under study did not explain alone, the cytotoxicity nor the inflammatory response observed in BEAS-2B cells. These findings confirm the urgent need to perform further toxicological studies to better evaluate the synergistic effect of both bioaccessible particle-bound metals and organic species. Copyright © 2017 Elsevier Inc. All rights reserved.
Drama, Media Advertising, and Inner-City Youth.
ERIC Educational Resources Information Center
Conrad, Diane
2002-01-01
Describes a reflective practice case study which involved creating and delivering a unit integrating drama, media literacy, and media production with a focus on advertising for a group of students at an alternative inner-city high school. Proposes this strategy may assist others in studies and teaching practice. (PM)
Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.
2008-01-01
Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production and/or mobile sources (Mo, Cd, Pb, Cu, Zn) and (4) a transient marine source (Sr, Mg). Concentrations of Hg in PM2.5 at background levels in the single pg m-3 were shown by collection and analysis of PM2.5 on filters and by an automated speciation analyser set up at the Big Meadows air quality site. The speciation unit revealed periodic elevation of reactive gaseous mercury (RGM) that co-occurred with peaks in SO2, indicating an anthropogenic source. GC/MS total ion current chromatograms for the two sites were quite similar indicating that organic signatures were regional in extent and/or that the same compounds were present locally at each site. Calculated carbon preference index values for n-alkanes indicated that plant waxes rather than anthropogenic sources, were the dominant alkane source. Polycyclic aromatic hydrocarbons (PAHs) were detected, with a predominance of non-alkylated, and higher molecular weight PAHs in this fraction, suggestive of a combustion source (fossil fuel or forest fires). ?? 2008 The Authors. Journal compilation ?? 2008 International Association of Geoanalysts.
[Sampling methods for PM2.5 from stationary sources: a review].
Jiang, Jing-Kun; Deng, Jian-Guo; Li, Zhen; Li, Xing-Hua; Duan, Lei; Hao, Ji-Ming
2014-05-01
The new China national ambient air quality standard has been published in 2012 and will be implemented in 2016. To meet the requirements in this new standard, monitoring and controlling PM2,,5 emission from stationary sources are very important. However, so far there is no national standard method on sampling PM2.5 from stationary sources. Different sampling methods for PM2.5 from stationary sources and relevant international standards were reviewed in this study. It includes the methods for PM2.5 sampling in flue gas and the methods for PM2.5 sampling after dilution. Both advantages and disadvantages of these sampling methods were discussed. For environmental management, the method for PM2.5 sampling in flue gas such as impactor and virtual impactor was suggested as a standard to determine filterable PM2.5. To evaluate environmental and health effects of PM2.5 from stationary sources, standard dilution method for sampling of total PM2.5 should be established.
[Pollution characteristics of PCBs in electronic waste dismantling areas of Zhejiang province].
Wang, Xiaofeng; Lou, Xiaoming; Han, Guangen; Shen, Haitao; Ding, Gangqiang
2011-09-01
To study the pollution level and distribution pattern of polychlorinated biphenyls (PCBs) in the environment media in electronic waste dismantling area of Zhejiang province. Water, soil and PM10 were sampled in electronic waste dismantling areas. The contents, distribution characteristics and toxic equivalents (TEQs) of PCBs in local environment were evaluated by ultra-trace detection methods. The PCBs contents of water, soil and PM10 in Luqiao and Zhenhai, the relatively high polluted areas, were higher than those in Longyou, the control area. The dominant PCBs detected from the environment in Luqiao were hexa-CBs (PCB138 and PCB153), while penta-CBs were dominant in Zhenhai and Longyou. TEQs in electronic waste recycling area were higher than those in control areas. The TEQs of PCBs in water and soil were the highest in Zhenhai, while the TEQs of PM10 were the highest in Luqiao. The local environment has been polluted by PCBs emitted from electronic waste recycling. PCBs pollution monitoring in electronic waste recycling area should be strengthened to prevent PCBs-induced health effects.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-27
... begin at 3 p.m. and will normally adjourn at 6 p.m. Any adjustments to the meetings will be advertised..., and will be published in the Federal Register, announced through local media and on the BLM's Web site...
77 FR 2766 - Arts Advisory Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES Arts Advisory Panel Meeting AGENCY: National Endowment for the Arts, National Foundation on the Arts and Humanities. ACTION: Notice--additional... Media Arts panel, scheduled for January 26, 2012 from 3 p.m. to 4:30 p.m. This open session will be...
Seagrave, JeanClare; Gigliotti, Andrew; McDonald, Jacob D; Seilkop, Steven K; Whitney, Kevin A; Zielinska, Barbara; Mauderly, Joe L
2005-09-01
Particulate matter (PM) and vapor-phase semivolatile organic compounds (SVOC) were collected from three buses fueled by compressed natural gas. The bus engines included a well-functioning, conventional engine; a "high emitter" engine; and a new technology engine with an oxidation catalyst. Chemical analysis of the emissions showed differences among these samples, with the high emitter sample containing markers of engine oil constituents. PM + SVOC samples were also collected for mutagenicity and toxicity testing. Extraction efficiencies from the collection media were lower than for similarly collected samples from gasoline or diesel vehicles. Responses to the recovered samples were compared on the basis of exhaust volume, to incorporate the emission rates into the potency factors. Mutagenicity was assessed by Salmonella reverse mutation assay. Mutagenicity was greatest for the high emitter sample and lowest for the new technology sample. Metabolic activation reduced mutagenicity in strain TA100, but not TA98. Toxicity, including inflammation, cytotoxicity, and parenchymal changes, was assessed 24 h after intratracheal instillation into rat lungs. Lung responses were generally mild, with little difference between the responses to equivalent volumes of emissions from the normal emitter and the new technology, but greater responses for the high emitter. These emission sample potencies are further compared on the basis of recovered mass with previously reported samples from normal and high-emitter gasoline and diesel vehicles. While mutagenic potencies for the CNG emission samples were similar to the range observed in the gasoline and diesel emission samples, lung toxicity potency factors were generally lower than those for the gasoline and diesel samples.
NASA Astrophysics Data System (ADS)
Jalava, P. I.; Wang, Q.; Kuuspalo, K.; Ruusunen, J.; Hao, L.; Fang, D.; Väisänen, O.; Ruuskanen, A.; Sippula, O.; Happo, M. S.; Uski, O.; Kasurinen, S.; Torvela, T.; Koponen, H.; Lehtinen, K. E. J.; Komppula, M.; Gu, C.; Jokiniemi, J.; Hirvonen, M.-R.
2015-11-01
Urban air particulate pollution is a known cause for adverse human health effects worldwide. China has encountered air quality problems in recent years due to rapid industrialization. Toxicological effects induced by particulate air pollution vary with particle sizes and season. However, it is not known how distinctively different photochemical activity and different emission sources during the day and the night affect the chemical composition of the PM size ranges and subsequently how it is reflected to the toxicological properties of the PM exposures. The particulate matter (PM) samples were collected in four different size ranges (PM10-2.5; PM2.5-1; PM1-0.2 and PM0.2) with a high volume cascade impactor. The PM samples were extracted with methanol, dried and thereafter used in the chemical and toxicological analyses. RAW264.7 macrophages were exposed to the particulate samples in four different doses for 24 h. Cytotoxicity, inflammatory parameters, cell cycle and genotoxicity were measured after exposure of the cells to particulate samples. Particles were characterized for their chemical composition, including ions, element and PAH compounds, and transmission electron microscopy (TEM) was used to take images of the PM samples. Chemical composition and the induced toxicological responses of the size segregated PM samples showed considerable size dependent differences as well as day to night variation. The PM10-2.5 and the PM0.2 samples had the highest inflammatory potency among the size ranges. Instead, almost all the PM samples were equally cytotoxic and only minor differences were seen in genotoxicity and cell cycle effects. Overall, the PM0.2 samples had the highest toxic potential among the different size ranges in many parameters. PAH compounds in the samples and were generally more abundant during the night than the day, indicating possible photo-oxidation of the PAH compounds due to solar radiation. This was reflected to different toxicity in the PM samples. Some of the day to night difference may have been caused also by differing wind directions transporting air masses from different emission sources during the day and the night. The present findings indicate the important role of the local particle sources and atmospheric processes on the health related toxicological properties of the PM. The varying toxicological responses evoked by the PM samples showed the importance of examining various particle sizes. Especially the detected considerable toxicological activity by PM0.2 size range suggests they're attributable to combustion sources, new particle formation and atmospheric processes.
Phase II DERP/ER Public Meeting | NOAA Gulf Spill Restoration
Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News Publications Press Releases Story ¢Â 7:00 PM Open House 7:00 â 9:00 PM Meeting and Public CommentStart Time: 18:00Date: 2012-11
Kaufman, Joel D; Adar, Sara D; Barr, R Graham; Budoff, Matthew; Burke, Gregory L; Curl, Cynthia L; Daviglus, Martha L; Diez Roux, Ana V; Gassett, Amanda J; Jacobs, David R; Kronmal, Richard; Larson, Timothy V; Navas-Acien, Ana; Olives, Casey; Sampson, Paul D; Sheppard, Lianne; Siscovick, David S; Stein, James H; Szpiro, Adam A; Watson, Karol E
2016-08-13
Long-term exposure to fine particulate matter less than 2.5 μm in diameter (PM2.5) and traffic-related air pollutant concentrations are associated with cardiovascular risk. The disease process underlying these associations remains uncertain. We aim to assess association between long-term exposure to ambient air pollution and progression of coronary artery calcium and common carotid artery intima-media thickness. In this prospective 10-year cohort study, we repeatedly measured coronary artery calcium by CT in 6795 participants aged 45-84 years enrolled in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) in six metropolitan areas in the USA. Repeated scans were done for nearly all participants between 2002 and 2005, for a subset of participants between 2005 and 2007, and for half of all participants between 2010 and 2012. Common carotid artery intima-media thickness was measured by ultrasound in all participants at baseline and in 2010-12 for 3459 participants. Residence-specific spatio-temporal pollution concentration models, incorporating community-specific measurements, agency monitoring data, and geographical predictors, estimated concentrations of PM2.5 and nitrogen oxides (NOX) between 1999 and 2012. The primary aim was to examine the association between both progression of coronary artery calcium and mean carotid artery intima-media thickness and long-term exposure to ambient air pollutant concentrations (PM2.5, NOX, and black carbon) between examinations and within the six metropolitan areas, adjusting for baseline age, sex, ethnicity, socioeconomic characteristics, cardiovascular risk factors, site, and CT scanner technology. In this population, coronary calcium increased on average by 24 Agatston units per year (SD 58), and intima-media thickness by 12 μm per year (10), before adjusting for risk factors or air pollutant exposures. Participant-specific pollutant concentrations averaged over the years 2000-10 ranged from 9.2-22.6 μg PM2.5/m(3) and 7.2-139.2 parts per billion (ppb) NOX. For each 5 μg PM2.5/m(3) increase, coronary calcium progressed by 4.1 Agatston units per year (95% CI 1.4-6.8) and for each 40 ppb NOX coronary calcium progressed by 4.8 Agatston units per year (0.9-8.7). Pollutant exposures were not associated with intima-media thickness change. The estimate for the effect of a 5 μg/m(3) higher long-term exposure to PM2.5 in intima-media thickness was -0.9 μm per year (95% CI -3.0 to 1.3). For 40 ppb higher NOX, the estimate was 0.2 μm per year (-1.9 to 2.4). Increased concentrations of PM2.5 and traffic-related air pollution within metropolitan areas, in ranges commonly encountered worldwide, are associated with progression in coronary calcification, consistent with acceleration of atherosclerosis. This study supports the case for global efforts of pollution reduction in prevention of cardiovascular diseases. US Environmental Protection Agency and US National Institutes of Health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M
2015-02-13
Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%-60% (by weight) of fine particulate matter larger than 1 µm (PM(2.5-1.0)) in outdoor samples and 18% of PM2.5-1.0 in subway samples. Iron-containing particles accounted for only 3%-6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM(10-2.5)) with soil/road dust particles dominating outdoor samples (66%-83%) and iron-containing particles contributing most to subway PM(10-2.5) (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM(10-2.5) than PM(2.5-1.0). Also as expected, the mass fraction of iron-containing particles was substantially less in PM(10-2.5) than in PM(2.5-1.0). Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM(2.5-1.0) and PM(10-2.5) simultaneously and by composition at multiple locations.
Su, Ta-Chen; Hwang, Juey-Jen; Shen, Yu-Cheng; Chan, Chang-Chuan
2015-08-01
Associations between long-term exposure to air pollution and carotid intima-media thickness (CIMT) have inconsistent findings. In this study we aimed to evaluate association between 1-year average exposure to traffic-related air pollution and CIMT in middle-aged adults in Asia. CIMT was measured in Taipei, Taiwan, between 2009 and 2011 in 689 volunteers 35-65 years of age who were recruited as the control subjects of an acute coronary heart disease cohort study. We applied land-use regression models developed by the European Study of Cohorts for Air Pollution Effects (ESCAPE) to estimate each subject's 1-year average exposure to traffic-related air pollutants with particulate matter diameters ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5) and the absorbance levels of PM2.5 (PM2.5abs), nitrogen dioxide (NO2), and nitrogen oxides (NOx) in the urban environment. One-year average air pollution exposures were 44.21 ± 4.19 μg/m3 for PM10, 27.34 ± 5.12 μg/m3 for PM2.5, and (1.97 ± 0.36) × 10-5/m for PM2.5abs. Multivariate regression analyses showed average percentage increases in maximum left CIMT of 4.23% (95% CI: 0.32, 8.13) per 1.0 × 10-5/m increase in PM2.5abs; 3.72% (95% CI: 0.32, 7.11) per 10-μg/m3 increase in PM10; 2.81% (95% CI: 0.32, 5.31) per 20-μg/m3 increase in NO2; and 0.74% (95% CI: 0.08, 1.41) per 10-μg/m3 increase in NOx. The associations were not evident for right CIMT, and PM2.5 mass concentration was not associated with the outcomes. Long-term exposures to traffic-related air pollution of PM2.5abs, PM10, NO2, and NOx were positively associated with subclinical atherosclerosis in middle-aged adults.
Sun, Jian-lin; Chang, Wen-jing; Chen, Zheng-xia; Zeng, Hui
2015-05-01
Concentrations of halogenated polycyclic aromatic hydrocarbons ( HPAHs) in atmospheric PM10 and PM2.5 samples collected from Shenzhen were determined using GC-MS. Total concentrations of nine HPAHs in atmospheric PM10 and PM2.5 samples ranged from 118 to 1,476 pg · m(-3) and 89 to 407 pg · m(-3), respectively. In PM10 and PM(2.5) samples, the concentration of 9-BrAnt was the highest, followed by 7-BrBaA and 9, 10-Br2Ant. Seasonal levels of total HPAHs in atmospheric PM10 and PM2.5 samples in Shenzhen decreased in the following order: winter > autumn > spring > summer, whereas concentrations of individual HPAHs showed different seasonal levels. Meteorological conditions, including temperature, precipitation, and relative humidity, might be important factors affecting the seasonal levels of HPAHs in atmospheric PM10 and PM2.5 In addition, there were significant correlations between concentrations of HPAHs and parent PAHs. Finally, the toxic equivalency quotients (TEQs) of HPAHs were estimated. The TEQs of HPAHs in atmospheric PM10 and PM2.5 samples ranged from 17.6 to 86.2 pg · m(-3) and 14.6 to 70.4 pg · m(-3), respectively. Among individual HPAHs, 7-BrBaA contributed greatly to the total TEQs of HPAHs. Our results indicated that the total TEQs of HPAHs were lower than parent PAHs in atmospheric PM10 and PM2.5 samples in Shenzhen.
20 CFR 411.245 - What are a PM's responsibilities under the Ticket to Work program?
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false What are a PM's responsibilities under the Ticket to Work program? 411.245 Section 411.245 Employees' Benefits SOCIAL SECURITY ADMINISTRATION THE... formats. For purposes of this section, accessible format means by media that is appropriate to a...
20 CFR 411.245 - What are a PM's responsibilities under the Ticket to Work program?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false What are a PM's responsibilities under the Ticket to Work program? 411.245 Section 411.245 Employees' Benefits SOCIAL SECURITY ADMINISTRATION THE... formats. For purposes of this section, accessible format means by media that is appropriate to a...
20 CFR 411.245 - What are a PM's responsibilities under the Ticket to Work program?
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false What are a PM's responsibilities under the Ticket to Work program? 411.245 Section 411.245 Employees' Benefits SOCIAL SECURITY ADMINISTRATION THE... formats. For purposes of this section, accessible format means by media that is appropriate to a...
20 CFR 411.245 - What are a PM's responsibilities under the Ticket to Work program?
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false What are a PM's responsibilities under the Ticket to Work program? 411.245 Section 411.245 Employees' Benefits SOCIAL SECURITY ADMINISTRATION THE... formats. For purposes of this section, accessible format means by media that is appropriate to a...
20 CFR 411.245 - What are a PM's responsibilities under the Ticket to Work program?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false What are a PM's responsibilities under the Ticket to Work program? 411.245 Section 411.245 Employees' Benefits SOCIAL SECURITY ADMINISTRATION THE... formats. For purposes of this section, accessible format means by media that is appropriate to a...
Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M.
2015-01-01
Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%–60% (by weight) of fine particulate matter larger than 1 µm (PM2.5–1.0) in outdoor samples and 18% of PM2.5–1.0 in subway samples. Iron-containing particles accounted for only 3%–6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM10–2.5) with soil/road dust particles dominating outdoor samples (66%–83%) and iron-containing particles contributing most to subway PM10–2.5 (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM10–2.5 than PM2.5–1.0. Also as expected, the mass fraction of iron-containing particles was substantially less in PM10–2.5 than in PM2.5–1.0. Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM2.5–1.0 and PM10-2.5 simultaneously and by composition at multiple locations. PMID:25689348
NASA Astrophysics Data System (ADS)
Engelbrecht, Johann P.; Moosmüller, Hans; Pincock, Samuel; Jayanty, R. K. M.; Lersch, Traci; Casuccio, Gary
2016-08-01
This paper promotes an understanding of the mineralogical, chemical, and physical interrelationships of re-suspended mineral dusts collected as grab samples from global dust sources. Surface soils were collected from arid regions, including the southwestern USA, Mali, Chad, Morocco, Canary Islands, Cabo Verde, Djibouti, Afghanistan, Iraq, Kuwait, Qatar, UAE, Serbia, China, Namibia, Botswana, Australia, and Chile. The < 38 µm sieved fraction of each sample was re-suspended in a chamber, from which the airborne mineral dust could be extracted, sampled, and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5 particulate mass fractions, an aerodynamic particle size analyzer, and a three-wavelength (405, 532, 781 nm) photoacoustic instrument with integrating reciprocal nephelometer for monitoring absorption and scattering coefficients during the dust re-suspension process. Filter sampling media included Teflon® membrane and quartz fiber filters for chemical analysis and Nuclepore® filters for individual particle analysis by scanning electron microscopy (SEM). The < 38 µm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 75, < 125 µm soil fractions were mineralogically assessed by optical microscopy. Presented here are results of the optical measurements, showing the interdependency of single-scattering albedos (SSA) at three different wavelengths and mineralogical content of the entrained dust samples. To explain the elevated concentrations of iron (Fe) and Fe / Al ratios in the soil re-suspensions, we propose that dust particles are to a large extent composed of nano-sized particles of micas, clays, metal oxides, and ions of potassium (K+), calcium (Ca2+), and sodium (Na+) evenly dispersed as a colloid or adsorbed in amorphous clay-like material. Also shown are differences in SSA of the kaolinite/hematite/goethite samples from Mali and those from colloidal soils elsewhere. Results from this study can be integrated into a database of mineral dust properties, for applications in climate modeling, remote sensing, visibility, health (medical geology), ocean fertilization, and impact on equipment.
Niehaus, William N; Silver, Julie K; Katz, Matthew S
2018-05-01
Implementation science is an evolving part of translating evidence into clinical practice and public health policy. This report describes how a social media strategy for the journal PM&R using metrics, including alternative metrics, contributes to the dissemination of research and other information in the field of physical medicine and rehabilitation. The primary goal of the strategy was to disseminate information about rehabilitation medicine, including but not limited to new research published in the journal, to health care professionals. Several different types of metrics were studied, including alternative metrics that are increasingly being used to demonstrate impact in academic medicine. A secondary goal was to encourage diversity and inclusion of the physiatric workforce-enhancing the reputations of all physiatrists by highlighting their research, lectures, awards, and other accomplishments with attention to those who may be underrepresented. A third goal was to educate the public so that they are more aware of the field and how to access care. This report describes the early results following initiation of PM&R's coordinated social media strategy. Through a network of social media efforts that are strategically integrated, physiatrists and their associated institutions have an opportunity to advance their research and clinical agendas, support the diverse physiatric workforce, and educate the public about the field to enhance patient awareness and access to care. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Kaufman, Joel D; Adar, Sara D; Barr, R Graham; Budoff, Matthew; Burke, Gregory L; Curl, Cynthia L; Daviglus, Martha L; Roux, Ana V Diez; Gassett, Amanda J; Jacobs, David R; Kronmal, Richard; Larson, Timothy V; Navas-Acien, Ana; Olives, Casey; Sampson, Paul D; Sheppard, Lianne; Siscovick, David S; Stein, James H; Szpiro, Adam A; Watson, Karol E
2016-01-01
Summary Background Long-term exposure to fine particulate matter less than 2·5 μm in diameter (PM2·5) and traffic-related air pollutant concentrations are associated with cardiovascular risk. The disease process underlying these associations remains uncertain. We aim to assess association between long-term exposure to ambient air pollution and progression of coronary artery calcium and common carotid artery intima-media thickness. Methods In this prospective 10-year cohort study, we repeatedly measured coronary artery calcium by CT in 6795 participants aged 45–84 years enrolled in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) in six metropolitan areas in the USA. Repeated scans were done for nearly all participants between 2002 and 2005, for a subset of participants between 2005 and 2007, and for half of all participants between 2010 and 2012. Common carotid artery intima-media thickness was measured by ultrasound in all participants at baseline and in 2010–12 for 3459 participants. Residence-specific spatio-temporal pollution concentration models, incorporating community-specific measurements, agency monitoring data, and geographical predictors, estimated concentrations of PM2·5 and nitrogen oxides (NOX) between 1999 and 2012. The primary aim was to examine the association between both progression of coronary artery calcium and mean carotid artery intima-media thickness and long-term exposure to ambient air pollutant concentrations (PM2·5, NOX, and black carbon) between examinations and within the six metropolitan areas, adjusting for baseline age, sex, ethnicity, socioeconomic characteristics, cardiovascular risk factors, site, and CT scanner technology. Findings In this population, coronary calcium increased on average by 24 Agatston units per year (SD 58), and intima-media thickness by 12 μm per year (10), before adjusting for risk factors or air pollutant exposures. Participant-specific pollutant concentrations averaged over the years 2000–10 ranged from 9·2–22·6 μg PM2·5/m3 and 7·2–139·2 parts per billion (ppb) NOX. For each 5 μg PM2·5/m3 increase, coronary calcium progressed by 4·1 Agatston units per year (95% CI 1·4–6·8) and for each 40 ppb NOX coronary calcium progressed by 4·8 Agatston units per year (0·9–8·7). Pollutant exposures were not associated with intima-media thickness change. The estimate for the effect of a 5 μg/m3 higher long-term exposure to PM2·5 in intima-media thickness was −0·9 μm per year (95% CI −3·0 to 1·3). For 40 ppb higher NOX, the estimate was 0·2 μm per year (−1·9 to 2·4). Interpretation Increased concentrations of PM2·5 and traffc-related air pollution within metropolitan areas, in ranges commonly encountered worldwide, are associated with progression in coronary calcification, consistent with acceleration of atherosclerosis. This study supports the case for global efforts of pollution reduction in prevention of cardiovascular diseases. Funding US Environmental Protection Agency and US National Institutes of Health. PMID:27233746
Effect of lauricidin and ethylenediaminetetraacetic acid on growth of nine hymenomycetous fungi.
C. Y. Li; Paul E. Aho
1984-01-01
Growth of nine wood-decaying basidiomycetes was measured on media containing 10, 100, and 1,000 parts per million (p/m) Lauricidin with or without 0.1 percent ethylenediaminetetraacetic acid (EDTA). EDTA alone significantly reduced the growth of all fungi tested. Lauricidin at 1,000 p/m significantly retarded the growth of all fungi except two: Ganoderma...
The distribution of particulate matter (PM) concentrations has an impact on human health effects and the setting of PM regulations. Since PM is commonly sampled on less than daily schedules, the magnitude of sampling errors needs to be determined. Daily PM data from Spokane, W...
2011-01-01
Background Ambient particulate matter (PM) exposure is associated with respiratory and cardiovascular morbidity and mortality. To what extent such effects are different for PM obtained from different sources or locations is still unclear. This study investigated the in vitro toxicity of ambient PM collected at different sites in the Netherlands in relation to PM composition and oxidative potential. Method PM was sampled at eight sites: three traffic sites, an underground train station, as well as a harbor, farm, steelworks, and urban background location. Coarse (2.5-10 μm), fine (< 2.5 μm) and quasi ultrafine PM (qUF; < 0.18 μm) were sampled at each site. Murine macrophages (RAW 264.7 cells) were exposed to increasing concentrations of PM from these sites (6.25-12.5-25-50-100 μg/ml; corresponding to 3.68-58.8 μg/cm2). Following overnight incubation, MTT-reduction activity (a measure of metabolic activity) and the release of pro-inflammatory markers (Tumor Necrosis Factor-alpha, TNF-α; Interleukin-6, IL-6; Macrophage Inflammatory Protein-2, MIP-2) were measured. The oxidative potential and the endotoxin content of each PM sample were determined in a DTT- and LAL-assay respectively. Multiple linear regression was used to assess the relationship between the cellular responses and PM characteristics: concentration, site, size fraction, oxidative potential and endotoxin content. Results Most PM samples induced a concentration-dependent decrease in MTT-reduction activity and an increase in pro-inflammatory markers with the exception of the urban background and stop & go traffic samples. Fine and qUF samples of traffic locations, characterized by a high concentration of elemental and organic carbon, induced the highest pro-inflammatory activity. The pro-inflammatory response to coarse samples was associated with the endotoxin level, which was found to increase dramatically during a three-day sample concentration procedure in the laboratory. The underground samples, characterized by a high content of transition metals, showed the largest decrease in MTT-reduction activity. PM size fraction was not related to MTT-reduction activity, whereas there was a statistically significant difference in pro-inflammatory activity between Fine and qUF PM. Furthermore, there was a statistically significant negative association between PM oxidative potential and MTT-reduction activity. Conclusion The response of RAW264.7 cells to ambient PM was markedly different using samples collected at various sites in the Netherlands that differed in their local PM emission sources. Our results are in support of other investigations showing that the chemical composition as well as oxidative potential are determinants of PM induced toxicity in vitro. PMID:21888644
NASA Astrophysics Data System (ADS)
Canute Kamikawachi, Ricardo; Rafael Collere Possetti, Gustavo; Falate, Rosane; Muller, Marcia; Luís Fabris, José
2007-05-01
A detailed study of the thermal and strain sensitivities of a long-period grating when the device is immersed in different external media is presented. The range of refractive indices analyzed are within 1.000 to 1.447, corresponding to samples of air, water, ethanol, naphtha, thinner, turpentine, and kerosene. Within the same range of refractive indices, the strain sensitivity is between (-0.24 ± 0.03) and (-0.94 ± 0.11) pm/μɛ. For the grating immersed in these fluids, the refractive index sensitivity ranges from -3 to -1035.6 nm per refractive index units. The coupling thermo-optic coefficients and the strain-optic coefficients are also measured, resulting in the range from (2.45 ± 0.04)×10-5 to (15.89 ± 0.82)×10-5 deg C-1 and (-1.15 ± 0.04) to (-1.61 ± 0.04) μɛ-1, respectively. A noticeable nonlinear behavior of the thermal sensitivity is found for external media with refractive indices higher than 1.430.
Air Quality and Road Emission Results for Fort Stewart, Georgia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkham, Randy R.; Driver, Crystal J.; Chamness, Mickie A.
2004-02-02
The Directorate of Public Works Environmental & Natural Resources Division (Fort Stewart /Hunter Army Airfield) contracted with the Pacific Northwest National Laboratory (PNNL) to monitor particulate matter (PM) concentrations on Fort Stewart, Georgia. The purpose of this investigation was to establish a PM sampling network using monitoring equipment typically used in U.S. Environmental Protection Agency (EPA) ''saturation sampling'', to determine air quality on the installation. In this initial study, the emphasis was on training-generated PM, not receptor PM loading. The majority of PM samples were 24-hr filter-based samples with sampling frequency ranging from every other day, to once every sixmore » days synchronized with the EPA 6th day national sampling schedule. Eight measurement sites were established and used to determine spatial variability in PM concentrations and evaluate whether fluctuations in PM appear to result from training activities and forest management practices on the installation. Data collected to date indicate the average installation PM2.5 concentration is lower than that of nearby urban Savannah, Georgia. At three sites near the installation perimeter, analyses to segregate PM concentrations by direction of air flow across the installation boundary indicate that air (below 80 ft) leaving the installation contains less PM2.5 than that entering the installation. This is reinforced by the observation that air near the ground is cleaner on average than the air at the top of the canopy.« less
Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.
2017-12-01
Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given power rating.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ambient temperature and pressure and the sampling time. The mass concentrations of both PM10c and PM2.5 in... 25 hours), and the start times of the PM2.5 and PM10c samples are within 10 minutes and the stop times of the samples are also within 10 minutes (see section 10.4 of this appendix). 4.0Accuracy (bias...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ambient temperature and pressure and the sampling time. The mass concentrations of both PM10c and PM2.5 in... 25 hours), and the start times of the PM2.5 and PM10c samples are within 10 minutes and the stop times of the samples are also within 10 minutes (see section 10.4 of this appendix). 4.0Accuracy (bias...
Code of Federal Regulations, 2013 CFR
2013-07-01
... ambient temperature and pressure and the sampling time. The mass concentrations of both PM10c and PM2.5 in... 25 hours), and the start times of the PM2.5 and PM10c samples are within 10 minutes and the stop times of the samples are also within 10 minutes (see section 10.4 of this appendix). 4.0Accuracy (bias...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ambient temperature and pressure and the sampling time. The mass concentrations of both PM10c and PM2.5 in... 25 hours), and the start times of the PM2.5 and PM10c samples are within 10 minutes and the stop times of the samples are also within 10 minutes (see section 10.4 of this appendix). 4.0Accuracy (bias...
Liu, Huan; Zhang, Xu; Zhang, Hao; Yao, Xiangwu; Zhou, Meng; Wang, Jiaqi; He, Zhanfei; Zhang, Huihui; Lou, Liping; Mao, Weihua; Zheng, Ping; Hu, Baolan
2018-02-01
In recent years, air pollution events have occurred frequently in China during the winter. Most studies have focused on the physical and chemical composition of polluted air. Some studies have examined the bacterial bioaerosols both indoors and outdoors. But few studies have focused on the relationship between air pollution and bacteria, especially pathogenic bacteria. Airborne PM samples with different diameters and different air quality index values were collected in Hangzhou, China from December 2014 to January 2015. High-throughput sequencing of 16S rRNA was used to categorize the airborne bacteria. Based on the NCBI database, the "Human Pathogen Database" was established, which is related to human health. Among all the PM samples, the diversity and concentration of total bacteria were lowest in the moderately or heavily polluted air. However, in the PM2.5 and PM10 samples, the relative abundances of pathogenic bacteria were highest in the heavily and moderately polluted air respectively. Considering the PM samples with different particle sizes, the diversities of total bacteria and the proportion of pathogenic bacteria in the PM10 samples were different from those in the PM2.5 and TSP samples. The composition of PM samples with different sizes range may be responsible for the variances. The relative humidity, carbon monoxide and ozone concentrations were the main factors, which affected the diversity of total bacteria and the proportion of pathogenic bacteria. Among the different environmental samples, the compositions of the total bacteria were very similar in all the airborne PM samples, but different from those in the water, surface soil, and ground dust samples. Which may be attributed to that the long-distance transport of the airflow may influence the composition of the airborne bacteria. This study of the pathogenic bacteria in airborne PM samples can provide a reference for environmental and public health researchers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tsai, Hsieh-Hung; Yuan, Chung-Shin; Hung, Chung-Hsuang; Lin, Chitsan; Lin, Yuan-Chung
2011-04-01
The influence of sea-land breezes (SLBs) on the spatial distribution and temporal variation of particulate matter (PM) in the atmosphere was investigated over coastal Taiwan. PM was simultaneously sampled at inland and offshore locations during three intensive sampling periods. The intensive PM sampling protocol was continuously conducted over a 48-hr period. During this time, PM2.5 and PM(2.5-10) (PM with aerodynamic diameters < 2.5 microm and between 2.5 and 10 microm, respectively) were simultaneously measured with dichotomous samplers at four sites (two inland and two offshore sites) and PM10 (PM with aerodynamic diameters < or =10 microm) was measured with beta-ray monitors at these same 4 sites and at 10 sites of the Taiwan Air Quality Monitoring Network. PM sampling on a mobile air quality monitoring boat was further conducted along the coastline to collect offshore PM using a beta-ray monitor and a dichotomous sampler. Data obtained from the inland sites (n=12) and offshore sites (n=2) were applied to plot the PM10 concentration contour using Surfer software. This study also used a three-dimensional meteorological model (Pennsylvania State University/National Center for Atmospheric Research Meteorological Model 5) and the Comprehensive Air Quality Model with Extensions to simulate surface wind fields and spatial distribution of PM10 over the coastal region during the intensive sampling periods. Spatial distribution of PM10 concentration was further used in investigating the influence of SLBs on the transport of PM10 over the coastal region. Field measurement and model simulation results showed that PM10 was transported back and forth across the coastline. In particular, a high PM10 concentration was observed at the inland sites during the day because of sea breezes, whereas a high PM10 concentration was detected offshore at night because of land breezes. This study revealed that the accumulation of PM in the near-ocean region because of SLBs influenced the tempospatial distribution of PM10 over the coastal region.
Microbiological quality of air in free-range and box-stall stable horse keeping systems.
Wolny-Koładka, Katarzyna
2018-04-07
The aim of this study was to assess the microbiological quality of air in three horse riding centers differing in the horse keeping systems. The air samples were collected in one facility with free-range horse keeping system and two with box stalls of different sizes. The samples were collected over a period of 3 years (2015-2017), four times per year (spring, summer, autumn, winter) to assess the effect of seasonal changes. The prevalence of aerobic mesophilic bacteria, mold fungi, actinomycetes, Staphylococcus spp., and Escherichia coli was determined by the air collision method on Petri dishes with appropriate microbiological media. At the same time, air temperature, relative humidity, and particulate matter concentration (PM 10 , PM 2.5 ) were measured. It was found that the horse keeping system affects the occurrence of the examined airborne microorganisms. Over the 3-year period of study, higher temperature and humidity, as well as particulate matter concentration-which notoriously exceeded limit values-were observed in the facilities with the box-stall system. The air sampled from the largest horse riding center, with the largest number of horses and the box-stall system of horse keeping, was also characterized by the heaviest microbiological contamination. Among others, bacteria from the following genera: Staphylococcus spp., Streptococcus spp., Bacillus spp., and E. coli and fungi from the genera Aspergillus, Fusarium, Mucor, Rhizopus, Penicillium, Trichothecium, Cladosporium, and Alternaria were identified in the analyzed samples.
Evaluation of the Quality of Beef Patties Formulated with Dried Pumpkin Pulp and Seed
2018-01-01
The objective of this study was to investigate quality attributes of beef patties formulated with dried pumpkin pulp and seed mixture (PM). Four different meatball formulations were prepared where lean was replaced with PM as C (0% PM), P2 (2% PM), P3 (3% PM) and P5 (5% PM). Utilization of PM decreased moisture and increased ash content of the patties. Incorporation of 5% PM (P5) increased the pH value of both uncooked and cooked patties compared to C group. Increasing levels of PM increased water-holding capacity. No significant differences were found in cooking yield and diameter change with the addition of PM. Incorporation of PM increased fat and decreased moisture retention of the samples. a* values were decreased with PM addition, where L* values did not differ among treatments and b* values were similar in C, P3 and P5 samples. Textural properties were mostly equivalent to control samples with the incorporation of PM even at higher concentrations. The addition of PM did not significantly affect any of the sensory scores tested. These results indicated that utilization of PM presents the opportunity to decrease the amount of meat besides to improve healthier profile without causing negative changes in physical, chemical and technological quality of beef patties. PMID:29725220
Evaluation of the Quality of Beef Patties Formulated with Dried Pumpkin Pulp and Seed.
Serdaroğlu, M; Kavuşan, H S; İpek, G; Öztürk, B
2018-02-01
The objective of this study was to investigate quality attributes of beef patties formulated with dried pumpkin pulp and seed mixture (PM). Four different meatball formulations were prepared where lean was replaced with PM as C (0% PM), P2 (2% PM), P3 (3% PM) and P5 (5% PM). Utilization of PM decreased moisture and increased ash content of the patties. Incorporation of 5% PM (P5) increased the pH value of both uncooked and cooked patties compared to C group. Increasing levels of PM increased water-holding capacity. No significant differences were found in cooking yield and diameter change with the addition of PM. Incorporation of PM increased fat and decreased moisture retention of the samples. a* values were decreased with PM addition, where L* values did not differ among treatments and b* values were similar in C, P3 and P5 samples. Textural properties were mostly equivalent to control samples with the incorporation of PM even at higher concentrations. The addition of PM did not significantly affect any of the sensory scores tested. These results indicated that utilization of PM presents the opportunity to decrease the amount of meat besides to improve healthier profile without causing negative changes in physical, chemical and technological quality of beef patties.
Genotoxicity and physicochemical characteristics of traffic-related ambient particulate matter.
de Kok, Theo M; Hogervorst, Janneke G; Briedé, Jacco J; van Herwijnen, Marcel H; Maas, Lou M; Moonen, Edwin J; Driece, Hermen A; Kleinjans, Jos C
2005-08-01
Exposure to ambient particulate matter (PM) has been linked to several adverse health effects. Since vehicular traffic is a PM source of growing importance, we sampled total suspended particulate (TSP), PM(10), and PM(2.5) at six urban locations with pronounced differences in traffic intensity. The mutagenicity, DNA-adduct formation, and induction of oxidative DNA damage by the samples were studied as genotoxicological parameters, in relation to polycyclic aromatic hydrocarbon (PAH) levels, elemental composition, and radical-generating capacity (RGC) as chemical characteristics. We found pronounced differences in the genotoxicity and chemical characteristics of PM from the various locations, although we could not establish a correlation between traffic intensity and any of these characteristics for any of the PM size fractions. Therefore, the differences between locations may be due to local sources of PM, other than traffic. The concentration of total (carcinogenic) PAHs correlated positively with RGC, direct and S9-mediated mutagenicity, as well as the induction of DNA adducts and oxidative DNA damage. The interaction between total PAHs and transition metals correlated positively with DNA-adduct formation, particularly from the PM(2.5) fraction. RGC was not associated with one specific PM size fraction, but mutagenicity and DNA reactivity after metabolic activation were relatively high in PM(10) and PM(2.5), when compared with TSP. We conclude that the toxicological characteristics of urban PM samples show pronounced differences, even when PM concentrations at the sample sites are comparable. This implies that emission reduction strategies that take chemical and toxicological characteristics of PM into account may be useful for reducing the health risks associated with PM exposure. Copyright 2005 Wiley-Liss, Inc.
Code of Federal Regulations, 2010 CFR
2010-07-01
....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...
Code of Federal Regulations, 2011 CFR
2011-07-01
....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...
Code of Federal Regulations, 2012 CFR
2012-07-01
....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...
Code of Federal Regulations, 2014 CFR
2014-07-01
....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...
Code of Federal Regulations, 2013 CFR
2013-07-01
....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...
PM levels in urban area of Bejaia
NASA Astrophysics Data System (ADS)
Benaissa, Fatima; Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella
2017-04-01
Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. The average city-wide PM10 and PM2.5 concentrations measured during this sampling were 87.8 ± 33.9 and 28.7 ± 10.6 µg/m3 respectively. These results show that particulate matter levels are high and exceed Algerian ambient air quality standards (maximum 80 µg/m3, without specifying the particle size). Further, PM10 and PM2.5 averages were well above the prescribed 24-hour average World Health Organization Air Quality Guidelines (WHO AQG) (50 µg/m3 for PM10 and 25 µg/m3 for PM2.5). The PM1, PM2,5, PM4 and PM7 fractions accounted for 15%, 32 %, 56% and 78% respectively of the PM10 measurements. Our analysis reveals that PM concentration variations in the study region were influenced primarily by traffic. In fact, lower PM10 concentrations (21.7 and 33.1 µg/m3) were recorded in residential sites while higher values (53.1, and 45.2 µg/m3) were registered in city centers. Keywords: Particulate matter, Urban area, vehicle fleet, Bejaia.
Kim, Jee Young; Magari, Shannon R; Herrick, Robert F; Smith, Thomas J; Christiani, David C
2004-11-01
Particulate air pollution, specifically the fine particle fraction (PM2.5), has been associated with increased cardiopulmonary morbidity and mortality in general population studies. Occupational exposure to fine particulate matter can exceed ambient levels by a large factor. Due to increased interest in the health effects of particulate matter, many particle sampling methods have been developed In this study, two such measurement methods were used simultaneously and compared. PM2.5 was sampled using a filter-based gravimetric sampling method and a direct-reading instrument, the TSI Inc. model 8520 DUSTTRAK aerosol monitor. Both sampling methods were used to determine the PM2.5 exposure in a group of boilermakers exposed to welding fumes and residual fuel oil ash. The geometric mean PM2.5 concentration was 0.30 mg/m3 (GSD 3.25) and 0.31 mg/m3 (GSD 2.90)from the DUSTTRAK and gravimetric method, respectively. The Spearman rank correlation coefficient for the gravimetric and DUSTTRAK PM2.5 concentrations was 0.68. Linear regression models indicated that log, DUSTTRAK PM2.5 concentrations significantly predicted loge gravimetric PM2.5 concentrations (p < 0.01). The association between log(e) DUSTTRAK and log, gravimetric PM2.5 concentrations was found to be modified by surrogate measures for seasonal variation and type of aerosol. PM2.5 measurements from the DUSTTRAK are well correlated and highly predictive of measurements from the gravimetric sampling method for the aerosols in these work environments. However, results from this study suggest that aerosol particle characteristics may affect the relationship between the gravimetric and DUSTTRAK PM2.5 measurements. Recalibration of the DUSTTRAK for the specific aerosol, as recommended by the manufacturer, may be necessary to produce valid measures of airborne particulate matter.
A FUNCTIONAL GROUP CHARACTERIZATION OF ORGANIC PM 2.5 EXPOSURE: RESULTS FROM THE RIOPA STUDY
The functional group (FG) composition of urban residential outdoor, indoor, and personal fine particle (PM2.5) samples is presented and used to provide insights relevant to organic PM2.5 exposure. PM2.5 samples (48 h) were collected during the Rel...
Li, Shi-Wei; Li, Hong-Bo; Luo, Jun; Li, Hui-Ming; Qian, Xin; Liu, Miao-Miao; Bi, Jun; Cui, Xin-Yi; Ma, Lena Q
2016-09-01
Pollution controls were implemented to improve the air quality for the 2014 Youth Olympic Games (YOG) in Nanjing. To investigate the influence of pollution control on Pb inhalation bioaccessibility in PM2.5, samples were collected before, during, and after YOG. The objectives were to identify Pb sources in PM2.5 using stable isotope fingerprinting technique and compare Pb inhalation bioaccessibility in PM2.5 using two simulated lung fluids. While artificial lysosomal fluid (ALF) simulates interstitial fluid at pH 7.4, Gamble's solution simulates fluid in alveolar macrophages at pH 4.5. The Pb concentration in PM2.5 samples during YOG (88.2ngm(-3)) was 44-48% lower than that in non-YOG samples. Based on stable Pb isotope ratios, Pb in YOG samples was mainly from coal combustion while Pb in non-YOG samples was from coal combustion and smelting activities. While Pb bioaccessibility in YOG samples was lower than those in non-YOG samples (59-79% vs. 55-87%) by ALF, it was higher than those in non-YOG samples (11-29% vs. 5.3-21%) based on Gamble's solution, attributing to the lower pH and organic acids in ALF. Different Pb bioaccessibility in PM2.5 between samples resulted from changes in Pb species due to pollution control. PbSO4 was the main Pb species in PM2.5 from coal combustion, which was less soluble in ALF than PbO from smelting activities, but more soluble in Gamble's solution. This study showed it is important to consider Pb bioaccessibility during pollution control as source control not only reduced Pb contamination in PM2.5 but also influenced Pb bioaccessibility. Published by Elsevier Ltd.
Wang, Guixiang; Su, Xiaoli; Xu, Qingjun; Xu, Guiyun; Lin, Jiehua; Luo, Xiliang
2018-03-15
Direct detection of targets in complex biological media with conventional biosensors is an enormous challenge due to the nonspecific adsorption and severe biofouling. In this work, a facile strategy for sensitive and low fouling detection of adenosine triphosphate (ATP) is developed through the construction of a mixed self-assembled biosensing interface, which was composed of zwitterionic peptide (antifouling material) and ATP aptamer (bio-recognition element). The peptide and aptamer (both containing thiol groups) were simultaneously self-assembled onto gold electrode surface electrodeposited with gold nanoparticles. The developed aptasensor possessed high selectivity and sensitivity for ATP, and it showed a wide linear response range towards ATP from 0.1pM to 5nM. Owing to the presence of peptide with excellent antifouling property in the biosensing interface, the aptasensor can detect ATP in complex biological media with remarkably reduced biofouling or nonspecific adsorption effect. Moreover, it can directly detect ATP in 1% human whole blood without suffering from any significant interference, indicating its great potential for practical assaying of ATP in biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Hamad, Samera H; Schauer, James J; Antkiewicz, Dagmara S; Shafer, Martin M; Kadhim, Ahmed Kh
2016-02-01
The objective of this study was to assess the impact of changes in atmospheric particulate matter (PM) composition on oxidative stress markers in an in-vitro alveolar macrophage (AM) model. Fifty-three PM2.5 samples were collected during a year-long PM sampling campaign in Baghdad, Iraq, a semi-arid region of the country. Monthly composites were analyzed for chemical composition and for biological activity using in-vitro measurements of ROS production and gene expression in the AM model. Twelve genes that were differentially expressed upon PM exposure were identified and their co-associations with the composition of PM2.5 were examined. Ten of those genes were up-regulated in January and April composites; samples which also exhibited high ROS activity and relatively high PM mass concentration. ROS production was statistically correlated with total PM2.5 mass, levoglucosan (a wood burning tracer) and several trace elements of the PM (especially V and Ni, which are associated with oil combustion). The expression of several cytokine genes was found to be moderately associated with PM mass, crustal materials (indication of dusty days or dust storms) and certain metals (e.g. V, Fe and Ni) in the PM. Thus, the ROS activity association with PM2.5, may, in part, be driven by redox-active metals. The antioxidant response genes (Nqo1 and Hmox1) were moderately associated with polyaromatic hydrocarbons (PAHs) and showed a good correlation (r-Pearson of >0.7) with metals linked to vehicle-related emissions (i.e. Cu, Zn and Sb). Examining these associations in a larger sample pool (e.g. daily samples) would improve the power of the analysis and may strengthen the implication of these chemicals in the oxidative stress of biological systems, which could aid in the development of new metrics of PM toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Hui-Hui; Li, Zheng; Liu, Yu; Xinag, Ping; Cui, Xin-Yi; Ye, Hui; Hu, Bao-Lan; Lou, Li-Ping
With the increasing occurrence of haze during the summer, the physicochemical characteristics and toxicity differences in PM 2.5 in different seasons are of great concern. Hangzhou is located in an area that has a subtropical monsoon climate where the humidity is very high during both the summer and winter. However, there are limited studies on the seasonal differences in PM 2.5 in these weather conditions. In this test, PM 2.5 samples were collected in the winter and summer, the morphology and chemical composition of PM 2.5 were analyzed, the toxicity of PM 2.5 to human bronchial cells BEAS-2B was compared, and the correlation between PM 2.5 toxicity and the chemical composition was discussed. The results showed that during both the winter and summer, the main compounds in the PM 2.5 samples were water-soluble ions, particularly SO 4 2- , NO 3 - , and NH 4 + , followed by organic components, while heavy metals were present at lower levels. The higher the mass concentration of PM 2.5 , the greater its impact on cell viability and ROS levels. However, when the mass concentration of PM 2.5 was similar, the water extraction from the summer samples showed a greater impact on BEAS-2B than that from the winter samples. The cytotoxicity of PM 2.5 was closely associated with heavy metals and organic pollutants but less related to water-soluble ions.
Monitoring of cotton dust and health risk assessment in small-scale weaving industry.
Tahir, Muhammad Wajid; Mumtaz, Muhammad Waseem; Tauseef, Shanza; Sajjad, Muqadas; Nazeer, Awais; Farheen, Nazish; Iqbal, Muddsar
2012-08-01
The present study describes the estimation of particulate matter (cotton dust) with different sizes, i.e., PM(1.0), PM(2.5), PM(4.0), and PM(10.0 μm) in small-scale weaving industry (power looms) situated in district Hafizabad, Punjab, Pakistan, and the assessment of health problems of workers associated with these pollutants. A significant difference was found in PM(1.0), PM(2.5), PM(4.0), and PM(10.0) with reference to nine different sampling stations with p values <0.05. Multiple comparisons of particulate matter with respect to size, i.e. PM(1.0), PM(2.5), PM(4.0), and PM(10.0), depict that PM(1.0) differs significantly from PM(2.5), PM(4.0), and PM(10.0), with p values <0.05 and that PM(2.5) differs significantly from PM(1.0) and PM(10.0), with p values <0.05, whereas PM(2.5) differs non-significantly from PM(4.0), with a p value >0.05 in defined sampling stations on an average basis. Majority of the workers were facing several diseases due to interaction with particulate matter (cotton dust) during working hours. Flue, cough, eye, and skin infections were the most common diseases among workers caused by particulate matter (cotton dust).
Effects of wind direction on coarse and fine particulate matter concentrations in southeast Kansas.
Guerra, Sergio A; Lane, Dennis D; Marotz, Glen A; Carter, Ray E; Hohl, Carrie M; Baldauf, Richard W
2006-11-01
Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from "other" directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.
USDA-ARS?s Scientific Manuscript database
Particle size distributions (PSD) have long been used to more accurately estimate the PM10 fraction of total particulate matter (PM) stack samples taken from agricultural sources. These PSD analyses were typically conducted using a Coulter Counter with 50 micrometer aperture tube. With recent increa...
40 CFR 1065.170 - Batch sampling for gaseous and PM constituents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... collecting and storing PM on a filter. You may use batch sampling to store emissions that have been diluted.... As another example, do not use PM filters that irreversibly absorb or adsorb gases to the extent that... must follow the requirements in § 1065.140(e)(2) related to PM dilution ratios. For each filter, if you...
40 CFR 1065.170 - Batch sampling for gaseous and PM constituents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... collecting and storing PM on a filter. You may use batch sampling to store emissions that have been diluted... another example, do not use PM filters that irreversibly absorb or adsorb gases to the extent that it... follow the requirements in § 1065.140(e)(2) related to PM dilution ratios. For each filter, if you expect...
40 CFR 1065.170 - Batch sampling for gaseous and PM constituents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... collecting and storing PM on a filter. You may use batch sampling to store emissions that have been diluted... another example, do not use PM filters that irreversibly absorb or adsorb gases to the extent that it... follow the requirements in § 1065.140(e)(2) related to PM dilution ratios. For each filter, if you expect...
40 CFR 1065.170 - Batch sampling for gaseous and PM constituents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... collecting and storing PM on a filter. You may use batch sampling to store emissions that have been diluted... another example, do not use PM filters that irreversibly absorb or adsorb gases to the extent that it... follow the requirements in § 1065.140(e)(2) related to PM dilution ratios. For each filter, if you expect...
40 CFR 1065.170 - Batch sampling for gaseous and PM constituents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... collecting and storing PM on a filter. You may use batch sampling to store emissions that have been diluted... another example, do not use PM filters that irreversibly absorb or adsorb gases to the extent that it... follow the requirements in § 1065.140(e)(2) related to PM dilution ratios. For each filter, if you expect...
Acute health effects of PM10 pollution on symptomatic and asymptomatic children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C.A. 3d.; Dockery, D.W.
1992-05-01
This study assessed the association between daily changes in respiratory health and respirable particulate pollution (PM10) in Utah Valley during the winter of 1990-1991. During the study period, 24-h PM10 concentrations ranged from 7 to 251 micrograms/m3. Participants included symptomatic and asymptomatic samples of fifth- and sixth-grade students. Relatively small but statistically significant (p less than 0.01) negative associations between peak expiratory flow (PEF) and PM10 were observed for both the symptomatic and asymptomatic samples. The association was strongest for the symptomatic children. Large associations between the incidence of respiratory symptoms, especially cough, and PM10 pollution were also observed formore » both samples. Again the association was strongest for the symptomatic sample. Immediate and delayed PM10 effects were observed. Respiratory symptoms and PEF changes were more closely associated with 5-day moving-average PM10 levels than with concurrent-day levels. These associations were also observed at PM10 levels below the 24-h standard of 150 micrograms/m3. This study indicates that both symptomatic and asymptomatic children may suffer acute health effects of respirable particulate pollution, with symptomatic children suffering the most.« less
Fang, Guor-Cheng; Wu, Yuh-Shen; Chen, Jyh-Cherng; Rau, Jui-Yeh; Huang, Shih-Han; Lin, Chi-Kwong
2006-05-20
The concentrations of total suspended particulate (TSP), fine particles PM(2.5) (with aerodynamic diameter <2.5 microm), coarse particles PM(2.5-10) (with aerodynamic diameter 2.5-10 microm,), and water-soluble inorganic ions were studied at two offshore sampling sites, Taichung Harbor (TH) and Wuci Traffic (WT), near Taiwan Strait in central Taiwan during March 2004 to January 2005. Statistical analyses were also carried out to estimate the possible sources of particulate pollution. Experimental results showed that the average mass concentrations of TSP, PM(2.5) and PM(2.5-10) at TH and WT sampling sites were 154.54 +/- 31.45 and 113.59 +/- 31.94 microg m(-3), 54.03 +/- 16.92 and 42.76 +/- 12.52 microg m(-3), and 30.31+/- 9.79 and 24.16 +/- 7.27 microg m(-3), respectively. The dominant inorganic ions at two sampling sites were SO(4)(2-), NO(3)(-), and NH(4)(+) for TSP and PM(2.5), but that were Ca(2+), Cl(-), and Na(+) for PM(2.5-10). The concentrations of most particulates and inorganic ions were higher in winter at both two sampling sites, and were higher at TH than WT sampling site in each season. From statistical analysis, air-slake of crust surface, sea-salt aerosols, agriculture activities, coal combustion, and mobile vehicles were the possible emission sources of particulate pollution at TH and WT sampling sites.
Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan
2018-05-01
The structural variation of the bacterial community associated with particulate matter (PM) was assessed in an urban area of Beijing during hazy and nonhazy days. Sampling for different PM fractions (PM 2.5 [<2.5 μm], PM 10 [<10 μm], and total suspended particulate) was conducted using three portable air samplers from September 2014 to February 2015. The airborne bacterial community in these samples was analyzed using the Illumina MiSeq platform with bacterium-specific primers targeting the 16S rRNA gene. A total of 1,707,072 reads belonging to 6,009 operational taxonomic units were observed. The airborne bacterial community composition was significantly affected by PM fractions ( R = 0.157, P < 0.01). In addition, the relative abundances of several genera significantly differed between samples with various haze levels; for example, Methylobacillus , Tumebacillus , and Desulfurispora spp. increased in heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature, SO 2 concentration, relative humidity, PM 10 concentration, and CO concentration were significant factors that associated with airborne bacterial community composition. Only six genera increased across PM 10 samples ( Dokdonella , Caenimonas , Geminicoccus , and Sphingopyxis ) and PM 2.5 samples ( Cellulomonas and Rhizobacter ), while a large number of taxa significantly increased in total suspended particulate samples, such as Paracoccus , Kocuria , and Sphingomonas Network analysis indicated that Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Overall, the findings presented here suggest that diverse airborne bacterial communities are associated with PM and provide further understanding of bacterial community structure in the atmosphere during hazy and nonhazy days. IMPORTANCE The results presented here represent an analysis of the airborne bacterial community associated with particulate matter (PM) and advance our understanding of the structural variation of these communities. We observed a shift in bacterial community composition with PM fractions but no significant difference with haze levels. This may be because the bacterial differences are obscured by high bacterial diversity in the atmosphere. However, we also observed that a few genera (such as Methylobacillus , Tumebacillus , and Desulfurispora ) increased significantly on heavy-haze days. In addition, Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Accurate and real-time techniques, such as metagenomics and metatranscriptomics, should be developed for a future survey of the relationship of airborne bacteria and haze. Copyright © 2018 American Society for Microbiology.
The Effect of a Receding Saline Lake (The Salton Sea) on Airborne Particulate Matter Composition.
Frie, Alexander L; Dingle, Justin H; Ying, Samantha C; Bahreini, Roya
2017-08-01
The composition of ambient particulate matter (PM) and its sources were investigated at the Salton Sea, a shrinking saline lake in California. To investigate the influence of playa exposure on PM composition, PM samples were collected during two seasons and at two sites around the Salton Sea. To characterize source composition, soil samples were collected from local playa and desert surfaces. PM and soil samples were analyzed for 15 elements using mass spectrometry and X-ray diffraction. The contribution of sources to PM mass and composition was investigated using Al-referenced enrichment factors (EFs) and source factors resolved from positive matrix factorization (PMF). Playa soils were found to be significantly enriched in Ca, Na, and Se relative to desert soils. PMF analysis resolved the PM 10 data with four source factors, identified as Playa-like, Desert-like, Ca-rich, and Se. Playa-like and desert-like sources were estimated to contribute to a daily average of 8.9% and 45% of PM 10 mass, respectively. Additionally, playa sources were estimated to contribute to 38-68% of PM 10 Na. PM 10 Se concentrations showed strong seasonal variations, suggesting a seasonal cycle of Se volatilization and recondensation. These results support the importance of playas as a source of PM mass and a controlling factor of PM composition.
Organic Components and Elemental Carbon in Soils and Ambient Particles near Phoenix, AZ
NASA Astrophysics Data System (ADS)
Fraser, M. P.; Jia, Y.; Clements, A.
2008-12-01
In the desert southwest, fugitive dust emissions contribute significantly to ambient aerosol concentrations. Wind erosion from the arid land is a primary contributor to ambient particulate matter (PM) concentrations but, in regions including Central Arizona, desert lands have been converted for agriculture use and thus agriculture processes constitute another contributor. As the metropolitan Phoenix region expands into these agricultural lands, urban sources and construction also contributes to the ambient PM load. In an effort to identify and access relative contribution of these and other major PM sources in the region, a series of ambient PM samples and soil samples were collected near Higley, AZ, a suburb of Phoenix which has seen rapid urbanization onto agricultural lands between January and May 2008. The soil samples collected were resuspended and samples of resuspended dust were collected to represent particles smaller than 2.5 microns and 10 microns in aerodynamic diameter (PM2.5 and PM10 respectively). The size segregated soil and ambient PM samples were analyzed for bulk mass, elemental and organic carbon content, and a number of specific compounds including ions, metals, alkanes, organic acids, polycyclic aromatic hydrocarbons, and saccharides. The saccharide contribution to soil organic carbon has been studied to elucidate key factors in the soil carbon balance and markers have been developed for tracing fungal metabolites, plant growth and budding and organic matter decay. Using organic markers, the contribution of various sources to PM10 and PM2.5 levels have been determined by positive matrix factorization (PMF) of the ambient aerosol marker concentrations quantified from PM samples. Subsequently, samples of local soil from native and agricultural fields and local roadways wers size- segregated and analyzed in an effort to create a source profile for the dust in the area. A chemical mass balance model has been used to compare with the PMF results where sampled and resuspended agricultural soil, native soil and road dusts are used to characterize direct emissions of these sources to ambient fine and coarse particulate matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Den Heuvel, Rosette, E-mail: rosette.vandenheuvel@vito.be; Den Hond, Elly, E-mail: elly.denhond@wiv-isp.be; Govarts, Eva, E-mail: eva.govarts@vito.be
Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM{sub 10} in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013–2014 PM{sub 10} was sampled (24 h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with differentmore » pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM{sub 10}, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM{sub 10} particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM{sub 10} (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM{sub 10} particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM{sub 10} characteristics and biological effects of PM{sub 10} were assessed by single and multiple regression analyses. The reduction in cell viability was significantly correlated with BC, Cd and Pb. The induction of IL-8 in Beas-2B cells was significantly associated with Cu, Ni and Zn and endotoxin. Endotoxin levels explained 33% of the variance in IL-8 induction. A significant interaction between ambient temperature and endotoxin on the pro-inflammatory activity was seen. No association was found between OP and the cellular responses. This study supports the hypothesis that, on an equal mass basis, PM{sub 10} induced biological effects differ due to differences in PM{sub 10} characteristics. Metals (Cd, Cu, Ni and Zn), BC, and endotoxin were among the main determinants for the observed biological responses. - Highlights: • On an equal mass basis, PM{sub 10} sampled at an urban, rural and industrial site induced different cellular effects in Beas-2B. • Endotoxin levels and oxidative potential (OP) were analysed in the PM{sub 10} samples. • Black carbon, cadmium and lead were correlated with decreased cell viability. • Endotoxin levels explained the majority of the variance in il-8 induction. • Oxidatively damaged DNA was observed in all the samples.« less
Han, Pi-Guo; Han, Lei; Bian, Yu-Long; Tian, Yu; Xu, Min-Xia; Gao, Feng-Qiang
2017-01-01
Prospective memory (PM) is the process associated with the task of realizing delayed intentions in the future. Researchers distinguish two types of PM, namely time-based PM (tbPM) and event-based PM (ebPM). Experiment 1 investigated the developmental trajectory of 3- to 5-year-old preschool children's PM ability, and the occurrence of delayed retrieval (children execute the PM task in a larger window of opportunity) in both tbPM and ebPM tasks. Results revealed that the 5-year-old children outperformed the 3- and 4-year-old children in PM. Moreover, delayed retrieval was more likely to occur in tbPM task than in ebPM task. In Experiment 2, the influence of ongoing task (OT) difficulty on PM performance was investigated with a sample of 5-year-old children. Results revealed no significant effect of OT difficulty on PM performance. In Experiment 3, we improved children's motivation level to complete the OT, then explored the influence of OT difficulty on children's PM performance. Results revealed that the effect of OT difficulty on PM performance became significant after increasing the children's motivation to complete the OT. These results provide insights into the mechanism of attentional resource allocation in PM tasks and have crucial educational and social implications.
40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...
40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM 2.5 or PM 10-2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...
40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...
40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...
40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM 2.5 or PM 10-2,5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...
Phthalate levels in Norwegian indoor air related to particle size fraction.
Rakkestad, Kirsten Eline; Dye, Christian Jarle; Yttri, Karl Espen; Holme, Jørn Andreas; Hongslo, Jan Kenneth; Schwarze, Per Everhard; Becher, Rune
2007-12-01
Phthalates are found in numerous consumer products, including interior materials like polyvinyl chloride (PVC). Several studies have identified phthalates in indoor air. A recent case-control study demonstrated associations between allergic symptoms in children and the concentration of phthalates in dust collected from their homes. Here we have analyzed the content of selected phthalates in particulate matter (PM): PM(10) and PM(2.5) filter samples collected in 14 different indoor environments. The results showed the presence of the phthalates di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), dicyclohexyl phthalate (DCHP) and diethyl hexyl phthalate (DEHP) in the samples. The dominating phthalate in both PM(10) and PM(2.5) samples from all locations was DBP. More than a 10-fold variation in the mean concentration of total phthalates between sampling sites was observed. The highest levels of total phthalates were detected in one children's room, one kindergarten, in two primary schools, and in a computer room. The relative contribution of total phthalates in PM(10) and PM(2.5) was 1.1 +/- 0.3% for both size fractions. The contribution of total phthalates in PM(2.5) to total phthalates in PM(10) ranged from 23-81%, suggesting different sources. Of the phthalates that were analyzed in the PM material, DBP was found to be the major phthalate in rubber from car tyres. However, our analyses indicate that tyre wear was of minor importance for indoor levels of both DBP as well as total phthalates. Overall, these results support the notion that inhalation of indoor PM contributes to the total phthalate exposure.
Wu, Chang-Fu; Lin, Hung-I; Ho, Chi-Chang; Yang, Tzu-Hui; Chen, Chu-Chih; Chan, Chang-Chuan
2014-08-01
Land use regression (LUR) models are increasingly used to evaluate intraurban variability in population exposure to fine particulate matter (PM2.5). However, most of these models lack information on PM2.5 elemental compositions and vertically distributed samples. The purpose of this study was to evaluate intraurban exposure to PM2.5 concentrations and compositions for populations in an Asian city using LUR models, with special emphasis on examining the effects of having measurements on different building stories. PM2.5 samples were collected at 20 sampling sites below the third story (low-level sites). Additional vertically stratified sampling sites were set up on the fourth to sixth (mid-level sites, n=5) and seventh to ninth (high-level sites, n=5) stories. LUR models were built for PM2.5, copper (Cu), iron (Fe), potassium (K), manganese (Mn), nickel (Ni), sulfur (S), silicon (Si), and zinc (Zn). The explained concentration variance (R(2)) of the PM2.5 model was 65%. R(2) values were >69% in the Cu, Fe, Mn, Ni, Si, and Zn models and <44% in the K and S models. Sampling height from ground level was a significant predictor in the PM2.5 and Si models. This finding stresses the importance of collecting vertically stratified information on PM2.5 mass concentrations to reduce potential exposure misclassification in future health studies. In addition to traffic variables, some models identified gravel-plant, industrial, and port variables with large buffer zones as important predictors, indicating that PM from these sources had significant effects at distant places. Copyright © 2014 Elsevier Inc. All rights reserved.
EPA AirNow Satellite Data Processor (ASDP) for Improving Air Quality Information
NASA Astrophysics Data System (ADS)
White, J. E.; Dickerson, P.; Szykman, J.; Chu, D.; Kondragunta, S.; Zhang, H.; Martin, R. V.; van Donkelaar, A.; Pasch, A. N.; Dye, T. S.; Zahn, P. H.; Haderman, M. D.; DeWinter, J. L.
2012-12-01
The US Environmental Protection Agency (EPA) AirNow program provides Air Quality Index (AQI) information to the public, decision-makers, researchers and the media (data and forecasts) mainly for ozone and PM2.5 (particles smaller than 2.5 μm in median diameter). EPA wants to provide the best information available to the public and integrating NASA satellite-derived surface PM2.5 concentrations with ground-level PM2.5 observations has proved promising. The AirNow Satellite Data Processor (ASDP) uses daily PM2.5 estimates and uncertainties derived from average Aqua and Terra MODerate resolution Imaging Spectrometer (MODIS) AOD in near-real-time over the United States and fuses the results with observed PM2.5 measurements to create several air quality products for evaluation. In addition to the description of the AirNow program and the AirNow ASDP, several case studies will be presented to show the value that NASA satellite information adds to maps of air quality.
Blackwell, Brett R; Wooten, Kimberly J; Buser, Michael D; Johnson, Bradley J; Cobb, George P; Smith, Philip N
2015-07-21
Studies of steroid growth promoters from beef cattle feedyards have previously focused on effluent or surface runoff as the primary route of transport from animal feeding operations. There is potential for steroid transport via fugitive airborne particulate matter (PM) from cattle feedyards; therefore, the objective of this study was to characterize the occurrence and concentration of steroid growth promoters in PM from feedyards. Air sampling was conducted at commercial feedyards (n = 5) across the Southern Great Plains from 2010 to 2012. Total suspended particulates (TSP), PM10, and PM2.5 were collected for particle size analysis and steroid growth promoter analysis. Particle size distributions were generated from TSP samples only, while steroid analysis was conducted on extracts of PM samples using liquid chromatography mass spectrometry. Of seven targeted steroids, 17α-estradiol and estrone were the most commonly detected, identified in over 94% of samples at median concentrations of 20.6 and 10.8 ng/g, respectively. Melengestrol acetate and 17α-trenbolone were detected in 31% and 39% of all PM samples at median concentrations of 1.3 and 1.9 ng/g, respectively. Results demonstrate PM is a viable route of steroid transportation and may be a significant contributor to environmental steroid hormone loading from cattle feedyards.
Media and staff in the NASA News Center at Kennedy Space Center
2007-06-22
Media and staff in the NASA News Center at Kennedy Space Center applaud the successful landing of Atlantis, visible on the television screens, at NASA's Dryden Flight Research Center at Edwards Air Force Base in California. Returning from mission STS-117, Atlantis touched down on runway 22 at Edwards on orbit 219 after 13 days, 20 hours and 12 minutes in space. The landing was diverted to California due to marginal weather at the Kennedy Space Center. Main gear touchdown was at 3:49:38 p.m. EDT on runway 22. Nose gear touchdown was at 3:49:49 p.m. and wheel stop was at 3:50:48 p.m. This was the 51st landing for the Space Shuttle Program at Edwards Air Force Base. The mission to the International Space Station was a success, installing the S3/S4 truss. The returning crew of seven includes astronaut Sunita Williams, who was flight engineer on the Expedition 15 crew. She achieved a new milestone, a record-setting flight at 194 days, 18 hours and 58 minutes, the longest single spaceflight ever by a female astronaut or cosmonaut.
Talbi, Abdelhamid; Kerchich, Yacine; Kerbachi, Rabah; Boughedaoui, Ménouèr
2018-01-01
Concentrations of particulate matter less than 1 μm, 2.5 μm, 10 μm and their contents of heavy metals were investigated in two different stations, urban and roadside at Algiers (Algeria). Sampling was conducted during two years by a high volume samplers (HVS) equipped with a cascade impactor at four levels stage, for one year sampling. The characterization of the heavy metals associated to the particulate matter (PM) was carried out by X-Ray Fluorescence analysis (XRF). The annual average concentration of PM 1 , PM 2.5 and PM 10 in both stations were 18.24, 32.23 and 60.01 μg m -3 respectively. The PM 1 , PM 2.5 and PM 10 concentrations in roadside varied from 13.46 to 25.59 μg m -3 , 20.82-49.85 μg m -3 and 45.90-77.23 μg m -3 respectively. However in the urban station, the PM 1 , PM 2.5 and PM 10 concentrations varied from 10.45 to 26.24 μg m -3 , 18.53-47.58 μg m -3 and 43.8-91.62 μg m -3 . The heavy metals associated to the PM were confirmed by Scanning Electron Microscopy-Energy Dispersive X-Ray analyses (SEM-EDX). The different spots of PM 2.5 analysis by SEM-EDX shows the presence of nineteen elements with anthropogenic and natural origins, within the heavy metal detected, the lead was found with maximum of 5% (weight percent). In order to determine the source contributions of PM levels at the two sampling sites sampling, principal compound analysis (PCA) was applied to the collected data. Statistical analysis confirmed anthropogenic source with traffic being a significant source and high contribution of natural emissions. At both sites, the PM 2.5 /PM 10 ratio is lower than that usually recorded in developed countries. The study of the back-trajectories of the air masses starting from Sahara shows that desert dust influences the concentration and the composition of the PM measured in Algiers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Near-road sampling of PM2. 5, BC, and fine-particle chemical components in Kathmandu Valley, Nepal
NASA Astrophysics Data System (ADS)
Shakya, Kabindra M.; Rupakheti, Maheswar; Shahi, Anima; Maskey, Rejina; Pradhan, Bidya; Panday, Arnico; Puppala, Siva P.; Lawrence, Mark; Peltier, Richard E.
2017-06-01
Semicontinuous PM2. 5 and black carbon (BC) concentrations, and 24 h integrated PM2. 5 filter samples were collected near roadways in the Kathmandu Valley, Nepal. Instruments were carried by a group of volunteer traffic police officers in the vicinity of six major roadway intersections in the Kathmandu Valley across two sampling periods in 2014. Daily PM2. 5 filter samples were analyzed for water-soluble inorganic ions, elemental carbon (EC) and organic carbon (OC), and 24 elements. Mean PM2. 5 and BC concentrations were 124.76 µg m-3 and 16.74 µgC m-3 during the drier spring sampling period, and 45.92 µg m-3 and 13.46 µgC m-3 during monsoonal sampling. Despite the lower monsoonal PM2. 5 concentrations, BC and several elements were not significantly lower during the monsoon, which indicates an important contribution of vehicle-related emissions throughout both seasons in this region. During the monsoon, there was an enhanced contribution of chemical species (elements and water-soluble inorganic ions), except secondary inorganic ions, and BC to PM2. 5 (crustal elements: 19 %; heavy metals: 5 %; and BC: 39 %) compared to those in spring (crustal elements: 9 %; heavy metals: 1 %; and BC: 18 %). Silica, calcium, aluminum, and iron were the most abundant elements during both spring and the monsoon, with total concentrations of 12.13 and 8.85 µg m-3, respectively. PM2. 5 and BC showed less spatial variation compared to that for individual chemical species.
Hydrocarbons in particulate samples from wildfire events in central Portugal in summer 2010.
Vicente, Ana; Calvo, Ana; Fernandes, Ana P; Nunes, Teresa; Monteiro, Cristina; Pio, Casimiro; Alves, Célia
2017-03-01
In summer 2010, twenty eight (14 PM 2.5 samples plus 14 samples PM 2.5-10 ) smoke samples were collected during wildfires that occurred in central Portugal. A portable high-volume sampler was used to perform the sampling, on quartz fibre filters of coarse (PM 2.5-10 ) and fine (PM 2.5 ) smoke samples. The carbonaceous content (elemental and organic carbon) of particulate matter was analysed by a thermal-optical technique. Subsequently, the particulate samples were solvent extracted and fractionated by vacuum flash chromatography into three different classes of organic compounds (aliphatics, polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds). The organic speciation was performed by gas chromatography-mass spectrometry (GC-MS). Emissions were dominated by the fine particles, which represented around 92% of the PM 10 . A clear predominance of carbonaceous constituents was observed, with organic to elemental carbon (OC/EC) ratios ranging between 1.69 and 245 in both size fractions. The isoprenoid ketone 6,10,14-trimethyl-2-pentadecanone, a tracer for secondary organic aerosol formation, was one of the dominant constituents in both fine and coarse particles. Retene was the most abundant compound in all samples. Good correlations were obtained between OC and both aliphatic and PAH compounds. Pyrogenic processes, thermal release of biogenic compounds and secondary processing accounted for 97% of the apportioned PM 2.5 levels. Copyright © 2016. Published by Elsevier B.V.
Kasurinen, Stefanie; Happo, Mikko S; Rönkkö, Teemu J; Orasche, Jürgen; Jokiniemi, Jorma; Kortelainen, Miika; Tissari, Jarkko; Zimmermann, Ralf; Hirvonen, Maija-Riitta; Jalava, Pasi I
2018-01-01
In vitro studies with monocultures of human alveolar cells shed deeper knowledge on the cellular mechanisms by which particulate matter (PM) causes toxicity, but cannot account for mitigating or aggravating effects of cell-cell interactions on PM toxicity. We assessed inflammation, oxidative stress as well as cytotoxic and genotoxic effects induced by PM from the combustion of different types of wood logs and softwood pellets in three cell culture setups: two monocultures of either human macrophage-like cells or human alveolar epithelial cells, and a co-culture of these two cell lines. The adverse effects of the PM samples were compared between these setups. We detected clear differences in the endpoints between the mono- and co-cultures. Inflammatory responses were more diverse in the macrophage monoculture and the co-culture compared to the epithelial cells where only an increase of IL-8 was detected. The production of reactive oxygen species was the highest in epithelial cells and macrophages seemed to have protective effects against oxidative stress from the PM samples. With no metabolically active cells at the highest doses, the cytotoxic effects of the PM samples from the wood log combustion were far more pronounced in the macrophages and the co-culture than in the epithelial cells. All samples caused DNA damage in macrophages, whereas only beech and spruce log combustion samples caused DNA damage in epithelial cells. The organic content of the samples was mainly associated with cytotoxicity and DNA damage, while the metal content of the samples correlated with the induction of inflammatory responses. All of the tested PM samples induce adverse effects and the chemical composition of the samples determines which pathway of toxicity is induced. In vitro testing of the toxicity of combustion-derived PM in monocultures of one cell line, however, is inadequate to account for all the possible pathways of toxicity.
Happo, Mikko S.; Rönkkö, Teemu J.; Orasche, Jürgen; Jokiniemi, Jorma; Kortelainen, Miika; Tissari, Jarkko; Zimmermann, Ralf; Hirvonen, Maija-Riitta; Jalava, Pasi I.
2018-01-01
Background In vitro studies with monocultures of human alveolar cells shed deeper knowledge on the cellular mechanisms by which particulate matter (PM) causes toxicity, but cannot account for mitigating or aggravating effects of cell-cell interactions on PM toxicity. Methods We assessed inflammation, oxidative stress as well as cytotoxic and genotoxic effects induced by PM from the combustion of different types of wood logs and softwood pellets in three cell culture setups: two monocultures of either human macrophage-like cells or human alveolar epithelial cells, and a co-culture of these two cell lines. The adverse effects of the PM samples were compared between these setups. Results We detected clear differences in the endpoints between the mono- and co-cultures. Inflammatory responses were more diverse in the macrophage monoculture and the co-culture compared to the epithelial cells where only an increase of IL-8 was detected. The production of reactive oxygen species was the highest in epithelial cells and macrophages seemed to have protective effects against oxidative stress from the PM samples. With no metabolically active cells at the highest doses, the cytotoxic effects of the PM samples from the wood log combustion were far more pronounced in the macrophages and the co-culture than in the epithelial cells. All samples caused DNA damage in macrophages, whereas only beech and spruce log combustion samples caused DNA damage in epithelial cells. The organic content of the samples was mainly associated with cytotoxicity and DNA damage, while the metal content of the samples correlated with the induction of inflammatory responses. Conclusions All of the tested PM samples induce adverse effects and the chemical composition of the samples determines which pathway of toxicity is induced. In vitro testing of the toxicity of combustion-derived PM in monocultures of one cell line, however, is inadequate to account for all the possible pathways of toxicity. PMID:29466392
Van Vliet, Eleanne D.S.; Asante, Kwakupoku; Jack, Darby W.; Kinney, Patrick L.; Whyatt, Robin M.; Chillrud, Steven N.; Abokyi, Livesy; Zandoh, Charles; Owusu-Agyei, Seth
2014-01-01
Objective To examine cooking practices and 24-h personal and kitchen area exposures to fine particulate matter (PM2.5) and black carbon in cooks using biomass in Ghana. Methods Researchers administered a detailed survey to 421 households. In a sub-sample of 36 households, researchers collected 24-h integrated PM2.5 samples (personal and kitchen area); in addition, the primary cook was monitored for real-time PM2.5. All filters were also analyzed for black carbon using a multi-wavelength reflectance method. Predictors of PM2.5 exposure were analyzed, including cooking behaviors, fuel, stove and kitchen type, weather, demographic factors and other smoke sources. Results The majority of households cooked outdoors (55%; 231/417), used biomass (wood or charcoal) as their primary fuel (99%; 412/413), and cooked on traditional fires (77%, 323/421). In the sub-sample of 29 households with complete, valid exposure monitoring data, the 24-h integrated concentrations of PM2.5 were substantially higher in the kitchen sample (mean 446.8 μg/m3) than in the personal air sample (mean 128.5 μg/m3). Black carbon concentrations followed the same pattern such that concentrations were higher in the kitchen sample (14.5 μg/m3) than in the personal air sample (8.8 μg/m3). Spikes in real-time personal concentrations of PM2.5 accounted for the majority of exposure; the most polluted 5%, or 72 min, of the 24-h monitoring period accounted for 75% of all exposure. Two variables that had some predictive power for personal PM2.5 exposures were primary fuel type and ethnicity, while reported kerosene lantern use was associated with increased personal and kitchen area concentrations of black carbon. Conclusion Personal concentrations of PM2.5 exhibited considerable inter-subject variability across kitchen types (enclosed, semi-enclosed, outdoor), and can be elevated even in outdoor cooking settings. Furthermore, personal concentrations of PM2.5 were not associated with kitchen type and were not predicted by kitchen area samples; rather they were driven by spikes in PM2.5 concentrations during cooking. Personal exposures were more enriched with black carbon when compared to kitchen area samples, underscoring the need to explore other sources of incomplete combustion such as roadway emissions, charcoal production and kerosene use. PMID:24176411
Song, Jae-Jun; Kwon, Jee Young; Park, Moo Kyun; Seo, Young Rok
2013-10-01
The primary aim of this study is to reveal the effect of particulate matter (PM) on the human middle ear epithelial cell (HMEEC). The HMEEC was treated with PM (300 μg/ml) for 24 h. Total RNA was extracted and used for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed by using Pathway Studio 9.0 software. For selected genes, the changes in gene expression were confirmed by real-time PCR. A total of 611 genes were regulated by PM. Among them, 366 genes were up-regulated, whereas 245 genes were down-regulated. Up-regulated genes were mainly involved in cellular processes, including reactive oxygen species generation, cell proliferation, apoptosis, cell differentiation, inflammatory response and immune response. Down-regulated genes affected several cellular processes, including cell differentiation, cell cycle, proliferation, apoptosis and cell migration. A total of 21 genes were discovered as crucial components in potential signaling networks containing 2-fold up regulated genes. Four genes, VEGFA, IL1B, CSF2 and HMOX1 were revealed as key mediator genes among the up-regulated genes. A total of 25 genes were revealed as key modulators in the signaling pathway associated with 2-fold down regulated genes. Four genes, including IGF1R, TIMP1, IL6 and FN1, were identified as the main modulator genes. We identified the differentially expressed genes in PM-treated HMEEC, whose expression profile may provide a useful clue for the understanding of environmental pathophysiology of otitis media. Our work indicates that air pollution, like PM, plays an important role in the pathogenesis of otitis media. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
PM composition and source reconciliation in Mexico City
NASA Astrophysics Data System (ADS)
Mugica, V.; Ortiz, E.; Molina, L.; De Vizcaya-Ruiz, A.; Nebot, A.; Quintana, R.; Aguilar, J.; Alcántara, E.
PM 2.5 and PM 10 were collected during 24-h sampling intervals from March 1st to 31st, 2006 during the MILAGRO campaign carried out in Mexico City's northern region, in order to determine their chemical composition, oxidative activity and the estimation of the source contributions during the sampling period by means of the chemical mass balance (CMB) receptor model. PM 2.5 concentrations ranged from 32 to 70 μg m -3 while that of PM10 did so from 51 to 132 μg m -3. The most abundant chemical species for both PM fractions were: OC, EC, SO 42-, NO 3-, NH 4+, Si, Fe and Ca. The majority of the PM mass was comprised of carbon, up to about 52% and 30% of the PM2.5 and PM10, respectively. PM2.5 constituted more than 50% of PM10. The redox activity, assessed by the dithiothreitol (DTT) assay, was greater for PM 2.5 than for PM 10, and did not display significant differences during the sampling period. The PM 2.5 source reconciliation showed that in average, vehicle exhaust emissions were its most important source in an urban site with a 42% contribution, followed by re-suspended dust with 26%, secondary inorganic aerosols with 11%, and industrial emissions and food cooking with 10% each. These results had a good agreement with the Emission Inventory. In average, the greater mass concentration occurred during O 3S that corresponds to a wind shift initially with transport to the South but moving back to the North. Taken together these results show that PM chemical composition, oxidative potential, and source contribution is influenced by the meteorological conditions.
Kim, Yong Ho; Krantz, Q Todd; McGee, John; Kovalcik, Kasey D; Duvall, Rachelle M; Willis, Robert D; Kamal, Ali S; Landis, Matthew S; Norris, Gary A; Gilmour, M Ian
2016-11-01
The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM 2.5 ) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible for health effects however are not fully understood. Size-fractionated PM (coarse, fine, and ultrafine) samples were collected using a ChemVol sampler at an urban site (G.T. Craig (GTC)) and rural site (Chippewa Lake (CLM)) from July 2009 to June 2010, and then chemically analyzed. The resulting speciated PM data were apportioned by EPA positive matrix factorization to identify emission sources for each size fraction and location. For comparisons with the ChemVol results, PM samples were also collected with sequential dichotomous and passive samplers, and evaluated for source contributions to each sampling site. The ChemVol results showed that annual average concentrations of PM, elemental carbon, and inorganic elements in the coarse fraction at GTC were ∼2, ∼7, and ∼3 times higher than those at CLM, respectively, while the smaller size fractions at both sites showed similar annual average concentrations. Seasonal variations of secondary aerosols (e.g., high NO 3 - level in winter and high SO 4 2- level in summer) were observed at both sites. Source apportionment results demonstrated that the PM samples at GTC and CLM were enriched with local industrial sources (e.g., steel plant and coal-fired power plant) but their contributions were influenced by meteorological conditions and the emission source's operation conditions. Taken together the year-long PM collection and data analysis provides valuable insights into the characteristics and sources of PM impacting the Cleveland airshed in both the urban center and the rural upwind background locations. These data will be used to classify the PM samples for toxicology studies to determine which PM sources, species, and size fractions are of greatest health concern. Copyright © 2016 Elsevier Ltd. All rights reserved.
Han, Pi-guo; Han, Lei; Bian, Yu-long; Tian, Yu; Xu, Min-xia; Gao, Feng-qiang
2017-01-01
Prospective memory (PM) is the process associated with the task of realizing delayed intentions in the future. Researchers distinguish two types of PM, namely time-based PM (tbPM) and event-based PM (ebPM). Experiment 1 investigated the developmental trajectory of 3- to 5-year-old preschool children’s PM ability, and the occurrence of delayed retrieval (children execute the PM task in a larger window of opportunity) in both tbPM and ebPM tasks. Results revealed that the 5-year-old children outperformed the 3- and 4-year-old children in PM. Moreover, delayed retrieval was more likely to occur in tbPM task than in ebPM task. In Experiment 2, the influence of ongoing task (OT) difficulty on PM performance was investigated with a sample of 5-year-old children. Results revealed no significant effect of OT difficulty on PM performance. In Experiment 3, we improved children’s motivation level to complete the OT, then explored the influence of OT difficulty on children’s PM performance. Results revealed that the effect of OT difficulty on PM performance became significant after increasing the children’s motivation to complete the OT. These results provide insights into the mechanism of attentional resource allocation in PM tasks and have crucial educational and social implications. PMID:28203212
NASA Astrophysics Data System (ADS)
Hsieh, Y.; Bugna, G.
2006-12-01
Uncertainty of black carbon (BC) research is often plagued by the analytical difficulty associated with separating carbon components in solid samples. A rapid and sensitive multi-elemental scanning thermal analysis (MESTA), originally developed for organic matter analysis in solid samples, was applied to this study. The objective was to identify the chemical signature of biomass burning emitted PM2.5 (aerosols less than 2.5 micron) for tracing purposes. We collected PM2.5 from the burning of various biomass of a pine forest and from the ambient air of an urban campus using a PM sampler. The MESTA provides simultaneous C, N and S thermograms of the PM2.5 samples that can be used for characterization and identification purposes. This study showed that the PM2.5 samples produced from the burning of forest biomass can be characterized by a high temperature (greater than 350 oC) volatile organic component with high C/N ratio and no S content while those produced from the ambient air can be characterized by a low temperature (less than 350 oC) volatile organic component with low C/N ratio and high S content. Burning of the soaked woody debris, however, produced significant amount of the low-temperature volatile organic component similar to that of the ambient air in C/N ratio but different in S content. Most PM2.5 samples have a very low temperature (less than 110 oC) volatile N component that is identified as absorbed ammonia. The absorbed ammonia is most significant in the PM2.5 of the ambient air and the burning of soaked woody debris. All PM2.5 samples have significant amount of BC which volatilized above 500 oC with very high C/N ratio. This study also shows that MESTA can provide an objective means to present the chemical signature of the whole spectrum of OC/BC in the PM2.5 samples.
NASA Astrophysics Data System (ADS)
Dallarosa, Juliana; Calesso Teixeira, Elba; Meira, Lindolfo; Wiegand, Flavio
2008-07-01
The purpose of this work is to study the chemical elements and PAHs associated with atmospheric particulate in samples of PM 10 collected in the Metropolitan Area of Porto Alegre—MAPA, Rio Grande do Sul, Brazil. In addition, to study the chemical elements associated with particles of different fractions of PM 10-2.5 and PM 2.5 using dichotomous sampling, in urban (MAPA) and rural areas. Two types of samplers were used: HV PM 10 and Dichotomous (PM 10-2.5 and PM 2.5). Samples were collected during 2002 and 2005. The concentration of the elements Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn was determined by PIXE (Particle-Induced X-ray Emission), while the concentrations of 16 major PAHs were determined according to EPA with a gas chromatograph coupled to a mass spectrometer (GS/MS). Results showed that elements of anthropogenic origin (V, Zn, Cr, Ni, Cu, and S) were mainly associated with the fraction PM 2.5, while the soil dust (Si, Al, Ti and Fe) were found mainly on fraction PM 10-2.5. In samples of PM 10, the most frequent PAHs found were Bgp, Flt, BaA, Chr, B(b + k)F, BaP and Dba. The types of emission and their association with the atmospheric parameters were studied applying the statistical analysis of the principal component method. The main sources found in the area under study were vehicles, industries (steel mills and a coal-fired power station), dust, sea breeze, and burning.
Rigor mortis development in turkey breast muscle and the effect of electrical stunning.
Alvarado, C Z; Sams, A R
2000-11-01
Rigor mortis development in turkey breast muscle and the effect of electrical stunning on this process are not well characterized. Some electrical stunning procedures have been known to inhibit postmortem (PM) biochemical reactions, thereby delaying the onset of rigor mortis in broilers. Therefore, this study was designed to characterize rigor mortis development in stunned and unstunned turkeys. A total of 154 turkey toms in two trials were conventionally processed at 20 to 22 wk of age. Turkeys were either stunned with a pulsed direct current (500 Hz, 50% duty cycle) at 35 mA (40 V) in a saline bath for 12 seconds or left unstunned as controls. At 15 min and 1, 2, 4, 8, 12, and 24 h PM, pectoralis samples were collected to determine pH, R-value, L* value, sarcomere length, and shear value. In Trial 1, the samples obtained for pH, R-value, and sarcomere length were divided into surface and interior samples. There were no significant differences between the surface and interior samples among any parameters measured. Muscle pH significantly decreased over time in stunned and unstunned birds through 2 h PM. The R-values increased to 8 h PM in unstunned birds and 24 h PM in stunned birds. The L* values increased over time, with no significant differences after 1 h PM for the controls and 2 h PM for the stunned birds. Sarcomere length increased through 2 h PM in the controls and 12 h PM in the stunned fillets. Cooked meat shear values decreased through the 1 h PM deboning time in the control fillets and 2 h PM in the stunned fillets. These results suggest that stunning delayed the development of rigor mortis through 2 h PM, but had no significant effect on the measured parameters at later time points, and that deboning turkey breasts at 2 h PM or later will not significantly impair meat tenderness.
STS-75 Mission Cmdr Andrew Allen talks to media
NASA Technical Reports Server (NTRS)
1996-01-01
STS-75 Mission Commander Andrew M. Allen talks to news media gathered at KSC's Shuttle Landing Facility for the flight crew's arrival. Altogether seven crew members are assigned to the second Shuttle flight of 1996, which will be highlighted by the re- flight of the Italian Tethered Satellite System (TSS-1R). Liftoff is slated to occur during a two-and-a-half window opening at 3:18 p.m. EST, Feb. 22.
Scientific Library’s Book and Media Swap Coming April 16 | Poster
By Robin Meckley, Contributing Writer The 14th annual Book and Media Swap will be held on Wednesday, April 16, from 10 a.m. to 2 p.m., in the lobby of the Conference Center in Building 549. The staff is holding the swap to coincide with National Library Week, an annual celebration of libraries that occurs in April. As of April 10, the library had collected nearly 2,000 books,
2014-05-13
A weekly Twitter chat aimed principally at nurses takes place every Thursday at 8pm using #WeNurses. Co-ordinator Teresa Chinn first decided to use Twitter to discuss professional issues when she felt isolated as an agency nurse.
Phase III Early Restoration Meeting - Lake Charles, LA | NOAA Gulf Spill
Areas Alabama Florida Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News early restoration planning for Phase III and future early restoration plans. Open House: 5:30pm Public
Li, Tsung-Chang; Yuan, Chung-Shin; Huang, Hu-Ching; Lee, Chon-Lin; Wu, Shui-Ping; Tong, Chuan
2016-01-01
The spatiotemporal distribution and chemical composition of atmospheric fine particles in areas around the Taiwan Strait were firstly investigated. Fine particles (PM2.5) were simultaneously collected at two sites on the west-side, one site at an offshore island, and three sites on the east-side of the Taiwan Strait in 2013–2014. Field sampling results indicated that the average PM2.5 concentrations at the west-side sampling sites were generally higher than those at the east-side sampling sites. In terms of chemical composition, the most abundant water-soluble ionic species of PM2.5 were SO42−, NO3−, and NH4+, while natural crustal elements dominated the metallic content of PM2.5, and the most abundant anthropogenic metals of PM2.5 were Pb, Ni and Zn. Moreover, high OC/EC ratios of PM2.5 were commonly observed at the west-side sampling sites, which are located at the downwind of major stationary sources. Results from CMB receptor modeling showed that the major sources of PM2.5 were anthropogenic sources and secondary aerosols at the both sides, and natural sources dominated PM2.5 at the offshore site. A consistent decrease of secondary sulfate and nitrate contribution to PM2.5 suggested the transportation of aged particles from the west-side to the east-side of the Taiwan Strait. PMID:26973085
Yang, Ji-Yeon; Kim, Jin-Yong; Jang, Ji-Young; Lee, Gun-Woo; Kim, Soo-Hwan; Shin, Dong-Chun; Lim, Young-Wook
2013-01-01
We investigated the particle mass size distribution and chemical properties of air pollution particulate matter (PM) in the urban area and its capacity to induce cytotoxicity in human bronchial epithelial (BEAS-2B) cells. To characterize the mass size distributions and chemical concentrations associated with urban PM, PM samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor close to nearby traffic in an urban area from December 2007 to December 2009. PM samples for in vitro cytotoxicity testing were collected by a mini-volume air sampler with PM10 and PM2.5 inlets. The PM size distributions were bi-modal, peaking at 0.18 to 0.32 and 1.8 to 3.2 µm. The mass concentrations of the metals in fine particles (0.1 to 1.8 µm) accounted for 45.6 to 80.4% of the mass concentrations of metals in PM10. The mass proportions of fine particles of the pollutants related to traffic emission, lead (80.4%), cadmium (69.0%), and chromium (63.8%) were higher than those of other metals. Iron was the dominant transition metal in the particles, accounting for 64.3% of the PM10 mass in all the samples. We observed PM concentration-dependent cytotoxic effects on BEAS-2B cells. We found that exposure to PM2.5 and PM10 from a nearby traffic area induced significant increases in protein expression of inflammatory cytokines (IL-6 and IL-8). The cell death rate and release of cytokines in response to the PM2.5 treatment were higher than those with PM10. The combined results support the hypothesis that ultrafine particles from vehicular sources can induce inflammatory responses related to environmental respiratory injury.
Source Apportionment and Influencing Factor Analysis of Residential Indoor PM2.5 in Beijing
Yang, Yibing; Liu, Liu; Xu, Chunyu; Li, Na; Liu, Zhe; Wang, Qin; Xu, Dongqun
2018-01-01
In order to identify the sources of indoor PM2.5 and to check which factors influence the concentration of indoor PM2.5 and chemical elements, indoor concentrations of PM2.5 and its related elements in residential houses in Beijing were explored. Indoor and outdoor PM2.5 samples that were monitored continuously for one week were collected. Indoor and outdoor concentrations of PM2.5 and 15 elements (Al, As, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Pb, Se, Tl, V, Zn) were calculated and compared. The median indoor concentration of PM2.5 was 57.64 μg/m3. For elements in indoor PM2.5, Cd and As may be sensitive to indoor smoking, Zn, Ca and Al may be related to indoor sources other than smoking, Pb, V and Se may mainly come from outdoor. Five factors were extracted for indoor PM2.5 by factor analysis, explained 76.8% of total variance, outdoor sources contributed more than indoor sources. Multiple linear regression analysis for indoor PM2.5, Cd and Pb was performed. Indoor PM2.5 was influenced by factors including outdoor PM2.5, smoking during sampling, outdoor temperature and time of air conditioner use. Indoor Cd was affected by factors including smoking during sampling, outdoor Cd and building age. Indoor Pb concentration was associated with factors including outdoor Pb and time of window open per day, building age and RH. In conclusion, indoor PM2.5 mainly comes from outdoor sources, and the contributions of indoor sources also cannot be ignored. Factors associated indoor and outdoor air exchange can influence the concentrations of indoor PM2.5 and its constituents. PMID:29621164
Source Apportionment and Influencing Factor Analysis of Residential Indoor PM2.5 in Beijing.
Yang, Yibing; Liu, Liu; Xu, Chunyu; Li, Na; Liu, Zhe; Wang, Qin; Xu, Dongqun
2018-04-05
In order to identify the sources of indoor PM 2.5 and to check which factors influence the concentration of indoor PM 2.5 and chemical elements, indoor concentrations of PM 2.5 and its related elements in residential houses in Beijing were explored. Indoor and outdoor PM 2.5 samples that were monitored continuously for one week were collected. Indoor and outdoor concentrations of PM 2.5 and 15 elements (Al, As, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Pb, Se, Tl, V, Zn) were calculated and compared. The median indoor concentration of PM 2.5 was 57.64 μg/m³. For elements in indoor PM 2.5 , Cd and As may be sensitive to indoor smoking, Zn, Ca and Al may be related to indoor sources other than smoking, Pb, V and Se may mainly come from outdoor. Five factors were extracted for indoor PM 2.5 by factor analysis, explained 76.8% of total variance, outdoor sources contributed more than indoor sources. Multiple linear regression analysis for indoor PM 2.5 , Cd and Pb was performed. Indoor PM 2.5 was influenced by factors including outdoor PM 2.5 , smoking during sampling, outdoor temperature and time of air conditioner use. Indoor Cd was affected by factors including smoking during sampling, outdoor Cd and building age. Indoor Pb concentration was associated with factors including outdoor Pb and time of window open per day, building age and RH. In conclusion, indoor PM 2.5 mainly comes from outdoor sources, and the contributions of indoor sources also cannot be ignored. Factors associated indoor and outdoor air exchange can influence the concentrations of indoor PM 2.5 and its constituents.
NASA Astrophysics Data System (ADS)
Wiseman, Clare L. S.; Zereini, Fathi
2014-06-01
The purpose of this study is to assess the solubility of traffic-related metal(loid)s associated with airborne PM of human health concern, employing a physiologically-based extraction test with simulated lung fluids (artificial lysosomal fluid (ALF) and Gamble's solution). Airborne PM (PM10, PM2.5 and PM1) samples were collected in Frankfurt am Main, Germany, using a high volume sampler. Following extraction of the soluble metal(loid) fractions, sample filters were digested with a high pressure asher. Metal(loid) concentrations (As, Ce, Co, Cr, Cu, Mn, Ni, Pb, Sb, Ti and V) were determined in extracts and digests per ICP-Q-MS. All metal(loid)s occurred at detectable concentrations in the three airborne PM fractions. Copper was the most abundant element in mass terms, with mean concentrations of 105 and 53 ng/m3 in PM10 and PM2.5, respectively. Many of the metal(loid)s were observed to be soluble in simulated lung fluids, with Cu, As, V and Sb demonstrating the highest overall mobility in airborne PM. For instance, all four elements associated with PM10 had a solubility of >80% in ALF (24 h). Clearly, solubility is strongly pH dependent, as reflected by the higher relative mobility of samples extracted with the acidic ALF. Given their demonstrated solubility, this study provides indirect evidence that a number of toxic metal(loid)s are likely to possess an enhanced pulmonary toxic potential upon their inhalation. The co-presence of many toxic elements of concern in airborne PM suggests an assessment of health risk must consider the possible interactive impacts of multi-element exposures.
Zychowski, Katherine E; Kodali, Vamsi; Harmon, Molly; Tyler, Christina; Sanchez, Bethany; Ordonez Suarez, Yoselin; Herbert, Guy; Wheeler, Abigail; Avasarala, Sumant; Cerrato, José M; Kunda, Nitesh K; Muttil, Pavan; Shuey, Chris; Brearley, Adrian; Ali, Abdul-Mehdi; Lin, Yan; Shoeb, Mohammad; Erdely, Aaron; Campen, Matthew J
2018-04-05
Exposure to windblown particulate matter (PM) arising from legacy uranium (U) mine sites in the Navajo Nation may pose a human health hazard due to their potentially high metal content, including U and vanadium (V). To assess the toxic impact of PM derived from Claim 28 (a priority U mine) compared to background PM, and consider the putative role of metal species U and V. Two representative sediment samples from Navajo Nation sites (Background PM and Claim 28 PM) were obtained, characterized in terms of chemistry and morphology, and fractioned to the respirable (≤10μm) fraction. Mice were dosed with either PM sample, uranyl acetate or vanadyl sulfate via aspiration (100µg), with assessments of pulmonary and vascular toxicity 24h later. PM samples were also examined for in vitro effects on cytotoxicity, oxidative stress, phagocytosis, and inflammasome induction. Claim 28 PM10 was highly enriched with U and V and exhibited a unique nanoparticle ultrastructure compared to background PM10. Claim 28 PM10 exhibited enhanced pulmonary and vascular toxicity relative to background PM10. Both U and V exhibited complementary pulmonary inflammatory potential, with U driving a classical inflammatory cytokine profile (elevated IL-1β, TNFα, KC/GRO) while V preferentially induced a different cytokine pattern (elevated IL-5, IL-6, IL-10). Claim 28 PM10 was more potent than background PM10 in terms of in vitro cytotoxicity, impairment of phagocytosis, and oxidative stress responses. Resuspended PM10 derived from U mine waste exhibit greater cardiopulmonary toxicity than background dusts. Rigorous exposure assessment is needed to gauge the regional health risks imparted by these unremediated sites.
Major tire fragment contributions to PM{sub 10} non-attainment in Anchorage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draftz, R.G.; Cowherd, C. Jr.; Grelinger, M.A.
1999-07-01
Anchorage exceeded the 24-hour National Ambient Air Quality Standard for PM{sub 10} a total of thirty-one times in the period from 1987 to 1997. About half of these exceedances were due to natural events. The remaining exceedances could not be linked to natural events. Moreover, these exceedances occurred predominantly at one PM{sub 10} site near one of the major thoroughfares in Anchorage. The apportionment of sources producing these unexplained violations was one of the major goals of a 1996--98 study sponsored and directed by the Air Quality Program of the Municipality of Anchorage. Two suites of PM{sub 10} samples weremore » utilized for source apportionment of exceedances. The first consisted of historical samples selected from sampling periods unaffected by natural events. These samples were carefully selected to avoid the high values during and following volcanic eruptions when there were likely to be considerable accumulations of volcanic ejecta on roads. Dust storms were excluded by simple inspection of data for days that showed that all sites in the Anchorage basin had high PM{sub 10} loadings. The second group of samples were selected from a special springtime road dust tagging experiment used to measure emission and depletion rates of the taggant and accumulated road dust particles, mainly road aggregate wear and anti-skid minerals. Quantitative microscopical analysis of the first suite of historical samples showed that rubber tire concentrations contributed from approximately 12 to 42{micro}g/m{sup 3} of the PM{sub 10} for samples near or exceeding the 24 hour limit. Road dust samples from the road tagging experiment showed that the PM{sub 10}-sized tire fragments were not present in the road dust and therefore, had to have become immediately airborne rather than re-entrained from road dust deposits. Rubber tire fragments are one of the three dominant components that collectively account for more than 95% of the PM{sub 10} non-attainment in Anchorage.« less
SEM/EDS Characterization of Ambient PM during Agricultural Burns
NASA Astrophysics Data System (ADS)
Wagner, J.; Wall, S.
2010-12-01
Ambient particulate matter (PM) samples were collected with UNC passive samplers during agricultural burns in Imperial Valley, California. Four Bermuda grass field burn events were sampled at 3-8 locations surrounding each burn. Sampling began at the start of each burn (30-60 min) and continued for 24-120 hours. During 3 of the 4 burn events, winds were calm and plumes were observed to travel straight up to the inversion layer. In one event, winds created a ground-level plume that enveloped two UNC samplers mounted on telephone poles very close to the field (0.2-0.3 miles away). Computer-controlled scanning electron microscopy / energy-dispersive x-ray spectroscopy (CCSEM/EDS) was used to measure particle sizes and elemental composition, from which mass concentrations and size distributions were calculated. The median PM2.5 and PM10 levels measured in this study were 3.4 and 20 ug/m3, respectively. To determine quantitative accuracy, UNC sampler PM2.5 results (PM< 2.5 um) were compared to PM2.5 results from four co-located, continuous-reading beta-attenuation monitors (EBAMs). The median agreement (EBAM - UNC) was 3.8 ug/m3. Manual SEM/EDS detected various distinctive species in these samples, including sea salt, spores, plant fragments, and large soot agglomerates. During the ‘plume event’, 24-hour PM2.5 exposures downwind were up to 17 times higher than that measured upwind. Numerous submicron combustion particles with carbon and oxygen only were directly observed by manual SEM/EDS in the two plume-impacted samples, along with larger ash particles enriched in potassium, sulfur, chlorine, calcium, sodium, and phosphorus. CCSEM/EDS data from this event was grouped into 5 particle classes to generate size-fraction-specific pie charts. Burn-related particle types contributed 95% of the PM2.5 in the location directly impacted by the ground-level plume, compared to only 12% in the upwind location. A sample of Imperial County Bermuda grass analyzed in bulk and partially-burned states was found to contain similar inorganic elements as the air samples impacted by the burn plume, as well as mold spores found at trace levels in various air samples.
NASA Astrophysics Data System (ADS)
Kong, Shaofei; Ji, Yaqin; Li, Zhiyong; Lu, Bing; Bai, Zhipeng
2013-10-01
The mass concentrations and profile characteristic for 18 kinds of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 and PM10 from stack gases for six types of stationary sources in Shandong Province, China were studied by a dilution sampling system and GC-MS analysis method from February to March in 2010. The mass concentrations of PM2.5 and PM10 from the six types of stationary sources varied in 8.2-79.4 mg m-3 and 23.3-156.7 mg m-3, respectively. The total mass concentrations of analyzed PAHs in PM2.5 and PM10 were in the ranges of 0.40-94.35 μg m-3 and 9.16-122.91 μg m-3. The most toxic ashes were from sinter and coke oven for both PM2.5 and PM10 with high carcinogenic PAHs concentrations. BbF, Phe, NaP, BghiP, Pyr, BaP and BeP were abundant which was different from formers and one of the key reasons may be the differences of sampling methods. Diversities in PAHs compositions existed between fly ashes within PM2.5 and PM10 fractions for coke oven according to coefficient of divergence (CD) values. PAHs profiles for PM10 emitted from coke oven were different from those of other stationary sources (with CD values higher than 0.35) and for PM2.5, it was the same for sinter (with most CD values close to 0.30). There existed similar PAHs markers for fine particles emitted from stationary sources excepted for the sinter. For PM10, PAHs markers were primary 3-ring PAHs except for the coke oven with BbF, IND and BghiP as its signatures. Diagnostic ratios of BaA/(BaA + Chr), Flu/(Flu + Pyr), BaP/(BaP + BeP), BeP/BghiP and IND/(IND + BghiP) could be not well distinguished for the six types of stationary sources with the maximum/minimum ratios lower than 2 for both PM2.5 and PM10 of fly ashes which should be not used for source identification studies. The mass concentrations and source profiles of PAHs should be updated timely for size-differentiated fly ashes from various stationary sources by dilution sampling method.
NASA Astrophysics Data System (ADS)
Calas, Aude; Uzu, Gaëlle; Kelly, Frank J.; Houdier, Stephan; Martins, Jean M. F.; Thomas, Fabrice; Molton, Florian; Charron, Aurélie; Dunster, Christina; Oliete, Ana; Jacob, Véronique; Besombes, Jean-Luc; Chevrier, Florie; Jaffrezo, Jean-Luc
2018-06-01
Many studies have demonstrated associations between exposure to ambient particulate matter (PM) and adverse health outcomes in humans that can be explained by PM capacity to induce oxidative stress in vivo. Thus, assays have been developed to quantify the oxidative potential (OP) of PM as a more refined exposure metric than PM mass alone. Only a small number of studies have compared different acellular OP measurements for a given set of ambient PM samples. Yet, fewer studies have compared different assays over a year-long period and with detailed chemical characterization of ambient PM. In this study, we report on seasonal variations of the dithiothreitol (DTT), ascorbic acid (AA), electron spin resonance (ESR) and the respiratory tract lining fluid (RTLF, composed of the reduced glutathione (GSH) and ascorbic acid (ASC)) assays over a 1-year period in which 100 samples were analyzed. A detailed PM10 characterization allowed univariate and multivariate regression analyses in order to obtain further insight into groups of chemical species that drive OP measurements. Our results show that most of the OP assays were strongly intercorrelated over the sampling year but also these correlations differed when considering specific sampling periods (cold vs. warm). All acellular assays are correlated with a significant number of chemical species when considering univariate correlations, especially for the DTT assay. Evidence is also presented of a seasonal contrast over the sampling period with significantly higher OP values during winter for the DTT, AA, GSH and ASC assays, which were assigned to biomass burning species by the multiple linear regression models. The ESR assay clearly differs from the other tests as it did not show seasonal dynamics and presented weaker correlations with other assays and chemical species.
Kalaiarasan, Gopinath; Balakrishnan, Raj Mohan; Sethunath, Neethu Anitha; Manoharan, Sivamoorthy
2018-07-01
Particulate matter (PM 10 and PM 2.5 ) samples were collected from six sites in urban Mangalore and the mass concentrations for PM 10 and PM 2.5 were measured using gravimetric technique. The measurements were found to exceed the national ambient air quality standards (NAAQS) limits, with the highest concentration of 231.5 μg/m 3 for PM 10 particles at Town hall and 120.3 μg/m 3 for PM 2.5 particles at KMC Attavar. The elemental analysis using inductively coupled plasma optical emission spectrophotometer (ICPOES) revealed twelve different elements (As, Ba, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Sr and Zn) for PM 10 particles and nine different elements (Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sr and Zn) for PM 2.5 particles. Similarly, ionic composition of these samples measured by ion chromatography (IC) divulged nine different ions (F - , Cl - , NO 3 - , PO 4 3- , SO 4 2- , Na + , K + , Mg 2+ and Ca 2+ ) for PM 10 particles and ten different ions (F - , Cl - , NO 3 - , PO 4 3- , SO 4 2- , Na + , NH 4 + , K + , Mg 2+ and Ca 2+ ) for PM 2.5 particles. The source apportionment study of PM 10 and PM 2.5 for urban Mangalore in accordance with these six sample sites using chemical mass balance model (CMBv8.2) revealed nine and twelve predominant contributors for both PM 10 and PM 2.5 , respectively. The highest contributor of PM 10 was found to be paved road dust followed by diesel and gasoline vehicle emissions. Correspondingly, PM 2.5 was found to be contributed mainly from two-wheeler vehicle emissions followed by four-wheeler and heavy vehicle emissions (diesel vehicles). The current study depicts that the PM 10 and PM 2.5 in ambient air of Mangalore region has 70% of its contribution from vehicular emissions (both exhaust and non-exhaust). Copyright © 2018 Elsevier Ltd. All rights reserved.
Manzano-León, Natalia; Serrano-Lomelin, Jesús; Sánchez, Brisa N.; Quintana-Belmares, Raúl; Vega, Elizabeth; Vázquez-López, Inés; Rojas-Bracho, Leonora; López-Villegas, Maria Tania; Vadillo-Ortega, Felipe; De Vizcaya-Ruiz, Andrea; Perez, Irma Rosas; O’Neill, Marie S.; Osornio-Vargas, Alvaro R.
2015-01-01
Background: Observed seasonal differences in particulate matter (PM) associations with human health may be due to their composition and to toxicity-related seasonal interactions. Objectives: We assessed seasonality in PM composition and in vitro PM pro-inflammatory potential using multiple PM samples. Methods: We collected 90 weekly PM10 and PM2.5 samples during the rainy-warm and dry-cold seasons in five urban areas with different pollution sources. The elements, polycyclic aromatic hydrocarbons (PAHs), and endotoxins identified in the samples were subjected to principal component analysis (PCA). We tested the potential of the PM to induce tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) secretion in cultured human monocytes (THP-1), and we modeled pro-inflammatory responses using the component scores. Results: PM composition varied by size and by season. PCA identified two main components that varied by season. Combustion-related constituents (e.g., vanadium, benzo[a]pyrene, benzo[a]anthracene) mainly comprised component 1 (C1). Soil-related constituents (e.g., endotoxins, silicon, aluminum) mainly comprised component 2 (C2). PM from the rainy-warm season was high in C2. PM (particularly PM2.5) from the dry-cold season was rich in C1. Elevated levels of cytokine production were associated with PM10 and C2 (rainy-warm season), whereas reduced levels of cytokine production were associated with PM2.5 and C1 (dry-cold season). TNFα secretion was increased following exposure to PM with high (vs. low) C2 content, but TNFα secretion in response to PM was decreased following exposure to samples containing ≥ 0.1% of C1-related PAHs, regardless of C2 content. The results of the IL-6 assays suggested more complex interactions between PM components and particle size. Conclusions: Variations in PM soil and PAH content underlie seasonal and PM size–related patterns in TNFα secretion. These results suggest that the mixture of components in PM explains some seasonal differences in associations between health outcomes and PM in epidemiologic studies. Citation: Manzano-León N, Serrano-Lomelin J, Sánchez BN, Quintana-Belmares R, Vega E, Vázquez-López I, Rojas-Bracho L, López-Villegas MT, Vadillo-Ortega F, De Vizcaya-Ruiz A, Rosas Perez I, O’Neill MS, Osornio-Vargas AR. 2016. TNFα and IL-6 responses to particulate matter in vitro: variation according to PM size, season, and polycyclic aromatic hydrocarbon and soil content. Environ Health Perspect 124:406–412; http://dx.doi.org/10.1289/ehp.1409287 PMID:26372663
NASA Astrophysics Data System (ADS)
Hassanvand, Mohammad Sadegh; Naddafi, Kazem; Faridi, Sasan; Arhami, Mohammad; Nabizadeh, Ramin; Sowlat, Mohammad Hossein; Pourpak, Zahra; Rastkari, Noushin; Momeniha, Fatemeh; Kashani, Homa; Gholampour, Akbar; Nazmara, Shahrokh; Alimohammadi, Mahmood; Goudarzi, Gholamreza; Yunesian, Masud
2014-01-01
Indoor/outdoor particulate matter (PM10, PM2.5, and PM1) and their water-soluble ions were measured in a retirement home and a school dormitory in Tehran, from May 2012 to January 2013. Hourly indoor/outdoor PM concentrations were measured using GRIMM dust monitors and 24-h aerosol samples were collected by low-volume air samplers. Water-soluble ions were determined using an ion chromatography (IC) instrument. Although the mean outdoor PM concentrations in both sampling sites were almost equal, the mean indoor PM10 in the school dormitory was approximately 1.35 times higher than that in the retirement home. During a Middle Eastern dust storm, the 24-h average PM10, PM2.5, and PM1 concentrations were respectively 3.4, 2.9, and 1.9 times as high as those in normal days outdoors and 3.4, 2.8, and 1.6 times indoors. The results indicated that secondary inorganic aerosols were the dominant water-soluble ions of indoor and outdoor PM. We found that the smaller the particle, the higher the percentage of secondary inorganic aerosols. Except for PM10 in the school dormitory, strong correlations were found between indoor and outdoor PM. We estimated that nearly 45% of PM10, 67% of PM2.5, and 79% of PM1 in the retirement home, and 32% of PM10, 76% of PM2.5, and 83% of PM1 in the school dormitory originated from outdoor environment.
78 FR 14091 - Sunshine Act Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
... Vice President, Business Development and Strategy, Communications and Data Services, Comcast 2:35 p.m.: Panel 2: Employing innovative social media, open data and geo-location apps to enhance communications... FEDERAL COMMUNICATIONS COMMISSION Sunshine Act Meetings Open Commission Meeting Wednesday...
Early Restoration Public Meeting, Mississippi | NOAA Gulf Spill Restoration
Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News Publications Press Releases Story nearshore habitats, oysters, and human uses (on water recreation). An open house will be held at 6:00 p.m
Early Restoration Public Meeting, Florida | NOAA Gulf Spill Restoration
Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News Publications Press Releases Story nearshore habitats, oysters, and human uses (on water recreation). An open house will be held at 6:00 p.m
2015-12-30
FINAL REPORT Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM...Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M...report contains color. 14. ABSTRACT This project consists of demonstrating the performance and viability of two devices to condition aircraft turbine
Cutaway line drawing of STS-34 middeck experiment Polymer Morphology (PM)
NASA Technical Reports Server (NTRS)
1989-01-01
Cutaway line drawing shows components of STS-34 middeck experiment Polymer Morphology (PM). Components include the EAC, heat exchanger, sample cell control (SCC), sample cells, source, interferometer, electronics, carousel drive, infrared (IR) beam, and carousel. PM, a 3M-developed organic materials processing experiment, is designed to explore the effects of microgravity on polymeric materials as they are processed in space. The samples of polymeric materials being studied in the PM experiment are thin films (25 microns or less) approximately 25mm in diameter. The samples are mounted between two infrared transparent windows in a specially designed infrared cell that provides the capability of thermally processing the samples to 200 degrees Celsius with a high degree of thermal control. The samples are mounted on a carousel that allows them to be positioned, one at a time, in the infrared beam where spectra may be acquired. The Generic Electronics Module (GEM) provides all carousel and
Thagun, Chonprakun; Srisala, Jiraporn; Sritunyalucksana, Kallaya; Narangajavana, Jarunya; Sojikul, Punchapat
2012-09-15
White spot syndrome virus is currently the leading cause of production losses in the shrimp industry. Penaeus monodon Rab7 protein has been recognized as a viral-binding protein with an efficient protective effect against white spot syndrome infection. Plant-derived recombinant PmRab7 might serve as an alternative source for in-feed vaccination, considering the remarkable abilities of plant expression systems. PmRab7 was introduced into the Arabidopsis thaliana T87 genome. Arabidopsis-derived recombinant PmRab7 showed high binding activity against white spot syndrome virus and a viral envelope, VP28. The growth profile of Arabidopsis suspension culture expressing PmRab7 (ECR21# 35) resembled that of its counterpart. PmRab7 expression in ECR21# 35 reached its maximum level at 5 mg g(-1) dry weight in 12 days, which was higher than those previously reported in Escherichia coli and in Pichia. Co-injection of white spot syndrome virus and Arabidopsis crude extract containing PmRab7 in Litopenaeus vannamei showed an 87% increase in shrimp survival rate at 5 day after injection. In this study, we propose an alternative PmRab7 source with higher production yield, and cheaper culture media costs, that might serve the industry's need for an in-feed supplement against white spot syndrome infection. Copyright © 2012 Elsevier B.V. All rights reserved.
Van Den Heuvel, Rosette; Den Hond, Elly; Govarts, Eva; Colles, Ann; Koppen, Gudrun; Staelens, Jeroen; Mampaey, Maja; Janssen, Nicole; Schoeters, Greet
2016-08-01
Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM10 in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013-2014 PM10 was sampled (24h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with different pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM10 particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM10 particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM10 characteristics and biological effects of PM10 were assessed by single and multiple regression analyses. The reduction in cell viability was significantly correlated with BC, Cd and Pb. The induction of IL-8 in Beas-2B cells was significantly associated with Cu, Ni and Zn and endotoxin. Endotoxin levels explained 33% of the variance in IL-8 induction. A significant interaction between ambient temperature and endotoxin on the pro-inflammatory activity was seen. No association was found between OP and the cellular responses. This study supports the hypothesis that, on an equal mass basis, PM10 induced biological effects differ due to differences in PM10 characteristics. Metals (Cd, Cu, Ni and Zn), BC, and endotoxin were among the main determinants for the observed biological responses. Copyright © 2016 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... accuracy 3. Filter temp. control accuracy, sampling and non-sampling 1. 2 °C2. 2 °C 3. Not more than 5 °C... Reference and Class I Equivalent Methods for PM 2.5 and PM 10-2.5 E Table E-1 to Subpart E of Part 53... MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... accuracy 3. Filter temp. control accuracy, sampling and non-sampling 1. 2 °C2. 2 °C 3. Not more than 5 °C... Reference and Class I Equivalent Methods for PM2.5 and PM10-2.5 E Table E-1 to Subpart E of Part 53... MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... accuracy 3. Filter temp. control accuracy, sampling and non-sampling 1. 2 °C2. 2 °C 3. Not more than 5 °C... Reference and Class I Equivalent Methods for PM2.5 and PM10-2.5 E Table E-1 to Subpart E of Part 53... MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... accuracy 3. Filter temp. control accuracy, sampling and non-sampling 1. 2 °C2. 2 °C 3. Not more than 5 °C... Reference and Class I Equivalent Methods for PM 2.5 and PM 10-2.5 E Table E-1 to Subpart E of Part 53... MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance...
Morgan, Todd E.; Davis, David A.; Iwata, Nahoko; Tanner, Jeremy A.; Snyder, David; Ning, Zhi; Kam, Winnie; Hsu, Yu-Tien; Winkler, Jeremy W.; Chen, Jiu-Chiuan; Petasis, Nicos A.; Baudry, Michel; Sioutas, Constantinos
2011-01-01
Background: Inhalation of airborne particulate matter (PM) derived from urban traffic is associated with pathology in the arteries, heart, and lung; effects on brain are also indicated but are less documented. Objective: We evaluated rodent brain responses to urban nanoscale (< 200 nm) PM (nPM). Methods: Ambient nPM collected near an urban freeway was transferred to aqueous suspension and reaerosolized for 10-week inhalation exposure of mice or directly applied to rat brain cell cultures. Results: Free radicals were detected by electron paramagnetic resonance in the nPM 30 days after initial collection. Chronic inhalation of reaerosolized nPM altered selected neuronal and glial activities in mice. The neuronal glutamate receptor subunit (GluA1) was decreased in hippocampus, whereas glia were activated and inflammatory cytokines were induced [interleukin-1α (IL-1α), tumor necrosis factor-α (TNFα)] in cerebral cortex. Two in vitro models showed effects of nPM suspensions within 24–48 hr of exposure that involved glutamatergic functions. In hippocampal slice cultures, nPM increased the neurotoxicity of NMDA (N-methyl-d-aspartic acid), a glutamatergic agonist, which was in turn blocked by the NMDA antagonist AP5 [(2R)-amino-5-phosphonopentanoate]. In embryonic neuron cultures, nPM impaired neurite outgrowth, also blocked by AP5. Induction of IL-1α and TNFα in mixed glia cultures required higher nPM concentrations than did neuronal effects. Because conditioned media from nPM-exposed glia also impaired outgrowth of embryonic neurites, nPM can act indirectly, as well as directly, on neurons in vitro. Conclusions: nPM can affect embryonic and adult neurons through glutamatergic mechanisms. The interactions of nPM with glutamatergic neuronal functions suggest that cerebral ischemia, which involves glutamatergic excitotoxicity, could be exacerbated by nPM. PMID:21724521
Lichtveld, Kim M.; Ebersviller, Seth M.; Sexton, Kenneth G.; Vizuete, William; Jaspers, Ilona; Jeffries, Harvey E.
2012-01-01
One of the most widely used in vitro particulate matter (PM) exposures methods is the collection of PM on filters, followed by resuspension in a liquid medium, with subsequent addition onto a cell culture. To avoid disruption of equilibria between gases and PM, we have developed a direct in vitro sampling and exposure method (DSEM) capable of PM-only exposures. We hypothesize that the separation of phases and post-treatment of filter-collected PM significantly modifies the toxicity of the PM compared to direct deposition, resulting in a distorted view of the potential PM health effects. Controlled test environments were created in a chamber that combined diesel exhaust with an urban-like mixture. The complex mixture was analyzed using both the DSEM and concurrently-collected filter samples. The DSEM showed that PM from test atmospheres produced significant inflammatory response, while the resuspension exposures at the same exposure concentration did not. Increasing the concentration of resuspended PM sixteen times was required to yield measurable IL-8 expression. Chemical analysis of the resuspended PM indicated a total absence of carbonyl compounds compared to the test atmosphere during the direct-exposures. Therefore, collection and resuspension of PM into liquid modifies its toxicity and likely leads to underestimating toxicity. PMID:22834915
Hutchison, Gary R; Brown, David M; Hibbs, Leon R; Heal, Mathew R; Donaldson, Ken; Maynard, Robert L; Monaghan, Michelle; Nicholl, Andy; Stone, Vicki
2005-01-01
Background In the year 2000 Corus closed its steel plant operations in Redcar, NE of England temporarily for refurbishment of its blast furnace. This study investigates the impact of the closure on the chemical composition and biological activity of PM10 collected in the vicinity of the steel plant. Methods The metal content of PM10 samples collected before during and after the closure was measured by ICP-MS in order to ascertain whether there was any significant alteration in PM10 composition during the steel plant closure. Biological activity was assessed by instillation of 24 hr PM10 samples into male Wistar rats for 18 hr (n = 6). Inflammation was identified by the cellular and biochemical profile of the bronchoalveolar lavage fluid. Metal chelation of PM10 samples was conducted using Chelex beads prior to treatment of macrophage cell line, J774, in vitro and assessment of pro-inflammatory cytokine expression. Results The total metal content of PM10 collected before and during the closure period were similar, but on reopening of the steel plant there was a significant 3-fold increase (p < 0.05) compared with the closure and pre-closure samples. Wind direction prior to the closure was predominantly from the north, compared to south westerly during the closure and re-opened periods. Of metals analysed, iron was most abundant in the total and acid extract, while zinc was the most prevalent metal in the water-soluble fraction. Elevated markers of inflammation included a significant increase (p < 0.01) in neutrophil cell numbers in the bronchoalveolar lavage of rats instilled with PM10 collected during the reopened period, as well as significant increases in albumin (p < 0.05). Extracts of PM10 from the pre-closure and closure periods did not induce any significant alterations in inflammation or lung damage. The soluble and insoluble extractable PM10 components washed from the reopened period both induced a significant increase in neutrophil cell number (p < 0.05) when compared to the control, and these increases when added together approximately equalled the inflammation induced by the whole sample. PM10 from the re-opened period stimulated J774 macrophages to generate TNF-α protein and this was significantly prevented by chelating the metal content of the PM10 prior to addition to the cells. Conclusion PM10-induced inflammation in the rat lung was related to the concentration of metals in the PM10 samples tested, and activity was found in both the soluble and insoluble fractions of the particulate pollutant. PMID:15904485
Early Restoration Public Meeting, Louisiana | NOAA Gulf Spill Restoration
Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News Publications Press Releases Story habitats, oysters, and human uses (on water recreation). An open house will be held at 5:30 p.m., with the
Oyana, Tonny J.; Lomnicki, Slawomir M.; Guo, Chuqi; Cormier, Stephania A.
2018-01-01
Stable, bioreactive, radicals known as environmentally persistent free radicals (EPFRs) have been found to exist on the surface of airborne PM2.5. These EPFRs have been found to form during many combustion processes, are present in vehicular exhaust, and persist in the environment for weeks and biological systems for up to 12 h. To measure EPFRs in PM samples, high volume samplers are required and measurements are less representative of community exposure; therefore, we developed a novel spatial phytosampling methodology to study the spatial patterns of EPFR concentrations using plants. Leaf samples for laboratory PM analysis were collected from 188 randomly drawn sampling sites within a 500-m buffer zone of pollution sources across a sampling grid measuring 32.9 × 28.4 km in Memphis, Tennessee. PM was isolated from the intact leaves and size fractionated, and EPFRs on PM quantified by electron paramagnetic resonance spectroscopy. The radical concentration was found to positively correlate with the EPFR g-value, thus indicating cumulative content of oxygen centered radicals in PM with higher EPFR load. Our spatial phytosampling approach reveals spatial variations and potential “hotspots” risk due to EPFR exposure across Memphis and provides valuable insights for identifying exposure and demographic differences for health studies. PMID:28805054
Oyana, Tonny J; Lomnicki, Slawomir M; Guo, Chuqi; Cormier, Stephania A
2017-09-19
Stable, bioreactive, radicals known as environmentally persistent free radicals (EPFRs) have been found to exist on the surface of airborne PM 2.5 . These EPFRs have been found to form during many combustion processes, are present in vehicular exhaust, and persist in the environment for weeks and biological systems for up to 12 h. To measure EPFRs in PM samples, high volume samplers are required and measurements are less representative of community exposure; therefore, we developed a novel spatial phytosampling methodology to study the spatial patterns of EPFR concentrations using plants. Leaf samples for laboratory PM analysis were collected from 188 randomly drawn sampling sites within a 500-m buffer zone of pollution sources across a sampling grid measuring 32.9 × 28.4 km in Memphis, Tennessee. PM was isolated from the intact leaves and size fractionated, and EPFRs on PM quantified by electron paramagnetic resonance spectroscopy. The radical concentration was found to positively correlate with the EPFR g-value, thus indicating cumulative content of oxygen centered radicals in PM with higher EPFR load. Our spatial phytosampling approach reveals spatial variations and potential "hotspots" risk due to EPFR exposure across Memphis and provides valuable insights for identifying exposure and demographic differences for health studies.
NASA Astrophysics Data System (ADS)
Chirizzi, Daniela; Cesari, Daniela; Guascito, Maria Rachele; Dinoi, Adelaide; Giotta, Livia; Donateo, Antonio; Contini, Daniele
2017-08-01
Exposure to atmospheric particulate matter (PM) leads to adverse health effects although the exact mechanisms of toxicity are still poorly understood. Several studies suggested that a large number of PM health effects could be due to the oxidative potential (OP) of ambient particles leading to high concentrations of reactive oxygen species (ROS). The contribution to OP of specific anthropogenic sources like road traffic, biomass burning, and industrial emissions has been investigated in several sites. However, information about the OP of natural sources are scarce and no data is available regarding the OP during Saharan dust outbreaks (SDO) in Mediterranean regions. This work uses the a-cellular DTT (dithiothreitol) assay to evaluate OP of the water-soluble fraction of PM2.5 and PM10 collected at an urban background site in Southern Italy. OP values in three groups of samples were compared: standard characterised by concentrations similar to the yearly averages; high carbon samples associated to combustion sources (mainly road traffic and biomass burning) and SDO events. DTT activity normalised by sampled air volume (DTTV), representative of personal exposure, and normalised by collected aerosol mass (DTTM), representing source-specific characteristics, were investigated. The DTTV is larger for high PM concentrations. DTTV is well correlated with secondary organic carbon concentration. An increased DTTV response was found for PM2.5 compared to the coarse fraction PM2.5-10. DTTV is larger for high carbon content samples but during SDO events is statistically comparable with that of standard samples. DTTM is larger for PM2.5 compared to PM10 and the relative difference between the two size fractions is maximised during SDO events. This indicates that Saharan dust advection is a natural source of particles having a lower specific OP with respect to the other sources acting on the area (for water-soluble fraction). OP should be taken into account in epidemiological studies to evaluate the potential health risks associated to ROS in regions affected by high pollution events due to Saharan dust advection.
Huang, Huiting; Gao, Lirong; Xia, Dan; Qiao, Lin; Wang, Runhua; Su, Guijin; Liu, Wenbin; Liu, Guorui; Zheng, Minghui
2017-06-01
Persistent organic pollutants (POPs) were listed in the Stockholm Convention, because of their adverse health effects, persistence, bioaccumulation and ubiquitous presence in the environment. Short chain chlorinated paraffins (SCCPs), chlorinated derivatives of n-alkanes, have been listed as candidate POPs under Stockholm Convention. Inhalation uptake was an important exposure pathway for non-occupational adult human and the pollution of particle matter has caused great concern. There are some studies focused on POPs such as polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans and polybrominated diphenyl ethers in different size particles. However, there were no studies that discussed CP concentrations in particulate matter (PM) with different sizes. In this study, a total of 30 PM samples were collected both outdoors and indoors at a sampling site in Beijing. These samples were used to investigate the concentrations and distributions of SCCPs and medium chain chlorinated paraffins (MCCPs) in PM fractions of different sizes, and to evaluate inhalation exposure risks. The results showed that the average SCCPs and MCCPs in the outdoor PM 10 were 23.9 and 3.6 ng m -3 , while the mean values in indoor were 61.1 and 6.9 ng m -3 , respectively. The levels of SCCPs and MCCPs in indoor and outdoor were relatively high. SCCP and MCCP concentrations in the indoor PM 10 /PM 2.5 /PM 1.0 samples were higher than the corresponding values in the outdoor, because of the using of some products containing CPs in the indoors, like paints and coatings, leather and rubber products. In both outdoor and indoor air, CPs are mainly associated with particles ≤2.5 μm in diameter. The main homolog groups for both SCCPs and MCCPs were C 10-11 Cl 7-8 . It is assumed that SCCPs in the outdoor and indoor PM samples may mainly derive from the production and use of CP-42 and CP-52. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of particulate matter sources in an urban environment.
Mazzei, F; D'Alessandro, A; Lucarelli, F; Nava, S; Prati, P; Valli, G; Vecchi, R
2008-08-15
Daily time series measurements of elements or compounds are widely used to apportion the contribution of specific sources of particulate matter concentration in the atmosphere. We present results obtained for the urban area of Genoa (Italy) based on several hundred of PM10, PM2.5 and PM1 daily samples collected in sites with different geo-morphological and urbanization characteristics. Elemental concentrations of Na to Pb were obtained through Energy Dispersive X-Ray Fluorescence (ED-XRF), and the contributions of specific sources of particulate matter (PM) concentration were apportioned through Positive Matrix Factorization (PMF). By sampling at different sites we were able to obtain, in each PM fraction, the average and stable values for the tracers of specific sources, in particular traffic (Cu, Zn, Pb) and heavy oil combustion (V, Ni). We could also identify and quote the contamination of anthropogenic PM in "natural" sources (sea, soil dust). Sampling at several sites in the same urban area allowed us to resolve local characteristics as well as to quote average values.
PM2.5 and Carbon Emissions from Prescribed Fire in a Longleaf Pine Ecosystem
NASA Astrophysics Data System (ADS)
Strenfel, S. J.; Clements, C. B.; Hiers, J. K.; Kiefer, C. M.
2008-12-01
Prescribed fires are a frequently utilized land-management tool in the Southeastern US. In order to better characterize emissions and impacts from prescribed fire in longleaf pine ecosystems, in situ data were obtained within the burn perimeter using a 10-m instrumented flux tower. Turbulence and temperature data at 10-m were sampled at 10 Hz using a sonic anemometer and fine-wire thermocouples respectively. Measurements of PM2.5, CO and CO2 emissions were sampled at 10-m within the burn perimeter and PM2.5 and Black Carbon PM2.5 were sampled 0.5 km downwind of the fire front using a 2-m instrumented tripod. Preliminary results indicate PM2.5 and carbon emissions significantly increased during the fire-front passage, and downwind PM concentrations were amplified beyond pre-fire ambient concentrations. In addition, the considerable amount a heat release and flux data gathered from these prescribed fires suggests that near surface atmospheric conditions were directly impacted by increased turbulence generation.
Myatt, Theodore A; Vincent, Michael S; Kobzik, Lester; Naeher, Luke P; MacIntosh, David L; Suh, Helen
2011-10-01
To assess the effect of fine particulate matter (PM(2.5)) from different particle sources on tumor necrosis factor- (TNF-) α, we measured TNF production from rat alveolar macrophages (AM) and human dendritic cells (DC) exposed to PM(2.5) from different sources. Fire-related PM(2.5) samples, rural ambient, and urban indoor and outdoor samples were collected in the Southeast United States. Tumor necrosis factor release was measured from rat AM and human DC following incubation with PM(2.5). Tumor necrosis factor release in AMs was greatest for fire-related PM(2.5) compared with other samples (TNF: P value = 0.005; mortality: P value = 0.005). Tumor necrosis factor releases from the DCs and AMs exposed to fire-associated PM(2.5) were strongly correlated (r = 0.87, P value < 0.0001). Particulate matter exposure produces TNF release consistent with pulmonary inflammation in rat AMs and human DCs, with the response in rat AMs differing by particle source.
Source Apportionment and Elemental Composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia.
Khodeir, Mamdouh; Shamy, Magdy; Alghamdi, Mansour; Zhong, Mianhua; Sun, Hong; Costa, Max; Chen, Lung-Chi; Maciejczyk, Polina
2012-07-01
This paper presents the first comprehensive investigation of PM2.5 and PM10 composition and sources in Saudi Arabia. We conducted a multi-week multiple sites sampling campaign in Jeddah between June and September, 2011, and analyzed samples by XRF. The overall mean mass concentration was 28.4 ± 25.4 μg/m 3 for PM2.5 and 87.3 ± 47.3 μg/m 3 for PM10, with significant temporal and spatial variability. The average ratio of PM2.5/PM10 was 0.33. Chemical composition data were modeled using factor analysis with varimax orthogonal rotation to determine five and four particle source categories contributing significant amount of for PM2.5 and PM10 mass, respectively. In both PM2.5 and PM10 sources were (1) heavy oil combustion characterized by high Ni and V; (2) resuspended soil characterized by high concentrations of Ca, Fe, Al, and Si; and (3) marine aerosol. The two other sources in PM2.5 were (4) Cu/Zn source; (5) traffic source identified by presence of Pb, Br, and Se; while in PM10 it was a mixed industrial source. To estimate the mass contributions of each individual source category, the CAPs mass concentration was regressed against the factor scores. Cumulatively, resuspended soil and oil combustion contributed 77 and 82% mass of PM2.5 and PM10, respectively.
Source Apportionment and Elemental Composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia
Khodeir, Mamdouh; Shamy, Magdy; Alghamdi, Mansour; Zhong, Mianhua; Sun, Hong; Costa, Max; Chen, Lung-Chi; Maciejczyk, Polina
2014-01-01
This paper presents the first comprehensive investigation of PM2.5 and PM10 composition and sources in Saudi Arabia. We conducted a multi-week multiple sites sampling campaign in Jeddah between June and September, 2011, and analyzed samples by XRF. The overall mean mass concentration was 28.4 ± 25.4 μg/m3 for PM2.5 and 87.3 ± 47.3 μg/m3 for PM10, with significant temporal and spatial variability. The average ratio of PM2.5/PM10 was 0.33. Chemical composition data were modeled using factor analysis with varimax orthogonal rotation to determine five and four particle source categories contributing significant amount of for PM2.5 and PM10 mass, respectively. In both PM2.5 and PM10 sources were (1) heavy oil combustion characterized by high Ni and V; (2) resuspended soil characterized by high concentrations of Ca, Fe, Al, and Si; and (3) marine aerosol. The two other sources in PM2.5 were (4) Cu/Zn source; (5) traffic source identified by presence of Pb, Br, and Se; while in PM10 it was a mixed industrial source. To estimate the mass contributions of each individual source category, the CAPs mass concentration was regressed against the factor scores. Cumulatively, resuspended soil and oil combustion contributed 77 and 82% mass of PM2.5 and PM10, respectively. PMID:24634602
Particulate pollution -- a biological dilemma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrack, D.
Human epidemiological data from multiple studies on USA. and European populations have been reviewed extensively. The consensus supports a weak association between PM-10 particulate matter and cardio-pulmonary morbidity and mortality. It is consistent with factors in the particles comprising PM-10 causing the biological effects. PM-10 is treated as a precisely defined entity, which it is not! Ambient PM-10 particles have multiple sources, sizes 10m m, chemistry and surface area. The medical and biological effects are seen with the inhalation of a multi-media matrix of pollutants, often at elevated levels, a medical and biological problem. This paper addresses this biology, predominantlymore » determined by size and sources of PM reflecting particle chemistry and surface area, describing one mechanism by which inhaled fine particles provoke heart muscle dysfunction. Combustion-PM-2.5m m (C-PM-2.5) reach the alveoli with 70% + retention and are engulfed by pulmonary alveolar macrophages. These particles trigger chain reactions that lead to cardio-pulmonary morbidity. Their structure includes high absorptive capacity carbon, transition metal plaques, and silica components. PAH`s (Polyaromatic hydrocarbons) and other potentially toxic chemicals are extensively absorbed on them and are piggy-backed into macrophages without dilution by blood. PM-2.5`s trace amounts of soluble transition metal salts are important in the molecular and biological events leading to heart damage. Animal inhalation studies of C-PM-2.5 cause little cellular reaction in normal lungs. In lungs already irritated by other agents, C-PM-2.5 inhalation greatly aggravates the inflammatory response. The soluble transition-metals (Fe Salts) are the effector. The data are impressive and provides a robust scientific basis for more stringent regulations of ambient C-PM-2.5.« less
Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment.
McGee, John K; Chen, Lung Chi; Cohen, Mitchell D; Chee, Glen R; Prophete, Colette M; Haykal-Coates, Najwa; Wasson, Shirley J; Conner, Teri L; Costa, Daniel L; Gavett, Stephen H
2003-06-01
The catastrophic destruction of the World Trade Center (WTC) on 11 September 2001 caused the release of high levels of airborne pollutants into the local environment. To assess the toxicity of fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)], which may adversely affect the health of workers and residents in the area, we collected fallen dust samples on 12 and 13 September 2001 from sites within a half-mile of Ground Zero. Samples of WTC dust were sieved, aerosolized, and size-separated, and the PM2.5 fraction was isolated on filters. Here we report the chemical and physical properties of PM2.5 derived from these samples and compare them with PM2.5 fractions of three reference materials that range in toxicity from relatively inert to acutely toxic (Mt. St. Helens PM; Washington, DC, ambient air PM; and residual oil fly ash). X-ray diffraction of very coarse sieved WTC PM (< 53 microm) identified calcium sulfate (gypsum) and calcium carbonate (calcite) as major components. Scanning electron microscopy confirmed that calcium-sulfur and calcium-carbon particles were also present in the WTC PM2.5 fraction. Analysis of WTC PM2.5 using X-ray fluorescence, neutron activation analysis, and inductively coupled plasma spectrometry showed high levels of calcium (range, 22-33%) and sulfur (37-43% as sulfate) and much lower levels of transition metals and other elements. Aqueous extracts of WTC PM2.5 were basic (pH range, 8.9-10.0) and had no evidence of significant bacterial contamination. Levels of carbon were relatively low, suggesting that combustion-derived particles did not form a significant fraction of these samples recovered in the immediate aftermath of the destruction of the towers. Because gypsum and calcite are known to cause irritation of the mucus membranes of the eyes and respiratory tract, inhalation of high doses of WTC PM2.5 could potentially cause toxic respiratory effects.
Comparison of WTC Dust Size on Macrophage Inflammatory Cytokine Release In vivo and In vitro
Weiden, Michael D.; Naveed, Bushra; Kwon, Sophia; Segal, Leopoldo N.; Cho, Soo Jung; Tsukiji, Jun; Kulkarni, Rohan; Comfort, Ashley L.; Kasturiarachchi, Kusali J.; Prophete, Colette; Cohen, Mitchell D.; Chen, Lung-Chi; Rom, William N.; Prezant, David J.; Nolan, Anna
2012-01-01
Background The WTC collapse exposed over 300,000 people to high concentrations of WTC-PM; particulates up to ∼50 mm were recovered from rescue workers’ lungs. Elevated MDC and GM-CSF independently predicted subsequent lung injury in WTC-PM-exposed workers. Our hypotheses are that components of WTC dust strongly induce GM-CSF and MDC in AM; and that these two risk factors are in separate inflammatory pathways. Methodology/Principal Findings Normal adherent AM from 15 subjects without WTC-exposure were incubated in media alone, LPS 40 ng/mL, or suspensions of WTC-PM10–53 or WTC-PM2.5 at concentrations of 10, 50 or 100 µg/mL for 24 hours; supernatants assayed for 39 chemokines/cytokines. In addition, sera from WTC-exposed subjects who developed lung injury were assayed for the same cytokines. In the in vitro studies, cytokines formed two clusters with GM-CSF and MDC as a result of PM10–53 and PM2.5. GM-CSF clustered with IL-6 and IL-12(p70) at baseline, after exposure to WTC-PM10–53 and in sera of WTC dust-exposed subjects (n = 70) with WTC lung injury. Similarly, MDC clustered with GRO and MCP-1. WTC-PM10–53 consistently induced more cytokine release than WTC-PM2.5 at 100 µg/mL. Individual baseline expression correlated with WTC-PM-induced GM-CSF and MDC. Conclusions WTC-PM10–53 induced a stronger inflammatory response by human AM than WTC-PM2.5. This large particle exposure may have contributed to the high incidence of lung injury in those exposed to particles at the WTC site. GM-CSF and MDC consistently cluster separately, suggesting a role for differential cytokine release in WTC-PM injury. Subject-specific response to WTC-PM may underlie individual susceptibility to lung injury after irritant dust exposure. PMID:22815721
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karaca, F.; Alagha, O.; Erturk, F.
Daily samples of fine (PM2.5) and coarse (PM2.5-10) particles were collected from July 2002 to July 2003 to provide a better understanding of the elemental concentration and source contribution to both PM fractions. Sampling location represents suburban part of Istanbul metropolitan city. Samples were collected on Teflon filters using a 'Dichotomous Sampler.' Concentrations of Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, and Zn were measured by GFAAS, FAAS, and FAES techniques. Elemental variations of heating and nonheating seasons were discussed. Fossil fuel-related atmospheric metals dramatically increased during the heating season, while natural originatedmore » atmospheric metals increased during the nonheating season. Seasonal variations of source contributions were evaluated using factor analysis, which was separately applied to the collected fine and coarse particles data sets during heating and nonheating seasons (four data sets: PM2.5 heating, PM2.5 nonheating, PM2.5-10 heating, and PM2.5-10 nonheating). Significant seasonal differences in source contributions were observed. Four factor groups were extracted for PM2.5 dataset during the nonheating season, while five factor groups were extracted for all the other cases. Mineral dust transportation, traffic, and industry-related activities were classified as different factor groups in all the cases.« less
STS-71 crew addresses news media
NASA Technical Reports Server (NTRS)
1995-01-01
Following their arrival at KSC's Shuttle Landing Facility, the STS-71 flight crew takes a moment to address news media gathered to greet them. The journey from Johnson Space Center in Houston brings the flight crew one step closer to an historic spaceflight, the first docking of the U.S. Space Shuttle with the Russian Space Station Mir. The countdown clock already has begun ticking toward liftoff of the Shuttle Atlantis on that flight, currently scheduled for June 23 at 5:08 p.m. EDT.
Jiang, Sabrina Yanan; Gali, Nirmal Kumar; Yang, Fenhuan; Zhang, Junke; Ning, Zhi
2017-08-01
To investigate the chemical properties of particulate matter (PM) in different public transport microenvironments in Hong Kong, the coarse (2.5-10 μm) and fine (<2.5 μm) PM samples were collected in three different types of transport modes including Mass Transit Railway (MTR)-Aboveground (AG), MTR Underground (UG), and Bus routes from October 2013 to April 2014. Average PM 2.5 concentrations through UG, AG, and Bus routes were 47.9, 86.8, and 43.8 μg m -3 , respectively, whereas the coarse PM concentrations were 4-5 folds less. The PM 2.5 total metal concentrations of AG route were 2.3 and 3.7 times of UG and BUS routes, respectively, compared to those in the other two routes. The most abundant metals at three stations in PM 2.5 and coarse PM were quite similar and mainly generated by frictional processes of wheels, rails, and brakes of the system as well as by the mechanical wearing of these parts. The most abundant PAH in three routes in PM 2.5 was ATRQN, followed by 2-MNA, and the sum of them contributed to 35 and 42% of total PAHs in coarse PM and PM 2.5 , respectively. Crude oils, lubricant oil, diesel emissions would be the major sources of PAHs from MTR aboveground stations. The relative abundance of the n-alkanes among different samples was similar to the PAHs and the carbon preference index (CPI) values of the whole n-alkanes range were consistently from 0.99 to 1.04 among all samples indicating the significant contribution from the vehicle exhaust and fossil fuel burning. The concentrations of hopanes and steranes were higher in PM 2.5 than in coarse PM due to diesel and coal burning. These results may provide a unique opportunity to investigate source specific contribution of the PM pollutants to the commuter exposure in public transport.
Schilirò, T; Alessandria, L; Bonetta, S; Carraro, E; Gilli, G
2016-02-01
To contribute to a greater characterization of the airborne particulate matter's toxicity, size-fractionated PM10 was sampled during different seasons in a polluted urban site in Torino, a northern Italian city. Three main size fractions (PM10 - 3 μm; PM3 - 0.95 μm; PM < 0.95 μm) extracts (organic and aqueous) were assayed with THP-1 cells to evaluate their effects on cell proliferation, LDH activity, TNFα, IL-8 and CYP1A1 expression. The mean PM10 concentrations were statistically different in summer and in winter and the finest fraction PM<0.95 was always higher than the others. Size-fractionated PM10 extracts, sampled in an urban traffic meteorological-chemical station produced size-related toxicological effects in relation to season and particles extraction. The PM summer extracts induced a significant release of LDH compared to winter and produced a size-related effect, with higher values measured with PM10-3. Exposure to size-fractionated PM10 extracts did not induce significant expression of TNFα. IL-8 expression was influenced by exposure to size-fractionated PM10 extracts and statistically significant differences were found between kind of extracts for both seasons. The mean fold increases in CYP1A1 expression were statistically different in summer and in winter; winter fraction extracts produced a size-related effect, in particular for organic samples with higher values measured with PM<0.95 extracts. Our results confirm that the only measure of PM can be misleading for the assessment of air quality moreover we support efforts toward identifying potential effect-based tools (e.g. in vitro test) that could be used in the context of the different monitoring programs. Copyright © 2015 Elsevier Ltd. All rights reserved.
High Pb/Ce reservoir in depleted, altered mantle peridotites
NASA Astrophysics Data System (ADS)
Godard, M.; Kelemen, P.; Hart, S.; Jackson, M.; Hanghoj, K.
2005-12-01
We find consistent, high Pb/Ce in ICP-MS data for residual peridotites from the Mid-Atlantic Ridge (MAR, from ODP Leg 209), mid-ocean ridges (MOR) worldwide [1], Oman, Josephine and Trinity ophiolites, and the Jurassic Talkeetna arc. (MAR and Oman data from Montpellier; Josephine, Trinity and Talkeetna from WSU; some Pb concentrations checked by ID at WHOI). These samples have average Pb/Ce 10x primitive mantle (PM), with only 3 of 180 samples < PM. REE patterns and Ce concentration < PM in 165 of 180 samples are consistent with depletion via melt extraction, plus some magmatic refertilization. High Pb (average 3x PM, median 0.5x PM), could be due to (a) retention of Pb in residual sulfide, (b) addition of Pb in sulfide and plagioclase during `impregnation' by crystallizing melt, and/or (c) addition of Pb in sulfide and carbonate during alteration. Pb/Ce is correlated negatively with Ce concentration, suggesting a role for (a). Pb concentration is strongly correlated with Th and Nb. These elements are considered immobile during hydrothermal alteration, their correlations with Pb are positive, and Pb is > PM in many samples, all suggesting a complementary role for (b) and a limited role for (c). All samples except Talkeetna have Th/Pb < PM. All samples except some MOR peridotites also have U/Pb < PM. DRILLED MAR peridotites show U/Pb > PM in shallow, oxidized samples and < PM in downhole, reduced samples. Thus, high U/Pb in DREDGED MOR peridotites [1] is attributed to seafloor weathering. Given that oxidized weathering only extends tens of meters below the seafloor, we infer that most MOR peridotites have Th/Pb and U/Pb < PM. If they form with Pb isotope ratios similar to MORB, these rocks will evolve to values less radiogenic than the geochron. The effect of subduction modification on Th/Pb and U/Pb is unclear. For example, if elevated Pb is common in unaltered residual peridotites, subduction modification is likely to be minor. The size of the high Pb/Ce, low Th/Pb and U/Pb reservoir represented by these rocks depends on the reason for elevated Pb. We discuss three possibilities as outlined above. (a) Pb enrichment is most marked in highly depleted residues, abundant in the upper 30 km of the oceanic mantle. (b) Crystallization of igneous sulfide and plagioclase from cooling melt migrating along peridotite grain boundaries may be common in the upper 20 km in plates formed at slow spreading ridges. (c) Hydrothermal alteration of shallow mantle peridotite at slow spreading ridges might extend to 10 km. Based on these estimates, over geologic time tens of percent of mantle Pb could be sequestered in such a reservoir. This offers a potential solution to the "first lead paradox". [1] Niu, J. Petrol. 2004
Concentration and characterization of airborne particles in Tehran's subway system.
Kamani, Hosein; Hoseini, Mohammad; Seyedsalehi, Mahdi; Mahdavi, Yousef; Jaafari, Jalil; Safari, Gholam Hosein
2014-06-01
Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran's subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4 ± 26.3 and 52.3 ± 16.5 μg m(-3) in the platform and 81.8 ± 22.2 and 35 ± 17.6 μg m(-3) in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6 ± 23 and 41.3 ± 20.4 μg m(-3) in the platform and 73.9 ± 17.3 and 30 ± 15 μg m(-3), in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43% (PM10) and 47.7% (PM2.5) in platform of Imam Khomeini station and 15.9% (PM10) and 18.5% (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6% (PM10) and 39.8% (PM2.5) in platform and was 11.7% (PM10) and 14.3% (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3% in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8% of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5% in the outdoor air, respectively. Other major crustal elements were 5.8% (PM10) and 5.3% (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4% in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7% in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations.
Ryan, Patrick H; Brokamp, Cole; Fan, Zhi-Hua; Rao, M B
2015-12-01
The complex mixture of chemicals and elements that constitute particulate matter (PM*) varies by season and geographic location because source contributors differ over time and place. The composition of PM having an aerodynamic diameter < 2.5 μm (PM2.5) is hypothesized to be responsible, in part, for its toxicity. Epidemiologic studies have identified specific components and sources of PM2.5 that are associated with adverse health outcomes. The majority of these studies use measures of outdoor concentrations obtained from one or a few central monitoring sites as a surrogate for measures of personal exposure. Personal PM2.5 (and its elemental composition), however, may be different from the PM2.5 measured at stationary outdoor sites. The objectives of this study were (1) to describe the relationships between the concentrations of various elements in indoor, outdoor, and personal PM2.5 samples, (2) to identify groups of individuals with similar exposures to mixtures of elements in personal PM2.5 and to examine personal and home characteristics of these groups, and (3) to evaluate whether concentrations of elements from outdoor PM2.5 samples are appropriate surrogates for personal exposure to PM2.5 and its elements and whether indoor PM2.5 concentrations and information about home characteristics improve the prediction of personal exposure. The objectives of the study were addressed using data collected as part of the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study. The RIOPA study has previously measured the mass concentrations of PM2.5 and its elemental constituents during 48-hour concurrent indoor, outdoor (directly outside the home), and personal samplings in three urban areas (Los Angeles, California; Houston, Texas; and Elizabeth, New Jersey). The resulting data and information about personal and home characteristics (including air-conditioning use, nearby emission sources, time spent indoors, census-tract geography, air-exchange rates, and other information) for each RIOPA participant were downloaded from the RIOPA study database. We performed three sets of analyses to address the study aims. First, we conducted descriptive analyses to describe the relationships between elemental concentrations in the concurrently gathered indoor, outdoor, and personal air samples. We assessed the correlation between personal exposure and indoor concentrations as well as personal exposure and outdoor concentrations of each element and calculated ratios between them. In addition, we performed principal component analysis (PCA) and calculated principal component scores (PCSs) to examine the heterogeneity of the elemental composition and then tested whether the mixture of elements in indoor, outdoor, and personal PM2.5 was significantly different within each study site and across study sites. Secondly, we performed model-based clustering analysis to group RIOPA participants with similar exposures to mixtures of elements in personal PM2.5. We examined the association between cluster membership and the concentrations of elements in indoor and outdoor PM2.5 samples and personal and home characteristics. Finally, we developed a series of linear regression models and random forest models to examine the association between personal exposure to elements in PM2.5 and (1) outdoor measurements, (2) outdoor and indoor measurements, and (3) outdoor and indoor measurements and home characteristics. As we developed each model, the improvement in prediction of personal exposure when including additional information was assessed. Personal exposures to PM2.5 and to most elements were significantly correlated with both indoor and outdoor concentrations, although concentrations in personal samples frequently exceeded those of indoor and outdoor samples. In general, for most PM2.5 elements indoor concentrations were more highly correlated with personal exposure than were outdoor concentrations. PCA showed that the mixture of elements in indoor, outdoor, and personal PM2.5 varied significantly across sample types within each study site and also across study sites within each sample type. Using model-based clustering, we identified seven clusters of RIOPA participants whose personal PM2.5 samples had similar patterns of elemental composition. Using this approach, subsets of RIOPA participants were identified whose personal exposures to PM2.5 (and its elements) were significantly higher than their indoor and outdoor concentrations (and vice versa). The results of linear and random forest regression models were consistent with our correlation analyses and demonstrated that (1) indoor concentrations were more significantly associated with personal exposure than were outdoor concentrations and (2) participant reports of time spent at their home significantly modified many of the associations between indoor and personal concentrations. In linear regression models, the inclusion of indoor concentrations significantly improved the prediction of personal exposures to Ba, Ca, Cl, Cu, K, Sn, Sr, V, and Zn compared with the use of outdoor elemental concentrations alone. Including additional information on personal and home characteristics improved the prediction for only one element, Pb. Our results support the use of outdoor monitoring sites as surrogates of personal exposure for a limited number of individual elements associated with long-range transport and with a few local or indoor sources. Based on our PCA and clustering analyses, we concluded that the overall elemental composition of PM2.5 obtained at outdoor monitoring sites may not accurately represent the elemental composition of personal PM2.5. Although the data used in these analyses compared outdoor PM2.5 composition collected at the home with indoor and personal samples, our results imply that studies examining the complete elemental composition of PM2.5 should be cautious about using data from central outdoor monitoring sites because of the potential for exposure misclassification. The inclusion of personal and home characteristics only marginally improved the prediction of personal exposure for a small number of elements in PM2.5. We concluded that the additional cost and burden of indoor and personal sampling may be justified for studies examining elements because neither outdoor monitoring nor questionnaire data on home and personal characteristics were able to represent adequately the overall elemental composition of personal PM2.5.
Chemical Composition and Source Apportionment of Size ...
The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM 2.5 ) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible for health effects however are not fully understood. Size-fractionated PM (coarse, fine, and ultrafine) samples were collected using a ChemVol sampler at an urban site (G.T. Craig (GTC)) and rural site (Chippewa Lake (CLM)) from July 2009 to June 2010, and then chemically analyzed. The resulting speciated PM data were apportioned by EPA positive matrix factorization to identify emission sources for each size fraction and location. For comparisons with the ChemVol results, PM samples were also collected with sequential dichotomous and passive samplers, and evaluated for source contributions to each sampling site. The ChemVol results showed that annual average concentrations of PM, elemental carbon, and inorganic elements in the coarse fraction at GTC were ~ 2, ~7, and ~3 times higher than those at CLM, respectively, while the smaller size fractions at both sites showed similar annual average concentrat ions. Seasonal variations of secondary aerosols (e.g., high N03- level in winter and high SO42- level in summer) were observed at both sites. Source apportionment results demonstrated that the PM samples at GTC and CLM were enriched with local industrial sources (e.g., steel plant and coa
Waller, Niels G; Feuerstahler, Leah
2017-01-01
In this study, we explored item and person parameter recovery of the four-parameter model (4PM) in over 24,000 real, realistic, and idealized data sets. In the first analyses, we fit the 4PM and three alternative models to data from three Minnesota Multiphasic Personality Inventory-Adolescent form factor scales using Bayesian modal estimation (BME). Our results indicated that the 4PM fits these scales better than simpler item Response Theory (IRT) models. Next, using the parameter estimates from these real data analyses, we estimated 4PM item parameters in 6,000 realistic data sets to establish minimum sample size requirements for accurate item and person parameter recovery. Using a factorial design that crossed discrete levels of item parameters, sample size, and test length, we also fit the 4PM to an additional 18,000 idealized data sets to extend our parameter recovery findings. Our combined results demonstrated that 4PM item parameters and parameter functions (e.g., item response functions) can be accurately estimated using BME in moderate to large samples (N ⩾ 5, 000) and person parameters can be accurately estimated in smaller samples (N ⩾ 1, 000). In the supplemental files, we report annotated [Formula: see text] code that shows how to estimate 4PM item and person parameters in [Formula: see text] (Chalmers, 2012 ).
Anomalous elevated radiocarbon measurements of PM2.5
NASA Astrophysics Data System (ADS)
Buchholz, Bruce A.; Fallon, Stewart J.; Zermeño, Paula; Bench, Graham; Schichtel, Bret A.
2013-01-01
Two-component models are often used to determine the contributions made by fossil fuel and natural sources of carbon in airborne particulate matter (PM). The models reduce thousands of actual sources to two end members based on isotopic signature. Combustion of fossil fuels produces PM free of carbon-14 (14C). Wood or charcoal smoke, restaurant fryer emissions, and natural emissions from plants produce PM with the contemporary concentration of 14C approximately 1.2 × 10-1214C/C. Such data can be used to estimate the relative contributions of fossil fuels and biogenic aerosols to the total aerosol loading and radiocarbon analysis is becoming a popular source apportionment method. Emissions from incinerators combusting medical or biological wastes containing tracer 14C can skew the 14C/C ratio of PM, however, so critical analysis of sampling sites for possible sources of elevated PM needs to be completed prior to embarking on sampling campaigns. Results are presented for two ambient monitoring sites in different areas of the United States where 14C contamination is apparent. Our experience suggests that such contamination is uncommon but is also not rare (∼10%) for PM sampling sites.
Rousová, Jana; Chintapalli, Manikyala R; Lindahl, Anastasia; Casey, Jana; Kubátová, Alena
2018-04-06
Carboxylic acids and aldehydes are present in ambient air particulate matter (PM) originating from both primary emission and secondary production in air and may, due to their polarity have, an impact on formation of cloud condensation nuclei. Their simultaneous determination may provide improved understanding of atmospheric processes. We developed a new analytical method allowing for a single step determination of majority of carboxylic acids and aldehydes (+95 compounds). This sample preparation employed O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA·HCl) in methanol to yield oximes (for aldehydes) and methyl esters (for majority of acids); with the limits of detection of 0.02-1 ng per injection, corresponding to approximately 0.4-20 μg/g PM . Subsequent trimethylsilylation with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was employed only for aromatic acids, which were not completely esterified, and for hydroxyl groups. Our method, in contrast to previous primarily qualitative studies, based on derivatization with an aqueous PFBHA followed by BSTFA derivatization, is less labor-intesive and reduces sample losses caused by an evaporation. The method was tested with a broad range of functionalized compounds (95), including monocarboxylic, dicarboxylic and aromatic acids, ketoacids, hydroxyacids and aldehydes. The developed protocol was applied to wood smoke (WS) and urban air standard reference material 1648b (UA) PM. The observed concentrations of aldehydes were 10-3000 μg/g PM in WS PM and 10-900 μg/g PM in UA PM, while those of acids were 20-1800 μg/g PM in WS PM and 15-1200 μg/g PM in UA PM. The most prominent aldehydes were syringaldehyde and vanillin in WS PM and glyoxal in UA PM. The most abundant acids in both PM samples were short-chain dicarboxylic acids (≤C 10 ). WS PM had a high abundance of hydroxyacids (vanillic and malic acids) as well as ketoacids (glutaric and oxalacetic) while UA PM also featured a high abundance of long-chain monocarboxylic acids (≥C 16 ). Copyright © 2018 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
....5 sample collection filter is weighed (after moisture and temperature conditioning) before and after... ambient temperature and pressure and the sampling time. The mass concentrations of both PM10c and PM2.5 in... in micrograms per cubic meter (µg/m3)at local temperature and pressure conditions. The mass...
Basic statistics of PM2.5 and PM10 in the atmosphere of Mexico City.
Vega, E; Reyes, E; Sánchez, G; Ortiz, E; Ruiz, M; Chow, J; Watson, J; Edgerton, S
2002-03-27
The high levels of fine particulate matter in Mexico City are of concern since they may induce severe public health effects as well as the attenuation of visible light. Sequential filter samplers were used at six different sites from 23 February to 22 March 1997. The sampling campaign was carried out as part of the project 'Investigación sobre Materia Particulada y Deterioro Atmosferico-Aerosol and Visibility Evaluation Research'. This research was a cooperative project sponsored by PEMEX and by the US Department of Energy. Sampling sites represent the different land uses along the city, the northwest station, Tlalnepantla, is located in a mixed medium income residential and industrial area. The northeast station, Xalostoc, is located in a highly industrialized area, Netzahualcoyotl is located in a mixed land use area, mainly commercial and residential. Station La Merced is located in the commercial and administrative district downtown. The southwest station is located in the Pedregal de San Angel, in a high-income neighborhood, and the southeast station located in Cerro de la Estrella is a mixed medium income residential and commercial area. Samples were collected four times a day in Cerro de la Estrella (CES), La Merced (MER) and Xalostoc (XAL) with sampling periods of 6 h. In Pedregal (PED), Tlalnepantla (TLA) and Netzahualcoyot1 (NEZ) sampling periods were every 24 h. In this paper the basic statistics of PM2.5 and PM10 mass concentrations are presented. The average results showed that 49, 61, 46, 57, 51 and 44% of the PM10 consisted of PM2.5 for CES, MER, XAL, PED, TLA and NEZ, respectively. The 24-h average highest concentrations of PM25 and PM10 were registered at NEZ (184 and 267 microg/m3) and the lowest at PED (22 and 39 microg/m3). The highest PM10 correlations were between XAL-CES (0.79), PED-TLA (0.80). In contrast, the highest PM2.5 correlations were between CES-PED (0.74), MER-CES (0.73) and TLA-PED (0.72), showing a lower correlation than the PM10 one. The results of the PM10 from 12.00 to 18.00 h at CES and MER presented the highest variability and also the highest median concentrations, meanwhile XAL showed them from 06.00 to 12.00 h. The highest variability and median concentrations of PM2.5 were from 06.00 to 12.00 h for the three stations.
NASA Technical Reports Server (NTRS)
Haines, Jennifer C.; Chen, Lung-Wen A.; Taubman, Brett F.; Doddridge, Bruce G.; Dickerson, Russell R.
2007-01-01
Reliable determination of the effects of air quality on public health and the environment requires accurate measurement of PM(sub 2.5) mass and the individual chemical components of fine aerosols. This study seeks to evaluate PM(sub 2.5) measurements that are part of a newly established national network by comparing them with a more conventional sampling system. Experiments were carried out during 2002 at a suburban site in Maryland, United States, where two samplers from the U.S. Environmental Protection Agency (USEPA) Speciation Trends Network: Met One Speciation Air Sampling System STNS and Thermo Scientific Reference Ambient Air Sampler STNR, two Desert Research Institute Sequential Filter Samplers DRIF, and a continuous TEOM monitor (Thermo Scientific Tapered Element Oscillating Microbalance) were sampling air in parallel. These monitors differ not only in sampling configuration but also in protocol-specific sample analysis procedures. Measurements of PM(sub 2.5) mass and major contributing species were well correlated among the different methods with r-values > 0.8. Despite the good correlations, daily concentrations of PM(sub 2.5) mass and major contributing species were significantly different at the 95% confidence level from 5 to 100% of the time. Larger values of PM(sub 2.5) mass and individual species were generally reported from STNR and STNS. The January STNR average PM(sub 2.5) mass (8.8 (micro)g/per cubic meter) was 1.5 (micro)g/per cubic meter larger than the DRIF average mass. The July STNS average PM(sub 2.5) mass (27.8 (micro)g/per cubic meter) was 3.8 (micro)g/per cubic meter larger than the DRIF average mass. These differences can only be partially accounted for by known random errors. Variations in flow control, face velocity, and sampling artifacts likely influence the measurement of PM(sub 2.5) speciation and mass closure. Simple statistical tests indicate that the current uncertainty estimates used in the STN network may underestimate the actual uncertainty.
NASA Astrophysics Data System (ADS)
Guberman, S.; Yoon, S.; Guagenti, M. C.; Sheesley, R. J.; Usenko, S.
2017-12-01
Urban areas are literal hot spots of mosquito-borne disease transmission and air pollution during the summer months. Public health authorities release aerosolized adulticides to target adult mosquitoes directly in to the atmosphere to control mosquito populations and reduce the threat of diseases (e.g. Zika). Permethrin and malathion are the primary adulticides for controlling adult mosquito populations in Houston, TX and are typically sprayed at night. After being released into the atmosphere adulticides are subject to atmospheric oxidation initiated by atmospheric oxidants (e.g. O3 and NO3) which are driven by anthropogenic air pollutants (e.g. NOx; NO and NO2). Particulate matter (PM) samples were measured at both application and downwind locations. Sampling sites were determined using the combination of atmospheric plume transport models and adulticide application data provided by Harris County Public Health Mosquito Division. Atmospheric PM samples were taken using a Mobile Laboratory, equipped with total suspended PM and PM2.5 (PM with diameter <2.5 um) samplers, as well as real-time instruments that made congruent measurements of O3, NOx, and wind speed and direction. Nighttime atmospheric half-lives of malathion were calculated to be 40-90% lower than malathion half-lives measured in previous studies; these half-lives were determined using diurnal atmospheric concentrations of malathion and its oxidation product, malaoxon. Interestingly, during malathion-use periods, atmospheric malaoxon concentrations measured in the PM2.5 samples were similar to corresponding TSP samples. This suggests that the majority of the malathion (and malaoxon) was associated with fine PM. During permethrin-use periods, atmospheric permethrin concentrations measured in the PM2.5 samples were an order and half lower in magnitude. This suggests that permethrin may be undergoing less volatilization into the gas phase after application as compared to malathion (and or malaoxon). Unlike permethrin, malathion was not sprayed with a carrier or a synergistic compound. As a result, malathion may be more prone to volatilization. The atmospheric oxidation and migration to fine PM may result in decreased efficacy and increase atmospheric transport, both of which have environmental and human health consequences.
Linville, Jessica L; Rodriguez, Miguel; Mielenz, Jonathan R; Cox, Chris D
2013-11-01
The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C. thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (μmax=1.223 vs. 0.571 h(-1)) and less inhibition (KI,gen=0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (KI,gen=0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT. Copyright © 2013 Elsevier Ltd. All rights reserved.
Transport Loss Estimation of Fine Particulate Matter in Sampling Tube Based on Numerical Computation
NASA Astrophysics Data System (ADS)
Luo, L.; Cheng, Z.
2016-12-01
In-situ measurement of PM2.5 physical and chemical properties is one substantial approach for the mechanism investigation of PM2.5 pollution. Minimizing PM2.5 transport loss in sampling tube is essential for ensuring the accuracy of the measurement result. In order to estimate the integrated PM2.5 transport efficiency in sampling tube and optimize tube designs, the effects of different tube factors (length, bore size and bend number) on the PM2.5 transport were analyzed based on the numerical computation. The results shows that PM2.5 mass concentration transport efficiency of vertical tube with flowrate at 20.0 L·min-1, bore size at 4 mm, length at 1.0 m was 89.6%. However, the transport efficiency will increase to 98.3% when the bore size is increased to 14 mm. PM2.5 mass concentration transport efficiency of horizontal tube with flowrate at 1.0 L·min-1, bore size at 4mm, length at 10.0 m is 86.7%, increased to 99.2% with length at 0.5 m. Low transport efficiency of 85.2% for PM2.5 mass concentration is estimated in bend with flowrate at 20.0 L·min-1, bore size at 4mm, curvature angle at 90o. Laminar flow of air in tube through keeping the ratio of flowrate (L·min-1) and bore size (mm) less than 1.4 is beneficial to decrease the PM2.5 transport loss. For the target of PM2.5 transport efficiency higher than 97%, it is advised to use vertical sampling tubes with length less than 6.0 m for the flowrates of 2.5, 5.0, 10.0 L·min-1 and bore size larger than 12 mm for the flowrates of 16.7 or 20.0 L·min-1. For horizontal sampling tubes, tube length is decided by the ratio of flowrate and bore size. Meanwhile, it is suggested to decrease the amount of the bends in tube of turbulent flow.
Kilburg-Basnyat, Brita; Peters, Thomas M.; Perry, Sarah S.; Thorne, Peter S.
2016-01-01
Paired electrostatic dust collectors (EDCs) and daily, inhalable button samplers (BS) were used concurrently to sample endotoxin in 10 farm homes during 7-day periods in summer and winter. Winter sampling included an optical particle counter (OPC) to measure PM2.5 and PM2.5-10. Electrostatic dust collectors and BS filters were analyzed for endotoxin using the kinetic chromogenic Limulus amebocyte lysate assay. Optical particle counter particulate matter (PM) data were divided into two PM categories. In summer, geometric mean (geometric standard deviation) endotoxin concentrations were 0.82 EU/m3 (2.7) measured with the BS and 737 EU/m2 (1.9) measured with the EDC. Winter values were 0.52 EU/m3 (3.1) for BS and 538 EU/m2 (3.0) for EDCs. Seven day endotoxin values of EDCs were highly correlated with the 7-day BS sampling averages (r=0.70; p<0.001). Analysis of variance indicated a 2.4-fold increase in EDC endotoxin concentrations for each unit increase of the ratio of PM2.5 to PM2.5-10. There was also a significant correlation between BS and EDCs endotoxin concentrations for winter (r=0.67; p<0.05) and summer(r=0.75; p<0.05). Thus, EDCs sample comparable endotoxin concentrations to BS, making EDCs a feasible, easy to use alternative to BS for endotoxin sampling. PMID:26296624
Particulate matter oxidative potential from waste transfer station activity.
Godri, Krystal J; Duggan, Sean T; Fuller, Gary W; Baker, Tim; Green, David; Kelly, Frank J; Mudway, Ian S
2010-04-01
Adverse cardiorespiratory health is associated with exposure to ambient particulate matter (PM). The highest PM concentrations in London occur in proximity to waste transfer stations (WTS), sites that experience high numbers of dust-laden, heavy-duty diesel vehicles transporting industrial and household waste. Our goal was to quantify the contribution of WTS emissions to ambient PM mass concentrations and oxidative potential. PM with a diameter < 10 microm (PM10) samples were collected daily close to a WTS. PM10 mass concentrations measurements were source apportioned to estimate local versus background sources. PM oxidative potential was assessed using the extent of antioxidant depletion from a respiratory tract lining fluid model. Total trace metal and bioavailable iron concentrations were measured to determine their contribution to PM oxidative potential. Elevated diurnal PM10 mass concentrations were observed on all days with WTS activity (Monday-Saturday). Variable PM oxidative potential, bioavailable iron, and total metal concentrations were observed on these days. The contribution of WTS emissions to PM at the sampling site, as predicted by microscale wind direction measurements, was correlated with ascorbate (r = 0.80; p = 0.030) and glutathione depletion (r = 0.76; p = 0.046). Increased PM oxidative potential was associated with aluminum, lead, and iron content. PM arising from WTS activity has elevated trace metal concentrations and, as a consequence, increased oxidative potential. PM released by WTS activity should be considered a potential health risk to the nearby residential community.
NASA Astrophysics Data System (ADS)
Feng, Jinglan; Yu, Hao; Su, Xianfa; Liu, Shuhui; Li, Yi; Pan, Yuepeng; Sun, Jian-Hui
2016-12-01
Twenty-four PM2.5 samples were collected at a suburban site of Xinxiang during Chinese Spring Festival (SF) in 2015. 10 water-soluble ions, 19 trace elements and 8 fractions of carbonaceous species in PM2.5 were analyzed. Potential sources of PM2.5 were quantitatively apportioned using principal component analysis (PCA)-multivariate linear regressions (MLR). The threat of heavy metals in PM2.5 was assessed using incremental lifetime cancer risk (ILCR). During the whole period, serious regional haze pollution persisted, the average concentration of PM2.5 was 111 ± 54 μg m- 3, with 95.8% and 79.2% of the daily samples exhibiting higher PM2.5 concentrations than the national air quality standard I and II. Chemical species declined due to holiday effect with the exception of K, Fe, Mg, Al and K+, Cl-, which increased on Chinese New Year (CNY)'s Eve and Lantern Festival in 2015, indicating the injection of firework burning particles in certain short period. PM2.5 mass closure showed that secondary inorganic species were the dominant fractions of PM2.5 over the entire sampling (37.3%). 72-hour backward trajectory clusters indicated that most serious air pollution occurred when air masses transported from the Inner Mongolia, Shanxi and Zhengzhou. Health risk assessment revealed that noncancerous effects of heavy metals in PM2.5 of Xinxiang were unlikely happened, while lifetime cancer risks of heavy metals obviously exceeded the threshold, which might have a cancer risk for residents in Xinxiang. This study provided detailed composition data and first comprehensive analysis of PM2.5 during the Spring Festival period in Xinxiang.
Yadav, Suman; Jan, Rohi; Roy, Ritwika; Satsangi, P Gursumeeran
2016-12-01
In the present study, metal-facilitated free radical generation in particulate matter (PM) and its association with deoxyribonucleic acid (DNA) damage were studied. The examined data showed that the concentration of fine PM in Pune exhibited seasonal variations. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to examine the metal composition, which showed the presence of metals such as Cu, Zn, Mn, Fe, Co, Cr, Pb, Cd, and Ni. Fe metal was present in the highest concentrations in both the seasons, followed by Zn. The scanning electron microscopy-energy-dispersive spectrometer (SEM-EDS) results also demonstrated that the fine PM particles deposited in summer samples were less than those of winter samples, suggesting that the PM load in winter was higher as compared to that in summer. Elemental mapping of these particles substantiates deposition of metals as Fe, Zn, etc. on particles. The electron paramagnetic species (EPR) technique was utilized for free radical detection, and plasmid DNA assay was utilized to study the genotoxicity of ambient fine PM. Obtained g values show the presence of radicals in PM samples of Pune. PM contains the C-centered radical with a vicinal oxygen atom (g = 2.003). In addition to this, the g value for Fe was also observed. Therefore, we intend that the radicals related with fine PM comprise metal-mediated radicals and produce DNA damage. The plasmid DNA assay results indicated that the TM 50 values (toxic mass of PM causing 50 % of plasmid DNA damage) of PM exhibited seasonal variations with higher TM 50 values for summer and lower TM 50 values during winter.
Particulate matter emission by a vehicle running on unpaved road
NASA Astrophysics Data System (ADS)
Williams, David Scott; Shukla, Manoj K.; Ross, Jim
2008-05-01
The particulate matter (PM) emission from unpaved roads starts with the pulverization of surface material by the force of the vehicle, uplifting and subsequent exposure of road to strong air currents behind the wheels. The objectives of the project were to: demonstrate the utility of a simple technique for collecting suspended airborne PM emitted by vehicle running on an unpaved road, determine the mass balance of airborne PM at different heights, and determine the particle size and elemental composition of PM. We collected dust samples on sticky tapes using a rotorod sampler mounted on a tower across an unpaved road located at the Leyendecker Plant Sciences Research Center, Las Cruces, NM, USA. Dust samples were collected at 1.5, 4.5 and 6 m height above the ground surface on the east and west side of the road. One rotorod sampler was also installed at the centre of the road at 6 m height. Dust samples from unpaved road were mostly (70%) silt and clay-sized particles and were collected at all heights. The height and width of the PM plume and the amount of clay-sized particles captured on both sides of the road increased with speed and particle captured ranged from 0.05 to 159 μm. Dust particles between PM10 and PM2.5 did not correlate with vehicle speed but particles ⩽PM2.5 did. Emission factors estimated for the total suspended PM were 10147 g km-1 at 48 km h-1 and 11062 g km-1 at 64 km h-1 speed, respectively. The predominant elements detected in PM were carbon, aluminum and silica at all heights. Overall, sticky tape method coupled with electron microscopy was a useful technique for a rapid particle size and elemental characterization of airborne PM.
An integrated approach to identify the origin of PM10 exceedances.
Amodio, M; Andriani, E; de Gennaro, G; Demarinis Loiotile, A; Di Gilio, A; Placentino, M C
2012-09-01
This study was aimed to the development of an integrated approach for the characterization of particulate matter (PM) pollution events in the South of Italy. PM(10) and PM(2.5) daily samples were collected from June to November 2008 at an urban background site located in Bari (Puglia Region, South of Italy). Meteorological data, particle size distributions and atmospheric dispersion conditions were also monitored in order to provide information concerning the different features of PM sources. The collected data allowed suggesting four indicators to characterize different PM(10) exceedances. PM(2.5)/PM(10) ratio, natural radioactivity, aerosol maps and back-trajectory analysis and particle distributions were considered in order to evaluate the contribution of local anthropogenic sources and to determine the different origins of intrusive air mass coming from long-range transport, such as African dust outbreaks and aerosol particles from Central and Eastern Europe. The obtained results were confirmed by applying principal component analysis to the number particle concentration dataset and by the chemical characterization of the samples (PM(10) and PM(2.5)). The integrated approach for PM study suggested in this paper can be useful to support the air quality managers for the development of cost-effective control strategies and the application of more suitable risk management approaches.
Magnetic signature of daily sampled urban atmospheric particles
NASA Astrophysics Data System (ADS)
Muxworthy, Adrian R.; Matzka, Jürgen; Davila, Alfonso Fernández; Petersen, Nikolai
The magnetic signature of two sets of daily sampled particulate matter (PM) collected in Munich, Germany, were examined and compared to variations in other pollution data and meteorological data using principal component analysis. The magnetic signature arising from the magnetic minerals in the PM was examined using a fast and highly sensitive magnetic remanence measurement. The longest data set studied was 160 days, significantly longer than that of similar magnetic PM studies improving the statistical robustness. It was found that the variations in the mass-dependent magnetic parameters displayed a complicated relationship governed by both the meteorological conditions and the PM loading rate, whereas mineralogy/grain-size-dependent magnetic parameters displayed little variation. A six-fold increase in the number of vehicles passing the sampling locations only doubled the magnetic remanence of the samples, suggesting that the measured magnetic signature is in addition strongly influenced by dispersion rates. At both localities the saturation isothermal remanent magnetisation (SIRM) was found to be strongly correlated with the PM mass, and it is suggested that measuring SIRM as a proxy for PM monitoring is a viable alternative to magnetic susceptibility when the samples are magnetically too weak. The signal was found to be dominated by magnetite-like grains less than 100 nm in diameter which is thought to be derived primarily from vehicles. Such small grains are known to be particularly dangerous to humans. There was also evidence to suggest from magnetic stability parameters that the magnetite-like grains were covered with an oxidised rim. The concentration of magnetic PM was in the range of 0.3-0.5% by mass.
Determination of PM mass emissions from an aircraft turbine engine using particle effective density
NASA Astrophysics Data System (ADS)
Durdina, L.; Brem, B. T.; Abegglen, M.; Lobo, P.; Rindlisbacher, T.; Thomson, K. A.; Smallwood, G. J.; Hagen, D. E.; Sierau, B.; Wang, J.
2014-12-01
Inventories of particulate matter (PM) emissions from civil aviation and air quality models need to be validated using up-to-date measurement data corrected for sampling artifacts. We compared the measured black carbon (BC) mass and the total PM mass determined from particle size distributions (PSD) and effective density for a commercial turbofan engine CFM56-7B26/3. The effective density was then used to calculate the PM mass losses in the sampling system. The effective density was determined using a differential mobility analyzer and a centrifugal particle mass analyzer, and increased from engine idle to take-off by up to 60%. The determined mass-mobility exponents ranged from 2.37 to 2.64. The mean effective density determined by weighting the effective density distributions by PM volume was within 10% of the unit density (1000 kg/m3) that is widely assumed in aircraft PM studies. We found ratios close to unity between the PM mass determined by the integrated PSD method and the real-time BC mass measurements. The integrated PSD method achieved higher precision at ultra-low PM concentrations at which current mass instruments reach their detection limit. The line loss model predicted ∼60% PM mass loss at engine idle, decreasing to ∼27% at high thrust. Replacing the effective density distributions with unit density lead to comparable estimates that were within 20% and 5% at engine idle and high thrust, respectively. These results could be used for the development of a robust method for sampling loss correction of the future PM emissions database from commercial aircraft engines.
Characterization of Source Signatures of Fine Roadway Particles by Pyrolysis-GC-MS
NASA Astrophysics Data System (ADS)
van Bergen, S. K.; Holmén, B. A.
2001-12-01
Fine particulate matter, defined as particles with an aerodynamic diameter less than 2.5 μ m (PM2.5), is of growing concern due to its detrimental effects on human health and the environment. Roadway traffic generates a significant fraction of PM2.5 in urban areas. Since exposure to fine particles derived from mobile sources commonly occurs, understanding the physicochemical processes that contribute to the generation, transport and atmospheric reactivity of roadway PM is important. Factors that influence the properties of roadway PM include: the mass, number and size distribution of the particles as well as their chemical composition. These factors are partially determined by the sources of the roadway particles. The focus of this effort is to identify unique organic chemical profiles of known roadway sources of PM using a new rapid characterization technique. A pyrolysis GC-MS analytical method is being developed to uniquely characterize the sources of roadway PM2.5 such as brake dust, tire wear, and direct emissions from diesel and gasoline engines. The source profiles will be used in conjunction with measurements of the composition of ambient roadway PM to determine the importance of the various roadway sources. The advantages of this technique over conventional solvent extractions include: smaller (mg) sample mass requirements, short extraction times and minimal sample handing. Preliminary two-step pyrolysis results will be presented for PM samples from individual sources and an ambient roadway. Specific analytical issues that will be discussed include: modifications of commercial pyrolysis hardware to improve reproducibility; desorption versus pyrolysis; developing appropriate pyrolysis programs for heterogenous sample materials; and method detection limits.
Srivastava, Arun; Jain, V K
2007-06-01
A study of the atmospheric particulate size distribution of total suspended particulate matter (TSPM) and associated heavy metal concentrations has been carried out for the city of Delhi. Urban particles were collected using a five-stage impactor at six sites in three different seasons, viz. winter, summer and monsoon in the year 2001. Five samples from each site in each season were collected. Each sample (filter paper) was extracted with a mixture of nitric acid, hydrochloric acid and hydrofluoric acid. The acid solutions of the samples were analysed in five-particle fractions by atomic absorption spectrometry (AAS). The impactor stage fractionation of particles shows that a major portion of TSPM concentration is in the form of PM0.7 (i.e. <0.7microm). Similarly, the most of the metal mass viz. Mn, Cr, Cd, Pb, Ni, and Fe are also concentrated in the PM0.7 mode. The only exceptions are size distributions pertaining to Cu and Ca. Though, Cu is more in PM0.7 mode, its presence in size intervals 5.4-1.6microm and 1.6-0.7microm is also significant, whilst in case of Ca there is no definite pattern in its distribution with size of particles. The average PM10.9 (i.e. <10.9microm) concentrations are approximately 90.2%+/-4.5%, 81.4%+/-1.4% and 86.4%+/-9.6% of TSPM for winter, summer and monsoon seasons, respectively. Source apportionment reveals that there are two sources of TSPM and PM10.9, while three and four sources were observed for PM1.6 (i.e. <1.6microm) and PM0.7, respectively. Results of regression analyses show definite correlations between PM10.9 and other fine size fractions, suggesting PM10.9 may adequately act as a surrogate for both PM1.6 and PM0.7, while PM1.6 may adequately act as a surrogate for PM0.7.
Sun, Jian-Lin; Jing, Xin; Chang, Wen-Jing; Chen, Zheng-Xia; Zeng, Hui
2015-03-01
Halogenated polycyclic aromatic hydrocarbons (HPAHs) have been reported to occur widely in urban air. Nevertheless, knowledge about the human health risk associated with inhalation exposure to HPAHs is scarce so far. In the present study, nine HPAHs and 16 PAHs were determined in atmospheric particulate matter (PM) collected from Shenzhen, China to address this issue. Concentrations of Σ9HPAHs varied from 0.1 to 1.5 ng/m(3) and from 0.09 to 0.4 ng/m(3) in PM10 and PM2.5 samples, respectively. As for individuals, 9-bromoanthracene, 7-bromobenz(a)anthracene, and 9,10-dibromoanthracene were the dominant congeners. Levels of Σ16PAHs in PM10 and PM2.5 samples ranged from 3.2 to 81 ng/m(3) and from 2.8 to 85 ng/m(3), respectively. Among individual PAHs, chrysene, benzo[b]fluoranthene, and indeno[1,2,3-c,d]pyrene were the main congeners. According to the season, concentrations of HPAHs and PAHs in atmospheric PM10/PM2.5 samples show a similar decreasing trend with an order: winter>autumn>spring>summer. The daily intake (DI) of PM10/PM2.5-bound HPAHs and PAHs were estimated. Our results indicated that children have the highest DI levels via inhalation exposure. The incremental lifetime cancer risk (ILCR) induced by PM10/PM2.5-bound HPAHs and PAHs were calculated. The ILCR values showed a similar decreasing trend with an order: adults>children>seniors>adolescent. Overall, the ILCR values induced by HPAHs and PAHs were far below the priority risk level (10(-4)), indicating no obvious cancer risk. To our knowledge, this is the first study to investigate the human health risk associated with inhalation exposure to PM10/PM2.5-bound HPAHs. Copyright © 2014 Elsevier Inc. All rights reserved.
Lee, S W
2001-11-01
Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass. Source profile data for an eastern U.S. coal show good agreement with those reported from a similar study done in the United States. Based on the inadequacies identified in the initial sampling equipment, a new, plume-simulating fine PM measurement system with modular components for field use is being developed for determining coal combustion PM source profiles from utility boiler stacks.
Ryou, Hyoung Gon; Heo, Jongbae; Kim, Sun-Young
2018-09-01
Studies of source apportionment (SA) for particulate matter (PM) air pollution have enhanced understanding of dominant pollution sources and quantification of their contribution. Although there have been many SA studies in South Korea over the last two decades, few studies provided an integrated understanding of PM sources nationwide. The aim of this study was to summarize findings of PM SA studies of South Korea and to explore study characteristics. We selected studies that estimated sources of PM 10 and PM 2.5 performed for 2000-2017 in South Korea using Positive Matrix Factorization and Chemical Mass Balance. We reclassified the original PM sources identified in each study into seven categories: motor vehicle, secondary aerosol, soil dust, biomass/field burning, combustion/industry, natural source, and others. These seven source categories were summarized by using frequency and contribution across four regions, defined by northwest, west, southeast, and southwest regions, by PM 10 and PM 2.5 . We also computed the population-weighted mean contribution of each source category. In addition, we compared study features including sampling design, sampling and lab analysis methods, chemical components, and the inclusion of Asian dust days. In the 21 selected studies, all six PM 10 studies identified motor vehicle, soil dust, and combustion/industry, while all 15 PM 2.5 studies identified motor vehicle and soil dust. Different from the frequency, secondary aerosol produced a large contribution to both PM 10 and PM 2.5 . Motor vehicle contributed highly to both, whereas the contribution of combustion/industry was high for PM 10 . The population-weighted mean contribution was the highest for the motor vehicle and secondary aerosol sources for both PM10 and PM2.5. However, these results were based on different subsets of chemical speciation data collected at a single sampling site, commonly in metropolitan areas, with short overlap and measured by different lab analysis methods. We found that motor vehicle and secondary aerosol were the most common and influential sources for PM in South Korea. Our study, however, suggested a caution to understand SA findings from heterogeneous study features for study designs and input data. Copyright © 2018. Published by Elsevier Ltd.
STS-99 Mission Specialists Thiele and Mohri address media at SLF
NASA Technical Reports Server (NTRS)
2000-01-01
After landing at the Shuttle Landing Facility aboard T-38 jet aircraft, the STS-99 crew addresses the media. Mission Specialists Gerhard Thiele of Germany waits while Mamoru Mohri of Japan (right) responds to a question. The crew is ready to prepare for the second launch attempt of Endeavour Feb. 11 at 12:30 p.m. EST from Launch Pad 39A. The earlier launch scheduled for Jan. 31 was scrubbed due to poor weather and a faulty Enhanced Master Events Controller in the orbiter's aft compartment. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will produce unrivaled 3- D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Landing is expected at KSC on Feb. 22 at 4:36 p.m. EST.
Particulate Matter Sources and Composition near a Shrinking Saline Lake (Salton Sea)
NASA Astrophysics Data System (ADS)
Frie, A. L.; Dingle, J. H.; Garrison, A.; Ying, S.; Bahreini, R.
2017-12-01
Dried lake beds (playas) are large dust sources in arid regions, and with increased global water demand many large lakes are shrinking. The Salton Sea is an example of one such lake in the early stages of desiccation, with about 15,000 acres of exposed playa. To quantify the impacts of the shrinking lake on airborne particulate matter(PM) composition, PM samples were collected in August of 2015 and February of 2016 near the Salton Sea, CA. These samples were analyzed for total elemental concentration of 15 elements. For these elements, enrichment factors relative to aluminum were calculated and PMF modeling was applied to deconvolve source factors. From these data, desert-like and playa-like sources were estimated to accounted for 45% and 9% of PM10 mass during these sampling periods. PMF results also revealed that playa sources account for 70% of PM10 Na, evidencing playa-driven PM compositional changes. Additionally, PM Se displayed strong seasonal variation, which is thought to be driven by Se volatilization within Salton Sea sediments, playas, or waters.
Spectral imaging and passive sampling to investigate particle sources in urban desert regions.
Wagner, Jeff; Casuccio, Gary
2014-07-01
Two types of electron microscopy analyses were employed along with geographic information system (GIS) mapping to investigate potential sources of PM2.5 and PM10 (airborne particulate matter smaller than 2.5 and 10 μm, respectively) in two urbanized desert areas known to exhibit PM excursions. Integrated spectral imaging maps were obtained from scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) analyses of 13 filters collected in Imperial Valley, California. Seven were from 24 h PM10 Federal Reference Method (FRM) samplers and six were from PM2.5 FRM samplers. This technique enabled extraction of information from particles collected on complex filter matrices, and indicated that all samples exhibited substantial proportions of crustal particles. Six Imperial PM2.5 and PM10 filters selected from unusually high-PM days exhibited more large particles (2.5-15 and 10-30 μm, respectively) than did filters from low-PM days, and were more consistent with soils analyzed from the region. High winds were present on three of the six high-PM days. One of the high-PM2.5 filters also exhibited substantial fine carbonaceous soot PM, suggesting significant contributions from a combustion source. Computer-controlled SEM/EDS (CCSEM/EDS) was conducted on PM collected with UNC Passive samplers from Phoenix, Arizona. The passive samplers showed good agreement with co-located FRM PM10 and PM2.5 measurements (μg m(-3)), and also enabled detailed individual particle analysis. The CCSEM/EDS data revealed mostly crustal particles in both the Phoenix fine and coarse PM10 fractions. GIS maps of multiple dust-related parameters confirm that both Imperial Valley and Phoenix possess favorable conditions for airborne crustal PM from natural and anthropogenic sources.
Birefringence insensitive optical coherence domain reflectometry system
Everett, Matthew J.; Davis, Joseph G.
2002-01-01
A birefringence insensitive fiber optic optical coherence domain reflectometry (OCDR) system is provided containing non-polarization maintaining (non-PM) fiber in the sample arm and the reference arm without suffering from signal degradation caused by birefringence. The use of non-PM fiber significantly reduces the cost of the OCDR system and provides a disposable or multiplexed section of the sample arm. The dispersion in the reference arm and sample arm of the OCDR system are matched to achieve high resolution imaging. This system is useful in medical applications or for non-medical in situ probes. The disposable section of non-PM fiber in the sample arm can be conveniently replaced when contaminated by a sample or a patient.
Gupta, A K; Nag, Subhankar; Mukhopadhyay, U K
2006-04-01
In this study, the relationship between inhalable particulate (PM(10)), fine particulate (PM(2.5)), coarse particles (PM(2.5 - 10)) and meteorological parameters such as temperature, relative humidity, solar radiation, wind speed were statistically analyzed and modelled for urban area of Kolkata during winter months of 2003-2004. Ambient air quality was monitored with a sampling frequency of twenty-four hours at three monitoring sites located near traffic intersections and in an industrial area. The monitoring sites were located 3-5 m above ground near highly trafficked and congested areas. The 24 h average PM(10) and PM(2.5) samples were collected using Thermo-Andersen high volume samplers and exposed filter papers were extracted and analysed for benzene soluble organic fraction. The ratios between PM(2.5) and PM(10) were found to be in the range of 0.6 to 0.92 and the highest ratio was found in the most polluted urban site. Statistical analysis has shown a strong positive correlation between PM(10) and PM(2.5) and inverse correlation was observed between particulate matter (PM(10) and PM(2.5)) and wind speed. Statistical analysis of air quality data shows that PM(10) and PM(2.5) are showing poor correlation with temperature, relative humidity and solar radiation. Regression equations for PM(10) and PM(2.5) and meteorological parameters were developed. The organic fraction of particulate matter soluble in benzene is an indication of poly aromatic hydrocarbon (PAH) concentration present in particulate matter. The relationship between the benzene soluble organic fraction (BSOF) of inhalable particulate (PM(10)) and fine particulate (PM(2.5)) were analysed for urban area of Kolkata. Significant positive correlation was observed between benzene soluble organic fraction of PM(10) (BSM10) and benzene soluble organic fraction of PM(2.5) (BSM2.5). Regression equations for BSM10 and BSM2.5 were developed.
(PRESENTED NAQC SAN FRANCISCO, CA) COARSE PM METHODS STUDY: STUDY DESIGN AND RESULTS
Comprehensive field studies were conducted to evaluate the performance of sampling methods for measuring the coarse fraction of PM10 in ambient air. Five separate sampling approaches were evaluated at each of three sampling sites. As the primary basis of comparison, a discrete ...
Indoor air quality in urban and rural kindergartens: short-term studies in Silesia, Poland.
Błaszczyk, Ewa; Rogula-Kozłowska, Wioletta; Klejnowski, Krzysztof; Kubiesa, Piotr; Fulara, Izabela; Mielżyńska-Švach, Danuta
2017-01-01
More than 80% of people living in urban areas who monitor air pollution are exposed to air quality levels that exceed limits defined by the World Health Organization (WHO). Although all regions of the world are affected, populations in low-income cities are the most impacted. According to average annual levels of fine particulate matter (PM2.5, ambient particles with aerodynamic diameter of 2.5 μm or less) presented in the urban air quality database issued by WHO in 2016, as many as 33 Polish cities are among the 50 most polluted cities in the European Union (EU), with Silesian cities topping the list. The aim of this study was to characterize the indoor air quality in Silesian kindergartens based on the concentrations of gaseous compounds (SO 2 , NO 2 ), PM2.5, and the sum of 15 PM2.5-bound polycyclic aromatic hydrocarbons (PAHs), including PM2.5-bound benzo(a)pyrene (BaP), as well as the mutagenic activity of PM2.5 organic extracts in Salmonella assay (strains: TA98, YG1024). The assessment of the indoor air quality was performed taking into consideration the pollution of the atmospheric air (outdoor). I/O ratios (indoor/outdoor concentration) for each investigated parameter were also calculated. Twenty-four-hour samples of PM2.5, SO 2 , and NO 2 were collected during spring in two sites in southern Poland (Silesia), representing urban and rural areas. Indoor samples were taken in naturally ventilated kindergartens. At the same time, in the vicinity of the kindergarten buildings, the collection of outdoor samples of PM2.5, SO 2 , and NO 2 was carried out. The content of BaP and the sum of 15 studied PAHs was determined in each 24-h sample of PM2.5 (indoor and outdoor). In the urban site, statistically lower concentrations of SO 2 and NO 2 were detected indoors compared to outdoors, whereas in the rural site, such a relationship was observed only for NO 2 . No statistically significant differences in the concentrations of PM2.5, PM2.5-bound BaP, and Σ15 PAHs in kindergartens (indoor) versus atmospheric (outdoor) air in the two studied areas were identified. Mutagenic effect of indoor PM2.5 samples was twice as low as in outdoor samples. The I/O ratios indicated that all studied air pollutants in the urban kindergarten originated from the ambient air. In the rural site concentrations of SO 2 , PM2.5 and BaP in the kindergarten were influenced by internal sources (gas and coal stoves).
NASA Astrophysics Data System (ADS)
Kong, Shaofei; Lu, Bing; Ji, Yaqin; Bai, Zhipeng; Xu, Yonghai; Liu, Yong; Jiang, Hua
2012-08-01
Thirty re-suspended dust samples were collected from building surfaces in an oilfield city, re-suspended and sampled through PM2.5, PM10 and PM100 inlets and analyzed for 18 PAHs by GC-MS technique. PAHs concentrations, toxicity and profiles characteristic for different districts and size were studied. PAHs sources were identified by diagnostic ratios and primary component analysis. Results showed that the total amounts of analyzed PAHs in re-suspended dust in Dongying were 45.29, 23.79 and 11.41 μg g-1 for PM2.5, PM10 and PM100, respectively. PAHs tended to concentrate in finer particles with mass ratios of PM2.5/PM10 and PM10/PM100 as 1.96 ± 0.86 and 2.53 ± 1.57. The old district with more human activities and long oil exploitation history exhibited higher concentrations of PAHs from both combustion and non-combustion sources. BaP-based toxic equivalent factor and BaP-based equivalent carcinogenic power exhibited decreasing sequence as PM2.5 > PM10 > PM100 suggesting that the finer the particles, the more toxic of the dust. NaP, Phe, Flu, Pyr, BbF and BghiP were the abundant species. Coefficient of divergence analysis implied that PAHs in different districts and size fractions had common sources. Coal combustion, industrial sources, vehicle emission and petroleum were probably the main contributions according to the principal component analysis result.
Costa, D L; Dreher, K L
1997-01-01
Many epidemiologic reports associate ambient levels of particulate matter (PM) with human mortality and morbidity, particularly in people with preexisting cardiopulmonary disease (e.g., chronic obstructive pulmonary disease, infection, asthma). Because much ambient PM is derived from combustion sources, we tested the hypothesis that the health effects of PM arise from anthropogenic PM that contains bioavailable transition metals. The PM samples studied derived from three emission sources (two oil and one coal fly ash) and four ambient airsheds (St. Louis, MO; Washington; Dusseldorf, Germany; and Ottawa, Canada). PM was administered to rats by intratracheal instillation in equimass or equimetal doses to address directly the influence of PM mass versus metal content on acute lung injury and inflammation. Our results indicated that the lung dose of bioavailable transition metal, not instilled PM mass, was the primary determinant of the acute inflammatory response for both the combustion source and ambient PM samples. Residual oil fly ash, a combustion PM rich in bioavailable metal, was evaluated in a rat model of cardiopulmonary disease (pulmonary vasculitis/hypertension) to ascertain whether the disease state augmented sensitivity to that PM. Significant mortality and enhanced airway responsiveness were observed. Analysis of the lavaged lung fluids suggested that the milieu of the inflamed lung amplified metal-mediated oxidant chemistry to jeopardize the compromised cardiopulmonary system. We propose that soluble metals from PM mediate the array of PM-associated injuries to the cardiopulmonary system of the healthy and at-risk compromised host. PMID:9400700
Science policy events at the 2012 AGU Fall Meeting
NASA Astrophysics Data System (ADS)
Hankin, Erik
2012-10-01
Are you interested in the intersection of science and policy, looking to make an impact on Capitol Hill, or concerned about the increasing number of attacks against scientists and their academic freedom? AGU Public Affairs offers many events at the 2012 Fall Meeting to assist member involvement in political processes and inform scientists of their rights and options should their research come under legal fire. Learn how you can share your science with policy makers to help inform policy at two luncheon events at the Fall Meeting. If you have ever considered working as a science expert for a member of Congress or reporting science in a mass media outlet, then you should attend the first luncheon, How to be a Congressional Science Fellow or Mass Media Fellow. The event will feature current AGU Congressional Science Fellows detailing their experiences working in Congress as well as past AGU Mass Media Fellows sharing their stories of reporting for a news organization. The luncheon will be held on Tuesday, 4 December, from 12:30 to 1:30 P.M. at the Marriott Hotel, in room Golden Gate B. In addition, current and former fellows will be available for one-on-one interactions at the AGU Marketplace from 3:30 to 4:30 P.M. on Tuesday, 4 December, through Thursday, 6 December.
Cortez-Lugo, Marlene; Escamilla-Núñez, Consuelo; Barraza-Villarreal, Albino; Texcalac-Sangrador, José Luis; Chow, Judith; Watson, John; Hernández-Cadena, Leticia; Romieu, Isabelle
2013-04-01
To study the relationship between light absorption measurements of PM2.5 at various distances from heavy traffic roads and diesel vehicle counts in Mexico City. PM2.5 samples were obtained from June 2003-June 2005 in three MCMA regions. Light absorption (b abs) in a subset of PM2.5 samples was determined. We evaluated the effect of distance and diesel vehicle counts to heavy traffic roads on PM2.5 b abs using generalized estimating equation models. Median PM2.5 b abs measurements significantly decrease as distance from heavy traffic roads increases (p<0.002); levels decreased by 7% (CI95% 0.9-14) for each 100 additional meters from heavy traffic roads. Our model predicts that PM2.5 b abs measurements would increase by 20% (CI95% 3-38) as the hourly heavy diesel vehicle count increases by 150 per hour. PM2.5 b abs measurements are significantly associated with distance from motorways and traffic density and therefore can be used to assess human exposure to traffic-related emissions.
Cutaway line drawing of STS-34 middeck experiment Polymer Morphology (PM)
NASA Technical Reports Server (NTRS)
1989-01-01
Cutaway line drawing shows components of STS-34 middeck experiment Polymer Morphology (PM). Generic Electronics Module (GEM) components include the control housing, circulating fans, hard disk, tape drives, computer boards, and heat exchanger. PM, a 3M-developed organic materials processing experiment, is designed to explore the effects of microgravity on polymeric materials as they are processed in space. The samples of polymeric materials being studied in the PM experiment are thin films (25 microns or less) approximately 25mm in diameter. The samples are mounted between two infrared transparent windows in a specially designed infrared cell that provides the capability of thermally processing the samples to 200 degrees Celsius with a high degree of thermal control. The samples are mounted on a carousel that allows them to be positioned, one at a time, in the infrared beam where spectra may be acquired. The GEM provides all carousel and sample cell control (SCC). The first flight of P
An economic passive sampling method to detect particulate pollutants using magnetic measurements.
Cao, Liwan; Appel, Erwin; Hu, Shouyun; Ma, Mingming
2015-10-01
Identifying particulate matter (PM) emitted from industrial processes into the atmosphere is an important issue in environmental research. This paper presents a passive sampling method using simple artificial samplers that maintains the advantage of bio-monitoring, but overcomes some of its disadvantages. The samplers were tested in a heavily polluted area (Linfen, China) and compared to results from leaf samples. Spatial variations of magnetic susceptibility from artificial passive samplers and leaf samples show very similar patterns. Scanning electron microscopy suggests that the collected PM are mostly in the range of 2-25 μm; frequent occurrence of spherical shape indicates industrial combustion dominates PM emission. Magnetic properties around power plants show different features than other plants. This sampling method provides a suitable and economic tool for semi-quantifying temporal and spatial distribution of air quality; they can be installed in a regular grid and calibrate the weight of PM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Speciated Elemental and Isotopic Characterization of Atmospheric Aerosols - Recent Advances
NASA Astrophysics Data System (ADS)
Shafer, M.; Majestic, B.; Schauer, J.
2007-12-01
Detailed elemental, isotopic, and chemical speciation analysis of aerosol particulate matter (PM) can provide valuable information on PM sources, atmospheric processing, and climate forcing. Certain PM sources may best be resolved using trace metal signatures, and elemental and isotopic fingerprints can supplement and enhance molecular maker analysis of PM for source apportionment modeling. In the search for toxicologically relevant components of PM, health studies are increasingly demanding more comprehensive characterization schemes. It is also clear that total metal analysis is at best a poor surrogate for the bioavailable component, and analytical techniques that address the labile component or specific chemical species are needed. Recent sampling and analytical developments advanced by the project team have facilitated comprehensive characterization of even very small masses of atmospheric PM. Historically; this level of detail was rarely achieved due to limitations in analytical sensitivity and a lack of awareness concerning the potential for contamination. These advances have enabled the coupling of advanced chemical characterization to vital field sampling approaches that typically supply only very limited PM mass; e.g. (1) particle size-resolved sampling; (2) personal sampler collections; and (3) fine temporal scale sampling. The analytical tools that our research group is applying include: (1) sector field (high-resolution-HR) ICP-MS, (2) liquid waveguide long-path spectrophotometry (LWG-LPS), and (3) synchrotron x-ray absorption spectroscopy (sXAS). When coupled with an efficient and validated solubilization method, the HR-ICP-MS can provide quantitative elemental information on over 50 elements in microgram quantities of PM. The high mass resolution and enhanced signal-to-noise of HR-ICP-MS significantly advance data quality and quantity over that possible with traditional quadrupole ICP-MS. The LWG-LPS system enables an assessment of the soluble/labile components of PM, while simultaneously providing critical oxidation state speciation data. Importantly, the LWG- LPS can be deployed in a semi-real-time configuration to probe fine temporal scale variations in atmospheric processing or sources of PM. The sXAS is providing complementary oxidation state speciation of bulk PM. Using examples from our research; we will illustrate the capabilities and applications of these new methods.
NASA Astrophysics Data System (ADS)
Mkoma, Stelyus L.; Chi, Xuguang; Maenhaut, Willy
2010-05-01
Atmospheric aerosol samples in PM10 and PM2.5 size fractions were collected in parallel at a rural site in Morogoro during wet season in March and April 2006. All samples were analysed for the particulate matter mass, for organic, elemental, and total carbon (OC, EC, and TC), and for water-soluble OC (WSOC). The average PM10 and PM2.5 mass concentrations and associated standard deviations were 14 ± 13 μg/m 3 and 7.3 ± 4 μg/m 3 respectively. On average, TC accounted for 33% of the PM10 mass and 44% of the PM2.5 mass for the campaign. The average OC/PM percentage ratios were 27% and 33% in PM10 and PM2.5 size fractions respectively and a larger fraction of the OC was water-soluble. The observed low EC/TC mean percentage ratios of 10-14% respectively for PM10 and PM2.5 fractions indicate that the carbonaceous aerosol originates mainly from biogenic aerosols and/or biomass burning. A simple source apportionment approach was used to apportion the OC to biofuel and charcoal burning. On average, 93% of the PM10 OC was attributed to biofuel and 7% to charcoal burning in the 2006 wet season campaign. However, it is suggested that a contribution to the OC at Morogoro could also come from other natural biogenic matter, and/or biomass burning aerosols. The results for the sources of OC at Morogoro should therefore be considered with great caution.
The Asymmetry Parameter and Branching Ratio of Sigma Plus Radiative Decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foucher, Maurice Emile
1992-05-01
We have measured the asymmetry parameter and branching ratio of themore » $$\\Sigma^+$$ radiative decay. This high statistics experiment (FNAL 761) was performed in the Proton Center charged hyperon beam at Fermi National Accelerator Laboratory in Batavia, Illinois. We find for the asymmetry parameter -0.720 $$\\pm$$ 0.086 $$\\pm$$ 0.045 where the first error is statistical and the second is systematic. This result is based on a sample of 34754 $$\\pm$$ 212 events. We find a preliminary value for the branching ratio $$Br ( \\Sigma^+ \\to p\\gamma )$$ $$/ Br ( \\Sigma^+ \\to p \\pi^0 )$$ = (2.14 $$\\pm$$ 0.07 $$\\pm$$ 0.11) x $$10^{-3}$$ where the first error is statistical and the second is systematic. This result is based on a sample of 31040 $$\\pm$$ 650 events. Both results are in agreement with previous low statistics measurements.« less
Cho, Seung-Hyun; Tong, Haiyan; McGee, John K.; Baldauf, Richard W.; Krantz, Q. Todd; Gilmour, M. Ian
2009-01-01
Background Epidemiologic studies have reported an association between proximity to highway traffic and increased cardiopulmonary illnesses. Objectives We investigated the effect of size-fractionated particulate matter (PM), obtained at different distances from a highway, on acute cardiopulmonary toxicity in mice. Methods We collected PM for 2 weeks in July–August 2006 using a three-stage (ultrafine, < 0.1 μm; fine, 0.1–2.5 μm; coarse, 2.5–10 μm) high-volume impactor at distances of 20 m [near road (NR)] and 275 m [far road (FR)] from an interstate highway in Raleigh, North Carolina. Samples were extracted in methanol, dried, diluted in saline, and then analyzed for chemical constituents. Female CD-1 mice received either 25 or 100 μg of each size fraction via oropharyngeal aspiration. At 4 and 18 hr postexposure, mice were assessed for pulmonary responsiveness to inhaled methacholine, biomarkers of lung injury and inflammation; ex vivo cardiac pathophysiology was assessed at 18 hr only. Results Overall chemical composition between NR and FR PM was similar, although NR samples comprised larger amounts of PM, endotoxin, and certain metals than did the FR samples. Each PM size fraction showed differences in ratios of major chemical classes. Both NR and FR coarse PM produced significant pulmonary inflammation irrespective of distance, whereas both NR and FR ultrafine PM induced cardiac ischemia–reperfusion injury. Conclusions On a comparative mass basis, the coarse and ultrafine PM affected the lung and heart, respectively. We observed no significant differences in the overall toxicity end points and chemical makeup between the NR and FR PM. The results suggest that PM of different size-specific chemistry might be associated with different toxicologic mechanisms in cardiac and pulmonary tissues. PMID:20049117
Perrino, Cinzia; Marcovecchio, Francesca
2016-02-01
Primary Biologic Atmospheric Particles (PBAPs) constitute an interesting and poorly investigated component of the atmospheric aerosol. We have developed and validated a method for evaluating the contribution of overall PBAPs to the mass concentration of atmospheric particulate matter (PM). The method is based on PM sampling on polycarbonate filters, staining of the collected particles with propidium iodide, observation at epifluorescence microscope and calculation of the bioaerosol mass using a digital image analysis software. The method has been also adapted to the observation and quantification of size-segregated aerosol samples collected by multi-stage impactors. Each step of the procedure has been individually validated. The relative repeatability of the method, calculated on 10 pairs of atmospheric PM samples collected side-by-side, was 16%. The method has been applied to real atmospheric samples collected in the vicinity of Rome, Italy. Size distribution measurements revealed that PBAPs was mainly in the coarse fraction of PM, with maxima in the range 5.6-10 μm. 24-h samples collected during different period of the year have shown that the concentration of bioaerosol was in the range 0.18-5.3 μg m(-3) (N=20), with a contribution to the organic matter in PM10 in the range 0.5-31% and to the total mass concentration of PM10 in the range 0.3-18%. The possibility to determine the concentration of total PBAPs in PM opens up interesting perspectives in terms of studying the health effects of these components and of increasing our knowledge about the composition of the organic fraction of the atmospheric aerosol. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pavagadhi, Shruti; Betha, Raghu; Venkatesan, Shriram; Balasubramanian, Rajasekhar; Hande, Manoor Prakash
2013-04-01
Air particulate matter (PM) samples were collected in Singapore from 21 to 29 October 2010. During this time period, a severe regional smoke haze episode lasted for a few days (21-23 October). Physicochemical and toxicological characteristics of both haze and non-haze aerosols were evaluated. The average mass concentration of PM2.5 (PM with aerodynamic diameter of ≤2.5 μm) increased by a factor of 4 during the smoke haze period (107.2 μg/m(3)) as compared to that during the non-smoke haze period (27.0 μg/m(3)). The PM2.5 samples were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency and 10 transition metals. Out of the seven PAHs known as potential or suspected carcinogens, five were found in significantly higher levels in smoke haze aerosols as compared to those in the background air. Metal concentrations were also found to be higher in haze aerosols. Additionally, the toxicological profile of the PM2.5 samples was evaluated using a human epithelial lung cell line (A549). Cell viability and death counts were measured after a direct exposure of PM2.5 samples to A459 cells for a period of 48 h. The percentage of metabolically active cells decreased significantly following a direct exposure to PM samples collected during the haze period. To provide further insights into the toxicological characteristics of the aerosol particles, glutathione levels, as an indirect measure of oxidative stress and caspase-3/7 levels as a measure of apoptotic death, were also evaluated.
Development of a continuous monitoring system for PM10 and components of PM2.5.
Lippmann, M; Xiong, J Q; Li, W
2000-01-01
While particulate matter with aerodynamic diameters below 10 and 2.5 microns (PM10 and PM2.5) correlate with excess mortality and morbidity, there is evidence for still closer epidemiological associations with sulfate ion, and experimental exposure-response studies suggest that the hydrogen ion and ultrafine (PM0.15) concentrations may be important risk factors. Also, there are measurement artifacts in current methods used to measure ambient PM10 and PM2.5, including negative artifacts because of losses of sampled semivolatile components (ammonium nitrate and some organics) and positive artifacts due to particle-bound water. To study such issues, we are developing a semi-continuous monitoring system for PM10, PM2.5, semivolatiles (organic compounds and NH4NO3), particle-bound water, and other PM2.5 constituents that may be causal factors. PM10 is aerodynamically sorted into three size-fractions: (1) coarse (PM10-PM2.5); (2) accumulation mode (PM2.5-PM0.15); and (3) ultrafine (PM0.15). The mass concentration of each fraction is measured in terms of the linear relation between accumulated mass and pressure drop on polycarbonate pore filters. The PM0.15 mass, being highly correlated with the ultrafine number concentration, provides a good index of the total number concentration in ambient air. For the accumulation mode (PM2.5-PM0.15), which contains nearly all of the semivolatiles and particle-bound water by mass, aliquots of the aerosol stream flow into system components that continuously monitor sulfur (by flame photometry), ammonium and nitrate (by chemiluminescence following catalytic transformations to NO), organics (by thermal-optical analysis) and particle-bound water (by electrolytic hygrometer after vacuum evaporation of sampled particles). The concentration of H+ can be calculated (by ion balance using the monitoring data on NO3-, NH4+, and SO4=).
NASA Astrophysics Data System (ADS)
Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.
2013-02-01
PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.
Khedidji, Sidali; Croes, Kim; Yassaa, Noureddine; Ladji, Riad; Denison, Michael S; Baeyens, Willy; Elskens, Marc
2017-05-01
When compared to the European guidelines, PM 10 (particulate matter up to 10-μm size) concentrations in Algeria are often exceeding the maximum limits, and in general, no information exists on the compounds bound on its surface. The objective of this study was to measure the dioxin-like activity of polychlorinated dibenzodioxines and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (PCBs) in the PM 10 fraction at the Sour El Ghozlane cement plant in Algeria. PM 10 samples (n = 23) were taken between 24 March and 15 April 2013, using a medium volume sampler and 47-mm PTFE filters. The 24-h samples were dried to determine the PM 10 content and afterward extracted, cleaned up, and analyzed with the dioxin-responsive element-chemical-activated luciferase gene expression (DRE-CALUX) bioassay. Our results showed that the measured bioanalytical equivalents (BEQs) were similar to those in other international industrial sites worldwide. The PCDD/Fs and dioxin-like PCBs (dl-PCBs) were positively correlated (rho = 0.6, p = 0.002), indicating that they have similar sources. Furthermore, samples from March showed higher PCDD/F and dl-PCB BEQs and humidity but lower temperatures compared to samples from April, while there was no difference in the PM 10 concentrations between the two months. These results reveal that PM 10 alone is not a good proxy and that meteorological conditions are an important factor in assessing dioxin-like pollution in the atmosphere. It seems that, at present, there is no health hazard through direct airborne human exposure to dioxin-like pollutants in PM 10 from this site. However, it is important to monitor these POPs for a longer period of time and also to gain more insight in their distribution between the particulate and gas phase in relation to meteorological conditions.
Mission Specialist Gregory J. Harbaugh addresses media
NASA Technical Reports Server (NTRS)
1995-01-01
STS-71 Mission Specialist Gregory J. Harbaugh addresses members of the news media gathered to greet the flight crew following their arrival at the KSC Shuttle Landing Facility. Harbaugh is assigned as the flight engineer on STS-71, which will feature the first docking between the U.S. Space Shuttle and the Russian Space Station Mir. Liftoff of the Space Shuttle Atlantis is scheduled during a seven-minute window opening at 5:08 p.m. EDT, June 23. STS-71 also will be the 100th U.S. human space launch conducted from Florida's Cape.
Ambient Air Pollution and Atherosclerosis in Los Angeles
Künzli, Nino; Jerrett, Michael; Mack, Wendy J.; Beckerman, Bernardo; LaBree, Laurie; Gilliland, Frank; Thomas, Duncan; Peters, John; Hodis, Howard N.
2005-01-01
Associations have been found between long-term exposure to ambient air pollution and cardiovascular morbidity and mortality. The contribution of air pollution to atherosclerosis that underlies many cardiovascular diseases has not been investigated. Animal data suggest that ambient particulate matter (PM) may contribute to atherogenesis. We used data on 798 participants from two clinical trials to investigate the association between atherosclerosis and long-term exposure to ambient PM up to 2.5 μm in aerodynamic diameter (PM2.5). Baseline data included assessment of the carotid intima-media thickness (CIMT), a measure of subclinical atherosclerosis. We geocoded subjects’ residential areas to assign annual mean concentrations of ambient PM2.5. Exposure values were assigned from a PM2.5 surface derived from a geostatistical model. Individually assigned annual mean PM2.5 concentrations ranged from 5.2 to 26.9 μg/m3 (mean, 20.3). For a cross-sectional exposure contrast of 10 μg/m3 PM2.5, CIMT increased by 5.9% (95% confidence interval, 1–11%). Adjustment for age reduced the coefficients, but further adjustment for covariates indicated robust estimates in the range of 3.9–4.3% (p-values, 0.05–0.1). Among older subjects (≥60 years of age), women, never smokers, and those reporting lipid-lowering treatment at baseline, the associations of PM2.5 and CIMT were larger with the strongest associations in women ≥60 years of age (15.7%, 5.7–26.6%). These results represent the first epidemiologic evidence of an association between atherosclerosis and ambient air pollution. Given the leading role of cardiovascular disease as a cause of death and the large populations exposed to ambient PM2.5, these findings may be important and need further confirmation. PMID:15687058
NASA Astrophysics Data System (ADS)
Williams, Ron; Creason, John; Zweidinger, Roy; Watts, Randall; Sheldon, Linda; Shy, Carl
A 17-day pilot study investigating potential PM exposures of an elderly population was conducted near Baltimore, Maryland. Collection of residential indoor, residential outdoor, and ambient monitoring data associated with the subjects living at a common retirement facility was integrated with results from a paired epidemiological pilot study. This integration was used to investigate the potential pathophysiological health effects resulting from daily changes in estimated PM exposures with results reported elsewhere. Objectives of the exposure study were to determine the feasibility of performing PM exposure assessment upon an elderly population and establishing relationships between the various exposure measures including personal monitoring. PM 2.5 was determined to be the dominant outdoor size fraction (0.83 PM 2.5/PM 10 mass ratio by dichot monitoring). Individual 24-h PM 1.5 personal exposures ranged from 12 to 58 μg m -3. Comparison of data from matched sampling dates resulted in mean daily PM 1.5 personal, PM 2.5 outdoor, and PM 1.5 indoor concentrations of 34, 17, and 17 μg m -3, respectively. Activity patterns of the study population indicated a generally sedentary population spending a mean of 96% of each day indoors. Future studies would benefit from the use of a consistent sampling methodology across a larger number of PM measurement sites relevant to the elderly subjects, as well as a larger personal PM exposure study population to more successfully collect data needed in matched epidemiological-exposure studies.
The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust
NASA Astrophysics Data System (ADS)
Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.
2016-04-01
A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.
Fine particulate matter (PM) in urban atmospheres contains substantial amounts of semi-volatile material (e.g. ammonium nitrate and semi-volatile organic compounds), some of which is lost when PM is sampled with a filter. This study addresses the hypothesis that the concentratio...
NASA Astrophysics Data System (ADS)
Catron, Brian Lowell
Due to the growing concerns that particulate matter (PM) have on health and the environment, there is a need to include mass and number non-volatile PM measurements to current jet engine certification. This thesis looks at the necessary work required to help produce recommendations and perform background research to aid in the creation of an improved Aerospace Recommended Practice (ARP) (by the SAE E-31 Committee). This work addressed the following issues. The investigation began in the Missouri S&T Center of Excellence for Aerospace Particulate Emissions Reduction Research (COE) laboratory with an examination of the jet engine surrogate used, the miniCAST, as well as integrating it into the COE's PM measurement system. A clean PM sample line was aged by running a PM source through it until a steady state signal was measured by the instruments in order to make a recommended procedure for line conditioning as well as reconditioning. Several eductors were studied for their performance characteristics and compared against desired characteristics, which suggested a need to include a pressure relief valve to cap the sample pressure at the eductor entrance. A volatile particle remover (VPR) was studied for penetration and ability to remove volatile material. A prototype E-31 system was setup at the second alternative aviation fuel experiment (AAFEX II), which provided a direct comparison of probe tip dilution and downstream dilution and found comparable results when line loss was taken into account. Also performed at AAFEX II was a study that compared measured sample line penetration with theoretical calculations finding that theoretical calculations were an accurate alternative of measuring line loss. Two PM sampling systems were setup at an ARP demonstration and both system had similar results for both number and mass measurement. An instrument comparison was also performed that included an examination of condensation particle counter (CPC) cutoff size. It was also determined that a VPR was necessary to ensure that number instrument devices were only measuring non-volatile PM.
37 CFR 360.24 - Compliance with statutory dates.
Code of Federal Regulations, 2014 CFR
2014-07-01
... dates. 360.24 Section 360.24 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF... Digital Audio Recording Devices and Media Royalty Claims § 360.24 Compliance with statutory dates. (a... 5 p.m., and the envelope must be addressed as follows: Copyright Royalty Board, Library of Congress...
37 CFR 360.24 - Compliance with statutory dates.
Code of Federal Regulations, 2012 CFR
2012-07-01
... dates. 360.24 Section 360.24 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF... Digital Audio Recording Devices and Media Royalty Claims § 360.24 Compliance with statutory dates. (a... 5 p.m., and the envelope must be addressed as follows: Copyright Royalty Board, Library of Congress...
37 CFR 360.24 - Compliance with statutory dates.
Code of Federal Regulations, 2011 CFR
2011-07-01
... dates. 360.24 Section 360.24 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF... Digital Audio Recording Devices and Media Royalty Claims § 360.24 Compliance with statutory dates. (a... 5 p.m., and the envelope must be addressed as follows: Copyright Royalty Board, Library of Congress...
37 CFR 360.24 - Compliance with statutory dates.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dates. 360.24 Section 360.24 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF... Digital Audio Recording Devices and Media Royalty Claims § 360.24 Compliance with statutory dates. (a... 5 p.m., and the envelope must be addressed as follows: Copyright Royalty Board, Library of Congress...
37 CFR 360.24 - Compliance with statutory dates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... dates. 360.24 Section 360.24 Patents, Trademarks, and Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF... Digital Audio Recording Devices and Media Royalty Claims § 360.24 Compliance with statutory dates. (a... 5 p.m., and the envelope must be addressed as follows: Copyright Royalty Board, Library of Congress...
Wu, Xiao; Lintelmann, Jutta; Klingbeil, Sophie; Li, Jie; Wang, Hao; Kuhn, Evelyn; Ritter, Sebastian; Zimmermann, Ralf
2017-09-01
The influence of different exposures to PM 2.5 (particulate matter with an aerodynamic diameter below 2.5 μm) on the concentrations of biomarkers of exposure and oxidative stress should be investigated. For this purpose, urine samples from individuals travelling from Germany to China were collected and analysed. Robust LC and LC-MS/MS methods were established for the determination of biomarkers including 8-hydroxy-2'-deoxyguanosine, malondialdehyde, F 2α -isoprostanes and hydroxylated polycyclic aromatic hydrocarbons. As a pilot study, nine volunteers travelled from Germany (mean daily concentration of PM 2.5 : 21 μg/m 3 ) to China (mean daily concentration of PM 2.5 : 108 μg/m 3 ). Urine samples were collected before and after the trip. In samples collected after return to Germany, the median concentrations of oxidative stress biomarkers were observed to be higher than in samples collected before leaving Germany. Decreasing trends were observed in the sequences of samples collected after return in the following weeks. Correlations were found between exposure and oxidative stress biomarkers. Travellers are ideal models for PM pollution-induced acute health effects study. Exposure to PM pollution can cause oxidative stress and damage.
Shirdel, Mariam; Andersson, Britt M; Bergdahl, Ingvar A; Sommar, Johan N; Wingfors, Håkan; Liljelind, Ingrid E
2018-03-12
In an occupational environment, passive sampling could be an alternative to active sampling with pumps for sampling of dust. One passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). It is often analysed by microscopic imaging. Promising results have been shown for particles above 2.5 µm, but indicate large underestimations for PM2.5. The aim of this study was to evaluate, and possibly improve, the UNC sampler for stationary sampling in a working environment. Sampling was carried out at 8-h intervals during 24 h in four locations in an open pit mine with UNC samplers, respirable cyclones, PM10 and PM2.5 impactors, and an aerodynamic particle sizer (APS). The wind was minimal. For quantification, two modifications of the UNC sampler analysis model, UNC sampler with hybrid model and UNC sampler with area factor, were compared with the original one, UNC sampler with mesh factor derived from wind tunnel experiments. The effect of increased resolution for the microscopic imaging was examined. Use of the area factor and a higher resolution eliminated the underestimation for PM10 and PM2.5. The model with area factor had the overall lowest deviation versus the impactor and the cyclone. The intraclass correlation (ICC) showed that the UNC sampler had a higher precision and better ability to distinguish between different exposure levels compared to the cyclone (ICC: 0.51 versus 0.24), but lower precision compared to the impactor (PM10: 0.79 versus 0.99; PM2.5: 0.30 versus 0.45). The particle size distributions as calculated from the different UNC sampler analysis models were visually compared with the distributions determined by APS. The distributions were obviously different when the UNC sampler with mesh factor was used but came to a reasonable agreement when the area factor was used. High resolution combined with a factor based on area only, results in no underestimation of small particles compared to impactors and cyclones and a better agreement with the APS's particle size distributions. The UNC sampler had lower precision than the impactors, but higher than the respirable cyclone. The UNC sampler with area factor could be used for PM2.5, PM10 and respirable fraction measurements in this working environment without wind.
Shirdel, Mariam; Andersson, Britt M; Bergdahl, Ingvar A; Sommar, Johan N; Wingfors, Håkan; Liljelind, Ingrid E
2018-01-01
Abstract Objectives In an occupational environment, passive sampling could be an alternative to active sampling with pumps for sampling of dust. One passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). It is often analysed by microscopic imaging. Promising results have been shown for particles above 2.5 µm, but indicate large underestimations for PM2.5. The aim of this study was to evaluate, and possibly improve, the UNC sampler for stationary sampling in a working environment. Methods Sampling was carried out at 8-h intervals during 24 h in four locations in an open pit mine with UNC samplers, respirable cyclones, PM10 and PM2.5 impactors, and an aerodynamic particle sizer (APS). The wind was minimal. For quantification, two modifications of the UNC sampler analysis model, UNC sampler with hybrid model and UNC sampler with area factor, were compared with the original one, UNC sampler with mesh factor derived from wind tunnel experiments. The effect of increased resolution for the microscopic imaging was examined. Results Use of the area factor and a higher resolution eliminated the underestimation for PM10 and PM2.5. The model with area factor had the overall lowest deviation versus the impactor and the cyclone. The intraclass correlation (ICC) showed that the UNC sampler had a higher precision and better ability to distinguish between different exposure levels compared to the cyclone (ICC: 0.51 versus 0.24), but lower precision compared to the impactor (PM10: 0.79 versus 0.99; PM2.5: 0.30 versus 0.45). The particle size distributions as calculated from the different UNC sampler analysis models were visually compared with the distributions determined by APS. The distributions were obviously different when the UNC sampler with mesh factor was used but came to a reasonable agreement when the area factor was used. Conclusions High resolution combined with a factor based on area only, results in no underestimation of small particles compared to impactors and cyclones and a better agreement with the APS’s particle size distributions. The UNC sampler had lower precision than the impactors, but higher than the respirable cyclone. The UNC sampler with area factor could be used for PM2.5, PM10 and respirable fraction measurements in this working environment without wind. PMID:29300818
Uski, O; Jalava, P I; Happo, M S; Torvela, T; Leskinen, J; Mäki-Paakkanen, J; Tissari, J; Sippula, O; Lamberg, H; Jokiniemi, J; Hirvonen, M-R
2015-04-01
Significant amounts of transition metals such as zinc, cadmium and copper can become enriched in the fine particle fraction during biomass combustion with Zn being one of the most abundant transition metals in wood combustion. These metals may have an important role in the toxicological properties of particulate matter (PM). Indeed, many epidemiological studies have found associations between mortality and PM Zn content. The role of Zn toxicity on combustion PM was investigated. Pellets enriched with 170, 480 and 2300 mg Zn/kg of fuel were manufactured. Emission samples were generated using a pellet boiler and the four types of PM samples; native, Zn-low, Zn-medium and Zn-high were collected with an impactor from diluted flue gas. The RAW 264.7 macrophage cell line was exposed for 24h to different doses (15, 50,150 and 300 μg ml(-1)) of the emission samples to investigate their ability to cause cytotoxicity, to generate reactive oxygen species (ROS), to altering the cell cycle and to trigger genotoxicity as well as to promote inflammation. Zn enriched pellets combusted in a pellet boiler produced emission PM containing ZnO. Even the Zn-low sample caused extensive cell cycle arrest and there was massive cell death of RAW 264.7 macrophages at the two highest PM doses. Moreover, only the Zn-enriched emission samples induced a dose dependent ROS response in the exposed cells. Inflammatory responses were at a low level but macrophage inflammatory protein 2 reached a statistically significant level after exposure of RAW 264.7 macrophages to ZnO containing emission particles. ZnO content of the samples was associated with significant toxicity in almost all measured endpoints. Thus, ZnO may be a key component producing toxicological responses in the PM emissions from efficient wood combustion. Zn as well as the other transition metals, may contribute a significant amount to the ROS responses evoked by ambient PM. Copyright © 2014 Elsevier B.V. All rights reserved.
Source apportionment of PM2.5 carbonaceous aerosol in Baghdad, Iraq
NASA Astrophysics Data System (ADS)
Hamad, Samera Hussein; Schauer, James Jay; Heo, Jongbae; Kadhim, Ahmed K. H.
2015-04-01
Baghdad is the second largest city in the Middle East and suffers from severe air quality degradation due to the high levels of the atmospheric particulate matter (PM). Limited information exists regarding the sources of PM in Baghdad, and the lack of information on sources inhibits the development of control strategies to reduce air pollution. To better understand the nature of fine particulate matter (PM2.5) in Baghdad and the Middle East, a one year sampling campaign to collect PM2.5 was conducted from September 2012 through September 2013, missing August 2013 samples due to the security situation. 24-hour integrated samples collected on a 1-in-6 day schedule were analyzed for the major components, and monthly average samples were analyzed by gas chromatography mass spectrometry (GCMS) methods to measure particle-phase organic molecular markers. The results of organic molecular markers were used in a chemical mass balance (CMB) model to quantify the sources of PM2.5 organic carbon (OC) and PM2.5 mass. Primary sources accounted for 44% of the measured PM2.5, and secondary sources were estimated to make up 28% of the measured PM2.5. Picene, a tracer of coal combustion detected in Baghdad where there is no evidence for coal combustion, can be attributed to burning crude oil and other low quality fuels in Baghdad. Source apportionment results showed that the dominant sources of the carbonaceous aerosols in Baghdad are gasoline (37 ± 6%) and diesel engines (17 ± 3%) which can be attributed to the extensive use of gasoline and diesel powered generators in Baghdad. Wood burning and residual oil combustion contributed to 5 ± 0.4 and 1 ± 0.2% respectively of OC. The unresolved sources contributed to 42 ± 19% of the OC which represented the secondary organic aerosol (SOA) and the unidentified sources.
Hot-boning enhances cook yield of boneless skinless chicken thighs.
Zhuang, H; Bowker, B C; Buhr, R J; Brambila, G Sanchez
2014-06-01
Three experiments were conducted to evaluate the effects of postmortem deboning time on cook yield of boneless skinless chicken thighs. In experiment 1, chicken thigh meat was deboned at 0.75 (hot-bone), 2, and 24 h postmortem (PM) and trimmed to obtain mainly iliotibialis muscle. Samples were cooked directly from a frozen state. Cook yield of the muscle was significantly influenced by PM deboning time. Hot-boned thighs exhibited a 7% greater cook yield than the samples deboned at 24 h. In experiment 2, boneless skinless chicken thighs were deboned at 0.3, 2, and 24 h PM and cooked directly from a fresh, never-frozen state at 24 h PM. Cook yield of the hot-boned thighs was significantly higher than those of the 2 and 24 h deboned samples, which did not differ from each other. In experiment 3, whole legs (thigh + drumstick) were cut from the carcass backbone at 0.3 (hot-cut), 2, and 24 h PM. Thighs were separated from the legs (drumsticks) at either the same time the whole legs were removed from the carcasses or at 24 h PM. Intact thighs (bone in) were cooked fresh at 24 h PM. Color of fresh thigh muscles, cook yield, and Warner-Bratzler shear force of cooked samples were measured. Cook yield of the thighs cut from the backbone before chilling was significantly higher than those cut from the carcasses at 2 and 24 h PM, which did not differ from each other. The PM time at which intact thighs were separated from the leg (drumstick) did not influence cook yield. These results demonstrate that postmortem deboning time can significantly affect cook yield of boneless skinless chicken thigh products. Deboning chicken thighs after chilling reduces the cook yield. Differences in the cook yield of thighs may also result from the removal of whole chicken legs from the carcass backbone. Poultry Science Association Inc.
NASA Astrophysics Data System (ADS)
Ni, X. Y.; Huang, H.; Du, W. P.
2017-02-01
The PM2.5 problem is proving to be a major public crisis and is of great public-concern requiring an urgent response. Information about, and prediction of PM2.5 from the perspective of atmospheric dynamic theory is still limited due to the complexity of the formation and development of PM2.5. In this paper, we attempted to realize the relevance analysis and short-term prediction of PM2.5 concentrations in Beijing, China, using multi-source data mining. A correlation analysis model of PM2.5 to physical data (meteorological data, including regional average rainfall, daily mean temperature, average relative humidity, average wind speed, maximum wind speed, and other pollutant concentration data, including CO, NO2, SO2, PM10) and social media data (microblog data) was proposed, based on the Multivariate Statistical Analysis method. The study found that during these factors, the value of average wind speed, the concentrations of CO, NO2, PM10, and the daily number of microblog entries with key words 'Beijing; Air pollution' show high mathematical correlation with PM2.5 concentrations. The correlation analysis was further studied based on a big data's machine learning model- Back Propagation Neural Network (hereinafter referred to as BPNN) model. It was found that the BPNN method performs better in correlation mining. Finally, an Autoregressive Integrated Moving Average (hereinafter referred to as ARIMA) Time Series model was applied in this paper to explore the prediction of PM2.5 in the short-term time series. The predicted results were in good agreement with the observed data. This study is useful for helping realize real-time monitoring, analysis and pre-warning of PM2.5 and it also helps to broaden the application of big data and the multi-source data mining methods.
NASA Astrophysics Data System (ADS)
Ward, Tony J.
A yearlong sampling program for PM2.5, Semi- Volatile Organic Compounds (SVOCs), and Volatile Organic Compounds (VOCs) was conducted in 2000/2001. The data were used in a Chemical Mass Balance (CMB) Source Apportionment Model (Version 8.0) to apportion the sources of PM2.5 in the Missoula Valley. Results showed that wood combustion contributed an average of 41% to the fine fraction throughout the year. The second largest source of PM 2.5 was diesel (19%), followed by ammonium nitrate (17%), the kraft recovery boilers from Smurfit-Stone Container (14%), other hog fuel boilers (6%), and street sand (5%). Results also showed that PM2.5 levels and contributions from sources were consistent on both sides of the Missoula Valley, but VOCs were twice as high in Missoula compared to Frenchtown. Another aspect of this program was to investigate the organic fraction of the Missoula Valley PM2.5 by evaluating a modified Federal Reference Method (FRM) PM2.5 sampler. A method comparison was also made between sampling for SVOCs using the modified PM2.5 sampler and in using a Hi-volume Polyurethane Foam (PUF) sampler. Results showed that the PM 2.5 PUF measured more of the lighter SVOCs compared to the Hi-vol PUF sampler. This is most likely the result of the higher flows through the Hi-vol PUF which ``strip'' the lighter organics from the surface of the filter. The wildland fires of summer 2000 comprised one of the most severe fire seasons is U.S. history, and had a direct impact on the city of Missoula. Sampling in Missoula was already in progress when the fires began and smoke started rolling into the Missoula Valley. Samples were collected before, during, and after the 2000 fire season, and a detailed characterization of particulate and gaseous emissions from extensive wildland fires was obtained. The 2000/2001 CMB Sampling Program data collected during the 2000 fire season suggest that the main health impacts to downwind populations reside in the fine particulate exposures, with an average of 81% of the Missoula Valley PM2.5 resulting from forest fires.
Liaud, Céline; Millet, Maurice; Le Calvé, Stéphane
2015-01-01
Most of Polycyclic Aromatic Hydrocarbons (PAHs) are associated to airborne particles and their health impact depends on the particle size where they are bound. This work aims to develop a high sensitive analytical technique to quantify particulate PAHs sampled with a 3-stages cascade impactor in order to derive simultaneously their individual concentration in PM1, PM2.5 and PM10. Three key steps of the method were evaluated separately in order to avoid any PAHs loss during the global sample preparation procedure: (1) the accelerated solvent extraction of PAHs from the filter; (2) the primary concentration of the extract until 1 mL by means of a rotary evaporator at 45°C and 220 mbar and (3) the final concentration of the pre-concentrated extract to about 100-150 µL under a gentle nitrogen stream. Each recovery experiment was realized in triplicates. All these steps evaluated independently show that the overall PAHs loss, even for those with a low molecular weight, should not exceed more than a few percent. Extracts were then analyzed by using a HPLC coupled to fluorescence and Diode Array Detectors with the external standard method. The resulting calibration curves containing between 9 and 12 points were plotted in the concentration range of 0.05-45 µg L(-1) for most of the 16 US-EPA priority PAHs and were fully linear (R(2)>0.999). Limits Of Quantification were in the range 0.05-0.47 µg L(-1) corresponding to 0.75-7.05 pg m(-3) for 20 m(3) of pumped air. Finally, taking into account the average PAHs concentrations previously reported in typical European indoor environments, and considering the use of a 3-stages cascade impactor to collect simultaneously PM>10 µm, 2.5 µm
Shatat, Sara M; Eltanany, Basma M; Mohamed, Abeer A; Al-Ghobashy, Medhat A; Fathalla, Faten A; Abbas, Samah S
2018-01-01
Peptide mapping (PM) is a vital technique in biopharmaceutical industry. The fingerprint obtained helps to qualitatively confirm host stability as well as verify primary structure, purity and integrity of the target protein. Yet, in-solution digestion followed by tandem mass spectrometry is not suitable as a routine quality control test. It is time consuming and requires sophisticated, expensive instruments and highly skilled operators. In an attempt to enhance the fuctionality of PM and extract multi-dimentional data about various critical quality attributes and comparability of biosimilars, coupling of PM generated using immobilized trypsin followed by HPLC-UV to principal component analysis (PCA) is proposed. Recombinant human growth hormone (rhGH); was selected as a model biopharmaceutical since it is available in the market from different manufacturers and its PM is a well-established pharmacopoeial test. Samples of different rhGH biosimilars as well as degraded samples: deamidated and oxidized were subjected to trypsin digestion followed by RP-HPLC-UV analysis. PCA of the entire chromatograms of test and reference samples was then conducted. Comparison of the scores of samples and investigation of the loadings plots clearly indicated the applicability of PM-PCA for: i) identity testing, ii) biosimilarity assessment and iii) stability evaluation. Hotelling's T 2 and Q statistics were employed at 95% confidence level to measure the variation and to test the conformance of each sample to the PCA model, respectively. Coupling of PM to PCA provided a novel tool to identify peptide fragments responsible for variation between the test and reference samples as well as evaluation of the extent and relative significance of this variability. Transformation of conventional PM that is largely based on subjective visual comparison into an objective statiscally-guided analysis framework should provide a simple and economic tool to help both manufacturers and regulatory authorities in quality and biosimilarity assessment of biopharmaceuticals. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Charrier, Jessica G.; McFall, Alexander S.; Vu, Kennedy K.-T.; Baroi, James; Olea, Catalina; Hasson, Alam; Anastasio, Cort
2016-11-01
The dithiothreitol (DTT) assay is widely used to measure the oxidative potential of particulate matter. Results are typically presented in mass-normalized units (e.g., pmols DTT lost per minute per microgram PM) to allow for comparison among samples. Use of this unit assumes that the mass-normalized DTT response is constant and independent of the mass concentration of PM added to the DTT assay. However, based on previous work that identified non-linear DTT responses for copper and manganese, this basic assumption (that the mass-normalized DTT response is independent of the concentration of PM added to the assay) should not be true for samples where Cu and Mn contribute significantly to the DTT signal. To test this we measured the DTT response at multiple PM concentrations for eight ambient particulate samples collected at two locations in California. The results confirm that for samples with significant contributions from Cu and Mn, the mass-normalized DTT response can strongly depend on the concentration of PM added to the assay, varying by up to an order of magnitude for PM concentrations between 2 and 34 μg mL-1. This mass dependence confounds useful interpretation of DTT assay data in samples with significant contributions from Cu and Mn, requiring additional quality control steps to check for this bias. To minimize this problem, we discuss two methods to correct the mass-normalized DTT result and we apply those methods to our samples. We find that it is possible to correct the mass-normalized DTT result, although the correction methods have some drawbacks and add uncertainty to DTT analyses. More broadly, other DTT-active species might also have non-linear concentration-responses in the assay and cause a bias. In addition, the same problem of Cu- and Mn-mediated bias in mass-normalized DTT results might affect other measures of acellular redox activity in PM and needs to be addressed.
2017-03-06
WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non -volatile Particulate Matter (PM...Engine Volatile and Non -Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non
Properties and cellular effects of particulate matter from direct emissions and ambient sources.
Jin, Wenjie; Su, Shu; Wang, Bin; Zhu, Xi; Chen, Yilin; Shen, Guofeng; Liu, Junfeng; Cheng, Hefa; Wang, Xilong; Wu, Shuiping; Zeng, Eddy; Xing, Baoshan; Tao, Shu
2016-10-14
The pollution of particulate matter (PM) is of great concern in China and many other developing countries. It is generally recognized that the toxicity of PM is source and property dependent. However, the relationship between PM properties and toxicity is still not well understood. In this study, PM samples from direct emissions of wood, straw, coal, diesel combustion, cigarette smoking and ambient air were collected and characterized for their physicochemical properties. Their expression of intracellular reactive oxygen species (ROS) and levels of inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-α)) was measured using a RAW264.7 cell model. Our results demonstrated that the properties of the samples from different origins exhibited remarkable differences. Significant increases in ROS were observed when the cells were exposed to PMs from biomass origins, including wood, straw and cigarettes, while increases in TNF-α were found for all the samples, particularly those from ambient air. The most important factor associated with ROS generation was the presence of water-soluble organic carbon, which was extremely abundant in the samples that directly resulted from biomass combustion. Metals, endotoxins and PM size were the most important properties associated with increases in TNF-α expression levels. The association of the origins of PM particles and physicochemical properties with cytotoxic properties is illustrated using a cluster analysis.
Suryawanshi, Shalini; Chauhan, Amit Singh; Verma, Ritika; Gupta, Tarun
2016-11-01
There is a growing concern regarding the adverse health effects due to indoor air pollution in developing countries including India. Hence, it becomes important to study the causes and sources of indoor air pollutants. This study presents the indoor concentrations of PM0.6 (particles with aerodynamic diameter less than 0.6μm) and identifies sources leading to indoor air pollution. Indoor air samples were collected at IIT Kanpur campus. Ninety-eight PM0.6 samples were collected during November 2013 to September 2014. PM0.6 concentration was measured using a single stage impactor type PM0.6 sampler. The average PM0.6 concentration indoor was about 94.44μg/m(3). Samples collected were then analysed for metal concentrations using ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometer). Eight metals Ba, Ca, Cr, Cu, Fe, Mg, Ni and Pb were quantified from PM samples using ICP-OES. Positive Matrix Factorization (PMF) was used for source apportionment of indoor air pollution. PMF is a factor analysis tool which helps in resolving the profile and contribution of the sources from an unknown mixture. Five possible sources of indoor pollutants were identified by factor analysis - (1) Coal combustion (21.8%) (2) Tobacco smoking (9.8%) (3) Wall dust (25.7%) (4) Soil particles (17.5%) (5) Wooden furniture/paper products (25.2%). Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yadav, Shweta; Tandon, Ankit; Attri, Arun K.
2014-12-01
The detection of nicotine, an organic tracer for Environmental Tobacco Smoke (ETS), in the collected PM10 samples from Delhi region's ambient environment, in a appropriately designed investigation was initiated over four years (2006-2009) to: (1) Comprehend seasonal and inter-annual variations in the nicotine present in PM10; (2) Extract regression based linear trend profile manifested by nicotine in PM10; (3) Determine the non-linear trend timeline from the nicotine data, and compare it with the obtained linear trend; (4) Suggest the possible use of the designed experiment and analysis to have a qualitative appraisal of Tobacco Smoking activity in the sampling region. The PM10 samples were collected in a monthly time-series sequence at a known receptor site. Quantitative estimates of nicotine (ng m-3) were made by using a Thermal Desorption Gas Chromatography Mass Spectrometry (TD-GC/MS). The annual average concentrations of nicotine (ng m-3) were 516 ± 302 (2008) > 494 ± 301 (2009) > 438 ± 250 (2007) > 325 ± 149 (2006). The estimated linear trend of 5.4 ng m-3 month-1 corresponded to 16.3% per annum increase in the PM10 associated nicotine. The industrial production of India's tobacco index normalized to Delhi region's consumption, pegged an increase at 10.5% per annum over this period.
Particulate oxidative burden associated with firework activity.
Godri, Krystal J; Green, David C; Fuller, Gary W; Dall'Osto, Manuel; Beddows, David C; Kelly, Frank J; Harrison, Roy M; Mudway, Ian S
2010-11-01
Firework events are capable of inducing particulate matter (PM) episodes that lead to exceedances of regulatory limit values. As short-term peaks in ambient PM concentration have been associated with negative impacts on respiratory and cardiovascular health, we performed a detailed study of the consequences of firework events in London on ambient air quality and PM composition. These changes were further related to the oxidative activity of daily PM samples by assessing their capacity to drive the oxidation of physiologically important lung antioxidants including ascorbate, glutathione and urate (oxidative potential, OP). Twenty-four hour ambient PM samples were collected at the Marylebone Road sampling site in Central London over a three week period, including two major festivals celebrated with pyrotechnic events: Guy Fawkes Night and Diwali. Pyrotechnic combustion events were characterized by increased gas phase pollutants levels (NO(x) and SO(2)), elevated PM mass concentrations, and trace metal concentrations (specifically Sr, Mg, K, Ba, and Pb). Relationships between NO(x), benzene, and PM(10) were used to apportion firework and traffic source fractions. A positive significant relationship was found between PM oxidative burden and individual trace metals associated with each of these apportioned source fractions. The level of exposure to each source fraction was significantly associated with the total OP. The firework contribution to PM total OP, on a unit mass basis, was greater than that associated with traffic sources: a 1 μg elevation in firework and traffic PM fraction concentration was associated with a 6.5 ± 1.5 OP(T) μg(-1) and 5.2 ± 1.4 OP(T) μg(-1) increase, respectively. In the case of glutathione depletion, firework particulate OP (3.5 ± 0.8 OP(GSH) μg(-1)) considerably exceeded that due to traffic particles (2.2 ± 0.8 OP(GSH) μg(-1)). Therefore, in light of the elevated PM concentrations caused by firework activity and the increased oxidative activity of this PM source, there is value in examining if firework derived PM is related to acute respiratory outcomes.
Wei, Aili; Meng, Ziqiang
2006-09-30
The clastogenic activity of airborne air fine particulate matter (PM2.5, particulates with an aerodynamic diameter < or =2.5 microm) has already been demonstrated. However little is known about the health risks associated with sand dust storm PM2.5 and its extract. In order to investigate the clastogenic activity of sand dust storm PM2.5 (include its organic and inorganic extract) on human lymphocytes, the normal PM2.5 and sand dust storm PM2.5 samples were collected in Wuwei city (Gansu Province) and Baotou city (Inner Mongolia), China. The chromosomal aberration (CA) test was employed and the cells were treated with 0, 33, 100, 300 microg ml(-1) sand dust storm or normal ambient air PM2.5 suspension (physiological saline as solvent control), or inorganic extract (0, 75, 150, 300 microg ml(-1), physiological saline as solvent control) or organic extract (0, 20, 40, 80 microg ml(-1), DMSO as solvent control) at the beginning of the cell culture. The results indicated that sand dust storm PM2.5 and its extract as well as normal samples can induce increase in CA frequency. With the increase of treatment concentrations the CA frequency increased and the mitotic index (MI) values declined in a dose-response manner. In the same concentrates, the CA frequency of normal ambient air PM2.5 and its extract were significant higher than those of sand dust storm PM2.5 (P<0.05 or 0.01) except the treatment of Wuwei sample at higher doses (100, 300 microg ml(-1)), the treatment of inorganic extract of PM2.5 at the highest dose (300 microg ml(-1)) and the treatment of organic extract of PM2.5 at the higher dose (40 and 80 microg ml(-1)) either in Baotou or in Wuwei (P>0.05). The toxicity of sand dust storm PM2.5 and its extract at high dose is very potent. CA frequency of normal PM2.5 (include its organic extract) from Baotou were higher than those of Wuwei especially in low and middle dose (P<0.05), but the treatment results of sand dust storm PM2.5 (include its all extract) was not significant different between the cities (P>0.05).
FIELD EVALUATION OF A SAMPLING APPROACH FOR PM-COARSE AEROSOLS
Subsequent to a 1997 revision of the national ambient air quality standards (NAAQS) for particulate matter (PM), the US Environmental Protection Agency is investigating the development of sampling methodology for a possible new coarse particle standard. When developed, this me...
Occurrence of benzothiazole and its derivates in tire wear, road dust, and roadside soil.
Zhang, Jing; Zhang, Xinfeng; Wu, Lin; Wang, Ting; Zhao, Jingbo; Zhang, Yanjie; Men, Zhengyu; Mao, Hongjun
2018-06-01
Benzothiazole (BT) and its derivates are commonly used as vulcanization accelerators in rubber production. Information on the occurrence of BTs in road dust (RD) and on human exposure to these compounds is very limited. BT and its six derivates in tire wear particles (TWPs) and RD were determined in this study. Samples were extracted using solid-liquid extraction, purified by a HLB SPE column, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). All seven BTs were found in 17 TWPs samples from different tire brands. The mass fractions of all seven BTs (∑BTs) in TWPs ranged from 46.93 to 215 μg/g with an average concentration of 99.32 μg/g. Benzothiazole and 2-hydroxybenzothiazole (2-OH-BT) were the two major compounds, accounting for 56%-89% of the total. The seven BTs were also found in all 36 sets of RD samples (each set included one sample of TSP (particles < 75 μm in diameter), PM 10 (particles < 10 μm in diameter) and PM 2.5 (particles < 2.5 μm in diameter)) fractions of RD. The median ∑BTs concentration was highest in PM 2.5 (26.62 μg/g), followed by PM 10 (22.03 μg/g), and TSP (0.68 μg/g). Of the seven BTs, BT, 2-aminobenzothiazole (2-NH 2 -BT), 2-mercaptobenzothiazole (MBT), and 2-(methylthio)benzothiazole (MTBT) were distributed in PM 2.5 and 2-OH-BT was distributed in PM 2.5-10 of RD. Based on the mass fractions of BTs in the TSP, PM 10 , and PM 2.5 fractions of RD, human exposure via ingestion, inhalation and dermal absorption were evaluated. Ingestion was found to be the main exposure pathway in humans, and daily intake of BTs in PM 2.5 was highest, followed by PM 10 and TSP, respectively. Children may suffer more health risks than adults when exposed to RD. Copyright © 2018 Elsevier Ltd. All rights reserved.
40 CFR 53.34 - Test procedure for methods for PM10 and Class I methods for PM2.5.
Code of Federal Regulations, 2010 CFR
2010-07-01
... simultaneous PM10 or PM2.5 measurements as necessary (see table C-4 of this subpart), each set consisting of...) in appendix A to this subpart). (f) Sequential samplers. For sequential samplers, the sampler shall be configured for the maximum number of sequential samples and shall be set for automatic collection...
Schoj, Verónica; Sebrié, Ernesto M; Pizarro, María Elizabeth; Hyland, Andrew; Travers, Mark J
2015-01-01
Objective To evaluate indoor air pollution in hospitality venues in Argentina. Material and Methods PM2.5 levels were measured in a convenience sample of venues in 15 cities with different legislative contexts following a protocol developed by Roswell Park Cancer Institute. Results 554 samples were collected. Across all 5 smokefree cities the mean PM2.5 level was lower during daytime vs. evening hours, 24 vs. 98 PM2.5 respectively (p=.012). In the three cities evaluated before and after legislation, PM2.5 levels decreased dramatically (p<0.001 each). Overall, PM2.5 levels were 5 times higher in cities with no legislation vs. smokefree cities (p<0.001). In cities with designated smoking areas, PM2.5 levels were not statistically different between smoking and non-smoking areas (p=0.272). Non-smoking areas had significantly higher PM2.5 levels compared to 100% smokefree venues in the same city (twofold higher) (p=0.017). Conclusions Most of the participating cities in this study had significantly lower PM2.5 levels after the implementation of 100% smokefree legislation. Hence, it represents a useful tool to promote 100% smokefree policies in Argentina. PMID:21243186
Clymo, Amelia S; Shin, Jin Young; Holmen, Britt A
2005-01-15
Tillage-induced erosion of herbicides bound to airborne soil particles has not been quantified as a mechanism for offsite herbicide transport. This study quantifies the release of two preemergent herbicides, metolachlor and pendimethalin, to the atmosphere as gas- and particle-phase species during soil incorporation operations. Fine particulate matter (PM2.5) and gas-phase samples were collected at three sampling heights during herbicide disking into the soil in Davis, CA, in May 2000 and May 2001 using filter/PUF sampling. Quartz fiber filters (QFFs) were used in May 2000, and Teflon membrane filters (TMFs) were used in May 2001. The field data were combined with laboratory filter/PUF partitioning experiments to account for adsorption to the filter surfaces and quantify the mass of PM2.5-bound herbicides in the field samples. Laboratory results indicate a significant adsorption of metolachlor, but not pendimethalin, to the quartz filter surfaces. Metolachlor partitioning to PM2.5 collected on TMF filters resulted in corrected PM2.5 field partition coefficient values, Kp,corr = Cp/Cg, of approximately 10(-3.5) m3/microg, indicating its preference for the gas phase. Pendimethalin exhibited more semivolatile behavior,with Kp,corr values that ranged from 10(-3) to 10(-1) m3/ microg and increased with sampling height and distance downwind of the operation. An increase in pendimethalin enrichment at a height of 5 m suggests winnowing of finer, more sorptive soil components with corresponding higher transport potential. Pendimethalin was enriched in the PM2.5 samples by up to a factor of 250 compared to the field soil, indicating thatfurther research on the processes controlling the generation of PM-bound herbicides during agricultural operations is warranted to enable prediction of off-site mass fluxes by this mechanism.
Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques
2014-10-01
A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.
Olivieri, Jacopo; Attolico, Immacolata; Nuccorini, Roberta; Pascale, Sara Pasquina; Chiarucci, Martina; Poiani, Monica; Corradini, Paolo; Farina, Lucia; Gaidano, Gianluca; Nassi, Luca; Sica, Simona; Piccirillo, Nicola; Pioltelli, Pietro Enrico; Martino, Massimo; Moscato, Tiziana; Pini, Massimo; Zallio, Francesco; Ciceri, Fabio; Marktel, Sarah; Mengarelli, Andrea; Musto, Pellegrino; Capria, Saveria; Merli, Francesco; Codeluppi, Katia; Mele, Giuseppe; Lanza, Francesco; Specchia, Giorgina; Pastore, Domenico; Milone, Giuseppe; Saraceni, Francesco; Di Nardo, Elvira; Perseghin, Paolo; Olivieri, Attilio
2018-04-01
Predicting mobilization failure before it starts may enable patient-tailored strategies. Although consensus criteria for predicted PM (pPM) are available, their predictive performance has never been measured on real data. We retrospectively collected and analyzed 1318 mobilization procedures performed for MM and lymphoma patients in the plerixafor era. In our sample, 180/1318 (13.7%) were PM. The score resulting from published pPM criteria had sufficient performance for predicting PM, as measured by AUC (0.67, 95%CI: 0.63-0.72). We developed a new prediction model from multivariate analysis whose score (pPM-score) resulted in better AUC (0.80, 95%CI: 0.76-0.84, p < 0001). pPM-score included as risk factors: increasing age, diagnosis of NHL, positive bone marrow biopsy or cytopenias before mobilization, previous mobilization failure, priming strategy with G-CSF alone, or without upfront plerixafor. A simplified version of pPM-score was categorized using a cut-off to maximize positive likelihood ratio (15.7, 95%CI: 9.9-24.8); specificity was 98% (95%CI: 97-98.7%), sensitivity 31.7% (95%CI: 24.9-39%); positive predictive value in our sample was 71.3% (95%CI: 60-80.8%). Simplified pPM-score can "rule in" patients at very high risk for PM before starting mobilization, allowing changes in clinical management, such as choice of alternative priming strategies, to avoid highly likely mobilization failure.
Temporal variation of fine and coarse particulate matter sources in Jeddah, Saudi Arabia
Lim, Chris C.; Thurston, George D.; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M.; Alkhalaf, Abdulrahman K.; Brocato, Jason; Chen, Lung Chi; Costa, Max
2017-01-01
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (PM2.5) and coarse (PM2.5–10) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over one year, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM2.5 (21.9 µg/m3) and PM10 (107.8 µg/m3) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM2.5 (10 µg/m3) and PM10 (20 µg/m3), respectively. Similar to other Middle Eastern locales, PM2.5–10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM2.5 and PM2.5–10: 1) soil/road dust; 2) incineration; and 3) traffic; and for PM2.5 only, 4) residual oil burning. Soil/road dust accounted for a major portion of both the PM2.5 (27%) and PM2.5–10 (77%) mass, and the largest source contributor for PM2.5 was from residual oil burning (63%). Temporal variations of PM2.5–10 and PM2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency), and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM2.5 and PM2.5–10 masses in this city may have implications regarding the toxicity of these particles versus those in the western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. PMID:28635552
RADIOCARBON ANALYSIS OF PM 2.5 AMBIENT AEROSOL
The radiocarbon (14C) content of an ambient aerosol sample can be directly related to the fraction of the sample's total carbon mass contributed by natural (biogenic) sources. Such knowledge is difficult to determine by other means, and important for devising ambient PM contro...
Kilburg-Basnyat, B; Peters, T M; Perry, S S; Thorne, P S
2016-10-01
Paired electrostatic dust collectors (EDCs) and daily, inhalable button samplers (BS) were used concurrently to sample endotoxin in 10 farm homes during 7-day periods in summer and winter. Winter sampling included an optical particle counter (OPC) to measure PM2.5 and PM2.5-10 . Electrostatic dust collectors and BS filters were analyzed for endotoxin using the kinetic chromogenic Limulus amebocyte lysate assay. Optical particle counter particulate matter (PM) data were divided into two PM categories. In summer, geometric mean (geometric standard deviation) endotoxin concentrations were 0.82 EU/m(3) (2.7) measured with the BS and 737 EU/m(2) (1.9) measured with the EDC. Winter values were 0.52 EU/m(3) (3.1) for BS and 538 EU/m(2) (3.0) for EDCs. Seven-day endotoxin values of EDCs were highly correlated with the 7-day BS sampling averages (r = 0.70; P < 0.001). Analysis of variance indicated a 2.4-fold increase in EDC endotoxin concentrations for each unit increase of the ratio of PM2.5 to PM2.5-10 . There was also a significant correlation between BS and EDCs endotoxin concentrations for winter (r = 0.67; P < 0.05) and summer (r = 0.75; P < 0.05). Thus, EDCs sample comparable endotoxin concentrations to BS, making EDCs a feasible, easy to use alternative to BS for endotoxin sampling. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Isotopic composition of carbon and hydrogen in some Apollo 14 and 15 lunar samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, I.; Hardcastle, K.G.; Gleason, J.D.
1974-01-01
Isotopic composition of carbon and hydrogen in some Apollo 14 and 15 lunar samples was determined by use of a newly constructed combustion line that yields low blanks for CO/sub 2/ and H/sub 2/. The results from combustion of fines and breccia from Apollo 14 lunar samples and of fines, breccia, and hasalt from Apollo 15 were compared with data obtained by heating samples in vacuo to over 1,350 deg C. The two techniques gave similar results. Total carbon in the flnes ranged from 51 to 110 p/m with a delta C/sup 13/ of 112 to --8 per mil (partsmore » per thousand) PDB. The breccias contain 22 to 50 p/m carbon with a delta C/sup 13/ of -21 to -25 per mil. The crystalline rock (sample 15555) has a carbon contert of about 7 p/m and a delta C/sup 13/ of --28 per mil. The total hydrogen in the fines ranges from 66 to 120 p/m with a (D/H) x 10/sup -6/ of 39 to 90. The breccias contain 8 to 38 p/m H/sub 2/ with a (D/H) x 10/sup -6/of 103 to 144. The crystalline rock contains about 2 p/m H/sub 2/ with a (D/H) x 10/sup -6/ of about 140. Arguments are presented to show that the contamination by Earth materials is not as serious a problem as has been proposed by previous authors. (auth)« less
Lepers, Capucine; André, Véronique; Dergham, Mona; Billet, Sylvain; Verdin, Anthony; Garçon, Guillaume; Dewaele, Dorothée; Cazier, Fabrice; Sichel, François; Shirali, Pirouz
2014-06-01
Airborne particulate matter (PM) toxicity is of growing interest as diesel exhaust particles have been classified as carcinogenic to humans. However, PM is a mixture of chemicals, and respective contribution of organic and inorganic fractions to PM toxicity remains unclear. Thus, we analysed the link between chemical composition of PM samples and bulky DNA adduct formation supported by CYP1A1 and 1B1 genes induction and catalytic activities. We used six native PM samples, collected in industrial, rural or urban areas, either during the summer or winter, and carried out our experiments on the human bronchial epithelial cell line BEAS-2B. Cell exposure to PM resulted in CYP1A1 and CYP1B1 genes induction. This was followed by an increase in EROD activity, leading to bulky DNA adduct formation in exposed cells. Bulky DNA adduct intensity was associated to global EROD activity, but this activity was poorly correlated with CYPs mRNA levels. However, EROD activity was correlated with both metal and polycyclic aromatic hydrocarbon (PAH) content. Finally, principal components analysis revealed three clusters for PM chemicals, and suggested synergistic effects of metals and PAHs on bulky DNA adduct levels. This study showed the ability of PM samples from various origins to generate bulky DNA adducts in BEAS-2B cells. This formation was promoted by increased expression and activity of CYPs involved in PAHs activation into reactive metabolites. However, our data highlight that bulky DNA adduct formation is only partly explained by PM content in PAHs, and suggest that inorganic compounds, such as iron, may promote bulky DNA adduct formation by supporting CYP activity. Copyright © 2013 John Wiley & Sons, Ltd.
Effect of fireworks display on perchlorate in air aerosols during the Spring Festival
NASA Astrophysics Data System (ADS)
Shi, Yali; Zhang, Ning; Gao, Jianmin; Li, Xin; Cai, Yaqi
2011-02-01
Perchlorate is regarded as a new emerging persistent inorganic environmental contaminant. It can result in important neurodevelopmental deficits and goiter in infants and children because of its inhibition of iodine uptake into the thyroid tissue. Furthermore, its presence in the human body can cause improper regulation of metabolism for adults. It is often used as ingredient in the production of fireworks. So fireworks display may influence the perchlorate levels in atmospheric particulate matter (PM). In this paper perchlorate was determined in air aerosol samples (Inhalable particulate matter (PM10) and larger particulate matter (PM10-100)) collected from two locations (Lanzhou City and Yuzhong County) in Gansu province over a month period (February 1rst to March 4th) during the Spring Festival (February 18th) in 2007 in order to study the effect of fireworks display on perchlorate in air aerosol. The results showed that different concentrations of perchlorate were detected in almost all samples, ranging from
PM2.5 Monitors in New England | Air Quality Planning Unit ...
2017-04-10
The New England states are currently operating a network of 58 ambient PM2.5 air quality monitors that meet EPA's Federal Reference Method (FRM) for PM2.5, which is necessary in order for the resultant data to be used for attainment/non-attainment purposes. These monitors collect particles in the ambient air smaller than 2.5 microns in size on a filter, which is weighed prior and post sampling to produce a 24-hour sample concentration.
NASA Astrophysics Data System (ADS)
Caseiro, Alexandre; Oliveira, César; Pio, Casimiro; Nunes, Teresa; Santos, Patrícia; Mao, Hongjun; Sokhi, Ranjeet; Luhanna, Lakhu
2010-05-01
Particulate matter, either with aerodynamical diameter below 10 μm (PM10) or the fine (aerodynamical diameter below 2.5 μm, PM2.5) or coarse (aerodynamical diameter between 2.5 and 10 μm, PM2.5-10) modes only, are presently regarded as one of the main threats to public health instigated by air pollution. The levels of ambient air particulates are regulated but the limits are frequently surpassed. It is therefore necessary to identify and quantify PM sources and their variability, as well as the biogenic processes that to some extent control their ambient load, in order to effectively regulate on the anthropogenic activities which originate PM. PM2.5-10 and PM2.5 were monitored in Oporto, NW Portugal, at two contrasting sites (directly impacted by traffic, roadside, and at the urban background) during two one-month campaigns (winter and summer). Sampling was conducted independently during daytime and night-time. Out of the 207 sampling periods analysed, 38 (18%) were above the European legal PM10 limit of 50 ?g m-3. PM2.5 concentrations above the limit of 25 ?g m-3 proposed by the EC occurred in 70 out of 202 sampling (35%). More exceedances occurred in winter than in summer and at roadside than at the urban background. Within the scope of this work, the relationship between PM concentrations, namely the occurrence of exceeding PM limit values, and meteorological variables or the sampling period (day/night, work day/weekend) and will be presented. Besides PM mass, the soluble ionic composition (Cl-, SO42-, NO3-, Na+, NH4+, K+, Ca2+ and Mg2+) as well as the elemental composition (Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Zr, Sn, Ba and Pb) were also determined. This allowed the application of multivariate analysis (principal component analysis with multi-linear regression analysis, PCA-MLRA, and positive matrix factorisation, PMF). Five main sources were identified in the fine and coarse modes (direct road traffic emissions, industrial activities related with refuse incineration or metallurgy, soil dust emissions, sea salt and fuel oil combustion coupled to secondary formation). The contribution of the various sources or source types to the PM load was calculated. A comparison between the relative contribution of the various sources or source types during exceeding and non-exceeding periods is conducted in order to assess if the exceeding periods may be attributed to a particular origin. Also, the concentration and relative contribution to total PM mass of the various PM constituents measured during exceedance and non-exceedance episodes is compared in order to assess their variability between the two types of events.
Ji, Hai; Li, Hong; He, Yanyan; Hou, Benxiang
2014-08-01
To study the prevalence of Parvimonas micra (Pm) and the associations between Pm and pulp dominant pathogens in order to reflect the colonization of Pm in the infected root canals with chronic periradicular periodontitis. A total of 120 teeth diagnosed as chronic periradicular periodontitis from 104 patients were included into the study. The teeth were allocated into untreated (primary infectious) and root-canal- treated (secondary infectious) groups with 60 in either group. Samples were collected from the root canals using sterile files and paper points, and subsequent extraction of bacterial DNA was undertaken. The Pm 16S rDNA level was evaluated using 16S rDNA PCR. The prevalence of Pm in chronic periradicular periodontitis was determined accordingly. Then, the associations of Pm and Enterococcus faecalis (Ef), Porphyromonas endodontalis (Pe) as well as Porphyromonas gingivalis (Pg) were analysed. Pm was detected in 40% (24/60) of the samples from the primary infectious group, 5% (3/60) from the secondary infectious group. The prevalences of Pm from the two groups were different significantly (χ² = 21.06, P < 0.05). Significant correlations (untreated group OR = 5.98, root-canal-treated group OR = 33.50) between Pm and Pe were identified in both groups, while the correlations between Pm and Pg as well as Ef were not of significance, respectively. A significantly higher relevance ratio of Pm was estimated in the primary infectious group than the secondary infectious one. Pm and Pe were correlated significantly in the infected root canals, suggesting a symbiotic relation between these two bacteria.
STS-97 crew meets with the media at Launch Pad 39B
NASA Technical Reports Server (NTRS)
2000-01-01
STS-97 Mission Specialist Marc Garneau (right) answers a question from the media. At left is Mission Specialist Joe Tanner. They and the other crew members are meeting with the media before beginning emergency egress training at Launch Pad 39B. The training is part of Terminal Countdown Demonstration Test activities that include a simulated launch countdown. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.
A bacterial bioreporter panel to assay the cytotoxicity of atmospheric particulate matter
NASA Astrophysics Data System (ADS)
Kessler, Nivi; Schauer, James J.; Yagur-Kroll, Sharon; Melamed, Sahar; Tirosh, Ofir; Belkin, Shimshon; Erel, Yigal
2012-12-01
Numerous studies have demonstrated that elevated concentrations of suspended atmospheric particulate matter (PM) are associated with adverse health effects. In order to minimize the adverse public health effects of atmospheric PM by exposure management, there is a need for a greater understanding of the toxic mechanisms and the components that are responsible for the toxic effects. The aim of this study was to utilize bioassay techniques to investigate these aspects. For this purpose a reporter panel of 9 genetically engineered bacterial (Escherichia coli) strains was composed. Each panel member was designed to report on a different stress condition with a measurable light signal produced by the luciferase enzyme. Toxic mechanisms and components were studied using six anthropogenic PM source samples, including two vehicle combustion particles, three coal fly ash (CFA) samples and an urban dust sample. The most prominent outcome of the panel exposure results were broad panel responses observed for two of the CFA samples, indicating oxidative stress, respiration inhibition and iron deficiency. These responses were relieved when the samples were treated with EDTA, a non-specific metal chelator, suggesting the involvement of metals in the observed effects. Bioavailability analysis of the samples suggests that chromium was related to the toxic responses induced by two of the CFA samples. Oxidative stress was also observed in several samples of ambient atmospheric aerosols and excess metal toxicity in an urban dust sample collected in a parking lot. The reporter panel approach, as demonstrated in this study, has the potential of providing novel insights as to the mechanisms of atmospheric PM toxicity. Furthermore, combining the panel's results with bioavailability data can enlighten about the role of different PM components in the observed toxicity.
Contribution of Biomass Burning to Carbonaceous Aerosols in Mexico City during may 2013
NASA Astrophysics Data System (ADS)
Tzompa Sosa, Z. A.; Sullivan, A.; Kreidenweis, S. M.
2014-12-01
The Mexico City Metropolitan Area (MCMA) is one of the largest megacities in the world with a population of 20 million people. Emissions transported from outside the basin, such as wildfires and agricultural burning, represent a potentially large contribution to air quality degradation. This study analyzed PM10 filter samples from six different stations located across the MCMA from May, 2013, which represented the month with the most reported fire counts in the region between 2002-2013. Two meteorological regimes were established considering the number of satellite derived fire counts, changes in predominant wind direction, ambient concentrations of CO, PM10 and PM2.5, and precipitation patterns inside MCMA. The filter samples were analyzed for biomass burning tracers including levoglucosan (LEV), water-soluble potassium (WSK+); and water-soluble organic carbon (WSOC). Results of these analyses show that LEV concentrations correlated positively with ambient concentrations of PM2.5 and PM10 (R2=0.61 and R2=0.46, respectively). Strong correlations were also found between WSOC and LEV (R2=0.94) and between WSK+ and LEV (R2=0.75). An average LEV/WSOC ratio of 0.0147 was estimated for Regime 1 and 0.0062 for Regime 2. Our LEV concentrations and LEV/WSOC ratios are consistent with results found during the MILAGRO campaign (March, 2006). To the best of our knowledge, only total potassium concentrations have been measured in aerosol samples from MCMA. Therefore, this is the first study in MCMA to measure ambient concentrations of WSK+. Analysis of gravimetric mass concentrations showed that PM2.5 accounted for 60% of the PM10 mass concentration with an estimated PM10/PM2.5 ratio of 1.68. Estimates from our laboratory filter sample characterization indicated that we measured 37% of the total PM10 mass concentration. The missing mass is most likely crustal material (soil or dust) and carbonaceous aerosols that were not segregated into WSOC fraction. Assuming that LEV is inert in the atmosphere, the estimated biomass burning contributions to WSOC ranged from 7-23%. When assuming a LEV lifetime of 1.1 to 5 days, the estimated contributions increased on average 80%. Thus, we conclude that biomass burning sources had a large impact on WSOC and PM2.5 during May 2013, potentially explaining up to half of the measured WSOC.
Pengchai, Petch; Chantara, Somporn; Sopajaree, Khajornsak; Wangkarn, Sunanta; Tengcharoenkul, Urai; Rayanakorn, Mongkon
2009-07-01
Daily PM10 concentrations were measured at four sampling stations located in Chiang Mai and Lamphun provinces, Thailand. The sampling scheme was conducted during June 2005 to June 2006; every 3 days for 24 h in each sampling period. The result revealed that all stations shared the same pattern, in which the PM10 (particulate matters with diameter of less than 10 microm) concentration increased at the beginning of dry season (December) and reached its peak in March before decreasing by the end of April. The maximum PM10 concentration for each sampling station was in the range of 140-182 microg/m(3) which was 1.1-1.5 times higher than the Thai ambient air quality standard of 120 microg/m(3). This distinctly high concentration of PM10 in the dry season (Dec. 05-Mar. 06) was recognized as a unique seasonal pattern for the northern part of Thailand. PM10 concentration had a medium level of negative correlation (r = -0.696 to -0.635) with the visibility data. Comparing the maximum PM10 concentration detected at each sampling station to the permitted PM10 level of the national air quality standard, the warning visibility values for the PM10 pollution-watch system were determined as 10 km for Chiang Mai Province and 5 km for Lamphun Province. From the analysis of PM10 constituents, no component exceeded the national air quality standard. The total concentrations of PM10-bond polycyclic aromatic hydrocarbons (PAHs) are calculated in terms of total toxicity equivalent concentrations (TTECs) using the toxicity equivalent factors (TEFs) method. TTECs in Chiang Mai and Lamphun ambient air was found at a level comparable to those observed in Nagasaki, Bangkok and Rome and at a lower level than those reported at Copenhagen. The annual number of lung cancer cases for Chiang Mai and Lamphun Provinces was estimated at two cases/year which was lower than the number of cases in Bangkok (27 cases/year). The principal component analysis/absolute principal component scores (PCA/APCS) model and multiple regression analysis were applied to the PM10 and its constituents data. The results pointed to the vegetative burning as the largest PM10 contributor in Chiang Mai and Lamphun ambient air. Vegetative burning, natural gas burning & coke ovens, and secondary particle accounted for 46-82%, 12-49%, and 3-19% of the PM10 concentrations, respectively. However, natural gas burning & coke ovens as well as vehicle exhaust also deserved careful attention due to their large contributions to PAHs concentration. In the wet season and transition periods, 42-60% of the total PAHs concentrations originated from vehicle exhaust while 16-37% and 14-38% of them were apportioned to natural gas burning & coke ovens and vegetative burning, respectively. In the dry period, natural gas burning & coke ovens, vehicle exhaust, and vegetative burning accounted for 47-59%, 20-25%, and 19-28% of total PAHs concentrations. The close agreement between the measured and predicted concentrations data (R(2) > 0.8) assured enough capability of PCA/APCS receptor model to be used for the PM10 and PAHs source apportionment.
EPA Summaries and Reports on Several State and Local PM Control Measures
A sample of existing control measures and their effectiveness, along with recommendations for improvement, can help states develop better control measures for reducing PM2.5 in order to attain 2012 PM2.5 National Ambient Air Quality Standards (NAAQS).
Mohanraj, R.; Dhanakumar, S.; Solaraj, G.
2012-01-01
Coimbatore is one of the fast growing industrial cities of Southern India with an urban population of 1.9 million. This study attempts to evaluate the trends of airborne fine particulates (PM 2.5) and polyaromatic hydrocarbons (PAH) on them. The PM 2.5 mass was collected in polytetra fluoroethylene filters using fine particulate sampler at monthly intervals during March 2009 to February 2010. PAHs were extracted from PM 2.5 and estimated by high-performance liquid chromatography. It is alarming to note that PM 2.5 values ranged between 27.85 and 165.75 μg/m3 and exceeded the air quality standards in many sampling events. The sum of 9 PAHs bound to PM 2.5 in a single sampling event ranged from 4.1 to 1632.3 ng/m3. PAH diagnostic ratios and principal component analysis results revealed vehicular emissions and diesel-powered generators as predominant sources of PAH in Coimbatore. PMID:22649329
Val, Stéphanie; Liousse, Cathy; Doumbia, El Hadji Thierno; Galy-Lacaux, Corinne; Cachier, Hélène; Marchand, Nicolas; Badel, Anne; Gardrat, Eric; Sylvestre, Alexandre; Baeza-Squiban, Armelle
2013-04-02
The involvement of particulate matter (PM) in cardiorespiratory diseases is now established in developed countries whereas in developing areas such as Africa with a high level of specific pollution, PM pollution and its effects are poorly studied. Our objective was to characterize the biological reactivity of urban African aerosols on human bronchial epithelial cells in relation to PM physico-chemical properties to identify toxic sources. Size-speciated aerosol chemical composition was analyzed in Bamako (BK, Mali, 2 samples with one having desert dust event BK1) and Dakar (DK; Senegal) for Ultrafine UF, Fine F and Coarse C PM. PM reactivity was studied in human bronchial epithelial cells investigating six biomarkers (oxidative stress responsive genes and pro-inflammatory cytokines). PM mass concentrations were mainly distributed in coarse mode (60%) and were impressive in BK1 due to the desert dust event. BK2 and DK samples showed a high content of total carbon characteristic of urban areas. The DK sample had huge PAH quantities in bulk aerosol compared with BK that had more water soluble organic carbon and metals. Whatever the site, UF and F PM triggered the mRNA expression of the different biomarkers whereas coarse PM had little or no effect. The GM-CSF biomarker was the most discriminating and showed the strongest pro-inflammatory effect of BK2 PM. The analysis of gene expression signature and of their correlation with main PM compounds revealed that PM-induced responses are mainly related to organic compounds. The toxicity of African aerosols is carried by the finest PM as with Parisian aerosols, but when considering PM mass concentrations, the African population is more highly exposed to toxic particulate pollution than French population. Regarding the prevailing sources in each site, aerosol biological impacts are higher for incomplete combustion sources resulting from two-wheel vehicles and domestic fires than from diesel vehicles (Dakar). Desert dust events seem to produce fewer biological impacts than anthropogenic sources. Our study shows that combustion sources contribute to the high toxicity of F and UF PM of African urban aerosols, and underlines the importance of emission mitigation and the imperative need to evaluate and to regulate particulate pollution in Africa.
Military Utility of Multispectral and Hyperspectral Sensors
1994-11-01
Resolution) ........ 5-12 5-2. Actual and Modeled Target and Conifer Background Signatures. (a) In the MWIR and (b) in the LW IR...absorption in CO2 at 2.7, 4.2, and 15 Pm, and absorption in silicon dioxide between 8.5 and 10 pm. 2.4 DIRECTIONAL REFLECTANCE, BIDIRECTIONAL...3.39 pm), Nd:YAG (1.06 pm), and CO2 (10.6 pm or 5.3 gm doubled). With a typical goniometric facility, a sample is mounted on a 3 axis platform so that
Composition and Sources of Fine and Coarse Particles Collected during 2002–2010 in Boston, MA
Masri, Shahir; Kang, Choong-Min; Koutrakis, Petros
2016-01-01
Identifying the sources, composition, and temporal variability of fine (PM2.5) and coarse (PM2.5-10) particles is a crucial component in understanding PM toxicity and establishing proper PM regulations. In this study, a Harvard Impactor was used to collect daily integrated fine and coarse particle samples every third day for nine years at a single site in Boston, MA. A total of 1,960 filters were analyzed for elements, black carbon (BC), and total PM mass. Positive Matrix Factorization (PMF) was used to identify source types and quantify their contributions to ambient PM2.5 and PM2.5-10. BC and 17 elements were identified as the main constituents in our samples. Results showed that BC, S, and Pb were associated exclusively with the fine particle mode, while 84% of V and 79% of Ni were associated with this mode. Elements mostly found in the coarse mode, over 80%, included Ca, Mn (road dust), and Cl (sea salt). PMF identified six source types for PM2.5 and three source types for PM2.5-10. Source types for PM2.5 included regional pollution, motor vehicles, sea salt, crustal/road dust, oil combustion, and wood burning. Regional pollution contributed the most, accounting for 48% of total PM2.5 mass, followed by motor vehicles (21%) and wood burning (19%). Source types for PM2.5-10 included crustal/road dust (62%), motor vehicles (22%), and sea salt (16%). A linear decrease in PM concentrations with time was observed for both fine (−5.2%/yr) and coarse (−3.6%/yr) particles. The fine-mode trend was mostly related to oil combustion and regional pollution contributions. Average PM2.5 concentrations peaked in summer (10.4 μg/m3) while PM2.5-10 concentrations were lower and demonstrated little seasonal variability. The findings of this study show that PM25 is decreasing more sharply than PM2.5-10 over time. This suggests the increasing importance of PM2.5-10 and traffic-related sources for PM exposure and future policies. PMID:25947125
Multi-site field studies were conducted to evaluate the performance of sampling methods for measuring the coarse fraction of PM10 (PM10 2.5) in ambient air. The field studies involved the use of both time-integrated filter-based and direct continuous methods. Despite operationa...
Resuspension of soil as a source of airborne lead near industrial facilities and highways.
Young, Thomas M; Heeraman, Deo A; Sirin, Gorkem; Ashbaugh, Lowell L
2002-06-01
Geologic materials are an important source of airborne particulate matter less than 10 microm aerodynamic diameter (PM10), but the contribution of contaminated soil to concentrations of Pb and other trace elements in air has not been documented. To examine the potential significance of this mechanism, surface soil samples with a range of bulk soil Pb concentrations were obtained near five industrial facilities and along roadsides and were resuspended in a specially designed laboratory chamber. The concentration of Pb and other trace elements was measured in the bulk soil, in soil size fractions, and in PM10 generated during resuspension of soils and fractions. Average yields of PM10 from dry soils ranged from 0.169 to 0.869 mg of PM10/g of soil. Yields declined approximately linearly with increasing geometric mean particle size of the bulk soil. The resulting PM10 had average Pb concentrations as high as 2283 mg/kg for samples from a secondary Pb smelter. Pb was enriched in PM10 by 5.36-88.7 times as compared with uncontaminated California soils. Total production of PM10 bound Pb from the soil samples varied between 0.012 and 1.2 mg of Pb/kg of bulk soil. During a relatively large erosion event, a contaminated site might contribute approximately 300 ng/m3 of PM10-bound Pb to air. Contribution of soil from contaminated sites to airborne element balances thus deserves consideration when constructing receptor models for source apportionment or attempting to control airborne Pb emissions.
Alghamdi, S S; Farooq, W A; Baig, M R; Algarawi, M S; Alrashidi, Talal Mohammed; Ali, Syed Mansoor; Alfaramawi, K
2017-10-01
Pre- and postalpha-exposed PM-355 detectors were irradiated using UV laser with different number of pulses (100, 150, 200, 300, and 400). UV laser beam energy of 20mJ per pulse with a pulse width of 9ns was incident on an area of 19.6mm 2 of the samples. XRD spectra indicated that for both reference and UV-irradiated samples, the structure is amorphous, but the crystallite size increases upon UV irradiation. The same results were obtained from SEM analysis. Optical properties of PM-355 polymeric solid-state nuclear track detectors were also investigated. Absorbance measurements for all PM-355 samples in the range of 200-400nm showed that the absorption edge had a blue shift up to a certain value, and then, it had an oscillating behavior. Photoluminescence spectra of PM-355 at 250nm revealed a decrease in the broadband peak intensity as a function of the number of UV pulses, while the wavelengths corresponding to the peaks had random shifts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Creating an Information Literate School: Information Literacy in Action.
ERIC Educational Resources Information Center
Batz, Linda; Rosenberg, Harlene
1999-01-01
Describes an award-winning instructional media center (IMC) at a New Jersey high school. The IMC (library) is the school's hub from 7:15 a.m. to 6 p.m., and has dial-in access. This information-literacy program emphasizes total-quality-management principles, ongoing professional development, teacher support, and information skills instruction.…
Toxicity of inhaled fibers is dependent in part on biopersistence due to changes in size distribution after deposition and clearance in the respiratory tract. To model this in vivo behavior, respirable (PM2.5) Libby amphibole (LA) and amosite asbestos, and a reference material gl...
Top Ten Reasons To Use InDesign for Scholastic Media.
ERIC Educational Resources Information Center
Communication: Journalism Education Today, 2003
2003-01-01
Explains that Adobe InDesign 2.0 moves desktop to new possibilities because it combines the best of modern graphics techniques. Provides explanations of the following aspects of InDesign: drop shadow; align objects; define styles; type on a path; grids; accessible patterns; gradients; create outlines; indexing; and shows missing point. (PM)
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Scientist June 3, 2018, 1:00 pm Fermilab news Search Upcoming events May 27 Sun English Country Dancing Kuhn Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry
77 FR 64514 - Sunshine Act Meeting; Open Commission Meeting; Wednesday, October 17, 2012
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
.../Video coverage of the meeting will be broadcast live with open captioning over the Internet from the FCC... format and alternative media, including large print/ type; digital disk; and audio and video tape. Best.... 2012-26060 Filed 10-18-12; 4:15 pm] BILLING CODE 6712-01-P ...
Duarte, Regina M B O; Matos, João T V; Paula, Andreia S; Lopes, Sónia P; Ribeiro, Sara; Santos, José Francisco; Patinha, Carla; da Silva, Eduardo Ferreira; Soares, Rosário; Duarte, Armando C
2017-04-01
In the framework of two national research projects (ORGANOSOL and CN-linkAIR), fine particulate matter (PM 2.5 ) was sampled for 17 months at an urban location in the Western European Coast. The PM 2.5 samples were analyzed for organic carbon (OC), water-soluble organic carbon (WSOC), elemental carbon (EC), major water-soluble inorganic ions, mineralogical, and for the first time in this region, strontium isotope ( 87 Sr/ 86 Sr) composition. Organic matter dominates the identifiable urban PM 2.5 mass, followed by secondary inorganic aerosols. The acquired data resulted also in a seasonal overview of the carbonaceous and inorganic aerosol composition, with an important contribution from primary biomass burning and secondary formation processes in colder and warmer periods, respectively. The fossil-related primary EC seems to be continually present throughout the sampling period. The 87 Sr/ 86 Sr ratios were measured on both the labile and residual PM 2.5 fractions as well as on the bulk PM 2.5 samples. Regardless of the air mass origin, the residual fractions are more radiogenic (representative of a natural crustal dust source) than the labile fractions, whose 87 Sr/ 86 Sr ratios are comparable to that of seawater. The 87 Sr/ 86 Sr ratios and the mineralogical composition data further suggest that sea salt and mineral dust are important primary natural sources of fine aerosols throughout the sampling period.
STS-99 crew respond to media at SLF
NASA Technical Reports Server (NTRS)
2000-01-01
After landing at the Shuttle Landing Facility aboard T-38 jet aircraft, the STS-99 crew addresses the media. Standing, left to right, are Mission Specialists Gerhard Thiele of Germany and Mamoru Mohri of Japan, Commander Kevin Kregel (at the microphone), Mission Specialists Janice Voss and Janet Kavandi, and Pilot Dominic Gorie. They are ready to prepare for the second launch attempt of Endeavour Feb. 11 at 12:30 p.m. EST from Launch Pad 39A. The earlier launch scheduled for Jan. 31 was scrubbed due to poor weather and a faulty Enhanced Master Events Controller in the orbiter's aft compartment. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Landing is expected at KSC on Feb. 22 at 4:36 p.m. EST.
NASA Astrophysics Data System (ADS)
Carter, Shannon E.
Particulate matter (PM) emissions from agricultural practices, including those from animal feeding operations (AFO's) have become an increasingly important topic, and has generated considerable interest from local and state agencies, as well as, the local community over the past decade. Because of growth in population, and an increase in commercial and residential development within close proximity to these operations, which house a large number of animals in confinement, and because of a better understanding of the effects of exposure to airborne contaminants on health, this has lead to an increase in concerns and a demand for more research to be conducted on PM from AFO's. Particulate matter generated within, and emitted from, AFO's can carry with it various components including metals and microorganisms that can negatively affect health. This research was conducted in order to verify if PM from a broiler poultry operation on Delmarva has the potential to become a health concern. The first step was to determine concentrations of two size segregated fractions of PM from indoor and outdoor sampling sites over four seasonal periods, early summer (ES), late summer (LS), Fall (F), and Winter (W). Both PM10 and PM2.5 were collected because of their classification from the Environmental Protection Agency as having the ability to cause significant health effects with short-term exposure. Next, temporal and spatial characteristics were investigated to determine their effects on PM concentrations over the four seasonal periods. Following this, the chemical composition and morphology of PM10 and PM2.5 generated from the broiler poultry operation was investigated. Finally, further detailed information was obtained on arsenic speciation and oxidation state in PM to investigate toxicity. Arsenic use in the poultry industry has been occurring for a number of decades, and is most frequently administered in the organic form. However, studies have shown that these organo-arsenicals can quickly degrade into organic by-products, methylated arsenicals, and inorganic arsenic (III and V). Because oxidation state determines mobility and toxicity in humans, animals, and the environment this is a key reason to investigate it further in PM. The results from this research indicate that the concentrations of both PM size segregated fractions that were sampled are within the regulatory guidelines of EPA and OSHA. Outdoor concentrations were mainly influenced by wind speed changes over the seasonal periods, and bird weight was the main management factor influencing indoor PM concentrations. In addition, upon performing chemical analysis on the PM using inductively coupled plasma mass spectrometry (ICP-MS), the arsenic concentrations found are not above background ambient arsenic levels for outdoor samples; however, total arsenic was found to be above those background concentrations in both indoor PM10 and PM2.5 samples. Although the arsenic concentrations were found to be higher than background inside the poultry operation, they are currently within the regulated limits set by the Occupational Safety and Health Administration (OSHA) and the National Institute of Occupational Safety and Health (NIOSH). Other metal(loid)s such as copper, manganese, and zinc were also within regulatory limits in both indoor PM10 and PM2.5 samples. While the EPA has National Ambient Air Quality Standards set for PM 10 and PM2.5, these regulations are not suitable when evaluating indoor occupational concentrations from an animal feeding operation such as a broiler poultry operation. In addition, the EPA does not currently have standards set for arsenic in ambient or general air pollution. It is also questionable to use the current dust regulations set by the OSHA or NIOSH because they are generalized to two categories that are not easily translatable to the current PM10 and PM2.5 size segregations accepted under the EPA. In addition, there is an assumption made that particles within their total suspended and respirable regulatory categories are "inert" or nuisance, which infers that particles under this classification would not lead to any significant health problems. This is not the case with PM generated from a broiler poultry operation, which can carry with it a number of contaminants that have been proven to cause various health disorders from exposure. These classifications also apply to inhalable arsenic standards and are also questionable when determining whether arsenic concentrations in PM from a poultry operation are permissible. Arsenic oxidation state and speciation in PM10 and PM 2.5 was investigated using X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) spectroscopy. The results indicate that there is a mix of organic species present, as well as, oxidized As(V) and reduced As(III) in all samples analyzed. The main organic species found were in the form of Roxarsone, 4-hydroxy-3-aminophenylarsonic acid (HAPA), and dimethylarsinic acid (DMA(V)). This indicates that much of the organic form that was originally administered has degraded into more toxic by-products that are then becoming incorporated into airborne particulate matter.
Phosphorous availability influences the dissolution of apatite by soil fungi
NASA Astrophysics Data System (ADS)
Rosling, A.; Suttle, K. B.; Johansson, E.; van Hees, P. W.; Banfield, J. F.
2007-12-01
We conducted mineral dissolution experiments using fungi isolated from a grassland soil in northern California to determine the response of fungi to different levels of phosphorus availability and to identify pathways of apatite dissolution by fungal exudates. Fluorapatite dissolution experiments were performed either with fungi present or under abiotic conditions using cell-free liquid media conditioned by fungal growth at different phosphorus and calcium availabilities. Among biogeochemically active soil fungal isolates apatite dissolution was either active in response to phosphorus limiting growth conditions or passive as a result of mycelial growth. Zygomycete isolates in the order of Mucorales acidify their growth media substrate in the presence of phosphorus, mainly through production of oxalic acid. Cell-free exudates induced fluorapatite dissolution at a rate of 10 -0.9 ± 0.14 and 10 -1.2 ± 0.22 mmol P/m2/s. The Ascomycete isolate, in the family Trichocomaceae, induced fluorapatite dissolution at a rate of 10 - 1.1 ± 0.05 mmol P/m2/s by lowering the pH of the media under phosphorus-limited conditions, without producing significant amounts of low molecular weight organic acids (LMWOAs). Oxalate strongly etches fluorapatite along channels parallel to [001], forming needle like features, while exudates from Trichocomaceae induced surface rounding. We conclude that while LMWOAs are well-studied weathering agents these does not appear to be produced by fungi in response to phosphorus limiting growth conditions.
NASA Astrophysics Data System (ADS)
Huang, Shuyuan; Sun, Lumin; Zhou, Tingjin; Yuan, Dongxing; Du, Bing; Sun, Xiuwu
2018-01-01
In this study, samples of 18 wet precipitations (WPs) and 38 aerosols were collected around a coal-fired power plant (CFPP) located in Xiamen, southeast China, which was equipped with a seawater flue gas desulfurization system. Total particulate mercury (TPM) in aerosol samples, and total mercury (WP-TM), dissolved mercury (WP-DM) and particulate mercury (WP-PM) in WP samples were analyzed for the natural isotopic compositions of mercury. For the first time, both mass dependent fractionation (MDF) and mass independent fractionation of odd (odd-MIF) and even (even-MIF) isotopes of WP-DM and WP-PM were reported and discussed. Both WP-TM and TPM displayed negative MDF and slightly positive even-MIF. Negative odd-MIF was observed in TPM and WP-PM, whereas positive odd-MIF was observed in WP-TM and WP-DM. It was found that the mercury budget in WP-PM samples was mainly controlled by atmospheric particles. Potential sources of mercury in samples were identified via analysis of mercury isotopic signatures and meteorological data with the NOAA HYSPLIT model. The results showed that TPM and WP-PM in solid samples were homologous and the isotopic compositions of WP-TM depended on those of WP-DM. The ratios of Δ199Hg/Δ201Hg resulting from photochemical reactions and positive Δ200Hg values (from -0.06‰ to 0.27‰) in all samples indicated that the mercury coming from local emission of the CFPP together with long-distance transportation were the two main contributing sources.
Integration of optical and chemical parameters to improve the particulate matter characterization
NASA Astrophysics Data System (ADS)
Perrone, M. R.; Romano, S.; Genga, A.; Paladini, F.
2018-06-01
Integrating nephelometer measurements have been combined with co-located in space and time PM10 and PM1 mass concentration measurements to highlight the benefits of integrating aerosol optical properties with the chemical speciation of PM1 and PM10 samples. Inorganic ions (SO42-, NO3-, NH4+, Cl-, Na+, K+, Mg2+, and Ca2+), metals (Fe, Al, Zn, Ti, Cu, V, Mn, and Cr), and the elemental and organic carbon (EC and OC, respectively) have been monitored to characterize the chemical composition of PM1 and PM10 samples, respectively. The scattering coefficient (σp) at 450 nm, the scattering Ångström coefficient (Å) calculated at the 450-635 nm wavelength pair, and the scattering Ångström coefficient difference (ΔÅ) retrieved from nephelometer measurements have been used to characterize the optical properties of the particles at the surface. The frequency distribution of the Å daily means during the one-year monitoring campaign, performed at a southeastern Italian site, has allowed identifying three main Å variability ranges: Å ≤ 0.8, 0.8 < Å ≤ 1.2, and Å > 1.2. We found that σp and ΔÅ mean values and the mean chemical composition of the PM1 and PM10 samples varied with the Å variability range. σp and ΔÅ reached the highest (149 Mm-1) and the smallest (0.16) mean value, respectively, on the days characterized by Å > 1.2. EC, SO42-, and NH4+ mean mass percentages also reached the highest mean value on the Å > 1.2 days, representing on average 8.4, 9.8, and 4.2%, respectively, of the sampled PM10 mass and 12.4, 10.6, and 7.7%, respectively, of the PM1 mass. Conversely, σp and ΔÅ mean values were equal to 85 Mm-1 and 0.55, respectively, on the days characterized by Å ≤ 0.8 and the EC, SO42-, and NH4+ mean mass percentages reached smaller values on the Å ≤ 0.8 days, representing 4.5, 6.0, and 1.9% of the PM10 mass and 9.4, 7.3, and 5.8% of the PM1 mass, respectively. Primary and secondary OC (POC and SOC, respectively) contributions also varied with the Å variability range. POC and SOC mean mass percentages reached the highest and the smallest value, respectively, on the days characterized by Å > 1.2. Conversely, POC and SOC mean mass percentages reached the smallest and the highest value, respectively, on the days characterized by Å ≤ 0.8. It has also been shown that the PM, OC, OC + EC, POC, and SOC mass scattering cross sections varied significantly with the Å variability range, because of the Å dependence on aerosol sources and/or emission, transport, and transformation mechanisms. Therefore, it has been shown that Å daily mean values can represent a good tool to better differentiate the chemical speciation of size-fractioned PM samples.
Wang, Yanli; Yang, Wen; Han, Bin; Zhang, Wenjie; Chen, Mindong; Bai, Zhipeng
2016-02-01
Daily PM2.5 (particulate matter with an aerodynamic diameter of below 2.5 μm) mass concentrations were measured by gravimetric analysis in Chinese Research Academy of Environmental Sciences (CRAES), in the northern part of the Beijing urban area, from December 2013 to April 2015. Two pairs of Teflon (T1/T2) and Quartz (Q1/Q2) samples were obtained, for a total number of 1352 valid filters. Results showed elevated pollution in Beijing, with an annual mean PM2.5 mass concentration of 102 μg/m(3). According to the calculated PM2.5 mass concentration, 50% of our sampling days were acceptable (PM2.5<75 μg/m(3)), 30% had slight/medium pollution (75-150 μg/m(3)), and 7% had severe pollution (> 250 μg/m(3)). Sampling interruption occurred frequently for the Teflon filter group (75%) in severe pollution periods, resulting in important data being missing. Further analysis showed that high PM2.5 combined with high relative humidity (RH) gave rise to the interruptions. The seasonal variation of PM2.5 was presented, with higher monthly average mass concentrations in winter (peak value in February, 422 μg/m(3)), and lower in summer (7 μg/m(3) in June). From May to August, the typical summer period, least severe pollution events were observed, with high precipitation levels accelerating the process of wet deposition to remove PM2.5. The case of February presented the most serious pollution, with monthly averaged PM2.5 of 181 μg/m(3) and 32% of days with severe pollution. The abundance of PM2.5 in winter could be related to increased coal consumption for heating needs. Copyright © 2015. Published by Elsevier B.V.
Aerostat-Based Sampling of Emissions from Open Burning and Open Detonation of Military Ordnance
Emissions from open detonation (OD), open burning (OB), and static firing (SF) of obsolete military munitions were collected using an aerostat-lofted sampling instrument maneuvered into the plumes with remotely controlled tether winches. PM2.5, PM10, metals, volatile organic comp...
Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan
2016-01-01
To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.
NASA Astrophysics Data System (ADS)
Whitefield, P. D.; Hagen, D. E.; Lobo, P.; Miake-Lye, R. C.
2015-12-01
The Society of Automotive Engineers (SAE) Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter (nvPM) from aircraft engines (SAE 2013). The system is designed to operate in parallel with existing International Civil Aviation Organization (ICAO) Annex 16 compliant combustion gas sampling systems used for emissions certification from aircraft engines captured by conventional (Annex 16) gas sampling rakes (ICAO, 2008). The SAE E-31 committee is also working to ballot an Aerospace Recommended Practice (ARP) that will provide the methodology and system specification to measure nvPM from aircraft engines. The ARP is currently in preparation and is expected to be ready for ballot in 2015. A prototype AIR-compliant nvPM measurement system - The North American Reference System (NARS) has been built and evaluated at the MSTCOE under the joint sponsorship of the FAA, EPA and Transport Canada. It has been used to validate the performance characteristics of OEM AIR-compliant systems and is being used in engine certification type testing at OEM facilities to obtain data from a set of representative engines in the fleet. The data collected during these tests will be used by ICAO/CAEP/WG3/PMTG to develop a metric on which on the regulation for nvPM emissions will be based. This paper will review the salient features of the NARS including: (1) emissions sample transport from probe tip to the key diagnostic tools, (2) the mass and number-based diagnostic tools for nvPM mass and number concentration measurement and (3) methods employed to assess the extent of nvPM loss throughout the sampling system. This paper will conclude with a discussion of the recent results from inter-comparison studies conducted with other US - based systems that gives credence to the ARP's readiness for ballot.
Measurements of OC and EC in coarse particulate matter in the southeastern United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgerton, E.S.; Casuccio, G.S.; Saylor, R.D.
The organic carbon (OC) and elemental carbon (EC) content of filter-based, 24-hr integrated particulate matter with aerodynamic diameters between 2.5 and 10 {mu}m (PM10-2.5) was measured at two urban and two rural locations in the southeastern United States. On average, total carbon (OC + EC) comprised approximately 30% of PM10-2.5 mass at these four sites. Carbonate carbon was measured on a subset of samples from three sites and was found to be undetectable at a rural site in central Alabama, less than 2% of PM10-2.5 at an urban site in Georgia, and less than 10% of PM10-2.5 at an urban-industrialmore » site in Alabama. Manual scanning electron microscopy (SEM) and computer-controlled SEM (CCSEM) along with energy dispersive X-ray spectroscopy (EDS) were used to identify individual carbonaceous particles in a selected subset of samples collected at one rural site and one urban-industrial site in Alabama. CCSEM results showed that biological material (e.g., fungal spores, pollen, and vegetative detritus) accounted for 60-70% of the carbonaceous mass in PM10-2.5 samples with concentrations in the range of 2-16 {mu}g/m{sup 3}. Samples with higher PM10-2.5 concentrations (25-42 {mu}g/m{sup 3}) at the urban-industrial site were found by manual SEM to have significant amounts of unidentified carbonaceous material, likely originating from local industrial activities. Both filter-based OC and EC concentrations and SEM-identified biological material tended to have higher concentrations during warmer months. Upper limits for organic mass (OM) to OC ratios (OM/OC) are estimated for PM10-2.5 samples at 2.1 for urban sites and 2.6-2.7 for rural sites. 40 refs., 12 figs., 5 tabs.« less
Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan
2016-01-01
To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing. PMID:27148180
The impact of wood stove technology upgrades on indoor residential air quality
NASA Astrophysics Data System (ADS)
Allen, Ryan W.; Leckie, Sara; Millar, Gail; Brauer, Michael
2009-12-01
Fine particulate matter (PM 2.5) air pollution has been linked to adverse health impacts, and combustion sources including residential wood-burning may play an important role in some regions. Recent evidence suggests that indoor air quality may improve in homes where older, non-certified wood stoves are exchanged for lower emissions EPA-certified alternatives. As part of a wood stove exchange program in northern British Columbia, Canada, we sampled outdoor and indoor air at 15 homes during 6-day sampling sessions both before and after non-certified wood stoves were exchanged. During each sampling session two consecutive 3-day PM 2.5 samples were collected onto Teflon filters, which were weighed and analyzed for the wood smoke tracer levoglucosan. Residential PM 2.5 infiltration efficiencies ( Finf) were estimated from continuous light scattering measurements made with nephelometers, and estimates of Finf were used to calculate the outdoor- and indoor-generated contributions to indoor air. There was not a consistent relationship between stove technology and outdoor or indoor concentrations of PM 2.5 or levoglucosan. Mean Finf estimates were low and similar during pre- and post-exchange periods (0.32 ± 0.17 and 0.33 ± 0.17, respectively). Indoor sources contributed the majority (˜65%) of the indoor PM 2.5 concentrations, independent of stove technology, although low indoor-outdoor levoglucosan ratios (median ≤ 0.19) and low indoor PM 2.5-levoglucosan correlations ( r ≤ 0.19) suggested that wood smoke was not a major indoor PM 2.5 source in most of these homes. In summary, despite the potential for extensive wood stove exchange programs to reduce outdoor PM 2.5 concentrations in wood smoke-impacted communities, we did not find a consistent relationship between stove technology upgrades and indoor air quality improvements in homes where stoves were exchanged.
Makkonen, Ulla; Hellén, Heidi; Anttila, Pia; Ferm, Martin
2010-01-01
The inorganic main elements, trace elements and PAHs were determined from selected PM(1), PM(2.5) and PM(10) samples collected at the Nordic background station in Virolahti during different seasons and during the wildfire episodes in 2006. Submicron particles are those most harmful to human beings, as they are able to penetrate deep into the human respiratory system and may cause severe health effects. About 70-80%, of the toxic trace elements, like lead, cadmium, arsenic and nickel, as well as PAH compounds, were found in particles smaller than 1 microm. Furthermore, the main part of the copper, zinc, and vanadium was associated with submicron particles. In practice, all the PAHs found in PM(10) were actually in PM(2.5). For PAHs and trace elements, it is more beneficial to analyse the PM(2.5) or even the PM(1) fraction instead of PM(10), because exclusion of the large particles reduces the need for sample cleaning to minimize the matrix effects during the analysis. During the wildfire episodes, the concentrations of particles smaller than 2.5 microm, as well as those of submicron particles, increased, and also the ratio PM(1)/PM(10) increased to about 50%. On the fire days, the mean potassium concentration was higher in all particle fractions, but ammonium and nitrate concentrations rose only in particles smaller than 1.0 microm. PAH concentrations rose even to the same level as in winter.
LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD.
Koehler, Kirsten; Shapiro, Jeffrey; Sameenoi, Yupaporn; Henry, Charles; Volckens, John
2014-05-01
Human exposure to particulate matter (PM) air pollution is associated with human morbidity and mortality. The mechanisms by which PM impacts human health are unresolved, but evidence suggests that PM intake leads to cellular oxidative stress through the generation of reactive oxygen species (ROS). Therefore, reliable tools are needed for estimating the oxidant generating capacity, or oxidative load, of PM at high temporal resolution (minutes to hours). One of the most widely reported methods for assessing PM oxidative load is the dithiothreitol (DTT) assay. The traditional DTT assay utilizes filter-based PM collection in conjunction with chemical analysis to determine the oxidation rate of reduced DTT in solution with PM. However, the traditional DTT assay suffers from poor time resolution, loss of reactive species during sampling, and high limit of detection. Recently, a new DTT assay was developed that couples a Particle-Into-Liquid-Sampler with microfluidic-electrochemical detection. This 'on-line' system allows high temporal resolution monitoring of PM reactivity with improved detection limits. This study reports on a laboratory comparison of the traditional and on-line DTT approaches. An urban dust sample was aerosolized in a laboratory test chamber at three atmospherically-relevant concentrations. The on-line system gave a stronger correlation between DTT consumption rate and PM mass (R 2 = 0.69) than the traditional method (R 2 = 0.40) and increased precision at high temporal resolution, compared to the traditional method.
Ionic composition of TSP and PM 2.5 during dust storms and air pollution episodes at Xi'an, China
NASA Astrophysics Data System (ADS)
Shen, Zhenxing; Cao, Junji; Arimoto, Richard; Han, Zhiwei; Zhang, Renjian; Han, Yuemei; Liu, Suixin; Okuda, Tomoaki; Nakao, Shunsuke; Tanaka, Shigeru
TSP and PM 2.5 samples were collected at Xi'an, China during dust storms (DSs) and several types of pollution events, including haze, biomass burning, and firework displays. Aerosol mass concentrations were up to 2 times higher during the particulate matter (PM) events than on normal days (NDs), and all types of PM led to decreased visibility. Water-soluble ions (Na +, NH 4+, K +, Mg 2+, Ca 2+, F -, Cl -, NO 3-, and SO 42-). were major aerosol components during the pollution episodes, but their concentrations were lower during DSs. NH 4+, K +, F -, Cl -, NO 3-, and SO 42- were more abundant in PM 2.5 than TSP but the opposite was true for Mg 2+ and Ca 2+. PM collected on hazy days was enriched with secondary species (NH 4+, NO 3-, and SO 42) while PM from straw combustion showed high K + and Cl -. Firework displays caused increases in K + and also enrichments of NO 3- relative to SO 42-. During DSs, the concentrations of secondary aerosol components were low, but Ca 2+ was abundant. Ion balance calculations indicate that PM from haze and straw combustion was acidic while the DSs samples were alkaline and the fireworks' PM was close to neutral. Ion ratios (SO 42-/K +, NO 3-/SO 42-, and Cl -/K +) proved effective as indicators for different pollution episodes.
Datta, Saugata; Rule, Ana M; Mihalic, Jana N; Chillrud, Steve N; Bostick, Benjamin C.; Ramos-Bonilla, Juan P; Han, Inkyu; Polyak, Lisa M; Geyh, Alison S; Breysse, Patrick N
2012-01-01
The purpose of this study is to characterize manganese oxidation states and speciation in airborne particulate matter (PM), and describe how these potentially important determinants of PM toxicity vary by location. Ambient PM samples were collected from five counties across the US using a high volume sequential cyclone system that collects PM in dry bulk form segregated into “coarse” and “fine” size fractions. The fine fraction was analyzed for this study. Analyses included total Mn using ICP-MS, and characterization of oxidation states and speciation using X-ray Absorption Spectroscopy (XAS). XAS spectra of all samples and ten standard compounds of Mn were obtained at the National Synchrotron Light Source. XAS data was analyzed using Linear Combination Fitting (LCF). Results of the LCF analysis describe differences in composition between samples. Mn(II) acetate and Mn(II) oxide are present in all samples, while Mn(II) carbonate and Mn(IV) oxide are absent. To the best of our knowledge, this is the first paper to characterize Mn composition of ambient PM and examine differences between urban sites in the US. Differences in oxidation state and composition indicate regional variations in sources and atmospheric chemistry that may help explain differences in health effects identified in epidemiological studies. PMID:22309075
MitoQ10 induces adipogenesis and oxidative metabolism in myotube cultures.
Nierobisz, Lidia S; McFarland, Douglas C; Mozdziak, Paul E
2011-02-01
Coenzyme Q(10) (CoQ(10)) plays an essential role in determination of mitochondrial membrane potential and substrate utilization in all metabolically important tissues. The objective of the present study was to investigate the effect of Coenzyme Q analog (MitoQ(10)) on oxidative phenotype and adipogenesis in myotubes derived from fast-glycolytic Pectoralis major (PM) and slow-oxidative Anterior latissimus dorsi (ALD) muscles of the turkey (Meleagris gallopavo). The myotubes were subjected to the following treatments: fusion media alone, fusion media+125 nM MitoQ(10), and 500 nM MitoQ(10). Lipid accumulation was visualized by Oil Red O staining and quantified by measuring optical density of extracted lipid at 500 nm. Quantitative Real-Time PCR was utilized to quantify the expression levels of peroxisome proliferator-activated receptor (PPARγ) and PPARγ co-activator-1α (PGC-1α). MitoQ(10) treatment resulted in the highest (P<0.05) lipid accumulation in PM myotubes. MitoQ(10) up-regulated genes controlling oxidative mitochondrial biogenesis and adipogenesis in PM myotube cultures. In contrast, MitoQ(10) had a limited effect on adipogenesis and down-regulated oxidative metabolism in ALD myotube cultures. Differential response to MitoQ(10) treatment may be dependent on the cellular redox state. MitoQ(10) likely controls a range of metabolic pathways through its differential regulation of gene expression levels in myotubes derived from fast-glycolytic and slow-oxidative muscles. Published by Elsevier Inc.
Characterization and Cytotoxicity of PM<0.2, PM0.2–2.5 and PM2.5–10 around MSWI in Shanghai, China
Cao, Lingling; Zeng, Jianrong; Liu, Ke; Bao, Liangman; Li, Yan
2015-01-01
Background: The potential impact of municipal solid waste incineration (MSWI), which is an anthropogenic source of aerosol emissions, is of great public health concern. This study investigated the characterization and cytotoxic effects of ambient ultrafine particles (PM<0.2), fine particles (PM0.2–2.5) and coarse particles (PM2.5–10) collected around a municipal solid waste incineration (MSWI) plant in the Pudong district of Shanghai. Methods: Mass concentrations of trace elements in particulate matter (PM) samples were determined using ICP-MS (Inductively Coupled Plasma Mass Spectrometry). The cytotoxicity of sampled atmospheric PM was evaluated by cell viability and reactive oxygen species (ROS) levels in A549 cells. Result: The mass percentage of PM0.2–2.5 accounted for 72.91% of the total mass of PM. Crustal metals (Mg, Al, and Ti) were abundant in the coarse particles, while the anthropogenic elements (V, Ni, Cu, Zn, Cd, and Pb) were dominant in the fine particles. The enrichment factors of Zn, Cd and Pb in the fine and ultrafine particles were extremely high (>100). The cytotoxicity of the size-resolved particles was in the order of coarse particles < fine particles < ultrafine particles. Conclusions: Fine particles dominated the MSWI ambient particles. Emissions from the MSWI could bring contamination of anthropogenic elements (Zn, Cd and Pb) into ambient environment. The PM around the MSWI plant displayed an additive toxic effect, and the ultrafine and fine particles possessed higher biological toxicity than the coarse particles. PMID:25985309
NASA Astrophysics Data System (ADS)
Lai, Senchao; Zhao, Yan; Ding, Aijun; Zhang, Yingyi; Song, Tianli; Zheng, Junyu; Ho, Kin Fai; Lee, Shun-cheng; Zhong, Liuju
2016-01-01
A 1-year campaign was conducted in the rural area of Guangzhou, a megacity in southern China, to collect fine particulate matter (PM2.5) from March 2012 to February 2013. The mass concentrations of PM2.5 and the major chemical components including 6 water-soluble ions, organic carbon (OC), elemental carbon (EC), and 13 additional elements were measured. The annual average concentration of PM2.5 was 44.2 ± 25.8 μg/m3. Sulfate was the most dominant component, accounting for 28.6% of PM2.5, followed by organic matter (21.9%). Both sea salt and crustal material accounted for only a small fraction of PM2.5 (< 5%). Seasonal enhancement of PM2.5 was observed in autumn 2012, especially with high-PM2.5 events (more than 100 μg/m3) in October. The backward Lagrangian particle dispersion modeling (LPDM) and the cluster analysis of the back-trajectories indicate that the northern area is an important source region of long-range transport. An enhancement of PM2.5 as well as sulfate, OC, and EC was observed in the samples with the influence of northern air masses. However, the footprint retroplume of the samples shows that the sources in the Pearl River Delta Region should also be considered, especially secondary aerosol formation and biomass/biofuel burning. Two high-PM2.5 case studies show that both local and long-range transport can play important roles in the PM2.5 elevation episode.
2013-09-05
Jason Townsend, NASA's Deputy Social Media Manager, kicks off the Lunar Atmosphere and Dust Environment Explorer (LADEE) NASA Social at Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
2014-04-14
CAPE CANAVERAL, Fla. - Social media representatives photograph the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson
2014-04-14
CAPE CANAVERAL, Fla. - Social media representatives photograph the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson
2014-04-14
CAPE CANAVERAL, Fla. - Social media representatives photograph the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson
USDA-ARS?s Scientific Manuscript database
This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additi...
Preliminary evaluation of AERMOD using site specific stack and ambient sampling data
USDA-ARS?s Scientific Manuscript database
A cotton ginning industry-supported project was initiated in 2008 to develop a robust particulate matter (PM) dispersion modeling dataset that could be used for evaluating current and future PM dispersion models. This paper compares total PM data collected by the industry-supported study at one gin ...
40 CFR 1065.290 - PM gravimetric balance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false PM gravimetric balance. 1065.290... balance. (a) Application. Use a balance to weigh net PM on a sample medium for laboratory testing. (b) Component requirements. We recommend that you use a balance that meets the specifications in Table 1 of...
40 CFR 1065.290 - PM gravimetric balance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false PM gravimetric balance. 1065.290... balance. (a) Application. Use a balance to weigh net PM on a sample medium for laboratory testing. (b) Component requirements. We recommend that you use a balance that meets the specifications in Table 1 of...
Exposure to air pollution-derived particulate matter (PM) causes adverse cardiovascular health outcomes, with increasing evidence implicating soluble components of PM; however, the enormous number of unique PM samples from different air sheds far exceeds the capacity of conventio...
Particulate emissions calculations from fall tillage operations using point and remote sensors.
Moore, Kori D; Wojcik, Michael D; Martin, Randal S; Marchant, Christian C; Bingham, Gail E; Pfeiffer, Richard L; Prueger, John H; Hatfield, Jerry L
2013-07-01
Soil preparation for agricultural crops produces aerosols that may significantly contribute to seasonal atmospheric particulate matter (PM). Efforts to reduce PM emissions from tillage through a variety of conservation management practices (CMPs) have been made, but the reductions from many of these practices have not been measured in the field. A study was conducted in California's San Joaquin Valley to quantify emissions reductions from fall tillage CMP. Emissions were measured from conventional tillage methods and from a "combined operations" CMP, which combines several implements to reduce tractor passes. Measurements were made of soil moisture, bulk density, meteorological profiles, filter-based total suspended PM (TSP), concentrations of PM with an equivalent aerodynamic diameter ≤10 μm (PM) and PM with an equivalent aerodynamic diameter ≤2.5 μm (PM), and aerosol size distribution. A mass-calibrated, scanning, three-wavelength light detection and ranging (LIDAR) procedure estimated PM through a series of algorithms. Emissions were calculated via inverse modeling with mass concentration measurements and applying a mass balance to LIDAR data. Inverse modeling emission estimates were higher, often with statistically significant differences. Derived PM emissions for conventional operations generally agree with literature values. Sampling irregularities with a few filter-based samples prevented calculation of a complete set of emissions through inverse modeling; however, the LIDAR-based emissions dataset was complete. The CMP control effectiveness was calculated based on LIDAR-derived emissions to be 29 ± 2%, 60 ± 1%, and 25 ± 1% for PM, PM, and TSP size fractions, respectively. Implementation of this CMP provides an effective method for the reduction of PM emissions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Zuo, JinXing; Ji, Wei; Ben, YuJie; Hassan, Muhammad Azher; Fan, WenHong; Bates, Liam; Dong, ZhaoMin
2018-05-19
Due to time- and expense- consuming of conventional indoor PM 2.5 (particulate matter with aerodynamic diameter of less than 2.5 μm) sampling, the sample size in previous studies was generally small, which leaded to high heterogeneity in indoor PM 2.5 exposure assessment. Based on 4403 indoor air monitors in Beijing, this study evaluated indoor PM 2.5 exposure from 15th March 2016 to 14th March 2017. Indoor PM 2.5 concentration in Beijing was estimated to be 38.6 ± 18.4 μg/m 3 . Specifically, the concentration in non-heating season was 34.9 ± 15.8 μg/m 3 , which was 24% lower than that in heating season (46.1 ± 21.2 μg/m 3 ). A significant correlation between indoor and ambient PM 2.5 (p < 0.05) was evident with an infiltration factor of 0.21, and the ambient PM 2.5 contributed approximately 52% and 42% to indoor PM 2.5 for non-heating and heating seasons, respectively. Meanwhile, the mean indoor/outdoor (I/O) ratio was estimated to be 0.73 ± 0.54. Finally, the adjusted PM 2.5 exposure level integrating the indoor and outdoor impact was calculated to be 46.8 ± 27.4 μg/m 3 , which was approximately 42% lower than estimation only relied on ambient PM 2.5 concentration. This study is the first attempt to employ big data from commercial air monitors to evaluate indoor PM 2.5 exposure and risk in Beijing, which may be instrumental to indoor PM 2.5 pollution control. Copyright © 2018 Elsevier Ltd. All rights reserved.
Psychometric properties of the Triarchic Psychopathy Measure: An item response theory approach.
Shou, Yiyun; Sellbom, Martin; Xu, Jing
2018-05-01
There is cumulative evidence for the cross-cultural validity of the Triarchic Psychopathy Measure (TriPM; Patrick, 2010) among non-Western populations. Recent studies using correlational and regression analyses show promising construct validity of the TriPM in Chinese samples. However, little is known about the efficiency of items in TriPM in assessing the proposed latent traits. The current study evaluated the psychometric properties of the Chinese TriPM at the item level using item response theory analyses. It also examined the measurement invariance of the TriPM between the Chinese and the U.S. student samples by applying differential item functioning analyses under the item response theory framework. The results supported the unidimensional nature of the Disinhibition and Meanness scales. Both scales had a greater level of precision in the respective underlying constructs at the positive ends. The two scales, however, had several items that were weakly associated with their respective latent traits in the Chinese student sample. Boldness, on the other hand, was found to be multidimensional, and reflected a more normally distributed range of variation. The examination of measurement bias via differential item functioning analyses revealed that a number of items of the TriPM were not equivalent across the Chinese and the U.S. Some modification and adaptation of items might be considered for improving the precision of the TriPM for Chinese participants. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Tunno, Brett J; Dalton, Rebecca; Michanowicz, Drew R; Shmool, Jessie L C; Kinnee, Ellen; Tripathy, Sheila; Cambal, Leah; Clougherty, Jane E
2016-01-01
Health effects of fine particulate matter (PM2.5) vary by chemical composition, and composition can help to identify key PM2.5 sources across urban areas. Further, this intra-urban spatial variation in concentrations and composition may vary with meteorological conditions (e.g., mixing height). Accordingly, we hypothesized that spatial sampling during atmospheric inversions would help to better identify localized source effects, and reveal more distinct spatial patterns in key constituents. We designed a 2-year monitoring campaign to capture fine-scale intra-urban variability in PM2.5 composition across Pittsburgh, PA, and compared both spatial patterns and source effects during “frequent inversion” hours vs 24-h weeklong averages. Using spatially distributed programmable monitors, and a geographic information systems (GIS)-based design, we collected PM2.5 samples across 37 sampling locations per year to capture variation in local pollution sources (e.g., proximity to industry, traffic density) and terrain (e.g., elevation). We used inductively coupled plasma mass spectrometry (ICP-MS) to determine elemental composition, and unconstrained factor analysis to identify source suites by sampling scheme and season. We examined spatial patterning in source factors using land use regression (LUR), wherein GIS-based source indicators served to corroborate factor interpretations. Under both summer sampling regimes, and for winter inversion-focused sampling, we identified six source factors, characterized by tracers associated with brake and tire wear, steel-making, soil and road dust, coal, diesel exhaust, and vehicular emissions. For winter 24-h samples, four factors suggested traffic/fuel oil, traffic emissions, coal/industry, and steel-making sources. In LURs, as hypothesized, GIS-based source terms better explained spatial variability in inversion-focused samples, including a greater contribution from roadway, steel, and coal-related sources. Factor analysis produced source-related constituent suites under both sampling designs, though factors were more distinct under inversion-focused sampling. PMID:26507005
NASA Astrophysics Data System (ADS)
Cerro, Jose Carlos; Pey, Jorge; Bujosa, Carles; Caballero, Sandra; Alastuey, Andres; Sicard, Michael; Artiñano, Begoña; Querol, Xavier
2013-04-01
In the context of the ChArMEx (The Chemistry-Aerosol Mediterranean Experiment, https://charmex.lsce.ipsl.fr) initiative, a 3-year study over a regional background environment (Can Llompart, CLP) in Mallorca has been conducted. Ground-based PM mass concentrations, gaseous pollutants and meteorological parameters were continuously registered from 2010 to 2012. Since the beginning of the campaign, PM10 daily samples for chemical determinations were obtained every 4 days, and dry and wet deposition samples were collected every week. Moreover, additional instruments (condensation particle counter, multi-angle absorption photometer, airpointer, sequential high and low volume samplers) were deployed during intensive filed campaigns in 2011 and 2012, as well as the sampling frequency was intensified. In the laboratory, PM samples were analyzed for inorganic compounds, and organic and elemental carbon following different approaches. In addition, n-alkanes, iso-alkanes, antiso-alkanes, levoglucosan, alkanoic acids and cholesterol were determined by GC-MS chromatography in a selection of 30 samples. Mean PM10, PM2.5 and PM1 concentrations in the period 2010-2012 reached 17, 11, and 8 µg/m3 respectively. Mass concentrations displayed marked seasonal trends, with much higher background levels in summer due to stagnant conditions over the western Mediterranean and increased frequency of Saharan dust events. Likewise, diverse-intensity peaks of coarse PM due to African dust inputs were observed along the year. On average, African dust in PM10 accounted for 1.0-1.5 µg/m3. Sporadic pollution events, characterized by most of the particles in the fine mode, were related to the transport of anthropogenic polluted air masses from central and eastern Europe. Wet and dry atmospheric deposition samples are being analyzed to quantify the deposition fluxes for different soluble and insoluble compounds. On average, PM10 composition is made up of organic matter (23%), mineral components (17%), sulphate (14%), sea spray (10%), nitrate (7%), NH4 (7%) and elemental carbon (1%), with 21% of the mass unexplained (though as being principally water). Intensive sampling campaigns were positive to assess the concentrations of black carbon and number of ultrafine particles and their time-variability. Accordingly, black carbon followed a similar pattern to that of PM1 but also displayed fresh anthropogenic inputs from road traffic. Number concentration peaked frequently at midday because of new-formation of particles from photochemical reactions, occasionally at hourly values above 100.000 particles per cm3. A preliminary source exploration by means of Principal Component Analysis has been done with the 30-samples group characterized more in detail in terms of chemical determinations. This first examination encountered 6 sources: mineral, sea spray, biomass burning, regional pollution, industry and biogenic emissions. Acknowledgements This work was supported by the Spanish Ministry of Science and Innovation and FEDER funds (CGL2011-13580-E/CLI). ENDESA, through AMBILINE, has been taking care of the instruments most of the time, has provided all the necessary support for the campaign, and has provided data on gaseous pollutants and meteorological parameters.
NASA Astrophysics Data System (ADS)
Mantas, E.; Remoundaki, E.; Halari, I.; Kassomenos, P.; Theodosi, C.; Hatzikioseyian, A.; Mihalopoulos, N.
2014-09-01
A systematic monitoring of PM2.5 was carried out during a period of three years (from February 2010 to April 2013) at an urban site, at the National Technical University of Athens campus. Two types of 24-h PM2.5 samples have been collected: 271 samples on PTFE and 116 samples on quartz filters. Daily PM2.5 concentrations were determined for both types of samples. Total sulfur, crustal origin elements and elements of a major crustal component (Al, Si, Fe, Ca, K, Mg, Ti) trace elements (Zn, Pb, Cu, Ni, P, V, Cr, Mn) and water soluble ions (Cl-, NO3-, SO42-, Na+, K+, NH4+, Ca2+, Mg2+) were determined on the PTFE samples. Organic carbon (OC), elemental carbon (EC) and water soluble ions were determined on the quartz samples. For the mass closure six components were considered: Secondary Inorganic Aerosol (SIA), Organic Matter (OM), Elemental Carbon (EC), Dust, Mineral anthropogenic component (MIN) and Sea Salt (SS). SIA and OM contributed in the mass of PM2.5 almost equally: 30-36% and 30% respectively. EC, SS and MIN accounted for 5, 4 and 3% respectively of the total PM2.5 mass. Dust accounted for about 3-5% in absence of dust transport event and reached a much higher percentage in case of dust transport event. These contributions justify at least 80% of the PM2.5 mass. Source apportionment analysis has been performed by Positive Matrix Factorization. The combination of the PMF results obtained by both data sets lead to the definition of six factors: 1. SO42-, NH4+, OC (industrial/regional sources, secondary aerosol) 2. EC, OC, K and trace metals (traffic and heating by biomass burning, locally emitted aerosol). 3. Ca, EC, OC and trace metals (urban-resuspended road dust reflecting exhaust emissions), 4. Secondary nitrates 5. Na, Cl (marine source) 6. Si, Al, Ti, Ca, Fe (Dust transported from Sahara). These factors reflect not only main sources contributions but also underline the key role of atmospheric dynamics and aerosol ageing processes in this Mediterranean environment.
Zhang, Jiangang; Zhang, Li; Li, Ruijin; Hu, Di; Ma, Nengxuan; Shuang, Shaomin; Cai, Zongwei; Dong, Chuan
2015-03-07
A simple and rapid method that uses synthesized magnetic graphene composites as both an adsorbent for enrichment and as a matrix in MALDI-TOF MS analysis was developed for the detection of nitropolycyclic hydrocarbons (nitro-PAHs) in PM2.5 samples. Three nitro-PAHs were detected down to sub pg μL(-1) levels based on calculations from an instrumental signal-to-noise better than 3, which shows the feasibility of using the new materials in MALDI-TOF MS as a potential powerful analytical approach for the analysis of nitro-PAHs in PM2.5 samples.
Gao, Jiajia; Wang, Kun; Wang, Yong; Liu, Shuhan; Zhu, Chuanyong; Hao, Jiming; Liu, Huanjia; Hua, Shenbing; Tian, Hezhong
2018-02-01
PM 2.5 and its major chemical compositions were sampled and analyzed in January, April, July and October of 2014 at Beijing (BJ), Tianjin (TJ), Langfang (LF) and Baoding (BD) in order to probe the temporal and spatial characteristics as well as source apportionment of PM 2.5 in the Beijing-Tianjin-Hebei (BTH) region. The results showed that PM 2.5 pollution was severe in the BTH region. The average annual concentrations of PM 2.5 at four sampling sites were in the range of 126-180 μg/m 3 , with more than 95% of sampling days exceeding 35 μg/m 3 , the limit ceiling of average annual concentration of PM 2.5 regulated in the Chinese National Ambient Air Quality Standards (GB3095-2012). Additionally, concentrations of PM 2.5 and its major chemical species were seasonally dependent and demonstrated spatially similar variation characteristics in the BTH region. Concentration of toxic heavy metals, such as As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, Se, and Zn, were higher in winter and autumn. Secondary inorganic ions (SO 4 2- , NO 3 - , and NH 4 + ) were the three-major water-soluble inorganic ions (WSIIs) of PM 2.5 and their mass ratios to PM 2.5 were higher in summer and autumn. The organic carbon (OC) and elemental carbon (EC) concentrations were lower in spring and summer than in autumn and winter. Five factors were selected in Positive Matrix Factorization (PMF) model analysis, and the results showed that PM 2.5 pollution was dominated by vehicle emissions in Beijing, combustion emissions including coal burning and biomass combustion in Langfang and Baoding, and soil and construction dust emissions in Tianjin, respectively. The air mass that were derived from the south and southeast local areas around BTH regions reflected the features of short-distant and small-scale air transport. Shandong, Henan, and Hebei were identified the major potential sources-areas of secondary aerosol emissions to PM 2.5 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemical profiling of PM10 from urban road dust.
Alves, C A; Evtyugina, M; Vicente, A M P; Vicente, E D; Nunes, T V; Silva, P M A; Duarte, M A C; Pio, C A; Amato, F; Querol, X
2018-09-01
Road dust resuspension is one of the main sources of particulate matter with impacts on air quality, health and climate. With the aim of characterising the thoracic fraction, a portable resuspension chamber was used to collect road dust from five main roads in Oporto and an urban tunnel in Braga, north of Portugal. The PM 10 samples were analysed for: i) carbonates by acidification and quantification of the evolved CO 2 , ii) carbonaceous content (OC and EC) by a thermo-optical technique, iii) elemental composition by ICP-MS and ICP-AES after acid digestion, and iv) organic speciation by GC-MS. Dust loadings of 0.48±0.39mgPM 10 m -2 were obtained for asphalt paved roads. A much higher mean value was achieved in a cobbled pavement (50mgPM 10 m -2 ). In general, carbonates were not detected in PM 10 . OC and EC accounted for PM 10 mass fractions up to 11% and 5%, respectively. Metal oxides accounted for 29±7.5% of the PM 10 mass from the asphalt paved roads and 73% in samples from the cobbled street. Crustal and anthropogenic elements, associated with tyre and brake wear, dominated the inorganic fraction. PM 10 comprised hundreds of organic constituents, including hopanoids, n-alkanes and other aliphatics, polycyclic aromatic hydrocarbons (PAH), alcohols, sterols, various types of acids, glycerol derivatives, lactones, sugars and derivatives, phenolic compounds and plasticizers. In samples from the cobbled street, these organic classes represented only 439μgg -1 PM 10 , while for other pavements mass fractions up to 65mgg -1 PM 10 were obtained. Except for the cobbled street, on average, about 40% of the analysed organic fraction was composed of plasticizers. Although the risk via inhalation of PAH was found to be insignificant, the PM 10 from some roads can contribute to an estimated excess of 332 to 2183 per million new cancer cases in adults exposed via ingestion and dermal contact. Copyright © 2018 Elsevier B.V. All rights reserved.
Hinwood, Andrea; Callan, Anna C; Heyworth, Jane; McCafferty, Peter; Sly, Peter D
2014-08-01
There has been limited study of children's personal exposure to PM10 and associated metals in rural and iron ore mining activity areas where PM10 concentrations can be very high. We undertook a small study of 70 children where 13 children were recruited in an area of iron ore mining processing and shipping, 15 children from an area in the same region with no mining activities, and 42 children in an urban area. Each child provided a 24h personal exposure PM10 sample, a first morning void urine sample, a hair sample, time activity diary, and self administered questionnaire. Children's 24h personal PM10 concentrations were low (median of 28 μg m(-3) in the mining area; 48 μg m(-3) in the rural area and 45 μg m(-3) in the urban area) with corresponding outdoor PM10 concentrations also low. Some very high personal PM10 concentrations were recorded for individuals (>300 μg m(-3)) with the highest concentrations recorded in the mining and rural areas in the dry season. PM10 concentrations were highly variable. Hair aluminium, cadmium and manganese concentrations were higher in the iron ore activity area, while hair mercury, copper and nickel concentrations were higher in the urban area. Factors such as season and ventilation appear to be important but this study lacked power to confirm this. These results need to be confirmed by a larger study and the potential for absorption of the metals needs to be established along with the factors that increase exposures and the potential for health risks arising from exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Deng, W. J.; Louie, P. K. K.; Liu, W. K.; Bi, X. H.; Fu, J. M.; Wong, M. H.
Twenty-nine air samples of total suspended particles (TSP, particles less than 30-60 μm) and thirty samples of particles with aerodynamic diameter smaller than 2.5 μm (PM 2.5) were collected at Guiyu, an electronic waste (e-waste) recycling site in southeast China from 16 August 2004 to 17 September 2004. The results showed that mass concentrations contained in TSP and PM 2.5 were 124±44.1 and 62.12±20.5 μg m -3, respectively. The total sum of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) associated with TSP and PM 2.5 ranged from 40.0 to 347 and 22.7 to 263 ng m -3, respectively. Five-ring and six-ring PAHs accounted for 73% of total PAHs. The average concentration of benzo(a) pyrene was 2-6 times higher than in other Asian cities. Concentrations of Cr, Cu and Zn in PM 2.5 of Guiyu were 4-33 times higher than in other Asian countries. In general, there were significant correlations between concentrations of individual contaminants in TSP with PM 2.5 (i.e. PAHs, Cd, Cr, Cu, Pb, Zn, Mn except Ni and As). The high concentrations of both PAHs and heavy metals in air of Guiyu may impose a serious environmental and health concern. Cytotoxicity of the extract of TSP and PM 2.5 of ten 24 h samples collected against human promonocytic leukemia cell line U937 (ATCC 1593.2) was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity assay. The results showed that under the same concentrations of extract, PM 2.5 cytotoxicity was 2-4 times higher than TSP.
Cozzi, F; Adami, G; Barbieri, P; Reisenhofer, E; Bovenzi, M
2008-09-01
The aim of this study was to measure the concentration of some metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Ti) in PM(10) samples collected in one urban and one industrial site and to assess that PM(10) total mass measurement may be not sufficient as air quality index due to its complex composition. Metals were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and differential pulsed anodic stripping voltammetry (DPASV). The measured concentrations were used to calculate the content of metals in the PM(10) total mass, and to estimate the enrichment factors and the correlations between PM(10), metal concentrations and meteorological data for the two sites. The mean PM10 concentration during the sampling period in the urban site exceeded the annual European Union (EU) standard (40 microg/m(3)) and, for some sampling days, the daily EU standard (50 microg/m(3)) was also exceeded. In opposite, both EU standards were never exceeded in the industrial site. The overall metal content was nearly double in the industrial site compared to the urban one, and the mean Ni concentration exceeded the EU annual limit value (10 ng/m(3)). The metals with the highest enrichment factor were Cd, Cu, Ni and Pb for both sites, suggesting a dominant anthropogenic source for these metals. Metal concentrations were very low and typical of rural background during Christmas holidays, when factories were closed. PM(10) total mass measurement is not a sufficient air quality index since the metal content of PM(10) is not related to its total mass, especially in sites with industrial activities. This measurement should be associated with the analysis of toxic metals.
Radiocarbon (14C) measurements performed on PM-2.5 samples collected near Nashville, TN from June 21 to July 13, 1999, showed high levels of modern carbon, ranging from 56 to 80% of the total carbon in the samples. Radiocarbon measurements performed on dichloromethane extracts of...
DETERMINATION OF THE ORGANIC MASS TO ORGANIC CARBON RATIO IN IMPROVE SAMPLES. (R831086)
The ratio of organic mass (OM) to organic carbon (OC) in PM2.5 aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM2.5 mass and chemical constituents...
Jalava, Pasi I; Salonen, Raimo O; Hälinen, Arja I; Penttinen, Piia; Pennanen, Arto S; Sillanpää, Markus; Sandell, Erik; Hillamo, Risto; Hirvonen, Maija-Riitta
2006-09-15
The impact of long-range transport (LRT) episodes of wildfire smoke on the inflammogenic and cytotoxic activity of urban air particles was investigated in the mouse RAW 264.7 macrophages. The particles were sampled in four size ranges using a modified Harvard high-volume cascade impactor, and the samples were chemically characterized for identification of different emission sources. The particulate mass concentration in the accumulation size range (PM(1-0.2)) was highly increased during two LRT episodes, but the contents of total and genotoxic polycyclic aromatic hydrocarbons (PAH) in collected particulate samples were only 10-25% of those in the seasonal average sample. The ability of coarse (PM(10-2.5)), intermodal size range (PM(2.5-1)), PM(1-0.2) and ultrafine (PM(0.2)) particles to cause cytokine production (TNFalpha, IL-6, MIP-2) reduced along with smaller particle size, but the size range had a much smaller impact on induced nitric oxide (NO) production and cytotoxicity or apoptosis. The aerosol particles collected during LRT episodes had a substantially lower activity in cytokine production than the corresponding particles of the seasonal average period, which is suggested to be due to chemical transformation of the organic fraction during aging. However, the episode events were associated with enhanced inflammogenic and cytotoxic activities per inhaled cubic meter of air due to the greatly increased particulate mass concentration in the accumulation size range, which may have public health implications.
NASA Astrophysics Data System (ADS)
Ali, S.; Rani, A. M. A.; Altaf, K.; Baig, Z.
2018-04-01
Powder Metallurgy (P/M) is one of the continually evolving technologies used for producing metal materials of various sizes and shapes. However, some P/M materials have limited use in engineering for their performance deficiency including fully dense components. AISI 316L Stainless Steel (SS) is one of the promising materials used in P/M that combines outstanding corrosion resistance, strength and ductility for numerous applications. It is important to analyze the material composition along with the processing conditions that lead to a superior behaviour of the parts manufactured with P/M technique. This research investigates the effect of Boron addition on the compactibility, densification, sintering characteristics and microhardness of 316L SS parts produced with P/M. In this study, 0.25% Boron was added to the 316L Stainless Steel matrix to study the increase in densification of the 316L SS samples. The samples were made at different compaction pressures ranging from 100 MPa to 600 MPa and sintered in Nitrogen atmosphere at a temperature of 1200°C. The effect of compaction pressure and sintering temperature and atmosphere on the density and microhardness was evaluated. The microstructure of the samples was examined by optical microscope and microhardness was found using Vickers hardness machine. Results of the study showed that sintered samples with Boron addition exhibited high densification with increase in microhardness as compared to pure 316L SS sintered samples.
Nucleic acid detection using BRET-beacons based on bioluminescent protein-DNA hybrids.
Engelen, Wouter; van de Wiel, Kayleigh M; Meijer, Lenny H H; Saha, Bedabrata; Merkx, Maarten
2017-03-02
Bioluminescent molecular beacons have been developed using a modular design approach that relies on BRET between the bright luciferase NanoLuc and a Cy3 acceptor. While classical molecular beacons are hampered by background fluorescence and scattering, these BRET-beacons allow detection of low pM concentrations of nucleic acids directly in complex media.
Richards, John R; Brozell, Todd T; Rea, Charles; Boraston, Geoff; Hayden, John
2009-11-01
The California Construction and Industrial Minerals Association and the National Stone, Sand, & Gravel Association have sponsored tests at three sand and gravel plants in California to compile crystalline silica emission factors for particulate matter (PM) of aerodynamic diameter of 4 microm or less (PM4) and ambient concentration data. This information is needed by industrial facilities to evaluate compliance with the Chronic Reference Exposure Level (REL) for ambient crystalline silica adopted in 2005 by the California Office of Environmental Health Hazard Assessment. The REL applies to PM4 respirable PM. Air Control Techniques, P.C. sampled for PM4 crystalline silica using a conventional sampler for PM of aerodynamic diameter of 2.5 microm or less (PM2.5), which met the requirements of 40 Code of Federal Regulations Part 50, Appendix L. The sample flow rate was adjusted to modify the 50% cut size to 4 microm instead of 2.5 microm. The filter was also changed to allow for crystalline silica analyses using National Institute for Occupational Safety and Health (NIOSH) Method 7500. The particle size-capture efficiency curve for the modified Appendix L instrument closely matched the performance curve of NIOSH Method 0600 for PM4 crystalline silica and provided a minimum detection limit well below the levels attainable with NIOSH Method 0600. The results of the tests indicate that PM4 crystalline silica emissions range from 0.000006 to 0.000110 lb/t for screening operations, tertiary crushers, and conveyor transfer points. The PM4 crystalline silica emission factors were proportional to the crystalline silica content of the material handled in the process equipment. Measured ambient concentrations ranged from 0 (below detectable limit) to 2.8 microg/m3. All values measured above 2 microg/m3 were at locations upwind of the facilities being tested. The ambient PM4 crystalline silica concentrations measured during this study were below the California REL of 3 microg/m3. The measured ambient concentrations in the PM4 size range are consistent with previously published ambient crystalline silica data applicable to the PM2.5 and PM of aerodynamic diameter of 10 microm or less (PM10) size ranges.
SOURCE SAMPLING FINE PARTICULATE MATTER--INSTITUTIONAL OIL-FIRED BOILER
EPA seeks to understand the correlation between ambient fine PM and adverse human health effects, and there are no reliable emission factors to use for estimating PM2.5 or NH3. The most common source of directly emitted PM2.5 is incomplete combustion of fossil or biomass fuels. M...
INDOOR-OUTDOOR-PERSONAL RELATIONSHIPS OF SELECTED FINE PARTICLE TRACE ELEMENTS IN SEATTLE, WA
The overall goal of this work is to better understand not only the sources of outdoor PM but also the sources that contribute to personal PM exposures. This paper summarizes the results of x-ray fluorenscence (XRF) analysis on 24-hr PM2.5 samples collected both inside and outs...
CHARACTERIZATION OF FINE PARTICULATE MATTER PRODUCED BY COMBUSTION OF RESIDUAL FUEL OIL
Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than (PM2.5) and greater (PM2.5+) that 2.5 micrometers in diameter. However, ex...
Receptor modelling of boreal wildfire associated PM2.5 in Halifax, Nova Scotia, Canada
NASA Astrophysics Data System (ADS)
Gibson, Mark D.; Kuchta, James; Chisholm, Lucy; Duck, Tom; Hopper, Jason; Beauchamp, Stephen; Waugh, David; King, Gavin; Pierce, Jeffrey; Li, Zhengyan; Leaitch, Richard; Ward, Tony J.; Palmer, Paul I.
2013-04-01
During the summer of 2011, 42 days of contiguous PM2.5 filter samples were collected in Halifax, Nova Scotia as part of an international study (BORTAS) to study boreal biomass burning plumes as they travel across Canada towards the Atlantic. This international study was led by the University of Edinburgh in collaboration with partners in North America and Europe. The aim of the PM2.5 filter sampling was to apportion the source contribution to the total PM2.5 mass concentration in Halifax for the purposes of BORTAS. Sampling was conducted on the roof of a Dalhousie University building at a height of 15 m. The building is located in a residential area of Halifax. Continuous black carbon (BC) was measured using a Magee AE-42 aethalometer. Continuous PM1.0 associated organic carbon was measured using an Aerodyne, Aerosol Chemical Speciation Monitor. Daily teflon filter samples were collected for the determination of fine (PM2.5) and coarse (PM2.5-10) particulate mass. An additional, daily, nylon filter was used for the determination of PM2.5 cations and anions by IC. The PM2.5 teflon filter was analysed for 33 metals by XRF and 10 trace metals by ICP-MS. A quartz filter was analysed for the biomass burning marker levoglucosan by GC-MS following derivatization. Excellent agreement (R2 = 0.88) was observed between continuous and filter based measurements with a gradient of 2.76. Median (min:max) fine and coarse PM mass concentrations were found to be 3.9 (0.08:13.7) and 8.5 (0.6:24.9) μg-m3 respectively. Median (min:max) continuous BC = 0.27 (0.009:3.20); SO4 = 0.10 (0:2.0); NO3 = 0.033 (0:0.45); OC = 0.80 (0:14.6); NH4 = 0.054 (0:0.79); Cl = 0.002 (0:0.09) μg-m3 respectively. Receptor modelling was conducted using two methods, USEPA Positive Matrix Factorization and USEPA Chemical Mass Balance. The PMF results showed percent source contribution from biomass burning in Halifax to be 8.0%, vehicles 9.9%, ship emissions 6.0%, surficial material 11.9%, long-range secondary ions 64.1%, sea salt 0.1%. A comparison of PMF and CMB model output will be presented. These data provide insight into the source contribution of boreal wildfire plumes to surface PM2.5 mass in Halifax.
NASA Astrophysics Data System (ADS)
Gibson, Mark D.; Kuchta, James; Chisholm, Lucy; Duck, Tom; Hopper, Jason; Beauchamp, Stephen; Waugh, David; King, Gavin; Pierce, Jeffrey; Li, Zhengyan; Leaitch, Richard; Ward, Tony J.; Haelssig, Jan; Palmer, Paul I.
2013-04-01
During BORTAS-B, 42 days of contiguous PM2.5 filter samples were collected during the summer of 2011 in Halifax, Nova Scotia. The aim of the PM2.5 filter sampling was to apportion the source contribution to the total PM2.5 mass concentration in Halifax to inform and validate other surface measurements and chemical transport models related to BORTAS-B. Sampling was conducted on the roof of a Dalhousie University building at a height of 15 m. The building is located in a residential area of Halifax. Continuous black carbon (BC) was measured using a Magee AE-42 aethalometer. Continuous organic carbon was measured using an Aerodyne, Aerosol Chemical Speciation Monitor. Daily teflon filter samples were collected for the determination of fine particulate with a median aerodynamic diameter less than or equal to 2.5 microns (PM2.5). An additional, daily, nylon filter was used for the determination of PM2.5 cations and anions by IC. The PM2.5 teflon filter was analysed for 33 metals by XRF and 10 trace metals by ICP-MS. The biomass burning marker levoglucosan was analysed by GC-MS following derivatization. Excellent agreement (R2 = 0.88) was observed between continuous and filter based measurements with a gradient of 2.76. The median (min : max) PM2.5 mass concentration during BORTAS-B = 3.9 (0.08 : 13.7) μg-m3. The median (min : max) continuous BC = 0.39 (0.12 : 1.03); SO4 = 0.47 (0.14 : 5.59); NO3 = 0.067 (0.007 : 0.64); OC = 0.77 (0.18 : 2.77); NH4 = 0.15 (0:003 : 1.45); Cl = 0.011 (0.0019 : 0.32); Fe = 0.018 (0.0011 : 0.097); Al = 0.011 (0.0091 : 0.086); Si = 0.03 (0.0044 : 0.29); V = 0.0026 (0.0016 : 0.017) and Ni = 0.0007 (0.0005 : 0.0037) μg-m3 respectively. Absolute principal component scores (APCS) and pragmatic mass closure (PMC) will be used to identify the sources driving the observed PM2.5 variability over Halifax, during BORTAS-B. A comparison of APCS and PMC PM2.5 receptor model output results will be presented. These model data will provide further insight into the source contribution to summertime surface PM2.5 mass in Halifax, Nova Scotia, Canada.
NASA Astrophysics Data System (ADS)
Xu, Hongmei; Li, Yaqi; Guinot, Benjamin; Wang, Jinhui; He, Kailai; Ho, Kin Fai; Cao, Junji; Shen, Zhenxing; Sun, Jian; Lei, Yali; Gong, Xuesong; Zhang, Ting
2018-07-01
Household solid fuel combustion for heating and cooking in rural areas is an important source of fine particulate matter (PM2.5) in northwestern China, which largely contributes to PM2.5 personal exposure concentrations during the cold winter. There is a general lack of understanding about the personal exposure to PM2.5 and to its chemical components emitted from domestic solid fuel combustion in northwestern Chinese rural populations. In this work, personal exposure to PM2.5 was sampled using a portative device together with fixed indoor and outdoor fixed samplings in Guanzhong Plain in December 2016 for the purpose of characterizing personal exposure to PM2.5 as a function of different solid fuels used in rural households. The average housewife's personal exposure to PM2.5 concentration was 263.4 ± 105.8 μg m-3 (1σ, n = 30), which was about 40% higher than the values found indoors (186.5 ± 79.5 μg m-3, 1σ, n = 30) and outdoors (191.0 ± 85.3 μg m-3, 1σ, n = 30). High personal exposure PM2.5 levels were mainly related to the ignition of solid fuels for heating and cooking. Correlations among personal exposure, indoor and outdoor PM2.5 levels and their mutual ratios were computed to investigate how personal exposure to fine aerosols can be related to microenvironmental PM2.5 levels and to individual activities. The results showed that households using electric power for heating and cooking were characterized by an average personal exposure PM2.5 value of 156.8 ± 36.6 μg m-3 (1σ, n = 6) while personal exposure to PM2.5 in households using solid fuels was twice higher (310.8 ± 90.4 μg m-3, 1σ, n = 24). Solid fuel combustion products and related secondary formed species dominated PM2.5 mass in personal exposure, indoor and outdoor samples. Motor vehicle emission and various dust sources were two other main contributors identified. Our results demonstrated that the use of clean energy could be an effective measure to reduce personal exposure levels of PM2.5 emitted from domestic solid fuels combustion in winter in rural areas, which implied that the government should speed up the upgrade of the heating and cooking equipment fleet to protect the health of rural residents in northwestern China.
NASA Astrophysics Data System (ADS)
Khan, M. F.; Latif, M. T.; Saw, W. H.; Amil, N.; Nadzir, M. S. M.; Sahani, M.; Tahir, N. M.; Chung, J. X.
2016-01-01
The health implications of PM2.5 in the tropical region of Southeast Asia (SEA) are significant as PM2.5 can pose serious health concerns. PM2.5 concentration and sources here are strongly influenced by changes in the monsoon regime from the south-west quadrant to the north-east quadrant in the region. In this work, PM2.5 samples were collected at a semi-urban area using a high-volume air sampler at different seasons on 24 h basis. Analysis of trace elements and water-soluble ions was performed using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. Apportionment analysis of PM2.5 was carried out using the United States Environmental Protection Agency (US EPA) positive matrix factorization (PMF) 5.0 and a mass closure model. We quantitatively characterized the health risks posed to human populations through the inhalation of selected heavy metals in PM2.5. 48 % of the samples collected exceeded the World Health Organization (WHO) 24 h PM2.5 guideline but only 19 % of the samples exceeded 24 h US EPA National Ambient Air Quality Standard (NAAQS). The PM2.5 concentration was slightly higher during the north-east monsoon compared to south-west monsoon. The main trace metals identified were As, Pb, Cd, Ni, Mn, V, and Cr while the main ions were SO42-, NO3-, NH4+, and Na. The mass closure model identified four major sources of PM2.5 that account for 55 % of total mass balance. The four sources are mineral matter (MIN) (35 %), secondary inorganic aerosol (SIA) (11 %), sea salt (SS) (7 %), and trace elements (TE) (2 %). PMF 5.0 elucidated five potential sources: motor vehicle emissions coupled with biomass burning (31 %) were the most dominant, followed by marine/sulfate aerosol (20 %), coal burning (19 %), nitrate aerosol (17 %), and mineral/road dust (13 %). The hazard quotient (HQ) for four selected metals (Pb, As, Cd, and Ni) in PM2.5 mass was highest in PM2.5 mass from the coal burning source and least in PM2.5 mass originating from the mineral/road dust source. The main carcinogenic heavy metal of concern to health at the current location was As; the other heavy metals (Ni, Pb, and Cd) did not pose a significant cancer risk in PM2.5 mass concentration. Overall, the associated lifetime cancer risk posed by the exposure of hazardous metals in PM2.5 is 3-4 per 1 000 000 people at this location.
Kitayama, Joji; Emoto, Shigenobu; Yamaguchi, Hironori; Ishigami, Hironori; Kamei, Takao; Yamashita, Hiroharu; Seto, Yasuyuki; Matsuzaki, Keisuke; Watanabe, Toshiaki
2014-01-01
Peritoneal metastasis (PM) is the most life-threatening type of metastasis in abdominal malignancy. To improve the diagnostic accuracy of cytologic detection (CY) of free tumor cells (FTC) in the peritoneal cavity, we tried to quantify the FTC to leukocyte ratio using flow cytometry in patients with peritoneal metastasis. Cells were recovered from ascites or peritoneal lavages from 106 patients who underwent abdominal surgery and additional 89 samples which were obtained from peritoneal catheter or access port in patients with PM (+) gastric cancer. The cells were immunostained with monoclonal antibodies to CD45 and to CD326 (EpCAM). Using flow cytometry, CD326 (+) and CD45 (+) cells were classified as either tumor cells (T) or leukocytes (L) and the T/L ratio (TLR) was calculated. In 106 samples obtained by laparotomy, Median (M) of the TLR of PM (+) patients was 1.39% (0-807.87%) which was significantly higher than PM (-) patients (M=0%, 0-2.14%, P < 0.001). In PM (+) patients, 86 CY (+) samples showed higher TLR than 61 CY (-) samples (M=2.81%, 0.02-1868.44% vs. M=0%, 0-3.45%, p<0.0001). In all of the 24 patients who were monitored for TLR before and after intraperitoneal (IP) chemotherapy, the TLR was reduced which was more dramatic than the results of the change in cytology. TLR measured with FACS is an excellent reflection of the tumor spread in the peritoneal cavity and could be a reliable diagnostic biomarker to determine the severity of PM as well as effectiveness of IP chemotherapy. © 2013 International Clinical Cytometry Society.
NASA Astrophysics Data System (ADS)
Tasić, Viša; Jovašević-Stojanović, Milena; Vardoulakis, Sotiris; Milošević, Novica; Kovačević, Renata; Petrović, Jelena
2012-07-01
Accurate monitoring of indoor mass concentrations of particulate matter is very important for health risk assessment as people in developed countries spend approximately 90% of their time indoors. The direct reading, aerosol monitoring device, Turnkey, OSIRIS Particle Monitor (Model 2315) and the European reference low volume sampler, LVS3 (Sven/Leckel LVS3) with size-selective inlets for PM10 and PM2.5 fractions were used to assess the comparability of available optical and gravimetric methods for particulate matter characterization in indoor air. Simultaneous 24-hour samples were collected in an indoor environment for 60 sampling periods in the town of Bor, Serbia. The 24-hour mean PM10 levels from the OSIRIS monitor were well correlated with the LVS3 levels (R2 = 0.87) and did not show statistically significant bias. The 24-hour mean PM2.5 levels from the OSIRIS monitor were moderately correlated with the LVS3 levels (R2 = 0.71), but show statistically significant bias. The results suggest that the OSIRIS monitor provides sufficiently accurate measurements for PM10. The OSIRIS monitor underestimated the indoor PM10 concentrations by approximately 12%, relative to the reference LVS3 sampler. The accuracy of PM10 measurements could be further improved through empirical adjustment. For the fine fraction of particulate matter, PM2.5, it was found that the OSIRIS monitor underestimated indoor concentrations by approximately 63%, relative to the reference LVS3 sampler. This could lead to exposure misclassification in health effects studies relying on PM2.5 measurements collected with this instrument in indoor environments.
NASA Astrophysics Data System (ADS)
Ehrlich, C.; Noll, G.; Kalkoff, W.-D.; Baumbach, G.; Dreiseidler, A.
Emission measurement programmes were carried out at industrial plants in several regions of Germany to determine the fine dust in the waste gases; the PM 10, PM 2.5 and PM 1.0 fractions were sampled using a cascade impactor technique. The installations tested included plants used for: combustion (brown coal, heavy fuel oil, wood), cement production, glass production, asphalt mixing, and processing plants for natural stones and sand, ceramics, metallurgy, chemical production, spray painting, wood processing/chip drying, poultry farming and waste treatment. In addition waste gas samples were taken from small-scale combustion units, like domestic stoves, firing lignite briquettes or wood. In total 303 individual measurement results were obtained during 106 different measurement campaigns. In the study it was found that in more than 70% of the individual emission measurement results from industrial plants and domestic stoves the PM 10 portion amounted to more than 90% and the PM 2.5 portion between 50% and 90% of the total PM (particulate matter) emission. For thermal industrial processes the PM 1.0 portion constituted between 20% and 60% of the total PM emission. Typical particle size distributions for different processes were presented as cumulative frequency distributions and as frequency distributions. The particle size distributions determined for the different plant types show interesting similarities and differences depending on whether the processes are thermal, mechanical, chemical or mixed. Consequently, for the groups of plant investigated, a major finding of this study has been that the particle size distribution is a characteristic of the industrial process. Attempts to correlate particle size distributions of different plants to different gas cleaning technologies did not lead to usable results.
NASA Astrophysics Data System (ADS)
Minguillón, María Cruz; Campos, Arturo Alberto; Cárdenas, Beatriz; Blanco, Salvador; Molina, Luisa T.; Querol, Xavier
2014-05-01
This work was carried out in the framework of the Cal-Mex project, which focuses on investigating the atmosphere along Mexico-California border region. Sampling was carried out at two sites located in Tijuana urban area: Parque Morelos and Metales y Derivados. PM2.5 and PM10 24 h samples were collected every three days from 17th May 2010 to 27th June 2010, and were used for gravimetric and chemical analyses (major and minor elements, inorganic ions, organic and elemental carbon) of PM. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM2.5 and PM10 average concentrations during Cal-Mex were relatively lower compared to usual annual averages. Trace elements concentrations recorded in the present study were lower than those recorded in Mexico City in 2006, with the exception of Pb at Metales y Derivados, attributed to the influence of a specific industrial source, which also includes As, Cd and Tl. Apart from this industrial source, both urban sites were found to be affected by similar sources with respect to bulk PM. Fine PM (PM2.5) was mainly apportioned by fueloil and biomass combustion and secondary aerosols, and road traffic. Coarse PM (PM2.5-10) was mainly apportioned by a mineral source (sum of road dust resuspension, construction emissions and natural soil) and fresh and aged sea salt. The road traffic was responsible for more than 60% of the fine elemental carbon and almost 40% of the fine organic matter.
In vitro and in vivo toxicity of urban and rural particulate matter from California
NASA Astrophysics Data System (ADS)
Mirowsky, Jaime E.; Jin, Lan; Thurston, George; Lighthall, David; Tyner, Tim; Horton, Lori; Galdanes, Karen; Chillrud, Steven; Ross, James; Pinkerton, Kent E.; Chen, Lung Chi; Lippmann, Morton; Gordon, Terry
2015-02-01
Particulate matter (PM) varies in chemical composition and mass concentration based on location, source, and particle size. This study sought to evaluate the in vitro and in vivo toxicity of coarse (PM10-2.5) and fine (PM2.5) PM samples collected at 5 diverse sites within California. Coarse and fine PM samples were collected simultaneously at 2 rural and 3 urban sites within California during the summer. A human pulmonary microvascular endothelial cell line (HPMEC-ST1.6R) was exposed to PM suspensions (50 μg/mL) and analyzed for reactive oxygen species (ROS) after 5 h of treatment. In addition, FVB/N mice were exposed by oropharyngeal aspiration to 50 μg PM, and lavage fluid was collected 24 h post-exposure and analyzed for total protein and %PMNs. Correlations between trace metal concentrations, endotoxin, and biological endpoints were calculated, and the effect of particle size range, locale (urban vs. rural), and location was determined. Absolute principal factor analysis was used to identify pollution sources of PM from elemental tracers of those sources. Ambient PM elicited an ROS and pro-inflammatory-related response in the cell and mouse models, respectively. These responses were dependent on particle size, locale, and location. Trace elements associated with soil and traffic markers were most strongly linked to the adverse effects in vitro and in vivo. Particle size, location, source, and composition of PM collected at 5 locations in California affected the ROS response in human pulmonary endothelial cells and the inflammatory response in mice.
Oxidative potential of subway PM2.5
NASA Astrophysics Data System (ADS)
Moreno, Teresa; Kelly, Frank J.; Dunster, Chrissi; Oliete, Ana; Martins, Vânia; Reche, Cristina; Minguillón, Maria Cruz; Amato, Fulvio; Capdevila, Marta; de Miguel, Eladio; Querol, Xavier
2017-01-01
Air quality in subway systems is of interest not only because particulate matter (PM) concentrations can be high, but also because of the peculiarly metalliferous chemical character of the particles, most of which differ radically from those of outdoor ambient air. We report on the oxidative potential (OP) of PM2.5 samples collected in the Barcelona subway system in different types of stations. The PM chemical composition of these samples showed typically high concentrations of Fe, Total Carbon, Ba, Cu, Mn, Zn and Cr sourced from rail tracks, wheels, catenaries, brake pads and pantographs. Two toxicological indicators of oxidative activity, ascorbic acid (AA) oxidation (expressed as OPAA μg-1 or OPAA m-3) and glutathione (GSH) oxidation (expressed as OPGSH μg-1 or OPGSH m-3), showed low OP for all samples (compared with outdoor air) but considerable variation between stations (0.9-2.4 OPAA μg-1; 0.4-1.9 OPGSH μg-1). Results indicate that subway PM toxicity is not related to variations in PM2.5 concentrations produced by ventilation changes, tunnel works, or station design, but may be affected more by the presence of metallic trace elements such as Cu and Sb sourced from brakes and pantographs. The OP assays employed do not reveal toxic effects from the highly ferruginous component present in subway dust.
Hadjiefthyvoulou, Florentia; Fisk, John E; Montgomery, Catharine; Bridges, Nikola
2011-06-01
Prospective memory (PM) deficits in recreational drug users have been documented in recent years. However, the assessment of PM has largely been restricted to self-reported measures that fail to capture the distinction between event-based and time-based PM. The aim of the present study is to address this limitation. Extending our previous research, we augmented the range laboratory measures of PM by employing the CAMPROMPT test battery to investigate the impact of illicit drug use on prospective remembering in a sample of cannabis only, ecstasy/polydrug and non-users of illicit drugs, separating event and time-based PM performance. We also administered measures of executive function and retrospective memory in order to establish whether ecstasy/polydrug deficits in PM were mediated by group differences in these processes. Ecstasy/polydrug users performed significantly worse on both event and time-based prospective memory tasks in comparison to both cannabis only and non-user groups. Furthermore, it was found that across the whole sample, better retrospective memory and executive functioning was associated with superior PM performance. Nevertheless, this association did not mediate the drug-related effects that were observed. Consistent with our previous study, recreational use of cocaine was linked to PM deficits. PM deficits have again been found among ecstasy/polydrug users, which appear to be unrelated to group differences in executive function and retrospective memory. However, the possibility that these are attributable to cocaine use cannot be excluded.
Toxicity of Urban PM10 and Relation with Tracers of Biomass Burning.
Van Den Heuvel, Rosette; Staelens, Jeroen; Koppen, Gudrun; Schoeters, Greet
2018-02-12
The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM 10 in relation to PM-associated chemicals. PM 10 was sampled in ambient air at an urban traffic site (Borgerhout) and a rural background location (Houtem) in Flanders (Belgium). To characterize the toxic potential of PM 10 , airway epithelial cells (Beas-2B cells) were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) and the induction of interleukin-8 (IL-8). The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP) of PM 10 particles was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM 10 included tracers for biomass burning (levoglucosan, mannosan and galactosan), elemental and organic carbon (EC/OC) and polycyclic aromatic hydrocarbons (PAHs). Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM 10 toxicity were seen. PM 10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (-0.46 < r s < -0.35, p < 0.01) and IL-8 induction (-0.62 < r s < -0.67, p < 0.01) were associated with all markers for biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were associated with altered cellular responses and increased mutagenic activity. These findings may indicate a role of biomass burning in the observed adverse health effect of particulate matter.
Tian, Ying-Ze; Chen, Jia-Bao; Zhang, Lin-Lin; Du, Xin; Wei, Jin-Jin; Fan, Hui; Xu, Jiao; Wang, Hai-Ting; Guan, Liao; Shi, Guo-Liang; Feng, Yin-Chang
2017-12-01
Source and ambient samples were collected in a city in China that uses considerable biofuel, to assess influence of biofuel combustion and other sources on particulate matter (PM). Profiles and size distribution of biofuel combustion were investigated. Higher levels in source profiles, a significant increase in heavy-biomass ambient and stronger correlations of K + , Cl - , OC and EC suggest that they can be tracers of biofuel combustion. And char-EC/soot-EC (8.5 for PM 2.5 and 15.8 for PM 10 of source samples) can also be used to distinguish it. In source samples, water-soluble organic carbon (WSOC) were approximately 28.0%-68.8% (PM 2.5 ) and 27.2%-43.8% (PM 10 ) of OC. For size distribution, biofuel combustion mainly produces smaller particles. OC1, OC2, EC1 and EC2 abundances showed two peaks with one below 1 μm and one above 2 μm. An advanced three-way factory analysis model was applied to quantify source contributions to ambient PM 2.5 and PM 10 . Higher contributions of coal combustion, vehicular emission, nitrate and biofuel combustion occurred during the heavy-biomass period, and higher contributions of sulfate and crustal dust were observed during the light-biomass period. Mass and percentage contributions of biofuel combustion were significantly higher in heavy-biomass period. The biofuel combustion attributed above 45% of K + and Cl - , above 30% of EC and about 20% of OC. In addition, through analysis of source profiles and contributions, they were consistently evident that biofuel combustion and crustal dust contributed more to cation than to anion, while sulfate & SOC and nitrate showed stronger influence on anion than on cation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shahsavani, Abbas; Yarahmadi, Maryam; Hadei, Mostafa; Sowlat, Mohammad Hossein; Naddafi, Kazem
2017-08-21
Middle Eastern dust (MED) storms carry large amounts of dust particles to the Southern and Western cities of Iran. This study aimed to characterize the elemental and carbonaceous composition of total suspended particles (TSP) and PM 10 in Ahvaz, Iran. TSP and PM 10 samples were collected using two separate high-volume air samplers. The sampling program was performed according to EPA guidelines and resulted in 72 samples. Twenty-eight elements and two carbonaceous components in TSP and PM 10 were measured. Over the entire study period, the mean concentration (SD) of TSP and PM 10 was 1548.72 μg/m 3 (1965.11 μg/m 3 ) and 1152.35 μg/m 3 (1510.34 μg/m 3 ), respectively. The order of concentrations of major species were Si > Al > Ca > OC > Na > B > Zn > Mn > K > Mg and Si > Ca > Al > Na > OC > B > K > Mn > Cu > Mg for TSP and PM 10 , respectively. Almost all elements (except for Cd, Cr, and Cu) and carbonaceous components (except for organic carbon) had dust days/non-dust days (DD/NDD) ratios higher than 1, implying that all components are somehow affected by dust storms. Crustal elements constituted the major portion of particles for both TSP and PM 10 in both DDs and NDDs. The enrichment factor of elements such as Ca, Fe, K, Mg, Na, and Ti was near unity. Species such as Al, Ca, Fe, K, Na, Si, and EC had high correlation coefficients in both TSP and PM 10 (except for EC). In conclusion, Ahvaz is exposed to high concentrations of TSP and PM 10 during the MED period. Immediate actions must be planned to decrease the high concentrations of particulate matter in Ahvaz's ambient air.
Source of Personal Exposure to PM2.5 among College Students in Beijing, China
NASA Astrophysics Data System (ADS)
Xie, Qiaorong; Zhu, Xianlei; Li, Xiang; Hui, Fan; Fu, Xianqiang; Zhang, Qiangbin
2015-04-01
The health risk from exposure to airborne particles arouses increasing public concern in Beijing, a megacity in China, where concentration of PM2.5 frequently exceeds the guideline values of World Health Organization (WHO). To investigate daily exposure to PM2.5, a personal exposure study was conducted for college students. The purpose of this study was to measure the daily PM2.5 personal exposures of students, to quantify the contributions of various microenvironments to personal exposure since students spend more than 85% of their time indoors, and to apportion the contributions of PM2.5 indoors origin and outdoor origin. In this work, a total of 320 paired indoor and outdoor PM2.5 samples were collected at eight types of microenvironments in both China University of Petroleum (suburban area) and Tsinghua University (urban area). The microenvironments were selected based on the time-activity diary finished by 1500 students from both universities. Simultaneously, the air exchange rate was measured in each microenvironment. PM2.5, elements, inorganic ions and polycyclic aromatic hydrocarbons in the samples were determined. The peak concentrations were observed in dinning halls, whereas PM2.5 in dormitories was the largest contributor to personal exposure because students spend more than half of a day there. Furthermore, source apportionment by positive matrix factorization (PMF) will be carried out to understand the source of personal exposure to PM2.5. Especially, efforts will be put on determing the contributions of primary combustion, secondary sulfate and organics, secondary nitrate, and mechanically generated PM, which present different infiltration behavior and are indoor PM2.5 of ambient origin, with help of air exchange rate data. The results would be benefit for refining the understanding of the contribution of PM2.5 of ambient (outdoor) origin to the daily PM2.5 personal exposures. Acknowledgments:This study has been funded by Beijing Municipal Commission of Education. Corresponding author:Qiangbin Zhang
Shi, Guo-Liang; Tian, Ying-Ze; Ma, Tong; Song, Dan-Lin; Zhou, Lai-Dong; Han, Bo; Feng, Yin-Chang; Russell, Armistead G
2017-06-01
Long-term and synchronous monitoring of PM 10 and PM 2.5 was conducted in Chengdu in China from 2007 to 2013. The levels, variations, compositions and size distributions were investigated. The sources were quantified by two-way and three-way receptor models (PMF2, ME2-2way and ME2-3way). Consistent results were found: the primary source categories contributed 63.4% (PMF2), 64.8% (ME2-2way) and 66.8% (ME2-3way) to PM 10 , and contributed 60.9% (PMF2), 65.5% (ME2-2way) and 61.0% (ME2-3way) to PM 2.5 . Secondary sources contributed 31.8% (PMF2), 32.9% (ME2-2way) and 31.7% (ME2-3way) to PM 10 , and 35.0% (PMF2), 33.8% (ME2-2way) and 36.0% (ME2-3way) to PM 2.5 . The size distribution of source categories was estimated better by the ME2-3way method. The three-way model can simultaneously consider chemical species, temporal variability and PM sizes, while a two-way model independently computes datasets of different sizes. A method called source directional apportionment (SDA) was employed to quantify the contributions from various directions for each source category. Crustal dust from east-north-east (ENE) contributed the highest to both PM 10 (12.7%) and PM 2.5 (9.7%) in Chengdu, followed by the crustal dust from south-east (SE) for PM 10 (9.8%) and secondary nitrate & secondary organic carbon from ENE for PM 2.5 (9.6%). Source contributions from different directions are associated with meteorological conditions, source locations and emission patterns during the sampling period. These findings and methods provide useful tools to better understand PM pollution status and to develop effective pollution control strategies. Copyright © 2016. Published by Elsevier B.V.
Gaidajis, George; Angelakoglou, Komninos
2009-10-01
The mass concentrations of coarse (PM10) and fine (PM2.5) particulate matter were measured in different classrooms and relevant indoors areas of Democritus University, School of Engineering, Xanthi, with portable aerosol monitoring equipment. Two sampling campaigns were conducted in different seasons. The results indicated that the average concentrations in classrooms ranged from 32-188 microg/m3 and 25-151 microg/m3 for PM10 and PM2.5, respectively. Concentration levels above 300 microg/m3 were usually recorded, while the PM2.5/PM10 ratio was about 0.8. As expected, PM10 and PM2.5 average concentrations were significantly higher in the open-access meeting place of common use, indicating the significance of student trespassing and occasional smoking in the deterioration of indoors air quality.
Barrow Black Carbon Source and Impact Study Final Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Tate
2014-07-01
The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 samplermore » operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.« less
Lu, Rui; Li, Yanpeng; Li, Wanxin; Xie, Zhengsheng; Fan, Chunlan; Liu, Pengxia; Deng, Shunxi
2018-05-09
Serious air pollution events have frequently occurred in China associated with the acceleration of urbanization and industrialization in recent years. Exposure to atmospheric particulate matter (PM) of high concentration can lead to adverse effects on human health. Airborne bacteria are important constituents of microbial aerosols and contain lots of pathogens. However, variations in bacterial community structure in atmospheric PM of different sizes (PM 2.5 , PM 10 and TSP) have not yet been explored. In this study, PM samples of different sizes were collected during the hazy days from Jul.2016 to Apr.2017 to determine bacterial diversity and community structure. Samples from soils and leaf surfaces were also collected to determine potential sources of bacterial aerosols. High-throughput sequencing technology was used generate bacterial community profiles, where we determined their diversity and abundances in the samples. Results showed that the dominant bacterial community structures in PM 2.5 , PM 10 and TSP were strongly similar. Compared with non-haze days, the relative abundances of most bacterial pathogens on the haze days did not increase. Meanwhile, temperature, O 3 and NO 2 had more significant effects on bacterial community than the other environmental factors. Source tracking analysis indicated that the airborne bacteria might be not from local environment. It may come from the entire city or other regions by long distance airflow transport. Results of this study improved our understanding of the influence of bioaerosols on human health and the potential sources of airborne microbes. Copyright © 2018 Elsevier B.V. All rights reserved.
n-alkane profiles of engine lubricating oil and particulate matter by molecular sieve extraction.
Caravaggio, Gianni A; Charland, Jean-Pierre; Macdonald, Penny; Graham, Lisa
2007-05-15
As part of the Canadian Atmospheric Fine Particle Research Program to obtain reliable primary source emission profiles, a molecular sieve method was developed to reliably determine n-alkanes in lubricating oils, vehicle emissions, and mobile source dominated ambient particulate matter (PM). This work was also initiated to better calculate carbon preference index values (CPI: the ratio of the sums of odd over even n-alkanes), a parameter for estimating anthropogenic versus biogenic contributions in PM. n-Alkanes in lubricating oil and mobile source dominated PM are difficult to identify and quantify by gas chromatography due to the presence of similar components that cannot be fully resolved. This results in a hump, the unresolved complex mixture (UCM) that leads to incorrect n-alkane concentrations and CPI values. The sieve method yielded better chromatography, unambiguous identification of n-alkanes and allowed examination of differences between n-alkane profiles in light (LDV) and heavy duty vehicle (HDV) lubricating oils that would have been otherwise difficult. These profile differences made it possible to relate the LDV profile to that of the PM samples collected during a tunnel study in August 2001 near Vancouver (British Columbia, Canada). The n-alkane PM data revealed that longer sampling times result in a negative artifact, i.e., the desorption of the more volatile n-alkanes from the filters. Furthermore, the sieve procedure yielded n-alkane data that allowed calculation of accurate CPI values for lubricating oils and PM samples. Finally, this method may prove helpful in estimating the respective diesel and gasoline contributions to ambient PM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, H M; Young, T M; Buchholz, B A
2009-04-16
This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I)more » and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.« less
Li, Gang; Li, Yingming; Zhang, Hongxing; Li, Honghua; Gao, Guanjun; Zhou, Qian; Gao, Yuan; Li, Wenjuan; Sun, Huizhong; Wang, Xiaoke; Zhang, Qinghua
2016-01-01
Quartz particles are a toxic component of airborne particulate matter (PM). Quartz concentrations were analyzed by X-ray diffraction in eighty-seven airborne PM samples collected from three locations in Beijing before, during, and after the Asia-Pacific Economic Cooperation (APEC) Leaders' Meeting in 2014. The results showed that the mean concentrations of quartz in PM samples from the two urban sites were considerably higher than those from the rural site. The quartz concentrations in samples collected after the APEC meeting, when the pollution restriction lever was lifted, were higher than those in the samples collected before or during the APEC meeting. The quartz concentrations ranged from 0.97 to 13.2 μg/m(3), which were among the highest values amid those reported from other countries. The highest quartz concentration exceeded the Californian Office of Environmental Health Hazard Assessment reference exposure level and was close to the occupational threshold limit values for occupational settings. Moreover, a correlation analysis showed that quartz concentrations were positively correlated with concentrations of pollution parameters PM10, PM2.5, SO2 and NOx, but were negatively correlated with O3 concentration. The results suggest that the airborne quartz particles may potentially pose health risks to the general population of Beijing. Copyright © 2015. Published by Elsevier B.V.
EAST VERSUS WEST IN THE US: CHEMICAL CHARACTERISTICS OF PM 2.5 DURING THE WINTER OF 1998
PM2.5 samples were collected for up to 20 days during January and February of 1998 in four US cities. Samplers were collected for 24-hr sampling periods every other day at Philadelphia, PA, Phoenix, AZ, Rubidoux, CA, and Research Triangle Park, NC. These cities were chosen due ...
CONCENTRATIONS AND SOLUBILITY OF METALS FROM INDOOR AND PERSONAL EXPOSURE PM2.5 SAMPLES
An assessment of trace metal quantification capabilities for indoor (123 ± 53 μg; mean ± standard deviation of particle mass) and personal exposure (32 ± 12 μg) PM2.5 samples from Baltimore, MD was undertaken as part of an EPA study investigating health effects assoc...
The purpose of this SOP is to describe the stages of preparation required for Harvard particulate matter (PM) sampler impactor: (1) prior to in-field use of the particulate sampling system, (2) in-field sampling, and (3) disassembly after field use. This procedure applies direct...
Particulate matter exposure increases JC polyomavirus replication in the human host.
Dolci, Maria; Favero, Chiara; Bollati, Valentina; Campo, Laura; Cattaneo, Andrea; Bonzini, Matteo; Villani, Sonia; Ticozzi, Rosalia; Ferrante, Pasquale; Delbue, Serena
2018-05-29
Human polyomaviruses (HPyVs) asymptomatically infect the human population during childhood and establish latency in the host. Viral reactivation and urinary excretion can occur when the immune system is impaired. Exposure to particulate air pollution, including the PM 10 /PM 2.5 components, is a public health problem and has been linked to several disorders. Studies assessing the relationship between PM 10 /PM 2.5 exposure and viral replication are lacking. To investigate the relationship between HPyVs viruria and PM 10 /PM 2.5 exposures. Individual environmental exposure was assessed in 50 healthy adult volunteers using a chemical transport model (CTM) with a municipality resolution for daily PM 10 and monitoring stations data for daily PM 2.5 exposures. For each subject, a urine sample was collected, and HPyVs (JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and HPyV9) loads were determined. Zero-inflated negative binomial (ZINB) regression was used to model the count data, as it contained excessive zeros. Covariates were chosen by stepwise selection. HPyVs DNA was detected in 54% (median:87.6*10 5 copies/ml) of the urine samples. JCPyV was the prevalent (48%, (median viral load:126*10 5 copies/ml). Considering the load of the most frequently measured HPyVs, JCPyV, in the count-part of the ZINB model, every unitary in PM measured 2 days before urine collection (PM Day -2) was associated with an increase in JCPyV load (PM 10 : +4.0%, p-value = 0.002; PM 2.5 : +3.6%, p-value = 0.005). In the zero-part, the significant predictor was the PM 10 measured 5 days before urine collection (+3%, p-value = 0.03). The environmental levels of PM 10 /PM 2.5 increase the JCPyV viruria. Our findings emphasize the need for studies assessing the influence of air pollution exposure on the risk of viral reactivation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Tao; Hou, Ying; Dai, Ting-Jun; Yan, Chuan-Zhu
2017-09-05
The immunopathologic mechanism underlying dermatomyositis (DM) and polymyositis (PM) remains poorly understood. Many cytokines play a pathogenic role in DM and PM. Interleukin 21 (IL-21) has a pleiotropic effect on inflammation regulation. This study aimed to detect the serum IL-21 level and investigate the expression of IL-21 and IL-21 receptor (IL-21R) in muscle tissues of patients with DM and PM. Biopsied muscle samples were obtained from 11 patients with DM, 12 with PM, and six controls; mRNA levels of IL-21 and IL-21R were analyzed by real-time quantitative reverse transcription-polymerase chain reaction; and immunohistochemical staining was used to evaluate the protein expression of IL-21 and IL-21R. Serum samples were obtained from 36 patients with DM, 19 with PM, and 20 healthy controls. The serum IL-21 level was detected by enzyme-linked immunosorbent assay. The expression of IL-21 was upregulated in patients with DM and PM. The IL-21 mRNA level was significantly increased in muscle tissues of patients with DM and PM (DM vs. control, P= 0.001; PM vs. control, P= 0.001), whereas IL-21R mRNA level in patients with DM/PM was not statistically different from that of healthy controls. Immunohistochemical staining showed both IL-21 and IL-21R were significantly expressed in the inflammatory cells in muscle tissues of patients with DM and PM. The serum IL-21 level was also significantly higher in patients with DM/PM than in controls (DM vs. control, 49.12 [45.28, 60.07] pg/ml vs. 42.54 [38.69, 48.85] pg/ml, P= 0.001; PM vs. control, 50.77 [44.19, 60.62] pg/ml vs. 42.54 [38.69, 48.85] pg/ml, P= 0.005). IL-21 expression is upregulated in patients with DM and PM in both muscle tissue and serum. In addition, IL-21R protein is highly expressed in affected muscle tissues of patients with DM and PM. IL-21 may play a pathogenic role through IL-21R in patients with DM and PM.
NASA Astrophysics Data System (ADS)
Wang, Dongbin; Pakbin, Payam; Shafer, Martin M.; Antkiewicz, Dagmara; Schauer, James J.; Sioutas, Constantinos
2013-10-01
This study describes an investigation of the relative contributions of water-soluble and water-insoluble portions of ambient particulate matter (PM) to cellular redox activity. Size-fractionated ambient PM samples (coarse, PM2.5 and ultrafine PM) were collected in August-September of 2012 at an urban site in Los Angeles, using the Versatile Aerosol Concentration Enrichment System (VACES)/BioSampler tandem system. In this system, size-fractionated ambient PM was concentrated and collected directly into an aqueous suspension, thereby eliminating the need for solvent extraction required for PM collected on filter substrates. Separation of water-soluble and water-insoluble fractions of PM was achieved by 10 kilo-Delton ultra-filtration of the collected suspension slurries. Chemical analysis, including organic carbon, metals and trace elements, and inorganic ions, as well as measurement of macrophage reactive oxygen species (ROS) activity were performed on the slurries. Correlation between ROS activity and different chemical components of PM was evaluated to identify the main drivers of PM toxicity. Results from this study illustrate that both water-soluble and water-insoluble portions of PM play important roles in influencing potential cellular toxicity. While the water-soluble species contribute the large majority of the ROS activity per volume of sampled air, the highest intrinsic ROS activity (i.e. expressed per PM mass) is observed for the water-insoluble portions. Organic compounds in both water-soluble and water-insoluble portions of ambient PM, as well as transition metals, several with recognized redox activity (Mn, V, Cu and Zn), are highly correlated with ROS activity. These results may underscore the potential of these chemicals in driving the toxicity of ambient PM. Results from this study also suggest that collection of particles directly into a liquid suspension for toxicological analysis may be superior to conventional filtration by eliminating the need for extraction and by potentially reducing the losses of semi-volatile and redox active species such as organic compounds.
High time-resolution aerosol sampling was conducted for one month during July–August 2007 in Dearborn, MI, a non-attainment area for fine particulate matter (PM2.5) National Ambient Air Quality Standards (NAAQS). Measurements of more than 30 PM2.5 species were made using a suite o...
2008-03-26
CAPE CANAVERAL, Fla. --- At NASA Kennedy Space Center's Shuttle Landing Facility, STS-123 Commander Dominic Gorie, right, is welcomed back from orbit by NASA Deputy Administrator Shana Dale, left, and NASA Administrator Mike Griffin as Media Coordinator MaryAnn Chevalier looks on. Space shuttle Endeavour landed on Runway 15 to end the STS-123 mission, a 16-day flight to the International Space Station. This was the 16th night landing at Kennedy. The main landing gear touched down at 8:39:08 p.m. EDT. The nose landing gear touched down at 8:39:17 p.m. and wheel stop was at 8:40:41 p.m. The mission completed nearly 6.6 million miles. The landing was on the second opportunity after the first was waved off due to unstable weather in the Kennedy Space Center area. The STS-123 mission delivered the first segment of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, known as Dextre. Photo credit: NASA/Kim Shiflett
Lauer, Fredine T.; Mitchell, Leah A.; Bedrick, Edward; McDonald, Jacob D.; Lee, Wen-Yee; Li, Wen-Whai; Olvera, Hector; Amaya, Maria A.; Berwick, Marianne; Gonzales, Melissa; Currey, Robert; Pingitore, Nicholas E.; Burchiel, Scott W.
2009-01-01
Particulate matter less than 10 μm (PM10) has been shown to be associated with aggravation of asthma and respiratory and cardiopulmonary morbidity. There is also great interest in the potential health effects of PM 2.5. Particulate matter (PM) varies in composition both spatially and temporally depending on the source, location and seasonal condition. El Paso County which lies in the Paso del Norte airshed is a unique location to study ambient air pollution due to three major points: the geological land formation, the relatively large population and the various sources of PM. In this study, dichotomous filters were collected from various sites in El Paso County every seven days for a period of one year. The sampling sites were both distant and near border crossings, which are near heavily populated areas with high traffic volume. Fine (PM2.5) and Coarse (PM10-2.5) PM filter samples were extracted using dichloromethane and were assessed for biologic activity and polycyclic aromatic (PAH) content. Three sets of marker genes human BEAS2B bronchial epithelial cells were utilized to assess the effects of airborne PAHs on biologic activities associated with specific biological pathways associated with airway diseases. These pathways included in inflammatory cytokine production (IL-6, IL-8), oxidative stress (HMOX-1, NQO-1, ALDH3A1, AKR1C1), and aryl hydrocarbon receptor (AhR)-dependent signaling (CYP1A1). Results demonstrated interesting temporal and spatial patterns of gene induction for all pathways, particularly those associated with oxidative stress, and significant differences in the PAHs detected in the PM10-2.5 and PM 2.5 fractions. Temporally, the greatest effects on gene induction were observed in winter months, which appeared to correlate with inversions that are common in the air basin. Spatially, the greatest gene expression increases were seen in extracts collected from the central most areas of El Paso which are also closest to highways and border crossings. PMID:19410595
Measurements of particulate semi-volatile material
NASA Astrophysics Data System (ADS)
Pang, Yanbo
2000-10-01
A new innovative sampling system, PC-BOSS, was developed by the combination of particle concentrator and BOSS denuder techniques in response to the new EPA PM2.5 standard and to meet top research priorities for particulate matter that were identified by the National Research Council. The PC-BOSS (P_article C_oncentrator- B_righam Young University O_rganic S_ampling S_ystem) can accurately determine not only PM2.5 stable mass and species such as sulfate, but also particulate semi- volatile material. Several field comparison studies of the PC-BOSS with the EPA PM2.5 reference method and state-of-the-art fine particle measurement methods confirm the capability of the PC-BOSS to accurately determine particulate semi-volatile material, especially organic compounds. This is the first routine sampling system for the determination of both particulate semi-volatile inorganic and organic material. Two other denuder system samplers for the determination of PM2.5 total mass including semi-volatile material were also developed for PM2.5 research and exposure monitoring. Results of studies around the United States indicate that the EPA PM2.5 FRM (Federal Reference Method) under- measured PM2.5 mass by 20-30% compared to PC-BOSS results due to the loss of particulate nitrate and semi-volatile organic compounds during sampling. Organic material is mostly responsible for this under- measurement by the FRM. Using our new sampling system in epidemiological and exposure studies will be essential to providing answers to some top research priorities for particulate matter and promote a better PM2.5 standard for the protection of human health because some fractions of particulate semi-volatile organic compounds are toxic and are possibly responsible for health effects associated with exposure to particulate matter. The atmospheric chemistry of organic aerosols in the troposphere and stratosphere is still largely unknown because of the lack of detailed organic aerosol information. The importance of organic aerosols might also be underestimated because current data on organic aerosols in the troposphere and stratosphere were mostly obtained by traditional methods, like the FRM method. Using PC-BOSS to study organic aerosols in the troposphere and stratosphere will provide not only more but also more accurate information about organic aerosols, and significantly improve the understanding of the role of aerosols in global warming, ozone depletion, and atmospheric heterogenous chemistry.
Development and evaluation of an ultrasonic personal aerosol sampler.
Volckens, J; Quinn, C; Leith, D; Mehaffy, J; Henry, C S; Miller-Lionberg, D
2017-03-01
Assessing personal exposure to air pollution has long proven challenging due to technological limitations posed by the samplers themselves. Historically, wearable aerosol monitors have proven to be expensive, noisy, and burdensome. The objective of this work was to develop a new type of wearable monitor, an ultrasonic personal aerosol sampler (UPAS), to overcome many of the technological limitations in personal exposure assessment. The UPAS is a time-integrated monitor that features a novel micropump that is virtually silent during operation. A suite of onboard environmental sensors integrated with this pump measure and record mass airflow (0.5-3.0 L/min, accurate within 5%), temperature, pressure, relative humidity, light intensity, and acceleration. Rapid development of the UPAS was made possible through recent advances in low-cost electronics, open-source programming platforms, and additive manufacturing for rapid prototyping. Interchangeable cyclone inlets provided a close match to the EPA PM 2.5 mass criterion (within 5%) for device flows at either 1.0 or 2.0 L/min. Battery life varied from 23 to 45 hours depending on sample flow rate and selected filter media. Laboratory tests of the UPAS prototype demonstrate excellent agreement with equivalent federal reference method samplers for gravimetric analysis of PM 2.5 across a broad range of concentrations. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.
Samek, Lucyna; Stegowski, Zdzislaw; Styszko, Katarzyna; Furman, Leszek; Fiedor, Joanna
2018-05-30
This study presents the air pollution findings of the submicron (PM1) and fine (PM2.5) particulate matter. The submicron particles are entirely absorbed by the human body and they cause the greatest health risk. For the PM2.5 concentration, there are yearly and/or daily limit values regulations by the European Union (EU) and World Health Organization (WHO). There are no such regulations for PM1 but for health risk reason the knowledge of its concentration is important. This paper presents the seasonal concentration contribution of PM1 and PM2.5, their chemical composition and assessed three basic sources. Daily samples of both fractions were collected from 2nd July 2016 to 27th February 2017 in Krakow, Poland. Apart from PM1 and PM2.5 the concentration of 16 elements, 8 ions and BC for each samples were measured. Based on these chemical species the positive matrix factorization (PMF) receptor modeling was used for the determination of three main sources contribution to the PM1 and PM2.5 concentrations. Daily average concentrations of PM2.5 were 12 μg/m 3 in summer and 60 μg/m 3 in winter. For PM1 it was 6.9 μg/m 3 in summer and 17.3 μg/m 3 in winter. These data show a significant difference in percentage contribution of PM1 in PM2.5 in summer (58%) and in winter (29%). For the combustion source, the concentrations calculated from PMF modeling in winter were 4.8 μg/m 3 for PM1 and 31 μg/m 3 for PM2.5. In summer, the concentrations were smaller than 1 μg/m 3 for both fractions. Secondary aerosols' concentration for PM1 was 3.4 μg/m 3 in summer and 11 μg/m 3 in winter - for PM2.5 these were 7.1 μg/m 3 and 17 μg/m 3 respectively. The third source - soil, industry and traffic together, had small seasonal variation: for PM1 it was from 1.4 to 1.8 μg/m 3 and for PM2.5 from 4.7 to 7.9 μg/m 3 . Copyright © 2018 Elsevier Ltd. All rights reserved.
Source contribution of PM₂.₅ at different locations on the Malaysian Peninsula.
Ee-Ling, Ooi; Mustaffa, Nur Ili Hamizah; Amil, Norhaniza; Khan, Md Firoz; Latif, Mohd Talib
2015-04-01
This study determined the source contribution of PM2.5 (particulate matter <2.5 μm) in air at three locations on the Malaysian Peninsula. PM2.5 samples were collected using a high volume sampler equipped with quartz filters. Ion chromatography was used to determine the ionic composition of the samples and inductively coupled plasma mass spectrometry was used to determine the concentrations of heavy metals. Principal component analysis with multilinear regressions were used to identify the possible sources of PM2.5. The range of PM2.5 was between 10 ± 3 and 30 ± 7 µg m(-3). Sulfate (SO4 (2-)) was the major ionic compound detected and zinc was found to dominate the heavy metals. Source apportionment analysis revealed that motor vehicle and soil dust dominated the composition of PM2.5 in the urban area. Domestic waste combustion dominated in the suburban area, while biomass burning dominated in the rural area.
2018-02-28
Jason Townsend, NASA's social media manager, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.
Microbial Biomarkers for Native and Agricultural Soil Inputs to Atmospheric Particulate Matter
NASA Astrophysics Data System (ADS)
Fulton, J. M.; Herckes, P.; Fraser, M. P.; Collins, J.; Van Mooy, B. A.
2017-12-01
Intense dust storms (haboobs) erode desert soils and cause dramatic short-term increases in particulate matter (PM) concentration in the atmosphere. Background atmospheric PM levels in the southwestern United States also commonly exceed the National Ambient Air Quality Standards, so episodic haboobs and normal weather patterns both contribute to aeolian transport. We analyzed fine (PM2.5) and coarse (PM>2.5) dust fractions sampled in Tempe, Arizona for molecular biomarkers indicative of dust sourced from either native or agricultural soils. We focused on pigments and intact polar lipids (IPLs) that were also in soil crusts collected in the region. The PM samples were taken during two weeks (23 July to 5 August 2014) that included two haboobs during the first week and mostly calm weather with minor rainfall during the second week. We detected scytonemin, a diagnostic pigment biomarker for cyanobacteria, in all PM>2.5 samples, but its concentration was highest in haboob dust. Similarly, scytonemin was only abundant in PM2.5 samples taken during haboobs. Scytonemin is an important component of native biological soil crusts, protecting the crust community from UV radiation, and is ca. two orders of magnitude less abundant in disturbed agricultural soils. In biological soil crusts, scytonemin is associated with extracellular polysaccharides that are produced by cyanobacteria and bind soil into cohesive crusts. The association between scytonemin and haboobs suggests that native soil erosion is facilitated by high energy, episodic events that overcome crust cohesion. IPLs were abundant in agricultural soil crusts and included phosphatidylethanolamine from soil bacteria and a glucosylceramide from fungi. These compounds had similar concentration in haboob and background dust, suggesting agricultural or otherwise disturbed soils contribute more to ambient dust. In this study, we employed a new high resolution mass spectrometric method that produces molecular formulas and structural information, even at very low abundance. Employing this analysis on atmospheric PM improves our understanding of mechanisms by which soil crust biomarkers are transferred to lake and ocean sediments and can also contribute to source apportionment models for describing atmospheric dust contamination.
Shen, Guo F; Yuan, Si Y; Xie, Yu N; Xia, Si J; Li, Li; Yao, Yu K; Qiao, Yue Z; Zhang, Jie; Zhao, Qiu Y; Ding, Ai J; Li, Bin; Wu, Hai S
2014-01-01
The deteriorating air quality in eastern China including the Yangtze River Delta is attracting growing public concern. In this study, we measured the ambient PM10 and fine PM2.5 in the mega-city, Nanjing at four different times. The 24-h average PM2.5 and PM10 mass concentrations were 0.033-0.234 and 0.042-0.328 mg/m(3), respectively. The daily PM10 and PM2.5 concentrations were 2.9 (2.7-3.2, at 95% confidence interval) and 4.2 (3.8-4.6) times the WHO air quality guidelines of 0.025 mg/m(3) for PM2.5 and 0.050 mg/m(3) for PM10, respectively, which indicated serious air pollution in the city. There was no obvious weekend effect. The highest PM10 pollution occurred in the wintertime, with higher PM2.5 loadings in the winter and summer. PM2.5 was correlated significantly with PM10 and the average mass fraction of PM2.5 in PM10 was about 72.5%. This fraction varied during different sampling periods, with the lowest PM2.5 fraction in the spring but minor differences among the other three seasons.
Searches for lepton number violation and resonances in K ± → πμμ decays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batley, J. R.; Kalmus, G.; Lazzeroni, C.
The NA48/2 experiment at CERN collected a large sample of charged kaon decays to final states with multiple charged particles in 2003more » $-$2004. A new upper limit on the rate of the lepton number violating decay $$K^{\\pm}\\to\\pi^{\\mp}\\mu^{\\pm}\\mu^{\\pm}$$ is reported: $$\\mathcal{B}(K^{\\pm}\\to\\pi^{\\mp}\\mu^{\\pm}\\mu^{\\pm})<8.6 \\times 10^{-11}$$ at 90% CL. Searches for two-body resonances $X$ in $$K^{\\pm}\\to\\pi\\mu\\mu$$ decays (such as heavy neutral leptons $$N_4$$ and inflatons $$\\chi$$) are also presented. Finally, in the absence of signals, upper limits are set on the products of branching fractions $$\\mathcal{B}(K^{\\pm}\\to\\mu^{\\pm}N_4)\\mathcal{B}(N_4\\to\\pi\\mu)$$ and $$\\mathcal{B}(K^{\\pm}\\to\\pi^{\\pm}X)\\mathcal{B}(X\\to\\mu^+\\mu^-)$$ for ranges of assumed resonance masses and lifetimes. The limits are in the $$(10^{-11},10^{-9})$$ range for resonance lifetimes below 100 ps.« less
Searches for lepton number violation and resonances in K ± → πμμ decays
Batley, J. R.; Kalmus, G.; Lazzeroni, C.; ...
2017-03-18
The NA48/2 experiment at CERN collected a large sample of charged kaon decays to final states with multiple charged particles in 2003more » $-$2004. A new upper limit on the rate of the lepton number violating decay $$K^{\\pm}\\to\\pi^{\\mp}\\mu^{\\pm}\\mu^{\\pm}$$ is reported: $$\\mathcal{B}(K^{\\pm}\\to\\pi^{\\mp}\\mu^{\\pm}\\mu^{\\pm})<8.6 \\times 10^{-11}$$ at 90% CL. Searches for two-body resonances $X$ in $$K^{\\pm}\\to\\pi\\mu\\mu$$ decays (such as heavy neutral leptons $$N_4$$ and inflatons $$\\chi$$) are also presented. Finally, in the absence of signals, upper limits are set on the products of branching fractions $$\\mathcal{B}(K^{\\pm}\\to\\mu^{\\pm}N_4)\\mathcal{B}(N_4\\to\\pi\\mu)$$ and $$\\mathcal{B}(K^{\\pm}\\to\\pi^{\\pm}X)\\mathcal{B}(X\\to\\mu^+\\mu^-)$$ for ranges of assumed resonance masses and lifetimes. The limits are in the $$(10^{-11},10^{-9})$$ range for resonance lifetimes below 100 ps.« less
Revuelta, María Aránzazu; McIntosh, Gregg; Pey, Jorge; Pérez, Noemi; Querol, Xavier; Alastuey, Andrés
2014-05-01
A combined magnetic-chemical study of 15 daily, simultaneous PM10-PM2.5-PM1 urban background aerosol samples has been carried out. The magnetic properties are dominated by non-stoichiometric magnetite, with highest concentrations seen in PM10. Low temperature magnetic analyses showed that the superparamagnetic fraction is more abundant when coarse, multidomain particles are present, confirming that they may occur as an oxidized outer shell around coarser grains. A strong association of the magnetic parameters with a vehicular PM10 source has been identified. Strong correlations found with Cu and Sb suggests that this association is related to brake abrasion emissions rather than exhaust emissions. For PM1 the magnetic remanence parameters are more strongly associated with crustal sources. Two crustal sources are identified in PM1, one of which is of North African origin. The magnetic particles are related to this source and so may be used to distinguish North African dust from other sources in PM1. Copyright © 2014 Elsevier Ltd. All rights reserved.
Apparatus and method for handheld sampling
Staab, Torsten A.
2005-09-20
The present invention includes an apparatus, and corresponding method, for taking a sample. The apparatus is built around a frame designed to be held in at least one hand. A sample media is used to secure the sample. A sample media adapter for securing the sample media is operated by a trigger mechanism connectively attached within the frame to the sample media adapter.
Airborne particulate matter in school classrooms of northern Italy.
Rovelli, Sabrina; Cattaneo, Andrea; Nuzzi, Camilla P; Spinazzè, Andrea; Piazza, Silvia; Carrer, Paolo; Cavallo, Domenico M
2014-01-27
Indoor size-fractioned particulate matter (PM) was measured in seven schools in Milan, to characterize their concentration levels in classrooms, compare the measured concentrations with the recommended guideline values, and provide a preliminary assessment of the efficacy of the intervention measures, based on the guidelines developed by the Italian Ministry of Healthand applied to mitigate exposure to undesirable air pollutants. Indoor sampling was performed from Monday morning to Friday afternoon in three classrooms of each school and was repeated in winter 2011-2012 and 2012-2013. Simultaneously, PM2.5 samples were also collected outdoors. Two different photometers were used to collect the PM continuous data, which were corrected a posteriori using simultaneous gravimetric PM2.5 measurements. Furthermore, the concentrations of carbon dioxide (CO2) were monitored and used to determine the Air Exchange Rates in the classrooms. The results revealed poor IAQ in the school environment. In several cases, the PM2.5 and PM10 24 h concentrations exceeded the 24 h guideline values established by the World Health Organization (WHO). In addition, the indoor CO2 levels often surpassed the CO2 ASHRAE Standard. Our findings confirmed that important indoor sources (human movements, personal clouds, cleaning activities) emitted coarse particles, markedly increasing the measured PM during school hours. In general, the mean PM2.5 indoor concentrations were lower than the average outdoor PM2.5 levels, with I/O ratios generally <1. Fine PM was less affected by indoor sources, exerting a major impact on the PM1-2.5 fraction. Over half of the indoor fine particles were estimated to originate from outdoors. To a first approximation, the intervention proposed to reduce indoor particle levels did not seem to significantly influence the indoor fine PM concentrations. Conversely, the frequent opening of doors and windows appeared to significantly contribute to the reduction of the average indoor CO2 levels.
Ungvari, Gabor S; Xiang, Yu-Tao; Tang, Wai-Kwong; Shum, David
2008-09-01
Prospective memory (PM) is the ability to remember to do something in the future without explicit prompts. Extending the number of subjects and the scope of our previously published study, this investigation examined the relationship between PM and socio-demographic and clinical factors, activities of daily living (ADL) and frontal lobe functions in patients with chronic schizophrenia. One hundred and ten Chinese schizophrenia patients, 60 from the previous study and 50 additional patients recruited for this study, and 110 matched healthy comparison subjects (HC) formed the study sample. Patients' clinical condition and activity of daily living were evaluated with the Brief Psychiatric Rating Scale (BPRS) and the Functional Needs Assessment (FNA). Time- and event-based PM tasks and three tests of prefrontal lobe functions (Design Fluency Test [DFT], Tower of London [TOL], Wisconsin Card Sorting Test [WCST]) were also administered. Patients' level of ADL and psychopathology were not associated with PM functions and only anticholinergic medications (ACM) showed a significant negative correlational relationship with PM tasks. Confirming the findings of the previous study, patients performed significantly more poorly on all two PM tasks than HC. Performance on time-based PM task significantly correlated with age, education level and DFT in HC and with age, DFT, TOL and WCST in patients. Patients' performance on the event-based PM correlated with DFT and one measure of WCST. In patients, TOL and age predicted the performance on time-based PM task; DFT and WCST predicted the event-based task. Involving a large sample of patients with matched controls, this study confirmed that PM is impaired in chronic schizophrenia. Deficient PM functions were related to prefrontal lobe dysfunction in both HC and patients but not to the patients' clinical condition, nor did they significantly affect ADL. ACMs determined certain aspects of PM.
Analysis of PM2.5 in Córdoba, Argentina under the effects of the El Niño Southern Oscillation
NASA Astrophysics Data System (ADS)
Lanzaco, Bethania L.; Olcese, Luis E.; Querol, Xavier; Toselli, Beatriz M.
2017-12-01
In this work, PM2.5 samples were collected in the winter-spring months of 2014-2016 at an urban site in Córdoba. Córdoba is the second largest city in Argentina and is an important industrial and touristic center. The collected samples were individually analyzed for chemical composition using different techniques. The soluble inorganic ions and carbonaceous particles were determined from bulk aerosol samples for the first time in the city. The mass concentrations of PM2.5, organic carbon, elemental carbon, inorganic ions and metals were determined according to the mass balance. The dominant mass components were organic matter and elemental carbon (54.8%), mineral dust (6.1%), secondary inorganic aerosols (3.0%), and salt (1.2%). A principal component analysis was applied to the samples and resulted in five major factors that explained 79% of the variance in PM2.5. These factors represented combustion, industrial sources, soil dust, secondary inorganic aerosol, and salt, and each explained between 11% and 20% of the variance. A comparison with the results from a previous campaign (2010-2011) revealed appreciable changes in the PM2.5 chemical composition. These changes were attributed to the two extreme meteorological conditions that prevailed in the region. The years 2014-2016 were largely dominated by the warm phase of the El Niño-Southern Oscillation, which leads to humid and cold weather in the Córdoba region, while the samples from 2010 to 2011 were collected during the dry and hot years resulting from the La Niña regime.
Viegas, Carla; Faria, Tiago; Monteiro, Ana; Caetano, Liliana Aranha; Carolino, Elisabete; Quintal Gomes, Anita; Viegas, Susana
2017-12-27
Swine production has been associated with health risks and workers' symptoms. In Portugal, as in other countries, large-scale swine production involves several activities in the swine environment that require direct intervention, increasing workers' exposure to organic dust. This study describes an updated protocol for the assessment of occupational exposure to organic dust, to unveil an accurate scenario regarding occupational and environmental risks for workers' health. The particle size distribution was characterized regarding mass concentration in five different size ranges (PM0.5, PM1, PM2.5, PM5, PM10). Bioburden was assessed, by both active and passive sampling methods, in air, on surfaces, floor covering and feed samples, and analyzed through culture based-methods and qPCR. Smaller size range particles exhibited the highest counts, with indoor particles showing higher particle counts and mass concentration than outdoor particles. The limit values suggested for total bacteria load were surpassed in 35.7% (10 out of 28) of samples and for fungi in 65.5% (19 out of 29) of samples. Among Aspergillus genera, section Circumdati was the most prevalent (55%) on malt extract agar (MEA) and Versicolores the most identified (50%) on dichloran glycerol (DG18). The results document a wide characterization of occupational exposure to organic dust on swine farms, being useful for policies and stakeholders to act to improve workers' safety. The methods of sampling and analysis employed were the most suitable considering the purpose of the study and should be adopted as a protocol to be followed in future exposure assessments in this occupational environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalava, Pasi I.; Salonen, Raimo O.; Haelinen, Arja I.
2006-09-15
The impact of long-range transport (LRT) episodes of wildfire smoke on the inflammogenic and cytotoxic activity of urban air particles was investigated in the mouse RAW 264.7 macrophages. The particles were sampled in four size ranges using a modified Harvard high-volume cascade impactor, and the samples were chemically characterized for identification of different emission sources. The particulate mass concentration in the accumulation size range (PM{sub 1-0.2}) was highly increased during two LRT episodes, but the contents of total and genotoxic polycyclic aromatic hydrocarbons (PAH) in collected particulate samples were only 10-25% of those in the seasonal average sample. The abilitymore » of coarse (PM{sub 10-2.5}), intermodal size range (PM{sub 2.5-1}), PM{sub 1-0.2} and ultrafine (PM{sub 0.2}) particles to cause cytokine production (TNF{alpha}, IL-6, MIP-2) reduced along with smaller particle size, but the size range had a much smaller impact on induced nitric oxide (NO) production and cytotoxicity or apoptosis. The aerosol particles collected during LRT episodes had a substantially lower activity in cytokine production than the corresponding particles of the seasonal average period, which is suggested to be due to chemical transformation of the organic fraction during aging. However, the episode events were associated with enhanced inflammogenic and cytotoxic activities per inhaled cubic meter of air due to the greatly increased particulate mass concentration in the accumulation size range, which may have public health implications.« less
Variations of bacteria and fungi in PM2.5 in Beijing, China
NASA Astrophysics Data System (ADS)
Du, Pengrui; Du, Rui; Ren, Weishan; Lu, Zedong; Zhang, Yang; Fu, Pingqing
2018-01-01
Bacteria and fungi present in the airborne fine particulate matter (PM2.5) play important roles in the atmosphere and provide significant impacts on human health. However, variations in the species composition and community structure have not been well understood. In this study, we sampled PM2.5 in suburban Beijing and analyzed the bacterial and fungal composition during different seasons and at different air pollution levels using gene sequencing methods. The results showed that the species richness and diversity of bacterial communities displayed a downtrend with the aggravation of air pollution. Additionally, the bacterial communities in spring samples showed the highest species richness, with average richness estimators, ACE and Chao 1, up to 14,649 and 7608, respectively, followed by winter samples (7690 and 5031, respectively) and autumn samples (4368 and 3438, respectively), whereas summer samples exhibited the lowest average ACE and Chao 1 indexes (2916 and 1900, respectively). The species richness of fungal communities followed the same seasonal pattern. The community structure of bacteria and the species composition of fungi in PM2.5 showed significant seasonal variations. The dominant bacteria were Actinobacteria (33.89%), Proteobacteria (25.72%), Firmicutes (19.87%), Cyanobacteria/Chloroplast (15.34%), and Bacteroidetes (3.19%), and Ascomycota, with an average abundance of 74.68% of all sequences, were the most abundant fungi. At the genus level, as many as 791 bacterial genera and 517 fungal genera were identified in PM2.5. The results advance our understanding of the distribution and variation of airborne microorganisms in the metropolitan surrounding areas.
Feng, Jinglan; Yu, Hao; Liu, Shuhui; Su, Xianfa; Li, Yi; Pan, Yuepeng; Sun, Jianhui
2017-10-01
Seventeen PM 2.5 samples were collected at Xinxiang during winter in 2014. Nine water-soluble ions, 19 trace elements and eight fractions of carbonaceous species in PM 2.5 were analyzed. PM 2.5 concentrations and elements species during different periods with different pollution situations were compared. The threat of heavy metals in PM 2.5 was assessed using incremental lifetime cancer risk. During the whole period, serious regional haze pollution persisted, and the averaged concentration of PM 2.5 was 168.5 μg m -3 , with 88.2 % of the daily samples exhibiting higher PM 2.5 concentrations than the national air quality standard II. The high NO 3 - /SO 4 2- ratio suggested that vehicular exhaust made an important contribution to atmospheric pollution. All of organic carbon and elemental carbon ratios in this study were above 2.0 for PM 2.5 , which might reflect the combined contributions from coal combustion, motor vehicle exhaust and biomass burning. Mean 96-h backward trajectory clusters indicated that more serious air pollution occurred when air masses transported from the Hebei, Shanxi and Zhengzhou. The concentrations of the water-soluble ions and trace elements on haze days were 2 and 1.8 times of those on clear days. The heavy metals in PM 2.5 might not cause non-cancerous health issues by exposure through the human respiratory system. However, lifetime cancer risks of heavy metals obviously exceeded the threshold (10 -6 ) and might have a cancer risk for residents in Xinxiang. This study provided detailed composition data and comprehensive analysis of PM 2.5 during the serious haze pollution period and their potential impact on human health in Xinxiang.
NASA Astrophysics Data System (ADS)
Behrooz, Reza Dahmardeh; Esmaili-Sari, Abbas; Bahramifar, Nader; Kaskaoutis, D. G.; Saeb, Keivan; Rajaei, Fatemeh
2017-04-01
This study analyzes the chemical composition (water-soluble ions and trace elements) of the total suspended particles (TSP) and particulate matter less than 10 and 2.5 μm (PM10 and PM2.5) in the Sistan basin, southeast Iran during the dusty and windy period June - October 2014. Extreme TSP, PM10 and PM2.5 concentrations, means of 1624.8, 433.4 and 320.8 μgm-3, respectively, were recorded in the Zabol sampling site, while the examined water-soluble ions and trace metals constitute small fractions (∼4.1%-17.7%) of the particulate masses. Intense winds on the dust-storm days result in weathering of soil crust and deflation of evaporate minerals from the dried Hamoun lake beds in the Sistan basin. The soil samples are rich in Ca2+, SO42-, Na+ and Cl- revealing the existence of non-sea salts, as well as in Al, Fe and Mg, while the similarity in the chemical composition between soil and airborne samples indicates that the dust events over Sistan are local in origin. In contrast, low concentrations of secondary ions (i.e., nitrate) and heavy metals (i.e., Pb, Cr, Ni, Cu) indicate less anthropogenic and industrial emissions. Enrichment Factor analysis for TSP, PM10 and PM2.5 reveals that the anthropogenic sources contribute a substantial amount in the heavy metals rather than soil crust, while Al, Fe, Sn, Mg are mostly of crustal origin. The results provide essential knowledge in atmospheric chemistry over Sistan and in establishing mitigation strategies for air pollution control.
Ward, Tony J; Lincoln, Emily
2006-04-01
Throughout August and September, 2003, wildfires burned in close proximity to Missoula, Montana, with smoke emanating from the fires impacting the valley for much of the summer. This presented the perfect opportunity to measure the levels of polychlorinated dibenzodioxins and dibenzofurans (PCDD/F) comprising ambient forest fire smoke particles impacting the Missoula Valley. An air sampler at the Montana Department of Environmental Quality's (DEQ) compliance site in Missoula measured hourly averages of PM(10) throughout the fire season. Three collocated PM(2.5) cyclones collected 24-h smoke samples using quartz filters and Polyurethane Foam (PUF) sorbent cartridges. From the quartz filters, concentrations of Organic and Elemental Carbon (OC/EC) were measured, while PCDD/F were measured from one set of a filter (particle phase) and PUF (vapor phase) aggregate of samples in an attempt to also investigate the different phases of PCDD/F in forest fire smoke impaired communities. Hourly PM(10) concentrations peaked at 302.9 microg m(-3) on August 15. The highest OC concentration (115.6 microg m(-3)) was measured between August 21-22, and the highest EC concentration of 10.5 microg m(-3) was measured August 20-21. Measurable concentrations of PM(2.5) associated PCDD/Fs were not detected from a representative aggregate sample, with the exception of small amounts of 1,2,3,4,6,7,8-heptachlorodibenzodioxin and octachlorodibenzodioxin. PM(2.5) samples collected during the smoke events were composed of approximately 65% OC. However, the OC fraction of the particles collected in the smoke impaired Missoula valley was not composed of significant amounts of PCDD/F.
Indoor air quality in Latino homes in Boulder, Colorado
NASA Astrophysics Data System (ADS)
Escobedo, Luis E.; Champion, Wyatt M.; Li, Ning; Montoya, Lupita D.
2014-08-01
Indoor concentrations of airborne pollutants can be several times higher than those found outdoors, often due to poor ventilation, overcrowding, and the contribution of indoor sources within a home. Americans spend most of their time indoors where exposure to poor indoor air quality (IAQ) can result in diminished respiratory and cardiovascular health. This study measured the indoor air quality in 30 homes of a low-income Latino community in Boulder, Colorado during the summer of 2012. Participants were administered a survey, which included questions on their health conditions and indoor air pollution sources like cigarette smoke, heating fuel, and building materials. Twenty-four hour samples of fine particulate matter (PM2.5) from the indoor air were collected in each home; ambient PM2.5 samples were collected each day as well. Concurrent air samples were collected onto 47 mm Teflo and Tissuquartz filter at each location. Teflo filters were analyzed gravimetrically to measure PM2.5 and their extracts were used to determine levels of proteins and endotoxins in the fine fraction. The Tissuquartz filters were analyzed for elemental and organic carbon content (EC/OC). Results indicated that the indoor air contained higher concentrations of PM2.5 than the ambient air, and that the levels of OC were much higher than EC in both indoor and outdoor samples. This community showed no smoking in their homes and kept furry pets indoors at very low rates; therefore, cooking is likely the primary source of indoor PM. For responders with significant exposure to PM, it appeared to be primarily from occupational environments or childhood exposure abroad. Our findings indicate that for immigrant communities such as this, it is important to consider not only their housing conditions but also the relevant prior exposures when conducting health assessments.
Low Temperature Grown and Highly Non-Stoichiometric GaAs and Related Materials
1994-08-03
Ser. No. 67 (1983), p. 285.attributed to the nonuniformity of crystal growth 2T. Figielski, T. Wonsinski and A. Mokosa, Phys. Stat. Solidi (a) condition...1.75 pyramidal defect distribution was nonuniform in this pm; sample C, 1.6 pm; and sample D, 0.95 prm. Each sample, the defects being separated...the layers grown on [0011 oriented substrates whereas growth on the near [1101 substrates resulted in compositional nonuniformities , macrosteps for
Mineralogy and geochemistry of atmospheric particulates in western Iran
NASA Astrophysics Data System (ADS)
Ahmady-Birgani, Hesam; Mirnejad, Hassan; Feiznia, Sadat; McQueen, Ken G.
2015-10-01
This study investigates the mineralogy and physico-chemical properties of atmospheric particulates collected at Abadan (southwestern Iran) near the Persian Gulf coast and Urmia (northwestern Iran) during ambient and dust events over 6 months (winter 2011; spring 2012). Particle sizes collected were: TSP (total suspended particulates); PM10 (particulates <10 μm); and PM2.5 (particulates <2.5 μm). Minerals were identified using X-ray diffraction (XRD); particle morphology and composition were examined by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX). Major minerals detected are calcite, quartz, clay minerals and gypsum, with relative abundance related to sampling site, collection period, wind direction, sampling head, and total sample amount. The anomalously high calcite content appears a characteristic feature originated from calcareous soils of the region. SEM observations indicated a wide range of particle morphologies over the 1-50 μm size range, with spherical, platy, cubic, elongate and prismatic shapes and rounding from angular to rounded. Energy dispersive X-ray analysis of TSP samples from both sites for non-dusty periods indicated that the sampled mineral suite contained Al, Mg, Na, Cl, P, S, Ca, K, Fe, Ti, and Si, mostly reflecting calcite, quartz, aluminosilicates, clays, gypsum and halite. Additionally, As, Pb, Zn, Mn, Sc, Nd, W, Ce, La, Ba and Ni were detected in TSP, PM10 and PM2.5 samples collected during dust events.
Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42-60% (by weight) of fin...
The purpose of this SOP is to describe the stages of preparation required for Harvard particulate matter (PM) sampler impactor: (1) prior to in-field use of the particulate sampling system, (2) in-field sampling, and (3) disassembly after field use. This procedure applies direct...
Results from the NIST-EPA Interagency Agreement on Measurements and Standards in Aerosol Carbon: Sampling Regional PM2.5 for the Chemometric Optimization of Thermal-Optical Analysis Study will be presented at the American Association for Aerosol Research (AAAR) 24th Annual Confer...
ASSESSMENT OF ACUTE LUNG INJURY INDUCED BY PM 2.5 SAMPLES FROM TWO CITIES IN GERMANY WITH DIFFERING INCIDENCE OF ALLERGIES AND ASTHMA.
LR Bishop, J Heinrich*, MK Selgrade & MI Gilmour.
Experimental Toxicology Division, ORD/ NHEERL, U.S. EPA, RTP, NC. *GSF, Neuherberg,...
Size distribution of PM at Cape Verde - Santiago Island
NASA Astrophysics Data System (ADS)
Pio, C.; Nunes, T.; Cardoso, J.; Caseiro, A.; Cerqueira, M.; Custodio, D.; Freitas, M. C.; Almeida, S. M.
2012-04-01
The archipelago of Cape Verde is located on the eastern North Atlantic, about 500 km west of the African coast. Its geographical location, inside the main area of dust transport over tropical Atlantic and near the coast of Africa, is strongly affected by mineral dust from the Sahara and the Sahel regions. In the scope of the CVDust project a surface field station was implemented in the surroundings of Praia City, Santiago Island (14° 55' N e 23° 29' W, 98 m at sea level), where aerosol sampling throughout different samplers was performed during one year. To study the size distribution of aerosol, an optical dust monitor (Grimm 180), from 0.250 to 32 μm in 31 size channels, was running almost continuously from January 2011 to December 2011. The performance of Grimm 180 to quantify PM mass concentration in an area affected by the transport of Saharan dust particles was evaluated throughout the sampling period by comparison with PM10 mass concentrations obtained with the gravimetric reference method (PM10 TSI High-Volume, PM10 Partisol and PM10 TCR-Tecora). PM10 mass concentration estimated with the Grimm 180 dust monitor, an optical counter, showed a good correlation with the reference gravimetric method, with R2= 0.94 and a linear regression equation of PM10Grimm = 0.81PM10TCR- 5.34. The number and mass size distribution of PM at ground level together with meteorological and back trajectories were analyzed and compared for different conditions aiming at identifying different signatures related to sources and dust transport. January and February, the months when most Saharan dust events occurred, showed the highest concentrations, with PM10 daily average of 66.6±60.2 μg m-3 and 91.6±97.4 μg m-3, respectively. During these months PM1 and PM2.5 accounted for less than 11% and 47% of PM10 respectively, and the contribution of fine fractions (PM1 and PM2.5) to PM mass concentrations tended to increase for the other months. During Saharan dust events, the PM2.5 hourly average could reach mass concentrations higher than 200 μg m-3 whereas PM10 overpass 600 μg m-3. Acknowledgement: This work was funded by the Portuguese Science Foundation (FCT) through the project PTDD/AAC-CLI/100331/2008 and FCOMP-01-0124-FEDER-008646 (CV-Dust). J. Cardoso acknowledges the PhD grant SFRH-BD-6105-2009 from FCT.
2014-04-14
CAPE CANAVERAL, Fla. - Social media representatives get an up-close view of the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson
2014-04-14
CAPE CANAVERAL, Fla. - Social media representatives get an up-close view of the SpaceX Falcon 9 rocket and Dragon Capsule on Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. NASA Social participants are given the same access as news media in an effort to align the experience of social media representatives with those of traditional media, including the opportunity to view a launch of SpaceX’s Falcon 9 rocket, tour NASA facilities at Kennedy Space Center, speak with representatives from both NASA and SpaceX, view and take photographs of the SpaceX launch pad, meet fellow space enthusiasts who are active on social media and meet members of SpaceX and NASA's social media teams. Scheduled for launch at about 4:58 p.m. EDT April 14, Dragon will be making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights under NASA's Commercial Resupply Services contract to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Glenn Benson
NASA Astrophysics Data System (ADS)
Kertész, Zs.; Szoboszlai, Z.; Angyal, A.; Dobos, E.; Borbély-Kiss, I.
2010-06-01
In this work a source apportionment study is presented which aimed to characterize the PM 2.5 and PM 2.5-10 sources in the urban area of Debrecen, East-Hungary by using streaker samples, IBA methods and positive matrix factorization (PMF) analysis. Samples of fine (PM 2.5) and coarse (PM 2.5-10) urban particulate matter were collected with 2 h time resolution in the frame of five sampling campaigns during 2007-2009 in different seasons in the downtown of Debrecen. Elemental concentrations from Al to Pb of over 1000 samples were obtained by particle induced X-ray emission (PIXE); concentrations of black carbon (BC) were determined with a smoke stain reflectometer. On this data base source apportionment was carried out by using the PMF method. Seven factors were identified for both size fractions, including soil dust, traffic, secondary aerosol - sulphates, domestic heating, oil combustion, agriculture and an unknown factor enriched with chlorine. Seasonal and daily variation of the different factors was studied as well as their dependence on meteorological parameters. Besides determining the time patterns characteristic to the city, several emission episodes were identified including a Saharan dust intrusion on 21st-24th May, 2008.
NASA Astrophysics Data System (ADS)
Borgie, Mireille; Ledoux, Frédéric; Dagher, Zeina; Verdin, Anthony; Cazier, Fabrice; Courcot, Lucie; Shirali, Pirouz; Greige-Gerges, Hélène; Courcot, Dominique
2016-11-01
Located on the eastern side of the Mediterranean Basin at the intersection of air masses circulating between three continents, the agglomeration of Beirut, capital of Lebanon is an important investigating area for air pollution and more studies are needed to elucidate the composition of the smallest particles classified as carcinogenic to humans. PM2.5-0.3 and PM0.3 samples were collected during the spring-summer period in an urban background site of Beirut, after a dust storm episode occurred, and their chemical composition was determined. Our findings showed that components formed by gas to particle conversion (SO42 - and NH4+) and related to combustion processes are mainly found in the PM0.3 fraction. Typical crustal (Ca2+, Fe, Ti, Mg2+), sea-salt (Na+, Cl-, Mg2+, Sr) species, and NO3- are mainly associated with the PM2.5-0.3 fraction. We have also evidenced that the dust episode which occurred in Lebanon in May 2011 originated from the Iraqian and Syrian deserts, which are the least studied, and had a direct influence on the composition of PM2.5-0.3 during the beginning of the first sampling period, and then an indirect and persistent influence by the re-suspension of deposited dust particles. Moreover, PAHs concentrations were much higher in PM0.3 than in PM2.5-0.3 and their composition appeared influenced by diesel (buses, trucks and generator sets) and gasoline (private cars) emissions.
Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain).
López, J M; Callén, M S; Murillo, R; García, T; Navarro, M V; de la Cruz, M T; Mastral, A M
2005-09-01
An assessment of the air quality of Zaragoza (Spain) was performed by determining the trace element content in airborne PM10 in a sampling campaign from July 2001 to July 2002. Samples were collected in a heavy traffic area with a high volume air sampler provided with a PM10 cutoff inlet. The levels of 16 elements (Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, and Zn) were quantified after collecting the PM10 on Teflon-coated glass fiber filters (GFF). Regarding the PM10, 32% exceedance of the proposed PM10 daily limit was obtained, some of them corresponding to summer and autumn periods. The limit values of toxic trace elements from US-EPA, WHO, and EC were not exceeded, considering Zaragoza as a moderately polluted city under the current air quality guidelines. The contribution of anthropogenic sources to atmospheric elemental levels was reflected by the high values of enrichment factors for Zn, Pb, and Cu compared to the average crustal composition. Statistical analyses also determined the contribution of different sources to the PM10, finding that vehicle traffic and anthropogenic emissions related to combustion and industrial processes were the main pollutant sources as well as natural sources associated with transport of dust from Africa for specific dates. Regarding the influence of meteorological conditions on PM10 and trace elements concentrations, it was found that calm weather conditions with low wind speed favor the PM10 collection and the pollution for trace elements, suggesting the influence of local sources.
Weinstein, Jason P; Hedges, Scott R; Kimbrough, Sue
2010-02-01
Background PM(2.5) and PM(10) levels were determined during Harmattan (West African wind blown dust) at a background site in Conakry, Guinea. The study was conducted from January to February, 2004 when Harmattan dust appeared to be most pronounced. PM(2.5) concentrations at the Nongo American housing compound ranged from 38mugm(-3) to 177mugm(-3), and PM(10) ranged from 80mugm(-3) to 358mugm(-3), exceeding standards set by EPA and European Commission Environment Directorate-General. PTFE filter samples were analyzed for insoluble and soluble inorganic constituents by XRF and IC, respectively. Sulfur and associated SO(4)(2-) concentrations were notably consistent among PM(2.5) and PM(10) samples which marked a relatively stable S background signal from anthropogenic sources. Enrichment factor (EF) analysis and aerosol mass reconstruction (AMR) techniques were used to isolate potential PM source contributors. The EF's for SiO(2), TiO(2), Al(2)O(3), Fe(2)O(3), and MnO were near unity which suggests a crustal origin for these elements. EF's for Na(2)O and K(2)O were above unity and highly variable, these elements were elevated due to widespread mangrove wood combustion as a fuel source in Conakry. The EF's for Cr were notably high with a median of 7 and interquartile range from 5 to 16, the elevated levels were attributed to unregulated point source and mobile source emitters in and around Conakry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, Vardan
The ratio of the production cross sections times branching fractions (σ(B ± c)B(B ± c→J/ψπ ±))/(σ(B ±)B(B ±→J/ψK ±)) is studied in proton-proton collisions at a center of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires B c ± and B ± mesons with transverse momentum p T > 15 GeV and rapidity |y|< 1.6. The data sample corresponds to an integrated luminosity of 5.1 fb -1. The ratio is determined to be [0.48±0.05(stat)± 0.03(syst)±0.05 (τBc)]%. The B c ± → J/ψπ ± π ± π ∓ decay is also observedmore » in the same data sample. Using a model-independent method developed to measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions B(B ± c→J/ψπ ±π ±π ∓)/B(B ± c→J/ψπ ±) is measured to be 2.55±0.80(stat)±0.33(syst) +0.04 -0.01(τ Bc), consistent with the previous LHCb result.« less
Khachatryan, Vardan
2015-01-13
The ratio of the production cross sections times branching fractions (σ(B ± c)B(B ± c→J/ψπ ±))/(σ(B ±)B(B ±→J/ψK ±)) is studied in proton-proton collisions at a center of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires B c ± and B ± mesons with transverse momentum p T > 15 GeV and rapidity |y|< 1.6. The data sample corresponds to an integrated luminosity of 5.1 fb -1. The ratio is determined to be [0.48±0.05(stat)± 0.03(syst)±0.05 (τBc)]%. The B c ± → J/ψπ ± π ± π ∓ decay is also observedmore » in the same data sample. Using a model-independent method developed to measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions B(B ± c→J/ψπ ±π ±π ∓)/B(B ± c→J/ψπ ±) is measured to be 2.55±0.80(stat)±0.33(syst) +0.04 -0.01(τ Bc), consistent with the previous LHCb result.« less
Yi, Honghong; Hao, Jiming; Duan, Lei; Li, Xinghua; Guo, Xingming
2006-09-01
In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 microm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38-99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1-1 microm. In this size range, ESP and baghouse collection efficiencies are 85.79-98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.
The 1998 Baltimore PM Epidemiology-Exposure Study was conducted during the summer of 1998 with a goal of performing exposure assessment of PM and related copollutants involving a potentially susceptible population living in a retirement facility.
A total of 305 PM2.5,...
Characteristics of the Hadronic Production of the $$D^{*\\pm}$$ Meson (in Portuguese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Miranda, Jussara Marques
The Fermilab experiment E769, a 250 GeV /c tagged hadron beam incident on thin target foils of Be, Al,Cu, and W, measured themore » $$X_F$$ and $$p^2_t$$ distributions of $$D^{*\\pm}$$ through the decay mode$$D^{*\\pm} \\to D^0 \\pi^+, D^0 \\to K^- \\pi^+$$. Fitting the distributions to the form $$A(1 - X_F)^n$$ and $$B exp(-bp^2_t)$$, we determined $n$ - 3.84 ± 0.20 ± 0.06 and $b$ = 0. 7 48 ± 0.034 ± 0.009, respectively. We observe no significant lea.ding particle ef.~ct suggested by earlier experiments. The dependence of the total cross section on the atomic mass number was determined to be $$A^{0.98 \\pm 0,05 \\pm 0.04}$$ . The measurements were based on 351 ± 16 fully reconstructed $$D^{*\\pm}$$ mesons induced by a $$\\pi^{\\pm}$$ and $$K^{\\pm}$$ beam. This is the gest available sample of hadroproduced $$D^{*\\pm}$$.« less
An evaluation of indoor and outdoor biological particulate matter
NASA Astrophysics Data System (ADS)
Menetrez, M. Y.; Foarde, K. K.; Esch, R. K.; Schwartz, T. D.; Dean, T. R.; Hays, M. D.; Cho, S. H.; Betancourt, D. A.; Moore, S. A.
The incidences of allergies, allergic diseases and asthma are increasing world wide. Global climate change is likely to impact plants and animals, as well as microorganisms. The World Health Organization, U.S. Environmental Protection Agency, U.S. Department of Agriculture, U.S. Department of Health and Human Services, and the Intergovernmental Panel on Climate Change cite increased allergic reactions due to climate change as a growing concern. Monitoring of indoor and ambient particulate matter (PM) and the characterization of the content for biological aerosol concentrations has not been extensively performed. Samples from urban and rural North Carolina (NC), and Denver (CO), were collected and analyzed as the goal of this research. A study of PM 10 (<10 μm in aerodynamic diameter) and PM 2.5 (<2.5 μm in aerodynamic diameter) fractions of ambient bioaerosols was undertaken for a six month period to evaluate the potential for long-term concentrations. These airborne bioaerosols can induce irritational, allergic, infectious, and chemical responses in exposed individuals. Three separate sites were monitored, samples were collected and analyzed for mass and biological content (endotoxins, (1,3)-β- D-glucan and protein). Concentrations of these bioaerosols were reported as a function of PM size fraction, mass and volume of air sampled. The results indicated that higher concentrations of biologicals were present in PM 10 than were present in PM 2.5, except when near-roadway conditions existed. This study provides the characterization of ambient bioaerosol concentrations in a variety of areas and conditions.
Jones, S; Richardson, N; Bennett, M; Hoon, S R
2015-01-01
The significant increase in global air travel which has occurred during the last fifty years has generated growing concern regarding the potential impacts associated with increasing emissions of atmospheric particulate matter (PM) on health and the environment. PM within the airport environment may be derived from a range of sources. To date, however, the identification of individual sources of airport derived PM has remained elusive but constitutes a research priority for the aviation industry.The aim of this research was to identify distinctive and characteristic fingerprints of atmospheric PM derived from various sources in an airport environment through the use of environmental magnetic measurements. PM samples from aircraft engine emissions, brake wear and tire wear residues have been obtained from a range of different aircraft and engine types. Samples have been analyzed utilizing a range of magnetic mineral properties indicative of magnetic mineralogy and grain size. Results indicate that the dusts from the three 'aircraft' sources, (i.e. engines, brakes and tires) display distinctive magnetic mineral characteristics which may serve as 'magnetic fingerprints' for these sources. Magnetic measurements of runway dusts collected at different locations on the runway surface also show contrasting magnetic characteristics which, when compared with those of the aircraft-derived samples, suggest that they may relate to different sources characteristic of aircraft emissions at various stages of the take-off/landing cycle. The findings suggest that magnetic measurements could have wider applicability for the differentiation and identification of PM within the airport environment.
Hsu, Sha O-I; Ito, Kazuhiko; Lippmann, Morton
2011-01-01
Population-based personal exposures to particulate matter (PM) and personal-ambient relationships of PM and component concentrations for outpatients with COPD and/or asthma were investigated in New York City (NYC) and Seattle for thoracic PM (PM(10)) and fine PM (PM(2.5)). Measurements of outdoor, indoor, and personal PM(10) and PM(2.5) concentrations were made concurrently for 12-consecutive days at 24 patients' residences. Filters were analyzed for elemental components, using XRF and black carbon (BC), by reflectance. Daily morning and evening measurements of heart rate (HR) and blood oxygen saturation (SpO(2)) by pulse oximeter, and forced expiratory volume in 1 s (FEV(1)) and peak expiratory flowrate (PEF) by spirometry were also measured, and symptom data were collected. Central monitoring site, outdoor, indoor, and personal concentration-response relationships of PM(2.5), PM(10-2.5), and their components were examined using mixed-effect models. The relatively small sample size of the study limited the interpretation of results, but of the PM chemical components examined, only nickel concentrations showed consistent associations, and only with HR in the NYC COPD patients.
NASA Astrophysics Data System (ADS)
Amodio, M.; Andriani, E.; Daresta, B. E.; de Gennaro, G.; di Gilio, A.; Ielpo, P.,; Placentino, C. M.; Trizio, L.; Tutino, M.
2010-05-01
Several epidemiological studies have shown the negative effects of air pollution on human health, which range from respiratory and cardiovascular disease to neurotoxic effects, and cancer. Most recent investigations have been focused on health toxicological features of Particulate Matter (PM) and its interactions with other pollutants: it was found that fine particles (PM2.5) could be an effective media to transport these pollutants deeply into the lung and to cause many kind of reactions which include oxidative stress, local pulmonary and systemic inflammatory responses (Künzli and Perez, 2009). Based on these implications on public health, many countries have developed plans to suggest effective control strategies which involve the identification of Particulate Matter sources, the quantitative estimation of the emission rates of the pollutants, the understanding of PM transport, mixing and transformation processes and the identification of main factors influencing PM concentrations. In this field, receptor models can be useful tools to estimate sources contributions to PM collected in an area under investigations. Different approaches to receptor model analysis can be distinguished on basis of whether chemical characteristics of emission sources are required to be known before the source apportionment. The multivariate approach could be preferred when a lack of information concerning sources profiles occurred (Hopke, 2003). In this work, the results obtained by applying an integrated approach in the monitoring of PM using several typologies of instrumentations will be shown. A prototype for the determination of the contributions of a single source (‘fugitive emission') on the fine PM concentrations has been developed: it consists of a Swam dual-channel sampler, an OPC Monitor, a sonic anemometer and a PBL Mixing monitor. The investigated site chosen for the application of prototype will be the iron and steel pole of Taranto (Apulia Region, South of Italy). Fugitive emission campaign will be performed by using three different positions around the Taranto industrial area; the main interest on Taranto is due to the presence of several activities of high impact as very wide industrial area close to the town and the numerous maritime and military activities in the harbour area (Amodio et al., 2008). The aim is to triangulate the area of the examined source on the basis of the prevalent directions of the wind. The investigation will be completed by chemical-physical characterization of PM2.5 and PM10 samples collected by the prototype in order to have additional information about the possible emissive sources. The statistical analysis, performed by Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF), will be used for a detailed study of the impact of the local emissive source on the neighboring areas. Finally, the prototype will allow to identify and distinguish long range transport, regional and other local contributions on the fine PM concentrations. This work was supported by the Strategic Project PS_122 founded by Apulia Region. References Künzli, N., Perez, L., 2009. Swiss Medical Weekly 139(17-18), 242-250. Hopke, P.K., 2003. Journal of Chemometrics 17(5), 255-265. Amodio, M., Caselli, M., Daresta, B.E., de Gennaro, G., Ielpo, P., Placentino, C.M., Tutino, 2008. Chemical Engineering Transactions 16, 193-199.
2013-01-01
Lactobacillus panis strain PM1 is an obligatory heterofermentative and aerotolerant microorganism that also produces 1,3-propanediol from glycerol. This study investigated the metabolic responses of L. panis PM1 to oxidative stress under aerobic conditions. Growth under aerobic culture triggered an early entrance of L. panis PM1 into the stationary phase along with marked changes in end-product profiles. A ten-fold higher concentration of hydrogen peroxide was accumulated during aerobic culture compared to microaerobic culture. This H2O2 level was sufficient for the complete inhibition of L. panis PM1 cell growth, along with a significant reduction in end-products typically found during anaerobic growth. In silico analysis revealed that L. panis possessed two genes for NADH oxidase and NADH peroxidase, but their expression levels were not significantly affected by the presence of oxygen. Specific activities for these two enzymes were observed in crude extracts from L. panis PM1. Enzyme assays demonstrated that the majority of the H2O2 in the culture media was the product of NADH: H2O2 oxidase which was constitutively-active under both aerobic and microaerobic conditions; whereas, NADH peroxidase was positively-activated by the presence of oxygen and had a long induction time in contrast to NADH oxidase. These observations indicated that a coupled NADH oxidase - NADH peroxidase system was the main oxidative stress resistance mechanism in L. panis PM1, and was regulated by oxygen availability. Under aerobic conditions, NADH is mainly reoxidized by the NADH oxidase - peroxidase system rather than through the production of ethanol (or 1,3-propanediol or succinic acid production if glycerol or citric acid is available). This system helped L. panis PM1 directly use oxygen in its energy metabolism by producing extra ATP in contrast to homofermentative lactobacilli. PMID:23369580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodek, A.
2014-09-19
We report on the extraction ofmore » $$\\sin^2\\theta^{\\rm lept}_{\\rm eff}$$ and indirect measurement of the mass of the W boson from the forward-backward asymmetry of $$\\mu^+\\mu^-$$ events in the $Z$ boson mass region. The data sample collected by the CDF detector corresponds to the full 9 fb$$^{-1}$$ run II sample. We measure $$\\sin^2 \\theta^{\\rm lept}_{\\rm eff} = 0.2315 \\pm 0.0010$$,$$ \\sin^2 \\theta_W = 0.2233 \\pm 0.0009$$ and $$M_W ({\\rm indirect}) = 80.365 \\pm 0.047 \\;{\\rm GeV}/c^2$$, where each uncertainty includes both statistical and systematic contributions.« less
sin 2 θ eff lept and M W(indirect) extracted from 9 fb -1 μ +μ - event sample at CDF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodek, A.
2016-05-31
Here, we report on the extraction ofmore » $$\\sin^2\\theta^{\\rm lept}_{\\rm eff}$$ and indirect measurement of the mass of the W boson from the forward-backward asymmetry of $$\\mu^+\\mu^-$$ events in the $Z$ boson mass region. The data sample collected by the CDF detector corresponds to the full 9 fb$$^{-1}$$ run II sample. We measure $$\\sin^2 \\theta^{\\rm lept}_{\\rm eff} = 0.2315 \\pm 0.0010$$, $$ \\sin^2 \\theta_W = 0.2233 \\pm 0.0009$$ and $$M_W ({\\rm indirect}) = 80.365 \\pm 0.047 \\;{\\rm GeV}/c^2$$, where each uncertainty includes both statistical and systematic contributions. Comparison with the results of the D0 collaboration are presented.« less
NASA Astrophysics Data System (ADS)
Bozlaker, Ayşe; Buzcu-Güven, Birnur; Fraser, Matthew P.; Chellam, Shankararaman
2013-04-01
Petroleum refineries may emit large quantities of pollutants during non-routine operations that include start-ups and shutdowns, planned maintenance, and unplanned equipment failures. The Texas Commission on Environmental Quality (TCEQ) tracks such events by requiring industries to self-report estimates of these emissions because they often have a detrimental impact on local air quality and potentially, public health. An inventory of non-routine episodic emission events is available via TCEQ's website. However, there is on-going concern that such episodic emissions are sometimes under-reported or even not cataloged. Herein, we present concentrations of 42 main group, transition, and lanthanoid elements in 114 time-resolved (3 or 6 h) samples collected over a 1-month period. We also develop strategies to identify aerosol sources using elemental tracers and compare source apportionment (performed by positive matrix factorization) based on ambient measurements to inventoried non-routine emission events. Through interpretation of key marker elements, five sources impacting concentrations of metals in PM10 were identified and calculated to contribute 73% of the measured PM10 mass. On average, primary emissions from fluidized-bed catalytic cracking (FCC) units negligibly contributed to apportioned PM10 mass. However, 35 samples were identified as impacted by transient PM10 emissions from FCC units because of elevated levels of lanthanoid metals and their ratios. Only 31 of these 35 samples coincided with self-reported non-routine emission events. Further, roughly half of the emission event self-reports detailed only emissions of gaseous pollutants. Based on this, we posit that not all PM10 emission events are reported and even self-reported emission events are incomplete - those that only catalog gaseous pollutants may also include unreported PM emissions.
Relationship between physico-chemical characteristics and potential toxicity of PM10.
Megido, Laura; Suárez-Peña, Beatriz; Negral, Luis; Castrillón, Leonor; Suárez, Susana; Fernández-Nava, Yolanda; Marañón, Elena
2016-11-01
PM10 was sampled at a suburban location affected by traffic and industry in the north of Spain. The samples were analysed to determine the chemical components of PM10 (organic and elemental carbon, soluble chemical species and metals). The aim of this study was to assess the toxicity of PM10 in terms of the bulk analysis and the physico-chemical properties of the particles. Total carbon, sulphates, ammonium, chlorides and nitrates were found to be the major constituents of PM10. The contribution of the last of these was found to increase significantly with PM10 concentration (Pearson coefficient correlation of 0.7, p-value < 0.001). Individual airborne particles were characterised morphologically and chemically via a combination of Scanning Electron Microscopy and Energy-Dispersive X-ray spectroscopy (SEM-EDX). The subsequent image analysis revealed C-rich particles with shapes that pointed to combustion processes. Moreover, carbonaceous particles seemed to act as vehicles for sulphur compounds and metals (S, Na, Fe, Ca, Mg, K, Al, Mn, Zn and Cu). Coarse particles were found to be mainly constituted by crustal material and marine and carbonaceous particles. Although most of the studied individual particles in PM10 samples (86.0%) had a diameter within the 0.1-2.5 μm range, 1.8% of them had sizes lower than 0.1 μm 40.2% of the total studied particles were estimated to be inhaled and deposited in the human respiratory tract; 12.3% of these particles would reach the deepest zones, thereby posing a major risk to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Soltani, Naghmeh; Keshavarzi, Behnam; Sorooshian, Armin; Moore, Farid; Dunster, Christina; Dominguez, Ana Oliete; Kelly, Frank J; Dhakal, Prakash; Ahmadi, Mohamad Reza; Asadi, Sina
2017-03-09
Concentrations of total suspended particulate matter, particulate matter with aerodynamic diameter <2.5 μm (PM 2.5 ), particulate matter <10 μm (PM 10 ), and fallout dust were measured at the Iranian Gol-E-Gohar Mining and Industrial Facility. Samples were characterized in terms of mineralogy, morphology, and oxidative potential. Results show that indoor samples exceeded the 24-h PM 2.5 and PM 10 mass concentration limits (35 and 150 µg m -3 , respectively) set by the US National Ambient Air Quality Standards. Calcite, magnetite, tremolite, pyrite, talc, and clay minerals such as kaolinite, vermiculite, and illite are the major phases of the iron ore PM. Accessory minerals are quartz, dolomite, hematite, actinolite, biotite, albite, nimite, laumontite, diopside, and muscovite. The scanning electron microscope structure of fibrous-elongated minerals revealed individual fibers in the range of 1.5 nm to 71.65 µm in length and 0.2 nm to 3.7 µm in diameter. The presence of minerals related to respiratory diseases, such as talc, crystalline silica, and needle-shaped minerals like amphibole asbestos (tremolite and actinolite), strongly suggests the need for detailed health-based studies in the region. The particulate samples show low to medium oxidative potential per unit of mass, in relation to an urban road side control, being more reactive with ascorbate than with glutathione or urate. However, the PM oxidative potential per volume of air is exceptionally high, confirming that the workers are exposed to a considerable oxidative environment. PM released by iron ore mining and processing activities should be considered a potential health risk to the mine workers and nearby employees, and strategies to combat the issue are suggested.
Fine PM measurements: personal and indoor air monitoring.
Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H
2002-12-01
This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.
NASA Astrophysics Data System (ADS)
Amil, Norhaniza; Talib Latif, Mohd; Firoz Khan, Md; Mohamad, Maznorizan
2016-04-01
This study investigates the fine particulate matter (PM2.5) variability in the Klang Valley urban-industrial environment. In total, 94 daily PM2.5 samples were collected during a 1-year campaign from August 2011 to July 2012. This is the first paper on PM2.5 mass, chemical composition and sources in the tropical environment of Southeast Asia, covering all four seasons (distinguished by the wind flow patterns) including haze events. The samples were analysed for various inorganic components and black carbon (BC). The chemical compositions were statistically analysed and the temporal aerosol pattern (seasonal) was characterised using descriptive analysis, correlation matrices, enrichment factor (EF), stoichiometric analysis and chemical mass closure (CMC). For source apportionment purposes, a combination of positive matrix factorisation (PMF) and multi-linear regression (MLR) was employed. Further, meteorological-gaseous parameters were incorporated into each analysis for improved assessment. In addition, secondary data of total suspended particulate (TSP) and coarse particulate matter (PM10) sampled at the same location and time with this study (collected by Malaysian Meteorological Department) were used for PM ratio assessment. The results showed that PM2.5 mass averaged at 28 ± 18 µg m-3, 2.8-fold higher than the World Health Organisation (WHO) annual guideline. On a daily basis, the PM2.5 mass ranged between 6 and 118 µg m-3 with the daily WHO guideline exceeded 43 % of the time. The north-east (NE) monsoon was the only season with less than 50 % sample exceedance of the daily WHO guideline. On an annual scale, PM2.5 mass correlated positively with temperature (T) and wind speed (WS) but negatively with relative humidity (RH). With the exception of NOx, the gases analysed (CO, NO2, NO and SO2) were found to significantly influence the PM2.5 mass. Seasonal variability unexpectedly showed that rainfall, WS and wind direction (WD) did not significantly correlate with PM2.5 mass. Further analysis on the PM2.5 / PM10, PM2.5 / TSP and PM10 / TSP ratios reveal that meteorological parameters only greatly influenced the coarse particles (particles with an aerodynamic diameter of greater than 2.5 µm) and less so the fine particles at the site. Chemical composition showed that both primary and secondary pollutants of PM2.5 are equally important, albeit with seasonal variability. The CMC components identified were in the decreasing order of (mass contribution) BC > secondary inorganic aerosols (SIA) > dust > trace elements > sea salt > K+. The EF analysis distinguished two groups of trace elements: those with anthropogenic sources (Pb, Se, Zn, Cd, As, Bi, Ba, Cu, Rb, V and Ni) and those with a crustal source (Sr, Mn, Co and Li). The five identified factors resulting from PMF 5.0 were (1) combustion of engine oil, (2) mineral dust, (3) mixed SIA and biomass burning, (4) mixed traffic and industrial and (5) sea salt. Each of these sources had an annual mean contribution of 17, 14, 42, 10 and 17 % respectively. The dominance of each identified source largely varied with changing season and a few factors were in agreement with the CMC, EF and stoichiometric analysis, accordingly. In relation to meteorological-gaseous parameters, PM2.5 sources were influenced by different parameters during different seasons. In addition, two air pollution episodes (HAZE) revealed the influence of local and/or regional sources. Overall, our study clearly suggests that the chemical constituents and sources of PM2.5 were greatly influenced and characterised by meteorological and gaseous parameters which vary greatly with season.
NASA Astrophysics Data System (ADS)
Commodore, Adwoa A.; Hartinger, Stella M.; Lanata, Claudio F.; Mäusezahl, Daniel; Gil, Ana I.; Hall, Daniel B.; Aguilar-Villalobos, Manuel; Naeher, Luke P.
2013-11-01
Nearly half of the world's population is exposed to household air pollution (HAP) due to long hours spent in close proximity to unvented cooking fires. We aimed to use PM2.5 and CO measurements to characterize exposure to cookstove generated woodsmoke in real time among control (n = 10) and intervention (n = 9) households in San Marcos, Cajamarca Region, Peru. Real time personal particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5), and personal and kitchen carbon monoxide (CO) samples were taken. Control households used a number of stoves including open fire and chimney stoves while intervention households used study-promoted chimney stoves. Measurements were categorized into lunch (9 am-1 pm) and dinner (3 pm-7 pm) periods, where applicable, to adjust for a wide range of sampling periods (2.8-13.1 h). During the 4-h time periods, mean personal PM2.5 exposures were correlated with personal CO exposures during lunch (r = 0.67 p = 0.024 n = 11) and dinner (r = 0.72 p = 0.0011 n = 17) in all study households. Personal PM2.5 exposures and kitchen CO concentrations were also correlated during lunch (r = 0.76 p = 0.018 n = 9) and dinner (r = 0.60 p = 0.018 n = 15). CO may be a useful indicator of PM during 4-h time scales measured in real time, particularly during high woodsmoke exposures, particularly during residential biomass cooking.
Abdeen, Ziad; Heo, Jongbae; Wu, Bo; Shpund, Jacob; Vanger, Arye; Sharf, Geula; Moise, Tamar; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Al-Mahasneh, Qusai M.; Sarnat, Jeremy A.; Schauer, James J.
2014-01-01
Ambient fine particulate matter (PM2.5) samples were collected from January to December 2007 to investigate the sources and chemical speciation in Palestine, Jordan, and Israel. The 24-h PM2.5 samples were collected on 6-day intervals at eleven urban and rural sites simultaneously. Major chemical components including metals, ions, and organic and elemental carbon were analyzed. The mass concentrations of PM2.5 across the 11 sites varied from 20.6 to 40.3 μg/m3, with an average of 28.7 μg/m3. Seasonal variation of PM2.5 concentrations was substantial, with higher average concentrations (37.3 μg/m3) in the summer (April–June) months compared to winter (October–December) months (26.0 μg/m3) due mainly to high contributions of sulfate and crustal components. PM2.5 concentrations in the spring were greatly impacted by regional dust storms. Carbonaceous mass was the most abundant component, contributing 40% to the total PM2.5 mass averaged across the eleven sites. Crustal components averaged 19.1% of the PM2.5 mass and sulfate, ammonium, and nitrate accounted for 16.2%, 6.4%, and 3.7%, respectively, of the total PM2.5 mass. The results of this study demonstrate the need to better protect the health and welfare of the residents on both sides of the Jordan River in the Middle East. PMID:25045751
Concentrations, properties, and health risk of PM2.5 in the Tianjin City subway system.
Wang, Bao-Qing; Liu, Jian-Feng; Ren, Zi-Hui; Chen, Rong-Hui
2016-11-01
A campaign was conducted to assess and compare the personal exposure in L3 of Tianjin subway, focusing on PM 2.5 levels, chemical compositions, morphology analysis, as well as the health risk of heavy metal in PM 2.5 . The results indicated that the average concentration of the PM 2.5 was 151.43 μg/m 3 inside the train of the subway during rush hours. PM 2.5 concentrations inside car under the ground are higher than those on the ground, and PM 2.5 concentrations on the platform are higher than those inside car. Regarding metal concentrations, the highest element in PM 2.5 samples was Fe; the level of which is 17.55 μg/m 3 . OC is a major component of PM 2.5 in Tianjin subway. Secondary organic carbon is the formation of gaseous organic pollutants in subway. SEM-EDX and TEM-EDX exhibit the presence of individual particle with a large metal content in the subway samples. For small Fe metal particles, iron oxide can be formed easily. With regard to their sources, Fe-containing particles are generated mainly from mechanical wear and friction processes at the rail-wheel-brake interfaces. The non-carcinogenic risk to metals Cr, Ni, Cu, Zn and Pb, and carcinogenic hazard of Cr and Ni were all below the acceptable level in L3 of Tianjin subway.
Clark, Adelaide E; Yoon, Subin; Sheesley, Rebecca J; Usenko, Sascha
2016-12-01
The atmospheric concentrations of seven current-use pesticides in particulate matter were determined at four locations throughout the Houston metropolitan area in TSP and PM 2.5 samples from September 2013. Atmospheric concentrations in both TSP and PM 2.5 ranged from below method detection limits (MDLs) to nearly 1100 pg m -3 . The three compounds most frequently detected above MDLs were chlorothalonil, bifenthrin, and λ-cyhalothrin. Atmospheric chlorothalonil concentrations were above 800 pg m -3 in several TSP samples, but
Evolution of deep-bed filtration of engine exhaust particulates with trapped mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viswanathan, Sandeep; Rothamer, David A.; Foster, David E.
Micro-scale filtration experiments were performed on cordierite filter samples using particulate matter (PM) generated by a spark-ignition direct-injection (SIDI) engine fueled with tier II EEE certification gasoline. Size-resolved mass and number concentrations were obtained from several engine operating conditions. The resultant mass-mobility relationships showed weak dependence on the operating condition. An integrated particle size distribution (IPSD) method was used estimate the PM mass concentration in the exhaust stream from the SIDI engine and a heavy duty diesel (HDD) engine. The average estimated mass concentration between all conditions was ~77****** % of the gravimetric measurements performed on Teflon filters. Despite themore » relatively low elemental carbon fraction (~0.4 to 0.7), the IPSD mass for stoichiometric SIDI exhaust was ~83±38 % of the gravimetric measurement. Identical cordierite filter samples with properties representative of diesel particulate filters were sequentially loaded with PM from the different SIDI engine operating conditions, in order of increasing PM mass concentration. Simultaneous particle size distribution measurements upstream and downstream of the filter sample were used to evaluate filter performance evolution and the instantaneous trapped mass within the filter for two different filter face velocities. The evolution of filtration performance for the different samples was sensitive only to trapped mass, despite using PM from a wide range of operating conditions. Higher filtration velocity resulted in a more rapid shift in the most penetrating particle size towards smaller mobility diameters.« less
Kelley, Shannon E; van Dongen, Josanne D M; Donnellan, M Brent; Edens, John F; Eisenbarth, Hedwig; Fossati, Andrea; Howner, Katarina; Somma, Antonella; Sörman, Karolina
2018-05-01
The Triarchic Assessment Procedure for Inconsistent Responding (TAPIR; Mowle et al., 2016) was recently developed to identify inattentiveness or comprehension difficulties that may compromise the validity of responses on the Triarchic Psychopathy Measure (TriPM; Patrick, 2010). The TAPIR initially was constructed and cross-validated using exclusively English-speaking participants from the United States; however, research using the TriPM has been increasingly conducted internationally, with numerous foreign language translations of the measure emerging. The present study examined the cross-language utility of the TAPIR in German, Dutch, Swedish, and Italian translations of the TriPM using 6 archival samples of community members, university students, forensic psychiatric inpatients, forensic detainees, and adolescents residing outside the United States (combined N = 5,404). Findings suggest that the TAPIR effectively detects careless responding across these 4 translated versions of the TriPM without the need for language-specific modifications. The TAPIR total score meaningfully discriminated genuine participant responses from both fully and partially randomly generated data in every sample, and demonstrated further utility in detecting fixed "all true" or "all false" response patterns. In addition, TAPIR scores were reliably associated with inconsistent responding scores from another psychopathy inventory. Specificity for a range of tentative cut scores for assessing profile validity was modestly reduced among our samples relative to rates previously obtained with the English version of the TriPM; however, overall the TAPIR appears to demonstrate satisfactory cross-language generalizability. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Gaidajis, Georgios; Angelakoglou, Komninos; Gazea, Emmy
2012-01-01
To assess ambient air quality at the wider area of a mining-industrial facility in Chalkidiki, Greece, the particulate matter with an aerodynamic diameter of 10 μm (PM(10)) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn were monitored for a period of three years (2008-2010). Gravimetric air samplers were employed for the particulate matter sampling at three sampling stations located in the immediate vicinity of the industrial facility and at a neighbouring residential site. Monitoring data indicated that the 3-year median PM(10) concentrations were 23.3 μg/m(3) at the residential site close to the facility and 28.7 μg/m(3) at the site within the facility indicating a minimal influence from the industrial activities to the air quality of the neighbouring residential area. Both annual average and median PM(10) concentration levels were below the indicative European standards, whereas similar spatial and temporal variation was observed for the PM(10) constituents. The average Pb concentrations measured for the three sampling sites were 0.2, 0.146 and 0.174 μg/m(3) respectively, well below the indicative limit of 0.5 μg/m(3). The quantitative and qualitative comparison of PM(10) concentrations and its elemental constituent for the three sampling stations did not indicate any direct influence of the mining-industrial activities to the air quality of the Stratoni residential area.
Smargiassi, Audrey; Brand, Allan; Fournier, Michel; Tessier, François; Goudreau, Sophie; Rousseau, Jacques; Benjamin, Mario
2012-07-01
Residential wood burning can be a significant wintertime source of ambient fine particles in urban and suburban areas. We developed a statistical model to predict minute (min) levels of particles with median diameter of <1 μm (PM1) from mobile monitoring on evenings of winter weekends at different residential locations in Quebec, Canada, considering wood burning emissions. The 6 s PM1 levels were concurrently measured on 10 preselected routes travelled 3 to 24 times during the winters of 2008-2009 and 2009-2010 by vehicles equipped with a GRIMM or a dataRAM sampler and a Global Positioning System device. Route-specific and global land-use regression (LUR) models were developed using the following spatial and temporal covariates to predict 1-min-averaged PM1 levels: chimney density from property assessment data at sampling locations, PM2.5 "regional background" levels of particles with median diameter of <2.5 μm (PM2.5) and temperature and wind speed at hour of sampling, elevation at sampling locations and day of the week. In the various routes travelled, between 49% and 94% of the variability in PM1 levels was explained by the selected covariates. The effect of chimney density was not negligible in "cottage areas." The R(2) for the global model including all routes was 0.40. This LUR is the first to predict PM1 levels in both space and time with consideration of the effects of wood burning emissions. We show that the influence of chimney density, a proxy for wood burning emissions, varies by regions and that a global model cannot be used to predict PM in regions that were not measured. Future work should consider using both survey data on wood burning intensity and information from numerical air quality forecast models, in LUR models, to improve the generalisation of the prediction of fine particulate levels.
Bee, Giuseppe; Anderson, Abbey L; Lonergan, Steven M; Huff-Lonergan, Elisabeth
2007-06-01
The objective of this study was to determine the extent to which early postmortem (PM) pH decline influences proteolysis of the intermediate filament protein desmin, the costameric proteins vinculin and talin and autolysis of μ-calpain in the longissimus muscle (LM) of pigs from two genetic lines. Based on the LM 3h pH (H=3h pH of LM>6.0; L=3h pH of LM pH<5.7) PM, 10 carcasses per line and pH group were selected. The average 3h pH within pH group was 6.23 (H) and 5.44 (L). The LM samples were collected 24, 48, 72, and 120h PM and percent drip loss was measured after 1, 2, and 4d of storage. Samples collected at 24, 48, 72, and 120h PM were used to monitor desmin, vinculin, and talin degradation and samples collected at 24h PM were used to determine the extent of μ-calpain autolysis by immunoblotting. Higher (P<0.01) pH values at 45min, 6h, and 24h PM and lower (P<0.01) drip losses after 1, 2, and 4d of storage were recorded in the H-compared to the L-group. Abundance of the 76kDa μ-calpain autolysis product was greater (P<0.01), proteolysis of talin at all measured time points and proteolysis of desmin after 24 and 48h PM was greater (P⩽0.03) in the H-group than in the L-group. The current findings indicate activation rate of μ-calpain may be associated with proteolysis of desmin and talin and could play a role in the development of drip loss. The rate of early PM pH decline can partly explain the variation of desmin and talin degradation by affecting the activation of μ-calpain.
Kim, Yong Ho; Warren, Sarah H; Krantz, Q Todd; King, Charly; Jaskot, Richard; Preston, William T; George, Barbara J; Hays, Michael D; Landis, Matthew S; Higuchi, Mark; DeMarini, David M; Gilmour, M Ian
2018-01-24
The increasing size and frequency of wildland fires are leading to greater potential for cardiopulmonary disease and cancer in exposed populations; however, little is known about how the types of fuel and combustion phases affect these adverse outcomes. We evaluated the mutagenicity and lung toxicity of particulate matter (PM) from flaming vs. smoldering phases of five biomass fuels, and compared results by equal mass or emission factors (EFs) derived from amount of fuel consumed. A quartz-tube furnace coupled to a multistage cryotrap was employed to collect smoke condensate from flaming and smoldering combustion of red oak, peat, pine needles, pine, and eucalyptus. Samples were analyzed chemically and assessed for acute lung toxicity in mice and mutagenicity in Salmonella . The average combustion efficiency was 73 and 98% for the smoldering and flaming phases, respectively. On an equal mass basis, PM from eucalyptus and peat burned under flaming conditions induced significant lung toxicity potencies (neutrophil/mass of PM) compared to smoldering PM, whereas high levels of mutagenicity potencies were observed for flaming pine and peat PM compared to smoldering PM. When effects were adjusted for EF, the smoldering eucalyptus PM had the highest lung toxicity EF (neutrophil/mass of fuel burned), whereas smoldering pine and pine needles had the highest mutagenicity EF. These latter values were approximately 5, 10, and 30 times greater than those reported for open burning of agricultural plastic, woodburning cookstoves, and some municipal waste combustors, respectively. PM from different fuels and combustion phases have appreciable differences in lung toxic and mutagenic potency, and on a mass basis, flaming samples are more active, whereas smoldering samples have greater effect when EFs are taken into account. Knowledge of the differential toxicity of biomass emissions will contribute to more accurate hazard assessment of biomass smoke exposures. https://doi.org/10.1289/EHP2200.
Wang, H; Zhao, L; Xi, Y; Sun, N
2015-06-01
24-h urine sodium excretion is considered the most reliable method to evaluate the salt intakes. However, this method is cumbersome. So we want to develop formulas to estimate 24-h urinary sodium excretion using spot urinary samples in Chinese hypertensive population and explore the application value of this method in salt intake assessment and target organ damage. 1. We enrolled 510 cases of hospitalized patients with hypertension, 2/3 of them were arranged randomly to formula group to develop a new formula and the remainings were used to test the performance of the formula. All participants were instructed to collect a 24-h urine sample, a second morning voiding urine sample (SMU), and a post-meridiem urine sample in the late afternoon or early evening, prior to the evening meal (PMU). All samples were sent to measure sodium and creatinine concentration.2. We compared the differences of office blood pressure, 24-hour ambulatory blood pressure and left ventricular hypertrophy, vascular stiffness and urine protein among groups of different sodium intake. 24hour sodium excretion formulas was obtained using SMU and PMU respectively, which have good cosistency. The difference between the estimated and measured values in sodium excretion is 12.66mmol/day (SMU) and 9.41mmol/day (PM), to be equal to 0.7 g (SMU) and 0.6 g (PM) salt intake. Comparing with Kawasaki and Tanaka method, the new formula shows the lower degree of deviation, and higher accuracy and precision. Blood pressure of high urinary sodium group is higher than that in low urinary sodium group (P < 0.05). Left ventricular hypertrophy and urinary albumin/creatinine aggravated with the salt intake increase, this has eliminated the influence of other factors. All of morphologies of the relationship between ambulatory arterial stiffness index, pulse wave velocity and carotid intima-media thickness with quartiles of sodium intake resembled a J-shaped curve. In Chinese hypertensive population, the formulas to estimate 24-h urinary sodium using spot urinary samples spot urine are considered useful for estimating the mean level of population salt intake, and have a role in evaluating target organ damage.
NASA Astrophysics Data System (ADS)
Márton, Emö; Domján, Ádám; Lautner, Péter; Szentmarjay, Tibor; Uram, János
2013-04-01
Air monitoring stations in Hungary are operated by Environmental, Nature Conservancy and Water Pollution Inspectorates, according to the CEN/TC 264 European Union standards. PM10 samples are collected on a 24-hour basis, for two weeks in February, in May, in August and in November. About 720m3 air is pumped through quartz filters daily. Mass measurements and toxic metal analysis (As, Pb, Cd, Ni) are made on each filter (Whatmann DHA-80 PAH, 150 mm diameter) by the inspectorates. We have carried out low field magnetic susceptibility measurements using a KLY-2 instrument on all PM10 samples collected at 9 stations from 2009 on (a total of more than 2000 filters). One station, located far from direct sources, monitors background pollution. Here PM2.5 was also collected in two-week runs, seven times during the period of 2009-2012 and made available for the non-destructive magnetic susceptibility measurements. Due to the rather weak magnetic signal, the susceptibility of each PM-10 sample was computed from 10, that of each PM2.5 sample from 20 measurements. Corrections were made for the susceptibility of the sample holder, for the unpolluted filter (provided with each of the two-week runs), and for the plastic bag containing the samples. The susceptibilities of the PM10 samples were analyzed from different aspects, like the degree of magnetic pollution at different stations, daily and seasonal variations of the total and mass susceptibilities compared to the mass of the pollutants and in relation to the concentrations of the toxic elements. As expected, the lowest total and mass susceptibilities characterize the background station (pollution arrives mostly from distant sources, Vienna, Bratislava or even the Sudeten), while the highest values were measured for an industrial town with heavy traffic. At the background station the mass of the PM10 and PM2.5, respectively for the same period are quite similar, while the magnetic susceptibilities are usually higher in the first, indicating that a sizable part of the magnetic grains is coming from nearby capitals rather than from more distant sources. We found no correlation between magnetic susceptibility and toxic metals. On the other hand the weaker vehicle traffic during week-ends, especially on Sundays is evident in the total susceptibilities, although it is also seen as a tendency in the mass of the pollutants and in the mass susceptibilities. While the generally used mass susceptibility seems to be useful as an indication for the heaviness of vehicle traffic in the area of the studied monitoring stations, it is a total failure for expressing correctly seasonal variations. The reason is that much more non-magnetic than magnetic pollutants are produced during heating season, especially by household heating with coal and wood. The consequence is that in the total susceptibility the higher production of the magnetic particles during heating season is evident, while in the mass susceptibility the trend is opposite, i.e. the magnetic pollution seems to be less intensive during heating season than otherwise. Acknowledgement: This work was financially supported by the Hungarian Scientific Research Fund (project no. OTKA K 75395).
Changes in soil parameters under continuous plastic mulching in strawberry cultivation
NASA Astrophysics Data System (ADS)
Muñoz, Katherine; Diehl, Dörte; Scopchanova, Sirma; Schaumann, Gabriele E.
2016-04-01
Plastic mulching (PM) is a widely used practice in modern agriculture because they generate conditions for optimal yield rates and quality. However, information about long-term effects of PC on soil quality parameters is scarce. The aim of this study is to compare the effect of three different mulching managements on soil quality parameters. Sampling and methodology: Three different managements were studied: Organic mulching (OM), 2-years PM and 4-years PM. Soil samples were collected from irrigated fields in 0-5, 5-10 and 10-30 cm depths and analyzed for water content (WC), pH, dissolved organic carbon (DOC), total soil carbon (Ctot) and cation exchange capacity (CECeff). Results and discussion: Mulching management has an influence on soil parameters. The magnitude of the effects is influenced by the type (organic agriculture practice vs. plastic mulching practice) and duration of the mulching. PM modified the water distribution through the soil column. WC values at the root zone were in average 10% higher compared to those measured at the topsoil. Under OM, the WC was lower than under PM. The pH was mainly influenced by the duration of the managements with slightly higher values after 4 than after 2-years PM. Under PM, aqueous extracts of the topsoil (0-5 cm depth) contained in average with 8.5±1.8 mg/L higher DOC than in 10-30 cm depth with 5.6±0.5 mg/L, which may indicate a mobilization of organic components in the upper layers. After 4-years PM, Ctot values were slightly higher than after 2-years PM and after OM. Surprisingly, after 4-years PM, CECeff values were with 138 - 157 mmolc/kg almost 2-fold higher than after 2-years PM and OM which had with 74 - 102 mmolc/kg comparable CECeff values. Long-term PM resulted in changes of soil pH and slightly increased Ctot which probably enhanced the CECeff of the soil. However, further investigations of the effect of PM on stability of soil organic matter and microbial community structure are needed.
AUPHEP—Austrian Project on Health Effects of Particulates—general overview
NASA Astrophysics Data System (ADS)
Hauck, H.; Berner, A.; Frischer, T.; Gomiscek, B.; Kundi, M.; Neuberger, M.; Puxbaum, H.; Preining, O.; Auphep-Team
AUPHEP was started in 1999 as a 5 years program to investigate the situation of the atmospheric aerosol with respect to effects on human health. At four different sites in Austria (3 urban and one rural site) an extended monitoring program was conducted for PM 1, PM 2.5 and PM 10 as well as particle number concentration for 12 months each. Beside continuous measurements using TEOM and beta attenuation high-volume sampling of PM 2.5 and PM 10 provided samples for chemical analyses of various ions, heavy metals and organic compounds. Furthermore, carbonaceous material (TC, EC, OC) year round and PAHs on selected days were analyzed. From collocated public monitoring stations also pollutant gases (SO 2, NO, NO 2, O 3, CO) and meteorological components are available. In winter and summer campaigns aerosol size spectra including chemical components were measured for at least one week each. All data are collected in a project data base (CD-ROM). While extensive data analysis will be presented in following papers, some general results are presented within this paper: annual averages for PM 1 are between 10 and 20 μg m -3, for PM 2.5 between 15 and 26 mg m -3 and for PM 10 between 20 and 38 μg m -3. Number concentrations are between 10,000 and 30,000 cm -3. Urban concentrations are usually higher in winter, rural concentrations in summer. PM 2.5 is in average around 70% of PM 10, for PM 1 this fraction is about 57%. Several studies on health effects are included in this project: a cross-sectional study on preschool and school children regarding lung function measurements and questionnaires about respiratory impairment in the surrounding area of the monitoring sites as well as time series studies on mortality and respiratory morbidity on the general population.
Salient cues improve prospective remembering in Korsakoff's syndrome.
Altgassen, Mareike; Ariese, Laura; Wester, Arie J; Kessels, Roy P C
2016-06-01
Korsakoff's syndrome is characterized by deficits in episodic memory and executive functions. Both cognitive functions are needed to remember to execute delayed intentions (prospective memory, PM), an ability that is crucial for independent living in everyday life. So far, PM has only been targeted by one study in Korsakoff's syndrome. This study explored the effects of executive control demands on PM to shed further light on a possible interdependence of memory and executive functions in Korsakoff's syndrome, Twenty-five individuals with Korsakoff's syndrome and 23 chronic alcoholics (without amnesia) performed a categorization task into which a PM task was embedded that put either high or low demands on executive control processes (using low vs. high salient cues). Overall, Korsakoff patients had fewer PM hits than alcoholic controls. Across groups, participants had fewer PM hits when cues were low salient as compared to high salient. Korsakoff patients performed better on PM when highly salient cues were presented than cues of low salience, while there were no differential effects for alcoholic controls. While overall Korsakoff patients' showed a global PM deficit, the extent of this deficit was moderated by the executive control demands of the task applied. This indicated further support for an interrelation of executive functions and memory performance in Korsakoff. Positive clinical implications of the work Prospective memory (PM) performance in Korsakoff's syndrome is related to executive control load. Increasing cues' salience improves PM performance in Korsakoff's syndrome. Salient visual aids may be used in everyday life to improve Korsakoff individuals' planning and organization skills. Cautions or limitations of the study Results were obtained in a structured laboratory setting and need to be replicated in a more naturalistic setting to assess their transferability to everyday life. Given the relatively small sample size, individual predictors of PM performance should be determined in larger samples. © 2015 The British Psychological Society.
O'Sullivan, Jeanette E; Watson, Roslyn J; Butler, Edward C V
2013-10-15
An automated procedure including both in-line preconcentration and multi-element determination by an inductively coupled plasma mass spectrometer (ICP-MS) has been developed for the determination of Cd, Co, Cu, Ni, Pb and Zn in open-ocean samples. The method relies on flow injection of the sample through a minicolumn of chelating (iminodiacetate) sorbent to preconcentrate the trace metals, while simultaneously eliminating the major cations and anions of seawater. The effectiveness of this step is tested and reliability in results are secured with a rigorous process of quality assurance comprising 36 calibration and reference samples in a run for analysis of 24 oceanic seawaters in a 6-h program. The in-line configuration and procedures presented minimise analyst operations and exposure to contamination. Seawater samples are used for calibration providing a true matrix match. The continuous automated pH measurement registers that chelation occurs within a selected narrow pH range and monitors the consistency of the entire analytical sequence. The eluent (0.8M HNO3) is sufficiently strong to elute the six metals in 39 s at a flow rate of 2.0 mL/min, while being compatible for prolonged use with the mass spectrometer. Throughput is one sample of 7 mL every 6 min. Detection limits were Co 3.2 pM, Ni 23 pM, Cu 46 pM, Zn 71 pM, Cd 2.7 pM and Pb 1.5 pM with coefficients of variation ranging from 3.4% to 8.6% (n=14) and linearity of calibration established beyond the observed concentration range of each trace metal in ocean waters. Recoveries were Co 96.7%, Ni 102%, Cu 102%, Zn 98.1%, Cd 92.2% and Pb 97.6%. The method has been used to analyse ~800 samples from three voyages in the Southern Ocean and Tasman Sea. It has the potential to be extended to other trace elements in ocean waters. © 2013 Elsevier B.V. All rights reserved.
Rogge, Wolfgang F; Ondov, John M; Bernardo-Bricker, Anna; Sevimoglu, Orhan
2011-12-01
As part of the Baltimore PM2.5 Supersite study, intensive three-hourly continuous PM2.5 sampling was conducted for nearly 4 weeks in summer of 2002 and as well in winter of 2002/2003. Close to 120 individual organic compounds have been quantified separately in filter and polyurethane foam (PUF) plug pairs for 17 days for each sampling period. Here, the focus is on (1) describing briefly the new sampling system, (2) discussing filter/PUF plugs breakthrough experiments for semi-volatile compounds, (3) providing insight into phase distribution of semi-volatile organic species, and (4) discussing the impact of air pollution sampling time on human exposure with information on maximum 3- and 24-h averaged ambient concentrations of potentially adverse health effects causing organic pollutants. The newly developed sampling system consisted of five electronically controlled parallel sampling channels that are operated in a sequential mode. Semi-volatile breakthrough experiments were conducted in three separate experiments over 3, 4, and 5 h each using one filter and three PUF plugs. Valuable insight was obtained about the transfer of semi-volatile organic compounds through the sequence of PUF plugs and a cut-off could be defined for complete sampling of semi-volatile compounds on only one filter/PUF plug pair, i.e., the setup finally used during the seasonal PM2.5 sampling campaign. Accordingly, n-nonadecane (C19) with a vapor pressure (vp) of 3.25 × 10(-4) Torr is collected with > 95% on the filter/PUF pair. Applied to phenanthrene, the most abundant the PAH sampled, phenanthrene (vp, 6.2 × 10(-5) Torr) was collected completely in wintertime and correlates very well with three-hourly PM2.5 ambient concentrations. Valuable data on the fractional partitioning for semi-volatile organics as a function of season is provided here and can be used to differentiate the human uptake of an organic pollutant of interest via gas- and particle-phase exposure. Health effects studies often relay on PM2.5 exposure measurements taken over 24 h or longer. We found that maximum 3-h concentrations are frequently two to five times higher than that found for maximum 24-h concentrations, an important aspect when considering that short-term exposure to higher air pollution levels are more likely to overpower defense mechanisms in the human lung with subsequent adverse effects even at lower pollutant levels.
Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia.
Lim, Chris C; Thurston, George D; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M; Alkhalaf, Abdulrahman K; Brocato, Jason; Chen, Lung Chi; Costa, Max
2018-02-01
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (aerodynamic diameter <2.5 μm; PM 2.5 ) and coarse (aerodynamic diameter 2.5-10 μm; PM 2.5-10 ) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over 1 yr, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM 2.5 (21.9 μg/m 3 ) and PM 10 (107.8 μg/m 3 ) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM 2.5 (10 μg/m 3 ) and PM 10 (20 μg/m 3 ), respectively. Similar to other Middle Eastern locales, PM 2.5-10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM 10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM 2.5 and PM 2.5-10 : (1) soil/road dust, (2) incineration, and (3) traffic; and for PM 2.5 only, (4) residual oil burning. Soil/road dust accounted for a major portion of both the PM 2.5 (27%) and PM 2.5-10 (77%) mass, and the largest source contributor for PM 2.5 was from residual oil burning (63%). Temporal variations of PM 2.5-10 and PM 2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency) and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM 2.5 and PM 2.5-10 masses in this city may have implications regarding the toxicity of these particles versus those in the Western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. Temporal variations of fine and coarse PM mass, elemental constituents, and sources were examined in Jeddah, Saudi Arabia, for the first time. The main source of PM 2.5-10 is natural windblown soil and road dust, whereas the predominant source of PM 2.5 is residual oil burning, generated from the port and oil refinery located west of the air sampler, suggesting that targeted emission controls could significantly improve the air quality in the city. The compositional differences point to a need for health effect studies to be conducted in this region, so as to directly assess the applicability of the existing guidelines to the Middle East air pollution.
NASA Astrophysics Data System (ADS)
Strak, Maciej; Steenhof, Maaike; Godri, Krystal J.; Gosens, Ilse; Mudway, Ian S.; Cassee, Flemming R.; Lebret, Erik; Brunekreef, Bert; Kelly, Frank J.; Harrison, Roy M.; Hoek, Gerard; Janssen, Nicole A. H.
2011-08-01
Numerous epidemiological studies have shown health effects related to short- and long-term exposure to elevated levels of ambient particulate matter (PM). It is not clear however which specific characteristics (e.g., size, components) or sources of PM are responsible for the observed effects. The aim of RAPTES (Risk of Airborne Particles: a Toxicological-Epidemiological hybrid Study) was to investigate which specific physical, chemical or oxidative characteristics of ambient PM are associated with adverse effects of PM on health. This was done by performing experimental exposure of human volunteers to air pollution at several real-world settings that had high contrast and low correlation between several PM characteristics. For this goal, eight sites in the Netherlands that differed in local PM emission sources were chosen for extensive air pollution characterization. Measurement sites included an underground train station, three different road traffic sites, an animal farm, a sea harbor, a site located in the vicinity of steelworks, and an urban background site. Five- to six-hours average concentration measurements at each site were made between June 2007 and October 2009. We measured PM 10, PM 2.5, particle number concentration (PNC), oxidative potential of PM, absorbance, endotoxin content, as well as elemental and chemical composition of PM, and gaseous pollutants concentrations. This paper presents a detailed characterization of particulate air pollution at the sampling sites. We found significant differences in all PM characteristics between the sites. The underground train station, compared to each outdoor location, had substantially higher concentrations of nearly all PM characteristics. The average PM 10 and PM 2.5 mass concentrations at the underground train station were 394 μg m -3 and 137 μg m -3, respectively, which was 14.1 and 7.6 times higher than the urban background. The sum of the concentrations of trace metals in fine and coarse PM was nearly 20 times above the outdoor levels. Elemental carbon (EC) was elevated at the underground site in the fine but also in the coarse mode, in contrast to the traffic sites where EC was predominantly found in fine PM. The highest concentrations and contrasts in PNC were at the traffic sites (between 45,000 and 80,000 particles cm -3), which was several times higher than measured at any other site. Correlations of PNC with metals, PM 10, PM 2.5 and absorbance were low to moderate, while correlations between PM 10, PM 2.5 and the metals Cu and Fe were high. After excluding the underground train station data, correlations between PM10, EC and metals decreased whereas the correlation between PNC and EC increased. We conclude that we were able to successfully identify and characterize real-world situations with very different particle characteristics. High contrast and low correlations between PM characteristics, as well as consistency of these differences across sampling campaigns, provide a good basis for identifying health relevant PM characteristics in the upcoming analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, J.A.
1982-01-01
Hydrogen plays a central role in the breakdown of organic matter in anaerobic habitats, influencing the nature of the fermentation end products and possibly, rates at which the initial substrates are degraded. The kinetics were examined for H/sub 2/ consumption by samples from natural anaerobic habitats, pure cultures of H/sub 2/-consuming anaerobes, and co-cultures comprised of methanogenic and sulfate-reducing bacteria. These kinetic studies were performed using a gas-recirculation system that allowed precise measurements of gaseous phase H/sub 2/ and CH/sub 4/. Uptake and growth kinetic parameters were estimated for the natural samples and suspensions of H/sub 2/-consumers by fitting H/submore » 2/ depletion (progress curve) data to integrated forms of Michaelis-Menten and Monod equations. Samples included eutrophic lake sediments, anaerobic digestor sludge, and rumen fluid. The bacteria studied were methanospirillum PM1, Methanosarcina barkeri MS, Methanospirillum hungatei JF-1, Methanohbacterium PM2, and Desulfovibrio strains G11 and PS1.« less
Toxicity of Urban PM10 and Relation with Tracers of Biomass Burning
Staelens, Jeroen; Koppen, Gudrun; Schoeters, Greet
2018-01-01
The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM10 in relation to PM-associated chemicals. PM10 was sampled in ambient air at an urban traffic site (Borgerhout) and a rural background location (Houtem) in Flanders (Belgium). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) and the induction of interleukin-8 (IL-8). The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP) of PM10 particles was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 included tracers for biomass burning (levoglucosan, mannosan and galactosan), elemental and organic carbon (EC/OC) and polycyclic aromatic hydrocarbons (PAHs). Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM10 toxicity were seen. PM10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (−0.46 < rs < −0.35, p < 0.01) and IL-8 induction (−0.62 < rs < −0.67, p < 0.01) were associated with all markers for biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were associated with altered cellular responses and increased mutagenic activity. These findings may indicate a role of biomass burning in the observed adverse health effect of particulate matter. PMID:29439546
2006-02-27
samples from 7 wells having more than 10 years of data and from 2 springs. Rough Rock PM5, Keams Canyon PM2, Second Mesa PM2, and Kayenta PM2 show...source of water for industrial and municipal uses in the Black Mesa area. It consists of three formations—the Navajo Sandstone, the Kayenta ...A R I Z O N A 98 NAVAJO IND. RES. 77 264 191 160 163 Kayenta 160 Tuba City Chinle 89 Mishongnovi Shipaulovi 264 87 30’ 36° 35°30
Personal Exposure to Particulate Matter and Endotoxin in California Dairy Workers
NASA Astrophysics Data System (ADS)
Garcia, Johnny
The average number of cows per dairy has increased over the last thirty years, with little known about how this increase may impact occupational exposure. Thirteen California dairies and 226 workers participated in this study throughout the 2008 summer months. Particulate Matter (PM) and endotoxin concentrations were quantified using ambient area based and personal air samplers. Two size fractions were collected, Total Suspended Particulate matter (TSP) and PM 2.5. Differences across dairies were evaluated by placing area based integrated air samplers in established locations on the dairies, e.g. milking parlor, drylot corral, and freestall barns. The workers occupational exposure was quantified using personal air samplers. We analyzed concentrations along with the time workers spent conducting specific job tasks during their shift to identify high exposure job tasks. Biological and chemical analytical methods were employed to ascertain endotoxin concentrations in personal and area based air samples. Recombinant factor C assays (rFC) were used to analyze biologically active endotoxin and gas chromatography coupled with mass spectrometry in tandem (GC-MS/MS) was used to quantify total endotoxin. The PM2.5 concentrations ranged from 2-116 mug/m3 for ambient area concentration and 7-495 mug/m3 for personal concentrations while TSP concentrations ranged from 74-1690 mug/m3 for area ambient concentrations and 191-4950 mug/m3 for personal concentrations. Biologically active endotoxin concentrations in the TSP size fraction from ambient area based samples ranged from 11-2095 EU/m3 and 45-2061 EU/m3 for personal samples. Total endotoxin in the TSP size fraction ranged from 75-10,166 pmol/m3 for area based samples and 34-11,689 pmol/m3 for personal samples. Drylot corrals were found to have higher sample mean concentrations when compared to other locations on the dairies for PM and endotoxin. Re-bedding, of the freestalls, was found to consistently lead to higher personal sample mean concentrations when compared to other tasks performed on dairies for both endotoxin and PM. In mixed effect regression models, regional ambient concentrations of PM 2.5 helped account for variation in PM2.5 concentration outcomes. We found that while upwind and downwind mean concentrations were not significantly different, central mean concentrations were higher than upwind concentration. Variation in TSP levels was largely explained by dairy-level characteristics such as the age of the dairy and number of animals in the drylot corrals and freestall barns. The different locations within the dairy were found to differ in mean concentrations for TSP. Biologically active and total endotoxin concentration variation was explained by meteorological data, wind speed, relative humidity, and dairy waste management practices. Personal exposure levels where found to be higher than area based concentrations for PM and endotoxin. Endotoxin characteristics differed by particle size and location within the dairy. The chain length proportion for endotoxin in the PM 2.5 size fraction was dominated by C12 and C16 in the TSP size fraction.
Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters.
Batonneau, Yann; Bremard, Claude; Gengembre, Leon; Laureyns, Jacky; Le Maguer, Agnes; Le Maguer, Didier; Perdrix, Esperanza; Sobanska, Sophie
2004-10-15
The purpose of this study was to estimate the speciation of PM10 sources of airborne Pb, Zn, and Cd metals (PM10 is an aerosol standard of aerodynamic diameter less than 10 microm.) in the atmosphere of a 3 km zone surrounding lead/zinc facilities in operation for a century. Many powdered samples were collected in stacks of working units (grilling, furnace, and refinery), outdoor storages (ores, recycled materials), surrounding waste slag (4 Mt), and polluted topsoils (3 km). PM10 samples were generated from the raw powders by using artificial resuspension and collection devices. The bulk PM10 multielemental analyses were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The proportions in mass of Pb (50%), Zn (40%), and Cd (1%) contents and associated metals (traces) reach the proportions of corresponding raw powdered samples of ores, recycled materials, and fumesize emissions of plants without specific enrichment. In contrast, Pb (8%) and Zn (15%) contents of PM10 of slag deposit were found to be markedly higher than those of raw dust, Pb (4%), and Zn (9%), respectively. In the same way, Pb (0.18%), Zn (0.20%), and Cd (0.004%) were enriched by 1.7, 2.1, and 2.3 times, respectively, in PM10 as compared with raw top-soil corresponding values. X-ray wavelength dispersive electron-microprobe (EM-WDS) microanalysis did not indicate well-defined phases or simple stoichiometries of all the PM10 samples atthe level of the spatial resolution (1 microm3). X-ray photoelectron spectroscopy (XPS) indicated that minor elements such as Cd, Hg, and C are more concentrated on the particle surface than in the bulk of PM10 generated by the smelting processes. (XPS) provided also the average speciation of the surface of PM10; Pb is mainly represented as PbSO4, Zn as ZnS, and Cd as CdS or CdSO4, and small amounts of coke were also detected. The speciation of bulk PM10 crystallized compounds was deduced from XRD diffractograms with a raw estimation of the relative quantities. PbS and ZnS were found to be the major phases in PM10 generated by the smelting facilities with PbSO4, PbSO4 x PbO, PbSO4 x 4PbO, Pb metal, and ZnO as minor phases. The slag waste PM10 was found to contain some amounts of PbCO3, PbSO4 x PbO, and ZnFe2O4 phases. The large heterogeneity at the level of the individual particle generates severe overlap of chemical information even at the microm scale using electron microprobe (WDS) and Raman microprobe techniques. Fortunately, scanning Raman microspectrometry combined with SIMPle-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) performed the PM10 speciation at the level of individual particles. The speciation of major Pb, Zn, and Cd compounds of PM10 stack emissions and wind blown dust of ores and recycled materials were found to be PbSO4, PbSO4 x PbO, PbSO4 x 4PbO, PbO, metallic Pb, ZnS, ZnO, and CdS. The PM10 dust of slag waste was found to contain PbCO3, Pb(OH)2 x 2PbCO3, PbSO4 x PbO, and ZnS, while PM10-bound Pb, Zn of the top-soils contain Pb5(PO4)3Cl, ZnFe2O4 as well as Pb(II) and Zn(II) compounds adsorbed on Fe(III) oxides and in association with clays.
Variations of PM2.5, PM10 mass concentration and health assessment in Islamabad, Pakistan
NASA Astrophysics Data System (ADS)
Memhood, Tariq; Tianle, Z.; Ahmad, I.; Li, X.; Shen, F.; Akram, W.; Dong, L.
2018-04-01
Sparse information appears in lack of awareness among the people regarding the linkage between particulate matter (PM) and mortality in Pakistan. The current study is aimed to investigate the seasonal mass concentration level of PM2.5 and PM10 in ambient air of Islamabad to assess the health risk of PM pollution. The sampling was carried out with two parallel medium volume air samplers on Whatman 47 mm quartz filter at a flow rate of 100L/min. Mass concentration was obtained by gravimetric analysis. A noticeable seasonal change in PM10 and PM2.5 mass concentration was observed. In case of PM2.5, the winter was a most polluted and spring was the cleanest season of 2017 in Islamabad with 69.97 and 40.44 μgm‑3 mean concentration. Contrary, highest (152.42 μgm‑3) and lowest (74.90 μgm‑3) PM10 mass concentration was observed in autumn and summer respectively. Air Quality index level for PM2.5 and PM10 was remained moderated to unhealthy and good to sensitive respectively. Regarding health risk assessment, using national data for mortality rates, the excess mortality due to PM2.5 and PM10 exposure has been calculated and amounts to over 198 and 98 deaths annually for Islamabad. Comparatively estimated lifetime risk for PM2.5 (1.16×10-6) was observed higher than PM10 (7.32×10-8).
Faria, Tiago; Monteiro, Ana; Carolino, Elisabete; Quintal Gomes, Anita
2017-01-01
Swine production has been associated with health risks and workers’ symptoms. In Portugal, as in other countries, large-scale swine production involves several activities in the swine environment that require direct intervention, increasing workers’ exposure to organic dust. This study describes an updated protocol for the assessment of occupational exposure to organic dust, to unveil an accurate scenario regarding occupational and environmental risks for workers’ health. The particle size distribution was characterized regarding mass concentration in five different size ranges (PM0.5, PM1, PM2.5, PM5, PM10). Bioburden was assessed, by both active and passive sampling methods, in air, on surfaces, floor covering and feed samples, and analyzed through culture based-methods and qPCR. Smaller size range particles exhibited the highest counts, with indoor particles showing higher particle counts and mass concentration than outdoor particles. The limit values suggested for total bacteria load were surpassed in 35.7% (10 out of 28) of samples and for fungi in 65.5% (19 out of 29) of samples. Among Aspergillus genera, section Circumdati was the most prevalent (55%) on malt extract agar (MEA) and Versicolores the most identified (50%) on dichloran glycerol (DG18). The results document a wide characterization of occupational exposure to organic dust on swine farms, being useful for policies and stakeholders to act to improve workers’ safety. The methods of sampling and analysis employed were the most suitable considering the purpose of the study and should be adopted as a protocol to be followed in future exposure assessments in this occupational environment. PMID:29280976
NASA Astrophysics Data System (ADS)
Kaushik, Rajni; Balasubramanian, Rajasekhar
2012-01-01
Bacterial pathogens in airborne particulate matter (PM) and in rainwater (RW) were detected using a robust and sensitive Real-Time PCR method. Both RW and PM were collected simultaneously in the tropical atmosphere of Singapore, which were then subjected to analysis for the presence of selected bacterial pathogens and potential pathogen of health concern ( Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aeromonas hydrophila). These pathogens were found to be prevalent in both PM and RW samples with E. coli being the most prevalent potential pathogen in both types of samples. The temporal distribution of these pathogens in PM and RW was found to be similar to each other. Using the proposed microbiological technique, the atmospheric deposition (dry and wet deposition) of bacterial pathogens to lakes and reservoirs can be studied in view of growing concerns about the outbreak of waterborne diseases.
Chatrchyan, Serguei
2013-07-17
The mass of the top quark is measured using a sample ofmore » $$t\\bar{t}$$ candidate events with at least six jets in the final state. The sample is selected from data collected with the CMS detector in pp collisions at $$\\sqrt{s}$$ = 7 TeV in 2011 and corresponds to an integrated luminosity of 3.54 inverse femtobarns. The mass is reconstructed for each event employing a kinematic fit of the jets to a $$t\\bar{t}$$ hypothesis. The top-quark mass is measured to be 173.49 $$\\pm$$ 0.69 (stat.) $$\\pm$$ 1.21 (syst.) GeV. A combination with previously published measurements in other decay modes by CMS yields a mass of 173.54 $$\\pm$$ 0.33 (stat.) $$\\pm$$ 0.96 (syst.) GeV.« less
Michael, S; Montag, M; Dott, W
2013-12-01
The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0-100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Taunde, Paula; Timbe, Palmira; Lucas, Ana Felicidade; Tchamo, Cesaltina; Chilundo, Abel; Dos Anjos, Filomena; Costa, Rosa; Bila, Custodio Gabriel
2017-06-01
A total of 398 serum samples from free-range indigenous chickens originating from four villages in Southern Mozambique were tested for the presence of avian encephalomyelitis virus (AEV) and Pasteurella multocida (PM) antibodies through commercial enzyme-linked immunosorbent assay (ELISA) kits. AEV and PM antibodies were detected in all villages surveyed. The proportion of positive samples was very high: 59.5% (95% confidence interval (CI) 51.7-67.7%) for AEV and 71.5% (95% CI 67.7-77.3%) for PM. Our findings revealed that these pathogens are widespread among free-range indigenous chickens in the studied villages and may represent a threat in the transmission of AEV and PM to wild, broiler or layer chickens in the region. Further research is warranted on epidemiology of circulating strains and impact of infection on the poultry industry.
NASA Astrophysics Data System (ADS)
Nirmalkar, J.; Raman, R. S.
2016-12-01
Ambient PM2.5 samples (N=366) were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected using three co-located Mini-Vol® samplers on Teflon, Nylon, and Quartz filter substrates. The aerosol was then chemically characterized for water-soluble inorganic ions, elements, and carbon fractions (elemental carbon and organic carbon) using ion chromatography, ED-XRF, and thermal-optical EC/OC analyzer, respectively. The optical attenuation (at 370 nm and 800 nm) of PM2.5 aerosols was also determined by optical transmissometry (OT-21). The application of Positive matrix factorization (PMF) to a combination of PM2.5 mass, its ions, elements, carbon fractions, and optical attenuation and its outcomes will be discussed.
Evaluation of the TEOM method for measurement of ambient particulate mass in urban areas.
Allen, G; Sioutas, C; Koutrakis, P; Reiss, R; Lurmann, F W; Roberts, P T
1997-06-01
Increased interest in the health effects of ambient particulate mass (PM) has focused attention on the evaluation of existing mass measurement methodologies and the definition of PM in ambient air. The Rupprecht and Patashnick Tapered Element Oscillating MicroBalance (TEOM) method for PM is compared with time-integrated gravimetric (manual) PM methods in large urban areas during different seasons. Comparisons are conducted for both PM10 and PM2.5 concentrations. In urban areas, a substantial fraction of ambient PM can be semi-volatile material. A larger fraction of this component of PM10 may be lost from the TEOM-heated filter than the Federal Reference Method (FRM). The observed relationship between TEOM and FRM methods varied widely among sites and seasons. In East Coast urban areas during the summer, the methods were highly correlated with good agreement. In the winter, correlation was somewhat lower, with TEOM PM concentrations generally lower than the FRM. Rubidoux, CA, and two Mexican sites (Tlalnepantla and Merced) had the highest levels of PM10 and the largest difference between TEOM and manual methods. PM2.5 data from collocation of 24-hour manual samples with the TEOM are also presented. As most of the semi-volatile PM is in the fine fraction, differences between these methods are larger for PM2.5 than for PM10.
Szigeti, Tamás; Dunster, Christina; Cattaneo, Andrea; Cavallo, Domenico; Spinazzè, Andrea; Saraga, Dikaia E; Sakellaris, Ioannis A; de Kluizenaar, Yvonne; Cornelissen, Eric J M; Hänninen, Otto; Peltonen, Matti; Calzolai, Giulia; Lucarelli, Franco; Mandin, Corinne; Bartzis, John G; Záray, Gyula; Kelly, Frank J
2016-01-01
In the frame of the OFFICAIR project, indoor and outdoor PM2.5 samples were collected in office buildings across Europe in two sampling campaigns (summer and winter). The ability of the particles to deplete physiologically relevant antioxidants (ascorbic acid (AA), reduced glutathione (GSH)) in a synthetic respiratory tract lining fluid, i.e., oxidative potential (OP), was assessed. Furthermore, the link between particulate OP and the concentration of the PM constituents was investigated. The mean indoor PM2.5 mass concentration values were substantially lower than the related outdoor values with a mean indoor/outdoor PM2.5 mass concentration ratio of 0.62 and 0.61 for the summer and winter campaigns respectively. The OP of PM2.5 varied markedly across Europe with the highest outdoor OP(AA) m(-3) and OP(GSH) m(-3) (% antioxidant depletion/m(3) air) values obtained for Hungary, while PM2.5 collected in Finland exhibited the lowest values. Seasonal variation could be observed for both indoor and outdoor OP(AA) m(-3) and OP(GSH) m(-3) with higher mean values during winter. The indoor/outdoor OP(AA) m(-3) and OP(GSH) m(-3) ratios were less than one with 4 and 17 exceptions out of the 40 cases respectively. These results indicate that indoor air is generally less oxidatively challenging than outdoors. Correlation analysis revealed that trace elements play an important role in determining OP, in particular, the Cu content. Indoor air chemistry might affect OP since weaker correlations were obtained for indoor PM2.5. Our findings also suggest that office workers may be exposed to health relevant PM constituents to a different extent within the same building. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen
2016-07-01
To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM2.5) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM2.5, the sampling days were classified into high PM2.5 concentration event days (PM2.5>35 μg m(-3)) and non-event days (PM2.5<35 μg m(-3)). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl(-) and NO3(-) increased when a high PM2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM2.5 concentration event days. In order to reduction of high PM2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. Copyright © 2016 Elsevier Ltd. All rights reserved.
Naimabadi, Abolfazl; Ghadiri, Ata; Idani, Esmaeil; Babaei, Ali Akbar; Alavi, Nadali; Shirmardi, Mohammad; Khodadadi, Ali; Marzouni, Mohammad Bagherian; Ankali, Kambiz Ahmadi; Rouhizadeh, Ahmad; Goudarzi, Gholamreza
2016-04-01
Reports on the effects of PM10 from dust storm on lung cells are limited. The main purpose of this study was to investigate the chemical composition and in vitro toxicological impacts of PM10 suspensions, its water-soluble fraction, and the solvent-extractable organics extracted from Middle Eastern Dust storms on the human lung epithelial cell (A549). Samples of dust storms and normal days (PM10 < 200 μg m(-3)) were collected from December 2012 until June 2013 in Ahvaz, the capital of Khuzestan Province in Iran. The chemical composition and cytotoxicity were analyzed by ICP- OES and Lactase Dehydrogenase (LDH) reduction assay, respectively. The results showed that PM10 suspensions, their water-soluble fraction and solvent-extractable organics from both dust storm and normal days caused a decrease in the cell viability and an increase in LDH in supernatant in a dose-response manner. Although samples of normal days showed higher cytotoxicity than those of dust storm at the highest treated dosage, T Test showed no significant difference in cytotoxicity between normal days and dust event days (P value > 0.05). These results led to the conclusions that dust storm PM10 as well as normal day PM10 could lead to cytotoxicity, and the organic compounds (PAHs) and the insoluble particle-core might be the main contributors to cytotoxicity. Our results showed that cytotoxicity and the risk of PM10 to human lung may be more severe during dust storm than normal days due to inhalation of a higher mass concentration of airborne particles. Further research on PM dangerous fractions and the most responsible components to make cytotoxicity in exposed cells is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Begum, Bilkis A; Biswas, Swapan K; Hopke, Philip K
2006-04-01
Concentrations and characteristics of airborne particulate matter (PM(10), PM(2.2) and BC) on air quality have been studied at two air quality-monitoring stations in Dhaka, the capital of Bangladesh. One site is at the Farm Gate area, a hot spot with very high pollutant concentrations because of its proximity to major roadways. The other site is at a semi-residential area located at the Atomic Energy Centre, Dhaka Campus, (AECD) with relatively less traffic. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2.2 mum and 2.2-10 mum sizes. Samples of fine (PM(2.2)) and coarse (PM(2.2-10)) airborne particulate matter fractions collected from 2000 to 2003 were studied. It has been observed that fine particulate matter has a decreasing trend, from prior year measurements, because of Government policy interventions like phase-wise plans to take two-stroke three-wheelers off the roads in Dhaka and finally banned from January 1, 2003. Other policy interventions were banning of old buses and trucks to ply on Dhaka city promotion of the using compressed natural gas (CNG), introducing air pollution control devices in vehicles, etc. It was found that both local (mostly from vehicular emissions) and possibly some regional emission sources are responsible for high PM(2.2) and BC concentrations in Dhaka. PM(2.2), PM(2.2-10) and black carbon concentration levels depend on the season, wind direction and wind speed. Transport related emissions are the major source of BC and long-range transportation from fossil fuel related sources and biomass burning could be another substantial source of BC.
Particle Size Distribution in Aluminum Manufacturing Facilities
Liu, Sa; Noth, Elizabeth M.; Dixon-Ernst, Christine; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine
2015-01-01
As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities. PMID:26478760
Particle Size Distribution in Aluminum Manufacturing Facilities.
Liu, Sa; Noth, Elizabeth M; Dixon-Ernst, Christine; Eisen, Ellen A; Cullen, Mark R; Hammond, S Katharine
2014-10-01
As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM 2.5 measured by PMI was compared to PM 2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM 1.0 ) and quasi-ultrafine (PM 0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM 2.5 versus MiniMOUDI_PM 2.5 was 1.03 mg/m 3 per mg/m 3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM 10 which was PM 1.0 or PM 0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities.
Morman, Suzette A.; Garrison, Virginia H.; Plumlee, Geoffrey S.
2013-01-01
Exposure to fine particulate matter (PM) is acknowledged as a risk factor for human morbidity and mortality. Epidemiology and toxicology studies have focused on anthropogenic sources of PM and few consider contributions produced by natural processes (geogenic), or PM produced from natural sources as a result of human activities (geoanthropogenic PM). The focus of this study was to elucidate relationships between human/ecosystem health and dusts produced by a system transitioning from a dominantly natural to a geoanthropogenic PM source. As part of a larger study investigating the relationship between atmospheric transportation of African dust, human health, and coral reef declines, we examined dust samples sourced in Mali, Africa, collected using high-volume samplers from three sites (Mali, Tobago and U.S. Virgin Islands). Inhalation and ingestion exposure pathways were explored by filter extractions using simulated lung and gastric fluids. Bioaccessibility varied by metal and extraction fluid. Although too few samples were analyzed for robust statistics, concentrations for several metals decreased slightly while bioaccessibility increased at downwind sites.
Elemental composition of PM 10 and PM 2.5 in urban environment in South Brazil
NASA Astrophysics Data System (ADS)
Braga, C. F.; Teixeira, E. C.; Meira, L.; Wiegand, F.; Yoneama, M. L.; Dias, J. F.
The purpose of the present study is to analyze the elemental composition and the concentrations of PM 10 and PM 2.5 in the Guaíba Hydrographic Basin with HV PM 10 and dichotomous samplers. Three sampling sites were selected: 8° Distrito, CEASA and Charqueadas. The sampling was conducted from October 2001 to December 2002. The mass concentrations of the samplers were evaluated, while the elemental concentrations of Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu and Zn were determined using the Particle-Induced X-ray Emission (PIXE) technique. Factor Analysis and Canonical Correlation Analysis were applied to the chemical and meteorological variables in order to identify the sources of particulate matter. Industrial activities such as steel plants, coal-fired power plants, hospital waste burning, vehicular emissions and soil were identified as the sources of the particulate matter. Concentration levels higher than the daily and the annual average air quality standards (150 and 50 μg m -3, respectively) set by the Brazilian legislation were not observed.
Characterization of the Particulate Emissions from the BP ...
Opportunistic particle samples were gathered from the sail of a tethered aerostat during at-sea plume sampling of the purposely-burned surface oil during the BP Deepwater Horizon disaster in the Gulf of Mexico. Particles were analyzed for polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), elemental carbon (EC), metals, and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs). Emission factors were calculated using previous sampling values of background-adjusted CO2 and particulate matter (PM)-bound C. The mean of five thermal-optical analyses indicated that the burned crude oil particulate matter was 93% carbon (w/w) with the predominance being refractory elemental carbon (82% w/w) on average. PAHs accounted for roughly 60 ug/g of the PM mass or 4.5 mg/kg oil burned, at least an order of magnitude less than earlier laboratory based studies. Microscopy indicates that the soot from the in situ oil burns is distinct from more common soot by its aggregate size, primary particle size, and nanostructure within the primary particles. The PCDD/PCDF concentration of the PM was 1.5 to 3.3 ng toxic equivalency (TEQ)/kg PM sampled, about 10-fold lower than from a previous dedicated gas/solid sample, indicating loss of small particle-bound and more volatile PCDD/PCDF congeners through the aerostat sail. This work presents an analysis of smoke particles opportunistically caught during the in situ surface oil burns during the 2010 BP Deepwater Horizon di
Comparing Gravimetric and Real-Time Sampling of PM2.5 Concentrations Inside Truck Cabins
Zhu, Ying; Smith, Thomas J.; Davis, Mary E.; Levy, Jonathan I.; Herrick, Robert; Jiang, Hongyu
2012-01-01
As part of a study on truck drivers’ exposure and health risk, pickup and delivery (P&D) truck drivers’ on-road exposure patterns to PM2.5 were assessed in five weeklong sampling trips in metropolitan areas of five U.S. cities from April to August of 2006. Drivers were sampled with real-time (DustTrak) and gravimetric samplers to measure average in-cabin PM2.5 concentrations and to compare their correspondence in moving trucks. In addition, GPS measurements of truck locations, meteorological data, and driver behavioral data were collected throughout the day to determine which factors influence the relationship between real-time and gravimetric samplers. Results indicate that the association between average real-time and gravimetric PM2.5 measurements on moving trucks was fairly consistent (Spearman rank correlation of 0.63), with DustTrak measurements exceeding gravimetric measurements by approximately a factor of 2. This ratio differed significantly only between the industrial Midwest cities and the other three sampled cities scattered in the South and West. There was also limited evidence of an effect of truck age. Filter samples collected concurrently with DustTrak measurements can be used to calibrate average mass concentration responses for the DustTrak, allowing for real-time measurements to be integrated into longer-term studies of inter-city and intra-urban exposure patterns for truck drivers. PMID:21991940
Comparing gravimetric and real-time sampling of PM(2.5) concentrations inside truck cabins.
Zhu, Ying; Smith, Thomas J; Davis, Mary E; Levy, Jonathan I; Herrick, Robert; Jiang, Hongyu
2011-11-01
As part of a study on truck drivers' exposure and health risk, pickup and delivery (P&D) truck drivers' on-road exposure patterns to PM(2.5) were assessed in five, weeklong sampling trips in metropolitan areas of five U.S. cities from April to August of 2006. Drivers were sampled with real-time (DustTrak) and gravimetric samplers to measure average in-cabin PM(2.5) concentrations and to compare their correspondence in moving trucks. In addition, GPS measurements of truck locations, meteorological data, and driver behavioral data were collected throughout the day to determine which factors influence the relationship between real-time and gravimetric samplers. Results indicate that the association between average real-time and gravimetric PM(2.5) measurements on moving trucks was fairly consistent (Spearman rank correlation of 0.63), with DustTrak measurements exceeding gravimetric measurements by approximately a factor of 2. This ratio differed significantly only between the industrial Midwest cities and the other three sampled cities scattered in the South and West. There was also limited evidence of an effect of truck age. Filter samples collected concurrently with DustTrak measurements can be used to calibrate average mass concentration responses for the DustTrak, allowing for real-time measurements to be integrated into longer-term studies of inter-city and intra-urban exposure patterns for truck drivers.
NASA Astrophysics Data System (ADS)
Chen, Sheng-Chieh; Hsu, Shih-Chieh; Tsai, Chuen-Jinn; Chou, Charles C.-K.; Lin, Neng-Huei; Lee, Chung-Te; Roam, Gwo-Dong; Pui, David Y. H.
2013-10-01
The characteristics of atmospheric ultrafine particles (i.e. <100 nm, nanoparticles or PM0.1), PM2.5 and PM10 were studied at the Lulin Atmospheric Background Station (LABS, 2862 m a.s.l., Taiwan) as part of the 7SEAS/Dongsha campaign. Sampling was conducted in July and August of 2009 and September to November of 2010, during which two 96-h and four 72-h PM samples were taken. Real-time particle size distributions were measured continuously from July to August of 2009 and July to November of 2010. PM0.1, PM2.5 and PM10 were collected by using two MOUDIs (micro-orifice uniform deposit impactor, MSP 110) and a Dichotomous PM10 sampler (Andersen SA-241) while real-time size distributions of particles of 5.5-350 nm in diameter were measured by an SMPS (scanning mobility particle sizer, TSI 3936). Filter samples were analyzed for gravimetric mass and chemical compositions, including organic carbon (OC), element carbon (EC), water-soluble ions and trace elements. Meteorology parameters and gaseous O3 and CO concentrations were also monitored along with the SMPS data for studying particle nucleation, condensation, SOA (secondary organic aerosol) formation and long-range air pollutant transport at the LABS. SMPS data showed that nanoparticle concentrations at the LABS remained relatively stable at low level (˜300-500 #/cm3) during the nighttime (22:00-04:00), increased during daytime, and reached a maximum (˜2000-4000 #/cm3) in the afternoon (12:00-16:00). The NMD (number median diameter) showed an opposite trend with the peak number concentrations observed in the afternoon corresponding to the smallest NMD (20-40 nm). These results indicate the dominance of local sources rather than the transport from other atmospheric air because that the lifetime of nanoparticles was only few minutes. Chemical analysis of filter samples showed that the concentrations of trace elements K and Mn, which serve as biomass burning markers, were elevated in the fine particle fractions during November 9-12th when the air mass passed through South and Southeast Asia prior to reaching the LABS. The concentrations of K and Mn would have been low if the aerosols had local origins The biomass burning derived K was found in all fine particle samples at the LABS suggesting that the free troposphere around Taiwan is frequently impacted by the long-range transport of biomass burning plumes via the westerly winds.
NASA Astrophysics Data System (ADS)
He, Qiusheng; Yan, Yulong; Guo, Lili; Zhang, Yanli; Zhang, Guixiang; Wang, Xinming
2017-02-01
PM2.5 samples were collected in urban area in Taiyuan for four seasons from August 2009 to April 2010. The Water-soluble inorganic ions (WSI, including F-, Cl-, NO3-, SO42 -, Na+, NH4+, K+, Mg2 +, and Ca2 +) were analyzed by ion chromatography. The daily PM2.5 levels in the field samples varied from 49.90 to 477.93 μg/m3 with the mean of 209.54 μg/m3, which all largely exceeded the PM2.5 24-hour limitation value of 35 μg/m3 in Environmental Protection Administration of United States and 75 μg/m3 in Ministry of Environmental Protection of China. The WSI average concentration was 68.86 μg/m3 and accounted for about 32.86% of PM2.5. As the most abundant anion and cation, SO42 - and NH4+ were 43.53 and 14.78 percent of WSI, respectively. PM2.5 in Taiyuan was acidic by the micro-equivalents concentration methods but nearly neutral in autumn, and the chemical forms of WSI were mainly NH4HSO4, (NH4)2SO4 and NH4NO3. PM2.5 and WSI levels showed obvious seasonal variation and were the highest in winter in all samples. PM2.5, SO42 -, and some coal-related ions such as NH4+ and Cl- were higher in winter than other seasons, which mainly attributed to more coal combustion for power and indoor heating supply. The ratio analysis showed that Mg2 + and Ca2 + were not only from soil dust, but also from coal combustion and industry emission. Biomass burning such as the cornstalk and tree branches led to the highest K+ emission in autumn and summer. Wind had a regular influence on the PM2.5 and WSI, and would transport the soil dust mainly from the northwest and also lead to re-suspension of dust in the air when the wind speed was high. Furthermore, the dustpan topography easily helped the pollutants to concentrate in Taiyuan city, and some coal coking industries might contribute to high PM2.5 and WSI in Taiyuan.
Leaderer, B P; Naeher, L; Jankun, T; Balenger, K; Holford, T R; Toth, C; Sullivan, J; Wolfson, J M; Koutrakis, P
1999-01-01
Twenty-four-hour samples of PM10 (mass of particles with aerodynamic diameter < or = 10 microm), PM2.5, (mass of particles with aerodynamic diameter < or = 2.5 microm), particle strong acidity (H+), sulfate (SO42-), nitrate (NO3-), ammonia (NH3), nitrous acid (HONO), and sulfur dioxide were collected inside and outside of 281 homes during winter and summer periods. Measurements were also conducted during summer periods at a regional site. A total of 58 homes of nonsmokers were sampled during the summer periods and 223 homes were sampled during the winter periods. Seventy-four of the homes sampled during the winter reported the use of a kerosene heater. All homes sampled in the summer were located in southwest Virginia. All but 20 homes sampled in the winter were also located in southwest Virginia; the remainder of the homes were located in Connecticut. For homes without tobacco combustion, the regional air monitoring site (Vinton, VA) appeared to provide a reasonable estimate of concentrations of PM2.5 and SO42- during summer months outside and inside homes within the region, even when a substantial number of the homes used air conditioning. Average indoor/outdoor ratios for PM2.5 and SO42- during the summer period were 1.03 +/- 0.71 and 0.74 +/- 0.53, respectively. The indoor/outdoor mean ratio for sulfate suggests that on average approximately 75% of the fine aerosol indoors during the summer is associated with outdoor sources. Kerosene heater use during the winter months, in the absence of tobacco combustion, results in substantial increases in indoor concentrations of PM2.5, SO42-, and possibly H+, as compared to homes without kerosene heaters. During their use, we estimated that kerosene heaters added, on average, approximately 40 microg/m3 of PM2.5 and 15 microg/m3 of SO42- to background residential levels of 18 and 2 microg/m3, respectively. Results from using sulfuric acid-doped Teflon (E.I. Du Pont de Nemours & Co., Wilmington, DE) filters in homes with kerosene heaters suggest that acid particle concentrations may be substantially higher than those measured because of acid neutralization by ammonia. During the summer and winter periods indoor concentrations of ammonia are an order of magnitude higher indoors than outdoors and appear to result in lower indoor acid particle concentrations. Nitrous acid levels are higher indoors than outdoors during both winter and summer and are substantially higher in homes with unvented combustion sources. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10064553
Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi - Pakistan
NASA Astrophysics Data System (ADS)
Shahid, Imran; Kistler, Magdalena; Mukhtar, Azam; Ghauri, Badar M.; Ramirez-Santa Cruz, Carlos; Bauer, Heidi; Puxbaum, Hans
2016-03-01
A mass balance method is applied to assess main source contributions to PM2.5 and PM10 levels in Karachi. Carbonaceous species (elemental carbon, organic carbon, carbonate carbon), soluble ions (Ca++, Mg++, Na+, K+, NH4+, Cl-, NO3-, SO4-), saccharides (levoglucosan, galactosan, mannosan, sucrose, fructose, glucose, arabitol and mannitol) were determined in atmospheric fine (PM2.5) and coarse (PM10) aerosol samples collected under pre-monsoon conditions (March-April 2009) at an urban site in Karachi (Pakistan). The concentrations of PM2.5 and PM10 were found to be 75 μg/m3 and 437 μg/m3 respectively. The large difference between PM10 and PM2.5 originated predominantly from mineral dust. "Calcareous dust" and "siliceous dust" were the over all dominating material in PM, with 46% contribution to PM2.5 and 78% to PM10-2.5. Combustion particles and secondary organics (EC + OM) comprised 23% of PM2.5 and 6% of PM10-2.5. EC, as well as OC ambient levels were higher (59% and 56%) in PM10-2.5 than in PM2.5. Biomass burning contributed about 3% to PM2.5, and had a share of about 13% of ;EC + OM; in PM2.5. The impact of bioaerosol (fungal spores) was minor and had a share of 1 and 2% of the OC in the PM2.5 and PM10-2.5 size fractions. In case of secondary inorganic aerosols, ammonium sulphate (NH4)2SO4 contributes 4.4% to PM2.5 and no detectable quantity were found in fraction PM10-2.5. The sea salt contribution is about 2% both to PM2.5 and PM10-2.5.
NASA Astrophysics Data System (ADS)
Amil, N.; Latif, M. T.; Khan, M. F.; Mohamad, M.
2015-09-01
This study attempts to investigate the fine particulate matter (PM2.5) variability in the Klang Valley urban-industrial environment. In total, 94 daily PM2.5 samples were collected during a one-year campaign from August 2011 to July 2012, covering all four seasons. The samples were analysed for various inorganic components and black carbon. The chemical compositions were statistically analysed and the aerosol pattern was characterised using descriptive analysis, correlation matrices, enrichment factors (EF), stoichiometric analysis and chemical mass closure (CMC). For source apportionment purposes, a combination of positive matrix factorisation (PMF) and multi-linear regression (MLR) was employed. Further, meteorological-gaseous parameters were incorporated into each analysis for improved assessment. The results showed that PM2.5 mass averaged at 28 ± 18 μg m-3, 2.8 fold higher than the World Health Organisation (WHO) annual guideline. On a daily basis, the PM2.5 mass ranged between 6 and 118 μg m-3 with 43 % exceedance of the daily WHO guideline. The North-East monsoon (NE) was the only season with < 50 % sample exceedance of the daily WHO guideline. On an annual scale, PM2.5 mass correlated positively with temperature (T) and wind speed (WS) but negatively with relative humidity (RH). With the exception of NOx, the gases analysed (CO, NO2, NO and SO2) were found to significantly influence the PM2.5 mass. Seasonal variability unexpectedly showed that rainfall, WS and wind direction (WD) did not significantly correlate with PM2.5 mass. Further analysis on the PM2.5 / PM10, PM2.5 / TSP and PM10 / TSP ratios reveal that meteorological parameters only greatly influenced the coarse particles (PM > 2.5μm) and less so the fine particles at the site. Chemical composition showed that both primary and secondary pollutants of PM2.5 are equally important, albeit with seasonal variability. The CMC components identified were: black carbon (BC) > secondary inorganic aerosols (SIA) > dust > trace elements (TE) > sea salt > K+. The EF analysis distinguished two groups of trace elements: those with anthropogenic sources (Pb, Se, Zn, Cd, As, Bi, Ba, Cu, Rb, V and Ni) and those with a crustal source (Sr, Mn, Co and Li). The five identified factors resulting from PMF 5.0 were: (1) combustion of engine oil; (2) mineral dust; (3) mixed SIA and biomass burning; (4) mixed traffic and industrial; and (5) sea salt. Each of these sources had an annual mean contribution of 17, 14, 42, 10 and 17 %, respectively. The dominance of each identified source largely varied with changing season and a few factors were in agreement with the CMC, EF and stoichiometric analysis, accordingly. In relation to meteorological-gaseous parameters, PM2.5 sources were influenced by different parameters during different seasons. In addition, two air pollution episodes (HAZE) revealed the influence of local and/or regional sources. Overall, our study clearly suggests that the chemical constituents and sources of PM2.5 were greatly influenced and characterised by meteorological and gaseous parameters which largely vary with season.
Everyday and prospective memory deficits in ecstasy/polydrug users.
Hadjiefthyvoulou, Florentia; Fisk, John E; Montgomery, Catharine; Bridges, Nikola
2011-04-01
The impact of ecstasy/polydrug use on real-world memory (i.e. everyday memory, cognitive failures and prospective memory [PM]) was investigated in a sample of 42 ecstasy/polydrug users and 31 non-ecstasy users. Laboratory-based PM tasks were administered along with self-reported measures of PM to test whether any ecstasy/polydrug-related impairment on the different aspects of PM was present. Self-reported measures of everyday memory and cognitive failures were also administered. Ecstasy/polydrug associated deficits were observed on both laboratory and self-reported measures of PM and everyday memory. The present study extends previous research by demonstrating that deficits in PM are real and cannot be simply attributed to self-misperceptions. The deficits observed reflect some general capacity underpinning both time- and event-based PM contexts and are not task specific. Among this group of ecstasy/polydrug users recreational use of cocaine was also prominently associated with PM deficits. Further research might explore the differential effects of individual illicit drugs on real-world memory.
Distribution and source of rare earth elements in PM2.5 in Xiamen, China.
Wang, Shanshan; Yu, Ruilian; Hu, Gongren; Hu, Qichao; Zheng, Quan
2017-12-01
Particulate matter with diameter ≤2.5 µm (PM 2.5 ) is a serious atmospheric pollutant. Composition and source analyses are essential for controlling PM 2.5 . Rare earth elements (REEs) have received little attention as a component of PM 2.5 . In the present study, PM 2.5 samples were collected in urban and suburban areas in Xiamen and analyzed for REEs. The concentration range of total REEs (∑REE) is 12.07 to 98.45 mg/kg, with a mean of 38.53 mg/kg, in urban PM 2.5 and 16.44 to 160.62 mg/kg, with a mean of 42.94 mg/kg, in suburban PM 2.5 . Light REE concentrations are higher in suburban PM 2.5 , whereas heavy REE concentrations are higher in urban PM 2.5 , implying distinct sources of REEs in urban and suburban PM 2.5 . The scatter plots of δEu-∑REE and La-Ce-Sm suggest that REEs in urban PM 2.5 originate from gasoline- and diesel-vehicle exhaust, whereas those in suburban PM 2.5 are mainly influenced by gasoline-vehicle exhaust. Environ Toxicol Chem 2017;36:3217-3222. © 2017 SETAC. © 2017 SETAC.
Talbot, Karley-Dale S; Kerns, Kimberly A
2014-11-01
The current study examined prospective memory (PM, both time-based and event-based) and time estimation (TR, a time reproduction task) in children with and without attention deficit hyperactivity disorder (ADHD). This study also investigated the influence of task performance and TR on time-based PM in children with ADHD relative to controls. A sample of 69 children, aged 8 to 13 years, completed the CyberCruiser-II time-based PM task, a TR task, and the Super Little Fisherman event-based PM task. PM performance was compared with children's TR abilities, parental reports of daily prospective memory disturbances (Prospective and Retrospective Memory Questionnaire for Children, PRMQC), and ADHD symptomatology (Conner's rating scales). Children with ADHD scored more poorly on event-based PM, time-based PM, and TR; interestingly, TR did not appear related to performance on time-based PM. In addition, it was found that PRMQC scores and ADHD symptom severity were related to performance on the time-based PM task but not to performance on the event-based PM task. These results provide some limited support for theories that propose a distinction between event-based PM and time-based PM. Copyright © 2014 Elsevier Inc. All rights reserved.
Characterisation of particulate exposure during fireworks displays
NASA Astrophysics Data System (ADS)
Joly, Alexandre; Smargiassi, Audrey; Kosatsky, Tom; Fournier, Michel; Dabek-Zlotorzynska, Ewa; Celo, Valbona; Mathieu, David; Servranckx, René; D'amours, Réal; Malo, Alain; Brook, Jeffrey
2010-11-01
Little is known about the level and content of exposure to fine particles (PM 2.5) among persons who attend fireworks displays and those who live nearby. An evaluation of the levels of PM 2.5 and their elemental content was carried out during the nine launches of the 2007 Montréal International Fireworks Competition. For each event, a prediction of the location of the firework plume was obtained from the Canadian Meteorological Centre (CMC) of the Meteorological Service of Canada. PM 2.5 was measured continuously with a photometer (Sidepak™, TSI) within the predicted plume location ("predicted sites"), and integrated samples were collected using portable personal samplers. An additional sampler was located on a nearby roof ("fixed site"). The elemental composition of the collected PM 2.5 samples from the "predicted sites" was determined using both a non-destructive energy dispersive ED-XRF method and an ICP-MS method with a near-total microwave-assisted acid digestion. The elemental composition of the "fixed site" samples was determined by the ICP-MS with the near-total digestion method. The highest PM 2.5 levels reached nearly 10 000 μg m -3, roughly 1000 times background levels. Elements such as K, Cl, Al, Mg and Ti were markedly higher in plume-exposed filters. This study shows that 1) persons in the plume and in close proximity to the launch site may be exposed to extremely high levels of PM 2.5 for the duration of the display and, 2) that the plume contains specific elements for which little is known of their acute cardio-respiratory toxicity.
Occupational exposure to fungi and particles in animal feed industry.
Viegas, Carla; Faria, Tiago; Carolino, Elisabete; Sabino, Raquel; Gomes, Anita Quintal; Viegas, Susana
Very few studies regarding fungal and particulate matter (PM) exposure in feed industry have been reported, although such contaminants are likely to be a significant contributing factor to several symptoms reported among workers. The purpose of this study has been to characterize fungal and dust exposure in one Portuguese feed industry. Air and surface samples were collected and subject to further macro- and microscopic observations. In addition we collected other air samples in order to perform real-time quantitative polymerase chain reaction (PCR) amplification of genes from Aspergillus fumigatus and Aspergillus flavus complexes as well as Stachybotrys chartarum. Additionally, two exposure metrics were considered - particle mass concentration (PMC), measured in 5 different sizes (PM0.5, PM1, PM2.5, PM5, PM10), and particle number concentration (PNC) based on results given in 6 different sizes in terms of diameter (0.3 μm, 0.5 μm, 1 μm, 2.5 μm, 5 μm and 10 μm). Species from the Aspergillus fumigatus complex were the most abundant in air (46.6%) and in surfaces, Penicillium genus was the most frequently found (32%). The only DNA was detected from A. fumigatus complex. The most prevalent in dust samples were smaller particles which may reach deep into the respiratory system and trigger not only local effects but also the systemic ones. Future research work must be developed aiming at assessing the real health effects of these co-exposures. Med Pr 2016;67(2):143-154. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
2000-11-07
STS-97 Mission Specialist Marc Garneau (right) answers a question from the media. At left is Mission Specialist Joe Tanner. They and the other crew members are meeting with the media before beginning emergency egress training at Launch Pad 39B. The training is part of Terminal Countdown Demonstration Test activities that include a simulated launch countdown. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST
STS-97 Mission Specialist Noriega talks to media after arrival for launch
NASA Technical Reports Server (NTRS)
2000-01-01
After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Carlos Noriega. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.
STS-97 Mission Specialist Tanner talks to media after arrival for launch
NASA Technical Reports Server (NTRS)
2000-01-01
After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Joseph Tanner. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Marc Garneau, who is with the Canadian Space Agency, and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.
STS-97 Mission Specialist Garneau talks to media after arrival for launch
NASA Technical Reports Server (NTRS)
2000-01-01
After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Marc Garneau, who is with the Canadian Space Agency. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Mike Rein (right), division chief of Media Services at the NASA News Center, walks the area near the countdown clock (far right) at sunrise. The scene is the calm before the storm of journalists, photographers and television media who have descended upon KSC to capture the Return to Flight mission STS-114 to the International Space Station. This is the first Space Shuttle flight since the loss of Columbia, STS-107, on Feb. 1, 2003. Launch is scheduled for 3:51 p.m. EDT from Launch Pad 39B. The 12-day mission is expected to end with touchdown at NASA Kennedy Space Centers Shuttle Landing Facility at 11:06 a.m. July 25.
STS-107 crew meet with media in front of grandstand at KSC
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - The STS-107 crew meet with the media in front of the grandstand. From left are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Specialist Ilan Ramon, Mission Specialist David Brown, Payload Commander Michael Anderson, and Mission Specialists Laurel Clark and Kalpana Chawla. The crew just finished Terminal Countdown Demonstration Test activities, including a simulated launch countdown, in preparation for launch planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. .
NASA Astrophysics Data System (ADS)
Alves, C. A.; Vicente, A. M. P.; Gomes, J.; Nunes, T.; Duarte, M.; Bandowe, B. A. M.
2016-11-01
A sampling campaign of size segregated particulate matter (PM0.5, PM0.5-1, PM1-2.5 and PM2.5-10) was carried out at two sites, one in a road tunnel (Braga, Portugal) and another at an urban background location in the neighbourhood. Particle-bound polycyclic aromatic compounds were extracted with organic solvents and analysed by gas chromatography-mass spectrometry. Twenty six parent and alkyl-polycyclic aromatic hydrocarbons (PAHs), 4 azaarenes (AZAs), 15 nitrated and 15 oxygenated derivatives (NPAHs and OPAHs) were analysed. On average, submicron particles (PM1) in the tunnel comprised 93, 91, 96 and 71% of the total PAHs, OPAHs, NPAHs and AZAs mass in PM10, respectively. Tunnel to outdoor PAH concentration ratios between 10 and 14 reveal the strong contribution of fresh exhaust emissions to the PM loads. The dominant PAHs in the tunnel were pyrene, retene and benzo[ghi]perylene, accounting for 20, 17 and 8% of the total PAH levels in PM10, respectively. Isomer ratios indicated the importance of unburnt fuel as a significant PAH source. The only NPAH consistently present in all samples was 5-nitroacenaphthene. Indanone and 1,8-naphthalic anhydride were the most abundant OPAHs, accounting for 25 and 17% of the total concentrations of this organic class, respectively. Other abundant OPAHs were 1,4-naphthoquinone, 9-fluorenone, 1,2-acenaphthylenequinone and 7H-benz[de]anthracene-7-one. Individual emission factors (μg veh- 1 km- 1) were estimated and compared with those obtained in other tunnel studies.
NASA Astrophysics Data System (ADS)
Fujii, Yusuke; Tohno, Susumu; Amil, Norhaniza; Latif, Mohd Talib
2017-12-01
Almost every dry season, peatland fires occur in Sumatra and Kalimantan Inlands. Dense smoke haze from Indonesian peatland fires (IPFs) causes impacts on health, visibility, transport and regional climate in Southeast Asian countries such as Indonesia, Malaysia, and Singapore. Quantitative knowledge of IPF source contribution to ambient aerosols in Southeast Asia (SEA) is so useful to make appropriate suggestions to policy makers to mitigate IPF-induced haze pollution. However, its quantitative contribution to ambient aerosols in SEA remains unclarified. In this study, the source contributions to PM2.5 were determined by the Positive Matrix Factorization (PMF) model with annual comprehensive observation data at Petaling Jaya on the west coast of Peninsular Malaysia, which is downwind of the IPF areas in Sumatra Island, during the dry (southwest monsoon: June-September) season. The average PM2.5 mass concentration during the whole sampling periods (Aug 2011-Jul 2012) based on the PMF and chemical mass closure models was determined as 20-21 μg m-3. Throughout the sampling periods, IPF contributed (on average) 6.1-7.0 μg m-3 to the PM2.5, or ∼30% of the retrieved PM2.5 concentration. In particular, the PM2.5 was dominantly sourced from IPF during the southwest monsoon season (51-55% of the total PM2.5 concentration on average). Thus, reducing the IPF burden in the PM2.5 levels would drastically improve the air quality (especially during the southwest monsoon season) around the west coast of Peninsular Malaysia.
2016-09-01
AFRL-RQ-WP-TR-2016-0131 DEMONSTRATION OF NOVEL SAMPLING TECHNIQUES FOR MEASUREMENT OF TURBINE ENGINE VOLATILE AND NON-VOLATILE PARTICULATE...MATTER (PM) EMISSIONS Edwin Corporan Fuels and Energy Branch Turbine Engine Division Matthew DeWitt and Chris Klingshirn University of...Energy Branch Turbine Engine Division Turbine Engine Division Aerospace Systems Directorate //Signature// CHARLES W. STEVENS Lead Engineer
NASA Astrophysics Data System (ADS)
Zajusz-Zubek, Elwira; Mainka, Anna; Kaczmarek, Konrad
2018-01-01
The analysis reported in this study was performed to characterize the concentrations and water-soluble content of trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se) in PM2.5, PM10 and PM2.5-10 samples collected in the surroundings of power plants in southern Poland. The solubility of trace elements bound to PM2.5 and PM10 was higher than for PM2.5-10, and in most cases, significant differences were revealed in the relative percentage concentrations of the water-soluble fractions. The occurrence of Cd, Cr, Mn, Ni, Pb and Se in first PCA (Principal Component Analysis) factor (PC1) - indicate coal combustion processes as the potential source of these elements. Other factors indicate two further anthropogenic sources: the resuspension of road dust due to vehicular activities and waste burning in domestic sources - factor (PC2), and, soil dust sources affected by fugitive dust from the mining processes and unpaved roads, as well as transportation and deposition of coal -factor (PC3).
NASA Astrophysics Data System (ADS)
Roumie, M.; Chiari, M.; Srour, A.; Sa'adeh, H.; Reslan, A.; Sultan, M.; Ahmad, M.; Calzolai, G.; Nava, S.; Zubaidi, Th.; Rihawy, M. S.; Hussein, T.; Arafah, D.-E.; Karydas, A. G.; Simon, A.; Nsouli, B.
2016-03-01
The present work is a part of a scientific study conducted among several Arab countries in west Asia, under an International Atomic Energy Agency (IAEA) regional technical cooperation project for Arasia region. The project aims at producing for the first time a database of particulate matter (PM) elemental concentrations in the region that will help in future air quality studies in order to identify commonalities and differences in the presence and contribution of fingerprint pollution sources among the Arasia Member States. The first regional campaign was launched simultaneously in Lebanon, Iraq, Jordan, Syria and United Arab Emirates, using a harmonized sampling and analysis protocol of PM10 and PM2.5 samples. Different samples, collected between October 2014 and February 2015, from the participating countries, were analyzed by PIXE technique and gravimetric measurements were also carried out. The first results of the study will be discussed in a regional perspective. Our study shows that concentrations of fine aerosol fractions are often exceeding the WHO standard values as well as showing some disparities in the obtained values between the different sampling sites. However, some trend similarities of variations with time could also be observed, suggesting a common influence by trans-boundary or external sources of air pollution.
Tao, Jun; Zhang, Leiming; Cao, Junji; Zhong, Liuju; Chen, Dongsheng; Yang, Yihong; Chen, Duohong; Chen, Laiguo; Zhang, Zhisheng; Wu, Yunfei; Xia, Yunjie; Ye, Siqi; Zhang, Renjian
2017-01-01
Daily PM 2.5 samples were collected at an urban site in Guangzhou in 2014 and at a suburban site in Zhuhai in 2014-2015. Samples were subject to chemical analysis for various chemical components including organic carbon (OC), element carbon (EC), major water-soluble inorganic ions, and trace elements. The annual average PM 2.5 mass concentration was 48±22μgm -3 and 45±25μgm -3 in Guangzhou and Zhuhai, respectively, with the highest seasonal average concentration in winter and the lowest in summer at both sites. Regional transport of pollutants accompanied with different air mass origins arriving at the two sites and pollution sources in between the two cities caused larger seasonal variations in Zhuhai (>a factor of 3.5) than in Guangzhou (17% of PM 2.5 mass concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterization of ambient and extracted PM2.5 collected on filters for toxicology applications
Roper, Courtney; Chubb, Lauren G.; Cambal, Leah; Tunno, Brett; Clougherty, Jane E.; Mischler, Steven E.
2016-01-01
Research on the health effects of fine particulate matter (PM2.5) frequently disregards the differences in particle composition between that measured on an ambient filter versus that measured in the corresponding extraction solution used for toxicological testing. This study presents a novel method for characterizing the differences, in metallic and organic species, between the ambient samples and the corresponding extracted solutions through characterization of extracted PM2.5 suspended on filters. Removal efficiency was found to be 98.0 ± 1.4% when measured using pre- and post-removal filter weights, however, this efficiency was significantly reduced to 80.2 ± 0.8% when measured based on particle mass in the extraction solution. Furthermore, only 47.2 ± 22.3% of metals and 24.8 ± 14.5% of organics measured on the ambient filter were found in the extraction solution. Individual metallic and organic components were extracted with varying efficiency, with many organics being lost entirely during extraction. Finally, extraction efficiencies of specific PM2.5 components were inversely correlated with total mass. This study details a method to assess compositional alterations resulting from extraction of PM2.5 from filters, emphasizing the need for standardized procedures that maintain compositional integrity of ambient samples for use in toxicology studies of PM2.5. PMID:26446919
Ground-Based Aerosol Measurements | Science Inventory ...
Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomon et al. 2014) as well as in research studies. In this approach, air, at a specified flow rate and time period, is typically drawn through an inlet, usually a size selective inlet, and then drawn through filters, 1 INTRODUCTION Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomo
Svendsen, Erik R; Reynolds, Scott; Ogunsakin, Olalekan A; Williams, Edith M; Fraser-Rahim, Herb; Zhang, Hongmei; Wilson, Sacoby M
2014-01-01
INTRODUCTION The Port of Charleston, one of the busiest US ports, currently operates five terminals. The fifth terminal is being planned for expansion to accommodate container ships from the proposed Panama Canal expansion. Such expansion is expected to increase traffic within local vulnerable North Charleston neck communities by at least 7,000 diesel truck trips per day, more than a 70% increase from the present average rate of 10,000 trucks per day. Our objective was to measure the current particulate matter (PM) concentrations in North Charleston communities as a baseline to contrast against future air pollution after the proposed port expansion. METHODS Saturation study was performed to determine spatial variability of PM in local Charleston neck communities. In addition, the temporal trends in particulate air pollution within the region were determined across several decades. With the BGI sampler, PM samples were collected for 24 hours comparable to the federal reference method protocol. Gravimetric analysis of the PM filter samples was conducted following EPA protocol. RESULTS The range of the PM10 annual average across the region from 1982 to 2006 was 17.0–55.0 μg/m3. On only two occasions were the records of PM10 averaged above the 50.0 μg/m3 national standard. In the case of PM2.5, the annual average for 1999–2006 ranged from 11.0 to 13.5 μg/m3 and no annual average exceeded the 15.0 μg/m3 PM2.5 annual standard. CONCLUSIONS Although ambient PM levels have fallen in the Charleston region since the 1960s due to aggressive monitoring by the stakeholders against air pollution, local air pollution sources within the North Charleston neck communities have consistently contributed to the PM levels in the region for several decades. This baseline assessment of ambient PM will allow for comparisons with future assessments to ascertain the impact of the increased truck and port traffic on PM concentrations. PMID:24653648
Exploration of PM2.5 filtration property of filter bag for environment protection
NASA Astrophysics Data System (ADS)
Zhu, Ruitian; Zheng, Jinwei; Ni, Bingxuan; Zhang, Peng
2017-06-01
In this paper, filter bag of polyphenylene sulfide (PPS) needle punched nonwoven for environment protection was investigated. The results showed that air permeability of sample was linear rise with the increase of the pressure drop. During the testing process, the residual pressure drop rose with the increase of cycles because of test dust attaching on the surface of the filter. The PM2.5 filtration efficiency was obtained of 99.854%, which was smaller than the dust filtration efficiency of 99.971% because of the fine particles taking larger proportion of the dust through the sample. Results show that this method of evaluating the PM2.5 filtration property is feasible.
Measurement of medullation in wool and mohair using an Optical Fibre Diameter Analyser.
Lupton, C J; Pfeiffer, F A
1998-05-01
We conducted three experiments to evaluate the Optical Fibre Diameter Analyser (OFDA) for estimating medullation (med [M], kemp [K], and total [T] medullated fiber content) in mohair and wool produced by Angora goats and sheep, respectively. Medullation can be a beneficial characteristic in certain types of wool, but it is highly undesirable in mohair and apparel wools. Current techniques for evaluating medullation in animal fibers are laborious, slow, and expensive. The OFDA had been modified by the manufacturer to measure fiber opacity distribution, a characteristic known to be indicative of medullation in white fibers, and was capable of providing such measurements in a very short time. Measurements made on magnified fiber images produced with a projection microscope (PM) were used as a reference for M, K, and T in fiber samples. An initial experiment with 124 mohair samples (T = .10 to 9.10%) seemed to indicate that OFDA estimates of M, K, and T were only poorly correlated with corresponding PM values (r2 = .5409, .1401, and .5576, respectively). However, a second experiment using wool and mohair samples containing a wider range of medullation (T = .58 to 26.54%) revealed that OFDA estimates of M, K, and T for wool were highly correlated with PM measurements (r2 = .9853, .9307, and .9728, respectively). Evidence was also obtained indicating that the low r2 values associated with mohair relationships were likely due to a combination of factors: 1) high variation among the standard PM measurements and 2) the relatively low M, K, and T contents of the mohair samples compared with wool. In a third experiment, greater accuracy was obtained in the PM measurements by evaluating many more individual fibers per sample (10,000). In this case, OFDA estimates of M, K, and T for mohair were highly correlated with corresponding PM measurements (r2 = .8601, .9939, and .9696, respectively). However, the two sets of linear regression equations obtained for wool and mohair were somewhat different, indicating that separate calculations should be used to estimate PM measurements from OFDA data. In conclusion, it was demonstrated that the OFDA instrument is capable of providing relatively fast, accurate, and potentially less expensive estimates of medullated fiber characteristics in mohair and wool.
Characteristics of airborne bacteria in Mumbai urban environment.
Gangamma, S
2014-08-01
Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM. Copyright © 2014 Elsevier B.V. All rights reserved.
Mass size distribution of particle-bound water
NASA Astrophysics Data System (ADS)
Canepari, S.; Simonetti, G.; Perrino, C.
2017-09-01
The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).
Verma, Vishal; Polidori, Andrea; Schauer, James J; Shafer, Martin M; Cassee, Flemming R; Sioutas, Constantinos
2009-02-01
To characterize the impact of the October 2007 wildfires on the air quality of Los Angeles, integrated ambient particulate matter (PM) samples were collected near the University of Southern California between October 24 and November 14, 2007. Samples were analyzed for different chemical species (i.e.,water-soluble organic carbon, water-soluble elements, and several organic compounds), and the redox activity of PM was evaluated using two different assays: the dithiothreitol (DTT) and macrophage reactive oxygen species (ROS) assays. Tracers of biomass burning such as potassium and levoglucosan were elevated by 2-fold during the fire period (October 24-28), compared to the postfire period (November 1-14). Water-soluble organic carbon (WSOC) concentrations were also higher during the fire event (170 and 78 microg/mg of PM, during fire and postfire, respectively). While the DTT activity (on a per PM mass basis) increased for samples collected during the fire event (0.024 nmol DTT/min x microg on October 24) compared to the postfire samples (0.005 nmol DTT/min x microg on November 14), the ROS activity appears to be unaffected by the wildfires, probably because these two assays are driven by different PM species. While the DTT assay reflected the redox potential of polar organic compounds, which are abundant in wood-smoke, the ROS assay was mainly influenced by transition metals (e.g., Fe, Cu, Cr, Zn, Ni, and V), emitted mostly by vehicular traffic and other combustion sources, but not by the wildfires.
Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta
2012-09-29
One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions.
2012-01-01
Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. Conclusions The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions. PMID:23021308
Changes in Aerosol Chemistry in the Plume of Kilauea Volcano Caused by the 2008 Summit Eruption
NASA Astrophysics Data System (ADS)
Ilyinskaya, E.; Oppenheimer, C.
2009-05-01
In March 2008 an eruption began in Halema'uma'u summit crater of Kilauea volcano; this was the first summit eruption since 1982. Prior to the new active phase, degassing in the crater was predominantly from several small fumaroles emitting a weak translucent plume. The 2003-2007 average SO2 emission rate was 140 tonnes per day and increased drastically to over 2000 tonnes per day in March 2008. The plume emitted from the crater during the eruption was concentrated and opaque, containing both ash and aerosol particles. Aerosol particles were sampled in the plume from Halema'uma'u before the start of the new eruptive phase (August 2007) and during it (May 2008). Particles emitted from Pu'u'O'o crater were collected at the rim and 8- 10km downwind. Sampling was done with a cascade impactor which collects and segregates PM10 (particle matter <10 μm) into 14 size fractions. There is a significant increase in PM sulphate concentration during the eruptive phase, or from 0.11 up to 6.3 μg per m3 of sampled air. Cl- concentration increased from 0.097 to 0.338 μgm-3, while F- was not detected either before or during the eruption. The SO42-/Cl- ratio increased from 0.15 to 18.8. The concentration peak of SO42- shifts to a coarser PM size fraction during the active phase, or from 0.18-0.32 to 0.32-0.56 μm. It is possible that higher water vapour content during the eruption favours more rapid particle growth. PM collected at Pu'u'O'o rim shows a noteworthy bimodal SO42- concentration distribution with a finer peak between 0.32-0.56 μm and a coarser peak between 1.0-1.4 μm. The coarser PM is efficiently removed from the plume and is not detected when sampled 8km downwind of the source. Near-vent nitrate was not detected in pre-eruptive samples but was found in concentrations between 0.17-0.58 μgm-3 in syn-eruptive PM; these are much lower than the concentrations seen at Pu'u'O'o (up to 3.0 μgm-3). Work in progress is analysis of metal content in the pre- and syn-eruptive PM which will be correlated with the size-resolved chemistry of anions. Further field sampling will be made in April 2009 now that the eruptive activity is significantly diminished and potentially coming to an end.
Evaluation of factors that affect diesel exhaust toxicity. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norbeck, J.M.; Smith, M.R.; Arey, J.
1998-07-01
The scope of this project was to obtain a preliminary assessment of the potential impact of the fuel formulation on the speciation and toxic components of diesel exhaust. The test bed was a Cummins L10 engine operating over the heavy-duty transient test cycle using three diesel fuels: a pre-1993 diesel fuel, a low aromatic diesel fuel, and an alternative formulation diesel fuel. The sampling/analysis plan included: determination of the criteria pollutant emission rates (THC, CO, NOx, and PM); determination of PM(10) and PM(2.5) emission rates; collection and analysis of particulate samples for elemental, inorganic ion and elemental/organic carbon analyses; collectionmore » of bas samples for VOC speciation analyses; collection of 2,4-dinitrophenylhydrazine (DNPH) cartridges for determination of oxygenates; collection of nitrosomorpholine with Thermosorb N cartridges; collection of semi-volatiles on PF/XAD and particulate samples for PAH, nitro-PAH, and mutagenicity studies; and collection and analysis of dioxins for the pre-1993 and alternative formulation diesel fuels.« less
Thermal-history dependent magnetoelastic transition in (Mn,Fe){sub 2}(P,Si)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, X. F., E-mail: x.f.miao@tudelft.nl; Dijk, N. H. van; Brück, E.
The thermal-history dependence of the magnetoelastic transition in (Mn,Fe){sub 2}(P,Si) compounds has been investigated using high-resolution neutron diffraction. As-prepared samples display a large difference in paramagnetic-ferromagnetic (PM-FM) transition temperature compared to cycled samples. The initial metastable state transforms into a lower-energy stable state when the as-prepared sample crosses the PM-FM transition for the first time. This additional transformation is irreversible around the transition temperature and increases the energy barrier which needs to be overcome through the PM-FM transition. Consequently, the transition temperature on first cooling is found to be lower than on subsequent cycles characterizing the so-called “virgin effect.” High-temperaturemore » annealing can restore the cycled sample to the high-temperature metastable state, which leads to the recovery of the virgin effect. A model is proposed to interpret the formation and recovery of the virgin effect.« less
An Assessment of Fine Particulate (PM2.5) Air Pollution in Jeddah, Saudi Arabia
NASA Astrophysics Data System (ADS)
Nayebare, S. R.; Khwaja, H. A.; Aburizaiza, O. S.; Siddique, A.; Zeb, J.; Hussain, M. M.; Khatib, F.; Blake, D. R.; Carpenter, D. O.
2017-12-01
We assessed the levels, chemical composition and delineated the sources of PM2.5 in Jeddah, to estimate the anthropogenic influence. Sampling was done from April 8th 2013 to February 18th, 2014 in four cycles. PM2.5 samples were analyzed for black carbon (BC), trace elements (TEs) and water-soluble ionic species (IS). Delineation of sources was by mass reconstruction, enrichment factor (EF), and positive matrix factorization (PMF). The 24-h PM2.5 levels showed seasonal variabilities with mean PM2.5 per cycle (cycle 1: 58.8±25.0, cycle 2: 36.2±12.3, cycle 3: 33.9±9.1, and cycle 4: 38.0±17.7µg/m3) exceeding the WHO guideline (25.0 µg/m3). Overall, BC explained 3.61%, 5.92%, 7.15% and 6.51% of PM2.5 during cycles 1-4, respectively but with delta-C levels below zero. This excluded bio-mass burning as a PM2.5 source. IS were mostly SO42-, NO3-, NH4+, Na+ and K+, characteristic of industrial and vehicular emissions. From mass reconstruction, BC, TEs and IS collectively explained 73.6 - 89.5% of PM2.5. EF analysis defined two broad categories of TEs as; anthropogenic (Ni, V, Cu, Zn, Cl, Pb, S, Lu and Br), and earth-crust derived (Al, Si, Ti, Mg, K, Fe, Sr, Mn, Ca, Na and Cr) TEs. These anthropogenic TEs are mostly of industrial and vehicular origins. PMF broadly defined 4 major sources of PM2.5; fossil fuels combustion (36.0%), soil (34.1%), sea-spray (15.4%) and vehicular emissions (14.5%). Results show a major anthropogenic influence related to vehicular and industrial emissions, and further stress the need for more research to fully delineate PM2.5 sources in Jeddah.
Enlo‐Scott, Zachary; Nagy, Eszter; Mudway, Ian S.; Tetley, Teresa D.; Arlt, Volker M.; Phillips, David H.; Gollapudi, B.
2018-01-01
Human exposure to airborne particulate matter (PM) is associated with adverse cardiopulmonary health effects, including lung cancer. Ambient PM represents a heterogeneous mixture of chemical classes including transition metals, polycyclic aromatic hydrocarbons (PAHs) and their derivatives such as nitro‐PAHs, many of which are classified as putative carcinogens. As the primary site of human exposure to PM is the lungs, we investigated the response of two alveolar epithelial cell lines, the tumour‐derived A549 and newly described TT1 cells, to fine and coarse PM collected from background and roadside locations. We show that coarse PM elicits a genotoxic response in the TT1 cells, with the strongest signal associated with the background sample. This response could be recapitulated using the organic extract derived from this sample. No responses were observed in PM‐challenged A549 cells. Fine PM failed to elicit a genotoxic response in either cell line despite the higher PAH concentrations within this fraction. Consistent with the lack of a simplistic association between PM PAH content and the observed genotoxic response, TT1 cells treated with benzo[a]pyrene (BaP) demonstrated no increase in the selected markers. In contrast, a pattern of response was observed in TT1 cells challenged with 3‐nitrobenzanthrone (3‐NBA) similar to that with coarse PM. Together, these data illustrated the suitability of the TT1 cell line for assessing PM‐induced genotoxicity and challenge the contention that fine roadside PM poses the higher cancer risk. Furthermore, the response to 3‐NBA and not BaP suggests a major contribution of nitro‐PAHs to the overall toxicity of PM. Environ. Mol. Mutagen. 59:290–301, 2018. © 2018 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society PMID:29368350
NASA Astrophysics Data System (ADS)
Charrier, J. G.; Richards-Henderson, N. K.; Bein, K. J.; McFall, A. S.; Wexler, A. S.; Anastasio, C.
2015-03-01
Recent epidemiological evidence supports the hypothesis that health effects from inhalation of ambient particulate matter (PM) are governed by more than just the mass of PM inhaled. Both specific chemical components and sources have been identified as important contributors to mortality and hospital admissions, even when these end points are unrelated to PM mass. Sources may cause adverse health effects via their ability to produce reactive oxygen species in the body, possibly due to the transition metal content of the PM. Our goal is to quantify the oxidative potential of ambient particle sources collected during two seasons in Fresno, CA, using the dithiothreitol (DTT) assay. We collected PM from different sources or source combinations into different ChemVol (CV) samplers in real time using a novel source-oriented sampling technique based on single-particle mass spectrometry. We segregated the particles from each source-oriented mixture into two size fractions - ultrafine Dp ≤ 0.17 μm) and submicron fine (0.17 μm ≤ Dp ≤ 1.0 μm) - and measured metals and the rate of DTT loss in each PM extract. We find that the mass-normalized oxidative potential of different sources varies by up to a factor of 8 and that submicron fine PM typically has a larger mass-normalized oxidative potential than ultrafine PM from the same source. Vehicular emissions, regional source mix, commute hours, daytime mixed layer, and nighttime inversion sources exhibit the highest mass-normalized oxidative potential. When we apportion DTT activity for total PM sampled to specific chemical compounds, soluble copper accounts for roughly 50% of total air-volume-normalized oxidative potential, soluble manganese accounts for 20%, and other unknown species, likely including quinones and other organics, account for 30%. During nighttime, soluble copper and manganese largely explain the oxidative potential of PM, while daytime has a larger contribution from unknown (likely organic) species.
NASA Astrophysics Data System (ADS)
Heo, J.; Yi, S. M.
2016-12-01
Paired indoor-outdoor fine particulate matter (PM2.5) samples were collected at subway stations, underground shopping centers, and schools in Seoul metropolitan over a 4-year period between 2004 and 2007. Relationships between indoor and outdoor PM2.5 chemical species were determined and source contributions to indoor and outdoor PM2.5 mass were estimated using a positive matrix factorization (PMF) model. The PM2.5 samples were analyzed for major chemical components including organic carbon and elemental carbon, ions, and metals, and the results were used in the PMF model. The levels of the PM2.5 mass and its chemical components observed at the indoor sites were higher than those at the outdoor sites. Indoor levels of ions (i.e. sulfate, nitrate, ammonium), elemental carbon, and several metals (i.e. Fe, Zn, and Cu) were found to be significantly affected by outdoor sources. Very high indoor-to-outdoor mass ratio of these chemical components, in particular, were observed, representing the significant impacts of outdoor sources on indoor levels of them. Seven sources (secondary sulfate, secondary nitrate, mobile, biomass burning, roadway emissions, dust, and sea salt) were resolved by the PMF model at both of the indoor and outdoor sites. The secondary inorganic aerosol (i.e. secondary sulfate and nitrate) and the mobile sources were major contributors to the indoor and outdoor PM2.5, accounting for 47% and 27% of the outdoor PM2.5 and 40% and 25% of the indoor PM2.5, respectively. Furthermore, the contributions of the secondary inorganic aerosol and the mobile sources to the indoor PM2.5 were very comparable to its corresponding contributions to the outdoor PM2.5 levels. The spatial and temporal characteristics of each of sources resolved by the PMF model across the sites were examined using summary statistics, correlation analysis, and coefficient of variation and divergence analysis and the detailed results will be discussed in the presentation.